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Abstract

I aim to shed light on why emergency room (ER) utilization increased following the Oregon
Health Insurance Experiment but decreased following a Massachusetts policy. To do so, I unite
the literatures on insurance and treatment effects. Under an MTE model that assumes no more
than the LATE assumptions, comparisons across always takers, compliers, and never takers
can inform the impact of polices that expand and contract coverage. Starting from the Ore-
gon experiment as the “gold standard,” I make comparisons within Oregon and extrapolate my
findings to Massachusetts. Within Oregon, I find adverse selection and heterogeneous moral
hazard. Although previous enrollees increased their ER utilization, evidence suggests that sub-
sequent enrollees will be healthier, and they will decrease their ER utilization. Accordingly, I
can reconcile the Oregon and Massachusetts results because the Massachusetts policy expanded
coverage from a higher baseline, and new enrollees reported better health.
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1 Introduction

Findings from the Oregon Health Insurance Experiment are considered the “gold standard” for

evidence in health economics because they are based on a randomized lottery. The state of Oregon

conducted the lottery in 2008 as a fair way to expand eligibility for its Medicaid health insur-

ance program to a limited number of uninsured individuals. The lottery also effectively created a

randomized experiment that facilitated evaluation of the impact of Medicaid. It is challenging to

evaluate the impact of Medicaid because there could be “adverse selection” into Medicaid such that

Medicaid enrollees would have worse outcomes than other individuals, even if they were not en-

rolled. Concerns about selection heterogeneity motivate the popularity of results from the Oregon

experiment.

A headline finding from the Oregon experiment is that Medicaid increased emergency room

(ER) utilization (Taubman et al., 2014). Legislation requires that emergency rooms see all patients

regardless of insurance coverage, so the uninsured often access the healthcare system through the

ER. There was hope that Medicaid would decrease ER utilization, either because of substitution

toward primary care or because of improved health. However, it is plausible that Medicaid increased

ER utilization because formerly uninsured individuals could visit the ER at lower personal cost

when enrolled in Medicaid. Any treatment effect of Medicaid on ER utilization can be considered

“moral hazard,” which arises when individuals who gain insurance change their consumption of

the insured good. The sign and magnitude of this type of moral hazard are important for policy

evaluation because care provided in the ER is expensive, but the insured do not necessarily value

additional ER care at its cost, leading to inefficiency.

Meta-analysis and comparisons made in the popular press suggest that moral hazard could

vary across policies, implying that the headline finding from Oregon need not apply directly to all

policies (Rovner, 2014; Sommers and Simon, 2017; Tavernise, 2014). Importantly, several studies

on the Massachusetts health reform of 2006 show that ER utilization decreased or stayed the same

(Chen et al., 2011; Kolstad and Kowalski, 2012; Miller, 2012; Smulowitz et al., 2011). Studies on

other policies yield varying results (Anderson et al., 2012, 2014; Currie and Gruber, 1996; Newhouse

and Rand Corporation Insurance Experiment Group, 1993).

To extrapolate from the Oregon experiment to other policies, including the Massachusetts re-

form, I unite the literatures on insurance and treatment effects. I use a generalized Roy (1951)

model of the marginal treatment effect (MTE) introduced by Björklund and Moffitt (1987), in the

tradition of Heckman and Vytlacil (1999, 2001, 2005), Carneiro et al. (2011), and Brinch et al.

(2017), to characterize how selection and moral hazard vary independently as Medicaid enroll-

ment expands and contracts. Although the MTE literature generally focuses on variation within a

single context, I use variation from within the Oregon experiment to inform extrapolation to Mas-

sachusetts. I begin with a version of the MTE model shown by Vytlacil (2002) to assume no more

than the local average treatment effect (LATE) assumptions of independence and monotonicity

proposed by Imbens and Angrist (1994). My exposition of the model emphasizes the link between

the MTE and always takers, compliers, and never takers, using the terminology of Angrist et al.
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(1996) from the LATE literature.

Under the model, variation across always takers, compliers, and never takers is variation across

an important margin: the margin of enrollment in Medicaid. Individuals are only always takers,

compilers, or never takers with respect to a given policy. If Medicaid enrollment were to expand

to more lottery entrants, then never takers would enroll, especially if a mandate required them to

do so. If Medicaid enrollment were to contract, then compliers would disenroll, followed by always

takers. Therefore, comparison of ER utilization across always takers, compliers, and never takers is

central to identification of how selection and moral hazard vary as Medicaid enrollment expands and

contracts. I use the model to calculate the average ER utilization of always takers, compliers with

Medicaid, compliers without Medicaid, and never takers, following Imbens and Rubin (1997), Katz

et al. (2001), Abadie (2002), and Abadie (2003).1 I emphasize that calculation of the LATE does

not require calculation of these four averages or even the ability to calculate them.2 Therefore, these

averages provide information that is not contained in the LATE that I can use for identification of

selection and moral hazard heterogeneity.

I define selection and moral hazard heterogeneity using general functions from the model. A

function that I refer to as the marginal untreated outcome (MUO) function defines selection het-

erogeneity along the entire enrollment margin, and the marginal treatment effect (MTE) function

defines moral hazard heterogeneity along the entire enrollment margin. I weight these functions

along ranges of the enrollment margin to construct the special cases of selection and moral hazard

heterogeneity defined in the econometric literature (Angrist (1998) and Heckman et al. (1998) use

a common set of definitions). I demonstrate that the definitions from the literature depend on

the fraction of lottery winners in the Oregon experiment, which is not desirable if the goal is to

characterize underlying behavior that is invariant to a parameter of the experimental design used

to study it. Furthermore, under the definitions from the literature, it is not possible to identify

selection or moral hazard heterogeneity without ancillary assumptions.

Using the general functions, I can identify a special case of selection heterogeneity without

1I illustrate the calculations graphically in Appendix C to build intuition. The calculations rely on average
ER utilization for four observed groups: lottery losers with Medicaid (always takers only), lottery winners with
Medicaid (always takers and compliers with Medicaid), lottery losers without Medicaid (never takers and compliers
without Medicaid), and lottery winners without Medicaid (never takers only). Because of randomization, average
ER utilization of lottery losers with Medicaid identifies average ER utilization with Medicaid for all always takers,
even the lottery winners. Similarly, average ER utilization of lottery winners without Medicaid identifies average ER
utilization without Medicaid for all never takers. Furthermore, the fraction of always takers among lottery losers
and the fraction of never takers among lottery winners identify the respective fractions in the full sample. Using
these fractions and average ER utilization for always takers with Medicaid and never takers without Medicaid, it
is straightforward to back out average ER utilization for compliers with and without Medicaid from the average
ER utilization for lottery winners with Medicaid and lottery losers without Medicaid. (It is not possible to calculate
average ER utilization for always takers without Medicaid or never takers with Medicaid without ancillary assumptions
because these groups do not change their enrollment based on the lottery.)

2The Wald (1940) approach to calculate the LATE divides the “reduced form,” the average difference in ER
utilization between lottery winners and losers, by the “first stage,” the average difference in Medicaid enrollment
between lottery winners and losers. As shown by Angrist (1990) and Angrist and Krueger (1992), it is possible to
calculate the LATE using two separate datasets: one that includes ER utilization by lottery status (for the reduced
form), and another that includes Medicaid enrollment by lottery status (for the first stage). However, it is not possible
to observe ER utilization by lottery status and Medicaid enrollment in either dataset, so it is not possible to calculate
any of the four averages.
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further assumptions. I do so using a test that I refer to as the “untreated outcome test,” which

compares outcomes of compliers and and never takers. Similarly, I use a test that I refer to as

the “treated outcome test,” which compares outcomes of compliers and always takers, to identify

the combined impact of selection and moral hazard heterogeneity. These tests are equivalent to

tests proposed in the econometric literature by Bertanha and Imbens (2014); Guo et al. (2014);

Black et al. (2015), and Mogstad et al. (2017), who also propose testing both jointly. The tests

of Hausman (1978); Heckman (1979); Willis and Rosen (1979); Angrist (2004); Huber (2013) and

Brinch et al. (2017) can also be expressed in terms of functions of the treated and untreated

outcome tests (see Bertanha and Imbens, 2014). My innovation is in the interpretation. I emphasize

that the distinction between the untreated and the treated is an important one, especially in

insurance contexts where the distinction separates the insured from the uninsured. By relating these

tests to general functions from the MTE model, I show that the untreated outcome tests isolates

selection heterogeneity, and the treated outcome test identifies the combined influence of selection

and treatment effect heterogeneity. Without ancillary assumptions, the joint implementation of the

treated and untreated outcome tests is no more informative about treatment effect heterogeneity

than the treated outcome test is on its own.

Tests from the insurance literature also cannot separately identify moral hazard heterogeneity

within the Oregon experiment without ancillary assumptions. Uniting the insurance and treatment

effects literatures, I demonstrate that Einav et al. (2010) cost curve tests from the insurance lit-

erature can be applied within the Oregon experiment. I emphasize that the Einav et al. (2010)

cost curve test applied to uninsured costs is equivalent to the untreated outcome test. Therefore,

it identifies selection heterogeneity. Furthermore, the Einav et al. (2010) cost curve test applied to

insured costs is equivalent to the treated outcome test. Therefore, it identifies heterogeneous moral

hazard, or heterogeneous selection, or both. The Einav et al. (2010) cost curve test applied to the

difference between insured and uninsured costs would identify heterogeneous moral hazard, but it

cannot be run within the Oregon experiment without ancillary assumptions because only one point

on the curve is identified. Other tests from the insurance literature also cannot separately identify

moral hazard heterogeneity within the Oregon experiment without ancillary assumptions. Under

the Chiappori and Salanie (2000) positive correlation test, a correlation between insurance cover-

age and insured spending could indicate heterogeneous moral hazard, or heterogeneous selection,

or both. Under the Finkelstein and Poterba (2014) unused observables test, a correlation between a

covariate and insurance coverage and a second correlation between the same covariate and insured

spending could also indicate heterogeneous moral hazard, or heterogeneous selection, or both.

