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Abstract

A common concern in the empirical study of auctions is the likely presence of auction-
specific factors that are common knowledge among bidders but unobserved to the
econometrician. Such unobserved heterogeneity confounds attempts to uncover the
underlying structure of demand and information, typically a primary feature of interest
in an auction market. Unobserved heterogeneity presents a particular challenge in first-
price auctions, where identification arguments rely on the econometrician’s ability to
reconstruct from observables the conditional probabilities that entered each bidder’s
equilibrium optimization problem. When bidders condition on unobservables, it is
not obvious that this is possible. Here we discuss several approaches to identification
developed in recent work on first-price auctions with unobserved heterogeneity. Despite
the special challenges of this setting, all of the approaches build on insights developed
in other areas of econometrics, including those on control functions, measurement error,
and mixture models. Because each strategy relies on different combinations of model
restrictions, technical assumptions, and data requirements, their relative attractiveness
will vary with the application. However, this varied menu of results suggests both a
type of robustness of identifiability and the potential for expanding the frontier with
additional work.

Keywords: nonparametric identification, control function, measurement error, finite
mixture, quasi-control function
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1 Introduction

The econometrics of auctions has been an active area of research over the last thirty years.

Auctions often provide applications in which an economic model can be tightly matched

to actual market institutions, and where the equilibrium relationships obtained from a rich

theoretical literature can often be “inverted” to allow identification and estimation of model

primitives. This makes auctions attractive for applied work aimed at combining theory

and data to produce quantitative answers to questions about procurement practices, market

design, and the roles of strategic behavior and asymmetric information in determining market

outcomes.1

In this review we examine recent developments taking on an important challenge in

this literature: unobserved heterogeneity. In many applications one suspects that there is

auction-specific information commonly known among bidders but unavailable to researchers.

The presence such unobserved heterogeneity can be important. The underlying information

structure is at the heart of many questions concerning bidder behavior, auction design, the

division of surplus, etc., so the distinction between private information and information that

is merely omitted from the analysis is essential. Accounting for unobserved heterogeneity is

particularly important and challenging in first-price sealed bid auctions (henceforth “first-

price auctions”) because standard identification results rely on the econometrician’s ability

to reconstruct from observables the conditional probabilities entering bidders’ first-order con-

ditions.2 This strategy is threatened if bidders condition on common knowledge information

unavailable to the researcher.

Further complicating matters is the problem of endogenous bidder entry. The effect of

competition on bids and revenues can be theoretically ambiguous and is, therefore, itself an

important empirical question. More broadly, a variety identification and testing approaches

1Surveys of the literature can be found in, e.g., Hendricks and Paarsch (1995), Athey and Haile (2006,
2007), Hendricks and Porter (2007), and Hickman, Hubbard, and Saglam (2012). See also the monograph
of Paarsch and Hong (2006).

2See Guerre, Perrigne, and Vuong (2000) and the extensive literature that follows.
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in the auction literature exploit exogenous variation the level of competition.3 However,

once the potential for unobserved auction-level heterogeneity is acknowledged, one naturally

suspects that such unobservables will affect bidders’ participation decisions as well. Thus,

for example, high levels of bidder participation may reflect latent auction-level factors that

also alter bidders’ valuations or information structure. In the case of first-price auctions this

means that ignoring unobserved heterogeneity can lead to double trouble: misspecification

of bidders’ first-order conditions and endogeneity of a key covariate.

Some of the errors that will result from ignoring unobserved heterogeneity in auctions are

intuitive. For example, one will infer from bids too much within-auction correlation in bid-

ders’ private information, and too much cross-auction variation in this information. Recent

work has demonstrated that ignoring unobserved heterogeneity can also lead to quantita-

tively important distortions of other less transparent forms, including (a) erroneous estimates

of market power and information rents to bidders (e.g., Krasnokutskaya (2011), Krasnokut-

skaya and Seim (2011), Athey, Levin, and Seira (2011)); (b) incorrect conclusions about

optimal auction design (e.g., Krasnokutskaya (2011), Roberts (2013)); and (c) wrong con-

clusions about the presence/significance of the winner’s curse (e.g., Haile, Hong, and Shum

(2003), Compiani, Haile, and Sant’Anna (2018)). Thus, as the literature has matured, in-

creasing attention has been given to the need for strategies allowing identification even in

the presence of unobserved heterogeneity.

Standard methods for handling unobserved heterogeneity in econometrics typically are

not directly applicable in auction settings. For example, nonlinearity rules out reliance

on first differences, and the (typically) small number of bids per auction rules out a fixed

effects approach.4 More fundamental is the fact that the observation-specific components of

the “error terms” in an auction model are equilibrium transformations of bidders’ private

information, i.e., of key primitives of interest. Assumptions (e.g., standard IV conditions)

3See, e.g., Gilley and Karels (1981), Athey and Haile (2002), Haile, Hong, and Shum (2003), Guerre,
Perrigne, and Vuong (2009), Campo, Guerre, Perrigne, and Vuong (2011), and Gillen (2010).

4An exception is the case of certain large multi-unit auctions—e.g., Treasury auctions—where it is possible
to treat each auction in isolation. See, e.g., Cassola, Hortaçsu, and Kastl (2013) and Hortaçsu, Kastl, and
Zhang (2018).
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that merely restore independence (or conditional independence) of the error terms, therefore,

generally do not enable identification of the relevant model primitives. Nonetheless, we will

see below that the existing identification strategies have connections to methods developed in

other areas of econometrics, including control function methods, measurement error methods,

and methods for mixture models. Some of these connections are more direct than others, and

in some cases the new insights discussed here may prove useful in other types of structural

econometric models as well.

