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0. ABSTRACT

In this paper we provide a comprehensive Bayesian posterior analysis of trend determination in general
autoregressive models. Multiple lag autoregressive models with fitted drifts and time trends as well as models
that allow for certain types of structural change in the deterministic components are considered. We utilize a
modificd information matrix-based prior that accommodates stochastic nonstationarity, takes into account the
interactions between long-run and short-run dynamics and controls the degree of stochastic nonstationarity
permitted. We derive analytic posterior densities for all of the trend determining parameters via the Laplace
approximation to multivariate integrals. Wec also address the sampling properties of our posteriors under
alternative data generating processes by simulation methods. We apply our Bayesian techniques to the Nelson-
Plosser macroeconomic data and various stock price and dividend data. Contrary to DelJong and Whiteman
(1989a,b,c), we do not find that the data overwhelmingly favor the existence of deterministic trends over
stochastic trends. In addition, we find evidence supporting Perron’s (1989) view that some of the Nelson and

Plosser data are best construed as trend stationary with a change in the trend function occurring at 1929.

JEL classification: 211

Key words: Bayesian analysis, flat prior, fragile inference, hypergeometric function, ignorance prior, Laplace
approximation, structural change, unit root.



1. INTRODUCTION

Most macroeconomic and financial time series appear to exhibit some form of trend behavior and cannot
be regarded as stationary in any conventional sense. The correct statistical interpretation and treatment of this
important characteristic of economic time series, however, is not obvious and has been the focus of much
research in the past few years. Morcover, assumed trend behavior can have profound implications for economic
theories purporting to explain observed economic events, for econometric modeling strategics and for forecasting
accuracy.

Traditionally, empirical researchers have treated observed trends as deterministic functions of time,
which allowed standard statistical techniques to be used for econometric analysis. Further, in statistical theory
nonstationary components have most frequently been assumed to be harmonizable (i.e. subject to frequency
decomposition, at least asymptotically, rather like a stationary time series) upon suitable normalization, as in the
use of Grenander-type conditions (e.g. Hannan (1970) p. 215). Such approaches to the phenomenon of
nonstationarity are called trend-stationary and under these views, current stochastic shocks have only a temporary
effect on the long-run movement of a series. Consequently, long-run forecasts from such a model may be
expected to be fairly precise as long as the trend is consistently estimated. Led in part by the popularity and
success of Box and Jenkins’ ARIMA modeling methodology, many researchers have challenged this traditional
view of trend behavior and argued instead that observed trends are better modeled as stochastic functions of
time. According to the simplest version of this theory, stochastic shocks accumulate over time and observed
series require differencing in order to ensure stationarity. In this case, current shocks have an enduring effect
on the evolution of the series; hence, long-run forecasts are expected to be quite poor. This latter interpretation
of trend behavior has set off an explosion of research into the econometric analysis of models with stochastic
trends.

Many of the developments in this area have arisen in response to the need for reliable statistical
techniques for discriminating between deterministic and stochastic trends in observed economic time series.

Many classical statistical procedures have been developed explicitly for this purpose. Most notable are the unit
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root tests of Dickey and Fuller (1979,1981), Sargan and Bhargava (1983), Said and Dickey (1984), Phillips (1987)
and Phillips and Perron (1988). These tests have been applied to a wide variety of economic time series as in
the empirical studies of Nelson and Plosser (1982), Schwert (1987) and Perron (1988), and often the null
hypothesis of a unit root cannot be rejected at conventional levels of significance'. These empirical results have
led many to accept the notion that a wide variety of economic time series contain unit roots and, therefore,
stochastic trends.
While there has been a great deal of research on the development of classical methods for determining
trend behavior, much less work has been done on the use of Bayesian methods. Recently, however, Sims (1988)
and Sims and Uhlig (1989) have touted the superiority of Bayesian flat prior methods over classical methods for
the purpose of determining trend behavior in observed economic series. In particular, Sims (1988} states that
flat prior Bayesian procedures are simpler, more reasonable, and provide a logically sounder starting place for
inference than classical hypothesis testing procedures. Sims uses Bayesian arguments to attack classical unit root
testing methodology in the abstract. By contrast, DeJong and Whiteman (1989a,b,c) conduct empirical research
with flat prior Bayesian techniques and directly challenge classical unit root findings in a wide array of cases,
including the Nelson and Plosser macroeconomic series, various stock price and dividend data, and postwar
quarterly real GNP for the U.S.A. Their main conclusions are that the classical unit root inferences for most
of these series are the result of assigning zero prior probability to the alternative hypothesis that the series are
trend-stationary and when this "excessively sharp” prior is relaxed, the data tend to support the trend-stationary
alternative. In related work, Schotman and van Dijk (1990) use a flat prior Bayesian analysis to investigate the
unit root hypothesis for real exchange rate data. They construct a Bayesian unit root test based on the posterior
odds ratio of the unit root model without drift against a constant mean stationary model. Using this test, they
find more evidence ir favor of the stationary model than is suggested by the outcomes of classical unit root tests.

Most recently, Phillips (1990) has offered an alternative Bayesian approach, confronting the skepticism

"These non-rejections of the unit root hypothesis must be interpreted with some caution because the
aforementioned unit root tests generally have low power against relevant trend stationary alternatives. The
outcomes of unit root tests have also been questioned in terms of the possibly restrictive nature of the alternative
against which the unit root hypothesis is considered (e.g., Perron (1989)).
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embodied in the abstract attack by Sims on classical methods and challenging at least some of the empirical
findings of DeJong and Whiteman, Phillips shows that the mechanical use of flat priors in autoregressive models
that allow for unit and explosive roots ignores important generic information embodied in time series models,
such as the way autoregressive coefficients affect the shape of the autocorrelogram and influence the amount
of information that is carried in the data and its sample moments. In this context, flat priors are shown to
downweight nonstationary models in favor of stationary ones and they do not represent ignorance (or lack of
information) in any meaningful sense in time series models, in contrast to the linear regression model with fixed
regressors. As an alternative to flat priors, Phil]ip.s lays the groundwork for the development of a class of
information matrix-based priors that accommodate stochastic nonstationarity and utilize the prior information
that is available in autoregressive models about the way the coefficients influence the sample moments and the
information they carry about the parameters. Using thesec model-based priors, Phillips shows that Bayesian
inferences have many of the same characteristics as classical inferences in these types of models, particulariy that
Bayesian analysis often manifests as much uncertainty about the data generating mechanism and the presence
or absence of stochastic trends as classical significance testing. Phillips applies his Bayesian methodology to the
Nelson and Plosser data and finds, contrary to DeJong and Whiteman (1989a), that the data do mot
overwhelmingly favor trend-stationary models over difference stationary models. For some of the Nelson-Plosser
series, like stock prices, the posterior distributions are very different from those of DeJong and Whiteman.
Phillips’ framework for analyzing trend behavior in multiple lag autoregressions with fitted time trends
is not complete. The approximate information matrix priors that he employs in his empirical work ignore
important interactions between long-run and short-run dynamics that may be expected to have a substantial
influence on posteriors inferences. In addition, Phillips only derives posterior densities for the long-run
autoregressive component. For analyzing trend behavior, the posterior densities for the coefficients on the
deterministic components should also be a focus of interest, as indeed they were in the aforementioned DeJong
and Whitemar studies. Moreover, Phillips restricts his attention to autoregressive models with fitted drifts and
time trends. Given the recent analysis by Perron (1989), models that allow for broken trends are also clearly

of interest. Lastly, Phillips only applies his methodology to the Nelson and Plosser data. A broader range of
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economic time series needs to be analyzed to determine the robustness of the methodology for empiricat
purposes.

