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Spatial Distribution of Supply and the Role of Market Thickness:

Theory and Evidence from Ride Sharing

Soheil Ghili and Vineet Kumar∗

January 15, 2020

Abstract

This paper develops a strategy with simple implementation and limited data requirements

to identify spatial distortion of supply from demand –or, equivalently, unequal access to supply

among regions– in transportation markets. We apply our method to ride-level, multi-platform

data from New York City (NYC) and show that for smaller rideshare platforms, supply tends

to be disproportionately concentrated in more densely populated areas. We also develop a the-

oretical model to argue that a smaller platform size, all else being equal, distorts the supply of

drivers toward more densely populated areas due to network effects. Motivated by this, we esti-

mate a minimum required platform size to avoid geographical supply distortions, which informs

the current policy debate in NYC around whether ridesharing platforms should be downsized.

We find the minimum required size to be approximately 3.5M rides/month for NYC, implying

that downsizing Lyft or Via–but not Uber–can increase geographical inequity.

JEL Codes: L13; R41; D62

Keywords: Spatial Markets; Transportation; Geographical Inequity; Market Thickness; Rideshar-

ing

1 Introduction

In spatial markets, there are salient questions about possible geographical distortion of supply from

demand: (i) how to empirically infer whether some regions are “under-supplied” relative to others;

(ii) how to identify mechanisms that lead to unequal access to supply across regions; and (iii) how

to design policies that alleviate geographical supply inequities.

This paper studies the above questions in the context of the ridesharing platforms Uber, Lyft,

and Via in New York City (NYC henceforth). We provide a method with simple implementation

∗Yale University. We thank Phil Haile, Igal Hendel, Larry Samuelson, and K. Sudhir for helpful comments.
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and limited data requirements to detect spatial mismatch between supply and (potential) demand.

We then offer empirical evidence along with a theoretical model that (to our knowledge, for the first

time) points to the role of market “thickness” (i.e., platform size) in determining the spatial distri-

bution of supply. We show that, all else being equal, in a thicker market, supply is geographically

more balanced with demand. Finally, based on our theory results, we offer a simple empirical pro-

cedure to identify the “minimum required” rideshare platform size for a city to ensure geographical

supply inequity will be negligible. We apply the method to NYC and find the minimum required

size to be between 3.29M and 3.65M rides per month.

Mitigating inequity in access to supply of products/services among different regions of spatial

markets can be a critical goal for policymakers. Indeed, it has led to such major actions as the launch

of the Green Taxi in NYC to serve its outer boroughs. However, it is challenging to empirically

measure the extent to which the arriving (potential) demand is more likely to go unfulfilled due to

limited supply1 in some regions, compared to other regions. The challenge arises from the fact that

unfulfilled demand is usually unobserved. The empirical literature on spatial markets acknowledges

this challenge. To address it, recent literature combines data on unmatched supply (e.g., empty

cars) and matched demand/supply (e.g., realized rides) in each region with a structural model of

matching, and then inverts the matching function in order to infer the level of unfulfilled demand.

Variants of this method are being developed and leveraged by papers that study questions related

to ours (Brancaccio et al., 2019a,b,c; Buchholz, 2018; Frechette et al., 2019).

The first portion of this paper proposes a method, called relative outflows analysis, that detects

inequity among regions in the percent fulfillment of the unobserved arrival of potential demand2 and

apply it to the NYC rideshare market. Our approach is simple to implement as it does not require

a model of matching. Additionally, it requires data on rides only (as opposed to rides and empty

cars,) because our identification strategy leverages data not only on rides starting at any given

region, but also on rides ending there. To illustrate, suppose Lyft’s “relative outflow” in Staten

Island (i.e., number of Lyft rides exiting Staten Island divided by number of those entering it) is

persistently and substantially smaller than one, while Uber’s is close to one. Assuming passengers

are not using Lyft to permanently move to Staten Island, this can only mean the same population

that chooses Lyft on its way into the region is on the average less likely to choose Lyft on its

way out. Assuming that geographical heterogeneity of outside transportation options affects all

rideshare platforms similarly, the persistently low relative outflow of Lyft in Staten Island cannot

be attributed to attractive outside options in that region, given that Uber’s relative outflow is

high there. Rather, we interpret Lyft’s small relative outflow to mean that potential demand for

1“Limited supply” can be in the form of high wait time and/or high price. See Section 4 for more details.
2Some papers in the literature think of potential demand as the number of those who search for rides. We think

of it as those who search, plus those who decide not to search only because the anticipate the search would fail. See

Section 4 for more details.
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Lyft is going unfulfilled, disproportionately more in Staten Island than in the rest of the city,

due to high wait times or prices. Section 4 details the implementation of our approach and lays

out the assumptions under which a platform’s relative outflow in a region can be interpreted as a

(relative) measure of local access to supply for that platform. In addition to simplicity and limited

data requirements, our method also has two other advantages. First, it can be readily applied to

all passenger-transportation markets, no matter whether the matching system is centralized (e.g.,

rideshare) or decentralized (e.g., taxicabs). Second, if the supply of platform k in region i, relative

to other regions, is so limited that passengers in i have learned not to search for rides with k, this

regional under-supply gets reflected in k’s relative outflow in i. This natural long-run reaction of

passengers’ search behavior would not be captured by models that aim only at inferring the number

of passengers who searched but failed to find rides.3

The second component of our paper looks at why such geographical imbalance between supply

and demand arises, and it studies the role of “market thickness.” That is, we aim to study whether

a smaller platform size can, all else being equal, skew the spatial distribution of supply more toward

certain areas. We believe this paper is the first to examine the impact of market thickness on spatial

distribution of supply. Papers that study spatial demand-supply mismatches (e.g., Buchholz (2018);

Lagos (2000); Afèche et al. (2018); Banerjee et al. (2018)) focus on other mechanisms, mainly search

frictions. Papers that study the consequences of market thickness (such as Frechette et al. (2019);

Nikzad (2018)) have not looked at its implications for the geographical distribution of supply. We

attempt to bring these two pieces together both empirically and theoretically.

On the empirical side, we start by documenting two data patterns. First, for each rideshare

platform (Uber, Lyft, or Via,) the relative outflow is the largest in Manhattan and declines as

we go toward outer, lower population density, boroughs. Second, the rate of decline is faster for

smaller platforms (i.e., thinner markets). We formally test the latter pattern using a regression

specification in which the dependent variable is relative outflow of a given platform in a given

borough on a given date. The coefficient of interest is the interaction coefficient between the

borough’s population density and the platform’s overall size (measured in rides/month across NYC).

We show the estimated coefficient is robustly negative and significant across 72 combinations of

functional form and fixed effects specifications. We interpret this robust result causally to mean

that, ceteris paribus, a thinner market leads to increased under-supply in less densely populated

areas.4

Our empirical analysis raises the question of whether there is any theoretical reason to expect

market thickness (platform size) to influence the geographical distribution of supply. In Section 5,

we develop a model of a monopolist rideshare platform that centrally matches drivers to riders,

3unless, as in some papers in the literature, that structural model is itself embedded within a model of passengers’

decision making on whether to search for rides.
4More details on our interpretation of the results can be found in Section 4.2.1.
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along with a fixed number of drivers who simultaneously decide in which of the I ≥ 2 regions to

operate. All regions have the same size but possibly different arrival rates of passengers (demand).

Each driver chooses a region i that, given the choices of other drivers, will minimize his “total wait

time.” Total wait time consists of (i) “idle time,” the time it takes for the driver to be assigned

to a passenger requesting a ride, and (ii) “pickup time,” the time it takes to arrive at the pickup

location after being assigned to a passenger. More drivers in each region i means a higher expected

idle time in i. This forces the supply of drivers to geographically distribute itself proportionally to

the distribution of demand. On the other hand, more drivers in region i means a lower expected

pickup time in i, forcing drivers to agglomerate. Our results study the interplay between these two

forces.

We obtain three main results. First, the total number of drivers has to be large enough for

there to exist an all-regions equilibrium–that is, one in which each region i gets a strictly positive

number of drivers. Second, any all-regions equilibrium is unique and “excessively clustered” toward

higher demand areas. That is, for any pair of regions, the equilibrium number of drivers divided by

demand arrival is strictly larger in the region with higher demand. Finally, we study the impact of

“thinning” the market either on one side only (a decrease in the total number of drivers) or on both

sides (a proportional decrease in demand in each region and total number of drivers). We develop

a inductive technique to prove that while each such thinning preserves the demand ratios, it skews

the equilibrium supply ratio between any two regions toward the higher-demand region. The basic

intuition is that the supply of drivers responds to a “global thinning” of the market, which increases

pickup times everywhere, by further agglomerating in regions with “thicker local markets.” Since

these results are closely in line with our empirical findings, we believe our model provides a realistic

understanding of the relationship between market thickness and spatial distribution of supply. The

key deviation in our framework from the literature, which allows delivering our results, is that in our

model of the spatial market, each region has a non-trivial “size” (rather than being a “point”). We

use data on Uber’s and Lyft’s surge-price factors and estimated pickup times to provide suggestive

evidence that what our model abstracts away from (mainly prices and platform competition) does

not seem to play a first order role in leading to under-supply of rideshares in less dense areas.

Additionally, we offer anecdotal evidence from rideshare forums that corroborates our theory and

its relevance.

We close our theory section by discussing (i) the implications of geographical supply inequity

for efficiency and (ii) the generality of our insights beyond ridesharing. On the efficiency front, we

first show that by agglomerating in denser areas, each driver inefficiently increases the idle times

of other drivers in the region he joins and the pickup times of other drivers in the regions he

avoids. Such externalities lead to inefficiently high total wait times overall. Second, we argue that

inequity among regions means persistent inequity among residents of those regions. This can be

inefficient by making the marginal utility of rides heterogeneous across regions. We do not formally
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model passengers’ utility from rides, but we argue that this effect may have been the main motive

for major policy acts such as the launch of Green Taxis. On the generality front, we argue that

although pickup times play a crucial role in obtaining our theoretical results, similar phenomena

are still likely to emerge in markets where matching is not centralized and, hence, pickup times

are not present. We demonstrate this by observing that, in the Yellow Taxicab market, although

pickup times are negligible (and instead, search frictions exist), the geographical pattern of relative

outflows is qualitatively similar to, but quantitatively more pronounced than, that of rideshare:

The relative outflows in higher population density boroughs are substantially higher than those in

lower population density ones.

Last, Section 6 examines the policy implications of our results. Qualitatively, our analysis

is complementary to some empirical and theoretical results in the literature (such as those in

Frechette et al. (2019); Nikzad (2018)). These studies state that, though pro-competitive, breaking

a large platform up might have some adverse effects for overall matching quality or service quality,

because it may make the market for each (new and small) platform too thin. Our work suggests

that breaking up a large platform may also decrease the geographical reach of supply whereby some

areas are not served or are served poorly. On the quantitative side, we empirically estimate a critical

rideshare platform size for NYC, above which the impact of size on the geographical distribution

of relative outflows becomes negligible. This has two motivations. First, our theoretical model

implies the impact of market thickness on supply ratios between regions dwindles as the market

thickens. Second, our data show that as Lyft grows, its relative outflows in different boroughs

become less responsive to its size and settle at values that are close to those of Uber (in fact, these

patterns are what identify the critical size). Taking a non-linear least squares approach, we estimate

this minimum required size at 3.29M or 3.65M rides/month, depending on the functional form

specification. This is close to Lyft’s current size, substantially larger than Via’s, and substantially

smaller than Uber’s. We suggest that such a minimum size should be had in mind in the current

policy debate around downsizing rideshare platforms in NYC, given that falling short of it may

distort the geographical distribution of supply at the expense of the outer boroughs. Our method

can be used fairly straightforwardly and with limited data requirements to estimate such critical

platform sizes for other metropolitan areas.

This paper has certain limitations. On the empirical front, although our reduced-form approach

makes it more practical to implement, it also comes at a cost: unlike complementary studies,

(Brancaccio et al. (2019a); Buchholz (2018); Frechette et al. (2019), etc.), our framework does not

deliver welfare analysis. On the theory side, our model is static and abstracts away from dynamic

(surge) pricing. It also abstracts away from platform competition. Although we provide empirical

evidence that suggests the factors from which our theory abstracts are not likely to be first order in

the understanding of geographical supply inequities, future studies can extend the model in those

directions.
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2 Related Literature

Our paper relates to multiple strands of the literature: (i) the recent and growing literature on

the empirical analysis of geographical distribution of supply, and its possible distortion from that

of demand, in spatial markets; (ii) the literature that studies the effects of market thickness in

two-sided markets; and (iii) the literature that analyzes various aspects of the ridesharing market.

The empirical literature on the spatial match between supply and demand is new and small. To

our knowledge, Buchholz (2018); Brancaccio et al. (2019c) are the only papers directly examining

this issue, and papers such as Frechette et al. (2019); Brancaccio et al. (2019a,b) look at related

problems. They extend the empirical techniques in the matching literature (see Petrongolo and

Pissarides (2001) for a survey) in order to structurally infer the size of unobserved demand (e.g.,

passengers searching for rides) in different locations of a decentralized-matching market, when

only the size of supply (e.g., available drivers) and the number of demand-supply matches (e.g.,

realized rides) are observed. Our paper is complementary by offering a reduced form approach

to study the geographical distribution of unobserved potential demand, using data on the number

of matches (rides) only. We will achieve this by noting that, in order to infer the magnitude of

unfulfilled demand in a region, in addition to data on matches (rides) started in that region, one

could leverage data on rides that started elsewhere but ended in the said region. Our method

applies not only when the matching system is decentralized, but also when it is centralized. Also,

it can detect relative under-supply in an area even if its passengers have learned, over the long run,

not to search for rides.

Another subset of the literature on spatial markets that this paper builds on is the study of

location decisions, resulting in agglomeration. Papers such as Ellison and Glaeser (1997); Ahlfeldt

et al. (2015); Datta and Sudhir (2011); Holmes (2011); Miyauchi (2018) examine agglomeration

of firms or residents. We add to this literature by arguing, empirically and theoretically, that

agglomeration is also present in transportation markets. In addition, our comparative static theory

results, which characterize how the extent of agglomeration is impacted by different factors, may

be applied beyond transportation systems.

The second set of papers that we relate to is a large, mostly theoretical, literature on the impact

of market thickness on the functioning of two-sided platforms in general (such as Akbarpour et al.

(2017); Ashlagi et al. (2019)) and transportation markets in particular (such as Frechette et al.

(2019); Nikzad (2018)). This literature, to our knowledge, has not examined how the spatial

distribution of supply –and its (mis)alignment with that of potential demand– respond to a change

in market thickness. Our paper focuses on this, both empirically and theoretically.

The third strand of the literature that our paper relates to is the set of papers on the functioning

of transportation (in particular rideshare) markets. This strand itself can be roughly divided into

(at least) two categories. One category is the group of papers focusing on this market as it relates to
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labor economics. Chen et al. (2017) examine how much workers benefit from the schedule flexibility

offered by ridesharing. Cramer and Krueger (2016) study the extent to which ridesharing, compared

to the traditional taxicab system, reduces the portion of time drivers are working but not driving

a passenger. Chen and Sheldon (2016) examine the reaction of labor supply to the introduction of

ridesharing. Buchholz et al. (2018) estimate an optimal stopping point model to study the labor

supply in the taxi-cab industry.

The second stream of papers on transportation/rideshare markets, to which our paper belongs,

are those focusing on evaluating the performance of these markets as well as on market design

aspects. Some of those papers, although related to our work in many ways, focus on questions that

are inherently not spatial (examples are Cohen et al. (2016); Nikzad (2018); Lian and van Ryzin

(2019); Cachon et al. (2017); Guda and Subramanian (2019)). Others study questions that are

related to the spatial nature of the market (such as Castillo et al. (2017); Frechette et al. (2019))

but they do not examine the spatial distribution of supply and potential mismatches with demand.

Many of the papers that do study geographical supply-demand (im)balance in transportation (such

as Banerjee et al. (2018); Afèche et al. (2018); Castro et al. (2018)) focus on the short-run, intra-

day, aspects. Some other papers (such as Buchholz (2018); Lagos (2000, 2003); Bimpikis et al.

(2016); Shapiro (2018); Lam and Liu (2017),) however, examine long-term persistent mismatches.

Our paper belongs to the latter group, and adds to it by studying the impact of market thickness.

Finally, it is worth noting that most of this literature has focused on the ways in which ride-

share platforms improve upon the traditional taxi system, in particular due to their flexible pricing

and superior matching algorithms (Cramer and Krueger (2016); Buchholz (2018); Frechette et al.

(2019); Cohen et al. (2016); Shapiro (2018); Castillo et al. (2017); Castro et al. (2018); Lam and Liu

(2017) among others). We add to this literature by comparing ride-share platforms to one another.

We ask why is it that some rideshare platforms outperform others on some key issues, such as

geographical reach, even though they all have superior technology relative to more traditional

transportation systems? We conclude that a matching algorithm is not sufficient, and that other

factors (i.e., adequate platform size) may be needed to ensure geographical reach. This enables our

paper to quantitatively comment on the current policy debate regarding the appropriate sizes of

rideshare platforms in NYC and other markets.

3 Data and Summary Statistics

We leverage two sources of data in this paper. The first data source is trip-level data that is publicly

available from the Taxi and Limousine Commission (TLC henceforth) of New York City. For our

main analysis, we use data on Lyft, Uber, and Via trips for July 2017 - December 2018. For each

trip, we know the date and time of pickup and dropoff and a neighborhood indicator (again both

for pickup and dropoff) partitioning NYC proper into 256 parts. Table 1 provides a summary of
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this dataset.

Table 1: Summary of Ride counts across Platforms and Boroughs

(July 2017 - December 2018)

Platform Bronx Brooklyn Manhattan Queens Staten Island Toal

Pickups in 1000s of rides

Lyft 3,518.66 19,336.19 23,956.76 10,925.45 437.72 58,174.79

Uber 23,567.13 57,993.56 96,084.76 34,417.17 1,853.50 213,916.12

Via 38.49 1,123.06 15,716.34 248.54 0.77 17,127.20

Dropoffs in 1000s of rides

Lyft 3,601.44 19,364.25 22,954.42 11,796.50 458.18 58,174.79

Uber 24,202.12 58,182.93 91,752.35 37,897.13 1,881.59 213,916.12

Via 53.59 1,219.89 15,488.35 361.44 3.93 17,127.20

Also, Fig. 1 shows how platform size (measured in Millions of rides given per month) compares

across platforms. Uber is by far the largest and Via by far the smallest. In terms of growth, Lyft

has the highest percent growth, followed by Uber and Via, respectively. In addition, Fig. 2 shows

a map of NYC with the population density of each of its five boroughs. Manhattan is the most

densely populated, with a density of about 67 thousand/sq mile. Staten Island is the least dense

borough, with a density of about 8 thousand/sq mile. Our empirical analysis will argue that in

smaller rideshare platforms (i.e., thinner markets), supply gets more skewed toward higher density

boroughs.

