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NECESSARY AND SUFFICIENT CONDITIONS FOR

DETERMINACY OF ASYMPTOTICALLY STATIONARY

EQUILIBRIA IN OLG MODELS

ALEXANDER GOROKHOVSKY♯ AND ANNA RUBINCHIK♮

Abstract. We propose a criterion for determining whether a local policy
analysis can be made in a given equilibrium in an overlapping generations
model. The criterion can be applied to models with infinite past and future
as well as those with a truncated past. The equilibrium is not necessarily a
steady state; for example, demographic and type composition of the population
or individuals’ endowments can change over time. However, asymptotically,
the equilibrium should be stationary. The two limiting stationary paths at
either end of the time line do not have to be the same. If they are, conditions
for local uniqueness are far more stringent for an economy with a truncated
past as compared to its counterpart with an infinite past.

In addition, we illustrate our main result using a text-book model with a
single physical good, a two-period life-cycle and a single type of consumer. In

this model we show how to calculate a response to a policy change using the
implicit function theorem.

J.E.L. codes: C02, C62, D50.

1. Introduction

1.1. Our basic question. A researcher constructs an overlapping generations
(OLG) model and solves for an equilibrium. Her next task is to perform a policy
analysis using the implicit function theorem, e.g., to find out how a pension reform
will change the allocation of resources across generations. Before undertaking the
assessment she has to verify that the equilibrium is determinate, for otherwise the
reaction of equilibrium to such a change can be either non-existent or ambiguous.
According to Shannon (2008), an equilibrium is called determinate if it is “locally
unique and local comparative statics can be precisely described.” If indeterminate,
an equilibrium might be “infinitely sensitive to arbitrarily small changes in param-
eters.” [ibid.] Examples of such parameters include policies or regulations. In case
of an OLG model, one can analyse policy changes that are effective over a period
of time and that target particular groups of individuals. In other words, a policy
can be a function of time and individual characteristics. Hence, if the equilibrium
in an OLG model is determinate, one can conduct a policy evaluation, examining
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2 A. GOROKHOVSKY AND A. RUBINCHIK

the full effect of such policies on all individuals born at any time. Is there an easy
way to assess determinacy of equilibria?

The foundations for the analysis of competitive equilibria in finite economies
are well-known [5]. If the model has a finite number of goods and individuals,
policy analysis is almost always valid. Even if the original equilibrium fails to
be determinate, a small perturbation of parameters around their original values
can restore determinacy. These results have been extended, but they still require
either a finite number of agents, [25], or a compact set of traded commodities [4].
Overlapping generations models, pioneered by Samuelson (1958), do not fall in
either class: both sets, of agents and of dated goods, are infinite and neither of
them is compact. Moreover, familiar cases of the OLG models are associated with
generic indeterminacy, cf. [10] for the overview. Unfortunately, both the concept of
genericity and that of indeterminacy have been interpreted in a variety of ways in
the literature, especially when an equilibrium variable is a solution to a dynamic
system.

For practical purposes though, a researcher needs to know whether policy eval-
uation is valid in a given equilibrium for a given model. This is the question we
address here.

1.2. Answering the question. To provide a direct answer, we develop a criterion
for equilibrium determinacy. In order to make the analysis more transparent, we
consider a discrete-time endowment model, cf. section 2. There are L ≥ 1 physical
goods traded in every period by heterogenous consumers with different life-spans.
Equilibrium price path, as usual, is a solution for the system of market clearing
equations, or a zero of the aggregate excess demand. We call an equilibrium sta-
tionary if the derivative of the aggregate demand evaluated at this equilibrium is
time-invariant, meaning that any of its partial derivatives at time t with respect to
price at time k depends only on the difference, t−k. A steady state in a stationary
economy satisfies this condition. We require the baseline equilibrium to be station-
ary only asymptotically, i.e., when t → +∞ in the truncated case and t → ±∞ for
the economy with infinite past.

We view an equilibrium price (growth path) as a point in the Banach space
of uniformly bounded sequences and apply the implicit function theorem (IFT) for
that space, cf. also [3], rather than linearizing equilibrium difference equations using
an IFT for every time period t ∈ Z(Z+), as in, e.g., [14].

It is the applicability of the IFT that gives us the indicator of determinacy of
equilibria. To assess invertibility of the derivative of equilibrium equation system
with respect to prices (evaluated at an equilibrium point), we build upon contri-
butions in spectral analysis, [15], [11]. Our main statement is in section 3 and its
proof is in the appendix.

1.3. A related puzzle in the literature. As a by-product of our analysis, we
address a discrepancy in the OLG literature about indeterminacy of equilibria.

There are several known cases of generic indeterminacy. One includes steady
states in a stationary endowment economy with several physical goods and dis-
crete time starting at zero [14], [13]. Indeterminacy in that case is understood
as multiplicity of equilibria converging to some steady state as a result of a small
policy change at time zero. These results still hold in an OLG economy with some
production possibilities [21]. Using a similar concept of indeterminacy and a more
general notion of stationarity (in the sense of Liapunov) for the base-line equilib-
rium, Geanakoplos and Brown (1985) show that when the model has both infinite
past and future and the agents perfectly foresee the future policy change, equilibria
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are generically determinate, which is not the case when the change comes as a sur-
prise at time zero. Demichelis and Polemarchakis (2007) show that in an economy
with logarithmic instantaneous utility and a single physical good the equilibrium
set is substantially reduced when the time runs from −∞ instead of 0. This also
holds when transactions become more frequent, as the discrete model converges
to its limit in continuous time. In the limit, the steady states are isolated and
increasing equilibria are unique up to a time-shift.

Generic determinacy, understood as applicability of the IFT in the appropriate
Banach spaces, can be acheived if the time-line is extended to include an infinite
past. Burke (1990) demonstrates this for the nearly stationary equilibria in the
economy described in [14]. In a model with Cobb-Douglas production, constant-
elastiticy-of-substitution instantaneous utility and arbitrary life-cycle productivity,
balanced growth equilibria (BGE) are determinate for almost all parameters [20], if
time is a whole real line. In an extended version of this model, BGE are generically
determinate in the space of real transfers [12].

From this brief sketch of the literature it is already clear that neither switching
from discrete to continuous time nor introducing production possibilities in the
model is sufficient to avoid generic indeterminacy. It may be that the culprit is “the
beginning of times,” or truncation of the past used in the standard OLG models.
This was our initial conjecture.

1.4. Resolving the puzzle. We find that conditions needed to validate compara-
tive statics in a model with truncated past are, indeed, more restrictive than those
for the model with infinite past, but only in the case in which the two asymptotic
conditions coincide, e.g., when the baseline equilibrium converges at t → ±∞ to the
same stationary price growth path and the parameters tend to the same stationary
values towards both ends of the time-line. However, such a conclusion does not
extend to asymmetric baseline equilibria that converge to two different stationary
paths, one for each direction in time. In this case, determinacy imposes non-trivial
restrictions on parameters, which might be extreme, as we later illustrate.

In section 4 we demonstrate how to calculate equilibrium response to a policy
change for a textbook example of an OLG economy with Cobb-Douglas life-time
utility using the complete characterization of equilibria offered in [6]. If the economy
is eternal and the policy is fully foreseen by the agents, steady state equilibria are
determinate, apart from a knife-edge case, in which the amount of money needed
to sustain the golden rule equilibrium is zero. In other cases, we illustrate the
response of the economy to a small addition of consumption goods to the young in
a single period. If the young save in the golden rule equilibrium, the response of
prices precedes the change in policy, so perfect foresight is crucial there. In contrast,
if the beginning of times is set, or if the policy is perceived as a surprise by the
agents, the golden rule equilibrium is indeterminate in case of positive savings by
the young. This supports our initial conjecture and illustrates the implications of
the main result for symmetric equilibria. However, infinite past is not a perfect
remedy against indeterminacy. Increasing equilibria that converge to two different
steady states at either end of the time-line are not determinate for any choice of
parameters in that example, as follows from a simple calculation based on the main
result.

Some caveats and applicability of our results to other dynamic systems are dis-
cussed in section 5.

2. The model

2.1. Economy with an infinite past, E . Time is indexed by the set of integers,
t ∈ Z. An individual of type θ ∈ Θ lives for 1 < τθ < ∞ periods, where Θ is a finite
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set of individual types. Individuals of different types can be born at any time, and
their lifespans can overlap. Let 0 ≤ Nθ

t,s < ∞ be the number of people of type θ

who are of age s ∈ {0, . . . , τθ − 1} at time t ∈ Z. We assume that at any point in
time t the economy is non-empty.