This paper will complete this research program on the objective Bayesian analysis of trends in economic
time series. We provide an exhaustive Bayesian posterior analysis of trend determination in general
autoregressive models. We utilize an information matrix-based prior that explicitly takes into account the
interaction between long-run and short-run dynamics. In doing so, we uncover an important relationship between
the number of transient dynamics terms and the behavior of the implied prior for the long-run autoregressive
parameter. Using the Laplace approximation to multivariate integrals and properties of the confluent
hypergecometric function of the second kind with multiple arguments, we derive analytic posterior densities for
all of the trend determining parameters. The resulting posteriors are shown to be improper due to the
dominating behavior of the prior for large values of the long-run autoregressive parameter when there are many
lags in the autoregression. To achieve integrable posteriors we modify the information matrix prior by attaching
an exponential factor that attenuates extreme values in the unstable region of the long-run autoregressive
parameter. We construct the exponential factor so that the degree of nonstationarity permitted is parameterized
by a user-specified scalar quantity.

We also expand the class of models considered to include models that allow for certain kinds of
structural change in the deterministic components where the point of structural change may or may not be
known. Using a uniform prior for the break point to express ignorance about the point of structural change, we
derive unconditional posterior densities for all of the trend determining parameters. These are shown to be
mixiures of densities of the type derived for the no structural change model where the mixture variate is the
marginal posterior mass function of the break point. This extension provides a Bayesian alternative to the
classical methodologies used by Christiano (1988), Perron (1989,1990), Banerjee et. al. (1990} and Zivot and
Andrews (1990) to test for a unit root in the presence of possible structural change at a known or unknown point
in time.

Our Bayesian techniques are illustrated and evaluated through simulation experiments and applications

to several sets of widely analyzed economic data series including Nelson and Plosser’s (1982) macrocconomic



5
data and various stock price and dividend data. Contrary to DeJong and Whiteman (1989a,b,¢), we do not find

that the data overwhelmingly favor the existence of deterministic trends over stochastic trends. More
importantly, our analysis demonstrates that unit root inference are not, as DeJong and Whiteman assert,
contingent on the use of zero prior probability on trend stationary alternatives. They are so only within a flat
prior framework, which we argue is inappropriate for investigating stochastic trend behavior. We also find
evidence supporting Perron’s view that some of the Nelson and Plosser data are best construed as trend
stationary with a change in the trend function occurring at 1929,

The outline of the paper is as follows. Section 2 develops the theory for models that do not allow
structural change in the deterministic components. Section 2.1 presents the models to be considered and sections
2.2-2.3 detail the derivations of the priors and posteriors. In section 2.4, we cxamine the behavior of our
posteriors with simulated data and compare our posteriors with the posteriors derived by Phillips (1990) and
those derived from a flat prior. Posterior analysis of trend determination in certain types of structural change
models is taken up in section 3. Empirical applications of the no-structural change model to the Nelson-Plosser
data and the stock price and dividend data are given in sections 4.1 and 4.2. In section 4.3, we re-examine
Perron’s (1983) unit root results that are conditional on structural change occurring at 1929 for some of the
Nelson-Plosser data from a Bayesian perspective. Section 5 contains our concluding remarks and suggestions

for further work.

2. TREND DETERMINATION IN TIME SERIES MODELS

2.1. Models with fitted drifts and transient dynamics
We consider the following dynamic model for an observed time series {y)}:
Yo= 4+ Bt + Y(L)y, + u, ®
where ¥(L) = I} ¥} Ly, = y., and v, = iid N(0,0%). It will be convenient to employ the following
reparameterization of (1) to focus attention on the dominant autoregressive component of Y(L):

Vo= 4+ Bt + py, + IY Ay, + (1)
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where p = Z¥ ¢, ¢, = -Ef ,, ¥, and Ay,; = ¥, - Yua- We may facilitate the transformation from (1) to (1) via

the nonsingular matrix

To see thiS, lﬁt ‘b' = (¢1: R ] ‘,’Y), y;-l’ = (Y.-u .

< AYyyi). Then

10 0
1 -10
1 -1 -1..

1 -1 -1.

. -1

B y;-k); P’ = (ph .

o

co Py T = (P @) and X" = (V1oAY -

Vo= 4+ Bt+ (HY)YH'y, +u =p+ Bt + 9%, +1

so that v = H', x,, = H'y,, and

(10 o
1 -1 0
01 -1.
00 0

[

-1

We are interested in two types of trend behavior that result from placing certain restrictions on the

parameters of (1) {(hence, (1)). If the equation 1-¥(L) = 0 has all of its roots outside the unit circle and 8 #

0 then the series {y,} exhibits stationary fluctuations about a deterministic time trend and, accordingly, we call

the series {y,} trend stationary (TS). In this case, p < 1in (17, If 1-44(L) = O has a single root of unity and

B = 0 then the series of differenced observations { Ay,} exhibits stationary fluctuations and we call {y,} difference

stationary (DS). In this case, p = 1 and the ¢’s are the parameters of the autoregressive representation for

{Ay}-

The parameterization (1) was used by DeJong and Whiteman (1989a,b) in their Bayesian analysis of

trend determination. Their attention focused on the time trend parameter § and the modulus of the largest root
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of the equation 1-y(L) = 0. This setup is awkward for analysis because the roots of 1-¥(L) = 0 are nonlinear

functions of the ¥’s, and, as argued in Phillips (1991), inappropriate because no single root like A determines
long-run behavior by itself in general. The alternative parameterization (1"} was used by Phillips (1990) in his
Bayesian analysis and also corresponds to the regression formulation used in augmented Dickey-Fuller (ADF)
unit root tests. The ADF setup is more convenient to use and it isolates the critical parameter p that determines
long-run behavior of y,. Of course, several other parameterizations are possible and these may have certain other
advantages®,
Leté = (u, 8, p, ¢, 0) ER"**x R,, Y = (Y1 - - » ¥r) denote the T x 1 vector of sample observations,
b’ = (Yo - - - Yasr) the k x 1 vector of fixed initial values, and f(y|d,,) the joint probability density function
(pdf) of the sample given the paramcter vector 6 and the initial values ¢,. Treated as a function of 8, f is the
likelihood function and is denoted by L(8|y,:,). Prior views concerning # are represented by the pdf x(f) (which
may be proper or improper). Given the sample observations y and the initial values ¢, these prior views about
¢ are updated via Bayes’ rule to give the posterior pdf p(8|y,s,), where p(f|y,te) & F(IL(8),L0).
The focus of our analysis is p and # since their values determine the trend behavior of {y}. To derive
marginal posterior pdfs for p and B, we must extract the following integrals:
p(p1yto) o [ [p@lytc)dudBdedo = [...[L(B|y.co)m(8)dndBdedo
Pyt  [.-[p@ly)dudodedo = [...[L@ Iy (@)dudpdpdo
Some of the priors that we employ do not have the convenience of flat or conjugate priors and, as a
result, the above integrals cannot be evaluated exactly for these priors. However, very good analytic
approximations may be obtained using Laplace’s method for approximating multivariate integrals’. The method

is applicable to integrals of the form

’One alternative parameterization to consider is the components representation used in Sargan-Bhargava
(1983) and Schmidt and Phillips (1989). This has the advantage of allowing for a trend under both the unit root
null and the trend stationary alternative, without introducing any parameters that are irrelevant under either
hypothesis. Zeliner (1971) and Schotman and van Dijk (1990} give a Bayesian analysis of certain autoregressive
models using this representation.

*See Bleistein and Handelsman (1976) for a general discussion of this method and Phillips (1983,1990) for
earlier applications to the determination of marginal densities.