To separately identify moral hazard heterogeneity, I impose two ancillary assumptions following

Brinch et al. (2017), who impose them to study the impact of family size on child outcomes. In my

context, the first ancillary assumption requires that ER utilization without Medicaid varies linearly

with the fraction of the sample enrolled in Medicaid conditional on the lottery outcome. Under

this assumption, the linear marginal untreated outcome (MUO) function identifies selection hetero-

geneity along the entire enrollment margin. The second ancillary assumption, which is equivalent

to an assumption made by Olsen (1980) to study the impact of family size on maternal outcomes,
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requires linearity of a function that I refer to as the marginal treated outcome (MTO) function. In

my context, the MTO function characterizes how ER utilization for Medicaid enrollees changes as

Medicaid enrollment expands and contracts. I emphasize that the MTO function characterizes the

combined impact of selection and moral hazard heterogeneity.

Under both ancillary assumptions, the difference between the MTO and MUO functions yields

a linear marginal treatment effect (MTE) function, which I use to characterize how moral hazard

varies as Medicaid enrollment expands and contracts. Linearity of the MTE function has precedent

as a direct assumption in applied work (see Moffitt, 2008; French and Song, 2014). Furthermore,

applied work that extrapolates as if the LATE applies everywhere makes an implicit assumption

that the MTE function is linear and has zero slope.

To extrapolate from the Oregon experiment to other policies, including the Massachusetts re-

form, I reweight the Oregon MTE using weights that are special cases of general weights for MTE

reweighting given by Heckman and Vytlacil (2007). Unlike the weights used by Brinch et al. (2017),

these weights allow me to recover and predict outcomes and treatment effects for always takers,

compliers, and never takers, which are of interest for extrapolation to specific policies that induce

full enrollment or full dis-enrollment. I emphasize that using these weights, I only need one of the

two ancillary assumptions to predict the impact of policies that enroll all never takers or dis-enroll

all always takers.

To extrapolate using observables, I incorporate a shape restriction into both ancillary assump-

tions. This shape restriction is common in the MTE literature (Carneiro and Lee, 2009; Carneiro

et al., 2011; Maestas et al., 2013; Kline and Walters, 2016; Brinch et al., 2017). In my context,

it requires that included observables and the residual unobserved net cost of Medicaid enrollment

have additively-separable impacts on potential ER utilization with and without Medicaid. Depart-

ing from the literature, which places little emphasis on the choice of included observables, I vary

the included observables to determine which ones explain the moral hazard heterogeneity I find.

I begin my empirical analysis by taking the model without any ancillary assumptions to the

data. By using publicly available data previously used to evaluate the Oregon Health Insurance

Experiment, I encourage further replication and future work.3 I replicate the headline finding that

moral hazard is positive: Medicaid increases ER utilization. Per Imbens and Angrist (1994) and

Angrist et al. (1996), the headline finding is interpretable as a LATE that only applies to compliers.

Within my analysis sample, only 26% of individuals are compliers, while 15% are always takers

and 59% are never takers. Always and never takers are possible because individuals entered the

experiment by joining a waitlist for Medicaid, but they were only required to provide eligibility

documentation if they won. Therefore, always takers, who might not have been aware of their

prior eligibility when they entered the waitlist, could still enroll even if they lost. Medicaid allows

hospitals to facilitate retroactive enrollment of eligibles, so it is possible that some always takers

enrolled after visiting the ER. On the other side of the spectrum, never takers did not enroll even if

3Publicly available data are rare in a landscape of proprietary and confidential data in health economics. I
am grateful to the investigators of the Oregon Health Insurance Experiment for making their data available. I
co-developed the Stata command mtebinary to aid replication of my results (Kowalski et al., 2016).
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they won, either because they were ineligible or because they did not submit eligibility information

in the required timeframe.

Examining ER utilization, I find that never takers have lower average ER utilization than

compliers without Medicaid, which identifies adverse selection from compliers to never takers via the

untreated outcome test. Applying the treated outcome test, I find that always takers have higher

average ER utilization than compliers with Medicaid. This result is consistent with decreasing

moral hazard or adverse selection from always takers to compliers. To separately identify moral

hazard heterogeneity, I impose the ancillary assumptions, and I find that moral hazard decreases

from always takers to compliers to never takers, so much so that average moral hazard is negative

for never takers. Therefore, subsequent expansions of Medicaid in Oregon could result in decreased

use of the ER.

Before extrapolating to Massachusetts, I assess whether my findings from within Oregon apply

within Massachusetts. To do so, I recast my previous work on the Massachusetts reform from

Hackmann et al. (2015), which builds on the Einav et al. (2010) model from the insurance literature,

in terms of the MTE model with ancillary assumptions. I show that the marginal cost curve for

the insured minus the uninsured is an MTE function. Therefore, Hackmann et al. (2015) shows a

decreasing MTE function for total health care costs, which is consistent with the decreasing MTE

function for ER utilization that I find in Oregon.

I acknowledge that there are several factors that could have differed between the Massachusetts

and Oregon contexts. The Oregon policy was a randomized lottery conducted only for individuals

who entered it, and the Massachusetts reform was a state-wide policy. Furthermore, institutional

features of the health care environment could have differed across states. As discussed by Miller

(2012), Massachusetts had an uncompensated care pool that might have encouraged excess emer-

gency care before its dissolution and replacement under the Massachusetts reform. Also, health

insurance terms could also have differed, especially since Oregon expanded Medicaid alone and

Massachusetts also expanded other types of coverage. Despite these differences, the MTE in Ore-

gon and the MTE in Massachusetts both slope downward, suggesting that in both contexts, those

who increase their utilization the most in response to health insurance coverage enroll first.

Given decreasing MTE functions in Oregon and Massachusetts, I rely on the Oregon experiment

as the “gold standard,” and I characterize the Massachusetts reform as an expansion of Medicaid

along the Oregon MTE. Because enrollment levels were high in Massachusetts before and after

the reform, MTE-reweighting predicts that Massachusetts compliers respond to insurance like a

subset of Oregon never takers. With MTE-reweighting, I predict a decrease in ER utilization in

Massachusetts of the same order of magnitude as the decrease found by Miller (2012). MTE-

reweighting thus offers a plausible potential pathway to reconcile the increase in ER utilization

found in Oregon with the decrease in ER utilization found in Massachusetts.

To explore potential mechanisms for why the impact of coverage on ER utilization is positive

for some groups but negative for others, I examine observables. I begin by examining self-reported

health. Finkelstein et al. (2012) shows that Medicaid improved self-reported health within the Ore-

gon experiment, so I only compare the self-reported health of groups without Medicaid: compliers
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who lost the lottery and never takers. I find that 55% of Oregon compliers report fair or poor

health, while only 34% of Oregon never takers report fair or poor health. The difference is sta-

tistically different from zero, indicating adverse selection on self-reported health via the untreated

outcome test. I also find suggestive evidence of adverse selection on self-reported health within

Massachusetts. However, the difference between Massachusetts and Oregon is even more striking

than the difference within Massachusetts: only 21% of Massachusetts compliers report fair or poor

health. These comparisons suggest an important potential mechanism for my findings—upon gain-

ing coverage, individuals in worse health increase their ER utilization, while individuals in better

health decrease their ER utilization.

Examination of ER utilization from before the Oregon lottery took place corroborates the role

of health as a potential mechanism for why ER utilization increased in Oregon but decreased in

Massachusetts. Before the lottery took place, always takers visited the ER more than compliers,

who visited the ER more than never takers, indicating adverse selection. Furthermore, when I

include previous ER utilization in the Oregon MTE, I can explain the entire decrease in moral

hazard from always takers to compliers to never takers. This evidence suggests that differences

in previous ER utilization between Oregon compliers and Massachusetts compliers could explain

the entire difference between the positive Oregon LATE and the negative Massachusetts LATE.

Unfortunately, I do not observe previous ER utilization in my Massachusetts data, so I cannot

extrapolate with it directly, but MTE-reweighting effectively allows me to extrapolate based on an

unobservable that captures previous ER utilization and health.

When I use available observables for extrapolation, I can still reconcile the Oregon and Mas-

sachusetts results with MTE-reweighting, even though I cannot with LATE-reweighting following

Angrist and Fernandez-Val (2013) in the tradition of Hotz et al. (2005). I examine the three common

observables available for all individuals in the Oregon and Massachusetts data: age, gender, and an

indicator for communications in English. These observables are similar across both contexts. When

I incorporate them into the Oregon MTE, they do not explain differences in ER utilization across

always takers, compliers, and never takers. Furthermore, consistent with evidence from Taubman

et al. (2014), I find that treatment effects on compliers are positive within the vast majority of

subgroups determined by the common observables. Accordingly, LATE-reweighting would yield a

Massachusetts LATE even more positive than the Oregon LATE. In contrast, MTE-reweighting

with an MTE that incorporates the common observables can still reconcile the positive LATE in

Oregon with the negative LATE in Massachusetts.

2 Model of Selection and Moral Hazard Heterogeneity

2.1 First Stage: Enrollment in Medicaid

Let D represent enrollment in Medicaid, which can be thought of as the “treatment” offered by

the Oregon Health Insurance Experiment. Let VT represent potential utility in the treated state

(enrolled in Medicaid, D = 1), and let VU represent potential utility in the untreated state (not
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enrolled in Medicaid, D = 0).4 The following definition relates realized utility V to the potential

utilities:

V = VU + (VT − VU )D. (1)

I specify the potential utilities as follows:

VT = µT (Z,X) + νT (2)

VU = µU (Z,X) + νU , (3)

where νT and νU are unobserved terms with unspecified distributions, X is an optional vector of

observed covariates, and Z is an observed binary instrument.5 The unspecified functions µT (·)
and µU (·) translate the covariates and instrument into units of utility. In the Oregon context,

the instrument represents the outcome of the randomized lottery. I begin by considering only

individuals who participated in the lottery, so Z ∈ {0, 1} for all individuals. Individuals with

Z = 0 are lottery losers, so I refer to them as the “control group.” Individuals with Z = 1 are

lottery winners that receive the lotteried intervention, an opportunity to be eligible for a lotteried

Medicaid program, so I refer to them as the “intervention group.” I need different terminology for

the intervention group (Z = 1) and the treatment group (D = 1) because not all Oregon lottery

winners enrolled in Medicaid. I assume

A.1. (First Stage Independence) The random variable νU − νT is independent of Z conditional on

X, which implies that F (νU − νT | X), denoted as UD, is independent of Z conditional on X.

