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Abstract

We consider inference in models defined by approximate moment conditions. We
show that near-optimal confidence intervals (CIs) can be formed by taking a general-
ized method of moments (GMM) estimator, and adding and subtracting the standard
error times a critical value that takes into account the potential bias from misspeci-
fication of the moment conditions. In order to optimize performance under potential
misspecification, the weighting matrix for this GMM estimator takes into account this
potential bias, and therefore differs from the one that is optimal under correct spec-
ification. To formally show the near-optimality of these Cls, we develop asymptotic
efficiency bounds for inference in the locally misspecified GMM setting. These bounds
may be of independent interest, due to their implications for the possibility of using
moment selection procedures when conducting inference in moment condition models.
We apply our methods in an empirical application to automobile demand, and show

that adjusting the weighting matrix can shrink the ClIs by a factor of 3 or more.
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1 Introduction

Economic models are typically viewed as approximations of reality. However, estimation
and inference are usually done under the assumption that a model holds exactly. In this
paper, we weaken this assumption, and consider inference in a class of models characterized
by moment conditions which are only required to hold in an approximate sense. The failure
of the moment conditions to hold exactly may come from failure of exclusion restrictions (e.g.
through omitted variable bias or because instruments enter the structural equation directly
in an IV model), functional form misspecification, or other sources such as measurement
error, or data contamination.

We assume that we have a model characterized by a set of population moment condi-
tions g(f). In the generalized method of moments (GMM) framework, for instance, g(f) =
Elg(w;,0)], which can be estimated by the sample analog - 3" | g(w;,0), based on the
sample {w;}" ;. When evaluated at the true parameter value 6y, the population moment

condition lies in a known set specified by the researcher,

9(0o) = c/V/n, ceC.

The set C formalizes the way in which the moment conditions may fail, and it can then be
varied as a form of sensitivity analysis, with C = {0} reducing to the correctly specified case.
We focus on local misspecification: the scaling of the set by the square root of the sample size
n implies that the specification error and sampling error are of the same order of magnitude.

We propose a simple method for constructing asymptotically valid confidence intervals
(CIs) under this setup: one takes a standard estimator, such as the GMM estimator, and adds
and subtracts its standard error times a critical value that takes into account the potential
asymptotic bias of the estimator, in addition to its variance. A key insight of this paper is
that because the CIs must be widened to take into account the potential bias, the optimal
weighting matrix for the correctly specified case (the inverse of the variance matrix of the
moments) is generally no longer optimal under local misspecification. Rather, the optimal
weighting matrix takes into account potential misspecification in the moments in addition
to the variance of their estimates: it places less weight on moments that are allowed to be
further from zero according the researcher’s specification of the set C.

To illustrate the practical importance of this result, we apply our methods to form
misspecification-robust Cls in an empirical model of automobile demand based on Berry
et al. (1995). We consider sets C motivated by the forms of local misspecification considered
in Andrews et al. (2017), who calculate the asymptotic bias of the usual GMM estimator in

this model. We find that adjusting the weighting matrix to account for potential misspec-



ification substantially reduces the potential bias of the estimator and, as a result, leads to
large efficiency improvements of the optimal CI relative to a CI based on the GMM estimator
that is optimal under correct specification: it shrinks the CI by up to a factor of 3 or more
in our main specifications. As a result, we obtain informative ClIs in this model even under
moderate amounts of misspecification.

When the set C is convex, the misspecification-optimal weighting and the critical value
are easy to compute. In general, they can be computed by solving a convex optimization
problem, which may simplify further in particular cases, yielding closed-form expressions.
We show that when the set C is characterized by ¢, constraints, this leads to weightings that
are analogous to penalized regression estimators, such as ridge or LASSO regression. By
exploiting this analogy, we develop a simple algorithm for computing the optimal weighting
under ¢; and /., constraints that is similar to the LASSO/LAR algorithm (Efron et al., 2004;
Rosset and Zhu, 2007); under ¢, constraints, the optimal weighting admits a closed form.! To
avoid having to reoptimize the objective function with respect to the new weighting matrix,
one can also form the ClIs by adding and subtracting this critical value from a one-step
estimator (see Newey and McFadden, 1994, Section 3.4) based on any initial estimate that
is y/n-consistent under correct specification. This approach is particularly attractive when
performing sensitivity analysis: starting with an initial GMM estimate that assumes C = {0},
one can relax the moment conditions to form larger sets C and compute the corresponding
CIs. This allows one to easily assess how severely misspecified a given model has to be before
a result of interest breaks down.

We show that the CIs we propose are near-optimal when the set C is convex and cen-
trosymmetric (¢ € C implies —c¢ € C). To this end, we argue that the relevant “limiting
experiment” for the locally misspecified GMM model is isomorphic to an approximately
linear model of Sacks and Ylvisaker (1978), which falls under a general framework studied
by, among others, Donoho (1994), Cai and Low (2004) and Armstrong and Kolesar (2018).
We derive asymptotic efficiency bounds for Cls in the locally misspecified GMM model that
formally translate bounds from the approximately linear limiting experiment to the locally
misspecified GMM setting. In particular, these bounds imply that our CIs are highly efficient
relative to Cls that optimize their performance at a particular value of 6y and ¢ = 0 subject
to maintaining coverage over the whole parameter space for 6 and C.

These efficiency bounds have two important implications. First, they address an impor-
tant potential criticism of our Cls: the estimator used to construct the CI as well as the CI

width reflect the a priori worst possible misspecification in C through the optimal weighting

! An R package implementing our CIs under /¢, constraints is available at https://github.com/kolesarm/
GMMSensitivity.
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matrix and the critical value. For example, when C = {c : ||¢|| < M} for some norm || - ||,
the width of the CI depends on M, so that the CI will be wide even if it turns out that ||c||
is in fact much smaller than M. To address this problem, one may attempt to form a CI
that implicitly or explicitly estimates M, by, for example, using a statistic in a specification
test such as the J statistic. One then uses the estimate to adjust the width of the resulting
CI, “letting the data speak” about the amount of misspecification, rather than depending
on the researcher’s a priori bound M. Unfortunately, our efficiency bounds show that such
a goal cannot be achieved: any CI that substantially improves upon the width of our CI
when ||c|| is small must necessarily undercover for some other ¢ € C. Rather than using the
data to estimate M, we therefore instead recommend reporting the results for a range of M
as a form of sensitivity analysis. We illustrate this approach in our empirical application in
Section 6.

Second, similar to these implications about the impossibility of using the data to estimate
the magnitude of misspecification, our results also imply that one cannot use the data to
decide which moments are misspecified when forming ClIs. As an example, consider the case
where the researcher has a set of moments that are known to be correct, along with an
additional set of moments which may be misspecified. We can put this in our framework
using the set C = {0} x {¢: ||¢|]] < M}, where M is some conservative a priori bound for the
misspecified moments, which may be taken to be infinite. When M = oo, our CI reduces to
the usual CI based on the GMM estimator that uses the correctly specified moments only.
When M is smaller, our CI uses the misspecified moments and takes into account the worst-
possible misspecification by widening the CI. The weight on the misspecified moments and
the width of the CI depend on ¢ only through the a priori bound M. One may attempt to
improve upon this by using a first-stage test or estimate of ¢ to choose the weights. As shown
by Leeb and Poétscher (2006), ¢ cannot be consistently estimated in this setting, and any
such procedure must adjust the resulting CI for the uncertainty in the estimate if coverage
is to be maintained. Nevertheless, several papers have proposed adjustments along these
lines and have shown formally that the resulting CI has correct coverage, focusing on the
case where M = oo (Andrews and Guggenberger, 2009; DiTraglia, 2016; McCloskey, 2017).
Our results show that such Cls cannot substantially improve upon a CI that always assumes
the worst possible misspecification, even when it turns out that ¢ = 0. In particular, our
results imply that when M = oo, the usual one- and two-sided 95% CIs based on only the
correctly specified moments are 100% and 84.99% efficient, respectively, uniformly over 6
and ¢, which is the same efficiency as that of the usual CI under correct specification. More
generally, the scope for improvement from such procedures is severely limited whenever C

is convex and centrosymmetric. This contrasts sharply with point estimation, for which



significant improvements in the mean squared error are possible when ||¢|| is small (Liao,
2013; Cheng and Liao, 2015; DiTraglia, 2016).