Because the primary threats of unobserved heterogeneity concern identification, we focus

below exclusively on different approaches to nonparametric identification in the presence of

unobserved heterogeneity. And because unobserved heterogeneity is particularly challenging

in first-price auctions, we focus exclusively on this case. Each of the approaches we discuss

requires assumptions beyond those of a standard baseline model.5 Some rule out correlation

between different bidders’ information; some require an auxiliary equation and exclusion

restriction; some restrict the support of the unobservable; some restrict the way that unob-

servables enter the auction model; and some rule out endogenous bidder entry. As a result,

none of these approaches dominates another, and the most relevant result in practice will

depend on the details of the application, the questions of interest, and the data available.

Our goal here is to describe a range of alternative strategies currently available, focusing on

the key insights permitting identification without reliance on parametric assumptions.

In the following section we set up an affiliated values auction model with unobserved

heterogeneity and point out the key challenge that arises from the presence of unobservables

in the equilibrium first-order conditions. In section 3 we discuss identification obtained using

a control function strategy. There, in essence, an auxiliary outcome (e.g,. the number of

bidders entering the auction) is used to allow one to indirectly condition on the unobservable.

Section 4 then discusses identification obtained by adapting results from the literature on

measurement error. Here, one typically requires a model with independent bidder types so

5We emphasize, however, that we will not attempt to state the most general versions of the results
possible. We focus on a version of each approach meant to convey the main insights most clearly.
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that observed correlation among bids can be attributed to the unobserved heterogeneity.

Bids can then serve as multiple noisy measures of the unobserved state, allowing application

of classic or modern results. In section 5 we discuss a “quasi-control function” approach that

avoids the strict monotonicity requirement of the control function strategy, instead exploiting

the way that bounds on the unobservable implied by entry outcomes shift with auction-level

observables. Finally, in section 6 we discuss identification obtained using a nonlinear finite

mixture representation of the data generating process. This approach allows a softening of

the index structure required by several other strategies, while assuming that the unobserved

heterogeneity reflects a finite set of latent states.

2 Model

2.1 Setup

Our baseline model is the standard symmetric affiliated values model of first-price sealed bid

auctions (Milgrom and Weber (1982)).6 For simplicity we focus on the case with no binding

reserve price. Bidders in auction t are risk neutral and indexed by i = 1, . . . , Nt. In addition

to the number of bidders Nt, auction t is associated with characteristics

Ct = (Xt, Zt, Ut) .

Among the three components of Ct are two important distinctions. First, (Xt, Zt) are ob-

servable to econometrician, whereas Ut ∈ R is unobserved. Second, the variables (Xt, Ut)

may affect bidder valuations, but Zt does not—an exclusion restriction we will formalize

below when we discuss results that require it.

The realization of (Nt, Ct) is common knowledge among bidders at auction t. Each bidder

6Milgrom and Weber (1982) considered bidding in a single auction, and by using this model we follow
most of the literature in assuming that one observes data from independent auctions. Spatial dependence is
discussed by, e.g., Hendricks, Pinkse, and Porter (2003) and Compiani, Haile, and Sant’Anna (2018). Work
on the econometrics of dynamic auction models includes Jofre-Bonet and Pesendorfer (2003) and Balat
(2011).
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i has valuation for the good for sale given by a random variable Vit ∈ R. However, beyond

(Nt, Ct), each bidder i observes only a private signal Sit ∈ R. Thus, a bidder may not

know her own valuation. A bidder’s expectation of her valuation given her information set is

E [Vit|Sit, Ct, Nt]. More relevant for what follows, however, is a bidder’s expected valuation

conditional on (Sit, Ct, Nt) and an additional assumption that her equilibrium bid is pivotal

(see, e.g., Milgrom and Weber (1982)):

w(s;n, c) ≡ E

[
Vit

∣∣∣∣Sit = max
j 6=i

Sjt = s,Nt = n,Ct = c

]
.

Following Compiani, Haile, and Sant’Anna (2018), we refer to w(Sit;Nt, Ct) as bidder i’s

“pivotal expected value” in auction t. We let Vt = (V1t, . . . , Vntt) and St = (S1t, . . . , Sntt).

The affiliated values model incorporates several important special cases often considered

in applications. By specifying Sit = Vit one obtains a private values model, and in that case

w(Sit;Nt, Ct) = Vit. A further requirement of mutual independence among (V1t, . . . , Vntt)

conditional on Ct will yield the “independent private values” (IPV) model.7 When E [Vit|St]

has nontrivial dependence on S−it, one has a “common values” model, also known as a model

with “interdependent values.” This is a broad class of models distinguished by the presence

of a winner’s curse. A special case, referred to as “pure common values,” arises when the

value of the good is identical for all bidders.

Given Ct = c and Nt = n, let FSV (St, Vt|n, c) denote the joint distribution of bidders’

signals and valuations in auction t. We assume this distribution is affiliated, exchangeable

in the bidder indices i, admits C1 density that is positive on (s, s)n× (v, v)n, and is such that

the conditional expectation E[Vit|Sit, S−it, Nt, Xt, Ut] exists and is strictly increasing in Sit.