A.2. (First Stage Technical Assumption) The cumulative distribution function of νU − νT condi-

tional on X, which I denote with F , is continuous and strictly increasing.

These assumptions allow me to derive the following equation for enrollment in Medicaid conditional

on the lottery outcome:

D = 1{UD ≤ P(D = 1 | Z = z,X)}, (4)

where UD = F (νU − νT | X). The enrollment equation (4) follows from the statement that

individuals enroll in Medicaid if their potential treated utility VT exceeds their untreated potential

utility VU . To make my exposition of the model self-contained, I present the proof in Appendix A.

4Rubin (1974), Rubin (1977), and Holland (1986) are credited with developing the idea of potential outcomes.
Here, I use this idea for an unobserved utility V rather than an observed outcome Y . Also, I use subscripts T and U
rather than 1 and 0 to emphasize that they represent the treated and untreated states and avoid confusion with the
states of winning and losing a lottery.

5 For expositional clarity, I specify (2) and (3) separately, but for the derivation of the enrollment equation, I only
need to specify the difference between them:

VT − VU = µ̃(Z,X) + ν̃

where µ̃(Z,X) = µT (Z,X)− µU (Z,X) and ν̃ = νT − νU . The terms µT (Z,X) and µU (Z,X) need not be additively
separable from each other, and the terms νT and νU need not be additively separable from each other. Vytlacil
(2002) shows that the additive separability of µ̃(Z,X) from ν̃ is equivalent to the LATE monotonicity assumption
of Imbens and Angrist (1994). Intuitively, an interaction between the two terms could allow winning the lottery to
increase enrollment for some individuals and decrease enrollment for others.
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The enrollment equation (4) implies that individuals enroll in Medicaid if their value of UD is

less than the threshold P(D = 1 | Z = z,X). The model implies that UD is distributed uniformly

between 0 and 1. For completeness, I present the proof in Appendix B. I interpret UD as the

“(unobserved net) cost of enrollment,” such that individuals with the lowest cost of enrollment

enroll in Medicaid first. The term “net” emphasizes that UD represents enrollment costs net of

enrollment benefits and therefore that it does not make a material distinction between costs and

benefits.

There are two special cases of the enrollment equation (4) for the lottery losers and winners:

D = 1{UD ≤ pCX} where pCX = P
(
D = 1 | Z = 0, X), (5)

D = 1{UD ≤ pIX} where pIX = P
(
D = 1 | Z = 1, X), (6)

where the probabilities pCX and pIX can be estimated in the control group (Z = 0) and the

intervention group (Z = 1), respectively. Without loss of generality, I proceed with pCX ≤ pIX .6

To ensure that the lottery is relevant for enrollment, but not necessarily coincident with the lottery

outcome, I assume:

A.3. (First Stage Relevance) µT (Z,X)−µU (Z,X) is a nondegenerate random variable conditional

on X.

A.4. (First Stage Enrollment Differs from Lottery Outcome with Positive Probability) 0 < P(D =

1 | Z = z,X) < 1.

In practice, assumptions A.3 and A.4 are verifiable.

As I show in Figure 1 these assumptions allow me to identify three distinct ranges of the

enrollment margin, UD. As originally shown by Vytlacil (2002), the three ranges of UD correspond

to ranges for always takers, compliers, and never takers (the model excludes defiers). Within my

analysis sample, 15% of lottery losers enroll and 41% of lottery winners enroll. Accordingly, in

Figure 1, I depict pC = 0.15 and pI = 0.41, suppressing X to emphasize that these quantities are

averages in the full analysis sample, not in a sample conditional on X. In the top line of Figure 1,

I depict the lottery losers. By (5), I infer that enrolled lottery losers, who must be always takers,

have 0 ≤ UD ≤ 0.15. In the middle line of Figure 1, I depict the lottery winners. By (6), I infer

that the unenrolled lottery winners, who must be never takers, have 0.41 < UD ≤ 1. In the bottom

line of Figure 1, I depict UD for lottery losers and winners on the same axis, and I label the implied

ranges of UD for always and never takers. Individuals with values of UD in the middle range,

0.15 < UD ≤ 0.41, enroll in Medicaid if they win the lottery, but they do not enroll if they lose the

lottery, so these individuals must be compliers.

The depiction of UD that I show in the bottom line of Figure 1 provides more information

than the “first stage” typically reported in the LATE literature, which is equal to P (D = 1 | Z =

1) − P (D = 1 | Z = 0) = pI − pC . The first stage conveys the share of compliers, but it does not

6If pCX ≥ pIX , then it is always possible to rename the intervention group as the control group and vice versa so
that this condition is satisfied.
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Figure 1: Ranges of UD for Always Takers, Compliers, and Never Takers
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convey the separate shares of always takers and never takers. I emphasize that the ordering from

always takers to compliers to never takers along UD is an ordering across an important margin: the

margin of enrollment in Medicaid. As Medicaid enrollment expands along the enrollment margin,

always takers enroll first, followed by compliers, followed by never takers.

2.2 Second Stage: Relating Enrollment in Medicaid to ER Utilization

I relate Medicaid enrollment D to realized ER utilization Y as follows:

Y = YU + (YT − YU )D, (7)

where I specify potential ER utilization with Medicaid YT and without Medicaid YU as follows:

YT = gT (X,UD, γT ) (8)

YU = gU (X,UD, γU ), (9)

where gT (·) and gU (·) are unspecified functions that need not be additively separable in their

observed an unobserved components, unlike the potential utility functions in (2) and (3). X is the

same optional vector of observed covariates from the first stage of the model, UD is the unobserved

net cost of enrollment from the first stage of the model, and γT and γU represent additional

unobserved heterogeneity in the second stage of the model. I assume:

A.5. (Second Stage Independence) The random vector (UD, γT ) and the random vector (UD, γU )

are independent of Z conditional on X.

In Appendix C, I use this assumption to calculate the expected values of YT for always takers and

compliers and the expected values of YU for compliers and never takers from the model, consistent

with the approaches of Imbens and Rubin (1997), Katz et al. (2001), Abadie (2002), and Abadie

(2003), which rely on the LATE assumptions of independence and monotonicity. As a whole, the

model, given by the utility equations (1)–(3), the selection equations (4)–(6), the potential outcome

equations (7)–(9), and assumptions (A.1)–(A.5) assumes no more than the LATE assumptions, as

shown by Vytlacil (2002) and applied by Heckman and Vytlacil (2005).7

7To ensure that the model assumes no more than the LATE assumptions, I only make the following stylistic
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2.3 Selection and Moral Hazard Heterogeneity in the Model

I characterize selection and moral hazard heterogeneity on Y along the entire enrollment margin

using functions from the MTE literature (see Carneiro and Lee, 2009; Brinch et al., 2017):

Selection and Moral Hazard Heterogeneity: MTO(x, p) = E [YT | X = x, UD = p] (10)

Selection Heterogeneity: MUO(x, p) = E [YU | X = x, UD = p] (11)

Moral Hazard Heterogeneity: MTE(x, p) = E [YT − YU | X = x, UD = p] , (12)

where x is a realization of the covariate vector X and p is a realization of the unobserved net cost

of enrollment UD. I refer to the first two functions as the “marginal treated outcome (MTO)” and

“marginal untreated outcome (MUO)” functions. Their difference yields the “marginal treatment

effect (MTE)” function of Heckman and Vytlacil (1999, 2001, 2005).

I emphasize that the MUO function characterizes selection heterogeneity on Y along the entire

enrollment margin and that the MTE function characterizes moral hazard heterogeneity on Y along

the entire enrollment margin. The MTO function is the sum of the MUO and MTE functions, so it

captures selection plus moral hazard heterogeneity on Y along the entire enrollment margin. At each

point p along the enrollment margin, the slope of the MUO function determines whether selection

is adverse or advantageous. Similarly, the slope of the MTE function determines whether moral

hazard is decreasing or increasing. Uniting insurance terminology with econometric terminology,

I emphasize that the MTE function characterizes “moral hazard heterogeneity” on Y along the

enrollment margin, which is equivalent to “selection on moral hazard,” “selection on the treatment

effect,” “selection on the gain,” and “treatment effect heterogeneity” on Y along the enrollment

margin.

Definitions of selection and moral hazard hetergeneity widely used in the econometrics literature,

for example, by Angrist (1998) and Heckman et al. (1998), imply the following equations:8

Selection Heterogeneity from Literature: E[YU | D = 1]− E[YU | D = 0] (13)

Moral Hazard Heterogeneity from Literature: E[YT − YU | D = 1]− E[YT − YU | D = 0]. (14)

I can weight the MUO and MTE functions to obtain the definitions from the literature as special

changes to the model presented in Heckman and Vytlacil (2005): (i) I use slightly different notation; (ii) I add
equations (2) and (3) to provide an intuitive derivation of the selection equation (4), explaining in footnote 5 that
only the difference between (2) and (3) matters; (iii) I present A.1 and A.5 as two different assumptions to emphasize
that the model relies on independence assumptions in the first and second stages; (iv) I assume A.2 which implies
that the distribution of UD is absolutely continuous with respect to Lebesgue measure, but all proofs hold with the
weaker assumption; (v) I assume A.4 which adds a Z term that I believe was omitted from 1 > P(D = 1 | X) > 0
in Heckman and Vytlacil (2005); (vi) I make UD explicit in the potential outcome equations (8)-(9); and (vii) I omit
the assumption that E[YT ] and E[YU ] are finite, which will be implied by my ancillary assumptions.