Our paper is related to several strands of literature. Our efficiency results are related to
those in Chamberlain (1987) for point estimation in the correctly specified setting and, more
broadly, semiparametric efficiency theory in correctly specified settings (see, e.g., Chapter 25
in van der Vaart, 1998). As we discuss in Section 3.3, some of our efficiency results are novel
even in the correctly specified case, and may be of independent interest. Kitamura et al.
(2013) consider efficiency of point estimators satisfying certain regularity conditions when
the misspecification is bounded by the Hellinger distance. As we discuss in more detail in
Section 4.3, our results imply that under this form of misspecification, the optimal weighting
matrix remains the same as under correct specification; both the usual GMM estimator and
the estimator proposed by Kitamura et al. (2013) can thus be used to form near-optimal Cls,
and both estimators have the same local asymptotic minimax properties.

Local misspecification has been used in a number of papers, which include, among others,
Newey (1985), Berkowitz et al. (2012), Conley et al. (2012), Guggenberger (2012), Kitamura
et al. (2013) and Bugni and Ura (2018). Andrews et al. (2017) consider this setting and
note that asymptotic bias of a regular estimator can be calculated using influence function
weights, which they call the sensitivity, and show how such calculations can be used for sen-
sitivity analysis in applications (see also extensions of these ideas in Andrews et al. 2018 and
Mukhin 2018). Our results imply that, if one is interested in inference, conclusions of such
sensitivity analysis may be substantially sharpened by using the misspecification-optimal
weighting matrix, or, equivalently, the misspecification-optimal sensitivity. In independent
work, Bonhomme and Weidner (2018) consider inference and optimal estimation under local
misspecification defined relative to a reference model within a larger class of models.

The use of local neighborhoods to model misspecification has antecedents in the literature
on robust statistics (see Huber and Ronchetti, 2009, and references therein). More broadly,
our paper relates to the general literature on sensitivity analysis and misspecification, includ-
ing, among many others, Leamer (1983), Altonji et al. (2005), Hahn and Hausman (2005),
Small (2007), Nevo and Rosen (2010) and Chen et al. (2011).

The rest of this paper is organized as follows. Section 2 presents our misspecification
robust Cls and gives step-by-step instructions for computing them. Section 3 presents effi-
ciency bounds for Cls in locally misspecified models; it can be skipped by readers interested
only in implementing the methods. Section 4 discusses solutions for particular choices of the
set C. Section 5 discusses applications to particular moment condition models. Section 6
presents an empirical application. Additional results and proofs are collected in appendices

and an online supplement.



2 Misspecification-robust Cls

We have a model that maps a vector of parameters § € © C R% to a d,-dimensional popula-
tion moment condition g(#) that restricts the distribution of the observed data {w;},. We
allow the moment condition model to be locally misspecified, so that at the true value 6y, the
population moment condition is not necessarily zero, but instead lies in a /n-neighborhood

of O:
9(6o) =¢/v/n,  ceC, (1)

where C C R% is a known set. Because the misspecification is local, the set C may allow for
misspecification in potentially all moment conditions; we do not require that some elements
of ¢ are zero. Our goal is to construct a CI for a scalar h(6), where h: R% — R is a known
function. For example, if we are interested in one of the elements 6; of ¢, we would take
h(6) = 6;. More generally, the function h will be nonlinear, as is, for example, generally
the case when 6 is a vector of supply or demand parameters, and h(f) is an elasticity, or
some counterfactual. We do not take a stance on whether or how misspecification affects
the economic interpretation of €y or h(6y). Such issues will depend on the application, and
on the form of misspecification.

To formalize the notion of asymptotic validity and efficiency of Cls, we will need to allow
the true parameter value 0y as well as the vector ¢ and the data generating process (and
hence the map 6 — ¢(#)) to vary with the sample size. For clarity of exposition, we focus
here on the case in which these parameters are fixed. See Section 3.1 and Appendix C for the
general case. Under some forms of misspecification, such as functional form misspecification,
there may be additional higher-order terms on the right-hand side of (1); our results remain
unchanged if this is the case. Again, for clarity of exposition, we focus on the case in which (1)
holds exactly.

We assume that the sample moment condition §(6), constructed using the data {w;} |,

satisfies

Vi(§(6o) — g(60)) 2 N(0, %), (2)

where % denotes convergence in distribution as n — oo. In the GMM model, the population
and sample moment conditions are given by g(6) = E[g(w;,0)] and §(0) = = >°" | g(w;, 6),
respectively, where ¢(-,-) is a known function. However, to cover other minimum distance
problems, we do not require that the moment conditions necessarily take this form. We

further assume that the moment condition is smooth enough so that

for any 6, = 0o+ Op(1/v/n),  §(6.) — 3(60) = D0 — 60) + 0p(1/v/m),  (3)



where I' is the d, x dy derivative matrix of ¢ at 6. Conditions (2) and (3) are standard
regularity conditions in the literature on linear and nonlinear estimating equations; see Newey
and McFadden (1994) for primitive conditions. Finally, we also assume that h is continuously

differentiable with the 1 x dy derivative matrix at 6y given by H.

2.1 ClIs based on asymptotically linear estimators

Under correct specification, when C = {0}, standard estimators h of h(0) are asymptotically
linear in §(y). This will typically extend to our locally misspecified case, so that for some

vector k € R%
V(b = h(f)) = K v/ng(6o) + op(1) % N (Ke, K'Sk), (4)

where the convergence in distribution follows by (1) and (2). For example, in a GMM model,
if we take h = h(fy) where
Ow = argmin §(6)'W3(6), (5)
is the GMM estimator with weighting matrix W, (4) will hold with &' = —H(I"WT)~'T"W
(see Newey, 1985). Because the weights k& determine the local asymptotic bias of the estima-
tor, Andrews et al. (2017) suggest referring to k as sensitivity of h.
Let k and ¥ be consistent estimates of k& and X. Then by Slutsky’s theorem,

Vith = h(0)) . (\/% 1) |

Under correct specification, the right-hand side corresponds to a standard normal distribu-
tion, and we can form a CI with asymptotic coverage 100 - (1 — )% as h & zl_a/m/l%’f]l%/n,
where z1_, /5 is the 1 — /2 quantile of a N(0, 1) distribution; this is the usual Wald CI.

When we allow for misspecification, this will no longer lead to a valid CI. However,
note that the asymptotic bias k'c¢/vk'Sk is bounded in absolute value by biase(k)/VE Sk
where biasc(k) = sup..c|k'c|. Therefore, given c, the z-statistic in the preceding display is
asymptotically N (t,1) where |t| < biasc(k)/v&Sk. This leads to the CI

~ ~ A

kXk

where cv,(t) is the 1 — a quantile of |Z|, with Z ~ N(Z,1). In particular, cv,(0) = z1_a/2,

h=+ v, (M) NSk Vn, (6)

so that in the correctly specified case, (6) reduces to the usual Wald CI. As we discuss in



Section 3, the scaled length of this CI converges to a constant that does not depend on the
local misspecification vector ¢. Following the terminology of Donoho (1994), we refer to (6)
as an (asymptotically) fixed length confidence interval (FLCI).

To form a one-sided CI based on an estimator i with sensitivity k, one can simply subtract

its maximum bias, in addition to the standard error:
[h — biase(k) — z1_a VK'Sk, 00). (7)

One could also form a valid two-sided CI by adding and subtracting the worst-case bias
biasc(/%) from h, in addition to adding and subtracting zl,a/ﬂ/fffll%/n; however, since h
cannot simultaneously have a large positive and a large negative bias, such CI will be con-

servative, and longer than the CI in (6).

2.2 Optimal CIs

We can implement an estimator with a desired sensitivity k£ as a one-step estimator. In
particular, let i be an initial v/n-consistent estimator of 6y, let k=k+ op(1) be a

consistent estimator of the desired sensitivity, and consider the one-step estimator

~ ~ ~ ~

h = h(bhitia1) + &' §(Ginitial)-
A Taylor expansion then gives

\/ﬁ(il — h(by)) = H\/ﬁ(éinitial — o) + ff,\/ﬁf](éinitial) +op(1)
= (H + KT)Vn(Omitial — 00) + k' V/ng(8o) + op(1),

where the second line follows from (3). Assuming that the sensitivity is chosen so that
H=—-FkT, (8)

the first term converges in probability to zero, and h satisfies (4). The condition (8) ensures
that the one-step estimator is asymptotically linear, and that its asymptotic distribution
doesn’t depend on the initial estimate éinitial. Thus, we can form an asymptotically linear
estimator with limiting distribution N (k'c, K’Sk) for any k satisfying H = —k'T.