I0) = [vexp{X6())e6)db, & = @, ... 0,)
where D is a simply connected domain in p-dimensional space. If ¢(¢) and g(¢) are continuously differentiable
to second order, if ¢ obtains an interior absolute maximum at #* in D, and if the Hessian 3%¢(8) /08¢’ is negative
definite, then it can be shown that

10) ~ (2n/3) exp{A(8*)}e(0*) | 5%6(6*)/0080"| 2
in the sense that A ~ B if A/B — 1 as A — oo, The error on the approximation is of O[exp{A$(#*)X®*??}] as
A — o0,

For many problems, the Laplace approximation is a convenient and efficient alternative to simulation-

based numerical methods, such as Monte Carlo integration (see Kloek and van Dijk (1978) and Geweke (1989)),
for evaluating multivariate integrals. It is particularly useful for models with Gaussian likelihoods. The technique
is quite general because a numerical optimization procedure may be used to compute the maximizing value of

¢ and then this value may be utilized in the approximation formula. Phillips (1983) originally suggested this

technique as a means for obtaining marginal posterior densities in models with many parameters. Tierney and
Kadane (1986) employ it for various Bayesian problems. In the present context, the analytic approximations to
the marginal posteriors provide considerable information concerning the nature of the posteriors that would be
difficult to ascertain if simulation-based numerical methods were used to evaluate the integrals. In addition, the
marginal posteriors are very cheap to compute and this in turn facilitates extensive posterior analysis under an
entire class of priors thereby encouraging an investigator to examine whether inferences are robust of fragile
within that class. As argued by Leamer (1978,1984), testing the sensitivity of posterior inferences to variations

in the prior is an essential part of carcful Bayesian analysis.

22 Prior and posterior analysis

Bayesian analysis begins with the specification of prior beliefs concerning the parameters of interest.
In many situations, rescarchers do not have strong beliefs or much prior knowledge about the parameters of the
given model to be analyzed and, consequently, wish to use a prior that reflects this lack of knowledge or

ignorance. There is no universally accepted way of expressing ignorance about the parameters of a given model
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and a number of suggestions for gencrating priors to represent "knowing little” or ignorance have been put forth.
Excellent summaries of the various methods for determining noninformative priors can be found in Zeliper
(1971) and Berger (1985). Two widely used methods are particularly relevant to our situation,

The first method to express ignorance about the parameters of interest is to use a uniform or flat. prior
for the parameters or certain transformations of the parameters. In model (1) (or (17), if we use flat priors for
the regression coefficients and a flat prior for the natural logarithm of the scale parameter then #(6) & ¢!, The
use of flat priors is very convenicnt because they often lead to posterior inferences that agree with inferences
drawn from classical procedures. In econometric analysis, Zellner (1971) and Judge et. al. (1985) advocate using
flat priors for the analysis of the linear regression model with fixed regressors and its various extensions, and for
the analysis of certain types of time series models. Flat and truncated flat prior have been utilized in unit root
models by Sims (1988), DeJong and Whiteman (1989a,b,c), Schotman and van Dijk (1990) and Sims and Uhlig
(1989).

Although giving each point in the parameter space equal treatment is an intuitively appealing way of
expressing ignorance, this view of ignorance has been harshly criticized because it lacks certain invariance
properties {see Berger (1985) ch. 3 and the references therein). For example, suppose we express our ignorance
about a parameter ¢ € (-00,00) by adopting the uniform prior m(f) « c, where c is some arbitrary constant. Now
instead of considering 6, suppose the problem is re-parameterized in terms of n = exp(f)*. This is a 1-1
transformation and ideally should not affect inference. By the change of variables formula, the corresponding
prior for n is given by 7(n) = n''x(In(n)). So, if the noninformative prior for # is chosen to be constant, we
should choose the noninformative prior for 5 to be proportional to ™! to maintain consistency in inference. Thus
we cannot maintain consistency and choose both the noninformative prior for § and that for n to be constant.

In addition, Phillips (1990) argues that flat priors in autoregressive models cannot represent ignorance
in a objective sense because they ignore generically available information such as the way the autoregressive

coefficients affect the correlation structure of the data and the expected amount of information carried by the

“‘Note that the exp(+) transformation is the natural one in moving from continuous to discrete time series
models and is therefore particularly relevant here.
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data. To illustrate this point, consider the simple AR(1) model
=t (t=1...,T)

with u, = iid N(0,0%) and consider two intervals for p: [0.5, 0.6] and [0.95, 1.05)°. A flat prior over p indicates
that p values in the two intervals are equally likely. The flat prior, however, ignores information from the AR(1)
model that we always have about the way p values in these two intervals affect sample behavior. Sample behavior
is expected to be very different for p values in these two intervals and this represents prior knowledge based on
the postulated AR(1) model. Phillips maintains that an objective ignorance prior for p in a model that allows
for stochastic nonstationarity must incorporate such model-based information®.

These criticisms of the flat prior have led to the search for noninformative priors which are appropriately
invariant under transformations and which incorporate model-based information. The most widely used method
for generating such priors is Jeffreys’ rule

x(6) o [Lel" = J(O) @
where I,, = -E[8%nf(y|6,,)/306¢"] denotes the Fisher information matrix. In addition to flat priors, such
information matrix-based priors are an essential feature of our analysis.”

We proceed to derive the Jeffreys prior for models (1) and (1). The log-likelihood function of 8 based
on the sample y with fixed initial values ¢, is

10ly,0) o -Tin(o) - Ko°ET(y, - f - Bt - Tx,)? @)

and the information matrix is given by

SThis example is taken from Phillips (1990).

A frequent objection to the use of model-based priors is that they often link prior knowledge about the
parameters to the sample data through the likelihood function. This conflicts with one idealized Bayesian view
that the parameters of the model are quantities about which only entirely separate (i.e., non sample data-based)
information exists. This criticism of model-based priors does not apply in the present context because the priors
suggested in Phillips (1990) depend not on sample realizations but on generic characteristics of autoregressions.
In choosing a model for statistical analysis, Bayesians like classicists must live within its limitations. For
Bayesians this means that the role of the parameter p in the above AR(1) is already prescribed once the model
is written down. Information about its role (like the fact that the data will be more informative about p when
p is large) should ideally be incorporated in the prior. In an objective analysis this is necessary not optional.

"In the linear regression model with fixed regressors, if we treat the location and scale parameters as a priori
independent then the application of Jeffreys’ rule produces the flat prior x(§) o« o”'. This is not the case,
however, in autoregressive time series models.
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o2T o*T(T+1)/2 a"f: Ex/] ¢
I, - 02T(T+1)/2 o T(T+1)(2T+1)/6 a-zzl: (E/] 0 )

TYER)  VER] CNEE AL 0

0 0 0 o"T_

Phillips uses an approximation to the determinant of (4) that ignores the time serics effects of the

parameters ¢ and is given by

m(0) o 0™ {ag(p) + oy (p.p,8)/0°}'7, )
where

agp) = T(1- Y - (1 - o371 - p™), )

a(p, i, B) = T'[B(L - p)'(1 - 0 + B{(1 - p)'i - p(1 - pY2(1 - MY M

The prior (5) may be interpreted as an approximation to the square root of the product of the diagonal elements
of (4) when ¢ = 0. It may therefore be regarded as an approximate Jeffreys prior for a general nonstationary
model. However, when ¢ # 0 the simple approximation (5) is expected to “bias" inferences since it is based on
a model in which ¢ = 0. Clearly, a model-based reference prior that allows ¢ # 0 is desirable since most
empirical models can be expected to have non-trivial transient dynamics with ¢ # 0. Adding this extra level of
generality is important because as more lags are added to the fitted model they explain a larger portion of the
variability in the data and the role of the long-run autoregressive parameter is diminished. Various methods of
explicitly accounting for the effects of the transient dynamics on the prior are possible. One simple method is
as follows.,
The dominating term of (4) is ZTE[x,,x,.,], and if we ignore the off block diagonal clements of (4), the

Jeffreys prior would be

7(6) & 0°|0°ET Efx, %, ]}17. @®
An explicit representation for (8) can be found by setting up (1) in companion form as

Y, = RY,, +p + 8t + U, ®

with



Y -wl ¢'2 A I‘-| B LA
y(«l 1 0 0 0 0
0 1 . . .
Yr= N R = 0 N E = , é: , Ur= . (10)
. [ 0 0 . .1 0] | 0] 0 | 0]