Assumption 1. For any t ∈ Z, there is at least one type θ ∈ Θ, such that Nθ
t,s > 0

for some s ∈ {0, . . . , τθ − 1}.
There are L ≥ 1 perishable physical goods traded at any period t ∈ Z. An

individual born in period x ∈ Z is entitled to a stream of consumption goods
(ωθ

x+s,s ∈ RL
+)s∈{0,...,τθ−1} during his life-time, and has nothing beyond: ωθ

x+s,s = 0

for all s < 0 and s > τθ − 1. Resources are limited, both over the life-span of an
individual and at any point in time for the economy as a whole. In addition,
aggregate resources are bounded away from zero.

Assumption 2. Individual resources: 0 <
∑

s∈Z ωθ
x+s,s < ∞, ∀x ∈ Z, ∀θ ∈ Θ.

Aggregate resources: 0 < ω ≤ ∑

θ∈Θ

∑

s∈ZNθ
t,sω

θ
t,s < ∞, ∀t ∈ Z.

Budget set can be defined in the usual way to include all the consumption streams
that can be purchased by selling the endowment at prevailing market prices, pt ∈
RL

++. We work with Arrow-Debreu prices, i.e., pt,l is the price of a promise to
deliver good l at time t in terms of money of some fixed period, say, 0. Implicit
is the assumption that individuals have access to a storage of value across periods,
cf. [22], even though the goods are perishable.

Assume that individuals do not derive utility from consuming goods beyond
their life-span, as is common in the OLG models. Then, as is well known, [10], [9],
individual demand will depend on the prices during one’s life-time only.

Let px,τ = (px, px+1, . . . , px+τ−1) ∈ (RL
+)

τ be the sequence of prices of L goods
for τ periods following and including period x. Assume that the solution to the
consumer’s problem is unique and denote demand of an individual of type θ ∈ Θ,
who is of age s ∈ {0, . . . , τθ − 1} at time t ∈ Z by cθt,s. It is a function of strictly
positive prices during his life-time:

cθt,s : (R
L
++)

τθ → (RL
+)

τθ

, pt−s,τθ 7→ cθt,s(p
t−s,τθ

)(1)

Note that the demand is also a function of parameters, which is implicit in the
notation we adopted. First, it depends on income, or the value of the endowment

to which he is entitled over the course of his life-time:
∑τθ−1

k=0 px+kω
θ
x+k,k. The

changes in endowments could be associated with changes in an external policy.
Second, individual demand depends on preferences. Both factors can vary cθt,s and
its dependence on prices.

The rest of the assumptions will be imposed directly on individual demand, cf.,
e.g. [13]. They follow from the standard set of assumptions on preferences and
consumer optimization.1

Assumption 3. Homogeneity: cθt,s(p
t−s,τθ

) = cθt,s(ζp
t−s,τθ

) ∀ζ > 0,

∀t ∈ Z, ∀θ ∈ Θ, ∀s ∈ {0, . . . , τθ − 1}.
Differentiability: cθt,s(p

t−s,τθ

) is continuously differentiable on (RL
++)

τθ

.

1Since there are no infinitely-lived agents in this economy, it is without loss of generality to
assume that individual preferences are defined over a finite-dimensional subspace of consumer

bundles, a subset of RτθL
+ for any given type θ ∈ Θ: the demand should depend on a finite

collection of prices during an individual’s life-time in either case. Thus, we avoid the known
difficulties of imposing too many implicit restrictions on the choice of the underlying space for
prices and quantities by assuming that the demand is smooth, [1], [18].
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It is common to impose more structure on demand, such as Walras law, for

example,
∑τθ−1

k=0 px+k

(

cθx+k,k(p
x,τθ

) − ωθ
x+k,k

)

= 0, ∀x ∈ Z, ∀θ ∈ Θ, as well as an
intertemporal irreducibility assumption in order to be able to rely on the existence
of equilibria results in [2], for example. However, even that might not suffice in our
case since we focus on a subclass of equilibria described below. This includes one of
the most widely used classes of equilibria, the steady states, cf., e.g., [10]. For non-
stationary equilibria, a direct computation might be feasible, cf. [6]. We establish
existence of equilibria in the neighbourhood of a baseline (provided it exists) using
the implicit function theorem.

By homogeneity, demand of any individual born at x will not change if we normal-

ize the prices faced by the individual over his life-time (px,τ
θ

). For that, we divide

every element of the price vector px,τ
θ ∈ (RL

++)
τθ

by the price of the first physical
good that he encounters when born, px,1 > 0. This is equivalent to re-defining indi-

vidual demand cτ
θ

t,s to be a function of relative prices, (qt−s, . . . , qt−s+τθ−1), where

qk ∈ RL
++ for k = t− s, . . . , t− s+ τθ − 1,2 and

qt,l
def
=

{

pt,l

pt,l−1
, if l > 1

pt,1

pt−1,L
, if l = 1

Following the earlier convention, let qx,τ
def
= (qx, qx+1, . . . , qx+τ−1) ∈ (RL

+)
τ be

the sequence of relative prices of L goods for τ periods following and including
period x.

2.2. Equilibria. Denote the excess demand of individual of type θ who is of age s

at time t by ξθt,s defined on (RL
++)

τθ

:

ξθt,s(q
t−s,τθ

)
def
= cθt,s(q

t−s,τθ

)− ωθ
t,s

Definition 1. An equilibrium price q = (. . . , q0, q1, . . . , qt, . . . ) is a strictly positive
solution of the equilibrium system of equations:

Ft(q) =
∑

θ∈Θ

τθ−1
∑

s=0

Nθ
t,sξ

θ
t,s(q

t−s,τθ

) = 0, ∀t ∈ Z(2)

We exclude diverging sequences of relative prices by assuming that the equilib-
rium price is uniformly bounded over time,3 q ∈ ℓL∞(Z). The set solutions to the
system (2) and our ability to perform comparative statics depends on the properties
of the derivative of F , which maps the set of infinite bounded sequences indexed
by integers into itself, DF : ℓL∞(Z) → ℓL∞(Z).

DFt(q) =
∑

θ∈Θ

τθ−1
∑

s=0

Nθ
t,s

τθ−1
∑

j=0

Dj+1ξ
θ
t,s(qt−s, . . . , qt−s+j , . . . , qt−s+τθ−1),(3)

where Djξ
θ
t,s(·) is the derivative with respect to j-th argument of ξθt,s.

It will be convenient to assess the derivative of the aggregate demand with respect
to each of the prices qk for k ∈ Z. For that we change variable in (3): k = t− s+ j,

2By construction, the derivative of each one of the L components of this demand vector is zero
with respect to the first relative price, qt−s,1.

3This is the reason we chose to work with ratios of prices, i.e., to normalize prices as above:
the rate of growth of prices is typically bounded by a combination of preference parameters and
a bound on resources, at least in the presence of production, cf. [19], while a uniform bound on
nominal values is hard to justify. Here the lower bound on aggregate resources (ω) should be
sufficient, using the standard argument, to assure that prices remain bounded. The downside of
this normalization is that we can only work with strictly positive prices.
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so that t − s ≤ k ≤ t − s + τθ − 1 and then switch the order of the summation
which can be done since all the sums are finite. Then using [v]+ = max{0, v} the
derivative can be written as follows:

(DFt(q))(δq) =

t+τ̄−1
∑

k=t−τ̄+1

γt,kδqk, where(4)

γt,k
def
=

{

∑

θ∈Θ

∑τθ−1−[k−t]+
s=[t−k]+

Nθ
t,sDk−t+s+1ξ

θ
t,s(q

t−s,τθ

), if |k − t| ≤ τ̄ − 1

0, otherwise
(5)

Note that each γt,k ∈ RL×L is an L×L matrix of real numbers. This collection of
matrices reflects the parameters defining the economy and the policies, cf. equation
(5). It involves derivatives of individual demand, hence individual preferences,
endowments as well as policies that translate into aggregate changes through de-
mographic and type composition of the population, Nθ

t,s. In case Nθ
t,s and the

derivatives of ξθt,s evaluated at some equilibrium are independent of t, the economy
and the equilibrium are referred to as stationary (steady states).

Steady states in stationary economies have a convenient property that the co-
efficients γt,k depend only on the difference, t− k, so, DF can be viewed as an
“infinite matrix” with equal entries along the “diagonals”, i.e., equal if the difference
between the column and the row index is the same. In other words, DF is given
by a convolution, cf. [12]. Our analysis incorporates also non-stationary equilibria
that have this property asymptotically.

Definition 2. An equilibrium price q in economy E is asymptotically stationary
(ASE) if there is a collection of matrices γ+

s , γ−
s ∈ RL×L such that

γt,t−s −−−→t→+∞
γ+
s , γt,t−s −−−→t→−∞

γ−
s ∀s ∈ Z(6)

where γt,k are as defined in (5).
If, in addition, γ+

s = γ−
s for all s ∈ Z then the equilibrium is symmetric.

A symmetric equilibrium is stationary if γt,t−s = γ+
s for all t, s ∈ Z.