To derive the optimal sensitivity, observe that the asymptotic width of the CI in Equa-
tion (6) is given by

2. Ve (%c(k) /\/k/zk) NN (9)



The length thus doesn’t depend on the particular value of ¢, and it depends on # only through
Y. Furthermore, it depends on the sensitivity only through the maximum bias biasc(k) and
the variance k’'3k. Therefore, as an alternative to minimizing (9) directly over all sensitivities

k, one can first minimize the variance subject to a bound B on the worst-case bias,

min KXk  st. H=-KT  and Sclelg|klc| < B, (10)
and then vary the bound B to find the bias-variance trade-off that leads to the shortest CI.
A feasible version of the solution can be implemented as a one-step estimator with plug-in
estimates of the quantities ¥, I' and H. The length of the one-sided CI (7) is infinite by
definition, so minimizing length of this CI does not make sense. For the one-sided case, we
consider quantiles of excess length as the criterion for choosing a CI. We provide details in
Appendix C.

As we discuss in Section 4 and Appendix A, when the set C is characterized by /-
constraints, then a closed-form expression for the worst-case bias sup...|k’c| is available, and
it is computationally trivial to trace out the whole solution path for (10) as a function of B.
More generally, the optimization problem remains tractable if the set C is convex. Following
the usual definition, a set C is convex if ¢,d € C and A € [0,1] implies Ac+ (1 —A\)d € C. It
follows from Low (1995) that under convexity, the optimization problem (10) can be posed
as a convex optimization problem, which is easily solved numerically using convex optimizers
(we explain the connection in more detail in Section 3). To describe the mapping, we also
for simplicity assume that the set C is centrosymmetric (i.e. ¢ € C implies —c € C); we
show how our Cls can be implemented when C is asymmetric, such as when one imposes
sign restrictions on elements of ¢, in Appendix C. Given ¢ > 0, let cs, 05 be solutions to the

convex optimization problem

supHO st. ce€C, (c—TO)/XHc—-T0) < /4 (11)
6,c

Let
—(Cg — FQ(;)’Z*I

K = Koxrne = o " To s T T

(12)

Then the estimator with sensitivity ks achieves the lowest variance among all linear es-
timators with bias upper-bounded by %g(k(;) = —kjcs. In other words, ks solves the
problem (10) with B = —kjc;. One then simply varies d, which indexes the relative weight
on variance in the tradeoff between the bias and variance, to find the tradeoff leading to the
shortest CI length (9).



2.3 Implementation and practical issues

We now summarize the construction of the optimal Cls and discuss some practical imple-
mentation issues.

For brevity, we summarize the construction of the optimal CI in terms of the optimiza-
tion problem (11); if the bias-variance tradeoff (10) can be solved directly, one can use an
analogous construction in terms of the sensitivity that minimizes (10) at the optimal bias
bound. Given that a researcher has formalized concerns about potential misspecification by

forming a set C, the optimal misspecification-robust CI can be constructed as follows:

1. Obtain an initial estimate éinitial and estimates H , [ and 3 of H , ["and X.

2. For a given &, compute ks = kss e and %c(l%g) by solving the optimization problem
(11) with S in place of &, etc., as described above. Let ¢* minimize the CI length?
2 ev (biasc (ks) [/ K Shs) -/ Ky Shs over 6.

3. Let hg = h(éinitieﬂ) + l%gg(éinitial). The misspecification-robust CI is given by

he £ Xher X = CVa (biasc(/%(;*) /\/ /%3*2/;5*> : \//;g*ilz;é* /n, (13)
and the optimal sensitivity is given by kise.

Remark 2.1. The above algorithm gives a generic procedure based on one-step estimators
hs that gives an asymptotically valid and optimal CI. Due to concerns about finite-sample
behavior (analogous to concerns about finite sample behavior of one-step estimators in the
correctly specified case), one may prefer using a different estimator that is asymptotically
equivalent to hs. In general, one can implement an estimator with sensitivity £ as a GMM
or minimum distance estimator by using an appropriate weighting matrix, so that one can in
particular replace hs by h(éw), with the weighting matrix W appropriately chosen. To give
the formula for the weighting matrix, let I' | denote a d, x (d, — dp) matrix that’s orthogonal
to I', so that IV, I' = 0, and let [, denote a consistent estimate. Let S denote a dy X dg
matrix that satisfies 'T' = —I and ks = SH’. Then we can set W = SW,.S' + fLWQf’L for
some non-singular matrix Wy, and an arbitrary conformable matrix W5. It can be verified by
simple algebra that 6y will have sensitivity ksyr mc. We discuss this GMM implementation

of the optimal sensitivity in the context of some of our specific applications in Section 5.

2The critical value cv, (b) can easily be computed in statistical software as the square root of the 1 — «
quantile of a non-central x2 distribution with 1 degree of freedom and non-centrality parameter b?.
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In many cases, a researcher may be interested in multiple sets C, or they may not know
which set C they are ex ante interested in. This issue may manifest itself in two different

ways, as we discuss in the next two remarks.

Remark 2.2 (Known form but unknown magnitude of misspecification). If a researcher has
a particular form of misspecification in mind, this determines the shape of the set C, but
not necessarily the magnitude of the potential misspecification. For concreteness, suppose
that we wish to examine sensitivity to the failure of the first moment while assuming correct
specification of the remaining moments. In this case, one would set C = C(M) = [-M, M] x
{0} x --- x {0}. It would be desirable to use a data-driven procedure to determine M.
Unfortunately, as we discuss in Section 3, our results show that this is impossible when
constructing Cls: one has to specify M a priori. In light of this result, we recommend
computing the optimal CI for each M and plotting the optimal CI as a function of M. The
resulting plot can be used for sensitivity analysis to see how large M needs to be before
a given result breaks down. We construct such a plot in Figure 3 in the context of our
empirical application in Section 6. Section 4 discusses different ways of constructing of the
sets C(M), indexed by the magnitude of misspecification M, when misspecification affects
multiple moments, and Section 5 gives suggestions for the form of this set in particular
applications.

While it is not possible to determine M automatically, it is possible to use specification
tests to obtain a lower CI [My;,, 00| that contains M with a prespecified probability. We
develop such tests by generalizing the J-test of overidentifying restrictions in Appendix B.
The lower bound for M can then be reported along with the plot of the optimal CI as a

function of M.

Remark 2.3 (Multiple forms of misspecification). If the researcher is unsure about the form
of misspecification they are most concerned about, it is useful to consider multiple forms
of misspecification to determine which forms of misspecification the results are the most
sensitive to. We give such comparison in Figure 2 in the context of our empirical application
in Section 6. In addition, given that the CI in Equation (13) can easily be computed for any
set C using the initial estimate éinitial along with i, [ and H , we recommend that researchers
report the estimates H , [ and & along with estimates 0 of the parameter vector 6 and
h = h() of the object of interest (if the number of moments is large, this can be done in a
supplementary appendix or as an easily accessible part of the replication code). This allows
the reader to easily compute ClIs under the forms and magnitude of misspecification that

the reader is most concerned about.

A

Andrews et al. (2017) recommend reporting the sensitivity k of an estimator /i along

11



with point estimates and standard errors, as this allows the reader to estimate the local
asymptotic bias k'c of the estimator under different misspecification vectors c. Given the
sensitivity estimate, it is also straightforward for the reader to compute the misspecification
robust CI (6) based on h and assess the effect of misspecification on inference. However, as
we demonstrate in the empirical application in Section 6, adjusting the estimator so that
its sensitivity is optimal under local misspecification may lead to substantially tighter Cls.
Reporting the objects 3, I'and H, as suggested by Remark 2.3, allows the reader to directly
report these optimal Cls and draw potentially much sharper conclusions. Given that plug-
in estimates of k typically require calculating these objects anyway (recall that for GMM
estimators, the sensitivity takes the form —H (f" Wf‘)_lf/ W for some weighting matrix W,
with W = £1 corresponding to the weighting that’s optimal under correct specification),

reporting these objects is no harder than reporting the sensitivity k.

Remark 2.4 (Other performance criteria). In addition to constructing a CI, one may be
interested in a point estimate of h(fy), using mean squared error (MSE) as the criterion. The
steps to forming a MSE optimal point estimate are exactly the same as above, except that,
rather than minimizing CI length in Step 2, one chooses § to minimize biase(ks)? + ]Afgil%g.
Similar ideas apply to other criteria, such as mean absolute deviation or quantiles of excess
length of one-sided Cls (discussed in Appendix C). If 4 is chosen differently in Step 2, the CI
computed in Step 3 will be longer than the one computed at 6*, but it will still have correct

coverage.