We use (9) to evaluate the required information matrix as follows. Back substitution leads to
Y, = Y'RYU,, + u + B(ts)] + R'Y,
and then
E[YY/] = T{'R'SR”
+ {SPRYp + B(1-5)] + RY,HESR' [ + 8(t-s)] + R'Y Y
where & = E[UU,] = ¢’E,,, where E,, has unity in the (1,1) position and zeros elsewhere. We may express
the above matrix representation of E[Y, Y] as
o*As(¥) + Aulb:¥) (1)
where |
Ax(¥) = Z'RE, R,
A(B¥) = {T5'Rw + B(t-s)] + RYHESR e + A(t-s)] + RY,}"
Since ¢ = H*'y we may recast (11) using the alternative parameterization, viz
E[YY] = ?Ag(H") + Ay(u.f.H)
= FAL(pp) + Al(BE:P.0)- (12)
We now deduce the required "information matrix* component for model (1) as
o’ZIE[Y,,Y./] = o"TFE[Y.Y,] = ETAu(¥) + oA, (n.8.¥)]
and the corresponding matrix for model (1) is
o’ETE[x,x,] = o SHHE[YY,H"
= H'SP[AL(p) + O°Al (w0 0)]H
= Aj(p.0) + *Al(u,B.0.) (13)

where



Al(pp) = H'SFAL(0.0)H",
At(wB.p.p) = H'ETAN(1,8.0,0)H™.
Using (13) we have an explicit representation for the approximate Jeffreys prior given by (8):
() x o?|AY(p.p) + AL (nB0.p) |
= *|A3 (o) 'THI(L + o7AT (B 0s0))", (14)
where AY(,8,0,), j=1,...k are the cigenvalues of A}(p,0)'At(,8,0,0).

This prior as a function of p is graphed in figure 1(a) for the case ¢,=0, y=£=0, =1, T=100, k=2 and
for various values of y; the log density for this case is displayed in figure 1(b) for a wider range of p values. The
general behavior of the prior as p approaches unity is very similar to the simple approximation (5) used earlier
by Phillips. The increasing density as p gets large reflects the information from the model that, as p gets large,
sample moments converge at faster rates and thus the data are anticipated to be more informative about p.
Notice that the density is affected by the nature of the transient dynamics. The graph shows that large positive
values of @ result in proportionally more weight being given to stationary values of p and large negative values
of ¢ result in proportionally more weight being given to nonstationary values of p. This is what we expect given
that when k=2 we have p = ¢, + ¥, and ¢ = -,. Given ¢, large positive values of ¢ reduce p and large
negative values of ¢ increase p.

Figures 1(c) and 1(d) show the behavior of the prior as the number of transient dynamics terms, k, is
increased. The graphs clearly show that the prior is dramatically affected by the lag length of the model adopted.
As the lag length increases, the prior places proportionally more weight on nonstationary values of p. In this
respect, the information matrix pt‘i(.)l' works to counteract the increasing downward OLS bias in p as k increases
that occurs whea the true value of p is unity.

Two additional comments on the prior (14) are in order:

() A computational problem occurs in the evaluation of |A}| for values of p > 1. In particular,
numerical estimatcs of [A}| for p values just above unity are unstable even in the k=2 or k=3 case for T > 50.
Thus, in order to use the more general Jeffreys prior in practical applications, a stable numerical approximation

to |A¥| is required. One such possibility that works well is given by the product of the diagonal entries of Af.
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(ii) Since the approximatc Jeffreys priors (5) and (14) are defined for all p € R and place rapidly
increasing weight on values of p greater than unity, they may not serve as appropriate reference priors for all
researchers. In practical applications researchers are often only interested in a restricted range for p and with
most economic time series researchers would give very little, if any, subjective prior weight to values of p much
greater than unity. In particular, if interest focusses on evaluating the unit root hypothesis given the data, many
researchers only want to consider values of p in the range (pg, 1 + ¢) for some 0 < py < 1 and € small®. Such
researchers may be skeptical of results that are generated from priors that place heavy weight on a priori extreme
and unlikely values. To accommodate such subjective prior views on p we can easily modify the Jeffreys prior
by limiting the effective range of p and, hence, the degree of nonstationarity allowed a priori.

These issues will be addressed in detail below. But first it is informative to derive the marginal posterior
densitics for p and 8 as well as the joint posterior density for o = (p, £). let & = (4, 8, ), 7" = (1, p, ¥),
7 = (49 and use y,, 1, U, V, Z and W to represent the observation matrices of (¥..1), (1), (i1s t), (1, t, By,
vew AV Gus L A¥ess « + o AViyyy) and (1, Ay,,, . . ., AYiyy), respectively. In addition, for any matrix R
of full rank and conformable matrix y define Qz = I - R(RR)'R’ and my(y) = yQgy. To facilitate the
determination of the posterior densities for p, § and a via the Laplace approximation, we employ the following

decompositions of the sum of squares Z7(y, - & - ft - 1'%,)

m(D) + (p - AYmy(y.) + (8 - 8()VV(E - 5(p)), (15)
m(f) + (8 - BYmy(r) + (v - K(B)Y Z'Z(x - #(B)), (16)
m(f) + (@ - &)'my(U)a - &) + (1 - () WW(n - i(e)), (17

where m(fi) = ZT02 G, = y, - § - Bt - 4'x,, are the OLS residuals and
§(p) = & + (VVY'VY,( - p),
K(B) = & + (ZZ)'Zr(B - B),
fi(a} = fi + (WW)'WU( - a).

The following proposition gives the approximate posterior densities for p, # and & under the prior (14).

8An approach similar to this is taken by DeJong and Whiteman (1989a,b,c) and Schotman and van Dijk
(1990).



PROPOSITION 1
@ Pl x [ATERE)[Pm(@) + (0 - PYmyfy, )T
(b) p(ﬂly,%) [« 4 iAa‘(ﬁ(ﬂ)"b(ﬁ))lla[m(ﬁ) + (ﬂ - 3)2mz(r)].(r.k+|m

(©  plajyt) = |AF(E@).¢(@) " [m(@) + (« - &'my(U)(a - &) T+>7

Remarks (i) The derivation of the approximate posterior densities for p, # and « follows the same lines as the
derivation of the posterior density for p outlined in Phillips (1990). Note that this derivation, which is given in
the appendix, makes use of two approximations, First, the reduction of the multivariatc integrals to a single
integral in ¢ is performed by means of the Laplace approximation. Next, the integral in o involves a confluent
hypergeometric function of the second kind with multiple arguments®, The second level of approximation applies
when this function is itself approximated (for large arguments) to facilitate computation. The mathematical
details of these derivations are presented in the Appendix. For our purposes here it is most important to note
that the integration over ¢ eliminates the effect of the second matrix component A%t(u,8,0,) in (14) on the
postcriors, as given in (a),(b) and () above. The matrix component from the prior that is retained in the
posteriors, Aj(p,#), is a function of p and ¢ only. The prior effects of the deterministic components (g,8) on
the behavior of the posteriors are asymptotically dominated by the prior effects of (p, ).

(i) As a result of the Laplace approximation, the posterior densities for p, # and a are of the same
general form and, therefore, we expect these densities to have similar shape characteristics. In the density
formula for p, the matrix component A} is a function of p since the Laplace approximation produces the term
@(p)- Similarly, in the posterior for 8, A} is a function of # and in the density for a it is a function of a.

(iii) The posteriors for p, § and @ given in Proposition 1 are improper densities over R; i.c. they are not
integrable over the whole real line. To see this, note that the diagonal elements of A¥ are of the order diag(p™™,
P L p™ %) as |p| — oo and s0

JAS]12 = (T 4ensp TR2YI2 o pTE- (DD +1 (18)

which clearly dominates the tail behavior of the posteriors. Thus, the determinantal prior leads to improper

*Phillips (1988) provides a detailed discussion of this function and its mathematical properties.
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posteriors for g, # and a. There is, in effect, too much information in the Jeffreys prior (14) relative to the
actual information contained in the data.