A second source of data in this paper consists of estimated pickup times and surge multipliers

for all products of Uber and Lyft in NYC from late May 2015 to mid-June 2016. In the dataset, we

observe the pickup times (as estimated by the platforms) and surge multipliers every 30 minutes in

195 locations across NYC proper for all products of Uber and Lyft–although in this paper we focus

only on UberX (we term this Uber) and its Lyft-equivalent (Lyft). Hence, the unit of observation

in this dataset will be the combination of (i) date, (ii) time of day, (iii) location, and (iv) platform.

We use this dataset to find the right assumptions for our theoretical model and to justify those

assumptions.

4 Empirical Analysis

Our empirical analysis has two main goals. First we develop an approach called “relative outflows

analysis” to detect geographical mismatch between supply and demand. Second, we show empirical

evidence for the role of market thickness (i.e., platform size) on the extent of such mismatch.

8



Figure 1: Platform Sizes for Uber, Lyft, and Via from July 2017 to December 2018. Vertical axis

is on log scale.
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Figure 2: Population densities of the five boroughs of NYC as of April 2019 in thousands/sq mile.

The color scale is logged.
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4.1 Identifying Geographical Demand-Supply Mismatch

On a high level, our objective in this section is to identify the extent to which the geographical

distribution of supply of ridesharing is “skewed away” from that of (potential) demand, leaving

some regions under-supplied relative to others. To this end, we need to take two steps. First,

we need to formally define what we mean when we say the geographical distribution of supply

does not match that of demand (or, interchangably, when we say some areas are under-supplied

relative to others; or there is geographical inequity in supply of rideshare services). Second, once

equipped with an operational definition of demand-supply mismatch, we need to devise a strategy

to empirically measure the extent of such mismatch. We now turn to these two tasks.

We say the geographical distribution of supply for rideshare platform k does not match that

of its (potential) demand during time period d (e.g., a month or a day), if “access” to k’s supply

is heterogeneous across geographical regions i. By access to supply, denoted Aikd, we mean the

percent fulfillment of potential demand, measured in the following way:

Aikd ≡
nikd
λikd

(1)

where nikd is the total number of rides with platform k that originated in i during time period

d; and λikd is the “potential demand” for rides with k during d in i. We think of λikd as having

three components:

λikd ≡ nikd + λSikd + λNSikd (2)

That is, the total potential demand for rides with k in i during d is the sum of (i) nikd, the total

number of customers who took rides with k from i during d, (ii) λSikd, the total number of those who

searched for rides on their apps and decided to not take one, due to high prices or wait times, and

(iii) λNSikd , the total number of those potential customers who decided not to search because they

anticipated the rides would be too expensive and/or require very long wait times. In the literature,

potential demand is usually assumed to consist only of the total number of those who search (e.g.,

see the definition of “those who seek rides” in Cohen et al. (2016)). That is, it excludes λNSikd . We

insist on including λNSikd in spite of the empirical challenges its unobservability poses.5 We believe

excluding it could (substantially) understate the geographical inequity of supply, if customers in

regions with high wait times/prices have responded by not going on their apps to search for rides.

Thinking of geographical demand-supply mismatch in terms of geographical inequity in Aikd

has some advantages. First, it is simple. It allows us to think of low access to rides in an area

without having to specify whether the underlying reason of the low access is wait time, price, or

both. This allows us to conduct our analysis without a requirement to (i) have data on prices and

wait times or to (ii) specify a demand model that would capture how customers weigh wait times

5Brancaccio et al. (2019c) also take incorporate those who need transportation, but rationally decide against

searching, into the pool of potential demand (or as they call it, “potential customers.”)
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and prices against each other. In spite of its simplicity, we find our definition relevant. Crucially, it

helps deal with demand confounds in measuring supply-side differences across regions: if region i

has fewer rides (or even rides/sq mile) than region j, it could either be due to lower demand in i or

weaker supply in i. However, if our measure of access is lower in i than in j, we can interpret it as

a supply-side difference given that Aikd has the potential demand in its denominator. In addition,

Section 5.5 will discuss two channels (one formally and one informally) through which geographical

inequity in A across i is directly related to efficiency in the market.

With this definition in hand, we next turn to measurement. This is challenging because although

we observe realized rides nikd in our data, the “unfulfilled” part of potential demand is unobserved.

The amount of search for rides that did not lead to actual rides, λSikd, is usually only observed by

rideshare platforms themselves. In addition, λNSikd is generally unobservable. In order to infer λSikd,

the literature combines a model of matching with data not only on rides originating at i, but also

on (observed or inferred) number of vacant cars; and then “inverts” the matching function to infer

how many passengers must have searched for rides with k in i during d. In order to infer λNSikd ,

this matching model itself would need to be nested within a model of passenger-decision-making

on whether to search.

To measure whether different areas have unequal access to rides, we propose a complementary

method (to the matching function approach). Our approach requires data only on rides, and not

on other variables such as vacant cars, wait times, or prices. Also, it does not require a model of

matching or one of passenger decision making on whether to search for a ride. These features make

our method readily implementable for not only academics and rideshare companies, but also policy

entities with more limited available data and methodological sophistication. In addition, not requir-

ing an explicit model of matching makes our approach applicable to all passenger-transportation

markets irrespecitve of whether the matching mechanism is centralized (as in rideshare) or de-

centralized (as in taxicabs). Below, we implement the method.

The “Relative Outflows” Method. Our identification strategy, relative outflows analysis,

leverages the information that inter-borough rides can reveal about unequal access to supply across

regions. The basic idea is that if passengers use platform k to exit area i persistently and substan-

tially less often than they do to enter it, then k must be under-supplied in i relative to outside of

i. This conclusion is stronger if for other platforms k′, such gap between inflows and outflows does

not exist.

We start by making an approximation. Observe that demand for trips from region i can be for

inter-region rides (denoted λ→ikd), which exit i, or within-region rides (denoted λ	ikd), which remain

in i. Thus, overall demand for trips from region i can be written as: λikd ≡ λ→ikd + λ	ikd and
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similarly for nikd. We then approximate the access as Aikd ≡
n→ikd + n	ikd
λ→ikd + λ	ikd

≈ A→ikd ≡
n→ikd
λ→ikd

.6 Thus,

our objective will be inferring geographical heteroteneity in “access to inter-borough rides” A→ikd.

Our inference will rely on two assumptions:

Assumption 1. The frequency with which passengers migrate within the city (i.e., change where

they live) is negligible relative to the frequently with which they take rides.

Our second assumption has to do with the value of outside options. We first present a stronger

version of it in Assumption 2, and later weaken it in Assumption 3.

Assumption 2. The quality of outside transportation options is geographically homogeneous.

Assumptions (1) and (2) imply that for any platform k and area i, the potential demand for

rides exiting i is the same as the potential demand for rides entering it.7 That is:

λ→ikd = λ→ickd (3)

where ic is the complement of region i, with respect to the whole city. It follows that:

A→ikd
A→ikcd

=
n→ikd
n→ikcd

≡ ROikd (4)

That is, access to inter-region rides in i relative to that in the rest of the city can be directly

measured by the observed relative outflow of rides at ikd, denoted ROikd. Importantly, we do not

need to observe the potential demands. If ROikd < 1, it means the same population who choose k

on their way into region i are on average systematically less likely to choose it over other options

on their way out (Given that these are the same population, the difference in the flows cannot be

attributed to differences in preferences for brands/modes of transportation, etc.). As an example,

Lyft’s relative outflow was 0.64 in Staten Island during July 2017. Using assumptions (1) and (2),

we interpret this as Lyft being under-supplied in Staten Island compared to the rest of NYC proper

because access to (outgoing) rides in that borough is 0.64 of the rest of the city. Note that this is

the long-run under-supply because the number 0.64 combines the effect of those passengers who,

on their way out of Staten Island, go on the Lyft app and do not find rides and those passengers

who do not go on the app in anticipation of possible failure to find a ride.

Assumption 2 can be weakened to reflect the possibility that outside transportation options

may be heterogeneous across regions:

6Later, we will discuss the consequences of this approximation.
7Of course for this to hold, the length of time period d should be long enough, (e.g., at least a day) so that for

every trip there is a “trip back”. This is why our approach applies to long-term rather than intra-day geographical

imbalances between supply and demand.

12



Assumption 3. The impact of outside transportation options on (potential) demand may be region-

specific but cannot be platform-region specific.

That is, if we replace Assumption 3 for Assumption 2, we will not get λ→ikd = λ→ickd anymore.

However, for any two platforms k and k′, we get:

λ→ikd
λ→ickd

=
λ→ik′d
λ→ick′d

Thus, although eq. (4) will not hold anymore, we can obtain the following:

A→ikd
A→ikcd
A→
ik′d

A→
ik′cd

=
ROikd
ROik′d

(5)

In other words, according to assumptions (1) and (3), if Lyft’s relative outflow of 0.64 in Staten

Island is a mere reflection of attractive outside transportation options (rather than lower access to

Lyft’s supply on the island), then such outside options should also bring Uber’s relative outflow

down to 0.64 in that region in the same time period. This assumption, therefore, combined with

multi-platform data, will allow us to still infer geographical supply inequities even if outside options

are not geographically uniform. In the case of this example, Uber’s relative outflow during July

2017 was 0.95, suggesting, according to eq. (5), that access to supply for Lyft in Staten Island must

have been low (relative to Uber).8

Using Relative Outflows to Quantify Geographical Inequity. Having described the as-

sumptions behind the relative outflows analysis and its interpretation, we now turn to the execution

of the method and interpretation of the results. Figure 3 depicts relative-outflows for each platform

during July 2017 for all boroughs in which the platforms were operating at that time. The figure

indeed suggests some areas are under-supplied relative to others. To formally analyze this, we run

a regression detailed in Eq. (6). The results from this regression are reported in Table 2.

log(ROikd) = FEi + γLyfti × 1k=Lyft + γV iai × 1k=Via + εikd (6)

Like Fig. 3, Table 2 shows geographical inequity in supply of rideshare across NYC boroughs.

For instance, under assumptions (1) and (2), an arriving potential demand for an (interborough)

8It is worthwhile to understand what Assumption 3 is ruling out. As an illustration of this point, we are ruling

out the following possibility: Lyft users who travel in and out of Staten Island tend, substantially more than their

Uber-user counterparts, to be from a demographic group that travels into Staten Island during hours when ferries are

not available but travels out during hours when ferries are working. If such one-directional differences exist among

platforms, it can undermine our interpretation that the difference between relative outflows of Uber and Lyft in

Staten Island (i.e., 0.64 vs. 0.95) comes from relative under-supply of Lyft. One way to test this is to look at hours

of the day and check whether relative outflow of Lyft is below that of Uber persistently within the day or only at

certain times of day. We carry out such a test and detail it in Appendix B.

13



Figure 3: Relative Outflows for Uber, Lyft, and Via across NYC boroughs in July 2017
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Uber ride is e0.192 = 1.21 times more likely to be served in Manhattan than it is elsewhere, and

this difference is statistically significant (i.e., persistent over the month).9 Under assumptions (1)

and (3), however, the fixed effects coefficients cannot be interpreted on their own. Nevertheless,

the interaction coefficients may be interpreted in a cross-platform manner. For instance, relative

to Uber, Lyft is under-supplied in Staten Island by a factor of e0.388 = 1.47.

Our method has some caveats. First, it applies only to passenger transportation markets. Given

the important role of Assumption 1, a transportation market for internationally traded goods (such

as the market studied by Brancaccio et al. (2019a,b)) cannot be studied using our method. Second,

our method does not recover the absolute value of percent fulfillment of demand in each region.

Rather, it shows how each region compares against the rest of the city. Third, although our approach

prevents understating geographical inequity in supply due to passengers not searching, it is still

prone to understating the extent of inequity, for two reasons: (i) if a passenger decides to forgo a

trip to, say, Staten Island because the ride back will be hard to find, it will not show in relative

outflows; and more importantly, (ii) passengers are perhaps more likely to forgo a within-borough

ride if the wait time is high than they are to forgo a longer, inter-borough, one.10

To sum up the analysis thus far, we developed the relative outflows methods and applied it

to rideshare in NYC to demonstrate that geographical inequity in supply exists among the NYC

boroughs. Our next section studies the possible mechanisms leading to this inequity.

9Although we find Assumption 2 a strong one, we do believe it is useful to mention how the results would be

interpreted under assumptions 1 and 2. The reason is that there are several anecdotes suggesting that outside

transportation options are in fact more accessible in Manhattan. Therefore, if anything, the results may understate

the under-supply of Uber in the outer boroughs relative to Manhattan.
10In other words, approximating Aikd by A→ikd may bias our measure towards 1, thereby understating the hetero-

geneity.
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Table 2: Relative Outflows Regression, July 2017

Dependent variable: log(Relative Outflow)

Estimate (SE)

Bronx −0.164∗∗∗ (0.020)

Brooklyn 0.015 (0.020)

Manhattan 0.192∗∗∗ (0.020)

Queens −0.256∗∗∗ (0.020)

Staten Island −0.054∗∗∗ (0.020)

Lyft × Bronx 0.092∗∗∗ (0.028)

Lyft × Brooklyn −0.032 (0.028)

Lyft × Manhattan 0.029 (0.028)

Lyft × Queens 0.002 (0.028)

Lyft × Staten Island −0.388∗∗∗ (0.028)

Via × Brooklyn −0.169∗∗∗ (0.028)

Via × Manhattan 0.052∗ (0.028)

Via × Queens −0.239∗∗∗ (0.028)

Observations 403

R2 0.832

Adjusted R2 0.826

Residual Std. Error 0.112 (df = 390)

F Statistic 148.536∗∗∗ (df = 13; 390)

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Note: Uber is the omitted group. These results suggest that there is geographical inequity in

supply of rideshare across boroughs of NYC.

15



4.2 What Leads to Spatial Mismatch between Demand and Supply?

In this section, we ask what can cause geographical supply inequity. We start in Section 4.2.1 by

providing empirical evidence for the role of market thickness (i.e., platform size) in impacting the

geographical inequity in supply of ridesharing in NYC. Next, in Sections 4.2.2 through 4.2.4, we

(i) dig deeper into whether the inequity in access is caused by prices or wait times and (ii) offer

suggestive evidence in support of a driver-behavior based mechanism and against some alternative

mechanisms. All of our results in this section are crucial in motivating our theory model.

4.2.1 Evidence for the Role of Market Thickness (i.e., Platform Size)

The results in Fig. 3 and Table 2 not only show demand-supply mismatch exists, but also demon-

strate a pattern. Smaller rideshare platforms seem to be under-supplied in boroughs with lower

population densities. This hypothesis is strengthened once we compare those relative outflows

(which were from July 2017) with those from a year later, June 2018. Fig. 4 does this job and

shows multiple interesting patterns, including: (i) Lyft’s relative outflow distribution becomes more

similar to Uber’s as Lyft grows in size, and (ii) once active in Staten Island, Via has a very small

relative outflow of 0.13 there.

To formally examine the association between market thickness (platform size) and low access

to supply in lower density boroughs, we run the following regression, and we run it on monthly

relative-outflow data from all three platforms from July 2017 to December 2018.

ROikd = α0 + α1 log(ρi) + α2 log(Skd) + α3 log(Skd) log(ρi) + νikd (7)

where ROikd is the relative outflow for platform k at borough i on date d. Also ρi is the population

density of borough i as of April 2019 as a proxy for demand density.11 Finally, Skd is the size of

platform k on date d, which is measured by the total number of rides given by that platform in

NYC during the month in which date d occurs. Tables (3) and (4) report the results from this

regression. The first table reports results when we either do not include any fixed effects in the

regression or we do have fixed effects but they are not interacted (that is, platform fixed effects,

year-month fixed effects, or borough fixed effects). Table 4, however, incorporates a much richer set

of fixed effects. It starts, in its first three columns, fixed effects on (i) platform interacted by year-

month, (ii) borough interacted by platform, and (iii) borough interacted by year-month. It then

incorporates these three pairs into one single regression. Finally, the last column has interaction

11We use population densities to proxy for unobservable densities of (potential) demand in boroughs. A more though

approach, perhaps, would be to use pickup densities instead and construct an instrument for it using population

densities. We believe, however, that such additional complication would not substantially add to our understanding

of the market. This is in part because population densities seem to be very good proxies, given that the rank-order

of population densities across boroughs closely matches that of rides.
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Figure 4: Relative outflows for Lyft, Uber, and Via†
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†: Panel (a) is July 2017 and Panel (b) is June 2018
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fixed effects among boroughs, platforms, and years (not year-month in this column).