3 Efficiency bounds and near optimality

The CI given in (13) has the apparent defect that the local misspecification vector ¢ is
reflected in the length of the CI only through the a priori restriction C imposed by the
researcher. Thus, if the researcher is conservative about misspecification, the CI will be
wide, even if it “turns out” that c is in fact much smaller than the a priori bounds defined by
C. Moreover, this approach requires the researcher to explicitly specify the set C, including
any tuning parameters such as the parameter M in Remark 2.2. One may therefore seek
to improve upon this CI by forming a random-length CI, the length of which would depend
on the data via an estimate of the magnitude of ¢, or estimates of the tuning parameters.
Similarly, it may be restrictive to require that the CI be centered at an asymptotically linear
estimator: the vector k& must converge in probability to a vector that does not depend on ¢,
which rules out, for example, using a J-test to decide which moments to use.

The main result of this section shows that, when C is convex and centrosymmetric, the

scope for improving on the CI in (13) is nonetheless severely limited: no sequence of Cls
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that maintain coverage under all local misspecification vectors ¢ € C can be substantially
tighter, even under correct specification. This result can be interpreted as translating results
from a “limiting experiment” that is an extension of the linear regression model. We first
give a heuristic derivation of this limiting experiment and explain our result in the context
of this limiting experiment. We then present the formal asymptotic result, and discuss its
implications in some familiar settings. Readers who are interested only in implementing the
methods, rather than efficiency results, can skip this section.

We restrict attention in this section to the GMM model, in which §(f) = = 3" | g(w;, 6),
and we further restrict the data {w;}!_; to be independent and identically distributed (iid).
Similar to semiparametric efficiency theory in the standard, correctly specified case, this
facilitates parts of the formal statements and proofs, such as the definition of the set of dis-
tributions under which coverage is required and the construction of least favorable submodels.

We expect that analogous results could be obtained in other settings.

3.1 Limiting experiment

As discussed in Section 2.2, we can form estimators with asymptotic distribution N (kc, k'Xk)
for any k satisfying (8). This suggests that the problem of constructing an asymptotically
valid CI for h(#) in the model (1) is asymptotically equivalent to the problem of constructing

a CI for the parameter Hf in the approximately linear model
Y =-T0+c+XY%, ceC, e~N(0I), (14)

where I, H and X%? are known, and we observe Y. One can think of this model as an
“approximately” linear regression model, with —I" playing the role of the design matrix of
the (fixed) regressors, and ¢ giving the approximation error. The analog of the asymptotically
linear estimator A in (4) is the linear estimator 'Y . To see the analogy, note that 'Y — H6
is distributed N ((—=k'T' — H)0 + k'c, k'Sk), and restricting ourselves to estimators that do
not have infinite worst-case bias when 6 is unrestricted gives the condition H = —k'T". This
model dates back at least to Sacks and Ylvisaker (1978), who considered estimation in this
model when C is a rectangular set and ¥ is diagonal.

In the limiting experiment, the analog of the CI (6) is given by the linear FLCI k'Y +
cva(biase(k)/VE'Sk) - VE'Sk. The problem of constructing the shortest linear FLCI in the

limiting experiment is a special case of a problem considered by Donoho (1994), whose results

imply that the optimal CI has the form

kLY £ eva(blase(kse) /) Ky Skse ) - /Kl Skee, (15)
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where ks is given by (12), and 6* = argming. o 2 cva(biase(ks)//k;Sks) - /kjTks is chosen
to minimize the CI length. The FLCI given in (13) is an analog of this CI, and the con-
nection between the bias-variance optimization problem (10), and the convex optimization
problem (11) in Section 2.2 follows from Low (1995).

The Cl in (15) takes a familiar form in the special case in which C is a linear subspace of
R so that for some d, x d., full-rank matrix B with d, < d, —dy, C = {B7y: v € R%}. Let
B, denote a d, x (dy — d,) matrix that’s orthogonal to B. Then for any § > 0, kj = kg 5,
where

kisp=—H("B (B\YB)"'B\T) 'I"B.(B\XB,) ' B} (16)

is the sensitivity of the GLS estimator after pre-multiplying (14) by B’ , (which effectively
picks out the observations with zero misspecification). Since this estimator is unbiased, the
CLin (15) becomes k7 g pY + 21_a/24 [kl pYkLs B

Like the asymptotic FLCI (13), the CI in (15) has the potential drawback that its length
is determined by the worst possible misspecification in C. Thus, one may suspect that one
could improve upon this CI substantially, particularly when C is large and ¢ turns out to be
close to zero. As the best-case scenario for such improvements, suppose that the researcher
guesses correctly that the model is correctly specified, but to ensure validity of the CI if the
guess is wrong, the researcher must still form a CI that is valid under all misspecification
vectors in C. To make the problem even easier, suppose the researcher also guesses correctly
that 6 is equal to a particular value 6*. That is, consider the problem: among confidence
sets with coverage at least 1 — o for all # € R% and ¢ € C, minimize expected length when
6 = 0" and ¢ = 0. We allow for confidence sets that are not intervals, in which case length
is defined as Lebesgue measure (which makes such an approach even more favorable relative
to the linear FLCI, the latter being constrained to be an interval). Let k.(H,T",%,C) denote
the ratio of this optimized expected length relative to the length of the FLCI in (15) (it can
be shown that this ratio does not depend on 6*).

If C is convex, a formula for x.(H,T,3,C) follows from applying the general results in
Corollary 3.3 in Armstrong and Kolesar (2018) to the limiting model. If C is also centrosym-

metric, this formula is given by

— )E w2210 — Z)Z < 51-]

2 ming cv, <2°:JE((S()5) - %) w'(9)

a(H.T.5.c) = (17)

where Z ~ N(0,1) and w(d) is two times the optimized value of (11). Furthermore, we
show in Theorem C.7 that the right-hand side is lower-bounded by (z1_4(1 — @) — Z,P(Z,) +
d(21-a) — 0(24))/ 21-a/2, Where Z4 = 21_q — 21_q/2 for any H, I', ¥ and C, where ¢(-) denotes
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the standard normal density. For o = 0.05, this universal lower bound evaluates to 71.7%.
Evaluating k. for particular choices of H, I, 3, and C often yields even higher efficiency.

If C is a linear subspace, then w(d) is linear, and
(]- - a)zl—a + qb(zl—oa) 21—«

2 9 ].8
Rl1—a/2 Zl—a/2 ( )

ko (H,T,5,C) =

where the lower bound follows since ¢(z;_,) > az1_, by the Gaussian tail bound 1 — ®(x) <
¢(z)/z for x > 0. This bound corresponds to the bound derived by Pratt (1961) for the
case of a univariate normal mean, and at o = 0.05, it evaluates to 84.99%. The CI with the
shortest expected length at a given 6* is obtained by inverting uniformly most powerful tests
of the null HO = h, against the alternative H0 = HO* (which doesn’t vary with the null),
and these tests are given by one-sided z-tests based on k74 Y. Intuitively, the maximum
gain from directing power in this way over the usual procedure is that it turns a two-sided
testing problem into a one-sided problem, which is why the ratio of a one-sided to a two-
sided critical value gives a lower bound. Furthermore, it follows from Joshi (1969) that the
Cl kispY =+ 21-a/24/ k15 32 krs B is the unique CI that achieves minimax expected length.
Thus, not only is the scope for improvement at a particular 8* bounded by (18), any CI
with shorter expected length at some 6* must necessarily perform worse elsewhere in the
parameter space.

For the one-sided CI (7), the analogous CI in the limiting experiment is [k'Y — biasc (k) —
21— aVESE, 00), and, as we discuss in Appendix C, to choose the optimal sensitivity k, one
can consider optimizing a given quantile of its worst-case excess length. Since this approach is
based on optimizing the worst-case quantile over C, one may try to use a different CI in order
to improve performance for small ¢ by instead optimizing quantiles of excess length under
correctly specified models (i.e. when ¢ = 0). The best-case scenario for such improvements is
to optimize the CI at ¢ = 0 and at a particular 8*. When C is convex and centrosymmetric,
the results in Armstrong and Kolesar (2018) show that the scope for such improvement is
severely limited in the one-sided case as well. See Appendix C for details and an analog of
the efficiency bound in (17). If C is a linear subspace, then optimizing quantiles of worst-case
excess length yields the CI [k} g pY — 2104/ ks p¥kLs B, 00), independently of the quantile
one is optimizing. Furthermore, the efficiency bound implies that this one-sided CI is in fact
fully optimal over all quantiles of excess length and all values of , ¢ in the local parameter
space.