8The literature refers to (13) as the “selection bias term” that results from using the observed outcome difference
E[Y | D = 1]− E[Y | D = 0] to estimate E[YT − YU | D = 1], the effect of treatment on the treated of Rubin (1977).
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cases. To demonstrate, I express (13) as the following weighted integral of the MUO function:

=

∫ 1

0

[
P(Z = 0 | D = 1)ω(p, 0, pc) + P(Z = 1 | D = 1)ω(p, 0, pI)

− P(Z = 0 | D = 0)ω(p, pc, 1)− P(Z = 1 | D = 0)ω(p, pI , 1)
]

MUO(p) dp (15)

with weights ω(p, pL, pH) = 1{pL ≤ p < pH}/(pH − pL). In doing so, I make it clear that selection

heterogeneity from the literature depends on the fraction of lottery losers and the fraction of

lottery winners, which is not desirable if the goal is to characterize underlying behavior that is

invariant to parameters of the experimental design used to study it. Furthermore, the special case

of selection heterogeneity from the literature is not identified without ancillary assumptions because

the average untreated outcome for always takers is not observed. In contrast, I identify a different

policy-relevant special case of selection heterogeneity without ancillary assumptions.

3 Identifying Selection and Moral Hazard Heterogeneity

3.1 The Untreated Outcome Test

I identify a special case of selection heterogeneity along one range of the enrollment margin, UD,

without ancillary assumptions by comparing average ER utilization without Medicaid between

compliers (pC < UD ≤ pI) and never takers (pI < UD ≤ 1):

E[YU | pC < UD ≤ pI ]− E[YU | pI < UD ≤ 1] =

∫ 1

0
(ω(p, pC , pI)− ω(p, pI , 1)) MUO(p) dp, (16)

where ω(p, pL, pH) = 1{pL ≤ p < pH}/(pH − pL). I refer to the test of the null hypothesis that

(16) is equal to zero as the “untreated outcome test,” which is refutable and verifiable with a large

enough sample. This test is equivalent to tests proposed in the econometric literature by Bertanha

and Imbens (2014), Guo et al. (2014), Black et al. (2015), and Mogstad et al. (2017). My innovation

is in interpretation. By relating the test to the marginal untreated outcome function from the MTE

model, I show that that a rejection of the untreated outcome test identifies selection heterogeneity.

My innovation relative to the insurance literature is that by modeling the Oregon experiment with

the MTE model, I show that it is possible to test for selection heterogeneity within the Oregon

experiment. I emphasize that the untreated outcome test is equivalent to the Einav et al. (2010)

cost curve test for selection heterogeneity applied to uninsured costs.

3.2 The Treated Outcome Test

Similarly, I can also compare average ER utilization with Medicaid between always takers (0 ≤
UD ≤ pC) and compliers (pC < UD ≤ pI) without ancillary assumptions:

E[YT | 0 ≤ UD ≤ pC ]− E[YT | pC < UD ≤ pI ] =

∫ 1

0
(ω(p, 0, pC)− ω(p, pC , pI)) MTO(p) dp, (17)
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where ω(p, pL, pH) = 1{pL ≤ p < pH}/(pH − pL). I refer to the test of the null hypothesis that

(17) is equal to zero as the “treated outcome test.” This test is equivalent to tests proposed

in the econometric literature by Bertanha and Imbens (2014), Guo et al. (2014), Black et al.

(2015), and Mogstad et al. (2017). It is also equivalent to the Einav et al. (2010) cost curve test

from the insurance literature when applied to insured costs. By relating the treated outcome test

to the marginal treated outcome function from the MTE model, I show that a rejection of the

treated outcome test implies moral hazard heterogeneity, or selection heterogeneity, or both types

of heterogeneity, between always takers and compliers.

I emphasize that the distinction between the treated and the untreated is a meaningful one,

especially in insurance contexts where the distinction separates the insured and the uninsured. It

is tempting to assert that the treated and untreated outcome tests must be equally informative

because it is possible to rename the treated group as the untreated group and vice versa. However,

changing the definition of the treatment also changes the definition of the treatment effect. The

treatment effect is YT−YU , not |YT−YU |, so the distinction between treated and untreated matters.

The untreated outcome test cannot identify treatment effect heterogeneity. The treated outcome

test can reflect treatment effect heterogeneity, but it cannot identify treatment effect heterogeneity

without ancillary assumptions.

Other tests from the econometric literature also cannot identify treatment effect heterogeneity

without ancillary assumptions. Tests from the econometric literature can often be expressed in

terms of functions of the treated and untreated outcome tests (see the discussion in Bertanha and

Imbens, 2014). I emphasize that without ancillary assumptions, the joint treated and untreated

outcome test is no more informative about treatment effect heterogeneity than the treated outcome

test is on its own.

Tests from the insurance literature also cannot separately identify moral hazard heterogeneity

in the context of the Oregon experiment without ancillary assumptions. The cost curve test of

Einav et al. (2010) applied to insured costs is equivalent to the treated outcome test. Therefore,

it identifies heterogeneous moral hazard, or heterogeneous selection, or both. The Einav et al.

(2010) cost curve test applied to the difference between insured and uninsured costs would identify

heterogeneous moral hazard, but it cannot be run within the Oregon experiment without ancillary

assumptions because only one point on the curve is identified. Other tests from the insurance

literature also cannot separately identify moral hazard heterogeneity within the Oregon experiment

without ancillary assumptions. Under the Chiappori and Salanie (2000) positive correlation test,

a correlation between insurance coverage and insured spending could indicate heterogeneous moral

hazard, or heterogeneous selection, or both. Under the Finkelstein and Poterba (2014) unused

observables test, a correlation between a covariate and insurance coverage and a second correlation

between the same covariate and insured spending could also indicate heterogeneous moral hazard,

or heterogeneous selection, or both.
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4 Extrapolation Using Selection and Moral Hazard Heterogeneity

Using the untreated outcome test, I can identify selection heterogeneity along a range of the Med-

icaid enrollment margin. Using the treated outcome test, I can identify possible moral hazard

heterogeneity along another range of the enrollment margin, but I cannot separate it from selection

heterogeneity. To predict how moral hazard would change under a wide range of policies, I impose

ancillary assumptions to identify how moral hazard changes along the entire enrollment margin.

4.1 Under Ancillary Assumptions

I begin by imposing the following ancillary assumptions following Brinch et al. (2017), who impose

AA.1 and AA.2 to examine the impact of family size on child outcomes, and Olsen (1980), who

imposes an assumption equivalent to AA.1 to examine the impact of family size on maternal

outcomes:

AA.1. (Linearity of MTO(p) in p) From (8), let YT = αT +θTUD +γT , where E [γT | UD = p] = 0.

Therefore, MTO(p) = E [YT | UD = p] = αT + θT p.

AA.2. (Linearity of MUO(p) in p) From (9), let YU = αU +θUUD +γU , where E [γU | UD = p] = 0.

Therefore, MUO(p) = E [YU | UD = p] = αU + θUp.

In my context, these assumptions require that potential ER utilization varies linearly with the

fraction of the sample enrolled in Medicaid conditional on the lottery outcome. These assumptions

are informed by the model because they relate the unobserved net cost of enrollment UD in the

first stage to potential outcomes in the second stage. Under these assumptions, the variation that

identifies the untreated outcome test identifies the intercept and slope of the MUO function, and

the variation that identifies the treated outcome test identifies the intercept and slope of the MTO

function.

The combination of AA.1 and AA.2 implies the following linear MTE function:

MTE(p) = E [YT − YU | UD = p] = (αT − αU ) + (θT − θU )p.

In my context, linearity of the MTE function implies that moral hazard varies linearly with the

fraction of the sample enrolled in Medicaid conditional on the lottery outcome. Linearity of the

MTE function has precedent as a direct assumption in applied work (see Moffitt, 2008; French

and Song, 2014). Applied work that extrapolates to other policies using the LATE also makes an

implicit assumption that the MTE function is linear and has zero slope.

Under AA.1 and AA.2, the slope of the linear MTE function identifies moral hazard heterogene-

ity on Y along the entire enrollment margin. Under AA.2, the slope of the linear MUO function

identifies selection heterogeneity on Y along the entire enrollment margin. Therefore, under AA.1

and AA.2, selection and moral hazard heterogeneity are separately identified along the entire en-

rollment margin.
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Using selection and moral hazard heterogeneity along the enrollment margin, I can extrapolate

to predict the impacts of a wide range of policies. To do so, I integrate the weighted MTE function

and its component MTO and MUO functions over a general range of the enrollment margin pL <

UD ≤ pH as follows:

E [YT | pL < UD ≤ pH ] =

∫ 1

0
ω(p, pL, pH)MTO(p) dp (18)

E [YU | pL < UD ≤ pH ] =

∫ 1

0
ω(p, pL, pH)MUO(p) dp (19)

E [YT − YU | pL < UD ≤ pH ] =

∫ 1

0
ω(p, pL, pH)MTE(p) dp, (20)

using weights ω(p, pL, pH) = 1{pL < p ≤ pH}/(pH − pL). These weights are special cases of general

weights for MTE-reweighting given by Heckman and Vytlacil (2007). Unlike the weights used by

Brinch et al. (2017), these weights allow me to recover exact values of observed average outcomes

for always takers (0 ≤ UD ≤ pC), compliers (pC < UD ≤ pI), and never takers (pI < UD ≤ 1),

which are of interest for extrapolation to specific policies. To predict the impact of specific policies

that enroll all never takers or dis-enroll all always takers, I only need one of the two ancillary

assumptions.

4.2 Incorporating Observables

When extrapolating from the Oregon experiment to the Massachusetts reform, it might be desirable

to assess the impact of adjusting for observable differences between the two populations. To do so,

I incorporate observables directly into the linear MUO and MTO functions via a shape restriction

commonly used in the MTE literature (see Brinch et al., 2017; Carneiro and Lee, 2009; Carneiro

et al., 2011; Maestas et al., 2013). In my context, the shape restriction requires that included

observables and the remaining unobserved net cost of Medicaid enrollment have additively-separable

impacts on potential ER utilization with and without Medicaid:

AA.3. (Linearity of MTO(x, p) in p) From (8), let YT = β′TX+δTUD+ξT where E [ξT | X = x, UD = p] =

0. Therefore, MTO(x, p) = E [YT | X = x, UD = p] = β′Tx+ δT p.

AA.4. (Linearity of MUO(x, p) in p) From (9), let YU = β′UX+δUUD+ξU where E [ξU | X = x, UD = p] =

0. Therefore, MUO(x, p) = E [YU | X = x, UD = p] = β′Ux+ δUp.

Assumptions AA.3 and AA.4 imply the following MTE function:

MTE(x, p) = E [YT − YU | X = x, UD = p] = (βT − βU )′x+ (δT − δU )p.