Table 3: Relative Outflow Regression with Single Fixed Effects

Dependent variable: Relative Outflow

(1) (2) (3) (4)

Constant −7.371∗∗∗ - - -

(0.142)

log(population density) 2.154∗∗∗ 2.222∗∗∗ 2.141∗∗∗ -

(0.041) (0.040) (0.041)

log(size) 0.492∗∗∗ 0.483∗∗∗ 0.490∗∗∗ 0.448∗∗∗

(0.009) (0.014) (0.009) (0.008)

log(population density)×
log(size) −0.126∗∗∗ −0.130∗∗∗ −0.125∗∗∗ −0.113∗∗∗

(0.003) (0.003) (0.003) (0.002)

Fixed Effects† None P YM B

Observations 7,709 7,709 7,709 7,709

R2 0.595 0.624 0.598 0.725

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

†: P:Platform, B:Borough, YM:Year-Month

There are two coefficients of interest for us in these tables. First, the coefficient on population

density is positive and significant in all specifications. It implies that a higher relative outflow should

be expected for boroughs with higher population densities.12 Second, and more important, is the

interaction coefficient which is negative and also statistically significant across all the specifications

in both tables. This coefficient indicates that as the platform gets larger, the disparity between

relative outflows of low and high density boroughs shrinks. These results are robust to the inclusion

of such a rich set of fixed effects because the association between small platform size and under-

supply in low density areas is reflected in multiple sources of variation.13 For instance (i) looking

at variation within platforms over time, one can see Lyft’s relative outflows in July 2017 are less

uniformly distributed compared to that in June 2018; or (ii) by looking at variation across platforms

12Obviously, this coefficient cannot be separately identified from borough fixed effects or interactions of borough

fixed effects with other effects.
13On top of this rich set of fixed effects specifications, we also study different functional form assumptions. In

equation eq. (7), we log population density and platform size but not the relative outflow. One could think of eight

different specifications here depending on which subset of these three variables are logged. We took all of these 72

regressions (8 functional form assumptions × 9 fixed effects specifications) and the interaction coefficient is always

negative with the corresponding p-value never exceeding 4× 10−7.
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Table 4: Relative Outflow regression with Interaction Fixed Effects

Dependent variable: Relative Outflow

(1) (2) (3) (4) (5)

log(population density) 2.182∗∗∗ - - - -

(0.040)

log(size) - 0.596∗∗∗ 0.444∗∗∗ - 0.402∗∗∗

(0.036) (0.008) (0.061)

log(population density)×
log(size) −0.128∗∗∗ −0.167∗∗∗ −0.112∗∗∗ −0.393∗∗∗ −0.110∗∗∗

(0.003) (0.011) (0.002) (0.023) (0.018)

Fixed Effects† P ×YM B ×P B × YM (P × YM) P × B × Y

+(P × B)+(B × YM)

Observations 7,709 7,709 7,709 7,709 7,709

R2 0.629 0.829 0.738 0.841 0.835

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

†: P:Platform, B:Borough, YM:Year-Month, Y:Year

at a certain time, one can see Lyft’s relative outflows during June 2017 are less uniformly distributed

than Uber’s during the same time period. According to these results, for instance, if a rideshare

platform’s size is cut in half, it would lead to about 10 percentage points higher loss of rides needed

in Queens than it would in Manhattan.14

Although we lack a quasi-experimental variation, we interpret our results on the negative inter-

action coefficient causally. We do so because the robustness of the results allows us to rule out a

wide range of alternative explanations for why there is an association between low platform size on

the one hand and under-supply in less dense boroughs on the other. First, note that demand side

confounds are ruled out by our choice of dependent variable. That is, if the dependent variable

were the number of pickups by k in i, then, for instance, exceptionally few Via pickups in Staten

Island (compared to other platforms) could be either because of low local demand for Via (e.g.,

Staten Islanders being unaware of Via, or more loyal to other brands) or because of limited access

to supply. However, because our dependent variable is the relative outflow, under assumptions (1)

and (3), such demand side differences across platforms cannot explain the negative estimates for

our coefficient of interest α3 in regression (7).15

14Of course the effect will be non-linear and its magnitude will itself depend on the size. For more details on this,

see Section 6.
15In fact, the robustness of the results from Tables (3) and (4) can help rule out demand-side explanations for

the negative α3 estimates, even when Assumption 3 is weakened. The only way a negative and significant α3 can
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Our results in Tables (3) and (4) also help rule out some supply-side explanations for the

negative α3 estimates which can be considered alternative explanations to our market-thickness

hypothesis. One such alternative is: “drivers of Lyft are less likely to live in Staten Island; hence,

they are less available for pickups there.” But this can only be consistent with our results from

Figure 4 and Tables (3) and (4) if this difference between where Uber and Lyft drivers lived was

time-varying and dwindled in 2018. Also, it must be that Via drivers are even more likely than

both Uber and Lyft drivers to live in busier areas. Another alternative explanation for our results

on α3 would be “Uber and Lyft have different incentive mechanisms for their drivers in terms of

where they are encouraged to drive.” As we will discuss shortly, prices are not likely to have been

of first order importance in differentially encouraging drivers of smaller platforms to drive in denser

areas. Aside from this, for any price or non-price incentive mechanism to comprise an alternative

explanation to the impact of market thickness, the following need to be true. It must be that the

difference between Uber’s and Lyft’s incentive policies dwindled over time, in a manner correlated

with the movement of their size ratio, but not because of the movement in their size ratio. Also,

it must be that the correlation between the differential incentives provided by platforms and their

size ratios is finer than yearly movements. This can be seen in column 5 of Table (4), where our

coefficient of interest remains negative and significant even when we interact the platform-borough

fixed effects by year dummies.

Although our analysis suggests a thinner market, all else being equal, should increase the relative

under-supply in the outer boroughs, the mechanism through which this effect works is not clear.

Our theory model in Section 5 will describe what we believe is the most parsimonious mechanism

that can explain this phenomenon. Before turning to that theory, however, we present suggestive

evidence that (i) prices do not play a first order role in making supply in smaller platforms (i.e.,

thinner markets) more concentrated in busy areas and (ii) platforms’ possible competitive responses

to each other do not seem to play a first order role either. We also present anecdotal evidence for

the role of driver behavior in shaping the under-supply of rides in less busy areas. These pieces of

evidence will have implications for our modeling decisions in Section 5.

4.2.2 What is the Impact of Prices?

In this section, we provide several empirical arguments to show that the under-supply of rideshare

in less dense areas is not primarily caused by price differences across platforms and regions.

be interpreted as a demand side phenomenon is if there is a platform direction-specific difference among passengers.

That is, for instance, if (i) Lyft passengers are more likely than Uber passengers to prefer public transportation;

and (ii) in Staten Island, unlike other boroughs, public transportation is not more available. This is a relaxation of

Assumption 3. But even this cannot explain the negative α3 in column 2 from Table 4, which has platform-borough

interaction fixed effects. The only way to interpret the negative α3 in that column as a demand-side phenomenon

would be to assume that such platform direction-specific differences are also time varying and diminish in 2018.
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The first and shortest argument–but by no means the least powerful one–is that Via does not

use surge pricing, unlike Uber and Lyft; however, as demonstrated before, Via has the most skewed

relative outflows distribution among all three platforms. As previously shown, in 2018 when Via

started operating in Staten Island, the relative outflows for Via in Staten Island were much smaller

than both other platforms (it was, for instance, about 0.13 in June 2018). This suggests that price

is not likely to be the main driver for the documented geographical inequity.

We also use our data on surge multipliers and estimated pickup times (ETAs) from Uber and

Lyft apps from late May 2016 to mid-June 2016 to offer suggestive evidence against the importance

of prices. The time window of this data does not overlap with our rides data, unfortunately.

However, we find the insights from the analysis of this data source useful for our modeling decision

in the theory part of the paper. We conduct two analyses. One uses data on the entirety of NYC

proper. The other focuses on Staten Island only, where the prices charged by Uber and Lyft are

constant across time and locations.

Analysis of NYC proper. This analysis accomplishes two tasks. First, we show that the

geographical patterns in disparities between Uber’s and Lyft’s pickup times are similar to the

patterns previously documented for relative outflows, whereas the same is not true of prices. This

suggests that potential demand for Lyft rides in less dense areas tends to go unfulfilled more than

Uber’s does, mainly because Lyft’s pickup time is high in those regions, rather than because Lyft’s

prices are high. Second, we offer evidence suggesting that the geographical disparities between

Lyft’s and Uber’s pickup times are not caused by geographical disparities in their prices. These

two analyses, together, suggest prices matter little, either directly or indirectly, in shaping the

observed geographical supply inequity.

As for the first task, we start by documenting the geographical disparity between Uber’s and

Lyft’s pickup times, using the following regression:

log(tpickup
ikdt ) = ∆i + δi × 1k=Lyft + εikdt (8)

where tpickup
ikdt is the pickup time for platform k in location i on date d and time t. Also, ∆i

and δi are, respectively, location fixed effects and the interaction between location and a “Lyft

dummy.” The coefficients of interest are δi. Wherever δi is positive and significant, it means Lyft,

on the average, has a longer pickup time than Uber. The reverse is true wherever the estimated δi

is negative and significant. Fig. 5 visually depicts the regression results for δi values. Pink points

are locations in which Lyft is expected to arrive faster, whereas in black ones, Uber has a shorter

pickup time. Blue points are those at which δi is not statistically significant. Due to the high

number of coefficients (195 separate δi values,) there is a risk of spurious correlation. Thus, we

focus on coefficients significant at the 99.9999% level, instead of the more common 95%.
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Figure 5: Platform Pickup Time Regression Estimates (δi)
†
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†: Lyft estimated to arrive faster in pink areas and Uber in black areas. In blue areas, neither platform is faster than

the other in a statistically significant way at the confidence level of 99.9999%.

Interestingly, the comparison between Lyft’s and Uber’s pickup times varies geographically, in

a similar way to the comparison between the relative outflows. In particular, Uber has the highest

advantage in Staten Island. Outside of the island, Lyft tends to have a smaller pickup time, with

both the significance and magnitude dwindling as we more to lower population density areas of

the city.16 This suggests that in lower density areas, passengers may forgo Lyft rides due to high

pickup times. The same, however, is not true of surge multipliers. Table 5 shows the average surge

multipliers for the two platforms across different regions. As shown in the table, although Lyft’s

surge factor is about 0.01 higher than Uber’s in black (less densely populated) areas, it is about

0.05 higher in pink (more densely populated) ones. This suggests that it is unlikely that Lyft rides

are forgone in lower density areas due to high price.

Our second task is to offer evidence that differences between the two platforms’ prices do not

cause Lyft’s pickup times to be so much higher than Uber’s in black areas of Fig. 5 (roughly Staten

Island) and the reverse to be true in pink areas. To see this, note that Lyft’s pickup time is

196.21 sec longer than Uber’s in black areas, while it is 77.78 sec shorter in pink ones. This means

that the total “difference in difference” between the two platforms across pink and black areas is

16The comparative geographical patterns of UberX and Lyft are not impacted by the possibility that one platform

underestimates its pickup times relative to the other, as long as such underestimation happens in all locations. As

a robustness check, we “de-averaged” all of the pickup times by dividing all UberX and Lyft pickup times by the

average UberX pickup time and average Lyft pickup time, respectively. Doing the rest of the analyses in this section

based on those de-averaged numbers did not change the results.
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Table 5: Pickup Times (in seconds) and Surge Multipliers by Area†

Black Area Pink Area

Lyft Pickup Time 652.80 247.66

Uber Pickup Time 456.59 325.44

Lyft Surge 1.012 1.102

Uber Surge 1 1.052

† Area Black or Pink based on Figure 5

196.21− (−77.78) = 274.00 seconds.

We now ask how much of this difference in difference is caused by geographical differences

between the platforms’ prices–that is, how much this difference in difference would change if the

two platforms had a constant surge factor of 1 across locations and time. In order to estimate this

object, one would need a causal estimate of surge multipliers on pickup times. Although we do not

have such an estimate, we borrow it from Cohen et al. (2016), who use a regression discontinuity

design to estimate demand in ridesharing. They estimate that in 2015 in NYC, Chicago, Los

Angeles, and San Francisco, a 0.1 increase in the surge multiplier for UberX causes the pickup

times to decrease by 7.7 seconds on average. If we assume their estimate is also valid for our

context (Lyft and UberX in May and June of 2016, in NYC only,) then a constant surge multiplier

of 1 across platforms, locations, and time would decrease the average difference in difference in

pickup times by the following amount:

7.7sec

0.1
× [(1.102− 1.052)− (1.012− 1)] = 2.85sec

This is approximately only 1% of the observed average difference in difference in pickup times

(which was 274 sec), suggesting that price differences between platforms are too little to explain the

geographical disparities between the platforms’ pickup times. Of course our context is not exactly

the same as the context in Cohen et al. (2016). Nevertheless, given that with this coefficient, prices

explain only 1% of the geographical disparity in pickup times, they would still explain fairly little

even if the true value of the coefficient in our context is much larger than that in Cohen et al.

(2016).

To sum up, our analysis of UberX and Lyft pickup times and surge multipliers suggests that

prices neither play a direct substantial role, nor an indirect one, in the under-supply of Lyft in less

dense areas.

Analysis of Staten Island from 2am - 6am. In this section, we focus our attention to Staten

Island only (as opposed to all of NYC), and to the hours of 2am - 6am only (as opposed to 24 hours).

Both platforms do minimal or no surge pricing at this location and time interval. Therefore, if there
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Figure 6: Platform Pickup Time Regression with no Surge in Staten Island.
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†: Lyft estimated to arrive faster in pink areas and Uber in black areas.

is a large disparity between Uber’s and Lyft’s estimated arrival times across different locations

within Staten Island between 2am and 6am, it cannot be caused by price differences between the

two platforms. This will provide the same empirical evidence that our analysis of NYC proper

offers, except it does not rely on estimates from Cohen et al. (2016), which came from a slightly

different context.

Figure 6 is thus restricted to 2am - 6am in Staten Island (we show all points, instead of just

the statistically significant ones).

Table 6: Pickup Times (in seconds) and Surge Multipliers by Area‡

Black Area Pink Area

Lyft Pickup Time 682.62 481.39

Uber Pickup Time 523.04 535.90

Lyft Surge 1.003 1.003

Uber Surge 1.000 1.000

‡ Area Black or Pink based on Figure 6

Table 6 summarizes the surge-factor and arrival-time comparisons across platforms and areas.

It shows that while prices are constant across locations, Lyft’s arrival time rapidly increases as

we move toward less densely populated parts of the borough, whereas Uber’s is relatively stable.

As illustrated in the figure, there is almost no geographical price disparity. Uber never does surge
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pricing, and Lyft does it very infrequently (fewer than 10 instances in more than 2,000 observations)

and does almost equally between pink and black areas (in fact, if anything, the average surge for

Lyft across black areas is about 0.0001 higher than that in pink areas). However, the estimated

arrival times are very different. Lyft’s arrival time is about 54 seconds faster in pink areas, whereas

Uber’s is about 160 seconds faster in black areas. The difference-in-difference is about 214 seconds

and is statistically significant, with a standard error of 18 seconds.

4.2.3 What is the Role of Platform Competition/Collusion?

Another possible reason for the relative under-supply of rides from smaller platforms in the outer

boroughs could be strategic interactions among platforms. It is, in principle, conceivable that

platforms collude by strategically divide the city amongst themselves geographically in order to

avoid direct competition against one another. In practice, however, we show that this does not

seem to be the case in the NYC rideshare market. We argue this by observing that such collusion

would have implications that are not empirically supported once we examine the patterns from our

data. First, if platforms strategically send their drivers to different parts of the city, it would be

natural to expect that prices are among the main levers platforms use to carry out this mission.

This is, however, not empirically supported for at least two reasons: (i) Via does not do surge

pricing; (ii) by the logic in Section 4.2.2 that prices do not seem to play a major role in Lyft’s

relative under-supply in less busy areas.

Second, if platforms are strategically dividing the market geographically, it would be natural

to expect data patterns indicating that each platform is focusing on a certain area. This is not

empirically supported either. All platforms in our data have higher ride densities, higher relative

outflows, and lower ETAs in denser parts of the city than elsewhere. It is only the slope of decline

(for rides and relative outflows) or increase (for ETAs) that is steeper for smaller platforms.17 We

cannot think of a form of strategic division of the market that would lead to this pattern.

Finally, a strategic division of the city by platforms would have implications for which platforms

would focus on which areas. It would be natural to expect larger and more powerful platforms,

which enjoy a first-mover advantage, to take the more attractive regions, and for the newcomers to

find niche markets. This is not supported by the observation that the supply of smaller platforms is

more skewed towards Manhattan (and, in general, busier areas) relative to those of larger platforms.

For instance, Via started its business from Manhattan; and even when it became active in a low

density borough such as Staten Island, it had a relative outflow of only 0.13.

17See Table 1, Fig. 4, and Table 5.
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4.2.4 The Role of Driver Behavior

There is anecdotal evidence that drivers behave in a manner closely in line with our empirical results

in Tables (3) and (4). In Appendix A, we document evidence from online rideshare forums that (i)

drivers tend to avoid less busy areas because they consider pickups too far away and (ii) the problem

with distant pickups in less busy areas, and hence, the avoidance of those regions by drivers, is

a more pronounced problem for Lyft than it is for Uber. In addition to this anecdotal evidence,

we have run an analysis (available upon request) of data from a ride-share platform in Austin to

obtain direct empirical evidence on the impact of pickup times on driver behavior. Controlling for

prices and idle times and resolving a series of endogeneity issues, our analysis obtains evidence that

drivers tend to avoid the outer areas of the city, and that pickup times play a first order role in

their decisions.18

To sum up, we find the suggestive evidence provided in Sections 4.2.2 through 4.2.4 strong

enough to motivate our decisions in the theoretical analysis to (i) abstract away from prices, and

(ii) study a monopolist platform instead of competition, but instead (iii) be more general than the

literature when it comes to the spacial aspects of the market, in order to properly capture the role

of pickup times on drivers’ location decisions. We turn to that theoretical analysis next, which

builds upon the results in Section 4.2.1, and with assumptions guided by the results in Sections

4.2.2 through 4.2.4.

5 Theoretical Model

Our theoretical model complements the empirical analysis in at least two ways. First, it describes

a mechanism through which a thinner market (i.e., smaller platform size) can, ceteris paribus, lead

to under-supply of the rides in less dense areas. Our empirical analysis suggests such a mechanism

should be there, but the theoretical literature on spatial markets is silent on the relationship between

market thickness and the geographical inequity of supply. The second role of the theoretical model

is to produce further results that could help enrich the empirical policy analysis. For instance, as

we will show in this section, our theoretical model suggests that the impact of platform size on the

geographical distribution of supply will satiate once the platform size becomes large enough. We

will feed this insight back to the empirical analysis in Section 6 in order to estimate that minimum

adequate size, which might be of interest to policymakers.

18In spite of being otherwise rich, this Austin data is only from a single platform. This puts it at a disadvantage,

compared to our NYC data for our empirical analysis. As such, we chose NYC for the main analysis in the paper.

It is worth noting that the analysis of the Austin data also shows that relative outflows are substantially higher in

busier parts of the city.
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5.1 Setup

We model a market with regions i ∈ {1, ..., I} with a monopolist ridesharing platform serving

them. The regions (which, depending on the application, would could think of as neighborhoods,

boroughs, etc.) are modeled as circumferences of circles, a la Salop. Regions are assumed to have

the same size.19 In each region, passengers arrive at a rate λi per unit of time. Without loss of

generality, we assume ∀i < j : λi ≥ λj . Also, λ represents the vector (λ1, ..., λI). Each arriving

passenger’s location is uniformly distributed on the circumference of the circle. There are a total

N drivers who work for the platform.

Our model is a one-shot game among drivers in which they simultaneously and independently

choose which of the regions to drive in. Once they choose their regions and ni drivers pick region i,

we assume for simplicity that they are uniformly distributed across the region (i.e., the circumfer-

ence of circle i).20 Drivers are matched to arriving passengers via a centralized matching system.

Each driver’s “range” or “catchment area” will be the arc consisting of all the points on the circle

that are closer to that driver than they are to any other driver in region i. Each driver picks up

the first passenger that arrives within that driver’s catchment area. In practice, ridesharing plat-

forms implement a similar matching rule (Frechette et al. (2019) use a similar approach to model a

centralized matching market). The game finishes once all drivers have picked up their passengers.21

Each driver chooses a region to drive in, minimizing his or her expected total wait time, which

has two components. First, the driver in a specific location must wait for demand realization, i.e.,

the arrival of a customer in the catchment area. We term this the idle time. Second, the driver

needs to travel to the exact location of the customer to pick her up, and we call this the pickup

time. The wait time is thus comprised of these two different components, which have divergent

impacts on the equilibria in ridesharing markets.