(iv) Phillips (1990) derived the approximate marginal posterior for p based on (5) and it is given by

p(p[yto) ¢ o) [m(d) + (o - BY'mv(y.)}™. (19)
It is a straightforward exercise to derive the corresponding posteriors for 8 and e. These are

P(BIVite)  2o(B(8)) 2 [m(@) + (B - BY'my(N)]™, (20}

p(a|yste) ¢ ag(p)(m(®) + (o - &)'my(U)(a - §] 17, (1)

which are of a similar form to the posteriors given in the proposition. However, since ay(p)'? is of the order
O(p™) for p > 1 the marginal posteriors have Pareto tails of order O(|p|?) as p — oo and thus are proper
densities upon standardization. The main difference between these posteriors and those based on (14) is that
the posteriors based on (14) are influenced by the prior effects of p and the lag length of the autoregression
whereas the posteriors based on (5) are not.
(v) It is interesting to mote that the posteriors derived from the prior (14) are almost identical to the

posteriors which are derived directly from the prior

7(0) = n(uB0)(p0) x o [AYDP) 7. @)
The only differences between these posteriors and the posteriors given in the proposition are the degrees of
freedom in the exponents of the Student-t kernels, the effect of which is small due to the dominating behavior
of |A%|'2. The prior {22) results from assuming that 4, § and in(0) are a priori independent of p and p and
are independently uniformly distributed over the real line and that the prior for (p,p0) is determined by Jeffreys
rule applied to the model

=Ly tw (t=1,..,T)
with u, = iid N(0,6%). Given that the posterior densitics for p and £ using the priors (14) and (22) are nearly the
samc, it is much easier both conceptually and computationally to use the approximate invariant prior (22) than
the approximation (14). The joint prior (22) is built up from individual priors in a straightforward way and the
prior relationships between the parameters are clearly spelled out. In addition, the independence assumption

between (1,8,0) and (p,p) means that we get a quick route to the posteriors via the Laplace approximation.
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(vi) A similar result holds for the posteriors based on (5). The approximate densitics given in 19) -
(21} also result from the prior
1(6) o o0y (g)"” @)
which employs, conditional on o, flat priors for i, § and @ and a Jeffreys prior for p based on the model
V=Matw (t=1..,T)
with u, = iid N(0,0%). The prior (23) is a more convenient form than the prior (5).

The fact that the approximate posteriors for p and 8 are not integrable and the numerical evaluations
of |Aj| are unstable greatly hinders the applicability of the information matrix-based prior (22) for general
autoregressive models. In the next section, therefore, we shall introduce some modifications to the prior (22)
that effectively restricts the relevant range of p (hence, the degree of nonstationarity) and that result in

numerically stable, fully integrable posteriors.

2.3. Modified priors and posterior analysis

To avoid the numerical instability encountered in evaluating |A% | we may approximate this determinant
by taking the product of the diagonal elements of A}. Using this approximation gives the prior

m(psp) & o' (iak,)'?, ' )

where aj; denotes the i’th diagonal element of A}. This product approximation of the determinant of the
information matrix was successfully used in Phillips (1990) for the case where the transient dynamics were
ignored. The product approximation (24) as a function of p is graphed in Figures 2(a) and 2(b) for the case
,=0, 0=1, T=100, k=2 for various values of ¢. Comparing these figures with Figures 1{a) and 1(b) shows that
(24) behaves much like (22) and suggests that little information will be lost if the product approximation is used.
Note that the diagonal elements a§; that enter (24) are still, of course, functionally dependent on the transient
dynamics parameters .

We now consider the objection to the Jeffreys prior that it places increasing weight on extreme and
unlikely values of p as far as economic time series are concerned. By dealing with this objection we also produce

fully integrable posteriors, The obvious way to restrict the relevant range of p and at the same time make the
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posteriors integrable is to eliminate values of p in the extreme unstable regions by truncation of the prior. When
we implement truncation methods, however, we still find that as k increases the posterior probability of a unit
root or greater generally increases rapidly because the form of (18) still causes the prior to dominate for values
of p in the region just beyond unity. Simulation experiments show that the posterior density for p is bimodal and
that the second mode (for p > 1) is the dominant one in typical cases such as that in which the true generating
process is a umit root with drift or an autoregression with a large stable root. This outcome also occurs
' cmpirically with many of the series in the Nelson and Plosscr data set. Thué, arbitrary truncation does not
appear to be a sensible and practical solution to the integrability problem.
An alternative and rather appealing way of effectively restricting the range of p and dealing with the
improper posteriors is to introduce an exponential factor into the prior that attenuates values of the prior for

p > 1. The particular modification we have in mind also allows a researcher to control the degree of

nonstationarity desired in the prior. We shall consider product priors for (p,) that are based on (24) but are
modified with exponential factors. They take the general form

#(pp) & (Iialy) exp{-p- ), (25)
where c, is some function (to be specified) of thc number of lags in the autoregression and the sample size. The
selection of ¢, determines the shape of the prior in the unstable region ¢ > 1 and hence affects the degree of
nonstationarity allowed. It can have a large influence on posterior inferences. The choice of ¢, could be left
entirely arbitrary with its value depending on the application and on the prior views of the researcher. However,
we propose a method for detcrmining c, that generates a family of priors parameterized by a scalar quantity (¢).
This leads to an ¢-family of posteriors for any given application. Thus empirical researchers have the option of
reporting a range of posterior inferences so that issues of fragility can be more easily addressed in practice.

Our suggestion for determining c, is as follows. Recall, from (18) that

(n{:agﬁ)lﬂ - ka-(k+1)(k+2).’2 +1 ka'dk,

where d, = (k+1)(k+2)/2 + 1. Hence the prior {25) behaves like

Tk-d, 2y

p texp{-p (26)

for |¢| > 1. We may induce a convenient family of priors by specifying a modal value for (26). This will occur
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for a value of p, say

p=1+ce¢
for which (26) attains its maximum and beyond which the prior falls away rapidly. Thus when weset p = 1 +
€ as the modal value we anticipate low prior probability from (26) for values of p much greater than 1 + €. This
gives an investigator a convenient means of attaching low prior weight to extreme unstable values of .

To determine the maximizing value of ¢, when p = 1 + ¢ is the modal value, we optimize (26) with
respect to p, set p = 1 + ¢ in the first order conditions, and then solve for ¢,. Straightforward calculations reveal
that an approximate solution to the optimization problem is

G = -(4e)" + (4e)'(1 + 4e(Tk-d,))"" = cyfe). @n
The modified Jeffreys prior for (p,i) is then
ripsele) o (Mag) exp{-5>), @)

Notice that this prior is conditioned on the value of €'°. We now have a family of modificd ignorance
priors for 6, indexed by ¢, which are built up from individual priors for (,8,0) and (p,p):

7(6) = (uBOIm(pple) o (Tiagy) Zexp(-o>>y, )
Conditional on ¢, the above prior results from assuming independent flat priors for 4, § and in{c) and the
modified Jeffreys prior for (p,p). A family of priors, for example, on a grid such as

€ = 0.001, 0.0025, 0.075, 0.01
arc casily generated giving a2 maximum for the priors in the range (1.001, 1.01). Figure 2(c) displays such a

family of priors as a function of p with k=2, 0=1, p,=0.5, T=100. The modified priors inherit the general
characteristics of the previously discussed priors for p values less than 1 + €. Beyond ¢ = 1 + ¢, however, the
exponential factor draws the density rapidly towards zero. Obviously, other choices of ¢, could be selected but
the general shape characteristics in figure 2(c) of the priors would be similar to those shown.

The following theorem gives the approximate posterior densities of p, § and & under the modified

Jeffreys prior (29). The proof follows from an application of Laplace’s method for approximating multivariate

‘°A similar modification can be done to the approximate Jeffreys prior (5). It is easy to show that the value
of ¢,(¢) in this case is -(4¢)" + (4)'(1 + 4e(T-2))'~



integrals along the line we have earlier discussed and is therefore omitted.

THEOREM 1

@  pole yoo) « (Tae(p (o) 2exp{-0" Y m(@) + (¢ - PYemy(y )™

®  pBle v x [ad(B(B).2() exp{-(8) ) m@@) + (8 - Bmy(r)] >

©  plale o) o (Tagu(p(@)p(@) exp{-p(@) *)m(@) + (@ - ) my(U)(a - §] T+

Remarks (i) The above posteriors are fully integrable due to the addition of the exponential weighting factors.
They are conditional on the value of ¢, which must be specified by the user. The analytic nature of the
posteriors, however, makes it easy to generate a family of posteriors for a given range of ¢-values. In this
manner, the sensitivity of posterior inferences to the amount of nonstationarity allowed a priori can casily be
addressed. It is important to note that other types of damping factors could be used to restrict the range of p.
The flexibility of the Laplace approximation permits easy determination of the posteriors.