I present an algorithm for estimation of these functions that simplifies the Heckman et al. (2006)

algorithm in Appendix D.9 I reweight these functions using the same approach that I use in (19)–

9For inference, I bootstrap using 200 replications, and I report the standard deviation as the standard error or
the 2.5 and 97.5 percentiles as the 95% confidence interval.
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(20). Departing from the literature, which places little emphasis on the choice of observables, I use

MTE-reweighting to determine which observables explain moral hazard heterogeneity and are thus

more important for extrapolation.

5 Results

Starting from the premise that the Oregon experiment is the “gold standard,” my focus is to use

selection and moral hazard heterogeneity from within the experiment to predict the impact to other

policies. The focus of my work is not to evaluate the design or implementation of the lottery, which

has been discussed in Baicker et al. (2013, 2014); Taubman et al. (2014), and Finkelstein et al.

(2016). I am able to replicate results from Taubman et al. (2014), limited only by minor changes

made to the publicly available data to limit identification of individuals with large and uncommon

numbers of ER visits. The probability of winning the lottery was only random conditional on the

number of entrants from the household, so I conduct my analysis using all individuals that were

the only members of their household to enter, resulting in a sample size of 19,643 individuals with

administrative data on their visits to the ER.

5.1 Identifying Selection and Moral Hazard Heterogeneity

As I depict along the horizontal axis of Figure 2, the sample consists of 15% always takers, 26%

compliers, and 59% never takers. Along the vertical axis, I show that during the study period from

March 10, 2008 to September 30, 2009, always takers visited the ER 1.89 times, compliers visited

1.45 times if enrolled and 1.19 times if not, and never takers visited 0.85 times. The difference in

visits between enrolled and unenrolled compliers is equal to the LATE, as shown by Imbens and

Rubin (1997). I depict the LATE with an arrow to indicate its magnitude and direction. The

estimated LATE of 0.27 is consistent the headline finding of Taubman et al. (2014), who show that

moral hazard is positive—Medicaid increases ER utilization—for compliers.

Figure 2 provides more information than the LATE. As originally shown by Angrist (1990);

Angrist and Krueger (1992), the calculation of the LATE does not require the ability to calculate

averages of ER utilization conditional on Medicaid enrollment. Using the Wald (1940) approach, the

reduced form E[Y |Z = 1]−E[Y |Z = 0] is equal to 0.07, and the first stage E[D|Z = 1]−E[D|Z = 0]

is equal to 0.26. Dividing the reduced form divided by the first stage yields a LATE of 0.27 visits,

which is equal to the LATE reported in Figure 2.

The depiction in Figure 2 emphasizes that the LATE need not apply to always or never takers.

There could be reason to question whether the LATE applies to always and never takers if their

average outcomes are different from those of compliers. I compare average outcomes with the

untreated and treated outcome tests.
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Figure 2: Number of ER Visits for Always Takers, Compliers, and Never Takers
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Note. The number of ER visits represents the total number of visits to the emergency department during the study
period from March 10, 2008 to September 30, 2009. pC is the probability of enrollment in the control group, and pI
is the probability of enrollment in the intervention group.

5.1.1 The Untreated Outcome Test

The untreated outcome test provides evidence of adverse selection across compliers and never takers

in Oregon. When not enrolled in Medicaid, compliers visit the ER an average of 1.19 times, while

never takers visit 0.85 times. The average difference of 0.34 visits, reported as the result of the

untreated outcome test in Table 1, is statistically different from zero. The difference cannot reflect

treatment from Medicaid since both groups are not enrolled. Under the model, compliers enroll

in Medicaid before never takers, so the difference identifies adverse selection into Medicaid along

this range of the enrollment margin. Given adverse selection, I predict that enrollees in subsequent

expansions would use the ER less on average in the absence of Medicaid than current enrollees.

5.1.2 The Treated Outcome Test

When enrolled in Medicaid, always takers visit the ER an average of 1.89 times while compliers visit

an average of 1.45 times. The average difference of 0.44 visits, reported as the result of the treated

outcome test in Table 1, is statistically different from zero. Under the model, always takers enroll
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Table 1: Number of ER Visits for Always Takers, Compliers, and Never Takers

(1) (2) (3)
Always
Takers Compliers

Never
Takers

Enrolled 1.89 1.45 0.55 0.44
(0.08) (0.11) (0.45) (0.17)

Not Enrolled 1.35 1.19 0.85 0.34
(0.17) (0.11) (0.03) (0.13)

Treatment Effect 0.54 0.27 -0.29
(0.19) (0.15) (0.45)

Mean

Number of ER Visits

Treated
Outcome Test

(1) - (2)

Untreated
Outcome Test

(2) - (3)

Note. Bootstrapped standard errors are in parentheses. The shaded cells report extrapolated values from MTE-
reweighting via (18)–(20) for enrolled individuals (N=4,725) and individuals who are not enrolled (N=14,897). The
number of ER visits represents the total number of visits to the emergency department during the study period from
March 10, 2008 to September 30, 2009.

in Medicaid before compliers, so their greater visits with Medicaid could reflect adverse selection,

decreasing moral hazard, or both. Without ancillary assumptions, I cannot separate selection

heterogeneity from moral hazard heterogeneity. However, based on the combined influence of

selection and moral hazard heterogeneity, I predict that ER utilization per Medicaid enrollee would

decrease if the Medicaid expansion implemented with the Oregon lottery were repealed.

5.2 Extrapolation Under Ancillary Assumptions

5.2.1 Oregon MTE(p)

Although I can make some policy predictions using the results of the treated and untreated outcome

tests, I impose ancillary assumptions to predict the moral hazard impact of a wider set of policies

that induce changes in enrollment. Figure 3 depicts the MTO, MUO, and MTE functions under

ancillary assumptions AA.1 and AA.2. On the vertical axis, the two points labeled with circular

markers indicate the average outcomes of always takers and enrolled compliers, which fall at the

median of the support for each group on the horizontal axis. These two points identify the intercept

and slope of the MTO function, depicted with a dotted line. The two points labeled with square

markers identify the intercept and slope of the MUO function, depicted with a dashed line. I depict

the MTE function, the vertical difference between the MTO and MUO functions, with a solid line.

As shown, the MTE function is positive for low levels of enrollment and negative for high levels of

enrollment, even though the LATE is positive.

For extrapolation to specific policies that dis-enroll all always takers or enroll all never takers,

I report values that I obtain via reweighting with (18)-(20) in the shaded cells of Table 1. I only

observe always takers when enrolled in Medicaid, and they visit the ER 1.89 times. Extrapolation

from observed ER utilization for unenrolled compliers and never takers indicates that if always
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Figure 3: MTO(p), MUO(p), and MTE(p)
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MUO(p) 1.41 (0.19) -0.80 (0.31)

MTE(p) 0.64 (0.24) -1.32 (0.88)

Note. Bootstrapped standard errors are in parentheses. The number of ER visits represents the total number of
visits to the emergency department during the study period from March 10, 2008 to September 30, 2009. pC is the
probability of enrollment in the control group, and pI is the probability of enrollment in the intervention group.

takers were not enrolled in Medicaid, they would visit the ER 1.35 times, such that the treatment

effect of Medicaid for always takers is an increase of 0.54 visits. In contrast, extrapolation from

enrolled compliers and always takers shows that Medicaid decreases the average average ER uti-

lization of never takers by 2.9 visits. This finding suggests that if Medicaid were extended to all

never takers, their ER utilization would decrease. Accordingly, a hypothetical policy that builds on

the 2008 Oregon policy by enrolling all lottery entrants in Medicaid would decrease ER utilization

by 0.16 per person—the weighted average treatment effect for all untreated compliers and never

takers in the sample.10

5.2.2 Comparison to Massachusetts MTE(p)

Before extrapolating to Massachusetts, I assess whether the MTE within Oregon applies within

Massachusetts. I begin by recasting my previous work on the Massachusetts reform from Hackmann

et al. (2015), which builds on the Einav et al. (2010) model from the insurance literature, in

10The weighted average treatment effect for all untreated compliers and never takers in the sample is given by:

P(Z = 0)(pI − pC) ∗ E[YT − YU | pC < UD ≤ pI ] + (1− pI) ∗ E[YT − YU | pI < UD ≤ 1]

P(Z = 0)(pI − pC) + (1− pI)
.

Using this equation, I obtain (0.27*0.66*(0.41-0.15)+(-0.29)*(1.00-0.41))/(0.66*(0.41-0.15)+(1.00-0.41))= -0.16.
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terms of the MTE model with ancillary assumptions AA.1 and AA.2. To do so, in Figure 4, I

reproduce Figure 8 from Hackmann et al. (2015) using notation consistent with the MTE model

while presenting notation from the original figure in a lighter typeface. In Hackmann et al. (2015),

the Massachusetts reform shifts the demand curve upward by the individual mandate penalty π

and shifts the average cost curve downward by the change in markups. Equilibrium occurs at

the intersection of the demand curve and the average cost curve net of markups, which occurs at

I∗,pre = pC before the reform and I∗,post = pI after the reform. Log premiums before and after the

reform, depicted by A and A′, identify the slope of the linear demand curve, given the penalty π.

Marginal costs before and after the reform, depicted by D and D′, identify the slope of the linear

marginal cost curve.

In Hackmann et al. (2015), as in Einav et al. (2010), the marginal cost curve is obtained from

the difference between the marginal insurer spending on the insured and marginal insurer spending

on the uninsured. Therefore, the marginal cost curve represents a Massachusetts MTE function in

terms of the log premium. This function, like the Oregon MTE function in terms of the number

of ER visits, is downward sloping, indicating that in both contexts, moral hazard decreases as the

fraction enrolled increases. I do not observe ER costs or visits in the Hackmann et al. (2015) data,

but evidence from the Oregon experiment shows that ER costs and total health care costs are

Figure 4: Figure 8 from Hackmann et al. (2015) Recast as Massachusetts MTE(p)
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complements (Taubman et al., 2014).