Note that γt,t−s = 0 = γ±
s for |s| > τ̄ and for all t ∈ Z by equation (5). Further,

there is no restriction on the rate of convergence. Note also that the two asymptotes,
γ+
s , γ−

s are not necessarily the same if the equilibrium is not symmetric.

2.3. Economy with truncated past E+ and its equilibria. One can either
assume that the time “starts” at some fixed t = 0 or that the policy change is a
surprise (announced in period 0), so none of the equilibrium variables could react
before t = 0. Hence, the time here is indexed by positive integers, Z+, and not by
Z, as in E . The prices are normalized in the same way, only the price of the first
good in the initial period is set to unity, q0,1 = 1. Otherwise, we impose the same
assumptions on E+ as we did on E .

The only difference in the definition of the derivative of the equilibrium equations
is the lower bound on summation assuring that δqk = 0 for all k < 0, while γt,k are
defined as before, in equation (5).

DF+ : ℓL∞(Z+) → ℓL∞(Z+)(7)

(DF+
t (q))(δq) =

t+τ̄−1
∑

k=max{t−τ̄+1,0}

γt,kδqk(8)

An equilibrium price q in economy E+ with truncated past is ASE if there is a
collection of matrices γ+

s ∈ RL×L, such that γt,t−s −−−→t→+∞
γ+
s ∀s ∈ Z, where γt,k are

as defined in (5). Stationary equilibrium for E+ is as defined in definition 2.
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2.4. Policies. In either economy, policies are exogenous to the equilibrium system
and we associate them with the changes that they induce on the aggregate excess
demand. It is convenient to think about a policy being a function of time and,
possibly, individual characteristics, e.g., a pension reform or a tax policy. To incor-
porate these examples, we assume that policies, π, belong to a Banach manifold,
Bπ. In addition, in order to make local comparative statics a meaningful exercise,
we assume that at any equilibrium of interest the excess demand F is differentiable
with respect to policies.

Therefore, strictly speaking, we should write F as a function of two arguments:
the endogenously determined prices, q ∈ ℓL∞, and of exogenous parameters, π ∈ Bπ.
In this case, the derivative with respect to prices, as in equation (3) is ∂F

∂q
, and,

similarly, the derivative with respect to policies is denoted by ∂F
∂π

.4

3. The result

Evaluating a response of an equilibrium variable (δq) to a policy change (δπ)
can be approximated using an implicit function theorem (IFT). For convenience,
we provide a formulation of the IFT that suits our case.

3.1. The implicit function theorem.

Theorem 1 ([23], Thm. 3.8.5.). Let E ,F ,G be three Banach spaces, F be a
continuously differentiable map from an open set O ⊂ E × F into G , F : (q, π) 7→
F (q, π). Let (q0, π0) be a point in O, F (q0, π0) = 0.

If ∂F
∂q

(q0, π0) is invertible in the space of linear operators from E to G , then there

exist opens sets A ⊂ E and B ⊂ F , A×B ⊂ O such that for every π ∈ B, there is
a unique solution (in q) of the equation F (q, π) = 0 which belongs to A and there
is a continuously differentiable function φ : B → A such that F (φ(π), π) = 0. Its
derivative is given by

φ′(π0) = −
(∂F

∂q
(q0, π0)

)−1

◦
(∂F

∂π
(q0, π0)

)

(9)

Thus the key assumption to verify is the invertibility of ∂F
∂q

(q0, π0). To simplify

notation in what follows we will be using DF to denote ∂F
∂q

when no confusion
arises.

3.2. Formulation of the main result. Consider the derivative of aggregate ex-
cess demand (equilibrium equation) DF as defined in (4) for economy E evaluated
at an ASE with asymptotes (γ+

s , γ−
s )s∈Z. Similarly, DF+ as in (7) for economy E+

is evaluated at an ASE with (γ+
s )s∈Z.

Let i denote the imaginary unit (
√
−1), det(A) denote the determinant of matrix

A, I denote the identity matrix. Let

Φ+(λ)
def
=

∞
∑

s=−∞

eiλsγ+
s , Φ−(λ)

def
=

∞
∑

s=−∞

eiλsγ−
s , 0 ≤ λ ≤ 2π(10)

Γ± def
= {z ∈ C | det[Φ±(λ)− zI] = 0 for some 0 ≤ λ ≤ 2π}(11)

Γ
def
= Γ− ∪ Γ+(12)

Note that Φ±(λ) ∈ CL×L are L × L matrices with complex entries that are well-
defined. Indeed, the sums in the equation (10) have only a finite number of non-zero
elements because by definition of ASE, γ±

s = 0 for all s : |s| ≥ τ̄ .

4In this case δπ, being in a tangent space to Bπ, belongs to a Banach space.
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Finally, if 0 /∈ Γ±, let f± : (0, 2π) → C be defined as f±(λ) = det(Φ±(λ)), and

n± def
=

1

2πi

∫ 2π

0

f ′
±(λ)

f±(λ)
dλ(13)

n
def
= n− − n+(14)

Note that n is an integer.5

Let us start with a simple case. Assume that there is only one physical good
traded at each period, L = 1, and that the baseline equilibrium is stationary e.g.,
a steady state in a stationary economy. This implies that γt,t−s is a real number
and for all s ∈ Z, γt,t−s = γ+

s = γ−
s . In this case Φ+ = Φ− maps a real interval

[0, 2π] into C. Γ+ = Γ− is its range. It is a closed curve in the complex plane,
since Φ+(0) = Φ+(2π). Hence, for the stationary economy with infinite past 0 /∈
Γ+ ⇒ n− = n+, thus n = 0. For this case we can formulate a tight indicator for
equilibrium determinacy. The proof is in the appendix.

Proposition 1. Assume L = 1.

(i) In an economy with infinite past, E , DF at a stationary equilibrium with
(γ+

s )s∈Z is invertible if and only if 0 /∈ Γ+.
(ii) In an economy with truncated past, E +, DF at a stationary equilibrium

with (γ+
s )s∈Z is invertible if and only if 0 /∈ Γ+ and n+ = 0.

This statement supports our initial conjecture: determinacy is “easier to get” in
an economy with infinite past. Truncating the past imposes an additional condi-
tion, n+ = 0, for determinacy. As we illustrate in section 4.5, it can restrict the
parameters of the model in a non-trivial way. In case of non-stationary equilib-
ria, this feature is preserved only for those that are symmetric, as our main result
asserts.

Theorem 2. (i) Consider an asymptotically stationary equilibrium q of eco-
nomy E with (γ+

s , γ−
s )s∈Z. Then DF evaluated at q is invertible or can be

made invertible by an arbitrarily small perturbation6 if and only if 0 /∈ Γ
and n = 0.

(ii) Consider an asymptotically stationary equilibrium q of economy E + with
(γ+

s )s∈Z. Then DF+ evaluated at q is invertible or can be made invertible
by an arbitrarily small perturbation if and only if 0 /∈ Γ+ and n+ = 0.

(iii) If the equilibrium q of economy E is asymptotically stationary and sym-
metric then 0 /∈ Γ ⇒ n = 0.

Remark 1. If n 6= 0 (n+ 6= 0) then DF (DF+) is not invertible for all sufficiently
small of its perturbations.

The proof is based on the work of Gokhberg and Krein(1958), cf. the appendix.
The basic building block is the Toeplitz operator T that maps the Banach space
of complex bounded infinite sequences indexed by positive integers, ℓ∞(Z+)

L, into
itself.

(T (x))t =

+∞
∑

k=0

γt−kxk, where γs ∈ R
L×L,

∞
∑

s=−∞

|γs| < ∞(15)

By [11], T has the following property. If 0 /∈ Γ+, then both the dimension of the
null space of T (x 6= 0: Tx = 0) and the dimension of its co-range (ℓL∞(Z+)/RanT )

5This feature of the indicator is very convenient for a numerical calculation of the integral: the
approximation can be rather crude. In the examples we consider, the direct analytic calculation
is standard.

6A small perturbation of a linear operator is equivalent to adding to it another operator which
is small in the operator norm.
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are finite and their difference, index of the operator T , equals −n+. Our DF+ for
the economy with the truncated past, E +, can be decomposed into a stationary
component, an operator like T , and a non-stationary part and it inherits the above
mentioned property of T . A mapping between complex and real numbers trans-
lates the results to our case. An economy with infinite past can be viewed as a
concatenation of two truncated economies.

Part (iii) of the theorem implies that economies with infinite past are more
amenable to comparative statics, as invertibility of DF (up to an arbitrarily small
perturbation) relies then on a single condition, 0 /∈ Γ. The condition 0 /∈ Γ is non-
generic in terms of parameters of the model, which is illustrated in the example
that follows and is shown for a continuous-time economy with production and a
single physical consumption good traded at any t ∈ R, cf. [20], [12].