7A relaxation of the IPV model specifies valuations as independent only after conditioning on a latent
variable ωt as well as the common knowledge auction level information Ct. This is a special case of correlated
private values known in the literature as the “conditionally independent private values” model (see, e.g., Li,
Perrigne, and Vuong (2000)). An important distinction between that model and models with unobserved
heterogeneity is that in the latter Ut is observed by bidders, while in the former ωt is unknown to bidders.
These are different models with sometimes very different implications. For example, revenue equivalence
holds under independence conditional on Ct, but not in the conditionally independent private values model.
Thus, distinguishing between these information structures is an important motivation for exploring models
that permit both dependent private information and unobserved heterogeneity.
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We assume that observed bids reflect a symmetric Bayes Nash equilibrium in pure, strictly

increasing, differentiable strategies.8 Let

β (·;Nt, Ct) : [s, s]→ R

denote the equilibrium bidding strategy. Bidder i’s equilibrium action (bid) in auction t can

then be represented by the random variable

Bit = β (Sit;Nt, Ct) .

Let Bt = (B1t, . . . , Bntt). Let Mit = maxj 6=iBjt denote the maximum bid among i’s competi-

tors at the auction. In effect, bidder i competes only againstMit: given {Sit = s,Nt = n,Ct = c}

her equilibrium bid solves

max
b
E [(Vit − b) 1 {Mit < b} |Sit = s,Nt = n,Ct = c] . (1)

2.2 The Identification Challenge

Our discussion of identification focuses primarily on one primitive of interest: the joint dis-

tribution Fw (·|n, c) of bidders’ pivotal expected values (w(S1t;n, c), . . . , w(Snt;n, c)) given

Nt = n,Ct = c. In private values models this is identical to the joint distribution of valua-

tions conditional on Nt = n,Ct = c. In a common values setting, identification of Fw (·|n, c)

is a form of partial identification sufficient to address some important questions.9 Of course,

because Ct is not fully observed, one may also be interested in the distribution of Ut condi-

tional on Xt, Zt, Nt. Thus, we also discuss identification of this conditional distribution.

From the perspective of the econometrician, we assume that the observables consist of

8See Athey and Haile (2007) for a review of results on existence and uniqueness.

9As discussed by, e.g., Laffont and Vuong (1996) and Athey and Haile (2007), in a common values model
(even without unobserved heterogeneity) one is typically forced either to settle for such partial identification
or to rely on a combination of additional restrictions and observables beyond bids and auction-level covariates.
Hendricks, Pinkse, and Porter (2003) and Somaini (2018) offer two such approaches.

6



Nt, Xt, Bt, and in some cases excluded variables Zt. Importantly, Ut is unobserved. To see

why this poses a potential problem for identification, it is useful to review the pathbreaking

insight of Guerre, Perrigne, and Vuong (2000).10 For simplicity, take the case of private

values, where bidder i observes Vit = v,Nt = n,Ct = c. Let

GM |B (m|b, n, c) = Pr (Mit ≤ m|β (Sit;n, c) = b,Nt = n,Ct = c) ,

and let

gM |B (m|b, n, c) =
∂

∂m
GM |B (m|b, n, c) .

Bidder i’s equilibrium bid b must then solve11

max
b̃

(
v − b̃

)
GM |B

(
b̃|b, n, c

)
. (2)

This problem has first-order condition

v = b+
GM |B (b|b, n, c)
gM |B (b|b, n, c)

. (3)

If there is no unobserved heterogeneity (Ut is degenerate), all terms on the right-hand side of

(3) are observable. We then immediately have nonparametric identification of each bidder’s

valuation and, therefore, of the joint distribution FV (V1t, . . . , Vnt|n, c) (Li, Perrigne, and

Vuong (2002)). With unobserved heterogeneity, however, bidders condition on information

unavailable to the econometrician: Ct includes Ut. As a result, the right-hand side of (3) is

no longer observed. Indeed, without additional information or structure, the functions GM |B

and gM |B on the right-hand side are not identified.

10See also Laffont and Vuong (1993), Li, Perrigne, and Vuong (2000), Li, Perrigne, and Vuong (2002),
Athey and Haile (2002), Hendricks, Pinkse, and Porter (2003), Haile, Hong, and Shum (2003), Campo,
Perrigne, and Vuong (2003), Hortaçsu and McAdams (2010), and Kastl (2011), among many other papers
building on this insight.

11Observe that because equilibrium bids are strictly increasing in signals, conditioning on the value of
a bidder’s equilibrium bid is equivalent to conditioning on his signal. Hence, given the private values
assumption, (1) and (2) are equivalent.
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This challenge extends to the more general affiliated values model, where the first-order

condition takes the form (see, e.g., Haile, Hong, and Shum (2003) or Athey and Haile (2007))

w(sit;nt, ct) = bit +
GM |B (bit|bit, nt, ct)
gM |B (bit|bit, nt, ct)

. (4)

Absent unobserved heterogeneity, this equation implies identification of each w(sit;nt, ct)

and, therefore, Fw (·|nt, ct). But when the econometrician is unable to observe all elements

of ct, this strategy breaks down. Additional data or structure will be needed to obtain

identification of our primitives of interest.

2.3 Separability and “Homogenization”

One form of additional structure relied on by several of the approaches discussed below

involves a separability assumption regarding the way the auction characteristics Ct affect

bidder valuations. Suppose for example that

Vit = Γ (Xt, Ut)V
0
it . (5)

where, conditional on Nt,

(V 0
1t, . . . , V

0
Ntt, S1t, . . . , SNtt) |= (Xt, Ut) . (6)

Alone, (5) has no content; however, when combined with (6) it requires that, conditional on

Nt, (Xt, Ut) affect the auction only through the multiplicative index Γ(Xt, Ut). Note that

under (5) and (6) we may take an arbitrary point x0 and let

Γ
(
x0, 0

)
= 1 (7)

without loss of generality.