5.2.3 MTE-Reweighting from Oregon MTE(p) to Massachusetts

Returning to the Oregon data because the Oregon experiment is the “gold standard,” I characterize

the Massachusetts reform as a subsequent expansion of Medicaid along the Oregon MTE. To do so,

I reproduce the Oregon MTE in Figure 5. I label the probability of health insurance coverage in

Massachusetts before the reform as pMA
C = 0.89 and after the reform as pMA

I = 0.94. I obtain these

values from the Behavioral Risk Factor Surveillance System (BRFSS) data that I used to study

the Massachusetts reform in Kolstad and Kowalski (2012). Unlike the Hackmann et al. (2015)

data, which only capture enrollment in the individual health insurance market, the BRFSS data

capture enrollment in the entire state. It is important to capture enrollment in the entire state for

comparison to the literature on the impact of the Massachusetts reform on ER utilization (Chen

et al., 2011; Kolstad and Kowalski, 2012; Miller, 2012; Smulowitz et al., 2011).

Figure 5: Extrapolation of MTE(p) to Massachusetts
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Note. The number of ER visits represents the total number of visits to the emergency department during the study
period from March 10, 2008 to September 30, 2009. pOR

C is the probability of enrollment in the control group in
Oregon, pOR

I the probability of enrollment in the intervention group in Oregon, pMA
C the probability of enrollment in

the control group in the Massachusetts reform, and pMA
I the probability of enrollment in the intervention group in

the Massachusetts reform.
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As shown, enrollment levels before and after the Massachusetts reform would entail enrollment

of a subset of never takers in Oregon. Therefore, application of the Oregon MTE to Massachusetts

implies that Massachusetts compliers are comparable to a subset of Oregon never takers in terms of

their unobserved net cost of enrollment UD. There is a case to be made that the Oregon sample is

actually a subset of the Massachusetts sample along the lower range of UD because all individuals

in the Oregon sample entered a lottery for Medicaid. Therefore, it is likely conservative to compare

Massachusetts compliers to this particular subset of Oregon never takers.

MTE-reweighting the Oregon MTE via (20) over the range from pMA
C = 0.89 to pMA

I = 0.94,

I predict that the Massachusetts reform should have decreased ER visits by an average of 0.57

visits among Massachusetts compliers. Miller (2012) finds that insurance enrollment induced by

the Massachusetts reform decreased ER visits by 0.67 to 1.28 visits per person per year, depending

on the empirical strategy. The decrease that I find over the 19 months from March 10, 2008 to

September 30, 2009 translates into a decrease of 0.36 visits per person per year (=(0.57/19)*12),

which is smaller than her estimates but of the same order of magnitude. Therefore, my extrapola-

tions can reconcile the increase in ER utilization in Oregon with the decrease in ER utilization in

Massachusetts using only variation in the unobserved net cost of enrollment UD.

5.3 Extrapolation Incorporating Observables

5.3.1 Self-Reported Health

To explore potential mechanisms for why the impact of coverage on ER utilization is positive for

some groups but negative for others, I examine observables. I begin by examining self-reported

health. I observe self-reported health for almost all individuals in the Massachusetts BRFSS data,

and I observe self-reported health for a subset of individuals in the Oregon administrative data who

were surveyed. Using the Oregon data, Finkelstein et al. (2012) shows that Medicaid improved self-

reported health, so I only compare the self-reported health of groups without Medicaid: compliers

who lost the lottery and never takers. As I describe in Appendix C, I obtain the average probability

that individuals in these groups reported fair or poor health.

As shown in Table 2, within Oregon and Massachusetts, I find that never takers are less likely

to be in fair or poor health than compliers who are not enrolled in Medicaid, consistent with

adverse selection via the untreated outcome test. However, differences in self-reported health

are more striking across both contexts than they are within each context. As I show in Table

2, 55% of Oregon compliers report fair or poor health, while only 34% of Oregon never takers

report fair or poor health. In stark contrast, only 21% of Massachusetts compliers report fair or

poor health. These comparisons suggest an important potential mechanism for my findings. Upon

gaining coverage, individuals in worse health (Oregon compliers) increase their ER utilization, while

individuals in better health (Oregon never takers and Massachusetts compliers) decrease their ER

utilization.
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Table 2: Always Takers, Compliers, and Never Takers: Oregon vs. Massachusetts

(1) (2) (3)

All
Always
Takers Compliers

Never
Takers (1) - (2) (2) - (3)

Oregon Health Insurance Experiment of 2008
Fair or Poor Health, Not Enrolleda 0.42 0.55 0.34 0.20

(0.01) (0.03) (0.01) (0.04)
Number of Pre-period ER Visits 0.87 1.36 0.88 0.73 0.48 0.15

(0.01) (0.05) (0.07) (0.03) (0.09) (0.09)
Common Observables

Age 40.69 39.45 42.41 40.25 -2.96 2.16
(0.09) (0.29) (0.41) (0.19) (0.53) (0.57)

Female 0.56 0.72 0.53 0.53 0.19 0.003
(0.003) (0.01) (0.02) (0.01) (0.02) (0.02)

English 0.91 0.90 0.92 0.91 -0.02 0.01
(0.002) (0.01) (0.01) (0.004) (0.01) (0.01)

N 19,643 2,986 5,092 11,565

Massachusetts Health Reform of 2006
Fair or Poor Health, Not Enrolleda 0.19 0.21 0.18 0.03

(0.02) (0.03) (0.01) (0.04)
Common Observables

Age 42.00 42.15 42.42 38.98 -0.26 3.43
(0.086) (0.12) (1.41) (0.49) (1.49) (1.57)

Female 0.51 0.52 0.43 0.38 0.10 0.04
(0.003) (0.004) (0.05) (0.02) (0.05) (0.06)

English 0.96 0.98 0.86 0.81 0.12 0.05
(0.001) (0.001) (0.02) (0.02) (0.02) (0.04)

N 62,456 55,966 3,175 3,314

Difference in MeansMeans

- -

--

Note. Bootstrapped standard errors are in parentheses. Data for the Massachusetts health reform are taken from
pooled annual samples of the Behavioral Risk Factor Surveillance System (BRFSS) from years 2004–2009 and re-
stricted to ages 21–64 (the age range of the Oregon sample). For the Massachusetts health reform, treatment is an
indicator that equals one for individuals with any form of health insurance (“Do you have any kind of health care
coverage, including health insurance, prepaid plans such as HMOs, or government plans such as Medicare?”). The
instrument is an indicator that equals one in the post-period of the expansion on and after July 2007. “Age” is
measured in year 2008 for the Oregon Health Insurance Experiment and in year 2006 for the Massachusetts health re-
form. “Female” is a binary indicator for the gender of the respondent. “English” is a binary indicator that equals one
for individuals in the Oregon Health Insurance Experiment who requested materials in English and that equals one
for individuals in the BRFSS who completed the interview in English. The number of pre-period visits is measured
before the study period from January 1, 2007 to March 9, 2008. “Fair or Poor Health” equals one when individuals
self-report having fair or poor health on a 5-point scale. aNumber of observations in the Oregon Health Insurance
Experiment with nonmissing self-reported health: 5,833. Number of observations in the BRFSS with nonmissing
self-reported health: 62,161.
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5.3.2 Previous ER Utilization

Examination of ER utilization from before the Oregon lottery took place corroborates the role

of health as a potential mechanism for why ER utilization increased in Oregon but decreased in

Massachusetts. For each individual in the Oregon administrative data, I observe the total number

of pre-period ER visits from January 1, 2007, to March 9, 2008. I report the average number

of per-period ER visits for always takers, compliers, and never takers in Table 2, calculated as

described in Appendix C. Always takers visited the ER an average of 1.36 times, while compliers

visited an average of 0.88 times, and never takers visited an average of 0.73 times. The monotonic

relationship in previous ER utilization across these groups indicates adverse selection on previous

ER utilization: individuals with larger previous ER utilization are more likely to enroll in Medicaid.

I also find heterogeneous moral hazard by previous ER utilization: individuals with larger pre-

vious ER utilization are more likely to increase their ER utilization upon Medicaid enrollment.

Indeed, I find that previous ER utilization can explain the entire decrease in moral hazard from

always takers to compliers to never takers. There is substantial variation in pre-period ER uti-

lization: 66% of individuals have zero visits, 17% have one visit, 11% have 2 to 3 visits, and 6%

have 4 or more visits in the pre-period. By incorporating controls for each of these visit ranges

into the MTE, I obtain a separate MTE(x, p) for each range. As depicted in Figure 6, the MTE(p)

function, which does not incorporate observables, has a pronounced downward slope, indicating

substantial unexplained heterogeneity in moral hazard. However, when I incorporate controls for

previous ER utilization into the MTE(x, p) function, I eliminate the negative slope, indicating that

the unexplained heterogeneity in moral hazard can be explained by previous ER utilization.

Looking beyond the slope of the MTE(x, p) function to its level at various values of pre-period

ER visits reveals a clear monotonic relationship between pre-period ER visits and the treatment

effect of Medicaid enrollment on subsequent ER visits. As depicted in Figure 6, the MTE(x, p) for

individuals with 4 or more pre-period visits is always positive, and the MTE(x, p) for individuals

with zero pre-period visits is always negative. Intuitively, individuals with high numbers of ER

visits in the pre-period increase their ER utilization upon gaining coverage, while individuals with

zero ER visits in the pre-period decrease their ER utilization upon gaining coverage.

Individuals induced to gain coverage through the Massachusetts reform had better health and

presumably lower ER utilization than individuals induced to gain coverage through the Oregon

experiment, which could explain why ER utilization decreased in Massachusetts but decreased in

Oregon. Unfortunately, I do not observe previous ER utilization in my Massachusetts data. Fur-

thermore, data from published studies that examine the impact of the Massachusetts health reform

on ER utilization are either not available at the individual level or they only include individuals

who visit a hospital or emergency room, making them unsuitable for comparison to data on pre-

period ER visits in Oregon (Chen et al., 2011; Kolstad and Kowalski, 2012; Miller, 2012; Smulowitz

et al., 2011). Therefore, I cannot weight the Oregon MTE(x, p) to reflect previous ER utilization in

Massachusetts, however MTE-reweighting with with MTE(p) effectively allows me to extrapolate

based on an unobservable that captures previous ER utilization and health.
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Figure 6: MTE(x, p) with Previous ER Utilization
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Note. The number of ER visits represents the total number of visits to the emergency department during the study
period from March 10, 2008 to September 30, 2009. Pre-period ER visits refers to a group of indicators for visiting
the ER 0 times, 1 time, 2–3 times, and 4 or more times during the pre-period from January 1, 2007 to March 9, 2008.
pC is the probability of enrollment in the control group, and pI is the probability of enrollment in the intervention
group. In this figure, the function for 1 pre-period ER visits has been shifted downward slightly to make it easier to
discern from the function for 2–3 pre-period ER visits.