For an asymptotically stationary equilibria in E , conditions 0 /∈ Γ and n = 0
are necessary but not sufficient for invertibility of DF . In order to assure the
invertibility, one can, for example, verify that the null space of DF is empty, i.e.,
that DF (x) = 0 ⇒ x = 0. Alternatively, one could slightly perturb DF . In order to
find the desired direction of the perturbation, cf. [26], in general, more information is
needed about the model. One potential difficulty is that changing parameters of the
model affects the derivative of excess demand for any fixed price and, in addition,
can change the equilibrium price at which the derivative is to be evaluated. One
possible way to fully control the change in the asymptotic derivative coefficients γs is
to focus on perturbations of the parameters that keep the equilibrium intact, cf. [12].

Next we use an example economy to illustrate the main result and to demonstrate
how to perform comparative statics.

4. Comparative statics in a two-period-life-cycle economy

The main task here is to assess the difference between the (stationary) baseline
equilibrium and the new equilibrium path in a “perturbed” economy, whenever it
is well-defined. The approximation is based on the implicit function theorem.

4.1. The economy with infinite past and future, E 2, and its equilibria.
Consider an OLG economy as in [10]. There is a single commodity, L = 1 and a
single type of individual, so superscript θ will be omitted. Assume that Nt,s is a
constant. An individual is alive for two periods: τ = 2.

An individual born at time x ∈ Z is maximizing the life-time utility defined over
the infinite consumption streams indexed by time and age of the individual,

Ux(ĉ) = a ln ĉx,0 + (1 − a) ln ĉx+1,1, where a ∈ (0, 1), ĉ ∈ R
Z×Z
+(16)

subject to the budget constraint,
∑

s∈Z px+sĉx+s,s ≤ ∑

s∈Z px+sωx+s,s, where
ĉt,s ≥ 0 denotes amount consumed by an individual at time t if he is of age s ∈ Z
at that time. His endowment is ωx,0 ≥ 0 when he is young and ωx+1,1 ≥ 0, when
he is old and zero for any other age s /∈ {0, 1}. Therefore, individual demand is
zero beyond his life-time, ct,s = 0, ∀s ∈ Z\{0, 1}, and during his life-time it is

ct,0(qt) = a(ωt,0 + qtωt+1,1), ct+1,1(qt) = (1− a)(
ωt,0

qt
+ ωt+1,1), qt =

pt+1

pt
(17)

By definition 1, an equilibrium price q ∈ ℓ∞(Z) has to be a solution to the
following system of equations for a given profile of endowments to the young and
old, ω ∈ ℓ2∞(Z):

F (q, ω) = 0, F : (ℓ∞(Z) × ℓ2∞(Z)) → ℓ∞(Z)(18)

Ft(q, ω) = (a− 1)ωt,0 + aqtωt+1,1 +
(1 − a)ωt−1,0

qt−1
− aωt,1(19)



10 A. GOROKHOVSKY AND A. RUBINCHIK

If the endowments are constant over time, so that the young get ωt,0 = ωα and
the old get ωt,1 = ωβ, then, as is well-known, the system of equilibrium equations
F (q, ω) = 0 admits two constant solutions in q: the golden rule equilibrium (GRE)
and the balanced equilibrium (BE), cf. [8].

GRE: qt = 1 with ct,0 = a(ωα + ωβ), ct,1 = (1 − a)(ωα + ωβ).

BE: qt = κ
def
= (1−a)ωα

aωβ with ct,0 = ωα, ct,1 = ωβ.

Note that while in the BE the amount of net assets is zero since agents’ optimal
consumption equals their endowment, in GRE the net assets (money) are typically
not zero: M = ωα − a(ωα + ωβ) = (κ − 1)aωβ. The economy is in perpetual debt
in the GRE if κ < 1.

In addition, there are non-constant equilibria. If κ = 1, all equilibria collapse
to a single one. Demichelis and Polemarchakis (2007) derive explicit solutions for
all equilibria in this model, which are illustrated in figure 1. In addition to BE
and GRE there are also increasing equilibria, indexed by the parameter v ∈ R++:

qt =
1+vκt+1

1+vκt . The graph depicts the case of κ < 1. The asymptotic behavior of the
increasing equilibria is similar in the case of κ > 1 with the corresponding upper
asymptote being κ and the lower one being unity.

−9 −7 −5 −3 3 5 7 9
t

0

qt

1

κ

Figure 1. The two stationary equilibria, qt = 1 and qt = κ = 0.2.

There are also two examples of increasing equilibria, qt =
1+vκt+1

1+vκt

for v = 1, 0.1, see [6].

It is evident that the two constant equilibria are locally unique in ℓ∞(Z). Indeed,
although there is a continuum of increasing equilibria, which converge to the upper
asymptote as t → +∞ and to the lower asymptote as t → −∞, none of them

remains in an ǫ-neighbourhood of either equilibria for any 0 < ǫ < |1−κ|
2 .

The derivative of F with respect to prices evaluated at an arbitrary strictly
positive price vector q is

(∂Ft

∂q
(q)

)

(δq) = γt,tδqt + γt,t−1δqt−1 where(20)

γt,t = aωt+1,1, γt,t−1 = − (1− a)ωt−1,0

q2t−1

(21)

As one would expect, both GRE and BE are stationary according to definition 2:
all components of the derivative in equation (20) are independent of time: ∀t ∈ Z,

in GRE: γt,t = γ±
0 = aωβ , γt,t−1 = γ±

1 = −(1− a)ωα

in BE: γt,t = γ±
0 = aωβ , γt,t−1 = γ±

1 = − (1−a)ωα

κ2

(22)
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The increasing equilibria are asymptotically stationary by the same definition.
Indeed, the coefficient γt,t = γ0 = aωβ is independent of time. Since the price qt

converges to κ or 1 at ±∞, so γt,t−1 = − (1−a)ωα

q2
t−1

converges to either −(1 − a)ωα

or to − (1−a)ωα

κ2 , both are independent of t. In sum, for increasing equilibria,

if κ < 1 γ+
0 = γ−

0 = aωβ, γ−
1 = − (1−a)ωα

κ2 , γ+
1 = −(1− a)ωα

if κ > 1 γ+
0 = γ−

0 = aωβ, γ−
1 = −(1− a)ωα, γ+

1 = − (1−a)ωα

κ2 .
(23)

4.2. An example of a policy change. Assume that a policy change targets only
the endowments of the young generation, δπt = δωt,0 ∈ ℓ∞(Z). Then, being eval-
uated at some strictly positive q ∈ ℓ∞(Z), the derivative of F can be written as
follows:

( ∂Ft

∂ω·,0
(q)

)

(δω·,0) = (1− a)

(

δωt−1,0

qt−1
− δωt,0

)

, ∀t ∈ Z(24)

At any equilibrium q, for which
[

∂F
∂q

(q)
]−1

exists, the equilibrium response of

prices, by the IFT, is

∂q

∂ω·,0
(δω·,0) = −

[∂F

∂q
(q)

]−1

◦
( ∂F

∂ω·,0
(q)

)

(δω·,0)(25)

To simplify, we consider a change in the endowment of the young at some fixed
t = 0 from ω0,0 = ωα to ωα + ε, ε > 0, so that δωt,0 = ε if t = 0, whilst otherwise
δωt,0 = 0.

4.3. Reaction of the golden rule equilibrium, qt = 1. At this point we need
to assure that the derivative ∂F

∂q
(q = 1), cf. equation (20), is an invertible map. We

compare the results of the direct computation with the implications of theorem 2
for this case.

Notation 4.1. (i) I denotes the identity operator on ℓ∞;
(ii) Sh denotes the shift of a sequence forward by h ∈ Z:

(

Sh(v)
)

(t) = vt−h;
(iii) 1C is an indicator function that returns 1 if condition C holds and zero

otherwise.