This type of structure proves useful because separability is preserved by equilibrium
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bidding. In particular, it is easily confirmed that12

β (Sit;nt, xt, ut) = Γ (xt, ut) β
0 (Sit;nt) , (8)

where β0 denotes the symmetric Bayes Nash equilibrium bidding strategy for a standardized

auction t at which Γ (Xt, Ut) = Γ (x0, 0) = 1. Letting B0
it = β0 (Sit;nt), we can rewrite (8) as

Bit = Γ (xt, ut)B
0
it. (9)

Following Haile, Hong, and Shum (2003), we refer to the random variable B0
it as bidder

i’s “homogenized” bid at auction t. Likewise we refer to V 0
it , as i’s “homogenized valuation”

and to w0(Sit;Nt) ≡ w(Sit;Nt)/Γ (Xt, Ut) as i’s “homogenized pivotal expected value.” One

can easily confirm that homogenized pivotal expected values must satisfy the first-order

condition

w0(sit;nt) = b0it +
GM0|B0 (b0it|b0it, nt, ct)
gM0|B0 (b0it|b0it, nt, ct)

, (10)

where

b0it = bit/Γ(xt, ut)

M0
it = Mit/Γ(xt, ut)

GM0|B0

(
m0|b0, n

)
= Pr

(
M0

it ≤ m|B0
it = b0, Nt = n

)
gM0|B0

(
m0|b0, n

)
=

∂

∂m0
GM0|B0

(
m0|b0, n

)
.

Equations (9) and (10) imply that, after rescaling bids appropriately, one can proceed as

if the data reflected a sample of homogeneous auctions to recover estimates of the homog-

enized pivotal expected values w0(sit;nt). Of course, to do so one must first recover the

scaling factors Γ (xt, ut). Observe that knowledge of each w0(sit;nt) and Γ (xt, ut) will imply

12See Haile, Hong, and Shum (2003), Athey and Haile (2007), or Krasnokutskaya (2011). We focus here on
the case of multiplicative separability although an analogous result holds by essentially the same argument
under additive separability.

9



identification of Fw (·|n, c).

3 Control Function Approaches

The earliest and simplest approaches to unobserved heterogeneity in first-price auctions rely

on a control function. The essence of the approach is to exploit an auxiliary observable

outcome that indirectly fixes the realization of the unobservable Ut, enabling the econome-

trician to condition on it.13 This approach was first proposed by Campo, Perrigne, and

Vuong (2003) and further developed by Haile, Hong, and Shum (2003), both using the num-

ber of bidders Nt as the auxiliary outcome (see also Guerre, Perrigne, and Vuong (2009)).

This strategy turns the “problem” of endogenous bidder entry into an economic relationship

to be exploited.

Suppose that the number of bidders at each auction t satisfies

Nt = η(Xt, Zt, Ut),

where the function η is strictly increasing in its final argument. In addition suppose that Zt

is independent of (St, Vt) conditional on Xt, Ut, Nt. As Campo, Perrigne, and Vuong (2003)

point out, existence of a functional relationship between (Xt, Zt, Ut) and Nt arises naturally

when the meaningful decision to “enter” an auction takes place before a bidder learns her sig-

nal (thus, no “selective entry”) and entry outcomes do not reflect randomization (e.g., mixed

strategies). The monotonicity requirement captures the natural idea that unobservables can

be ordered in a way such that auctions with “better” unobservables attract (weakly) more

13This is more than typically required of a control function in a regression setting, where conditioning on
a control variable need only deliver independence between regressors and the structural error in the outcome
equation (e.g., Chesher (2003), Imbens and Newey (2009)). Identification of the auction model is equivalent
to identification of the bidding equation Bit = β(Sit;Nt, Xt, Ut) ((4) is the inverse of this equation), where
both Sit and Ut are structural errors. Knowledge of objects like average effects or the “quantile structural
function” (the function defining the quantiles of Bit conditional on Nt, Xt) generally are not sufficient to
address the economic questions of interest in an auction setting—indeed, the latter is directly observable.
This reflects the fact that the problem in the auction setting is not merely the endogeneity of a covariate,
but the fact that equilibrium bidding strategies condition on the realization of Ut. Olley and Pakes (1996)
provide an early example of this kind of approach in a very different economic setting.
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bidders. However, it is not necessary to assume that this order (i.e., notion of “better”) also

reflects the way that unobservables affect valuations.

The value of strict monotonicity for identification comes from the fact that conditioning

on the observables (Xt, Zt, Nt) indirectly fixes Ut. And when combined with the assumed

conditional independence of Zt, this implies that the joint distribution of bids (B1t, . . . , Bnt)

conditional on (Xt, Zt, Nt = n) is identical to that conditional on (Xt, Ut, Nt). Thus we can

rewrite the first-order condition (4) as

w(sit;nt, ct) = bit +
GM |B (bit|bit, nt, xt, zt)
gM |B (bit|bit, nt, xt, zt)

.

Now all terms on the right-hand side are observable, yielding identification of the realizations

of w(sit;nt, ct) for all i and t, even though the value of ct itself is not identified.

This alone is sufficient to address many questions of interest. For example, in a private

values setting, where w(sit;nt, ct) = vit, it is sufficient to determine the joint distribution of

bidder valuations holding Nt and Ct fixed (the latter at an unknown value of Ut, however), or

to determine the division of surplus between the seller and bidders. However, this does not

enable one to assess the effects of Nt, Ut, or Xt on bidders’ information/valuations. Thus,

an additional assumption will sometimes be needed—e.g., to assess the effect of competition

on bid levels or to test for common values.