The high efficiency for the FLCI (15) in the limiting experiment (even in the case that
seems most favorable for improving on this CI) suggests that the CI in (13) should be highly

efficient in an asymptotic sense. Theorem 3.1, stated in the next section, uses the analogy
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with the approximately linear model (14) along with Le Cam-style arguments involving least
favorable submodels to show that this bound indeed translates to the locally misspecified
GMM model. For one-sided Cls, we state an analogous result in Appendix C. We discuss

the implications of these results in Section 3.3.

3.2 Asymptotic efficiency bound

To make precise our statements about coverage and efficiency, we need the notion of uniform
(in the underlying distribution) coverage of a confidence interval. This requires additional
notation, which we now introduce. Let P denote a set of distributions P of the data {w;}! |,
and let ©,, C R% denote the parameter space for #. We require coverage for all pairs
(0, P) € ©, x P such that v/ngp(#) € C, where the subscript P on the population moment
condition makes it explicit that it depends on the distribution of the data.® Letting S, =
{(0,P) € ©, x P:\/ngp(f) € C} denote this set, the condition for coverage at confidence

level 1 — o can be written

liminf inf P(h(0)€Z,) >1-a. (19)
n—oco (0,P)ESy
We say that a confidence set Z, is asymptotically valid (uniformly over S,,) at confidence
level 1 — « if this condition holds.*

Among two-sided Cls of the form h+ X that are asymptotically valid, we prefer Cls
that achieve better expected length. To avoid issues with convergence of moments, we use
truncated expected length, and define the asymptotic expected length of a two-sided CI at
P, € P as liminfr_, ., liminf, .., Ep, min{y/n-2x,T}, where Ep denotes expectation under
P.

We are now ready to state the main efficiency result.

Theorem 3.1. Suppose that C is convex and centrosymmetric. Let hg- and X5+ be formed as
in Section 2.3. Suppose that Assumptions C.2, C.3, C.5, C.6 and C.7 in Appendiz C hold.
Suppose that the data {w;}_, are iid under all P € P. Let (6%, Py) be correctly specified (i.e.
gp,(0*) = 0) such that P contains a submodel through Py satisfying Assumption C.1. Then:

(i) The CI hge Xi 1s asymptotically valid, and its half-length Xi. satisfies \/nxi. =

3To be precise, we should also subscript all other quantities such as I and ¥ by P. To prevent notational
clutter, we drop this index in the main text unless it causes confusion.

4In general, fy and h(fy) may be set identified for a given sample size n (although our assumptions imply
that the identified set will shrink at a root-n rate). The coverage requirement (19) states that the CI must
cover points in the identified set for h(#), as in Imbens and Manski (2004); see Appendix C.
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X(0, P) 4+ op(1) uniformly over (0, P) € S,, where

x(0, P) = min cvq(biase(k)/\/k'Sepk) /K X pk

with biase (k) calculated with T =Ty p and H = Hy.
(ii) For any other asymptotically valid CI h + X,

lim infr_, . liminf, ., Ep, min{y/n-2x,T}
2X(9*7 PO)

> ﬁ*(Hg*, F9*,P07 29*,P07C>’

where k.(H,T',3,C) is defined in (17). Furthermore, for any H, %, T, and C, k. admits
the universal lower bound (z1-o(1 — o) — Za®(Za) + ¢(21-a) — 0(Za))/21-a/2, where

Za = Z1—a — Z1-aj2 and ¢(+) denotes the standard normal density.

The proof for this theorem is given in Appendix C, which also gives an analogous result
for one-sided confidence intervals. In the supplemental materials, we also give primitive con-
ditions for the misspecified linear IV model. For the lower bound, the conditions amount to
mild regularity conditions on the least favorable submodel, and in the supplemental materials,
we provide a general way of constructing a submodel satisfying these conditions.

The universal lower bound on k. is new and may be of independent interest. For a = 0.05,
it evaluates to 71.7%. The universal lower bound is sharp in the sense that there exist I', 3, H
and C for which k, equals this lower bound. In particular applications, the efficiency bound
ks can be computed at estimates of I', ¥ and H, and often, this gives much higher efficiencies.

We illustrate these bounds in the empirical application in Section 6.

3.3 Discussion

To help build intuition for the efficiency bound in Theorem 3.1, and to relate this result to
the literature, we now consider some special cases. We first discuss the (standard) correctly
specified case. Second, we consider the case in which some moments are known to be valid,
and the misspecification in the remaining moments is unrestricted. This case may be of

interest in its own right. Finally, we discuss the general case.

3.3.1 Correctly specified case

Suppose that C = {0}. This is in particular a linear subspace of R%, with B = 0, and B, = I,
the d, x d, identity matrix. The approximately linear model (14) reduces to a standard

linear regression model with known covariance matrix, so that the GLS estimator kg,Y,
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with kpgo given in (16) (with B = 0), is the best unbiased linear estimator in the limiting
experiment (14) by the Gauss-Markov theorem. Furthermore, this estimator minimizes the
maximum mean-squared error (MSE)—it is minimax.” In the moment condition model,
an estimator with this sensitivity can be implemented as h(ézfl), where fy-1 is the GMM
estimator with the optimal weighting matrix W = X!, defined in (5). However, since in
the derivation of the limiting experiment, we have restricted attention to asymptotically
linear estimators that satisfy (8), it is unclear whether this minimax optimality carries over
to the moment condition model. The local asymptotic minimax bound in Chamberlain
(1987) shows that it indeed does, so that h(fs-1) is asymptotically minimax under the MSE
criterion.

Next, consider inference. In the limiting experiment, for testing the null hypothesis
HO = hy against the one-sided alternative Hf) > hy, the one-sided z-statistic based on k7 5,Y
is uniformly most powerful (van der Vaart, 1998, Proposition 15.2). Inverting these tests
yields the CI [k7,Y — 21-a4/kL502kLs0,00). Since the underlying tests are uniformly most
powerful, this CI achieves the shortest excess length, simultaneously for all quantiles and all
possible values of the parameter 0. For two-sided ClIs, the results described in Section 3.1
imply that the CI ’LS’OY t 21—a/24 /k;’LS,OEkL&O is the unique CI that achieves minimax
expected length, and that this CI has efficiency ((1 — a)z1-a + ¢(21-4))/21-a/2 relative to a
CI that optimizes its expected length at a single value 6* of # when indeed 6 = 6*.

Applying Theorem 3.1 to the case C = {0} gives an asymptotic version of the two-sided
efficiency bound. Furthermore, the CI in Theorem 3.1 reduces to the usual two-sided CI
based on éz—l. Thus, in this case, Theorem 3.1 shows that very little can be gained over the
usual two-sided CI by optimizing the CI relative to a particular distribution Fy. Results in the
appendix give an analogous result for one-sided CIs. In the one-sided case, this asymptotic
result is essentially a version of a classic result from the semiparametric efficiency literature
for one-sided tests, applied to Cls (see Chapter 25.6 in van der Vaart, 1998). In the two-sided

case, the result is, to our knowledge, new.

3.3.2 Some valid and some invalid moments

Consider now the case in which the first d, — d, moments are known to be valid, with the po-
tential misspecification for the remaining d, moments unrestricted. Then C = {(0,+): 7 €
R4} corresponds to a linear subspace with B given by the last d., columns of the identity
matrix, and B given by the first d, — d., columns.

Because under this setup, the mean for the last d, observations is unrestricted, it follows

SThis follows, for example, by applying Proposition 8.6 in van der Vaart (1998) to the sufficient statistic
(r's=1n)-trrs-ty.
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by the same arguments as in Section 3.3.1, that the GLS estimator k} g zY based only on
the observations with no misspecification is best unbiased and minimax. This property can
again be shown to carry over to the moment condition model, so that the GMM estimator
h(éW(B)), with W (B) = B, (B XB,) !B/ is a GMM estimator that only uses the moments
known to be valid, is asymptotically minimax. However, under a weighted MSE criterion,
if the weights put a sufficient mass on values of v that are close to zero, if one does not
require unbiasedness, a different estimator may be preferred, such as various shrinkage or
pre-testing estimators that optimize their performance at values of v close to zero, at the
expense of worse performance for larger values of v. In the context of the moment condition
model, such estimators have been recently studied in Liao (2013), Cheng and Liao (2015),
and DiTraglia (2016).