(i) The densities of p, § and o are asymmetric. For a given ¢ value, the modes of the p-posteriors are
generally skewed towards unity and the modes of the f-posteriors are skewed towards the origin. This
asymmetry works to counteract the downward OLS bias in p and upward bias in B that occurs when the true
values of p and § are one and zero, respectively. As the lag length, k, of the fitted model increases the prior has
a larger influence on the shapes of the posteriors due to the dominating behavior of (18) for p values less than
1 + €. In addition, for large € the posteriors for p and § are often bimodal, like the densities derived from ),
and display considerable uncertainty about the true values of p and 5.

Figures 3 and 4 compare the typical shapes of the (normalized) posterior densities of p and £ computed
from a flat prior (F-posteriors), Phillips’ approximate Jeffreys prior (5) (J-posteriors) and the modified Jeffreys
prior (29) (MJ-posteriors) for two data series generated from

Vo=p+y,+u {t=1,..,T)
with u, = iid N(0,0%), 4 = 0.025, 0 = 0.05 and T = 50. Panels (a) and (b) give the posteriors computed for a

fitted model with k=3 and panels (c) and (d) give the posteriors when k=6. The MJ-posteriors are computed
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for €=.001, €=.025 and €=.050 to display the sensitivity of the posteriors to the degree of stochastic
nonstationarity allowed a priori. Table 1 summarizes the characteristics of these posteriors for the two simulated
samples.

The curves in Figure 3 represent a typical case when the realization from the random walk with drift
process mimics a trend stationary process fairly well. For this realization, when the fitted model has k=3 the
OLS estimate of p is .831, well below unity, and the estimate of g is .006, which is significantly positive. The F-
posteriors are centered about these values and they give very little evidence that the true process is a unit root
with drift. The posterior probability of stochastic nonstationarity, P(p 2 1) = .033, is quite small and the
posterior probability of a deterministic trend, P(8 > 0) = 977, is very large. The posteriors based on the two
information matrix-based priors, however, tell a much different story. The J-posteriors for g and 8 are bimodal
about unity and the origin, respectively. The principal mode for p occurs at .852 and the second at 1.18; the first
mode for £ is at .005 and the second is at -.005, The bimodality in this case is such that the regions of highest
posterior density (HPD) are disjoint. The information in the data and the prior clash and, consequently, the
HPD regions (Bayesian confidence sets) exhibit considerable uncertainty about the true values of p and 8.
Accordingly, the posterior probabilities P(p > 1) = .462 and P(§ < 0) = .403 are appreciable. These disjoint
HPD regions are the Bayesian analogue of the disconnected confidence sets that can occur when classical
procedures are employed to test for unit roots. The MJ-posteriors are not strongly bimodal like the J-posteriors,
since the range of p is restricted. Instead, the MJ-posteriors are skewed. The modal values of p (§) for the
three values of € are 961 (.002), 925 (.003) and .906 (.003). These values give stronger evidence for the unit
root with drift model than the modal values associated with the F-posteriors. The asymmetries in the posteriors
for p and B work to counteract the downward OLS bias in p and upward bias in 2 that occurs when the true
values of p and # are unity and zero, respectively. The posterior probabilities of the events {p > 1} and {8 <
0} increase with the value of ¢, ranging from .003 and .010 for €=.001 to .119 and .085 for ¢=.050, and are less
than the probabilities computed from the J-posteriors. Whereas the F-posteriors display very little evidence that
p = 1and § = 0, the bimodality of the J-posteriors and the asymmetry of the MI-posteriors indicate

considerable uncertainty about the true values of g and 8.



Table 1: Posterior Modes and Posterior Probabilities of Nonstationarity

Prior Posterior Modes Posterior Probabilities
p B P(p21) P(8 < 0)
Data for Figure 3: k=3
F 831 .006 033 023
J 852 005 462 403
M 961 002 .033 010
MJ? 925 003 080 048
M) 906 003 119 085
Data for Figure 3: k=6
739 009 004 003
J 752 .008 .052 042
M 993 000 082 035
MJ? 1.008 -.000 286 264
M) 1.023 -.001 461 469
Data for Figurc 4: k=3
938 003 145 095
J 566 002 478 382
M) 986 001 J29 029
MF 1.010 000 377 275
MP 1.038 -001 565 493
Data for Figure 4: k=6
912 .004 109 082
J 942 003 474 403
M 994 .001 149 026
MJ? 1.014 -000 493 404
MJ? 1.030 -000 709 £676

Notes: "F", "J*, "MJ"*, "MJ* and "MJ*" denote "Flat", "Jeffreys", "Modified Jeffreys: €=.001", "Modified Jeffreys:
€=.025" and "Modified Jeffreys: ¢=.050", respectively. The scalar ¢ specifies the degree of stochastic
nonstationarity permitted a priori and the value 1 + € gives the mode of the implicit prior for p.

If we increase the number of lags in the fitted model to 6, the OLS estimate of p decreases to .739 and
the estimate of # increases to .009. Here, the extra regressors soak up some of the variability in the data and
this diminishes the effect of p and increases the effect of 8. The F-posteriors, now, give virtually no posterior
probability for the unit root model. Moreover, the J-posteriors are no longer bimodal and have a shape very
similar to the F-posteriors. They also give very weak evidence, although more than the F-posteriors, for the unit

root model. The MJ-posteriors, on the other hand, still indicate considerable uncertainty about the true values
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of p and . For a given ¢ valuc, with larger lag lengths the prior begins to dominate the posteriors and the
posterior for p shifts more towards unity and the posterior for § shifts more towards the origin, In general, with
overparameterized models, the F-posteriors and J-posteriors tend to favor trend stationary models whereas the
MJ-posteriors tend to favor unit root models. A more detailed examination of the sampling behavior of these
posteriors for a wide range of data generating processes is given in the next section.

The curves in Figure 4 show the typical shapes of the posteriors when the OLS estimates of p and g are
near unity and zero, respectively. When the fitted model has k=3, p = 938 and 8 = .003 and when k=6 these
estimates become .912 and .004, respectively. In these cases, all three sets of posteriors give appreciable
probability to the unit root with drift model. As in the previous example, the evidence in favor of the unit root
model based on the F-posteriors and J-posteriors diminishes as extra regressors are added whereas the evidence

increases when the MJ-posteriors are used.

2.4. Sampling properties

Phillips (1990) investigated the sampling behavior of the p-posteriors based on a flat prior and the
approximate Jeffreys prior (5) when the true data generating process (DGP) contains a unit root with drift. He
showed that, on average, posterior inferences drawn from a flat prior are severely biased away from the unit root
model and that inferences from (5) are much more consonant with the true DGP. We perform similar sampling
experiments here to illustrate the expected behavior of the F, J and MJ-posteriors. We pay particular attention
to the effects on the posteriors of the lag length specification of the fitted model.

Table 2A gives the expected posterior probabilities of the nonstationary set {p > 1} for the three scts
of priors based on 5,000 replications from the model

Y. = 4+ Y, + €, €= iid N(0,0%),

with g = .025, 0 = .05 and T = 50. The posteriors were computed using the model (1°) for various values of
k. From the table, we see that for a given value of k, the F-posterior gives a very small probability on average
to {p > 1} whereas this expected probability computed from the J-posterior is appreciable. The expected

posterior probabilities based on the MJ-posteriors vary with the value of €. They are similar to those computed



Table 2A: Posterior probabilities of stochastic nonstationarity
DGP: y, = 025 + y,, + €, € ~ iid N(0,(.05)%)

k E[P(p > 1)]

F I MJ! MJ? MP
2 048 401 034 083 115
3 055 448 048 168 282
4 057 528 058 175 297
5 058 566 067 212 336
6 061 573 066 215 338

Notes: See the notes for Table 1. Number of simulations = 5,000.

under a flat prior for ¢ = .001, but become larger as e is increased. The magnitude of these expected
probabilities for values of € near .001 arc somewhat misleading by themselves because the upper range of p is
restricted to a small neighborhood beyond unity and they cannot illustrate the rightward skewness of the MJ-
posteriors. As discussed previously, the modes of the MJ-posteriors for small values of ¢ are, in general,
substantially closer to unity than the mode of the F-posterior.