Suppose, for example, that Nt is the only endogenous component of (Nt, Xt, Zt), i.e.,

(Xt, Zt) |= Ut. (11)

This assumption immediately implies identification of the function η, implying identification

of the realization of each Ut as well. Since Ut is the only unobservable component of Ct, by

(4) we have identification of each realization w(Sit;n, c) given any (n, c) in the support of

(Nt, Ct). This implies identification of the function w, the conditional distribution Fw(·|Ct),

and the distribution of Ut conditional on any subvector of (Xt, Zt, Nt).

An additional benefit of the independence assumption (11) is provision of a source of
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exogenous variation in the level of competition Nt. This has been exploited by Haile, Hong,

and Shum (2003) and Guerre, Perrigne, and Vuong (2009) to provide an approach for de-

tecting the presence of common values and to identify a model with risk averse bidders,

respectively, while allowing for unobserved heterogeneity.

An attractive aspect of this identification approach is that it requires no restriction on

functional form or on the information structure of the baseline auction model. This dis-

tinguishes it from the approaches discussed below. But it has limitations as well. One is

the requirement of an instrument that allows Nt to vary while (Xt, Ut) are held fixed. Nat-

ural instruments may be measures of the number of potential bidders (e.g., Haile (2001),

Hendricks, Pinkse, and Porter (2003), Haile, Hong, and Shum (2003)), or of bidder entry

costs (e.g., Kong (2017a), Compiani, Haile, and Sant’Anna (2018)). However, instruments

will not be available in all applications. Another limitation is that, because Nt is discrete,

strict monotonicity requires that Ut be discrete, with support limited by that of Nt. Finally,

reliance on a reduced form for bidder entry implies that some types of counterfactuals (those

that would alter the reduced form) will not be identified, at least without additional work.14

One may be able to avoid these limitations if there is an alternative continuous auxiliary

outcome measure that can replace the number of bidders. Roberts (2013) points out that

in many applications there is a natural candidate: the seller’s reserve price.15 If the seller

observes the unobserved heterogeneity, it may be natural to assume that the reserve price is

strictly increasing in Ut conditional on other observables. Focusing on the case of independent

private values, Roberts (2013) shows that, given a standard regularity condition, this strict

monotonicity follows if the seller observes Ut and sets the profit-maximizing reserve price. 16

14As discussed by Compiani, Haile, and Sant’Anna (2018), once the auction model primitives are identified
using the reduced form entry model, it may become possible to identify the preferred structural model of
entry consistent with the reduced form.

15Adapting bidder first-order conditions to the case of a binding reserve price is straightforward. See, e.g.,
Athey and Haile (2002).

16Following Matzkin (2003), Roberts (2013) shows that the assumption of independence between Zt and
Vt may also be avoided under certain additional functional form restrictions.
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4 Measurement Error Approaches

The control function approach discussed above lets the researcher to pin down, or fix, the

value of Ut through an auxiliary observable. In effect, such a strategy makes the unobservable

observable. This is not the only possible approach. In fact there is a close parallelism between

nonlinear measurement error models and econometric models with unobserved heterogene-

ity. Results from the measurement error literature can therefore offer useful identification

strategies for auction models with unobserved heterogeneity. With these approaches one for-

goes pinning down the unobserved heterogeneity for each observation and instead relies on

a decomposition of observable distributions into the components reflecting model primitives

and those reflecting unobserved heterogeneity.

A pioneering application of results from the measurement error literature to auctions

with unobserved heterogeneity is due to Krasnokutskaya (2011). Her result relies on the

celebrated lemma of Kotlarski (1967). Kotlarski’s Lemma is concerned with nonparametric

deconvolution with repeated measurements subject to independent separable measurement

error. Consider a triplet of mutually independent random variables (Y ∗, η1, η2) and let

Y1 = Y ∗ + η1

Y2 = Y ∗ + η2.

For normalization purposes let E[η1] = 0. Assuming that the characteristic functions of

Y1 and Y2 are non-vanishing,17 Kotlarski (1967) shows that the distribution F (Y ∗, η1, η2) =

F (Y ∗)F (η1)F (η2) is identified from the joint distribution of (Y1, Y2). This result is construc-

tive, which can be useful for nonparametric estimation.

Kotlarski’s Lemma has wide applications in econometrics: it applies to measurement error

problems, panel data, and as Krasnokutskaya (2011) shows, auction models with unobserved

heterogeneity.18 Krasnokutskaya (2011) considers an IPV model in which the unobserved

17Evdokimov and White (2012) provide some results relaxing this assumption.

18A related model in the auction literature is considered by Li, Perrigne, and Vuong (2000).
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heterogeneity enters multiplicatively, i.e.,

Vit = UtV
0
it ,

where

Ut |= V 0
1t |= V 0

2t... |= V 0
Ntt.

Here V 0
it can be regarded as i’s homogenized valuation as before.19 By the preservation of

separability under equilibrium bidding, we then have

Bit = UtB
0
it,

with

Ut |= B0
1t |= B0

1t.

By considering (any) two bidders at auction t, we have

lnB1t = lnUt + lnB0
1t

lnB2t = lnUt + lnB0
2t.

It is then immediate from Kotlarski’s Lemma that the joint distribution of (Ut, B
0
1t, B

0
2t) is

nonparametrically identified from the observable joint distribution of (B1t, B2t). Using the

first-order condition (10), one can then recover the marginal distributions of valuations for

bidders 1 and 2. In the case of more than 2 bidders, a similar argument yields the distribution

of valuations for other bidders. In the case of symmetric bidders, this result implies a form

of overidentification, allowing falsification of the model.

Note that the data requirement for Krasnokutskaya’s identification results is modest, and

it does not require an instrument. Also, whereas some of the approaches we discuss require

that the unobserved heterogeneity be discrete, here such an assumption is unnecessary. And

19Here we implicitly condition on any observable auction characteristics Xt.