Using this notation we can re-write ∂F
∂q

(1), the derivative of the equilibrium

equation with respect to prices, cf. equation (20), evaluated at a GRE (qt = 1), as
a map from ℓ∞(Z) to ℓ∞(Z),

(∂F

∂q
(1)

)

(δq) = aωβ(I − κS1) ◦ δq = −aωβκS1(I − κ−1
S−1) ◦ δq(26)

It follows then that its inverse exists if and only if κ 6= 1.
The same conclusion could be reached directly from theorem 2.(iii). As follows

from computation of the derivative in the previous section (20), in a GRE γ±
0 =

aωβ, γ±
1 = −(1− a)ωα, so in this case,

Φ+(λ) = Φ−(λ) = γ±
0 + γ±

1 eλi = γ±
0 (1 − κeλi)(27)

Therefore, 0 ∈ Γ = {z ∈ C : z = γ±
0 (1− κeiλ) | 0 ≤ λ ≤ 2π} if and only if κ = 1. In

other cases we can calculate the inverse.
If κ < 1 then using the first equality in equation (26), the inverse can be calcu-

lated directly:

[∂F

∂q
(1)

]−1

=
1

aωβ
[I − κS1]

−1 =
1

aωβ

∞
∑

n=0

κn
Sn(28)
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Using the same notation, and equation 24, the derivative of F with respect to the
policy is

∂F

∂ω·,0
(1) = (1− a)(S1 − I)(29)

Using the implicit function theorem, cf. eq. (25), and our specification of the change
in policy, δω·,0 = 1t=0ε, we get

∂q

∂ω·,0
(δω·,0) =

1

aωβ

[

∞
∑

n=0

κn
Sn(1− a)(I − S1)

]

(1t=0ε)(30)

=
εκ

ωα

(

∞
∑

n=0

κn
1t=n −

∞
∑

n=1

κn−1
1t=n

)

(31)

If κ > 1 then using the second equality in equation (24), the inverse of the
derivative can be calculated directly as well,

[∂F

∂q
(1)

]−1

= − 1

aωβκ
S−1(I − κ−1

S−1)
−1 = − 1

aωβκ
S−1

∞
∑

n=0

κ−n
S−n(32)

Similarly, by the implicit function theorem, we get

∂q

∂ω·,0
(δω·,0) =

1

aωβκ
S−1

[

∞
∑

n=0

κ−n
S−n(1 − a)(S1 − I)

]

(1t=0ε)(33)

=
ε

ωα

[

0
∑

v=−∞

κv
1t=v −

−1
∑

v=−∞

κv+1
1t=v

]

(34)

Table 1. Summary of eq. (30), (33). The variation δqt of the
equilibrium price ratio in the economy E 2 due to a change in en-
dowment (= ε) of the young at time t = 0.

κ < 1 κ > 1

t ≤ −1 0
ε

ωα
κt(1− κ)

t = 0
ε

ωα
κ

ε

ωα

t ≥ 1
ε

ωα
κt(κ− 1) 0

The comparative statics is illustrated in figure 2.
Let us now describe the resulting changes in consumption allocations. First, for

any changes in endowments and prices, and for any t ∈ Z, the equilibrium reaction
of the quantities demanded by young and old generations are, respectively,

δct,0 = a(δωt,0 + qtδωt+1,1) + aωβδqt(35)

δct,1 = (1− a)(δωt−1,0/qt−1 + δωt,1)− (1 − a)ωα δqt−1

q2t−1

(36)
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t0

qt

1

κ

t0

qt

1

κ

Figure 2. In both graphs ωα = 1. The squares trace the
perturbed equilibrium around a GRE according to table 1 ε = 0.3,
κ = 0.8 on the left and ε = 0.5, κ = 2 on the right. The circles
depict the perturbation around the BE according to eq. (51).

4.3.1. κ < 1. According to table 1 in the new equilibrium, no changes in demand
should occur before t = 0: policy directly affects only the young at time 0 and
prices do not respond beforehand. Relative prices qt for all t < 0 remain unity, so in
particular, qt−1 = 1, hence the consumption by the old at time zero does not change.
Thus the first affected generation is the young one at time 0. Evaluating their
response using equation (35), we conclude that the quantity demanded increased:

δc0,0 = aε+ aωβ ε

ωα
κ = ε(37)

This equals the increase in supply at that time.
Since κ < 1, the amount of net assets (M = (κ− 1)aωβ) in this equilibrium

is negative, so young consume more than their endowment in the unperturbed
equilibrium. The change in the relative prices δq0 is exactly enough to motivate
them to consume the extra endowment, thus staying with the same debt.

Starting from time t = 1, the endowments are stationary again and the ratio of
prices converges back to 1.

This, however is not the end of the story, since the generation born at 0 also
consumes in the next period, t = 1, and that consumption is subject to two effects.
The first one is the direct income effect due to the policy change, while the second
one is the indirect response of the equilibrium relative price:

δc1,1 = (1− a)(δω0,0/q0 + δω1,1)− (1 − a)ω0,0
δq0
q20

(38)

δc1,1 = (1− a)ε− (1− a)ωα ε

ωα
κ = (1− a)ε(1− κ)(39)

Thus the old in period 1 who got an increase in endowment in the previous period
are enjoying extra consumption as well. To accommodate for that the prices dis-
courage the young at this time to consume as much as they would have consumed
without the policy change, i.e., at the baseline, the GRE. Indeed, the price change
δq1 affects the young born at t = 1: by equation (35)

δc1,0 = aωβδq1 = aωβ ε

ωα
κ(κ− 1) = (1− a)ε(κ− 1)(40)

Let us look at t ≥ 2. Here we are left with price effects only for both generations:

δct,0 = aωβδqt = aωβ ε

ωα
κt(κ− 1) = (1− a)εκt−1(κ− 1) < 0(41)

δct,1 = −(1− a)ωαδqt−1 = (1 − a)εκt−1(1− κ) > 0(42)

So, the price effects exactly cancel each other for any time t ≥ 2: the young consume
less and the old consume more as compared to the golden rule equilibrium. These
changes decrease with time t → +∞, as κ < 1.
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4.3.2. κ > 1. In this case the young are saving, as κ > 1 indicates that the net
assets, M = (κ− 1)aωβ , are positive.

δc0,0 = aε+ aωβ ε

ωα
=

ε

κ
(aκ+ 1− a)(43)

δc0,1 = −(1− a)ωα ε

ωα
κ−1(1− κ) =

ε

κ
(κ− 1)(1− a)(44)

Thus the young and the old at time t = 0 are sharing the increase in the endowment
of the young.

Next period, at t = 1, the consumption by the old is subject to two negating
effects, the increase in real income and the price change at time 0, which cancel
each other:

δc1,1 = (1− a)ε− (1− a)ωα ε

ωα
= 0(45)

Looking back in time, t ≤ −1, we have only the price effects, which create some
re-distribution from the young to the old:

δct,0 = aωβ ε

ωα
κt(1− κ) = (1− a)εκt−1(1− κ) < 0(46)

δct,1 = (1− a)εκt−1(κ− 1) > 0(47)

Again, the changes grow smaller and the allocations converge to the golden rule
equilibrium as t → −∞.

4.4. Reaction of the balanced equilibrium, qt = κ. Following the same algo-
rithm we can calculate the reaction of another stationary equilibrium to the same
perturbation of endowments of the young at some fixed time 0.

As in case of the GRE, the inverse of ∂F
∂q

(κ) exists as long as κ 6= 1: γ0 =

aωβ, γ1 = − (1−a)ωα

κ2 , so in this case,

Φ±(λ) = γ0 + γ1e
λi = γ0(1−

1

κ
eλi)(48)

Therefore, 0 ∈ Γ = {z ∈ C : z = γ0(1− 1
κ
eiλ) | 0 ≤ λ ≤ 2π} if and only if κ = 1.

By the implicit function theorem, (25), if κ 6= 1,

∂q

∂ω·,0
(δω·,0) =

[

aωβ(I − κ−1
S1)

]−1 ◦ (1− a)(I − κ−1
S1)(δω0,0)(49)

=
κ

ωα

[

(I − κ−1
S1)

]−1 ◦ (I − κ−1
S1)(ε1t=0) =

κ

ωα
ε1t=0(50)

Therefore,

δqt =

{

ε κ
ωα t = 0

0, t 6= 0
(51)

It is easy to check using equation (35) that in this case all the increase in endowment
is consumed by the young at time t = 0, cf. also (37). Using equation (36) one can
verify that the income effect for the old at time t = 1 is cancelled out by the effect
of an increase in the relative price δqt−1 = δq0.

Hence, in the balanced equilibrium the one-time increase in the endowment of
the young is not traded and hence has no long-lasting effects, which is in contrast
to the golden-rule equilibrium. Thus such perturbation does not require money to
be supported: the perturbed equilibrium is still balanced.
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The same feature is preserved if we perturb the consumption by the old at time
0, δωt,1 = 1t=0ε.

∂q

∂ω·,1
(δω·,1) = −

[

aωβ(I − κ−1
S1)

]−1 ◦ a(S−1κ− I)(δωt,1)(52)

= − 1

ωβ

[

(I − κ−1
S1)

]−1 ◦ S−1κ ◦ (I − S1κ
−1)(ε1t=0)(53)

= − κ

ωβ
ε1t=−1(54)

The response at this equilibrium is, again, in a single period. This time, only the
relative price q−1 = p0

p
−1

faced by the old generation changes: δq−1 = − κ
ωβ ε. The

old who get the endowment at t = 0 consume it in full:

δct,1 = (1− a)(δωt−1,0/qt−1 + δωt,1)− (1 − a)ωα δqt−1

q2t−1

|t=0(55)

= (1− a)ε+ (1− a)ωα
κ
ωβ ε

κ2
= (1− a)ε+ (1− a)ωα ε

κωβ
= ε(56)

Beforehand, at t = −1, the income and price effects cancel each other for the
generation who are born then and are expecting to get a transfer next period:

δct,0 = a(δωt,0 + qtδωt+1,1) + aωβδqt|t=−1(57)

= aκε− aωβ κ

ωβ
ε = 0(58)

4.5. Economy E 2
+ with infinite future and no past. Truncating the past in the

overlapping generations model is equivalent to requiring all consumption allocations
in the previous model to be zero before time t = 0. At time t = 0 a new generation
is born, co-existing with the so-called initial old. We want to be precise here about
the “initial conditions”.