Next, consider inference. The one-sided CI based on k7 4 Y achieves the shortest excess
length, simultaneously for all quantiles and all possible values of the parameter 6. The
two-sided CI k7g pY & 21 aj21/k}s pXkLs 5 is optimal in the same sense as the usual CI in
Section 3.3.1: it achieves minimax expected length, and its efficiency, relative to a CI that
optimizes its length at a single * and v = 0, is lower-bounded by 21_/21_q/2. Theorem 3.1
formally translates the efficiency bound from the limiting model to the GMM model, so that
the usual two-sided CI based on h(éw( B)) is asymptotically efficient in the same sense as the
usual CI based on h(ég—l) discussed in Section 3.3.1 under correct specification. Just as with
the results in Section 3.3.1, this asymptotic result is, to our knowledge, new. The one-sided
analog follows from the results in Appendix C. These results stand in sharp contrast to the
results for estimation, where the MSE improvement at small values of v may be substantial.

An important consequence of these results is that asymptotically valid one-sided Cls
based on shrinkage or model-selection procedures, such as one-sided versions of the Cls
proposed in Andrews and Guggenberger (2009), DiTraglia (2016) or McCloskey (2017) must
have worse excess length performance than the usual one-sided CI based on the GMM
estimator h(éw( p)) that uses valid moments only. While it is possible to construct two-sided
Cls that improve upon the usual CI based on h(éw(3)> at particular values of 6 and ~,
the scope for such improvement is smaller that the ratio of one- to two-sided critical values.
Furthermore, any such improvement must come at the expense of worse performance at other
points in the parameter space.® Therefore, in order to tighten CIs based on valid moments
only, it is mecessary to make a priori restrictions on the potential misspecification of the

remaining moments.

6Consistently with these results, in a simulation study considered in DiTraglia (2016), the post-model
selection CI that he proposes is shown to be wider on average than the usual CI around a GMM estimator
that uses valid moments only.
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3.3.3 General case

According to the results in Section 3.3.2, one must place a priori bounds on the amount of
misspecification in order to use misspecified moments. This leads us to the general case,
where we place the local misspecification vector ¢ in some set C that is not necessarily
a linear subspace. Omne can then form a CI centered at an estimate formed from these
misspecified moments using the methods in Section 2.3. In the case where C is convex and
centrosymmetric, Theorem 3.1 shows that this CI is near optimal, in the sense that no other
CI can improve upon it by more than a factor of k., even in the favorable case of correct
specification. Since the width of the CI is asymptotically constant under local parameter
sequences 6, — 0* and sufficiently regular probability distributions P, — P, (for example,
P, — P, along submodels satisfying Assumption C.1), this also shows that the CI is near
optimal in a local minimax sense. In the general case, Theorem 3.1, as well as the analogous
results for one-sided Cls in Appendix C are, to our knowledge, new.

In Section 4, we discuss particular examples of the set C that can be used in sensitivity
analysis. These sets typically depend on an a priori bound M, such as when C = C(M) =
{B~v: ||7|| £ M} for some norm ||-||. Rather than choosing M a priori, one may wish to use
a data-driven estimate of M, for example, by using a first-stage J test to assess plausible
magnitudes of misspecification. Formally, one would seek a CI that is valid over C(M) while
improving length when in fact ||| < M, where M is some initial conservative bound. When
C is convex and centrosymmetric, Theorem 3.1 shows that the scope for such improvements
is severely limited: the average length of any such CI cannot be much smaller than the CI
that uses the most conservative choice M, even when ¢ = 0. The impossibility of choosing
M based on the data is related to the impossibility of using specification tests to form an
upper bound for M. On the other hand, it is possible to obtain a lower bound for M using
such tests. We develop lower Cls for M in Appendix B.

3.4 Extensions: asymmetric constraints and constraints on 6

In the case where the set C is convex but asymmetric (such as when C includes bounds on
a norm as well as sign restrictions, or when C includes equality and sign restrictions, as
in Moon and Schorfheide (2009)), one can still apply bounds from Armstrong and Kolesar
(2018) to the limiting model described in Section 3.1. Our general asymptotic efficiency
bounds in Appendix C translate these results to the locally misspecified GMM model so long
as C is convex. Since the negative implications for efficiency improvements under correct
specification use centrosymmetry of C, introducing asymmetric restrictions, such as sign

restrictions, is one possible way of getting efficiency improvements at some smaller set D C C
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while maintaining coverage over C. We derive efficiency bounds and optimal Cls for this
problem in Appendix C. Interestingly, the scope for efficiency improvements can be different
for one- and two-sided Cls, and can depend on the direction of the CI in this case. To get some
intuition for this, note that, in the instrumental variables model with a single instrument
and single endogenous regressor, sign restrictions on the covariance of an instrument with
the error term can be used to sign the direction of the bias of the instrumental variables
estimator, which is useful for forming a one-sided CI only in one direction.

Finally, while we focus on restrictions on ¢, one can also incorporate local restrictions on
6. Our general results in Appendix C give efficiency bounds that cover this case. Similar
to the discussion above, these results have implications for using prior information about
0 to determine the amount of misspecification, or to shrink the width of a CI directly. In
particular, while it is possible to use prior information on 6 (say, an upper bound on ||@]| for
some norm || - ||) to shrink the width of the CI, the width of the CI and the estimator around
which it is centered must depend on the a priori upper bounds on the magnitude of 6 and
¢ when this prior information takes the form of a convex, centrosymmetric set for (¢, ).
This rules out, for example, choosing the moments based on whether the resulting estimate

for € is in a plausible range.

4 Solutions for particular choices of C

This section gives examples of sets C that can be used to describe a researcher’s beliefs about
potential misspecification. We give intuition for how this affects the optimal sensitivity k£ and,
in cases where it is available, provide an analytic form for the optimal sensitivity. Derivations

and additional details are relegated to Appendix A.

4.1 Misspecification of a single moment

If one is interested in misspecification of a particular element of g(0) = (g1(), ..., g4,(?))’,
one can take C to allow for misspecification of only this element. For example, if the con-
dition ¢1(f) = 0 is suspected to hold only approximately, but the other conditions go(0) =
0,...,94,(0) = 0 are deemed plausible, one can use the set C = [-M, M] x {0} x --- x {0} as
in Remark 2.2. As discussed in Remark 2.2, the constant M can be varied to determine how
sensitive a given result is to failure of the moment condition. We illustrate this approach in
Section 6.

With a single misspecified moment, the worst-case bias of an asymptotically linear esti-

mator with sensitivity & is given simply by bias¢(k) = M|k |, so that the Lagrangian for the
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bias-variance trade-off in (10) takes the form ming(k'Sk + AMk?) s.t. H = —K'T, which is
minimized at k}, = —H'(I'W,I)"'T"W, where Wy = (AM?e;e} + X)~!, and e; denotes the
first unit vector. Thus, one can implement the optimal sensitivity as a GMM estimator with
weighting matrix ., where A* minimizes 2 cvo (M|kx1|/\/k\Skx) /K Ska over A.

4.2 Misspecification of multiple moments

To allow for misspecification of multiple components of ¢(f), it is computationally convenient
and flexible to consider sets of the form C = {B~: ||y|]| < M}, where B is a matrix with
dimensions d, X d, ||-|| is some norm or semi-norm, and the bound M can again be varied
to determine the sensitivity of a given result. When B = e;, this reduces to the previous
example. Setting B to the last d, columns of the d, x d, identity matrix as in Section 3.3.2
allows for misspecification in the last d, moments, while maintaining that the first d, — d,
moments are valid. More generally, the matrix B may incorporate standardizing the moments
by their standard deviation, or it may be used to account for their correlations (see Sections 5
and 6 for examples). The choice of the norm determines how the researcher’s bounds on
each element of v interact. With the /., norm, one places separate bounds on each element
of 7, which leads to a simple interpretation: no single element of v can be greater than M.
Under an £, norm with 1 < p < oo, the bounds on each element of 7 interact with each
other, so that larger amounts of misspecification in one element is allowed if other elements
are correctly specified.