14



although we have assumed symmetry for simplicity, here this is not required. A critical

requirement, however, is the independence of bidder types—here, of the homogenized valu-

ations V 0
1t, . . . , V

0
ntt. In essence, therefore, this kind of approach is limited to IPV settings.20

A separable structure and statistical independence between the unobserved heterogeneity

and valuations are also critical; it is this structure that creates the equivalence to the to the

classical measurement error setting.

An alternative approach that is also based on a result from the measurement error liter-

ature has been proposed by Hu, McAdams, and Shum (2013). They build upon an identifi-

cation result for nonlinear measurement error models due to Hu (2008). Consider a random

vector (Y,W ∗,W, Z), where Y denotes the dependent variable, W ∗ the unobserved indepen-

dent variable, W a mismeasured indicator of W ∗ and Z an instrument. Here W ∗ is assumed

to be supported by a finite set, and W and Z are assumed to have the same finite support.

The goal is to identify the joint CDF FY,W ∗,W,Z of (Y,W ∗,W, Z). Suppose

Y |= W |= Z|W ∗,

which, among other things, allows for nonclassical measurement error. Also assume a full

rank condition for the conditional distribution function of W ∗ given Z, which is essentially an

instrument relevance condition. Then with additional conditions that guarantee uniqueness

of the eigenvector-eigenvalue decomposition for an observable matrix, Hu (2008) shows that

FY,W ∗,W,Z is identified.

Hu, McAdams, and Shum (2013) show that the above result can be used to establish

identification in auction models with unobserved heterogeneity when there are at least three

bidders. Like that of Krasnokutskaya (2011), the identification strategy in Hu, McAdams,

and Shum (2013) is essentially limited to the IPV model, although here one can dispense

20Common values models with independent types exist, but are not easily motivated in applications.
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with any separability requirement. In particular, Hu, McAdams, and Shum (2013) assume

V1t |= V2t |= ... |= VNtt|Ut,

and that Ut is finitely supported, as in Hu (2008). Pick an arbitrary three bidders (wlog,

the first three of the Nt bidders). The independence above implies

B1t |= B2t |= B3t|Ut.

Hu, McAdams, and Shum (2013) treat B1t, B2t, B3t and Ut, respectively, as the dependent

variable Y , the mismeasured indicator W , the instrument Z, and the true measurement W ∗

in Hu’s measurement error model described above. To do this, they discretize B2t and B3t.

Moreover, Hu, McAdams, and Shum (2013) show that if Vit|Ut is increasing in Ut in terms

of first-order stochastic dominance (FOSD), then the rank condition and the uniqueness

conditions for eigenvector-eigenvalue decomposition in Hu (2008) is satisfied.21 Thus, by the

result above, the joint distribution of (B1t, B2t, B3t, Ut) is identified (up to the discretization).

This in turn allows one to recover the joint distribution of valuations and the unobserved

heterogeneity through the first-order condition (4).

There have been at least two important extensions of this result in the recent literature.

Gentry and Li (2014) have showed that it can be used to obtain identification in an IPV

model with endogenous bidder entry under the additional assumption that higher values of

the unobservable lead to higher entry probabilities. They allow for a binding reserve price

and selective entry, the latter being ruled out by the control function and quasi-control func-

tion approache of Campo, Perrigne, and Vuong (2003), Haile, Hong, and Shum (2003), or

Compiani, Haile, and Sant’Anna (2018). Their result does not require an instrument for en-

try, but can allow it when a source of exogenous variation is required. Balat (2011) has shown

that one need not rely on bids to provide the analogs of the “measurements” and instrument

21This FOSD condition is implied by multiplicative (or additive) separability. Luo (2018) shows that the
FOSD requirement can be weakened.
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in Hu (2008). He instead exploits the availability multiple measures of participation—that

at sequential stages (prequalification and bidding) or among multiple subgroups (e.g., large

firms and small firms), each of which is assumed to respond (stochastically) to the auction-

level unobservable. When such data are available, an advantage of this approach is that it

can allow one to drop the assumption of independent bidder types.

5 A “Quasi-Control Function” Approach

Compiani, Haile, and Sant’Anna (2018) have recently considered an approach that shares

many features of the control function strategy (section 3) while avoiding its strict monotonic-

ity requirement and requirement of discrete unobserved heterogeneity. Like Haile, Hong, and

Shum (2003), Compiani, Haile, and Sant’Anna (2018) assume that the number of bidders

participating in auction t can be represented by a reduced-form relation

Nt = η (Xt, Zt, Ut) ,

where

Ut |= (Xt, Zt) (12)

and

FSV (St, Vt|Nt, Zt, Xt, Ut) = FSV (St, Vt|Nt, Xt, Ut) .

However, Compiani, Haile, and Sant’Anna (2018) require only weak monotonicity of η in

Ut.
22

Compiani, Haile, and Sant’Anna (2018) combine this structure with the separability

assumptions (5) and (6), assuming in addition that the index function Γ (Xt, Ut) scaling

bidder valuations is also weakly increasing in Ut. Thus, Compiani, Haile, and Sant’Anna

(2018) assume that unobservables making the good for sale (weakly) more valuable also lead

22With this structure, Ut may be assumed uniform on [0, 1] without loss.
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to (weakly) higher levels of participation.23

With weak monotonicity of η, the observed values of (Nt, Xt, Zt) does not determine the

realizations of Ut, although they do imply bounds. Compiani, Haile, and Sant’Anna (2018)

show that point identification of the model can be obtained by exploiting the way that these

bounds alter the support of equilibrium bids.