The circular model of regions is illustrated in Figure 7. Suppose the disutility to a driver from

traveling a full circumference to pick up a passenger is t′ times that of one minute of idle time.22

The platform allocates an arriving customer to the closest driver. Because drivers are situated

at equidistant points on the circumference of the region, their catchment areas include half the

distance to their nearest neighbors on both sides. The idle time expected for a customer to arrive

19The equal size assumption is not limiting since one can, in principle, think of a larger region as equivalent of

multiple of our uniform-sized regions i.
20While we do not model the locational choice of drivers within the region, it is fairly easy to see that equidistant

positioning location from neighbors is an equilibrium. While there might be other locational choices that might also

be equilibria, we focus on the equidistant positioning equilibrium.
21Note that by not tracking the destinations, this model does not capture relative outflows. We do not see this as

a weakness, given that the role of relative outflows in the empirical section was to help with the identification of λi

values, which we assume known in the theory model.
22Thus, t′ can be thought of as aggregating (i) how long it takes to travel the circumference, and (ii) how much

more than idle time drivers dislike pickup time, due, perhaps, to feul costs.
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Figure 7: Illustration of Circular Model of each Region i and Driver Allocation

Driver 1

Driver 1's range

in the driver’s area is ni
λi

. The distance between drivers is l
ni

where l is the circumference. Since

consumer location is uniform, the distance a consumer will be from the driver along the arc is

distributed d ∼ U [0, l
2ni

], implying that the expected distance is E[d] = l
4ni

. Thus, the (cost of)

expected pickup time is t′

4ni
.

We have the (cost of) expected total wait time Wi(ni) defined from the driver’s perspective as:

Wi(ni)︸ ︷︷ ︸
Total Wait Time

=
ni
λi︸︷︷︸

Idle Time

+
t′

4ni︸︷︷︸
Pickup Time

=

(
ni
λi

+
t

ni

)
(9)

where t = t′

4 . Observe that idle time increases in the number of drivers ni since a given level of

customer demand is allocated across all the drivers present in the region. On the other hand, the

ridesharing platform allocates each customer to the closest driver. Thus, the pickup time decreases

in n, since with a greater number of drivers, each driver is more likely to be allocated a passenger

closer to him. In other words, the presence of each driver in region i has a negative externality

on other drivers in i by increasing their expected idle times and a positive externality on them by

decreasing their expected pickup times. This combination of idle and pickup time creates a non-

monotonic U-shaped wait time function, where total wait time is initially decreasing in the number

of drivers, then reaches an interior minimum, and then increases in n beyond the minimum.

Driver payoffs are characterized as ui = −Wi(ni), so drivers will choose a region where they

have the lowest expected wait time. Drivers thus balance idle time and pickup time to determine

which market to operate in.

Before laying out definitions of equilibria and turning to our results, we would like to re-iterate

our modeling assumptions. In deciding on what assumptions to make, we faced a trade-off between

being comprehensive and being able to deliver strong comparative-static results that describe, at

the most granular level, how supply redistributes itself spatially in response to a changed market

thickness. As such, we decided to abstract away from prices, platform competition, and the dynamic

nature of driver behavior. We believe such modeling decisions are supported by the empirical and

anecdotal evidence shown in the previous section. Even under these assumptions, proving the
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comparative static results is quite involved and requires developing new techniques. Also note that

on the issue of modeling the spatial aspects of the market, which is of first order relevance to our

empirical results, our theory model is in fact more general than the literature: we study a multi-

region model in which each region has a size rather than being a point. This is what allows the

conceptualization of pickup times and is the main reason why some proofs are involved.

The list of our assumptions follows:

1. Total number of drivers across both markets is fixed at N .

2. Prices are the same for all regions and are, hence, not modeled.

3. Drivers are undifferentiated (conditional on location) and their identity does not matter.

Drivers do not have any preference for either of the regions beyond the expected wait times.

4. Each demand arrival gets a location uniformly on the circumference of the circle.

5. The platform greedily allocates consumers to the drivers who are closest to them.

6. The allocation of drivers among regions is thought of as continuous rather than discrete.

7. There is only one platform.

The next subsections define market equilibria and present the results.

5.2 Defining Equilibria and Geographical Supply Inequity

We start by defining what we mean by an equilibrium of this game.

Definition 1. Under “market primitives” (λ,N, t), an allocation n∗ = (n∗1, ..., n
∗
I) of drivers among

the I regions is called an equilibrium if (i) Σi=1,...,In
∗
i = N , and (ii) no driver in any location i can

strictly decrease his or her expected total wait time by choosing to drive in another location. Also,

we call n∗ an “all-regions” equilibrium allocation if it is an equilibrium and if n∗i > 0 for all i.

Next, we define geographical supply inequity.

Definition 2. We say allocation n is under-supplied in region j, relative to region i, if we have:

nj
λj

<
ni
λi

The “degree of under-supply” in region j relative to region i is defined by κji =
ni
λi
nj
λj

.

The logic behind this definition is the same as what we had in the empirical section. It basically

compares the ratio of the realized numbers of rides ni between regions to ratio potential demands

λi.
23

23Unlike the empirical section which had subscripts ikd, this section has only i due to the single platform and

one-shot nature of the game.
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5.3 Results for a Market with Two Regions

In this section, we present our results for the case of I = 2. We do this to ease the discussion of

the intuition behind our results (since the 2-regions case accepts a simple graphical representation)

and to build toward our main theorem. We will present two important results. First, if the demand

arrival rate in region 1 is strictly larger than that of region 2, then in any all-regions equilibrium,

region 2 will be strictly under-supplied. Second, we show that the under-supply problem in region

2 is mitigated as the size of the platform increases, holding fixed the ratio between λ1 and λ2.

First we give a result that helps to visually understand an all-regions equilibrium.

Proposition 1. At any all-regions equilibrium, the wait times in the two regions are equal. Also

the wait time for each region is locally increasing in the number of drivers present in that region.

Proof. If W1(n1) 6= W1(n1), then, given the wait time functions are continuous, a small mass

of drivers can relocate from the region with the higher wait time to the region with the lower wait

time and be strictly better off. Thus, at equilirium allocation n∗, we have W1(n∗1) 6= W1(n∗2). Next,

if at equilibrium, the wait time curve in region i is strictly decreasing, then a small mass of drivers

from region j can relocate to i and become strictly better off.�

Next, we introduce a result that speaks to the existence and uniqueness of an all-regions equi-

librium.

Proposition 2. There is exactly one all-regions equilibrium if assumptions (A1) to (A3) hold.

Otherwise, there is no all-regions equilibrium.

(A1) N ≥
√
λ1t+

√
λ2t

(A2,A3) 2

√
t

λj
≤
N −

√
λjt

λi
+

t

N −
√
λjt

for j = 1, 2 and i = 3− j

Figure 8 visually illustrates Propositions 1 and 2. In each panel, the wait time curves for

the two regions are plotted opposite from each other. In each region, the wait time is initially

decreasing in the total number of drivers present in that region due to the decrease it causes in

pickup times. But as the region gets more drivers, the effect on pickup time dwindles and overall

wait time increases due to increased idle time for drivers.24 Each point on the horizontal axis

of the graph corresponds to a driver allocation between the two regions. One such point is the

“demand-proportional” allocation which satisfies n1
λ1

= n2
λ2

. This allocation is shown in the figure

by a dashed vertical gray line. At each point, the solid blue line shows the total wait time in region

1, and the dashed green line gives the total wait time in region 2.

24Total wait time curves being U-shaped has been mentioned in other studies (such as Castillo et al. (2017)). To

our knowledge, this curve and the U-shaped assumption on it are used by ride-share platforms in the determination

of various strategies including surge pricing.
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Translated to these graphical terms, Proposition 1 states that an all-regions equilibrium is a

point of intersection between the two wait-time curves, at which both curves are increasing. Among

the panels of Fig. 8, such equilibrium only exists in panel (c).25 Proposition 2 explains why. In

order for an all-regions equilibrium to exist, there should exist allocations for which the total wait

time at each region is increasing in the number of drivers present in that region. This is what

assumption (A1) requires. Graphically, the trough for the wait time curve in region 2 (emphasized

by a green circle) should be to the right of the trough of the wait time in region 1 (blue circle).

Panel (a) in Fig. 8 lacks this feature and, hence, also lacks an all-regions equilibrium. In addition to

(A1), the existence of an all-regions equilibrium would also require that the two wait-time curves

do intersect over the range in which they are both increasing. In order for this to happen, we require

assumptions (A2) and (A3). They require that, under the allocation that minimizes the total wait

time in region 1, the total wait time in region 2 be higher than that in region 1. They impose a

similar condition on the allocation that minimizes the total wait time in region 2. Graphically,

they require that the total-wait-time curve for region 2 (the green dashed line) be above the trough

of the wait-time curve in region 1 (the blue circle), and vice versa. Panel (c) satisfies both (A2)

and (A3) and, hence, has an all-regions equilibrium given by the intersection between the two

wait-time curves, emphasized by a large black circle. Panel (b), although satisfying (A1), has the

wait time curve for region 1 pass below the trough of the wait time curve in region 2. Therefore,

there is no all-regions equilibrium in panel (b).

The reason why different panels in Fig. 8 differ in terms of having an all-regions equilibrium is

that they pertain to different market primitives (λ,N, t) (in the figure as well as some of the proofs

in the appendix, instead of its components λ1 and λ2, the vector λ is represented by total demand

Λ = λ1 +λ2 and share of region 1 from demand φ = λ1
Λ ). The figures are already suggestive of what

affects the existence of an all-regions equilibrium (e.g., a large enough N is necessary) or where

the all-regions equilibrium is located when it exists (to the right of the gray dashed line –i.e., the

demand-proportional allocation– instead of on it due to agglomeration of drivers in region 1). Our

next results in this section formalize and generalize such observations from the figure and add other

results describing the role of market thickness.

Proposition 3. Suppose that λ1 > λ2 and that an all-regions equilibrium (n∗1, n
∗
2) exists. In that

25One can verify that in all panels of Fig. 8, allocations that put all drivers in one of the two regions are in fact

equilibria. To illustrate why, note that under allocation (n1, n2) = (N, 0), the wait time at region 2 is ∞ due to high

pickup time. Thus, no driver has an incentive to move from region 1 to region 2. This, of course, is an artefact of

our assumption of a continuous mass of drivers: If we assume that one driver has a non-trivial mass, some of these

one-region equilibria will go away. That said, because of the convenience of assuming a continuous mass of drivers

and to avoid multiple equilibria, the rest of the paper focuses on all-regions equilibria only. However, interesting

results can be obtained on the properties of the other equilibria and on how their existence and form respond to

market thicnkess. All those results, which would be available upon request, have similar economic implications to

the results presented on all-regions equilibria.
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Figure 8: Wait Time and Driver Allocation. An all-regions equilibrium exists only in panel (c)
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(c) Unique All-Regions Equilibrium

case, the all-regions equilibrium is strictly under-supplied in region 2:

n∗1
λ1

>
n∗2
λ2

To illustrate, if region 1 has 80% of the demand, then, in equilibrium, 90% of the drivers might

prefer to drive in region 1. This result coincides with our empirical observation that the relative

outflow was greater in busier areas than in less busy areas.
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The proofs for all propositions are given in the appendix. The basic intuition for this proposition

is rather simple. Consider an allocation with no under-supply in either region. That is, an allocation

with n1
λ1

= n2
λ2

. Based on the expressions for idle and pickup times in those areas, it is immediate

that under such allocation, the idle times in the two regions are equal, whereas the pickup time

is higher in region 2. Therefore, it would be natural to expect drivers to prefer to relocate to

region 1, pushing the equilibrium in a direction in which region 2 will be under-supplied.26 This

can be graphically seen in Fig. 8 panel (c): the equilibrium is to the right of the gray dashed line

representing the proportional allocation.

We now turn to our second result which speaks to the impact of market thickness. We prove

that “making the market thicker” will decrease the extent of geographical inequity in supply. The

next two results show this, respectively, for thickening the market on both sides (increasing the

number of drivers and all-regional demand arrival rates) and thickening it on one side (increasing

the number of drivers only).

Proposition 4. Suppose that λ1 > λ2, and (n∗1, n
∗
2) is the all-regions EQ under (λ1, λ2, N, t).

Consider scaling up the platform size by γ > 1 to (λ′1, λ
′
2, N

′, t) = (γλ1, γλ2, γN, t). Under these

new primitives, an all-regions equilibrium exists and under-supply in region 2 decreases with scaling

up, i.e.,
n′∗1
N ′ <

n∗1
N In particular, as γ →∞,the relative under-supply in region 2, κ21, tends to zero.

This proposition speaks to the impact of market thickness (platform size) on geographical

supply inequity in two ways. First, it shows that a scale-up in size preserves the existence of

an all-regions equilibrium. This means it is possible that as size scales down, drivers abandon a

region all-together, making all-regions equilibrium cease to exist. However, as the size scales up,

an all-regions equilibrium always remains in existence.

Second, and more importantly, Proposition 4 shows that the all-regions equilibrium under a

thicker market exhibits less geographical inequity. To illustrate this result, it says that if under

(λ1, λ2, N, t) region 1 had 80% of the total demand, but n∗1 was 90% of N , then under the scaled-up

setting (λ′1, λ
′
2, N

′, t), region 1 still has 80% of the total demand but will get, say, 85% of the total

number of drivers. The theorem also says that if the size undergoes an extreme scale-up, then

region 1 will get very close to 80% of the total number of drivers in the all-regions equilibrium.

Proposition (4) is also proved in the appendix. The intuition behind this proof is that as size

gets larger and larger, the platform will get denser in both regions, reducing the importance of

pickup times compared to idle times in the decision-making processes of drivers. To show this, we

first observe that the extent of geographical supply inequity κ21 in the equilibrium is invariant to

26The actual proof requires more than this simple intuition. Specifically, it requires a lemma that shows if (A1)

through (A3) hold, then each total-wait-time curve is increasing at the demand-proportional allocation (or, put

graphically, the troughs of the two curves are located on different sides of the gray dashed line representing the

demand-proportional allocation). See appendix for a lemma proving this argument as well as for the details on why

such a lemma helps prove the proposition.
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multiplying all primitives (i.e., λ1, λ2, N, t) by the same factor γ. Therefore, the effect of multiplying

only λ1, λ2, N by some γ > 1 on geographical supply inequity will be the same as that of dividing

t by γ and holding λ1, λ2, N fixed. A division of t by γ > 1 means drivers care less about pickup

times. Drivers caring less about pickup times leads the equilibrium allocation to be closer to what

would be implied by idle times only. It is easy to verify that if it were only the idle time that

mattered to drivers, the equilibrium allocation would always be one that involved no under-supply

in either region: (n∗1, n
∗
2) = ( Nλ1

λ1+λ2
, Nλ2
λ1+λ2

). This is exactly what will be the case as the scale-up

grows infinitely large.

Our next proposition proves similar results to those shown in Proposition 4, but this time for

thickening the market only on one side.

Proposition 5. Suppose that λ1 > λ2 and (n∗1, n
∗
2) is the all-regions EQ under (λ1, λ2, N, t). If we

scale up to (λ1, λ2, N
′, t) for some N ′ > N , then an all-regions equilibrium still exists. Also, the new

equilibrium shows less under-supply of rides in region 2. In particular, as N ′ → ∞, under-supply

in region 2 (and in region 1) tends to zero.

The proof for this proposition is given in the appendix. The intuition is as follows: a scale-up

in N to N ′ = γN for some γ > 1 can be thought of as a combination of two changes. First, a

scale-up from (λ1, λ2, N, t) to (γλ1, γλ2, γN, t). Second, a scale back down in the demand arrival

rates from (γλ1, γλ2) to (λ1, λ2). The first move is guaranteed to mitigate the geographical supply

inequity problem, according to Proposition (4). The second move increases the importance of idle

times (relative to pickup times) in drivers’ decision-making processes. Therefore, this change also

shifts the new equilibrium toward what would be implied by idle times only, which would be an

allocation with no geographical supply inequity.

5.4 Main Result

Our main result extends all of the results presented so far from two regions to any number of regions

I ≥ 2. This theorem is powerful in that it provides, among other results, a description of how the

market responds to a changed thickness, at the most granular level. That is, it describes what

happens to the supply ratio between any two regions i, j. As formalized below, the proposition

shows that the market responds to a “global thinning” by further agglomerating the supply at the

thickest “local markets.”

Theorem 1. In the general version of the game (i.e., I ≥ 2), the following statements are true:

1. For an all-regions equilibrium, the total wait time is equal across all I regions. Also, at the

equilibrium allocation, the total-wait-time curve for any region is strictly increasing in the

number of drivers present in that region.

2. Any all-regions equilibrium n∗ = (n∗1, ..., n
∗
I) is unique.
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3. At any all-regions equilibrium, for any i < j, we have
n∗i
λi
≥ n∗j

λj
. The inequality is strict if and

only if λi > λj .

4. Suppose an all regions equilibrium n∗ = (n∗1, ..., n
∗
I) exists under primitives (λ,N, t) where

λ = (λ1, ..., λI). Then, if supply and demand both scale up, that is, under new primitives

(γλ, γN, t) with γ > 1, we have:

• An all-regions equilibrium n∗
′

= (n∗
′

1 , ..., n
∗′
I ) exists.

• The new equilibrium n∗
′

shows less geographical supply inequity than n∗ in the sense

that for any i < j, we have 1 ≤
n∗
′
i
λi

n∗′
j
λj

≤
n∗i
λi
n∗
j
λj

. Both inequalities are strict if and only if

λi > λj .

• All
n∗
′
i
λi

n∗′
j
λj

tend to 1 as γ →∞

5. The same statement is true if instead of proportionally scaling up both λ and N , we scale up

only N .

These results are closely in line with our empirical results from Table 3 and Table 4. Statement

3 above corresponds to the positive coefficient on borough population density (interpretable only

under assumptions 1 and 2). Also, statements 4 and 5 are closely in line with the negative coefficient

on the interaction of borough population density and platform size (interpretable under assumption

1 plus either of 2 or 3).

The proof of this result can be found in the appendix. It is based on strong induction. The basis

of the induction (i.e., the case of I = 2) is given by propositions (1) through (5). The induction

works in an interrelated way. That is, for instance, in order to show that item 3 from Theorem (1)

holds for some I = I0 > 2, we need not only assume that item 3 holds for all I ∈ {2, ..., I0 − 1},
but also that all of the other items of the proposition hold for all I ∈ {2, ..., I0− 1}. We believe the

proof techniques developed in the implementation of this induction (see appendix) can be useful

beyond this paper, in the theoretical analysis of geographical demand-supply mismatch in spatial

markets.27

27We would also like to note, without entering the details, that the proof involves more than a straightforward

application of the induction. To illustrate this, consider the case of I = 3. Suppose the equilibrium allocation under

primitives (λ,N, t) is n∗ = (n∗1, n
∗
2, n
∗
3). Also suppose that once we scale up both N and λ to obtain primitives

(γλ, γN, t), we have the equilibrium n∗
′

= (n∗
′

1 , n
∗′
2 , n

∗′
3 ). Assume, under this new equilibrium, that n∗

′
3 > γn∗3. That

is, the least dense region is gaining drivers above and beyond the scale-up, as expected. This implies that regions 1

and 2 will, together, have strictly fewer drivers than γ(n∗1 + n∗2). But this renders the application of the induction

to the set of regions 1 and 2 insufficient, since now those regions have undergone (i) a scale-up of γ in both demand

arrival rates and total number of drivers, followed by (ii) loss of some drivers to region 3. According to our previous

results, the first change reduces geographical supply inequity between regions 1 and 2, whereas the second change
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5.5 Discussion

Before turning to policy implications of the model, we would like to re-emphasize why our theory

results on geographic inequity of supply and the role of market thickness are important beyond

ridesharing. We first discuss how the notion of geographical inequity relates to efficiency and then

describe how crucial the role of thickness is in spatial markets other than ridesharing (such as

taxis).