The optimal sensitivity can be computed by casting the optimization problem (10) as a
penalized regression problem. To see the connection, note that with ¢ = B+, one can write

the approximately linear model (14) as
Y = —T0 + By + 2%,

which one can think of as a regression model with correlated errors, design matrix (—I", B),
and coefficient vector (6',+"). With this interpretation, it is clear that if the number of
regressors dy + d, is greater than the number of observations d,, the constraint on the
norm of v is necessary to make the model informative. When |- corresponds to an ¢,

norm, the constraint on the worst-case bias in (10) becomes M || B'k||y, < B, where p’ solves
1/p+1/p =1
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4.2.1 /, constraints

When ||7y|| corresponds to the Euclidean (or ¢5) norm, this leads to ridge regression, and the
optimal sensitivity takes the form &} = —H(I'W,I')"'I"Wy, where W) = (AM?BB’ + )1,
where, as in the case with a single misspecified moment, A is the relative weight on bias
when (10) is put into a Lagrangian form. The optimal sensitivity for CI construction is
then given by ky«, where A* minimizes 2 cv, (M ||B'ky||2/\/k\Xki)\/k\Xks. If one is instead

interested in estimation using MSE as the optimality criterion (see Remark 2.4), the optimal

sensitivity is simply ki, as A = 1 is the optimal choice in this case. This sensitivity can
be implemented as a GMM estimator with weighting matrix W),. The estimator h given in
Section 2.2 is simply the one-step Newton-Raphson version of this estimator. Relative to the
optimal weighting matrix ¥ ! under correct specification, the matrix Wy, trades off precision
of the moments against their potential misspecification.

For additional intuition, observe that the weighting matrix would be optimal under cor-
rect specification if the asymptotic variance of §(6y) were given by M?ABB’ + ¥ instead
of ¥. This form of asymptotic variance arises under a random-effects approach:” if one
puts a prior on v with zero mean and variance AM?I, then unconditionally, the variance of
the moment condition will be given by W, ! leading to the same optimal estimator. Thus,
if one is interested in optimal estimation under the MSE criterion, the weighting matrix
W, is optimal under both /5 constraints on 7, and under a random effects prior on v with
zero mean and variance M?2I. Observe, however, that most of the mass of this random
effects prior lies outside of the set C. For example, if the prior distribution is normal, then
P(Bvy € C) = P(||y]la < M) equals the probability that a x* random variable with d., degrees
of freedom is smaller than 1, which is smaller than 10% for d, > 4, and smaller than 1% for
d, > 7. This is because in higher dimensions, assuming that elements of v are independent
is not innocuous, as it implies that most of the mass of v concentrates in certain regions
of the parameter space, which may help with estimation (for example, by the law of large
numbers, the prior will put a lot of mass in the region where the average specification error
Z;l;l 7;/d, is small). Consequently, one needs to assume a rather high prior variance under
to yield estimators that one would obtain under our approach. One can also obtain the
estimator with weight matrix W, as the posterior mean in a Bayesian setting with a local
normal prior on v and a diffuse prior on 6.

This connection is analogous to the connection between Bayes estimators under normal

priors and minimax estimators under ¢, constraints in linear models (cf. Li 1982 and Section

7A random-effects approach to dealing with misspecification has been previously considered in Conley
et al. (2012), in the context of the linear instrumental variables model, although the paper does not consider
the implications for the form of optimal estimator.
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2.8.1 of Rossi et al. 2012). However, the resulting Cls are generally different under the
random effects approach from the Cls proposed in this paper, because the former approach

effectively treats the misspecification bias as a source of additional variability of the moments.

4.2.2 /; and /., constraints

When ||y|| corresponds to an /., or £ norm, the penalized regression analogy leads to a simple
algorithm for computing the optimal sensitivity similar to the LASSO/LAR algorithm (Efron
et al., 2004): the solution path of the sensitivities that solve (10) as B varies is piecewise
linear (see Appendix A for details). It follows from this algorithm that under /., constraints,
if B corresponds to columns of the identity matrix (as in Section 3.3.2), as M grows, the
optimal sensitivity successively drops the “least informative” moments, so that in the limit,
if d, < d, + dp, the optimal sensitivity corresponds to that of an exactly identified GMM
estimator based on the dy “most informative” moments only, where “informativeness” is given
by both the variability of a given moment, and its potential misspecification. If d, > d. + dp,
one simply drops all invalid moments in the limit, as discussed Section 3.3.2 for the case
M = .

4.3 Correct specification and Cressie-Read divergences

If C = {0}, the optimal sensitivity is given by kfgo = —H(I'S™'I)~'T'S~", which corre-
sponds to the sensitivity of h(éz—l), the GMM estimator with the “usual” optimal weight-
ing matrix ¥~!. In general, the optimal weights under misspecification will take a dif-
ferent form, since they take into account model misspecification allowed by C. However,
there is one interesting case where the optimal sensitivity under misspecification is the
same as in the correctly specified case. Under ¢, constraints with B = X2 so that
C = {32y : |7|ls £ M} = {c: ¥'c < M?}, the optimal weighting matrix derived
above for ¢y constraints reduces to ¥7!, just as in the correctly specified case. The intuitive
reason for this is that, in this case the uncertainty from potential misspecification is exactly
proportional to the asymptotic sampling uncertainty in g(@).

For an estimator with this sensitivity, the worst-case asymptotic bias is M, /k7 53X kLs -

Thus, our ClIs can be implemented as

h(0s—1) £ cvo (M) - \/1%25702/%LS,0 /n.

Furthermore, we show in Appendix A that in this case, the value of (11) is given by
(6/2 + M), /K goXkLso. Since this is affine in 0, the efficiency in (17) can be calculated
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explicitly. We give the expression in Appendix A.1, where we also show that the efficiency
L

is at least as high as min{x},,1 — a}, where sl denotes the efficiency in Equation (18)
when C corresponds to a linear subspace. In particular, since % o5 < 0.95, it follows from
Theorem 3.1 and the discussion in Section 3.3.1 that the asymptotic efficiency of the CI in
the preceding display at 95% confidence level is asymptotically at least high as the efficiency
of the usual CI under correct specification.

Andrews et al. (2018) have shown that defining misspecification in terms of the magnitude
of any divergence in the Cressie and Read (1984) family leads to a set C that asymptotically
takes this form, so long as the set of probability measures under misspecification is contiguous
to the probability measure corresponding to correct specification. The Cressie-Read family
includes the Hellinger distance used by Kitamura et al. (2013), who consider minimax point
estimation among estimators satisfying certain regularity conditions. The results above imply
that any estimator with sensitivity krgo is near-optimal for CI construction. In line with
these results, the estimator in Kitamura et al. (2013) has sensitivity krso. Thus, the usual
GMM estimator h(fs-1) and the estimator in Kitamura et al. (2013) are both near-optimal
for CI construction, even if one allows for arbitrary Cls that are not necessarily centered at
estimators that satisfy the regularity conditions in Kitamura et al. (2013). Also, because
they have the same sensitivity, under this form of misspecification, the usual GMM estimator
h(0s-1) and the estimator in Kitamura et al. (2013) have the same local asymptotic minimax

properties.

5 Applications

This section describes particular applications of our approach, along with suggestions for the

set C and other implementation details appropriate to each application.

5.1 Generalized method of moments

Most of the applications we consider in this section are special cases of the generalized method
of moments (GMM) framework. Here, §(0) = £ 3" | g(w;,6) and g(0) = Eg(0) = Eg(w;, 9).
Equation (2) follows from a central limit theorem, with ¥ the variance matrix of g(w;, 6p)
(or, in the case of dependent observations, the long run variance matrix). Equation (3)
follows from a first order Taylor expansion along with additional arguments, as described
in Newey and McFadden (1994). To estimate X, one can use the robust variance estimate
% Yoy g(w, éimtial) g(w;, éinitial)’ (or, in the case of dependent observations, an autocorrelation

robust version of this estimate). To estimate I' in the case where g(w;,#) is smooth, one
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can use the derivative of the sample objective function %Q(@H o—i,.. - When g(w;, 0) is
—Vinitia.

nonsmooth, one can use a numerical derivative with the step size decreasing at an appropriate

rate with n (see Hong et al. 2015, Section 7.3 of Newey and McFadden 1994 and references

therein). The derivative matrix H can be estimated with the derivative -5/ (6)] bf
—Vinitial

5.2 Instrumental variables

The single equation linear instrumental variables (IV) model is given by

where, in the correctly specified case, Ee;z; = E(y; — 2500)z = 0, with z; a dg-vector of
instruments. This is an instance of a GMM model with ¢(0) = E(y; — 2,0)z; and §(0) =
% >ic 2y — zi).