Their argument proceeds in three steps. First consider the bounds on each realized ut. Fix

(Xt, Zt) = (x, z) and let the (conditional) support ofNt be {n (x, z) , n (x, z) + 1, . . . , n (x, z)} .

The function η (x, z, ·) is then characterized by a set of thresholds: Nt = n if and only if

Ut ∈ [τn−1 (x, z) , τn (x, z)]. Observed conditional entry probabilities therefore satisfy

Pr (Nt = n|Xt = x, Zt = z) = τn (x, z)− τn−1 (x, z) n = n (x, z) , . . . , n (x, z) . (13)

Of course, τn(x,z)−1 (x, z) = 0 and τn(x,z) (x, z) = 1, giving an initial value from which to solve

(13) for all thresholds τn (x, z). By (13), these known thresholds bound the realization of

each Ut; indeed, conditional on (Xt, Zt, Nt) = (x, z, n), Ut is uniform on [τn−1 (x, z) , τn (x, z)].

Next, to pin down the function Γ, take logs of (9) to obtain

lnBit = γ (Xt, Ut) + ln β0(Sit, Nt), (14)

where we have defined γ (Xt, Ut) = Γ (Xt, Ut). Now observe that

sup { lnBit|Nt = n,Xt = x, Zt = z} = γ (x, τn (x, z)) + ln β0 (s̄;n)

while

sup { lnBit|Nt = n,Xt = x̂, Zt = ẑ} = γ (x̂, τn (x̂, ẑ)) + ln β0 (s̄;n) .

By differencing these equations, one learns all first differences of the form γ (x̂, τn (x̂, ẑ)) −

23Compiani, Haile, and Sant’Anna (2018) motivate this structure with an example of a fully specified
two-stage game of entry and bidding, where entering the auction involves costly acquisition of a signal Sit.
In that example, they show how the restriction to a scalar unobservable, the independence between Xt and
Ut, and the required weak monotonicity conditions can be obtained as results rather than assumptions.

18



γ (x, τn (x, z)). Additional first differences can be obtained by varying the value of Nt con-

ditioned on and differencing first differences with common terms. More first difference are

obtained by applying similar argument using the infimum rather than supremum. Given

“enough” of these first-differences, the fact that we know the value of the function at one

point (recall (7)) will determine γ over its entire domain. Compiani, Haile, and Sant’Anna

(2018) provide sufficient conditions—roughly, that Ut and Zt act as continuous substitutes

in the “production” of bidder entry, and that Zt have variation sufficient to offset certain

discrete variation in Ut. They also discuss the partial identification of γ obtained when the

instrument induces more limited variation (even no variation) in bidder entry.

With γ known, identification of Fw (·|n, c) follows easily. Fix Xt = x,Nt = n and recall

(14). The random variable γ (x, Ut) is independent of (lnB0
1t, . . . , lnB

0
nt) and has (now) a

known distribution. Thus, because the joint distribution of (lnB1t, . . . , lnBnt) is observed,

a standard deconvolution result implies identification of the joint distribution of the log ho-

mogenized bids (lnB0
1t, . . . , lnB

0
nt). Since homogenized pivotal expected values must satisfy

the first-order condition (10), their joint distribution is identified. Because we know the

function γ, this also implies identification of the joint distribution Fw (·|n, c) for all n and c.

The approach of Compiani, Haile, and Sant’Anna (2018) shares with the control function

approach of Haile, Hong, and Shum (2003) the potential disadvantage of relying on a reduced

form for bidder entry outcomes. And like the strategy of Krasnokutskaya (2011), it relies on

a separability requirement limiting the way auction characteristics alter the environment. On

the other hand, the approach deals explicitly with the endogeneity of bidder entry, requires

no further restriction on the baseline auction model, and provides a strategy for isolating

the exogenous variation in competition induced by the instrument.
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6 A Mixture Model Approach

Finite mixtures have been widely used in order to incorporate unobserved heterogeneity in

econometric models.24 Nonparametric identifiability of finite mixture models is a challeng-

ing subject, although some approaches have been suggested in the recent literature. For

example, Kitamura and Laage (2017) show that a finite mixture regression model can be

identified nonparametrically under reasonable assumptions. This result can be useful for

auction models with unobserved heterogeneity, as we demonstrate below.

Kitamura and Laage (2017) consider a J-components mixture of nonparametric regres-

sions

Y = γ(X,U) + εU , Pr{U = u} = λu, u = 1, ..., J

where the econometrician observes the outcome variable Y and the covariate X, whereas

U and εU remain unobserved. The functions {γ(·, u)}Ju=1, the probability weights {λu}Ju=1,

and the distributions of {εu}Ju=1 are unknown. The key assumptions for the identification

results in Kitamura and Laage (2017) are: (i) εu |= X for every u ∈ {1, ..., J} and (ii)

there exists a segment (in x) where γ(x, u), u ∈ {1, ..., J} are non-parallel. Then with a

regularity condition in terms of the characteristic functions and the moment generating

functions of εu, u ∈ {1, ..., J}, Kitamura and Laage (2017) show that {γ(·, u)}Ju=1, {λu}Ju=1

and the distribution functions Fεu , u = 1, ..., J are all nonparametrically identified.

To apply this result to an auction model with unobserved heterogeneity, the multiplicative

structure (5) for valuations is once again maintained, although this time we impose the

following independence condition: conditional on Nt and Ut,

(V 0
1t, . . . , V

0
Ntt, S1t, . . . , SNtt) |= Xt. (15)

This assumption relaxes condition (6) by avoiding the requirement of independence between

homogenized valuations/signals and Ut. Thus, for example, bidders’ private information may

24See Compiani and Kitamura (2016) for a recent review.
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interact with the unobservable, not just through an index of auction characteristics (Xt, Ut).