As k increases in the fitted model two things tend to happen. First, the extra regressors tend to soak
up vatiation in the data and this increascs the downward bias in p. In addition, the introduction of extra
regressors tends to add more noise to the fitted model and this increases the estimated variance of p. The results
from Table 2A indicate that this latter effect dominates the behavior of the posteriors. For all posteriors, the
expected probabilities of {p > 1} increase monotonically in k. The percent increases for the priors are 27% (F),
3% (1), 94% (MI'), 159% (MJ?) and 194% (MJ?), respectively. The MJ-posteriors produce the largest
increases, which is what we expect since the prior gives proportionally more weight to nonstationary models as
k increases.

Table 2B reports posterior probabilities of the nonstationary set {p > 1} when the true DGP is

Y, = B+ y, t € € =06, + u, = iid N(0,09,
and when the AR(k) model (1') is used for inference. We use 5,000 simulations with z = 025, 0 = 05, T =

50,0 € {-.8, .8} and k = 3, 6. For all values of 0 the expected F-posterior probability of {p 2 1} is low, less than



Table 2B: Posterior probabilities of stochastic nonstationarity
DGP: y, = 025 +y, +¢, ¢ = 8¢, + u, w, ~ iid N(0,(.05)9)

0 E[P(p > 1)]

F J MJ! MJ? MJ?
k=3
-8 002 997 003 007 010
-6 017 973 011 027 039
-4 034 881 020 052 o078
-2 046 689 031 082 124
0 049 445 038 109 173
2 052 308 048 142 231
4 056 246 060 188 312
6 068 228 070 218 361
8 073 222 082 255 414
k=6

-8 019 999 018 049 o7
-6 039 998 030 085 125
-4 057 918 047 135 202
-2 041 785 066 196 300
0 050 570 081 245 384
2 062 431 099 310 484
4 068 367 122 388 583
6 056 280 129 436 649
8 040 179 135 473 688

Notes: See the Notes for Table 1. Number of simulations = 5,000.

075, and leads to inferences that are biased against the unit root model. Notice that this bias does not abate
as we increase the lag length of the fitted model. In all cases the J-posteriors provide considerable evidence in
favor of the unit root model. However, the expected posterior probability of {p > 1} is quite sensitive to the
value of 6. In fact, for both values of k considered, the expected posterior probabilities are monotonically

decreasing in 4. For 6 near -8, E[P(p > 1)] = 1 and for ¢ near .8 E[P(p > 1)] & 2. The large expected
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probabilities that occur as 8 nears -1 are misleading since the true DGP approaches a deterministically trending
process with iid errors. As pointed out in Phillips (1990), this outcome is the result of the bias that stems from
the fact that (5) is not an ignorance prior when ¢ # 0. The MJ-posteriors explicitly account for the effects of
the transient dynamics terms on p and thus we expect posterior inferences to be more objective than inferences
based on the J-posterior when the transient dynamics terms play a large role in explaining the data, The results
in Table 2B support this assertion. For large negative values of ¢, the MJ-expected posterior probabilities are
small although they increase as ¢ or k is increased. These results indicate that one would need a fitted model
with a long lag length in order to find evidence for the unit root model. Interestingly, the MJ-expected
probabilitics increase as  nears unity. It appears that the MJ-posteriors pick up the added persistence in the

data whereas the F and J-posteriors do not.
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3. TREND DETERMINATION IN STRUCTURAL CHANGE MODELS

3.1 Introduction

Recently, the appropriateness of the unit root model for a number of macroeconomic and financial time
series has been questioned by Perron (1988, 1989, 1990). For example, using the Nelson and Plosser data and
a U.S. postwar quarterly real GNP serics, Perron (1989) argues that if the observations corresponding to the
years of the Great Depression and the 1973 oil price shock arc treated as exogenous events (points of structural
change) then a flexible trend stationary representation is favored over a flexible difference stationary
representation. Contrary to the unit root hypothesis, these results imply that the only observations that have had
a permanent effect on the long-run level of most macroeconomic aggregates are those associated with the Great
Depression and the first oil price crisis®.

Perron’s unit root testing methodology, which is conditional on structural change at a known point in
time, has been criticized by Christiano (1988), Banerjee et. al. (1990) and Zivot and Andrews (1990). These
authors argue that Perron’s unit root tests arc biased against the unit root null because his choices of break
points are correlated with the data and, hence, problems associated with pre-testing are applicable to his
methodology. They suggest ways for correcting his tests for this bias based on procedures to estimate the
structural change points. After these corrections are made, the overall evidence against the unit root hypothesis
for the aforementioned series is not nearly as strong as Perron suggests.

The suggestions for correcting Perron’s unit root tests made by the above authors, however, are
problematic in two respects and only asymptotic results are available, The first problem arises from the fact that
when the point of structural change is unknown some procedure, usually ad hoc, must be adopted for estimating
it. This break point estimation procedure produces a “pre-testing” bias in any subsequent inference and the bias
depends explicitly on the procedure employed. The second problem involves the monstandard asymptotic

distribution theory that results from models with integrated regressors and with estimated structural breaks. As

""Rappaport and Reichlin (1989), Balke and Fomby (1990) and Balke (1991) make similar claims.
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shown in Banerjee et. al. (1990), Hansen (1990) and Zivot and Andrews (1990}, the resulting limit theory is quite
complicated in these types of models. In addition, Zivot and Andrews (1990) and Perron (1990) demonstrate
that the finite sample distributions of the unit root test statistics can be very different from their asymptotic
counterparts.

An attractive alternative to the classical approach to remedy the "pre-testing" bias caused by the unknown
location of the possible break point is to adopt a strictly Bayesian methodology. The Bayesian approach for
handling structural change at an unknown point in time is straightforward and the distribution theory is valid in
finite samples. Conditional inferences concerning the parameters of the model are avoided by placing a prior
distribution over the location of the structural change point and the mechanics of Bayes’ rule then produces
posterior distributions from which unconditional inferences can be made.,

Structural change in the linear model with fixed regressors from a Bayesian point of view has been
investigated by several authors including Ferreira (1977), Chin Choy and Broemeling (1980), Smith (1980), Booth
and Smith (1982), Holbert (1982) and Broemeling and Tsurumi (1987). Time series models have been addressed
but the analysis has been limited to deterministically trending models with stable autoregressive errors.
Stochastically trending processes have not, so far, been considered. Also, the primary focus of much of the
previous work has been on the detection of structural change. Here, we are more interested in making
inferences concerning the trend determining parameters of the model when we allow for the possibility of
structural change.

Essentially, there are two problems associated with comparing the trend stationary structural change
model under unknown change point with the unit root model. The first problem involves testing the two
hypotheses. If it is determined that the data favor the unit root model then we are done. If, on the other hand,
the data favor the trend stationary structural change model, then we encounter the second problem of estimating
the change point as well as the other parameters of the model. Throughout this discussion we focus on the first

of these two problems.