5.3.3 LATE-Reweighting with Common Observables

To explore the potential for extrapolation with observables alone to reconcile the increase in ER

utilzation in Oregon with the decrease in Massachusetts, I begin by considering LATE-reweighting,

which relies only on observables. The three common observables available for all individuals in the

Massachusetts BRFSS data and the Oregon administrative data are age, gender, and an indicator

for communications in English. As I show in Table 2, the common observables are similar in

both samples. Such similarity is plausible even though Massachusetts is more urban than Oregon

because the Oregon administrative ER data are only drawn from the Portland area. Common

observables are also generally similar for Oregon and Massachusetts compliers, suggesting that

LATE-reweighting will not yield a Massachusetts LATE that differs dramatically from the Oregon

LATE.

To examine variation in the common observables available for LATE-reweighting, I use each

common observable to divide the sample into two subgroups, and I report LATEs within each

subgroup in Table 3. As shown, the LATEs within each subgroup are all positive, with the exception
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Table 3: Subgroup Analysis of Common Observables with LATE and MTE(p)

(1) (2) (3) (4) (5) (6) (7)

All
Age

≥ mediana

Age
< mediana Female Male English

Non-
English

Oregon Health Insurance Experiment of 2008
0.27 0.14 0.44 0.14 0.39 0.30 -0.15

(0.15) (0.18) (0.25) (0.21) (0.21) (0.16) (0.34)
0.15 0.13 0.17 0.20 0.10 0.15 0.16

(0.003) (0.005) (0.005) (0.005) (0.004) (0.004) (0.01)
pI 0.41 0.43 0.39 0.43 0.38 0.41 0.38

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.02)
MTE intercept 0.64 0.98 0.31 0.48 0.92 0.72 0.14

(0.24) (0.28) (0.39) (0.32) (0.33) (0.25) (0.47)
MTE slope -1.32 -3.01 0.48 -1.06 -2.20 -1.51 -1.07

(0.88) (1.04) (1.49) (1.08) (1.40) (0.92) (2.07)
p* 0.48 0.33 -0.63 0.45 0.42 0.48 0.13

(2.84) (0.85) (10.37) (1.49) (3.47) (4.53) (11.99)
N 19,622 9,816 9,806 10,932 8,690 17,871 1,751

Massachusetts Health Reform of 2006
0.90 0.93 0.87 0.92 0.87 0.91 0.55

(0.003) (0.003) (0.005) (0.003) (0.005) (0.003) (0.02)
0.95 0.96 0.93 0.96 0.93 0.96 0.74

(0.002) (0.002) (0.004) (0.002) (0.004) (0.002) (0.02)
N 62,456 40,492 21,964 38,808 23,648 59,233 3,223

pI

LATE

pC

pC

Note. Bootstrapped standard errors are in parentheses. The number of ER visits represents the total number of
visits to the emergency department during the study period from March 10, 2008 to September 30, 2009. The value
p∗ indicates the share of the sample with positive treatment effects when the MTE(p) curve slopes downward and the
share of the sample with negative treatment effects when the MTE(p) curve slopes upward. “Age” is measured in year
2008 for the Oregon Health Insurance Experiment and in year 2006 for the Massachusetts health reform.“English” is
an indicator variable for individuals in the Oregon Health Insurance Experiment who requested materials in English
and that equals one for individuals in the BRFSS who completed the interview in English. “Non-English” is the
complement of “English.” aThe median age in the Oregon Health Insurance Experiment is 41. I use the same age to
construct the Massachusetts subgroups.

of the LATE within the group that requested communication in a language other than English.

Taubman et al. (2014) report LATEs within a wide variety of observable subgroups and also find

that almost all are positive. Because LATEs within each subgroup are almost all positive, LATE-

reweighting based on any of the common observables yields a positive treatment effect for almost

any weights. Therefore, LATE-reweighting based only on the common observables cannot reconcile

the positive treatment effect in Oregon with the negative treatment effect in Oregon.

It is not surprising that LATE-reweighting with common observables cannot explain treatment

effect heterogeneity across Oregon and Massachusetts because observables cannot explain treatment
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Figure 7: MTE(x, p) with Previous ER Utilization vs. MTE(x, p) with Common Observables
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Note. The number of ER visits represents the total number of visits to the emergency department during the study
period from March 10, 2008 to September 30, 2009. Pre-period ER visits refers to a group of indicators for visiting
the ER 0 times, 1 time, 2–3 times, and 4 or more times during the pre-period from January 1, 2007 to March 9, 2008.
“Age” is measured in year 2008. “Female” is a binary indicator for the gender of the respondent. “English” is a
binary indicator that equals one for individuals who requested materials in English. The specification with common
covariates (age, female, English) includes all two-way interactions. pC is the probability of enrollment in the control
group, and pI is the probability of enrollment in the intervention group.

effect heterogeneity within Oregon. To demonstrate, I estimate an MTE within each subgroup, and

I report the slope and intercept in Table 3. In almost all subgroups, the MTE slopes downward.

When the MTE slopes downward, the horizontal intercept p∗ gives the fraction of individuals

predicted to have positive treatment effects. In all but one subgroup, even though the LATEs

are positive, the MTEs predict that the majority of individuals have negative treatment effects,

indicating that the common observables leave substantial heterogeneity unexplained.

5.3.4 MTE-Reweighting with Common Observables

When I include all of the common observables as well as their two-way interactions in the MTE,

substantial heterogeneity remains unexplained. I emphasize the comparison of unexplained hetere-

ogeneity across various MTE functions in Figure 7. To do so, I present E[MTE(x, p)] functions,

which average included observed heterogeneity across all individuals. Consistent with the depiction

in Figure 6, the inclusion of pre-period ER visits in MTE(x, p) results in a function that is flatter
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than MTE(p). Therefore, the inclusion of pre-period ER visits decreases unexplained heterogeneity

in the treatment effect. In contrast, the inclusion of the common observables in MTE(x, p) results

in a function that is steeper than MTE(p). Therefore, the inclusion of pre-period ER visits increases

unexplained heterogeneity in the treatment effect.

MTE-reweighting with observables can still proceed if there is unexplained heterogeneity in

the treatment effect. To reweight the Oregon MTE with common observables for extrapolation

to Massachusetts, I estimate the average MTE(x, p) for compliers in Massachusetts to construct

E[MTE(XMA, p)]. In Figure 8, I plot E[MTE(XMA, p)]. Reweighting the Oregon MTE to predict

the impact of the Massachusetts reform on ER utilization, I apply (20) using the pre-reform level

of coverage in Massachusetts pMA
C and the post-reform level of coverage in Massachusetts pMA

I . I

predict that the Massachusetts reform will decrease emergency room utilization by 0.79 visits over

Figure 8: Extrapolation of MTE(x, p) to Massachusetts
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Note. The number of ER visits represents the total number of visits to the emergency department during the study
period from March 10, 2008 to September 30, 2009. “Age” is measured in year 2008 for the Oregon Health Insurance
Experiment and in year 2006 for the Massachusetts health reform.“English” is an indicator variable for individuals in
the Oregon Health Insurance Experiment who requested materials in English and that equals one for individuals in
the BRFSS who completed the interview in English. The specification with common covariates (age, female, English)
includes all two-way interactions. pOR

C is the probability of enrollment in the control group in Oregon, pOR
I the

probability of enrollment in the intervention group in Oregon, pMA
C the probability of enrollment in the control group

in the Massachusetts reform, and pMA
I the probability of enrollment in the intervention group in the Massachusetts

reform.
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an approximately 19 month period. Translating this decrease into an annual decrease, I predict

a decrease of 0.50 visits per person per year (=(0.79/19)*12), which is even closer to the Miller

(2012) estimates of 0.67 to 1.28 than the decrease that I predict with the Oregon MTE(p), also

plotted for comparison.

Figure 8 illustrates that accounting for differences in UD between Oregon and Massachusetts has

a much larger impact than accounting for differences in common observables between Oregon and

Massachusetts. If I account for the observables of Massachusetts compliers with E[MTE(XMA, p)],

but do not account for range of UD for Massachusetts compliers, then I predict a Massachusetts

LATE of 0.41, which is even more positive than the LATE of 0.27 estimated in Oregon. Such an

approach, which can be considered a form of LATE-reweighting, does not reconcile the positive

LATE in Oregon with the negative LATE in Massachusetts, given that common observables do not

explain treatment effect heterogeneneity across UD in Oregon. This finding demonstrates that the

power of LATE-weighting to reconcile results across contexts is limited by the common observables

available for reweighting.

It should come as no surprise that the common observables that happen to be available in two

contexts might not explain treatment effect heterogeneity across the two contexts. The MTE offers

guidance on which observables can potentially explain treatment effect heterogeneity. Within Ore-

gon and across Oregon and Massachusetts, it appears that variables that capture heterogeneity in

self-reported health can potentially explain treatment effect heterogeneity. Previous ER utilization

can potentially explain treatment effect heterogeneity, but common observables cannot. Regard-

less, MTE-reweighting with the common observables can still reconcile the positive treatment effect

induced by the Oregon experiment with the negative treatment effect induced by the Massachusetts

reform.

6 Conclusion

I aim to shed light on why emergency room (ER) utilization increased following the Oregon Health

Insurance Experiment but decreased following the Massachusetts reform. To do so, I combine

insights from the literatures on insurance and treatment effects. Starting from the Oregon Health

Insurance Experiment as the “gold standard,” I find heterogeneous moral hazard: although Oregon

compliers increase their ER utilization upon gaining coverage, Oregon never takers would decrease

their ER utilization upon gaining coverage. I also find heterogeneous selection: Oregon never takers

report better health than Oregon compliers.