These structures imply

w (Sit;Nt, Xt, Ut) = Γ(Xt, Ut)w
0 (Sit;Nt, Ut) , (16)

where w0 (s;n, u) = E[V 0
it |Sit = maxj 6=i Sjt = s,Nt = n, Ut = u]. As before, w0 (s;n, u)

is a homogenized pivotal expected value, although here it is allowed to depend on Ut. On

the other hand, we assume that the support of Ut is {1, ..., J}, so that the finite mixture

identification result in Kitamura and Laage (2017) applies.

Just like the quasi-control function approach in Section 5 and the measurement error

approach by Krasnokutskaya (2011), the mixture approach in this section imposes the mul-

tiplicative separability requirement, but note that it differs from the other two in that the

separability is required only in terms of Xt, but not in terms of Ut. Also, the mixture ap-

proach, as in Hu, McAdams, and Shum (2013), assumes a discrete and finite support for

unobserved heterogeneity. On the other hand, it applies to general affiliated values models

(as the control function and quasi-control function approaches do), including common values

models, while allowing for a general type of unobserved heterogeneity.

By the separability preserving property of equilibrium bidding, from (16) we obtain

Bit = Γ(Xt, Ut)B
0,Ut

it ,

where B0,Ut

it is bidder i’s homogenized valuation (i.e. B0,Ut

it = β0(Sit;Nt, Ut)). Here the

more flexible index structure is also inherited by equilibrium bids: B0,Ut

it can depend on Ut

even after homogenization. Taking logs of both sides and letting bit = logBit, γ(Xt, Ut) =

log Γ(Xt, Ut) and b0,Ut

it = logB0,Ut

it , we have

bit = γ(Xt, Ut) + b0,Ut

it .
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Note that, conditional on Nt = n, our independence assumptions imply

(b0,u1t , . . . , b
0,u
nt ) |= Xt.

Finally, we assume

Ut |= Xt

conditional on Nt. Although it may be possible to relax this assumption, this generally rules

out entry outcomes Nt that depend on both Xt and Ut.

We are now in a position to apply the identification result of Kitamura and Laage (2017).

For the remainder of this section we fix Nt at a arbitrary value n and suppress the index

n except where it is necessary. Take any vector c = (c1, ..., cn)′ from Rn and construct the

linear combination of log bids

n∑
i=1

cibit =

(
n∑
i=1

ci

)
γ(Xt, Ut) +

n∑
i=1

cib
0,Ut

it .

Rewrite this as

b̃ct = Cγ(Xt, Ut) + b̃c,0,Ut
t , (17)

with b̃ct ≡
∑n

i=1 cibit, C ≡
∑n

i=1 ci and b̃c,0,Ut
t ≡

∑n
i=1 cib

0,Ut

it . Note that

b̃c,0,ut |= Xt (18)

holds for each u ∈ {1, ..., J}. Define

λu = Pr{Ut = u}, u ∈ {1, ..., J}. (19)

Applying the result by Kitamura and Laage (2017) outlined above to (17), (18) and (19),

we see that Cγ(·, u), λu, and the distribution of b̃c,0,ut are all identified for every c ∈ Rn

and each u ∈ {1, ..., J}. But C is known, so γ(·, ·) is identified. As c ∈ Rn is arbitrary,
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the (marginal) distribution of every linear combination b̃c,0,ut of (lnB0,u
1t , ..., lnB

0,u
1n ) is identi-

fied. Thus, by the Cramér-Wold device, the joint distribution of (B0,u
1t , ..., B

0,u
nt ) is identified.

Since γ(·, ·) is already known, this implies the identification of the joint distribution of

(B1t, ..., Bnt)|n, x, u. From the first order condition for equilibrium bidding the joint distri-

bution of (w(S1t;n, x, u), ..., w(Snt, ;n, x, u)) is then uniquely determined.

7 Conclusion

We have discussed several strategies for allowing unobserved heterogeneity in empirical mod-

els of first-price auctions without sacrificing nonparametric identifiability. Some of these

methods are now well established in the empirical literature, while others have been devel-

oped only recently. In all cases, some combination of new structure or new data must be

added to the starting point in which one observes only bids and covariates, and where no

structure is placed on the model beyond those needed to characterize equilibrium behavior.

The results we have discussed offer a range of alternatives, several of which have close analogs

in other types of econometric models.

Each of the identification strategies we have discussed offers advantages and disadvan-

tages relative to others. And, while we have focused exclusively on identification, nonpara-

metric/semiparametric estimators based on these identification results introduce additional

trade-offs, suggesting that the most suitable approach in practice will vary with the appli-

cation. We view these nonparametric identification results as relevant for empirical work

employing parametric models as well. Even when practical concerns dictate the use of para-

metric assumptions for estimation, it is valuable to understand whether such assumptions are

essential maintained hypotheses or merely choices of finite sample approximation method;

without this, we cannot be precise about the foundation on which we build knowledge from

data. Here, the availability of several alternative sufficient conditions for nonparametric

identification suggest a form of robust identification that should encourage the use of models

incorporating unobserved heterogeneity in practice. Indeed, applications using estimators
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based these identification strategies so far indicate that accounting for unobserved hetero-

geneity can be important for the policy conclusions one reaches.25

25See, e.g., Haile, Hong, and Shum (2003), An, Hu, and Shum (2010), Krasnokutskaya (2011), Krasnokut-
skaya and Seim (2011), Roberts (2013), Athey, Levin, and Seira (2011), Balat (2011), Kong (2017b), and
Compiani, Haile, and Sant’Anna (2018).
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