Geographical Inequity and Efficiency. The main purpose of our model was to analyze

geographical inequity in supply and its response to market thickness. The model was not developed

with the goal of studying efficiency. However, it can still illuminate some (though not all) of the

efficiency implications of inequity. Proposition 6 formalizes this.

Proposition 6. Consider primitives (λ,N, t) with λ1 > λI and the set N of all driver allocations

defined as {n ∈ RI : Σini = N, ∀i ni > 0}. Suppose n0 ∈ N is the “demand-proportional”

allocation: ∀i, j : κ0
ji ≡

n0i
λi
n0
j
λj

= 1. Also suppose that n1, n2 ∈ N are such that ∀i < j : κ2
ji ≥ κ1

ji ≥ 1.

That is, both n1 and n2 exhibit geographical inequity in supply in favor of higher demand areas, and

the inequity is larger under n2 than under n1. Then, the following hold:

1. Under all allocations n ∈ N , the average pickup time for drivers is constant at I×t
N .

2. Among all n ∈ N , the allocation n0 is the unique minimizer of the average driver idle time.

Specifically, an all-regions equilibrium allocation has a higher average idle time than n0.

3. The average driver idle time is higher under n2 compared to n1.

Proposition 6 is proved in the appendix. It describes one reason why geographical inequity in

supply is inefficient: By choosing a busy region to minimize her own total wait time, a driver leaves

a larger negative externality on the market by substantially lengthening the average idle time in

the region she joins and the average pickup time in the regions she avoids. As Proposition 6 shows,

any equilibrium allocation, compared to the demand-proportional allocation, makes the total idle

time worse without improving the total pickup time. Of course our model is one-shot and, by

construction, the total number of given rides is constant at N irrespective of the allocation. But

in the real ride-share market, there is repetition. Therefore, in reality, inefficiently high total wait

times due to agglomeration of drivers can lead to inefficiently low number of rides given in rideshare

(and other transportation) markets.

Aside from the argument above, there is (in our view) a more important reason why geographical

inequity of supply may be inefficient that our model does not fully capture. That reason is the very

increases it. Thus, by plain application of induction, one cannot show that geographical supply side inequity between

regions 1 and 2 decreases at the end. However, we prove lemmas in the appendix which guarantee the proof of the

proposition, in spite of the fact that induction applies in some but not all of the cases.
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notion of inequity. If residents of region j consistently have lower access to supply of transportation

services than region i (i.e., if a higher fraction of the potential demand is forgone in j than in i),

then the marginal demand in j is likely to be for more essential transportation needs than in i.

This may imply some allocative inefficiency. The issue of inequity has been major topic in the

transportation science literature.28 It has also been salient enough in public policy to bring about

such major actions as the launch of green taxis (also called “boro taxis”29) However, quantifying

the magnitude of the welfare effects of inequity is beyond the scope of our paper. It will require

panel data on passengers in order to capture the fact that some groups are regularly under-supplied

relative to others.

Generalizability of Results Beyond Ridesharing. Our theoretical model assumes a central

dispatch structure for the matching of drivers to riders, and one of the key forces behind our results

is the pickup time. Also, all of our empirical analysis is performed on rideshare data. This raises

the question of whether the geographical inequity in supply (due to agglomeration) can arise in a

market with decentralized matching, such as the taxicab market. In that market, there might be

search frictions; but once a cab and a passenger find each other, they are not far apart.

We believe our insights are also crucial in understanding the spatial distribution of supply in

the taxicab market. Table 7 corroborates this by presenting the relative outflows for the Yellow

Taxis across boroughs of NYC during January 2009, the first month on which data on the taxicab

market is available from the TLC. We find it interesting that, similar to the rideshare market, the

relative outflows in the taxicab market almost have a perfect rank-correlation with the borough

population densities (the only exception is Queens, most likely because areas closer to the airports

become denser and, hence, more attractive). In fact, relative outflows are much more skewed toward

Manhattan for taxicabs than they are in the rideshare market. For instance, it is interesting to

observe that although the outflow of rides from Manhattan was about 742 times more than that

from Staten Island, the ratio between the inflows was only 10 (the total population of Manhattan

is about 4.2 times that of Staten Island).30

Studies that examine the taxicab market in NYC tend to focus on Manhattan, on the grounds

that the large majority of rides take place there (see Buchholz (2018); Lagos (2003) for instance).

However, based on the above observation, we argue that this is likely an equilibrium outcome in

which supply gets highly agglomerated in Manhattan. Therefore, understanding why there is such

a sharp contrast between Manhattan and the outer boroughs may be of first order importance in

28See Litman (1999); Delbosc and Currie (2011); Pereira et al. (2017) among may other references.
29For more details, see the history of boro taxis on the TLC website from this link.
30The skewness of these relative outflows towards Manhattan would be even more sriking once we notice that in

the Taxicab market, as opposed to rideshare, drivers have full discretion on which rides to give. Therefore, drivers

in Manhattan might refuse to give rides that exit the borough because they anticipate they will have to return to

Manhattan empty. Thus, we conjecture that if it were not for such discretion, the relative outflows for the taxicabs

would be even more skewed.

37



Table 7: Relative Outflows in NYC Boroughs for Yellow Taxi during Jan. 2009

Borough Outflow Inflow
Relative

Outflow

Bronx 9,436 56,981 0.17

Brooklyn 95,727 406,111 0.24

Manhattan 682,159 161,049 4.24

Queens 72,601 221,218 0.33

Staten Island 919 15,483 0.06

Note: rides to and from airports (i.e., JFK and LGA in Queens) have been excluded.

studying what shapes the geographical distribution of supply in spatial markets with decentralized

matching.31 This is particularly important because the same agglomeration mechanism that leads

to the sharp observed contrast between Manhattan and other boroughs might also be at work in

determining how drivers position themselves within Manhattan.32

6 Implications for Policy

Our work is timely since it relates to the policy debate on whether rideshare platforms should be

downsized. New York has recently been considering implementing multiple policies which, either

directly or indirectly, will shrink the size of rideshare platforms. This policy debate is important

both because NYC is the largest city in the country and because of the precedent the action taken

by NYC will likely set for other cities. One proposed policy is imposing a $17 minimum hourly

wage on the rideshare platforms (The Washington Post, 2018; Wired, 2019), which took effect in the

beginning of February 2019 (The Hill, 2019). Another policy is to impose a cap on the number of

licenses each platform can hand out to drivers (hence a cap on the number of drivers who can drive

for these platforms). The particular way this regulation was designed was by halting, for 12 months

starting August 2018, the issuance of new licenses for drivers of rideshare platforms (The Verge,

2018; Tech Crunch, 2018). The reactions of ridesharing platforms to the aforementioned regulations

31One could think of a theory of agglomeration in de-centralized transportation markets that is similar in nature

to the theory in our paper. In the taxicab (rideshare) market, lower density of demand and supply in outer boroughs

leads to higher local search frictions (longer pickup times). This geographical difference in search efficiencies (pickup

times) in turn distorts the supply further away from the outer boroughs. In fact, Frechette et al. (2019) already

document that there is economy of scale in search efficiency, which can lead to overall more efficient search when the

market is thicker. It would not be unnatural to think, then, that “where” the market is thicker is more desirable for

drivers, hence the self-reinforcing loop.
32Indeed, we carried out a relative outflows analysis on the set of taxicab rides from January 2009 that started and

ended in Manhattan. We found a sharp contrast in relative outflows between Lower and Central Manhattan (which

are where the density of rides are the highest) on the one hand, and Upper Manhattan on the other.
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(and potential regulations) have been mostly negative.33 Finally, a third approach considered by

the city is to start levying a “congestion tax” on drivers. The fares for rides originating in lower

Manhattan were supposed to increase by $2.50 for taxi and $2.75 for rideshare, effective January

1, 2019. However, the implementation has been temporarily postponed due to a lawsuit brought

by a coalition of drivers and taxi owners, calling the tax a “suicide charge” (The New York Times,

2019b).34 Whether this regulation will eventually be implemented is still uncertain (The New York

Times, 2019a).

In this section, we discuss what we can learn from the theoretical and empirical analyses con-

ducted in this paper for public policy issues. We focus on the potential impacts of such policies on

the distribution of drivers across the city and on the geographical (in)equity of the availability of

rideshare services. Of course, this by no means is a claim that geographical inequity is the only

important implication of this policy. For instance, our paper does not focus on the labor-market

consequences of this policy nor does it focus on the impact on congestion. Nevertheless, we believe

it does bring up an issue for consideration that is important in navigating future decisions.

Some policy tools might have an advantage over others from the perspective of reducing (or

not increasing) geographical inequity. For instance, imposing a congestion tax (currently planned

to take effect in 2020) might be preferred over downsizing the total number of drivers. Of course,

if a congestion tax leads to downsizing rideshare platforms, it will, according to our results, also

provide an incentive for drivers to drive in busier areas. However, the tax will provide a direct

incentive for drivers to serve less busy areas. Such a “counter-incentive” is not provided by a plain

downsizing regulation. In fact, our results could be used to defend a congestion tax policy against

the potential criticism that a congestion tax might cause under-supply in busier areas. Our results

suggest that downsizing rideshare platforms via a congestion tax leads to driver incentives in both

directions (i.e., both to drive less in busier areas and to drive more in less busy areas), whereas a

direct downsize of the number of drivers (or a geography-independent mandatory wage increase)

would only increase the incentive to drive more in busy areas and less in other areas, exacerbating

the inequality problem.

33Uber has sued the city of New York over the year-long pause to issuing new ridesharing licenses (The Tech Crunch,

2019). Their spokesperson has claimed that such policy will do little to help mitigate the congestion in NYC (Tech

Crunch, 2018). The spokesperson stated that he believed the congestion tax to be a more effective policy regarding

controlling congestion. On the equity front, ridesharing platforms contend that a downsize of ridesharing will hit

the outer boroughs harder than Manhattan, given that those areas might have lower access to public transportation

options and taxis and thereby be more reliant on ridesharing (Tech Crunch, 2018). Also, on the front of fairness

among ridesharing platforms, smaller platforms have brought lawsuits against the city for multiple aspects of its

crackdown on ridesharing. Lyft and Juno sued the city for the minimum wage regulation which is calculated on a

weekly basis, rather than based on hours driven with a passenger. They claimed this hurts smaller platforms with

lower utilization rates (Wired, 2019).
34The term originates from multiple recent cases of driver suicides in NYC due to financial hardship and the belief

that some recent regulations by the city have exacerbated the drivers’ situation (The New York Times, 2018).
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Another qualitative takeaway from the analysis is that competition policy is complicated by

driver location choice. That is, a hypothetical breakup of a large ridesharing firm into two smaller

ones could have opposing effects. On the one hand, the competition between the two could benefit

consumers. On the other hand, in each of those two smaller platforms (and hence, overall), the

under-supply in less busy areas will increase.35

On the quantitative side, we answer an interesting question motivated by our theoretical anal-

ysis. Our theoretical results show that geographical inequity diminishes as platform size becomes

infinitely large due to the fact that pickup times lose their importance against idle times. In a

sense, this implies that if the platform size is “large enough,” then geographical inequity will not

be a first order concern. A practical question is how large is this “large enough” size? To find out,

we modify regression equation (7), replacing the log function applied to platform size by a function

that satiates to an upper limit as the platform size increases.

We implement this by using log(min(aMax,#Rides)) instead of log(#Rides), where aMax is

the parameter capturing the adequate size and is to be estimated (one could interpret aMax as the

size at which the impact of size on the geo-distribution of relative outflows becomes small enough

so that it cannot be distinguished from noise). We choose this way of capturing the adequate size

over adopting a functional form that converges smoothly as size grows. The reason behind this

choice is that we want the identification of the adequate size to come mainly from the data points

at which relative outflows stop responding to platform size, as opposed to the data points at which

the platform size is well below the upper limit. The regression equation implementing this notion

is very similar to the earlier regression Eq. (7) on relative outflows, with the difference being the

inclusion of aMax. Equation (10) describes this regression:

ROikd = α0 + α1 log(ρi) + α2 log(min(aMax, Skd)) + α3 log(min(aMax, Skd)) log(ρi) + νikd (10)

In order to make sure that the functional form of log is not substantially impacting our estimate

of aMax, we also estimate a version in which the size itself, as opposed to its natural log, is used.

Equation (11) represents this:

ROikd = α0 + α1 log(ρi) + α2 min(aMax, Skd) + α3 min(aMax, Skd) log(ρi) + νikd (11)

35It might seem at first that “multi-homing” (i.e., the phenomenon of drivers working for multiple platforms (Bryan

and Gans, 2019)) might mitigate the excess clustering of supply of small platforms in busier areas, because drivers

working for multiple platforms are, in effect, working for one large rideshare system. We note, however, that, for

multi-homing to mitigate agglomeration, it must be that the matching systems across platforms are fully integrated.

This would imply, for instance, that a Lyft driver would not get asked to pick up a passenger who is far away, if there

is an Uber driver in the vicinity of that passenger. We believe that in reality, the integration of matching systems

is substantially less than perfect, rendering multi-homing less impactful on the extent of agglomeration. Indeed, if

multi-homing could eliminate agglomeration, it should have shown up in the relative outflows of Lyft and Via in

Fig. 4.
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Regressions (10) and (11) are estimated using non-linear least squares, and the results are

reported in Table (8). The adequate size parameter, aMax is estimated at 3.65M rides/month using

regression (10) and at 3.30M rides/month using regression (11). Both estimates are statistically

very significant. They are also fairly close to each other, suggesting the robustness of aMax to the

model specification, as we expected.

These results suggest that NYC needs to use caution if it were to downsize Lyft and, especially,

Via (see numbers reported in Fig. 4). Uber, on the other hand will not face distorted geographical

supply distribution if downsized. We note that given a similar dataset to what we used here, the

method we laid out in this section can help identify aMax in any other metropolitan area.36

7 Conclusion

This paper asked three questions about the functioning of spatial markets and studied them in

the context of the rideshare market in NYC: (i) How can we empirically identify whether there

is geographical demand-supply mismatch, leaving some regions with persistently lower access to

supply compared to others? (ii) What mechanism leads to such persistent geographical inequity

in supply? (iii) How should we design policies that help mitigate the inequity? To answer these

questions, we started by developing the “relative-outflows” method. It is fairly simple to implement,

has limited data requirements, detects under-supply in a region even if passengers in that region

have, over the long run, learned not to search for rides, and finally can be applied to markets with

centralized or decentralized matching in the same way. We used this method to show that rideshare

platforms (especially smaller ones) tend to be under-supplied in low-population-density regions. As

such, we conducted an empirical study pointing to the role of market thickness (platform size)

on the geographical balance between demand and supply. We complemented it with a theory

model that studies the impact of market thickness on the geographical distribution of supply. We

showed that making the market thinner skews the supply ratio between any two regions toward the

higher density one, even though demand ratios are fixed. Finally, on the policy front, we estimated

a minimum required size for rideshare platforms in NYC in order to avoid the overclustering of

supply in busier areas. Our method could be used to find such required sizes in other metropolitan

36We consider these estimates of aMax to be lower bounds in the sense that the minimum required size may be larger

than they are. The reason is, even at Uber’s current size, Uber’s relative outflows are skewed toward Manhattan in

terms of magnitude (though less so than the other platforms). Under assumptions (1) and (3), our empirical method

does not allow us to identify whether this is because of under-supply of Uber in the outer boroughs or because of

geographical heterogeneity in outside options (because our method can only identify cross-platform differences). But

under assumptions (1) and (2), even Uber’s current size would be too small, making our estimated aMax a lower

bound. But even then, we believe this estimate is very useful because it shows at what size the response of the

geographical distribution of supply to size becomes so slow that even with an almost three-fold growth in size (from

Lyft to Uber), only a negligible improvement in geographical equity of supply is achieved.
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Table 8: Results of regressions (10) and (11)

Dependent variable: Relative Outflow

(1) (2)

Regression Equation (10) Equation (11)

α0 −15.07∗∗∗ −1.449∗∗∗

(0.2829) (0.027)

α1 4.129∗∗∗ 6.408∗∗∗

(0.079) (7.604e-03)

α2 1.030∗∗∗ 5.876e-07∗∗∗

(0.019) (1.254e-08)

α3 −0.264∗∗∗ −1.505e-07∗∗∗

(0.005) (3.428e-09)

aMax 3.648e+06∗∗∗ 3.295e+06∗∗∗

(7.120e+04) (3.916e+04)

Observations 7,709 7,709

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

The main coefficient of interest is aMax, the adequate

size for a rideshare platform to contain geographical

inequity in supply.
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areas as well.

Our research can be extended along a number of dimensions. On the theory side, one interesting

question would be about the role of platform incentives and pricing. More specifically, it is not

entirely clear whether a platform should “go along” with its drivers agglomerating in busier areas or

whether it should try to “correct” the agglomeration. On the one hand, the time spent by drivers

on the way to pick a passenger up is a loss both to them and to the platform, suggesting that

the drivers’ action to avoid long pickup times by relocating to busy areas is in line with what the

platform would want. On the other hand, a driver’s decision to relocate to another area impacts

not only his or her wait times, but also other drivers’ wait times. In particular, it may increase the

pickup time in the quieter area more than it decreases the pickup time in the busy area. What this

suggests is that the platform might want to intervene and mitigate agglomeration through prices.

A theoretical model, more general than the one we built in this paper, is needed to address this

question and characterize the optimal intervention by the platform.

On the empirical side, quantifying the consumer welfare effects of the geographical inequity in

supply would be a major step. We believe a prerequisite to such a study would be panel data on

passengers in order to capture the fact that persistent under-supply of rides in a region means per-

sistent under-supply of rides to the same population, which could have large adverse effects if the

marginal utility from taking a ride diminishes with the number of rides taken. Another interesting

direction for future research would be to empirically study whether the impact of agglomeration on

the spatial distribution of drivers across a city is comparable to or larger than that of other mech-

anisms studied in the literature. For instance, Lagos (2000, 2003) focus on the role of the average

length of rides starting in each region on the attractiveness of that region for drivers. Buchholz

(2018) focuses on how drivers’ decisions are impacted by the inter-temporal, intra-daily, externali-

ties from rides given by other drivers. Brancaccio et al. (2019c) study the inefficiency arising from

transportation of goods/passengers to locations from which the car/ship would likely need to return

vacant. The modeling of all (or even a subset) of the above, in conjunction with spatial network

externalities that lead to agglomeration, could substantially complicate the computation and/or

make the estimation of the parameters too reliant on parametric assumptions. This presents the

difficult question of what (not) to include in empirical models of such comoplex markets. As such,

we believe an extension of our study, from a sole examination of agglomeration to an empirical

comparison between magnitude of agglomeration and those of the other forces mentioned above,

can enrich the literature.
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Appendices

A Anecdotal Evidence from Media and Online Forums

This appendix points to a list of anecdotal pieces of evidence (by no means exhaustive) from online rideshare forums

on how drivers complain about Lyft’s far pickups in suburbs and how they recommend responding to it. The

explanations in brackets withing the quotations are from us.