One common reason for misspecification in this model is that the instruments do not
satisfy the exclusion restriction, because they appear directly in the structural equation (20),
so that ¢; = 27,v/v/n + n;, where E[zn;] = 0, and zj; corresponds to a subset I of the
instruments, the validity of which one is worried about. This form of misspecification has
previously been considered in a number of papers, including Hahn and Hausman (2005),
Conley et al. (2012), and Andrews et al. (2017), among others. Bounding the norm of ~

using some norm ||-|| then leads to the set
C={By:||v|| < M}, where B = E[zz},]. (21)

Although the matrix B is unknown, for the purposes of estimating the optimal sensitivity
and constructing asymptotically valid Cls, it can be replaced by the sample analog B =

n~t 3" zizy;. This does not affect the asymptotic validity or coverage properties of the

/
79

resulting CI. The derivative matrix I' = —Ez}, can be estimated as I’ = —% Yo %

The asymptotic variance matrix of the moments is given by ¥ = FEe?z;2/, which takes
the form Xy = (Fe?) (Ez2!) under homoskedasticity (i.e. when var(e; | z;) is constant).
Given an initial estimator éinitial, these can be estimated using the usual plug-in formulas,
3= L3y — @ Orniial) 22520, and Sy = L3y — 2 Oinitia)? - L3 ziZ). As the initial
estimator, one can use the two-stage least squares (2SLS) estimator

N n n -1 n n n -1 n
e = | (S0 ) (D0 )™ (sl | (0 ) (S )™ 0 i

When the norm in (21) corresponds to an ¢, norm, the optimal sensitivity can be computed
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using the algorithms and formulas described in Section 4.

The linearity of the moment condition leads to a particularly simple form of the optimal
estimator. In particular, if the parameter of interest is also linear function of 6: h(0) = H0,
then the one-step estimator h given in Section 2.2 does not depend on the choice of the

initial estimator (except possibly in forming the desired sensitivity k)

R . O R Py gy .
f— . oy. /_ p— I o ege P /_ . . —— ,_ . / . oy .
h - Hell’lltlal + k n ;:1 (yz mielnltlal)zl - k n ;:1 Yizi + (H k n ;:1 lei> elmtlal

I
- klﬁ;yizia

where the second line follows since the weights k satisfy H = —kI' = l%% oz

In the correctly specified case, the 2SLS estimator, which is the GMM estimator with
weighting matrix f]l_{l, is optimal under homoskedasticity. When homoskedasticity does
not hold, the GMM estimator with weighting matrix 1 is optimal. Due to concerns
with finite sample performance, however, it is common to use the 2SLS estimator along
with standard errors based on a robust variance estimate, even when heteroskedasticity is
suspected. Mirroring this practice, one can use Sy when forming the optimal sensitivity 2
and worst-case bias (in Step 2 of the algorithm in Section 2.3) while using 3 to form the
variance estimate k'Sk in Step 3. The resulting CI will be valid under both homoskedasticity
and heteroskedasticity, and will be optimal under homoskedasticity, just as with the usual

CI based on 2SLS with robust standard errors in the correctly specified case.

Remark 5.1. This framework can also be used to incorporate a priori restrictions on the
magnitude of coefficients on control variables in an instrumental variables regression. Sup-
pose that we have a set of controls w;, that appear in the structural equation (20), so that
yi = 20 + wiy/\/n + €, and ¢ is uncorrelated with w; as well as vector of instruments
Z;. If one is willing to restrict the magnitude of the coefficient vector v, so that ||v| < M,
then one can add w; to the original vector of instruments Z;, z; = (2}, w})’. Then, we obtain
the misspecified IV model with the set C given by (21), with B = FE[zw]]. Thus, we can
interpret this model as a locally misspecified version of a model with w; used as an excluded

instrument.

Remark 5.2. Instead of bounding the coefficient vector ~, one can alternatively bound the
magnitude of the direct effect z7,v. If all instruments are potentially invalid, z;; = z;, and
one sets C = {v: F[(2/7)?] < M}, then under homoscedasticity, this corresponds to the case

discussed in Section 4.3, where the uncertainty from potential misspecification is exactly
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proportional to the asymptotic sampling uncertainty in g(¢). Consequently, in this case the

optimal sensitivity is the same as that given by the 2SLS estimator.

5.3 Nonlinear IV

The linear IV model (20) can be generalized to a nonlinear model of the form ¢; = p;(6y),
where E[e;z;] = 0 in the correctly specified case. As in Section 5.2, we can allow for misspec-
ification where the instrument enters the structural equation directly, so that ¢; = 27,7 + n;
and E[zm;] = 0, with zj; denoting a subset of the instruments. As in Section 5.2, bounding
the norm of 7 leads to a set C of the form given in (21). The BLP demand model in our
empirical application in Section 6 takes the form of a system of nonlinear IV equations, and

we consider such forms of misspecification in our empirical application.

5.4 Omitted variables bias in linear regression

Specializing to the case where z; = x;, the misspecified IV model of Section 5.2 gives a
misspecified linear regression model as a special case. This can be used to assess sensitivity
of regression results to issues such as omitted variables bias. In particular, consider the linear
regression model

where z; and y; are observed and w] is a (possibly unobserved) omitted variable. Correlation
between w; and z; will lead to omitted variables bias in the OLS regression of y; on z;. If

*

w} is unobserved, then we obtain our framework by making the assumption /nFw;z; € C,
for some set C, and letting §(#) = = > | 2;(y; — 2}6). This setup can also cover choosing
between different sets of control variables. Suppose that w} = w.~y, where w; is a vector of
observed control variables that the researcher is considering not including in the regression.
If v is unrestricted, then by the results in Section 3.3.2, the long regression of y; on both
x; and w; yields nearly optimal CIs. If one is willing to restrict the magnitude of v, it is
possible to tighten these Cls. In particular, we obtain the setting in Section 5.2 by setting
9(0) = 370 | zi(y; — 240), where z; = (2;, w}), and defining C as in (21), with z; = w;. The

same framework can be used to incorporate selection bias by defining w; to be the inverse

Mills ratio term in the formula for E[y; | z;, observed] in Heckman (1979).

5.5 Treatment effect extrapolation

Often, the average effect of a counterfactual policy on a particular subset of a population

is of interest, but this effect is not identified under sufficiently weak assumptions. Rather,
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policy effects 7, ..., 7, for each of m other subsets of the population are identified, and
consistent, asymptotically joint normal estimates 7 = (71,...,7,) are available. However,
the researcher may have prior information about how these policy effects relate to the policy
effect for the subpopulation of interest. If this information amounts to assuming that the
policy effect of interest 6 satisfies (0 — 71,...,0 — 7,,) € C/+/n for some convex set C, then
this falls into our framework with §(0) = (0 —71,...,0 —7,,) and g(0) = (0 —71,...,0 —7,)".

An example that has been of recent interest involves nonseparable models with endo-
geneity. Under conditions in Imbens and Angrist (1994) and Heckman and Vytlacil (2005),
instrumental variables estimates with different instruments are consistent for average treat-
ment effects for different subpopulations. A recent literature (Kowalski, 2016; Brinch et al.,
2017; Mogstad et al., 2017) has focused on using assumptions on treatment effect hetero-
geneity to extrapolate these estimates to other populations. If these assumptions amount to
placing the differences between the estimated treatment effects and the effect of interest in

a known convex set that is local to zero, then our framework applies.

6 Empirical application

This section illustrates the confidence intervals developed in Section 2 in an empirical ap-
plication to automobile demand based on the data and model in Berry et al. (1995, BLP
hereafter). We use the version of the model as implemented by Andrews et al. (2017), who
calculate the asymptotic bias of the GMM estimator with weighting matrix ¥~! under local

misspecification in this setting.®

6.1 Model description

In this model, the utility of consumer ¢ from purchasing a vehicle j, relative to the outside
option, is given by a random-coefficient logit model U;; = Zszl 2, (B + oxvik) — ap; [y +
& + €, where p; is the price of the vehicle, x;;, the kth observed product characteristic,
§; is an unobserved product characteristic, and ¢;; is has an iid extreme value distribution.
The income of consumer 7 is assumed to be log-normally distributed, y; = €™*<Vi®, where
the mean m and the variance ¢ of log-income are assumed to be known and set to equal
to estimates from the Current Population Survey. The unobservables v; = (vy, . .., vk ) are
iid standard normal, while the distribution of the unobserved product characteristic §; is

unrestricted.

8The dataset for this empirical application has been downloaded from the Andrews et al. (2017) repli-
cation files, available at https://dataverse.harvard.edu/file.xhtml?persistentId=doi:10.7910/DVN/
LLARSN/2KFPRA&version=1.1.
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The marginal cost mc; for producing vehicle j is given by log(mc;) = wjA + w;, where
w; are observable characteristics, and w; is an unobservable characteristic. The full vector
of model parameters is given by 6 = (¢’,«, 8, \')’. Given this vector, and given a vector
of unobservable characteristics, one can compute the market shares implied by utility max-
imization, which can be inverted to yield the unobservable characteristic as a function of 6,
€;(6). One can similarly invert the unobserved cost component, writing it as a function of
6, w;(#), under the assumption