Let us start with the generations born at or after period 0. As is well-known in
the literature [10], to enable any generation to consume a bundle (ĉx,0, ĉx+1,1) that
satisfies the constraint pxĉx,0 + px+1ĉx+1,1 ≤ pxωx,0 + px+1ωx+1,1 ∀x ∈ Z, one has
to introduce a store of value between periods, so that the same constraint can be
re-written as two period-by-period constraints with qx = px+1

px
:

ĉx,0 +mx ≤ ωx,0(59)

qxĉx+1,1 ≤ qxωx+1,1 +mx(60)

One way to model the store of value is in terms of contracts denominated in real
terms (mx). Another way is to use fiat money, M = px(ωx,0− ĉx,0) = px+1(ĉx+1,1−
ωx+1,1). Then mx = M

px
. The amount of money is the aggregate nominal net debt

and it is constant in any competitive equilibrium in an OLG model, which follows
from the market clearing conditions, cf. [14], [19].

Optimal consumption by the young who were born at t ≥ 0 is the same as in the
model with the infinite past, ct,0 = a(ωt,0+ qtωt+1,1). The optimal consumption by
the old at any time t ≥ 1 is unchanged as well: ct,1 = (1 − a)(ωt−1,0/qt−1 + ωt,1).
Therefore, market clearing equations for any t ≥ 1 remain the same as in the model
with the infinite past, E 2.

In contrast to the previous model, there is an additional element here: the
summary of the truncated past of the economy, or the “initial conditions”. Their
effect depends on the interpretation of the store of value.
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4.5.1. Real balances interpretation. First, assume that the initial old hold a claim
m0 to real goods or a contract that entitles them to receive or requires them to
deliver the consumption good. The contracts have to be respected and can not be
renegotiated. Then, the consumption by the initial old is fully determined:

c0,1 = ω0,1 +m0(61)

The market clearing at time zero then identifies the price ratio, given the parameters
of the system. Equilibrium exists only if the claim of the old, m0, does not exceed
(1− a)ω0,0:

a(ω0,0 + q0ω1,1) + ω0,1 +m0 = ω0,0 + ω0,1 ⇒(62)

q0 =
(1− a)ω0,0 −m0

aω1,1
(63)

Note that m0 can be negative, in which case the old are returning the loan they
took one period before.

To sum up, the equilibrium conditions in this case are as follows:

F (q, ω) = 0, F : (ℓ∞(Z+)× ℓ2∞(Z+)) → ℓ∞(Z+)(64)

Ft(q, ω) =

{

(a− 1)ωt,0 + aqtωt+1,1 +
(1−a)ωt−1,0

qt−1
− aωt,1, t ≥ 1

(a− 1)ω0,0 + aq0ω1,1 +m0, t = 0
(65)

Existence of stationary equilibria for a stationary economy with ωt,0 = ωα, ωt,1 =
ωβ now depends on the initial condition, m0. If m0 = 0, there exists a balanced
equilibrium with qt = κ. If m0 = aωβ(κ− 1), then there is a GRE.

As before, we can write the derivatives of F as linear operators, but this time
mapping the set ℓ∞(Z+) of bounded sequences on a half-line to itself. Otherwise,
the form of the derivative ∂F

∂q
evaluated at a stationary equilibrium, is the same.

Indeed, in this case, by definition of the shift operator,

S1(a0, a1, . . . , an . . . ) = (0, a0, a1, . . . , an . . . ) ∀a ∈ ℓ∞(Z+)

Thus, ∂F
∂q

= DF+ is a map from ℓ∞(Z+) to itself

DF+(δq) = aωβ(I − vS1) ◦ δq, where v =

{

κ, qt = 1;
1
κ
, qt = κ

Note that for any v < 1 the inverse of (I − vS1) is
∑∞

n=1 v
n
Sn. If v > 1 this

inverse does not exist in ℓ∞(Z+).
It is easy to check that whenever this inverse exists, the response to the change

in the endowment of the young at time zero, δω0,0 is the same as in the model with
infinite past.7

The conditions for invertibility of DF+ can be easily derived from theorem 2
as well. Note that by definition of Φ+ (equation (10)) and our calculation of the
derivative coefficients at the GRE, equation (22),

Φ+(λ) = γ+
0 + γ+

1 eλi = γ+
0 (1− κeλi)(66)

It can be verified by a direct computation that n+ = 0 if κ < 1 and n+ = 1 if
κ > 1, cf. eq. (13). We illustrate it in figure 3.

To summarize, the two conditions, 0 /∈ Γ+ and n+ = 0, imply κ < 1. Since
the equilibrium is stationary, by proposition 1, κ < 1 is necessary and sufficient for
invertibility of DF+.

7As for the perturbation of the endowment of the initial old, ω0,1, the reaction is trivial: the old
just consume the extra endowment and no prices change. It can be easily confirmed by examining
the market clearing condition (62).
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ℜz

ℑz

κ 10

Γ+ = {z ∈ C : z = 1− κeiλ | 0 ≤ λ ≤ 2π}

Figure 3. 0 /∈ Γ+ assures that the curve Φ+, or the circle Γ+

does not pass through zero. n+ = 0 if zero is outside the circle Γ+

and n+ = 1 if it is inside the circle. Assuming aωβ = 1 and κ < 1,
we get n+ = 0, as in the graph below. If κ > 1, zero is in the disc
so then n+ 6= 0 and DF+ is not invertible.

This example illustrates another point raised in the discussion. In the model
with infinite past, E 2, comparative statics is impossible only for κ = 1, while with
truncated past the condition is harder to satisfy and it is non-generic in parameters.

Next, we present the results for the second interpretation of the store of value in
the economy with the truncated past, which has been more widely accepted in the
literature, cf. [14], [10].

4.5.2. Fiat money interpretation. Assume that the only store of value across periods
is fiat money.8 Now the economy is “shocked”: there is a sudden transfer of ε units
of good (from an external source) to the young generation in period 0. Whatever
price p0 was believed to prevail before the shock, these “expectations” might be
altered thereafter. In this case the consumption by the initial old depends on the
new price of the physical good in period 0:

c0,1 = ω0,1 +
M0

p0
(67)

The market clearing at time zero then involves two variables, p0 and q0(p0) =
p1

p0

(a− 1)ω0,0 + aq0ω1,1 +
M0

p0
= 0(68)

To incorporate this into the system of difference equations, we can re-define the
equilibrium variable: let q̃0 = p0 and let q̃t = qt−1 for t ≥ 1. Then

F (q̃, ω) = 0, F : (ℓ∞(Z+)× ℓ2∞(Z+)) → ℓ∞(Z+)(69)

Ft(q̃, ω) =

{

(a− 1)ωt,0 + aq̃t+1ωt+1,1 +
(1−a)ωt−1,0

q̃t
− aωt,1, t ≥ 1

(a− 1)ω0,0 + aω1,1q̃1(q̃0) +
M0

q̃0
, t = 0

(70)

Evaluated at stationary endowments and at a stationary equilibrium q̃t = Q ∈
{1, κ}, t ≥ 1 the derivative DF+ is

DF+
t (q̃, ω) =

{

aωβδq̃t+1 − (1−a)ωα

Q2 δq̃t, t ≥ 1

aωβδq̃1 − (aQωβ 1
q̃0

+ M0

q̃2
0

)δq̃0, t = 0
(71)

So, the equilibrium is asymptotically stationary with γ+
−1 = aωβ and γ+

0 = − (1−a)ωα

Q2 .

Then, if Q = 1, Φ+(λ) = γ+
0 +γ+

−1e
−λi = −γ0(1− 1

κ
e−λi). Here, again, 0 /∈ Γ+ ⇐⇒

8The amount of fiat held by the initial old does not pin down a particular equilibrium in
economy E .
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κ 6= 1. Also, n+ = 0 ⇐⇒ κ > 1. Note that the equilibrium is only asymptoti-
cally stationary and so, to assure invertibility we need the null space of DF+ to be
empty, i.e., {x 6= 0: DF+(x) = 0} = ∅. For that it is sufficient to establish that any
non-trivial solution to DF+(x) = 0 does not belong to ℓ∞, being an unbounded
sequence. By equation (71) DF+(x) = 0 implies that for any t ≥ 1, xt+1 = κxt.

In the first equation, for any choice of x0, x1 = x0

(

1
q̃0

+ M0

aωβ q̃2
0

)

= x0

p0
(1 + M0

aωβp0
).

Clearly, if κ > 1, the null-space of DF+ is empty in ℓ∞(Z+). Hence 0 /∈ Γ+ and
n+ = 0 are sufficient for invertibility of DF+ in this case. Both conditions imply
κ > 1.