• From the online forum “Uber People,”37 a thread in the Chicago section: The title of the thread is

“To those who drive Lyft in the suburbs.” The thread was started on Dec 19 2016. The first post says “Are

the ride requests you get on Lyft always seem to be far away from you location? Seems like they are always

5 miles or more for the pickup location. I got one for 12 miles last night. I drive in the Schaumburg/Palatine

area [two northwestern suburbs of Chicago about 30mi away from downtown].”

37In spite of what the name suggests, this is a general ridesharing forum, not exclusively about Uber.
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• From the same thread: “iDrive primarily in Palatine. about two out of every five ride requests are for more

than 10 minutes away. I ignore those”.

• From the same thread: “I was a victim of that once. Never again I take a ping more than 10 minutes away

in the burbs”.

• From the same thread: “Yesterday was my 1st day on Lyft. Was visiting in Homer Glen [a village about

30mi southwest of downtown Chicago] & decided to try Lyft for the first time. First ping was 18 minutes

away. Dang, I could make it 1/2 way downtown in that time! I ignored the ride request. 2nd ping was also 18

minutes away. Lyft app complained my acceptance rate is too low. I ignored the 2nd ping & went off-line.”

• From the same forum, a thread titled “First 3days of Lyft”: “If your area is spread out...and you

have to take those ¿ 10 minute requests, well...I might look for another job.”

• From the same thread: “Yeah, another (mostly) Lyft-specific problem, especially when working in the

suburbs, is you sometimes (fairly frequently, actually) receive trip requests that are not close to your current

location. I’ve received requests from passengers 20 miles away.”

• From Chicago Tribune article titled “Lyft takes on Uber in suburbs”: Jean-Paul Biondi, Chicago

marketing lead for Lyft is quoted to explain the reason for Lyft’s planned expansion into surburbs as follows

“The main reason is we saw a lot of dropoffs in those areas, but people couldn’t get picked up in those areas.”

Which is in line with our reasoning that small relative-outflow is a sign of potential demand which does not

get served due to under-supply.

• From the rideshare website “Become a Rideshare Driver”: It says successful Lyft drivers use the

following strategy:

– “The drivers usually run the Lyft app exclusively when they are in the busy downtown or city areas.”

– “Usually in the suburbs, Uber is busier than Lyft, and in such areas, the drivers run both the Uber and

Lyft apps.”

B Hourly Analysis of Relative and Absolute Flows

In this section, we test Assumption 3 in the empirical part of the paper. As mentioned in Section 4,

we assume that the attractiveness of the outside option to riders can change in a platform-specific

or direction-specific way but not in a platform-direction specific way. Such exclusion restriction

cannot be directly tested but we offer one indirect test:

Assumption 3 will be violated if (i) users of platform k tend to need exit rides from region i at

systematically different times of the day than when users of platform k′ exit the region; and (ii)

the availability of outside transportation options changes with time of day. To illustrate, suppose

Uber users in Staten Island are systematically more likely than Lyft users to need a ride exiting

the borough in early-morning hours when public transit is less available. Under this violation of

Assumption 3, the relative outflow of Uber in Staten Island will be larger than that of Lyft due to

the demand-side differences among users, not due to supply-side differences as we claimed in the

main text of the paper.

To examine whether such violation of Assumption 3 is likely, we can compare different platforms’

relative outflows over differnt hours of the day. If most of the differences between the relative
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outflows of two platforms can be explained by looking at certain times of the day, then we should be

concerned about the validity of Assumption 3. If however, the comparison between relative outflows

of platforms is consistent throughout the day, we would be more confident about Assumption 3.

Figures 9 and 10 plot the absolute and relative flows of different platforms in Staten Island for

each hour of the day, averaged over days of July 2017 or June 2018. As can be seen there, during

July 2017, Lyft’s relative outflow is consistently lower than Ubers throughout the day. During

June 2018, Lyft’s and Uber’s relative (and absolute) flows move together consistently, and Via’s is

consistently and substantially lower than both of them. We find similar patterns when analyzing

other boroughs. This gives us more confidence that Assumption 3 is reasonable, and, hence, the

differences in relative outflows across platforms can be attributed to the supply side.

C Proofs

Proof of Proposition 2. First, we prove the necessity part, and then sufficiency and uniqueness.

Necessity: We prove necessity of (A1)-(A3) by contradiction. First, if (A1) is not satisfied, then

we show that the wait time curves can only intersect when at least one of them is decreasing.

To see this, note that taking the first order condition on eq. (9) shows the wait time curve

in each region i is minimized at nmini =
√
λit. Thus, condition (A1) simply requires that

N ≥ nmin1 + nmin2 . Without (A1), there would be no possible allocation of drivers under

which the total wait time in each region is increasing in the number of drivers present in

that region. Therefore, by Proposition 1, there would be no all-regions equilibrium. Next,

suppose condition (A2) were not true. Thus, at the minimum wait time for region 1, i.e. at

the allocation (n1 = nmin1 , n2 = N − nmin1 ), the wait time for region 1 is higher than region

2. Thus, the wait time curves can only intersect in the decreasing region for market 1, which

we know cannot be an all-regions equilibrium. The necessity of (A3) is similar to (A2).

Sufficiency: Observe that when (A2) is true, W1(nmin1 ) < W2(N−nmin1 ). Similarly from (A3), we

have W2(nmin2 ) < W1(N − nmin2 ). We know that for n1 > nmin1 , W1 is an increasing function,

and similar is the case for W2. Since we have a reversal in relative magnitude for W1 and W2,

and since the two curves are continuous, we must have an intersection of the curves between

nmin1 and nmin2 , when both wait time curves are increasing. Such an intersection permits no

profitable deviation by switching to the other market for any driver, and is thus an all-regions

equilibrium.

Uniqueness: Both wait time curves are monotonic for the region n1 > nmin1 and n2 = (N −n1) >

nmin2 , implying that there can only be one intersection between the curves when they are both

increasing.
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Figure 9: Absolute inflows outflows for Lyft, Uber, and Via† in Staten Island (hourly averages),

the shadowed areas show the 95% confidence intervals.
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Figure 10: Relative outflows for Lyft, Uber, and Via† in Staten Island (hourly averages)
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Together, these conditions are proven equivalent to existence and uniqueness of an all-regions

equilibrium. In such a case, we can characterize the all-regions equilibrium by equating the wait

time distributions.38 �

To Prove Proposition 3, we first introduce the following Lemma.

Lemma A1. When (A1)-(A3) are satisfied and when drivers are allocated proportionally to de-

mand, the proportional allocation lies between the minimum wait times for the two regions: nmin1 <

φN < N − nmin2 .

where φ, as mentioned in the main text, is defined as φ = λ1
λ1+λ2

. By our assumption λ1 > λ2,

which came without loss of generality, we have φ > 1
2 . In graphical terms represented by Fig. 8,

this lemma says the vertical dashed line representing the proportional demand will fall between the

troughs of the two wait-time curves.

Proof of Lemma A1. First, we prove that the proportional allocation line lies between the two

minima. nmin1 =
√
λ1t and nmin2 =

√
λ2t. Denote the total demand across both locations as

Λ = λ1 + λ2 and the fraction of demand in the (higher-demand) location 1 to be φ = λ1
Λ > 1

2 .

38In practice, we obtain the allocation equating wait times, i.e. solving W1(n)−W2(N−n) = 0, which is equivalent

to identifying the roots of the polynomial equation below:

−n3(λ1 + λ2) + n2(2Nλ1 +Nλ2)− n(N2λ1 + 2tλ1λ2) +Ntλ1λ2 = 0

By Descartes’ rule of signs, this equation (i.e. the numerator) has potentially 3 positive roots. In the case of multiple

roots, only the one that lies between the minimum points of the wait time curves where both curves are increasing

is the symmetric equilibrium. See Proposition 1.
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For proportional allocation to be situated between the two minimums on the graph, the following

conditions need to hold:

C1: φN > nmin1 =
√
λ1t =

√
φΛt =⇒ N >

√
Λt
φ

C2: (1− φ)N > nmin2 =
√
λ2t =

√
(1− φ)Λt =⇒ N >

√
Λt

1−φ

Observe that since φ > 1
2 , C2 =⇒ C1. Thus, when the demand is more skewed (higher φ), we

need to have a larger platform size for condition (C2) to be satisfied.

We now prove that assumption (A1) + (A3) =⇒ (C2). Observe that condition that shows up

is the following: Assumption (A3) implies

2

√
t

(1− φ)Λ
<
N −

√
(1− φ)Λt

φΛ
+

t

N −
√

(1− φ)Λt

The second term on the RHS can be bounded as: t

N−
√

(1−φ)Λt
< t√

φΛt
, since N >

√
φΛt +√

(1− φ)Λt by assumption (A1).

Thus assumption (A3) implies the following:

N −
√

(1− φ)Λt

φΛ
> 2

√
t

(1− φ)Λ
− t√

φΛt
=⇒ N >

√
Λt

(
2φ

√
1

1− φ
−
√
φ+

√
1− φ

)

Next, we prove that the above inequality implies condition (C2), which stated that N >
√

Λt
1−φ .

Thus, we need to prove the following:

2φ

√
1

1− φ
−
√
φ+

√
1− φ >

√
1

1− φ
⇔ 2φ− 1√

1− φ
−
√
φ+

√
1− φ > 0

⇔
√
φ(
√
φ−

√
1− φ) > 0

Observe that the last inequality must be true given our assumption that φ > 1
2 , so (A1) + (A3)

=⇒ (C2). This finishes the proof of the lemma. �

Proof of Proposition 3. At proportional allocation, by Lemma A1, the demand-proportional

allocation is in between the minimum wait times for both regions. We show the proportional

allocation or any point to the left of it (i.e., an alloction with n1 ≤ φN) cannot be an all-regions

equilibrium. This, combined with the assumption in the proposition that an all-regions equilibrium

exists, implies that the all-regions equilibrium should be to the right of the proportional allocation.

That is:
n∗1
λ1
>

n∗2
λ2

.

To see why no all-regions equilibrium can be found weakly to the left of the proportional

allocation, note that at proportional allocation n = φN , region 2 wait time is higher than region

1, i.e. W2((1− φ)N) = N
Λ + t

(1−φ)N > W1(φN) = N
Λ + t

(φ)N since φ > 1
2 . As we move left, market

2’s wait time increases further, while market 1’s wait time decreases until we reach the minimum
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wait time for market 1, W (nmin1 ). Thus, the divergence between the two markets increases. For

the wait time curves to intersect, it must be in market 1’s decreasing wait time region. We know

from Proposition 1 that such an intersection will not be an all-regions equilibrium. Fig. 8 panel

(c) should help illustrate this point. This completes the proof of the proposition. �

Lemma A2. When an all-regions equilibrium exists for a ridesharing platform with N drivers

facing demand φΛ and (1− φ)Λ in the two regions:

1. an all-regions equilibrium also exists when demand is unchanged and there are N ′ = γN

drivers where γ > 1.

2. an all-regions equilibrium also exists when both the demand and number of drivers is scaled

by γ > 1 to N ′ = γN and Λ′ = γΛ.

Proof of Lemma A2. Consider the equivalent conditions required for the existence of an all-

regions equilibrium, characterized by assumptions (A1)-(A3). Below, we show that if the conditions

are satisfied for a given (N,Λ), then they must be satisfied for (a) (N ′,Λ′) = (γN,Λ) as well as (b)

(N ′,Λ′) = (γN, γΛ).

First, consider (A1). The proof of (a) is immediate. For (b), we observe that:

γN >
√
γ
√

Λt
(√

φ+
√

1− φ
)

holds since γ > 1 and (A1) holds for (N,Λ).

Next, we prove (A2). The proof of (A3) is similar to that of (A2) and is omitted.

For (A2), first we denote the following function φ:

ψ(ρ) =
ρN −

√
φΛt

(1− φ)Λ
+

t

ρN − φΛt

We prove that ψ is increasing in ρ, or dφ
dρ > 0. Observe that:

dψ

dρ
= N

(
1

(1− φ)Λ
− t(

ρN −
√
φΛt

)2
)

After some algebra and applying (A1), we obtain dψ
dρ > 0.

Now, for part (a), observe that setting ρ = N ′

N > 1 implies that, in (A2), the RHS increases and

the LHS does not change implying that (A2) still holds for (N ′,Λ′) = (kN,Λ).

Next, for (b), observe that applying (A2) with (N ′,Λ′) = (γN, γΛ) gives us:

2

√
t

γφΛ
< γN−

√
φγΛt

(1−φ)γΛ + t
γN−φγΛt ⇔ 2

√
t
φΛ <

√
γN −

√
φΛt

(1− φ)Λ
+

t
√
γN − φΛt

We need to prove the above holds whenever (A1)-(A3) hold.
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Since we know that ψ is an increasing function, we know that ψ(
√
γ) > ψ(1) when γ > 1. But

if we write out ψ(
√
γ) > ψ(1), it gives us exactly the expression we needed to be true:

2

√
t

φΛ
<

√
γN −

√
φΛt

(1− φ)Λ
+

t
√
γN − φΛt

Thus, when (N ′,Λ′) = (γN, γΛ), we find that (A2) holds for (N ′,Λ′).

Thus, (A1)-(A3) hold under the conditions detailed in the Lemma. �

Proof of Proposition 4. The proof of existence of all-regions equilibrium under the new

model primitives obtains from Lemma A2 above. To prove that the equilibrium supply ratios tilts

towards region 2, we first claim (but skip the straightforward proof) that if all the primitives of the

model (λ,N, t) are multiplied by same scaling factor, the existence of an all-regions equilibrium as

well as all of the
n∗i
n∗j

ratios (and, by construction, all λi
λj

ratios) are preserved. Therefore, in this

proof, instead of a multiplication of N and λ by a factor of γ > 1, we focus on fixing N and λ and,

instead, replacing t by t 1
γ .

For the all-regions equilibrium (n∗1, n
∗
2), define α =

n∗1
N . We know from Proposition 3 that α > φ.

The quilibrium condition, written in terms of α will be:

W d(α) ≡W1(αN)−W2((1− α)N) = −(1− α)N

(1− φ)Λ
+

(α)N

φΛ
+

t

(1− α)N
+

t

(α)N
= 0 (12)

where W d represents the difference between the total wait times between the two regions,

which should be zero at the equilibrium. We now use the implicit function theorem to show that

α increases as we increase t, which would prove the proposition.

dα

dt
= −

∂W d

∂t
∂W d

∂α

=
(1− α)α(2α− 1)(1− φ)φΛ

(α− 1)2α2N2 + (2(α− 1)α+ 1)(φ− 1)φΛt
(13)

The numerator is positive since α > 1
2 . Thus, the sign of

dα

dt
is determined by the denominator.

Below, we prove that the denominator is positive as well. The argument takes the following steps:

1. Define the denominator as g(α) = (α− 1)2α2N2 + (2(α− 1)α+ 1)(φ− 1)φΛt.

2. Observe that g′(α) = −2(2α − 1)
(
(1− α)αN2 + (1− φ)φΛt

)
< 0, implying that g(α) is a

decreasing function.

3. Since α ∈
[
φ, 1− nmin2

N

]
, the inequality g(α) ≥ g

(
1− nmin2

N

)
has to hold.

4. We prove that min g(α) = g
(

1− nmin2
N

)
> 0.

g

(
1− nmin2

N

)
= φ2Λt

N2

(
N2 − 2N

√
φΛt+ (2φ− 1)Λt

)
(14)

= φ2Λt
N2

(
(N −

√
φΛt)2 − tΛ(1− φ)

)
(15)
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where the term in parentheses is positive directly from assumption (A1).

Thus, we know that
dα

dt
> 0 implying that as t increases, the proportion of supply going to the

higher-demand market is greater. �

Proof of Proposition 5. As mentioned in the text of the paper, a scale-up in N can be

thought of as a scale-up in (λ1, λ2, N), followed by a scale back down in (λ1, λ2). From Proposition

4, we know that the first scale-up (i) preserves the existence of an all-regions equilibrium and also

(ii) makes it strictly less under-supplied in region 2. Therefore, the proof of Proposition (5) will be

complete if we show that the second scale back down also preserves the existence of an all-regions

equilibrium and makes it less under-supplied inn region 2.

To see this, suppose (n∗1, n
∗
2) is the all-regions equilibrium under (λ1, λ2, N, t). Let λ′i = λi

γ for

i ∈ {1, 2} and some γ > 1. We will now show that under (λ′1, λ
′
2, N, t), there is an all-regions

equilibrium with strictly less under-supply in region 2 than what is implied by (n∗1, n
∗
2).

Lemma A3. The following statements are true about the “old” equilibrium allocation (n∗1, n
∗
2)

under the “new” parameters (λ′1, λ
′
2, N, t):

1. The total wait function W2(n) is strictly increasing at n = n∗2.

2. At the allocation (n∗1, n
∗
2), the wait time in region 1 is strictly higher than that in region 2.

That is, W1(n∗1) > W2(n∗2).

3. The total wait function W1(n) is strictly increasing at n = N × λ′1
λ′1+λ′2

.

4. At the allocation proportional to demand, the wait time in region 2 is strictly larger than that

in region 1. That is, if we set ni = N × λ′i
λ′1+λ′2

, then W2(n2) > W1(n1).

Proof of Lemma A3. We start by statement 1. To see this, first note that from the assumption

that (n∗1, n
∗
2) was the all-regions equilibrium under (λ1, λ2, N, t), we know n∗2 has to be strictly larger

than where the old W2 function reached its trough. That is, n∗2 >
√
λ2t. Now, given λ′2 < λ2, we

it is also the case that n∗2 >
√
λ′2t. Therefore, the new W2 function is also strictly increasing at

n = n∗2.

We now turn to statement 2. Given that (n∗1, n
∗
2) was the all-regions equilibrium under the old

parameters, the total wait times in the two regions were equal to each other. That is:

n∗1
λ1

+
t

n∗1
=
n∗2
λ2

+
t

n∗2
(16)

Given Proposition (3), we know that n∗1 > n∗2, therefore: t
n∗1

< t
n∗2

. This latter inequality,

combined with equality (16), implies
n∗1
λ1

>
n∗2
λ2

. The sign of this inequality is preserved if we

multiply both sides of it by the positive number γ − 1. That is: (γ − 1) × n∗1
λ1

> (γ − 1) × n∗2
λ2

.
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The size of the inequality is also preserved when we add equal numbers to both sides. Those equal

numbers are the two sides of equation (16). This will give us:

(γ − 1)× n∗1
λ1

+
n∗1
λ1

+
t

n∗1
> (γ − 1)× n∗2

λ2
+
n∗2
λ2

+
t

n∗2
(17)

Therefore:

γ × n∗1
λ1

+
t

n∗1
> γ × n∗2

λ2
+

t

n∗2
(18)

which gives us:

n∗1
λ1
γ

+
t

n∗1
>
n∗2
λ2
γ

+
t

n∗2
(19)

which, by definition, means:

n∗1
λ′1

+
t

n∗1
>
n∗2
λ′2

+
t

n∗2
(20)

This proves statement 2.