Next, I extrapolate my findings from within the Oregon experiment to Massachusetts. Given

higher levels of coverage in Massachusetts, Massachusetts compliers are comparable to a subset of

Oregon never takers. Like Oregon never takers, Massachusetts compliers report better health than

Oregon compliers. Therefore, I can reconcile the increase in ER utilization induced by the Oregon

Health Insurance Experiment with the decrease in ER utilization induced by the Massachusetts

while. Upon gaining coverage, individuals who report worse health increase their ER utilization,

while individuals who report better health decrease their ER utilization.
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Appendix A Proof of the Enrollment Equation (D = 1{UD ≤ P(D = 1 | Z = z,X)})

Medicaid enrollment D is given by

D = 1{0 ≤ VT − VU}
= 1{0 ≤ µT (z,X) + νT − µU (z,X)− νU}
= 1{νU − νT ≤ µT (z,X)− µU (z,X)}
= 1{F (νU − νT ) ≤ F (µT (z,X)− µU (z,X))} (F increasing under A.2)

= 1{UD ≤ F (µT (z,X)− µU (z,X))} (UD = F (νU − νT | X) by definition)

= 1{UD ≤ P(D = 1 | Z = z,X)},

where the last equality follows from

F (µT (z,X)− µU (z,X) | X) = P(νU − νT ≤ µT (z,X)− µU (z,X) | X)

= P(νU − νT ≤ µT (Z,X)− µU (Z,X) | Z = z,X)

((νU − νT ) ⊥ Z | X by A.1)

= P(0 ≤ µT (Z,X) + νT − µU (Z,X)− νU | Z = z,X)

= P(0 ≤ VT − VU | Z = z,X)

= P(D = 1 | Z = z,X). �

Appendix B Proof that UD = F (νU − νT ) is uniformly distributed between 0 and 1

The result that UD is distributed uniformly between 0 and 1 is not a separate assumption of the

model. It is due to the “probability integral transformation,” which shows that the cumulative

distribution function of any random variable ν̃ = νT − νU applied to itself must be distributed

uniformly between 0 and 1 (for example, see Casella and Berger (2002, page 54)):

A random variable Y is distributed uniformly between 0 and 1 if and only if FY (x) = x for

0 ≤ x ≤ 1. Therefore, UD is distributed uniformly between 0 and 1:

FUD
(u) = P (UD ≤ u)

= P (F (νU − νT ) ≤ u)

= P (νU − νT ≤ F−1(u)) (F increasing under A.2)

= F (F−1(u)) = u. (F continuous under A.2)

�

Appendix C Averages for Always Takers, Compliers, and Never Takers

Imbens and Rubin (1997), Katz et al. (2001), Abadie (2002), and Abadie (2003) rely on the LATE

assumptions to calculate average outcomes and observables of always takers, compliers, and never

takers. For consistency with my exposition, I perform the same calculations using the MTE model
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that assumes no more than the LATE assumptions. I build intuition with a graphical illustration

that follows from the model.

I identify the expected value of YT for always takers as follows, supressing X for simplicity:

E[Y | D = 1, Z = 0] = E[YU +D(YT − YU ) | D = 1, Z = 0] (by (7))

= E[YT | D = 1, Z = 0]

= E[YT | 0 ≤ UD ≤ pC , Z = 0] (by (6), where pC = P (D = 1|Z = 0))

= E[gT (UD, γT ) | 0 ≤ UD ≤ pC , Z = 0] (by (8))

= E[gT (UD, γT ) | 0 ≤ UD ≤ pC ] (Z ⊥ (UD, γT ) by (A.5))

= E[YT | 0 ≤ UD ≤ pC ].

I use similar steps to calculate the expected value of YT for lottery winners enrolled in Medicaid

E[YT | 0 ≤ UD ≤ pI ] = E[Y | D = 1, Z = 1], the expected value of YU for never takers E[YU | pI <

Figure C1: Graphical Illustration of Average Number of ER Visits for Compliers
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Note. The number of ER visits represents the total number of visits to the emergency department during the study
period from March 10, 2008 to September 30, 2009. pC is the probability of enrollment in the control group, and pI
is the probability of enrollment in the intervention group.
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UD ≤ 1] = E[Y | D = 0, Z = 1], and the expected value of YU for lottery losers not enrolled in

Medicaid E[YU | pC < UD ≤ pI ] = E[Y | D = 0, Z = 0]. I then use the four resulting values to

calculate the expected value of YT for compliers enrolled in Medicaid:

E[YT | pC < UD ≤ pI ] =
pI

pI − pC
E[YT | 0 ≤ UD ≤ pI ]− pC

pI − pC
E[YT | 0 ≤ UD ≤ pC ],

and the expected value of YU for compliers not enrolled in Medicaid:

E[YU | pC < UD ≤ pI ] =
1− pC
pI − pC

E[YU | pC < UD ≤ 1]− 1− pI
pI − pC

E[YU | pI < UD ≤ 1].

I illustrate the calculations graphically using values from Oregon data in Figure C1. I use

bolded dotted lines to depict average ER utilization when enrolled in Medicaid, YT , for two observed

groups: lottery losers enrolled in Medicaid (0 ≤ UD ≤ pC) and lottery winners enrolled in Medicaid

(0 ≤ UD ≤ pI). I use bolded dashed lines to depict average ER utilization when not enrolled in

Medicaid, YU , for two observed groups: lottery losers not enrolled in Medicaid (pC < UD ≤ 1)

and lottery winners not enrolled in Medicaid (pI < UD ≤ 1). I depict the calculated outcomes for

compliers with lighter shading.

To calculate the average observable X for each group, I begin with the same approach. Even

though average outcomes of compliers should depend on whether they win or lose the lottery, av-

erage observables of compliers should not. Therefore, I weight the average observables of compliers

who win and lose the lottery by their respective probabilities:

E[X | pC < UD ≤ pI ] = P(Z = 1)E[X | pC < UD ≤ pI ] + P(Z = 0)E[X | pC < UD ≤ pI ].

Appendix D Estimating MTO(x, p), MUO(x, p), and MTE(x, p) of order k ≥ 1 in p.

While this paper considers the case where MTO(x, p) and MUO(x, p) are polynomials of order

k = 1, the steps below present the general estimation strategy for polynomials of order k ≥ 1:

1. Estimate propensity scores, p̂, for all individuals in the sample by fitting

D = α0 + α1Z + α′2X + α′3(X
′Z) + ε

and using α̂0, α̂1, α̂2, and α̂3 to predict D conditional on Z and observables X.

2. For each j ∈ {0, . . . , k}, apply h
(j)
T (·) derived in Appendix E and h

(j)
U (·) derived in Appendix

F to the propensity scores, p̂, estimated in step 1. These transformations will allow us to use

the estimated propensity scores to obtain coefficients for the marginal outcome functions in

the next steps:

h
(j)
T (p̂) =

p̂j

1 + j
,

h
(j)
U (p̂) =

1− p̂1+j

(1 + j)(1− p̂) .
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3. Condition the sample on treated individuals (D = 1), and use OLS to estimate:

Y = β′TX +
k∑

j=0

λTjh
(j)
T (p̂) + γT .

Construct MTO(x, p) = β̂′Tx+
∑k

j=0 λ̂Tjp
j .

4. Condition the sample on untreated individuals (D = 0), and use OLS to estimate:

Y = β′UX +
k∑

j=0

λUjh
(j)
U (p̂) + γU .

Construct MUO(x, p) = β̂′Ux+
∑k

j=0 λ̂Ujp
j .

5. Construct MTE(x, p) = MTO(x, p)−MUO(x, p) = (β̂T − β̂U )′x+
∑k

j=0(λ̂Tj − λ̂Uj)p
j .

Appendix E Derivation of MTO(x, p).

The objective of this appendix is to derive a transformation that can be applied to propensity

scores to estimate the MTO function of the following form:

MTO(x, p) = β′Tx+

k∑
j=0

λTjp
j . (21)

We derive the MTO function from the average treated outcome function, which can be estimated

directly. Taking the expectation of Y conditional on observables x and conditional on enrollment

in Medicaid given propensity score p gives the average treated outcome function:

E [YT | X = x, 0 ≤ UD ≤ p] = E[β′TX +

k∑
j=0

λTjU
j
D + γT | X = x, 0 ≤ UD ≤ p]

= E[β′TX +

k∑
j=0

λTjU
j
D | X = x, 0 ≤ UD ≤ p] (E[γT | X,UD] = 0)

= β′Tx+

k∑
j=0

λTjE[U j
D | X = x, 0 ≤ UD ≤ p]

= β′Tx+

k∑
j=0

λTj

∫ p

0

1

p
ujD duD (UD ∼ U [0, 1])

= β′Tx+

k∑
j=0

λTj
pj

1 + j
. (22)

Transforming the propensity scores using h
(j)
T (p) := pj

1+j gives the MTO parameters, λTj , from (21).
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Appendix F Derivation of MUO(x, p).

The objective of this appendix is to derive a transformation that can be applied to propensity

scores to estimate the MUO function of the following form:

MUO(x, p) = β′Ux+
k∑

j=0

λUjp
j . (23)

We derive the MUO function from the average untreated outcome function, which can be estimated

directly. Taking the expectation of Y conditional on observables x and conditional on enrollment

in Medicaid given propensity score p gives the average untreated outcome function:

E [YU | X = x, p ≤ UD ≤ 1] = E[β′UX +
k∑

j=0

λUjU
j
D + γU | X = x, p < UD ≤ 1]

= E[β′UX +
k∑

j=0

λUjU
j
D | X = x, p < UD ≤ 1] (E[γU | X,UD] = 0)

= β′Ux+
k∑

j=0

λUjE[U j
D | X = x, p < UD]

= β′Ux+
k∑

j=0

λUj

∫ 1

p

1

1− pu
j
D duD (UD ∼ U [0, 1])

= β′Ux+
k∑

j=0

λUj
1− p1+j

(1 + j)(1− p) . (24)

Transforming the propensity scores using h
(j)
U (p) := 1−p1+j

(1+j)(1−p) gives the MUO parameters, λUj ,

from (23).
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