At the other stationary equilibrium, Q = κ, the coefficients are γ+
−1 = aωβ and

γ+
0 = − (1−a)ωα

κ2 , so Φ+(λ) = −γ+
0 (1 − κe−λi). Here 0 /∈ Γ+ and n+ = 0 are

equivalent to κ < 1. The null space of DF+ consists of x such that x0 is the same

function of x1 as above, but for t ≥ 1, aωβxt+1 = (1−a)ωα

κ2 xt ⇒ xt+1 = 1
κ
xt. Hence

it is empty in ℓ∞ iff κ < 1.
In sum, as is evident from table 2 below, the conclusions about determinacy are

sensitive to the specification of the store of value, cf. section 5 for discussion.

Table 2. Determinacy of stationary equilibria in the example
economy with truncated past as a function of parameters and the
store of value at the time of the “shock”. (‘D’ stands for the in-
dication of determinacy of equilibrium, while ‘N’ means that the
equilibrium is not determinate.)

Store of value Equilibria
GRE BE

κ < 1 κ > 1 κ < 1 κ > 1
Real balances D N N D
Fiat N D D N

4.6. Related result by Kehoe and Levine (1985). The approach taken in
[14] is based on linearizing the equilibrium difference equation for every t using
an implicit function theorem. We use economy E 2

+ to illustrate and to compare
their approach to ours. The system of equilibrium difference equations in [14] is
approximated at a stationary equilibrium as follows:

( pt
pt+1

)

= G
(pt−1

pt

)

∀t ∈ Z+(72)

Using calculations in [14] and the specification of our example economy, at the

golden rule equilibrium pt = 1, G =
(

0 1
−κ κ+ 1

)

. The eigenvalues of the matrix

are 1 and κ. Thus, if κ < 1, there is one eigenvalue of matrix G that is less than
unity, which is higher than the number of physical goods in each period (1) minus
1, hence this corresponds to case (iii) in [14, p.445]:

“In this case there is a continuum of locally stable paths. The
steady state is indeterminate. Comparative statics is impossible
and perfect foresight implausible.”

As for the other stationary equilibrium, in which prices grow at rate β, so that

pt+1

pt
= β, the corresponding matrix G is

(

0 1
−βκ βκ+ 1

)

. In our notation, the ra-

tio of prices in this equilibrium is κ, so β = κ, implying that the eigenvalues of G are
1 and κ2. Hence, again, if κ < 1 indeterminacy should be present according to [14].
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Most likely, the discrepancy in the results (cf. table 2) stems from the differences
in our basic definitions. The notion of determinacy in [14] is based on an asymptotic
convergence of the perturbed path to some steady state, i.e., some form of stability.
In contrast, we require the perturbed path to remain in a neighbourhood of the
baseline which is not necessarily stationary. We view an equilibrium variable as a
full path and not just its component at some point in time t. The path is an element
of a metric space, for which the IFT is formulated. In our set up the metric is the
lowest upper bound of the distance between the corresponding components of the
two infinite sequences, hence the perturbed path might not converge to the baseline.

4.7. Indeterminacy in E 2. Surprisingly, none of the increasing equilibria, cf. section
4.1, in the example economy with infinite past is determinate, no matter what the
parameters are. As in the symmetric case, 0 ∈ Γ ⇐⇒ κ = 1, so in this case the
equilibrium is indeterminate.

Assume κ < 1. Then at t → +∞ the equilibrium price path converges to 1, i.e.,
to the GRE. Hence, following calculations in section 4.5.1, Φ+(λ) = γ+

0 + γ+
1 eλi =

γ+
0 (1− κeλi), and hence n+ = 0. At t → −∞ the equilibrium price path converges

to κ, so Φ−(λ) = γ−
0 +γ−

1 eλi = γ−
0 (1− 1

κ
eλi), and therefore, following the argument

in section 4.5.1 applied to 1
κ
, n− = 1. Hence, by theorem 2.(i), n = n− − n+ 6= 0,

implying DF is not invertible.
If κ > 1, the same argument applies with the definitions of Φ+ and Φ− switched.

We depict Γ+ and Γ− on the complex plane in figure 4.

ℜz

ℑz

10

Γ+ = {z ∈ C : z = 1− κeiλ | 0 ≤ λ ≤ 2π}

Γ− = {z ∈ C : z = 1− 1
κ
eiλ | 0 ≤ λ ≤ 2π}

Figure 4. 0 is always inside either Γ+ or Γ−, but not both, so
either n− = 1 (if κ < 1) or n+ = 1 (if κ > 1). Hence n = n− − n+

is never zero, thus DF is not invertible.

Indeterminacy of these equilibria is not surprising. Indeed, each of them is

associated with some real number v: qt = 1+vκt+1

1+vκt , cf. [6] and fig. 1. Hence any
equilibrium with some v has another one with v + ǫ in its arbitrarily small ℓ∞-
neighbourhood for small enough ǫ > 0. Thus none is locally unique.

4.8. Nominal indeterminacy. The choice of equilibrium variable has implica-
tions for determinacy. If one considers two equilibria with different non-normalized
prices as “different”, then indeterminacy is present for all parameter values even in
a steady state of an eternal economy. We use economy E 2 to illustrate.
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Following [6], the equilibrium conditions can be written in terms of prices, p:

Ft(p) = pt −
∞
∑

k=−∞

gt−kpk = 0, ∀t ∈ Z(73)

g(s) =























aωβ

ωα+ωβ , s = −1;
(1−a)ωβ+aωα

ωα+ωβ , s = 0;
(1−a)ωα

ωα+ωβ , s = 1;

0, otherwise

(74)

F , as before, can be defined on ℓ∞(Z), for example. In our notation, evaluated at
any equilibrium, the derivative of F has the following coefficients:

γ±
−1 = − aωβ

ωα + ωβ
, γ±

0 = 1− (1− a)ωβ + aωα

ωα + ωβ
, γ±

1 = − (1− a)ωα

ωα + ωβ
(75)

This implies that Φ+(0) = Φ−(0) = 0, and hence 0 ∈ Γ, implying by theorem 2
that the derivative is not invertible. This is true for any parameters ωα, ωβ , a for
which coefficients γ±

s are well defined.
This example suggests, in particular, that formulating equilibrium equations in

terms of real variables, cf. [8], e.g., quantities (allocations), has the advantage of
avoiding nominal indeterminacy, cf. [14] for the discussion.

5. Discussion and Conclusions

For an OLG economy with a single physical good we have formulated necessary
and sufficient conditions for determinacy of stationary equilibria for OLG economies
with truncated or infinite past. With multiple physical goods and asymptotic sta-
tionarity of equilibria, the conditions for the determinacy remain necessary. They
are sufficient up to a small perturbation of the derivative of the equilibrium equa-
tions with respect to (relative) prices. Asymptotically stationary equilibria include
price paths that converge to two different steady states at either end of the time
line. The criterion for equilibrium determinacy in the economy with an infinite
past are less stringent if the equilibrium path converges to the same stationary
equilibrium in both directions, i.e., when t → ±∞.

The criterion is formulated in terms of the asymptotic behavior of the equilib-
rium equation system and thus is independent of the non-stationary components
of the system.

One advantage of our approach is that it corresponds to the most direct gen-
eralization of the common definition of comparative statics: the appropriate IFT
implies that in a neighborhood of any determinate equilibrium there is a unique
equilibrium for each combination of its perturbed parameters, cf. also [20], [12]. In
contrast, if the IFT is applied a countable number of times (for each period t ∈ Z+),
assuring that such a neighborhood does not collapse to a single point requires more
assumptions and a separate proof. Further, given our choice of the metric space for
the equilibrium, the price growth sequence of the perturbed equilibria can remain
in a neighbourhood of the baseline equilibrium without converging to a stationary
path, which is required, e.g., in [14] and [9]. Thus our test for equilibrium determi-
nacy does not rule out policy reforms that yield persistent changes in an equilibrium
path.

The same approach can be used more broadly. The crucial property of equations
characterizing an equilibrium in an OLG model is limited forward and backward
dependence. In other words, an equation at time t contains a finite number of
elements of the infinite sequence determined in equilibrium. Indeed, the market
clearing at any t is a function of τ̄ − 1 prices before and τ̄ prices following and
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including t, for some finite length of the longest individual life-span τ̄ > 1. This
implies that the sum of absolute values of the asymptotic coefficients

∑∞
s=−∞|γs|

is finite, cf. (15). Thus, the theorem can be applied to any dynamic system with
limited recall and foresight whose derivative is reduced to a linear map like DF (on
ℓ∞), cf. equation (4), with an arbitrary interpretation of coefficients (γt,k)t,k∈Z+

that satisfy asymptotic stationarity. The explicit form of coefficients γt,k in our
case, cf. equation (5), was used only to demonstrate that tastes, demographic com-
position, longevity and endowments can affect both the conditions for determinacy
and comparative statics.