Next, we turn to statement 3. The argument is similar to that for statement 1. N × λ1
λ1+λ2

was

larger than the trough of W1 under the old parameters. Given that the trough gets smaller under

the new parameters, it will keep being smaller than N × λ1
λ1+λ2

.

Finally, statement 4 is obvious from the proof of Proposition (3). �

Now notice that Lemma (A3) completes the proof of the proposition. Given that under the

allocation (n∗1, n
∗
2), we have W1 > W2, and under the allocation fully proportional to demand,

we have W1 < W2, and given that both W1 and W2 are continuous functions, there should be

an allocation (n∗
′

1 , n
∗2
1 ) in between the two such that W1(n∗

′
1 ) = W2(n∗

′
2 ). This was achieved by

statements 2 and 4. Now by statement 1, W2 is strictly increasing at n = n∗
′

2 because n∗
′

2 > n∗2 >√
λ′2t. Also, by statement 3, W1 is increasing at n = n∗

′
1 because n∗

′
1 > N λ1

λ1+λ2
>
√
λ′1t. This

implies that (n∗
′

1 , n
∗′
2 ) is the all-regions equilibrium under parameters (λ′1, λ

′
2, N, t). Now, given

n∗
′

1 < n∗1 and n∗
′

2 > n∗2, it follows that:

κ∗′ =

n∗
′

1
λ′1

n∗
′

2
λ′2

<

n∗1
λ′1
n∗2
λ′2

=

n∗1
λ1
n∗2
λ2

= κ∗

which finishes the proof of the proposition.�

Proof of Theorem (1). Before stating the induction hypothesis, we add one statement to the

five statements of Theorem (1). The inclusion of this statement and leveraging it in the induction

process will be helpful for the proof. We call it statement 6.
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Statement 6. Suppose an all region equilibrium n∗ = (n∗1, ..., n
∗
I) exists under primitives (λ,N, t)

where λ = (λ1, ..., λI). Then, demand arrival rates are scaled down, that is, under new primitives

(λγ , N, t) with γ > 1, we have:

• An all-regions equilibrium n∗
′

= (n∗
′

1 , ..., n
∗′
I ) exists.

• The new equilibrium n∗
′

shows less geographical supply inequity than n∗ in the sense that for

any i < j, we have
n∗
′
i
λi

n∗′
j
λj

≤
n∗i
λi
n∗
j
λj

. The inequality is strict if and only if λi > λj.

In words, this statement simply says the geographical supply inequity decreases if, all else

fixed, all demand arrival rates proportionally decrease. The intuition is that this makes idle times

relatively more important than pickup times.

We can now state the strong induction hypothesis.

Induction Hypothesis. Take some natural number I0 > 2. If all statements of Theorem (1),

including statement 6 added above, are correct for I ∈ {2, ..., I0 − 1}, then they are also all correct

for I = I0.

Now, in order to prove the theorem, we need to take two steps. First, we should prove the

basis of the induction process. That is, we must show the theorem holds under I = 2. Second, we

need to prove the induction hypothesis. As for the first step, note that propositions (1) through

(5) do this job. The only statement that is not explicitly proven by those theorem is statement 6.

However, the proof of statement 6 was the main building block of the proof of Proposition (5).39

We now turn to the second and main step of this proof, which is to show that the induction

hypothesis is correct (Note that some of the statements are not really proven based on the induction.

Nevertheless, we present all of the proofs in this inductive framework since we believe having one

induction as well as one non-induction section for the proof will just make it harder to read).

Proof of Statement 1. If the total wait time in region i is strictly higher than that in region

j, then given the continuity of these wait-time functions, a small enough mass of drivers can leave

region i for j and strictly benefit from that, violating the equilibrium assumption. To see why

they are increasing, suppose on the contrary, that at the equilibrium allocation, for region i, the

total wait time is strictly decreasing in the number of drivers in that region. Since drivers are

equal across all regions in equilibrium, drivers from any other region j will have the incentive to

relocate to region i, given that (i) currently region i has the same total wait as they do; and (ii)

once they move to region i, the total wait time of that region will decrease. This is a violation of

the equilibrium assumption. Therefore it has to be that at the equilibrium, the wait times are all

increasing in the number of drivers at all regions.�

39Also, propositions (1) through (5) assume that λ1 > λ2 and, hence, leave out the case where λ1 = λ2. But the

proofs for the case where I = 2 and λ1 = λ2 are straightforward and we leave them to the reader.
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Proof of Statement 2. Suppose, on the contrary, that there are two different all-regions

equilibria n∗ and n̄. Given the two vectors are different, there has to be a region i such that

n∗i 6= n̄i. Without loss of generality, assume n∗i < n̄i. Given that, from statement 1, we know the

total wait time is increasing at n∗i , and given the fact that the wait time function, once it becomes

increasing, it remains strictly increasing, we can say Wi(n
∗
i ) < Wi(n̄i).

Now, again from statement 1, we know two things. First, ∀j : Wj(n
∗
j ) = Wi(n

∗
i ) & Wj(n̄j) =

Wi(n̄i), which implies: ∀j : Wj(n
∗
j ) < Wj(n̄j). Second, we know that the total wait time function

at each region j must be strictly increasing after it hits its trough (which happens weakly before

n∗j ). This implies that in order for ∀j : Wj(n
∗
j ) < Wj(n̄j) to hold, it must be that ∀j : n∗j < n̄j .

Therefore:

Σj=1,...,I0 n̄j > Σj=1,...,I0n
∗
j

But this cannot be given that both of the sums should be equal to N .�

Proof of Statement 3. Note that the definition of equilibrium is that no driver should have

the incentive to relocate from one region to another. This definition, by construction, implies that

if n∗ = (n∗1, ..., n
∗
I0

) is an equilibrium under (λ,N, t), then once we fix Ñ = n∗i +n∗j for some i, j with

i < j, then the allocation (n∗i , n
∗
j ) is itself an equilibrium of the two-region game with primitives

(λi, λj , Ñ , t). Thus, by Proposition (3) (or alternatively, by the base of the induction), we know

that if λi > λj , then
n∗i
λi

>
n∗j
λj

. Also in case λi = λj , it is fairly straightforward to verify that

n∗i
λi

=
n∗j
λj

. To see this, note that in that case,
n∗i
λi

=
n∗j
λj

if and only if n∗i = n∗j . It is easy to see that

n∗i = n∗j is an equilibrium given that it gives the two regions the same total wait time and that at

it, the total wait times must be increasing according to previous statements.�

Proof of Statement 4. Before we start the proof of this statement, we note that, similar

to the case of Proposition (4), we can work with primitives (λ,N, tγ ) instead of (γλ, γN, t). As a

reminder, this is because there is a one-to-one and onto mapping between the equilibria under the

two primitives, which preserves all of the
n∗i
λi

values.

We start by proving the first statement. That is, if an all-regions equilibrium exists under

(λ,N, t), then one does under (λ,N, tγ ) as well. To see this, let us assume that under the “old” prim-

itives (λ,N, t), the all-regions equilibrium allocation n∗ is such that ∀i ∈ {1, ..., I0} : Wi(n
∗
i ) = w.

We know this common w must exist from statement 1, and we know it is unique from statement 2.

We show existence of an equilibrium allocation under the new primitive by first describing two “par-

tial equilibrium” allocations. We construct the first partial equilibrium allocation n̄ = (n̄1, ..., n̄I0)

by fixing n̄1 = n∗1 and assuming the rest of values (n̄2, ..., n̄I0 to be the equilibrium allocation of

drivers among regions 2 to I0 under primitives ((λ2, ..., λI0), N − n∗1, tγ ). In words, this allocation

fixes the number of drivers in region 1 (i.e., the region with the highest demand arrival rate λ1) at

its value under the old primitives but allows the drivers of all other regions to reshuffle themselves

among those regions. The second partial equilibrium allocation ñ fixes ñ1 = N × λ1
Σi=1,...,I0

λi
, and
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assumes the rest of values (ñ2, ..., ñI0 to be the equilibrium allocation of drivers among regions 2

to I0 under primitives ((λ2, ..., λI0), N × (1 − λ1
Σi=1,...,I0

λi
), tγ ). In words, this allocation fixes the

total number of drivers in region 1 at the value it would take if drivers were to be allocated fully

proportional to demand arrival rates. It then allows the rest of the drivers to reshuffle themselves

among other areas under the new primitives. We will use these two partial equilibrium allocations

to prove existence of an all-region equilibrium. But first we need to prove the existence of these

partial equilibrium allocations themselves. Lemma A4 below does this job.

Lemma A4. Partial equilibrium allocations ñ and n̄ described above exist, are unique, and allocate

a strictly positive number of drivers to each region.

Proof of Lemma (A4). We first start from n̄. Note that the assumption of n∗ being the

equilibrium allocation under (λ,N, t), by construction implies that (n∗2, ..., n
∗
I0

) is the unique all-

region equilibrium allocation under ((λ2, ..., λI0), N − n∗1, t). Now, given that by our induction

assumption all results (including statement 4) hold for I0 − 1 regions, if the primitives remain the

same except that t is divided by some γ > 1, a unique all-region equilibrium will still exist. This is

what we were denoting n̄2 through n̄I0 .

Next, we turn to ñ and construct it from n̄. We just showed that (n̄2, ..., n̄I0) is the unique

all-regions equilibrium under ((λ2, ..., λI0), N−n∗1, t). Also note that by statement 3, we know n∗1 >
λ1

Σi=1,...,I0
λi

), which implies N −n∗1 < N × (1− λ1
Σi=1,...,I0

λi
)). Therefore, primitives ((λ2, ..., λI0), N ×

(1 − λ1
Σi=1,...,I0

λi
), tγ ) can be constructed from primitives ((λ2, ..., λI0), N − n∗1, t) by increasing the

total number of drivers. Given that n̄ was the unique all-regions equilibrium allocation under

((λ2, ..., λI0), N − n∗1, t), and given the induction assumption on statement 5 for I = I0 − 1 regions,

we can say that primitives ((λ2, ..., λI0), N × (1 − λ1
Σi=1,...,I0

λi
), tγ ) also have a unique all-regions

equilibrium allocation. This is exactly what was denoted ñ2, ..., ñI0 . This completes the proof of

the lemma.�

We now use these two partial equilibrium allocations to show that a unique all-regions equi-

librium allocation exists under primitives (λ,N, tγ ). Our next step is to prove the following useful

lemma.

Lemma A5. At the partial equilibrium allocation n̄, the total wait time in region 1 is larger than

that in any other region. Conversely, at the partial equilibrium allocation ñ, the total wait time in

region 1 is smaller than that in any other region.

Proof of Lemma (A5). To see why the result holds for n̄, note that under the old equilibrium

n∗ and old primitives (λ,N, t), all of the wait times were equal. This means for any i > 1 we had

n∗1
λ1

+
t

n∗1
=
n∗i
λi

+
t

n∗i
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But given that for all i > 1 we have n∗1 ≥ n∗i we get the following inequality under the new primitives

(λ,N, tγ ):

n∗1
λ1

+

t
γ

n∗1
≥ n∗i
λi

+

t
γ

n∗i

Next, note that the main and only difference between allocations n∗ and n̄ is that under n̄, drivers

reshuffle among regions 2 to I0 in order to reduce their total wait times. Therefore, there has to be

at least one region j such that:

n̄j
λj

+

t
γ

n̄j
≤
n∗j
λj

+

t
γ

n∗j

Combining the above two, we get:

n̄j
λj

+

t
γ

n̄j
≤ n∗1
λj

+

t
γ

n∗1

But the total wait time under (λ,N, tγ ) is equal across regions 2 through I0 under allocation n̄.

Therefore, the above inequality holds not only for a specific j , but under any j > 1. This proves

the lemma for n̄ given that n̄1 = n∗1.

Next, we prove the lemma for ñ. We first show that the wait time in region 1 is smaller than

that in region 2 if both get drivers proportional to their demand arrival rates. We then show that

the wait time in region 2 under ñ2 is larger than the wait time in region 2 if region 2 were to get

drivers proportional to its demand arrival rate. These two statements, combined, will prove our

intended result. To see the first claim, note that the wait time in region 1, if it gets N× λ1
Σi∈{1,...,I0}λi

drivers, will be:

w1 =
N × λ1

Σi∈{1,...,I0}λi

λ1
+

t
γ

N × λ1
Σi∈{1,...,I0}λi

which gives:

w1 =
N

Σi∈{1,...,I0}λi
+

t
γ × Σi∈{1,...,I0}λi

Nλ1
(21)

Similarly, if region 2 were to get N × λ2
Σi∈{1,...,I0}λi

drivers, its total wait time will be:

w2 =
N

Σi∈{1,...,I0}λi
+

t
γ × Σi∈{1,...,I0}λi

Nλ2
(22)

It is easy to see that the first terms of w1 and w2 are the same, and the second term is larger in w2

given that λ1 ≥ λ2. Now note that under allocation ñ, the wait time in region 1 is indeed w1. So, it

remains to show that W2(ñ2) ≥ w2. To show this, we make two observations (and prove them both

shortly). First, ñ2 ≥ N × λ2
Σi∈{1,...,I0}λi

. This simply says under ñ, region 2 is getting more drivers

than it would if drivers were to be allocated to regions proportionally to their demand rates. Second,

the total wait time function in region 2 is increasing between N × λ2
Σi∈{1,...,I0}λi

and ñ2. Together,

these two observations implyW2(ñ2) ≥ w2, as desired. Therefore, we have shown thatW2(ñ2) ≥ w1.
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But given that (ñ2, ..., ñI0) was an all-regions equilibrium under ((λ2, ..., λI0), N×(1− λ1
Σi=1,...,I0

λi
, tγ ),

we know that for any i, j > 1 : Wi(ñi) = Wj(ñj). This, combined with W2(ñ2) ≥ w1, completes

the proof of the lemma, of course with the exception of the two observations made in this paragraph.

We now turn to proving those observations and finish the proof of the lemma.

The first observation was that ñ2 ≥ N × λ2
Σi∈{1,...,I0}λi

. To see why this is true, note that ñ is

the all-regions equilibrium under ((λ2, ..., λI0), N× (1− λ1
Σi=1,...,I0

λi
), tγ ). Therefore, by our induction

assumption on statement 3, region 2 will get disproportionately more drivers relative to all other

regions, because it has the highest λi amongst regions 2, ..., I0. That is ∀i > 2 : ñ2
λ2
≥ ñi

λi
. It is

then easy to show that:
ñ2

λ2
≥

Σi=2,...,I0 ñi
Σi=2,...,I0λi

(23)

But we know, from the primitives, that Σi=2,...,I0 ñi = N × (1− λ1
Σi=1,...,I0

λi
) = N × Σi=2,...,I0

λi
Σi=1,...,I0

λi
. Now,

plugging this into (23) and rearranging, we get ñ2 ≥ N × λ2
Σi∈{1,...,I0}λi

, which is exactly our first

observation.

We now turn to the proof of the second observation. That is, we want to show that the total

wait time function in region 2 is increasing between N × λ2
Σi∈{1,...,I0}λi

and ñ2. To see this, note that

the wait time curve in region 2 takes the form that was depicted in figure (8). In particular, it is

a curve with only one trough; and once past the trough, the curve will remains strictly increasing

indefinitely. Thus, to prove that the wait-time is increasing over the interval [N × λ2
Σi∈{1,...,I0}λi

, ñ2],

it is sufficient to show that the smallest point in this interval is past the trough. One can show the

trough happens at n2 =
√

t
γλ2. Therefore, what we need to show is:

N × λ2

Σi∈{1,...,I0}λi
≥
√
t

γ
λ2 (24)

In order to prove this, we first assume, to the contrary, that N × λ2
Σi∈{1,...,I0}λi

<
√

t
γλ2; then we

arrive at a contradiction with the result that ñ is the all-regions equilibrium under ((λ2, ..., λI0), N×
(1 − λ1

Σi=1,...,I0
λi
, tγ ). Note that we are assuming, without loss of generality, λ2 ≥ λi for any i > 2.

Therefore, given that all λi are positive, for any i > 2, we have λi
λ2
≤
√

λi
λ2

. Thus, if we multiply the

left hand side of the inequality N × λ2
Σi∈{1,...,I0}λi

<
√

t
γλ2 by λi

λ2
and the right hand side by

√
λi
λ2

,

then the direction of the inequality should not not change. Therefore, not only for region 2, but

also for any region i ≥ 2, we will have:

N × λi
Σj∈{1,...,I0}λj

<

√
t

γ
λi

Now, if we sum over all i = 2, ..., I0 on both sides of the inequality above, we get:

N × Σi=2,...,I0

λi
Σj∈{1,...,I0}λj

< Σi=2,...,I0

√
t

γ
λi
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Rearranging, we get:

N × (1− λ1

Σj∈{1,...,I0}λj
) < Σi=2,...,I0

√
t

γ
λi

But N × (1 − λ1
Σj∈{1,...,I0}λj

) is the total number of drivers in regions 2 through I0. That is:

N × (1− λ1
Σj∈{1,...,I0}λj

) = Σj=2,...,I0 ñj . Therefore, we get:

Σj=2,...,I0 ñj < Σi=2,...,I0

√
t

γ
λi

which implies there should be at least one j ≥ 2 such that ñj <
√

t
γλj . But this means that for

that region j, the wait time function is decreasing at n = ñj contradicting the result that ñj is part

of an all-regions equilibrium. This completes the proof of the second observation, and hence that

of lemma (A5).�

Next, we use lemma (A5) to construct an all-regions equilibrium under primitives (λ,N, tγ ).

This will be a constructive proof to the existence portion of statement 4. To this end, we start from

the first partial equilibrium n̄, gradually shifting drivers from region 1 to other regions until we are

left with ñ drivers in region 1. That is, for any n̂1 ∈ [ñ1, n̄1] we consider the partial equilibrium

n̂ = (n̂1, ..., n̂I0) such that the (n̂2, ..., n̂I0) is the all-regions equilibrium allocation under primitives

(λ2, ..., λI0), N − n̂1,
t
γ ). The argument for why such partial equilibrium exists for any n̂1 < n̄1 is

similar the argument given in proof of lemma (A4) for ñ1.

Now, note that by lemma (A5), the total wait time in region 1 is larger than that in other regions

when n̂1 = n̄1 and it is smaller in region 1 than it is in other regions when n̂1 = ñ1. Therefore,

there should be some n̂1 ∈ [ñ1, n̄1] for which the total wait time in region 1 is equal to the total

wait time in all of the other regions, which themselves are equal to each other by n̂ being a partial

equilibrium the way defined above.40 We claim such allocation n̂ is the all-regions equilibrium of

the whole market (that is, under primitives (λ,N, tγ ) ). The proof for this claim is as follows:

We know that under allocation n̂ all regions have the same total wait time. We also know,

by (n̂2, ..., n̂I0) being the all-regions equilibrium under primitives (λ2, ..., λI0), N − n̂1,
t
γ ), that the

total wait time in each region i > 1 is increasing at n = n̂i. Thus, the only thing that remains

to be shown is that for i = 1 too the total wait time curve is increasing at n = n̂1. To this end,

as argued before in a similar case, we need to show that n̂1 ≥
√

t
γλ1. Note that given n̂1 ≥ ñ1,

it would suffice to show ñ1 ≥
√

t
γλ1. We show this latter inequality by borrowing from what we

already did in the proof of the last observation we made as part of proof of lemma (A5). There, we

proved inequality (24) holds. Now, given that we have been assuming (without loss of generality)

40Note that in order to make this argument we also need to know that as we move n̂1 within [ñ1, n̄1], the total wait

time in region 1 as well as the common total wait time in the other regions both move continuously. This is true by

construction for region 1, since the total wait time function is continuous. For other regions, this needs to be shown

that as we add drivers to the collection of these regions, the equilibrium total wait time moves continuously. We skip

the proof of this claim here, but can provide it upon request.
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that λ1 ≥ λ2, and given that all λi are positive numbers, we get: λ1
λ2
≥
√

λ1
λ2

. Therefore, if we

multiply the left-hand side of equation (24) by λ1
λ2

and the right hand side by
√

λ1
λ2

, the sign of the

inequality should not change. This operation gets us:

N × λ1

Σi∈{1,...,I0}λi
≥
√
t

γ
λ1

which is exactly what we were after. This shows that n̂ is the all-regions equilibrium, completing

the proof of the first part of statement 4 in the theorem.�

Now that we have shown the all-region equilibrium n̂ under primitives (λ,N, tγ ) exists, we show

that it indeed shows less geographical supply inequity than the old equilibrium n∗. As the first

step towards this goal, note that for any j > i > 1, we can show the result holds based on our

induction assumption. More precisely, we know that (n∗2, ..., n
∗
I0

) is the all-regions equilibrium under

primitives ((λ2, ..., λI0), N−n∗1, t). We also know that (n̂2, ..., n̂I0) is the all regions equilibrium under

primitives ((λ2, ..., λI0), N − n̂1,
t
γ ). The move from primitives ((λ2, ..., λI0), N −n∗1, t) to primitives

((λ2, ..., λI0), N − n̂1,
t
γ ) involves two steps. The first step is to divide t by some γ > 1. The second

step is to add n∗1 − n̂1 drivers. Based on our induction assumption, both statements 4 and 5 of

Theorem (1) hold for I0 − 1 regions. Therefore, for any j > i > 1 we have:

n̂i
λi
n̂j
λj

≤
n∗i
λi
n∗j
λj

with the inequality strict if λi > λj . Now the only thing that remains to show is that we can

say the same not only for j > i > 1, but also for j > i = 1. In order to show this, we consider three

cases.

Case 1: for every j > 1, we have n̂j > n∗j . In this case, the result is becomes trivial given

that we know n̂1 ≤ n∗1.

Case 2: for at least two distinct j, j′ > 1, we have n̂j ≤ n∗j and n̂j′ ≤ n∗j′. We

start with j and note that the allocation of drivers in all regions other than j –i.e., allocation

(n̂1, ..., n̂j−1, n̂j+1, ..., n̂I0) is the all-region equilibrium under primitives ((λ1, ..., λj−1, λj+1, ..., λI0), N−
n̂j ,

t
γ ). Also note that allocation (n∗1, ..., n

∗
j−1, n

∗
j+1, ..., n

∗
I0

) is the all-region equilibrium under prim-

itives ((λ1, ..., λj−1, λj+1, ..., λI0), N −n∗j , tγ ). Note that the former primitives can be obtained from

the latter by two moves. First, going from t to t
γ for some γ > 1; and second, changing the total

number of drivers from N − n∗j to the (by assumption) larger number of N − n̂j . Based on our

induction assumptions, we know that both of these moves reduce the geographical supply inequity.

Therefore, now we can claim the following for any i 6= j:

n̂1
λ1
n̂i
λi

≤
n∗1
λ1
n∗i
λi
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with the inequality strict if λ1 6= λi. This covers all of the comparisons that we needed with the

exception of the comparison between region 1 and region j itself. But we can prove the inequality

for that case as well, by going through the exact same process as above, except excluding region j′

this time instead of region j. This finishes the proof of statement 4 of the theorem under case 2.

Case 3: for exactly one region j > 1, we have n̂j ≤ n∗j . In this case, we can go through

the same process as that described in case 2, to show for any i 6= j:

n̂1
λ1
n̂i
λi

≤
n∗1
λ1
n∗i
λi

with the inequality strict if λ1 6= λi. This time, however, we are not able to use a similar

argument for the to show the result holds between regions 1 and j. The following lemmas, however,

demonstrate a different way to prove the result for this specific comparison.

Lemma A6. Under the conditions of case 3, we have n̂1 ≥
n∗1√
γ and n̂j ≥

n∗j√
γ .

Proof of Lemma (A6). We only show n̂1 ≥
n∗1√
γ . The argument for n̂j ≥

n∗j√
γ is the same.

We start by observing that the total wait time w1 in region 1 under n1 =
n∗1√
γ is given by:

w1 =
n1

λ1
+

t
γ

n1

=

n∗1√
γ

λ1
+

t
γ

n∗1√
γ

= (
n∗1
λ1

+
t

n∗1
)

1
√
γ

=
w∗
√
γ

(25)

where w∗ is the common total wait time among all regions under primitives (λ,N, t) and the

all-regions equilibrium n∗ given those primitives.

Next, we show that under the new primitives (λ,N, tγ ), but at the old equilibrium allocation

n∗, the total wait-time in any region i is weakly larger than w∗√
γ . To see this, we write out one such

total wait time:
n∗i
λi

+

t
γ

n∗i

Note that because n∗ is the all-region equilibrium under the old primitives, it must be that for

all i : n∗i ≥
√
tλi. This gives

n∗i
λi
≥ t

n∗i
, or, alternatively: t

n∗i
≤ 1

2(
n∗i
λi

+ t
n∗i

) = w∗

2 .

Therefore, we can write:

n∗i
λi

+

t
γ

n∗i
= (

n∗i
λi

+
t

n∗i
)− t

n∗i
(1− 1

γ
)
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= w∗ − t

n∗i
(1− 1

γ
)

≥ w∗(1− 1

2
(1− 1

γ
))

= w∗ × (
1 + 1

γ

2
)

> w∗ × (

√
1× 1

γ
)

=
w∗
√
γ

(26)

Equations (25) and (26), together, tell us that for any i, we have
n∗i
λi

+
t
γ

n∗i
> w1. Now notice

that the total wait time under the new primitives at the old equilibrium alloction in any region is

increasing. This is simply because ∀i : n∗i ≥
√
tλi >

√
t
γλi. This, combined with the fact that

there is at least one region i with n̂i > n∗i ,
41 tells us:

ŵ ≡ n̂i
λi

+

t
γ

n̂i
>
n∗i
λi

+

t
γ

n∗i
> w1

where ŵ is defined as the common total wait time among all regions under the new primitives

and new equilibrium allocation.

What ŵ > w1 tells us is that if we reduce the number of drivers in region 1 to n1 =
n∗1√
γ , the

total wait time in region 1 falls below the equilibrium total wait time. But this means it has to be

that n̂1 > n1 =
n∗1√
γ . To see why, consider two scenarios. First, if n1 <

√
t
γλ1, then by n̂1 ≥

√
t
γλ1,

we get n̂1 > n1. Next, if n1 ≥
√

t
γλ1, then the wait time curve is strictly increasing when moving

up from n1, which means at some point past n1, it hits the higher wait time ŵ > w1. That point

would be n̂1. Thus, the lemma has been proven for region 1. The proof for region j is exactly the

same. �

We now present the another useful lemma which helps us better understand what happens to

the two regions 1 and j.

Lemma A7. Consider a market with two regions 1 and 2 only. Allocation n∗ is an equilibrium

in this market under primitives (λ1, λ2, N, t) if and only if allocation n∗√
γ is an equilibrium under

primitives (λ1, λ2,
N√
γ ,

t
γ ).

Proof of Lemma (A7). Follows directly from definitions.�

Now, lemmas (A6) and (A7) show us a clear way to complete the last piece of the inductive

proof of statement 4 in the theorem. Based on lemma (A6), we know n̂1 + n̂j >
n∗1+n∗j√

γ . Now

define N∗ = n∗1 + n∗j and N̂ = n̂1 + n̂j . We know that (n∗1, n
∗
j ) was the all-regions equilibrium

41This is true because there are at least three regions; and besides regions 1 and j, case 3 assumes n̂i > n∗i for all i.
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under primitives (λ1, λj , N
∗, t). Thus, by lemma (A7) we can claim that (

n∗1√
γ ,

n∗j√
γ ) is the all-regions

equilibrium under primitives (λ1, λj ,
N∗√
γ ,

t
γ ).

On the other hand, we know that (n̂1, n̂j) is the all-regions equilibrium under primitives

(λ1, λj , N̂ ,
t
γ ). Given that we showed N̂ > N∗√

γ , and given that by our strong induction assumption

statement 5 is correct for all two-region cases, we can write:

n̂1
λ1
n̂j
λj

≥

n∗1√
γ

λ1
n∗
j√
γ

λj

=

n∗1
λ1
n∗j
λj

with the inequality strict whenever λ1 > λj . This completes the proof of case 3, and hence

finishes the inductive proof of statement 4 of Theorem (1) with the exception of the last claim

about γ →∞, which we turn to next.

To see why for any i < j we have
n∗
′
i
λi

n∗′
j
λj

→ 1 as γ → ∞, assume first on the contrary, that this

claim is not true. That is ∃ i < j such that
n∗
′
i
λi

n∗′
j
λj

does not approach 1 as γ → ∞. We use this

assumption to get a contradiction. Note that given the other claims in statement 4 of the theorem,

we know that
n∗
′
i
λi

n∗′
j
λj

monotonically decreases as γ increases. Therefore, the only possibility for it to

not approach 1, is for it to approach a number strictly above one. Denote that number by κ > 1.

Also note that as γ → ∞, the equilibrium number of drivers in none of the regions tends to

zero. This is because (i) as immediately implied by the other claims in statement 4, the number

of drivers in the lowest demand region n∗
′
I is increasing in γ; and (ii) the number of drivers in any

other region is always weakly larger than n∗
′
I . This, along with the fact γ → ∞ is equivalent to

t → 0, means that the total wait time in each region k will tend to the idle time in that region.

Therefore,
n∗
′
i
λi

n∗′
j
λj

→ κ > 1 implies regions i and j have different limiting total wait times at the

equilibrium, which contradicts statement 1. This finishes the proof of the statement. �

Proof of Statement 6. The steps of this proof closely (almost exactly) follow the steps of the

proof of statement 4. We skip it but can provide the detailed proof upon request.

Proof of Statement 5. Similar to the corresponding two-region case (i.e., proof of Proposition

(5). This statement can be proven in a straightforward manner once we have proven statements

4 and 6. To be more precise, if we know that geographical supply inequity decreases in the sense

defined in the statement of the theorem both (i) when we proportionally scale-up N and the vector

λ and (ii) when we scale down the vector λ, it follows that the geographical supply inequity also

decreases when we only scale up N , which is a certain combination of (i) and (ii).�
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The above proofs show that (i) the theorem holds for I = 2 and that (ii) the theorem holds for

any I0 > 2 if it holds for all I ∈ {2, ..., I0 − 1}. This means our proof is complete.�

Proof of Proposition 6. Proof of statement 1 is straightforward and is, hence, left to the

reader.

Proof of Statement 2. Under primitives (λ,N, t), denote the average idle time for drivers for

allocation n ∈ N by W idle(n). From eq. (9), we should have:

W idle(n) ≡
Σi=1,...,Ini × ni

λi

N
≡ 1

N
× Σi=1,...,I

n2
i

λi
(27)

Our objective is to find the allocation n that minimizes the average wait time, subject to the

restriction that Σi=1,...,Ini = N . The first order condition requires that the gradient of W idle(n)

with respect to n be proportional to the gradient of Σi=1,...,Ini with respect to n. Now note that:

∇n(W idle) ≡ 2

N
× (

n1

λ1
, ...,

nI
λI

)

Also:

∇n(Σi=1,...,Ini) ≡ (1, ..., 1)

These two vectors being proportional implies there should be some ξ ∈ R such that:

∀i ∈ {1, ..., I} :
2

N

ni
λi

= ξ × 1 (28)

This, in turn, implies:

∀i, j ∈ {1, ..., I} :
ni
λi

=
nj
λj

(29)

Note that there is exacly one allocation in N that satisfies eq. (29). That allocation is n0. This

completes the proof of statement 2 of the proposition.42�

Proof of Statement 3. The objective is to show W idle(n2) ≥ W idle(n1). Our strategy is as

follows: we start from n1 and we modify the allocation in multiple steps until we reach n2. We show

that along the way, the average idle time W idle weakly increases with each one of our modifications.

We first start by constructing allocation n1,I as follows:

• n1,I
I = n2

I

• ∀i < I : n1,I
i = n1

i ×
N−n2

I

N−n1
I

In words, allocation n1,I is constructed from allocation n1 by (i) removing n1
I −n2

I drivers from

region I,43 and then allocating them over the other regions in a proportional manner to those

regions’ drivers under n1.

42We skip checking the second order condition. It is fairly straightforward and is left to the reader.
43Note that it is straightforward to verify n1

I ≥ n2
I . This follows from the assumptions that ∀i < j : κ2

ji ≥ κ1
ji and

that Σi=1,...In
1
i = Σi=1,...In

2
i = N .
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Remark 1. With the exception of region I, the new allocation n1,I preserves all of the supply ratios

of n1 for all pairs of regions. ∀i, j < I :
n1,I
i

n1,I
i

=
n1
i

n1
i
.

Proof of this remark is immediate. We now prove a useful lemma.

Lemma A8. W idle(n1,I) ≥W idle(n1).

Proof of Lemma A8. Define allocation n(z) by:

• nI(z) ≡ zn2
I + (1− z)n1

I

• ∀i < I : n1,I
i = n1

i ×
N−nI(z)
N−n1

I

It is straightforward to see that n(0) = n1 and n(1) = n2. Therefore, the lemma will be proven

if we show that for all z ∈ [0, 1], the average driver idle time is weakly increasing as we increase

z. To this end, we calculate ∂W idle(n(z))
∂z and show it is non-negative for all z ∈ [0, 1]. By the chain

rule, ∂W idle(n(z))
∂z is given by the following inner product:

∂W idle(n(z))

∂z
≡ ∇nW idle(n(z)) · ∂n(z)

∂z
(30)

We know:

∇nW idle(n(z)) ≡ 2

N
(
ni(z)

λi
)i=1,...,I

Also, by the definition of n(z), we know:

• ∂nI(z)
∂z ≡ −(n1

I − n2
I)

• ∀i < I : ∂nI(z)
∂z ≡ (n1

I − n2
I)

n1
i

N−n1
I

Replacing from the above formulas into eq. (30), we get:

∂W idle(n(z))

∂z
≡

2(n1
I − n2

I)

N
[−nI(z)

λI
+ (Σi=1,...,I−1

n1
i

N − n1
I

ni(z)

λi
)] (31)

To show the above is non-negative, we claim that:

∀i < I :
ni(z)

λi
≥ nI(z)

λI
(32)

To see why eq. (32) holds, note that for all z ∈ [0, 1], we have nI(z) ≤ n1
I and ∀i < I : ni(z) ≥ n1

i .

Therefore, we can write:

ni(z)

nI(z)
≥ n1

i

n1
I

But we know that by assumption:

n1
i

n1
I

≥ λi
λI
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Combining the above two inequalities, we get ni(z)
nI(z) ≥

λi
λI

. Re-arranging, we get eq. (32).

Next, replacing from eq. (32) into eq. (31) and noting that n1
I −n2

I is non-negative, we have the

following for any z ∈ [0, 1]:

∂W idle(n(z))

∂z
≥

2(n1
I − n2

I)

N
[−nI(z)

λI
+ (Σi=1,...,I−1

n1
i

N − n1
I

nI(z)

λI
)] (33)

=
2(n1

I − n2
I)

N

nI(z)

λI
[−1 + (Σi=1,...,I−1

n1
i

N − n1
I

)]

=
2(n1

I − n2
I)

N

nI(z)

λI
[−1 + (

Σi=1,...,I−1n
1
i

N − n1
I

)]

=
2(n1

I − n2
I)

N

nI(z)

λI
[−1 + (

N − n1
I

N − n1
I

)]

=
2(n1

I − n2
I)

N

nI(z)

λI
[0]

= 0

Therefore, it follows that W idle(n1,I) ≥W idle(n1), completing the proof of Lemma A8.�

Next, we start from n1,I and make another adjustment in order to get to n2. Informally, we take

n1,I , move n1,I
I−1 − n2

I−1 drivers from region I − 1, and proportionally re-allocate them to regions

1 through I − 2.44 Note that we are not modifying anything about region I any more. Therefore,

the new allocation will have exactly as many drivers as n2 does in regions I − 1 and I; but in other

regions, its drivers will be allocated proportionally to what n1 and, by Remark 1, n1,I had.

We denote this new allocation n1,I−1. Before formally defining it, we introduce another notation.

Denote N I = Σi=1,...,I−1n
1,I
i = N − n2

I . Now we formally define the allocation n1,I−1 and how it is

constructed from n1,I as follows:

• n1,I−1
I = n1,I

I = n2
I

• n1,I−1
I−1 = n2

I−1

• ∀i < I − 1 : n1,I−1
i = n1,I

i ×
NI−n2

I−1

NI−n1,I
I−1

Next, in a similar manner to Lemma A8, we can show W idle(n1,I−1) ≥ W idle(n1,I). We skip

the steps here because they are exactly the same as the steps of the proof in Lemma A8. We then

continue constructing allocations n1,I−2, n1,I−3 etc. in a similar manner, and in every step m, we

44Again, note that n1,I
I−1 − n

2
I−1 ≥ 0. To see why this is true, observe that (i) Σi=1,...,I−1n

1,I
i = Σi=1,...,I−1n

2
i , and

(ii) by combining Remark 1 with the assumptions in the proposition: ∀i < j < I :
n
1,I
i

n
1,I
j

≥ n2
i

n2
j
.
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show W idle(n1,I−m) ≥ W idle(n1,I−m+1). Given that our construction of such allocations implies

n1,1 ≡ n2, then we get:

W idle(n2) = W idle(n1,1) ≥W idle(n1,2) ≥ ... ≥W idle(n1,I) ≥W idle(n1)

which finishes the proof of Statement 3, and that of the proposition.�
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