Illustrating our theorem for a simple economy E 2
+, we see that a particular in-

terpretation for the storage of value in an economy with truncated past can lead to
different, in fact opposing conditions for invertibility, cf. table 2. There is too much
freedom in interpreting what happens at the beginning of times. This might indi-
cate that the equilibrium in our deterministic model is inconsistent with surprise
policies, by definition. In a competitive equilibrium, the price path is known to
all the agents and all the allocations are chosen accordingly. Any policy variation
is fully foreseen and factored into the prices. To tackle this question one might
need to adopt an explicit way of accounting for surprises in the presence of perfect
foresight and rational expectations, cf., e.g. [16].

Appendix A. Proof of the main result

Proof of theorem 2. (i): Recall that DF is a linear operator, defined on the set of
infinite sequences of real L-dimensional vectors. First, we establish several auxiliary
results for operators that act on sequences of complex L-dimensional vectors.

A.1. Definitions and helpful results.

A.1.1. Fredholm operators and their properties.

Definition 3. (i) Let U , V be K-vector spaces (K = R or C), and T : U → V
be a linear map.

Then Ker T = {u ∈ U | Tu = 0} ⊂ U , RanT = {Tu | u ∈ U} ⊂ V and
CokerT = V/RanT .

(ii) T is Fredholm if Ker T and CokerT are finite dimensional. Index T is then

indexT = dimKerT − dimCoker T.

(iii) An essential spectrum of a bounded linear operator T mapping a complex
Banach space into itself is the set {z ∈ C : T − zI is not Fredholm}, where
I is the identity operator.

Next theorem is a summary of the known properties of Fredholm operators that
will be useful in our proof.

Theorem 3. Assume that U , V are K-Banach spaces (K = R or C), L(U, V ) is a
set of bounded linear maps, T ∈ L(U, V ) is a Fredholm map.

(i) Then there exists ε > 0 such that for every B ∈ L(U, V ), with ‖B‖ < ε,
T+B is Fredholm and indexT = index(T+B). In particular, if indexT 6= 0
then T +B is not invertible whenever ‖B‖ < ε.

(ii) If B ∈ L(U, V ) is compact then T +B is Fredholm and

indexT = index(T +B)

(iii) If indexT = 0 then there exists B ∈ L(U, V ) such that T + εB is invertible
for every sufficiently small ε > 0.
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A.1.2. Complexification. For a real vector space V we form its complexification VC

as follows. Consider first a real vector space V ⊕ V . With the multiplication by
complex numbers given by

(x+ iy)(u⊕ v) = (xu − yv)⊕ (xv + yu)

it becomes a complex vector space which we denote VC. We denote an element
u⊕ v ∈ V ⊕ V = VC by u+ iv.

Let U be another real vector space and T be R-linear map U → V . Denote by
TC C-linear map UC → VC given by

TC(u+ iv) = Tu+ iT v.

Theorem 4. (i) T is Fredholm if and only if TC is Fredholm and indexT =
indexTC (where we use real and complex dimensions to define index for T
and TC respectively).

(ii) T is invertible if and only if TC is invertible.

Proof. It follows from the definitions that Ker TC = KerT + iKerT , RanTC =
RanT + iRanT . Thus, dimC Ker TC = dimR Ker T , dimC CokerTC = dimR CokerT .
Both statements then follow. Indeed, T is Fredholm when dimR Ker T , dimR CokerT <
∞. But this is equivalent to dimC Ker TC, dimC CokerTC < ∞, i.e. TC being Fred-
holm. Then

indexT = dimR Ker T − dimR CokerT = dimC Ker TC − dimC CokerTC = indexTC

Invertibility of T is equivalent to dimR Ker T = dimR CokerT = 0. But this is
equivalent to dimC KerTC = dimC CokerTC = 0, which is equivalent to invertibility
of TC. �

A.2. Decomposition of the derivative operator. Asymptotic stationarity im-
plies an operator (like DF ) can be decomposed into a stationary and non-stationary
components. The latter is compact.

Let 1 ≤ p ≤ ∞. Let B = lp(Z)
L be the Banach space of p-summable sequences

of complex L-vectors.

Proposition 2. Consider an operator A defined on B given by (Ax)t =
∑∞

k=−∞ αt,kxk,

where αt,k ∈ C
L×L are L×L matrices such that (i) there is a number N : |t− k| >

N ⇒ αt,k = 0; (ii) limt→±∞ αt,s−t = 0. Then A is compact.

Proof. By definition of a compact operator it is sufficient to find a sequence of
finite-rank operators that converge to A. To construct such a sequence consider an

2m× 2m matrix Gm such that (Gm)t = (αt,k)
2t−[m−t]+
k=[t−m]+

. Then Gm −−−→m→∞ A in the

operator norm, by the two assumptions. �

Proposition 3. Consider operator TC : B → B given by (TCx)t =
∑∞

k=−∞ γt,kxk,

where γt,k ∈ CL×L such that (i) there is a number N : |t − k| > N ⇒ γt,k = 0;
(ii) limt→±∞ γt,s−t = γ±

s .
Let B± = lp(Z±)

L, Z+ = {n ∈ Z | n ≥ 0}, Z− = {n ∈ Z | n < 0}.
Define T+ and T− acting on B+ and B− respectively using coefficients γ±

s from
the definition of TC:

(T+x)t =
∞
∑

k=0

γ+
t−kxk, n ∈ Z+(76)

(T−x)t =

−1
∑

k=−∞

γ−
t−kxk, n ∈ Z−(77)

Then
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(i) Essential spectrum of TC is the union of essential spectra of T+ and T−.
(ii) TC is Fredholm if and only if both T+ and T− are, and in this case

indexTC = indexT+ + indexT−.

Proof. The space B decomposes as a direct sum B = B+ ⊕ B−. It follows from
proposition 2 that TC − (T+ ⊕ T−) is compact. The conclusions now follow by the
properties of essential spectra and Fredholm operators, cf. [17]. �

A.3. Properties of the stationary components. Operators T+ and T− above
are Toeplitz operators and determination of their spectra is given in the work of
Gokhberg and Krein.

Theorem 5 (Gokhberg and Krein (1958)). For operators T+ and T− from propo-
sition 3 define

Φ+(λ)
def
=

∞
∑

k=−∞

eiλkγ+
k , Φ−(λ)

def
=

∞
∑

k=−∞

eiλkγ−
k(78)

Γ± = {z ∈ C | det[Φ±(λ) − zI] = 0 for some 0 ≤ λ ≤ 2π}(79)

Then the essential spectrum of T± is Γ±.
Assume that 0 /∈ Γ±. Let n± be the winding number of the curve detΦ±(λ),

0 ≤ λ ≤ 2π, around 0:

n± def
=

1

2πi

∫ 2π

0

(det(Φ±(λ)))′

det(Φ±(λ))
dλ

Then

indexT+ = −n+

indexT− = n−

Combining proposition 3 and theorem 5 we obtain

Theorem 6. The operator TC defined in proposition 3 is Fredholm if and only if
0 /∈ Γ = Γ+ ∪ Γ−. In this case

indexTC = −n+ + n−

A.4. Recovering invertibility properties of DF . Consider now operator T
defined on the space of real uniformly bounded vector sequences, ℓL∞(Z).

(Tt)(x) =

+∞
∑

k=−∞

γt,kxk, where γt,k ∈ R
L×L,(80)

γt,k = 0, if |k − t| ≤ τ̄ − 1(81)

γt,s−t −−−→t→+∞
γ+
s , γt,s−t −−−→t→−∞

γ−
s ,(82)

Note that T = DF defined in the text, cf. eq. (4), corresponding to an asymp-
totically stationary equilibrium. Combining the properties of Fredholm operators,
theorem 3, the index of the linear operator with asymmetric stationary components,
theorem 6 and the translation of these results for real bounded sequences, theorem
4, we get the following corollary which yields part (i) of theorem 2.

Corollary 1. If 0 /∈ Γ and n+ 6= n− then T is not invertible, as well as all of
its either sufficiently small perturbations or compact perturbations. If 0 /∈ Γ and
n+ = n−, then T is either invertible or can be made invertible by an arbitrarily
small finite rank perturbation.
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Part (ii) of theorem 2 is similar and follows the same steps (using theorem 5 and
proposition 3).

Part (iii) of theorem 2 follows by theorems 6, 4, definition of n = n− − n+ and
the equality n+ = n− in case of symmetry, γ−

s = γ+
s . �

Proof of proposition 1. Follow the same steps as the proof of theorem 2, but omit
the use of theorem 3 and proposition 2 and use a simpler version of theorem 5 (for
L = 1 only), which gives the necessary and sufficient conditions for invertibility of
the Toeplitz operator in this case, cf. e.g., [7], [15]. �
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