3.2. Prior and posterior analysis
We now expand the model considered in the previous sections to allow for certain forms of structural

change. Specifically, we use¢ as our underlying model

%= 4+ Bt + 4DUG), + 4DT(), + $(L)y. + w, 1=2,..,T2 (30)
where d, = p, - g4 and DU(r), = 1ift > 1, 0 otherwise; ds = B,- 8 and DT(r), = t-rift > r, 0 otherwise. The
inclusion of the dummy variables DU(r), and DT(r), allow for models with broken trends. The dummy variable
DU(r), allows for a one time change in the level of the series occurring at time r, while DT(r), permits a one
time change in the slope. If 2 < r < T-2 and cither d, # 0 or d, # 0 then there is exactly one change in the
deterministic trend occurring at some unknown point 1 and we call (30) a structural change (SC) model. Ifr
= T then no change has occurred and (30) collapses to the no structural change (NSC) model (1) considered
carlicr. As with the NSC model, we employ the following reparameterization of (30) to focus attention on the
dominant autorcgressive component of Y(L):

Y. = B+ Bt + dDU(), + d;DT(x), + py,, + E¥'0 Ay, + u, r=2,..., T-2. (30)

For the SC model the parameter vector of interest is 8" = (i, 8, d,, d,, p, ¥, 0, 1) € R x R, x

Npz 1.y, where N5 denotes the set of integers {2, 3, ..., T-2}. As before, prior views about § are given by #(6).
Since r is restricted to integer values, this prior will be a mixture of continuous and discrete parts. Concerning
the point of structural change, we make the assumption that we have no information where it occurs. In
addition, we assume that the break point, r, is independent of the other parameters in the model. These
assumptions result in a uniform prior over r:

() = (T-3)" r=2,.., T2 31
As an ignorance prior for the break point r, the uniform prior is intuitively appealing and has been used by
Ferreira (1977), Chin Choy and Broemeling (1980), Holbert (1982), Broemeling (1985) and Broemeling and
Tsurumi (1987). For the remaining parameters, we use the three sets of priors discussed earlier'.

With the addition of the dummy variables, the focus of our analysis expands to include parameters d,,

"*We do not allow structural change to occur at the endpoints r=1 and r=T-1 to avoid singularities in the
data matrix and we do not allow multiple change points, We also do not consider information matrix-based
priors for r.
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d,, the possible structural change date r as well as p and f. We obtain the unconditional marginal posterior pdf’s

(pmf for r) for thesc parameters under the SC model in three steps. First we determine the marginal posterior

mass function (pmf) for the break point r. This is obtained by integrating the joint posterior with respect to p,

B, 4, 45, p, v and o for r=2, .., T-2. Next, we derive the marginal posterior pdf's for 8, p, d, and d,

conditional on the break date r being equal to some value. Lastly, we obtain the unconditional marginal densities

simply by averaging the conditional marginal pdf’s with respect to the marginal pmf of r. For example, the
unconditional marginal posterior pdf for p is given by

p(plyite) ® Z3p(rly,Lo)p(p [1.:t0) (32)

The unconditional marginal posterior densities are mixtures of univariate densities where the mixing

variate is the posterior mass function of r, p(rlys,). If the change point r is known, then the conditional

densities, p(p|r,y,t), - - - P(dslr,¥st), are the appropriate ones to use for making inferences. When the break

point is unknown, the Bayesian analysis averages the T-3 conditional densities with respect to the marginal

posterior pmf of r.

Let & = (4, 8,4, dp ©), % = (0, 5, d,, dp, @), V" = (0, 13, B, d @), 0" = (P, 13, B, 4, ), £ = (0,

§) and use du(r), dr(r), V(r), Z(r), U(r), W(r) and X(r) to represent the observation matrices of (DU(r),),

(DT(1)), (L, t, DU(r), DT(r), AYups  + o AYixar)s (o 1 DU(1), DT(t),, AYuss - - » AYaar)y (s 1, 1, DT(r),,

AV - - »AYVust), G L &, DUM)y Ay, -« o Yoerr) 308 (g, 1, ¢, DU(T), DT()y A¥ey, - - 5 A¥urni)s

respectively. In addition, we have the following decompositions of the sum of squares Z(y, - £'%)"

m(i(r) + (p - O my(ya) + (6 - SEYVEIVEE - 51, (33)
m(8(r)) + (B - B(r))'may(r) + (7 - K(D) Z(YZ(r)(x - % (1)), (34)
m(i(r)) + (d, - 4OV my(dp@) + ¥ - YEOYUERUEE - 5(0), (35)
m(G(r)) + (4 - d(r))’mwe(dr(r)) + (0 - AHEOYWEWE® - (D), (36)
m(i(r) + (€ - EEXEXEE - E0), G7)

where m(ii(r)) = ETi(r)}, i(r), are the OLS residuals for a fixed r and
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i(r) = y - X)),
§() = 8(rp) = 5() + (VEOYV@)'V(E)7.(0) - ),
#(r) = £(1,8) = #(r) + (ZCYZ@)'Z()7(B() - B),
(1) = b(rd,) = () + (UEUE)'UGYdur)(@, ) - d),
@) = fi(ndy) = A() + (WEYWE) WY dr(@,(r) - dy).
The following theorem gives, for the SC model, the marginal posterior pmf of r and the unconditional

marginal posterior pdf's of the trend determining parameters p, §, d, and d, based on the priors (29) and (31).

THEOREM 2

P(rle, yito) o exp{-A(r)™}(Taos(A(r),@(1)))'? | X(r) X (1) | *m(ia(r)) T+47

p(ple, Yito) < ET'p(r ly,ko)exp{-p7} (e (0, 8(1,0)))
X[m(@(r)) + (o ~ B(r))’myey (v, )] T>?

P(Ble, v:to) & ET'p(r|y,0)exp{-p(r,8) > }(I Lo, (5(r,5),&(x,6)))?
x[m(@(r)) + (8 - B)) my,(r)] ™"

P(3, |6, yibo) & ZT'p(r[y.to)exp{-p(r,d,) * HIT{a:((r.d,),&(r.d,)))"*
X[m((r)) + (4, - d,(1))my,(du(x) T+I*

P(dsle, ito) o BT p(r |y, bo)exp{-A(r,ds) >} (I oy (5(r,dg). 2 (r,45))) "2

X[m(@(r)) + (dy - da(r)) my,(dr(r))] T2

Remarks (i) Under a flat prior, the posterior pmf of r is

P(rysto) & 1X(r)X(r) | *m(B(r))y 47,
and the unconditional posterior pdf's of the trend parameters are mixtures of conditional Student-t densities.
These results are analogous to those obtained by Ferreira (1977) and Chin Choy and Broemeling (1980) for the
switching regression model with fixed regressors (see Holbert (1982), Broemeling (1985) and Broemeling and
Tsurumi (1987) for a summary and some extensions). Under the approximate Jeffreys prior (23), the posterior

pmf of r is
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p(rI33t0) ()2 |XEYX(D) [ Pm(B(E) T,
and the posteriors of the trend parameters are mixtures of conditional densities of the form derived earlier.
(ii) If we define the Bayes estimator of r to be the break point with the largest posterior mass, then
we see that the Bayes estimator is very close to the classical estimator of the break point which minimizes the
sum of squared residuals.
To evaluate the evidence for the unit root model given by the data when we allow for the possibility of
structural change, we nced to combine the SC and NSC posteriors of the trend determining parameters. To do
this, let q € [0,1] denote the prior probability of no structural change. Then the posterior densities of the trend

parameters become a weighted average of the NSC and SC posteriors.

4. EMPIRICAL APPLICATIONS

4,1. The Nelson-Plosser data set

The first data set we analyze is that used by Nelson and Plosser (1982). The data set includes the
following fourteen annual macroeconomic series: real GNP, nominal GNP, real per capita GNP, industrial
production, employment, unemployment rate, GNP deflator, consumer prices, nominal wages, real wages, money
stock, velocity, common stock prices and bond yields. The start dates for the series vary from 1860 for industrial
production and consumer prices to 1909 for the GNP series. All series terminate in 1970. We analyze the
natural logarithms of all of the series except bond yiclds which we analyze in levels form.

Nelson and Plosser used the model formulation (1°), with k determined from the data, to conduct ADF
unit root tests on the series. They could not reject the unit root hypothesis at the 5% level of significance for
all of the series except the unemployment rate. Perron (1988) arrived at similar conclusions using the Phillips-
Perron unit root tests. In contrast, DeJong and Whiteman (1989a) employed a flat prior Bayesian analysis based
on the model (1) with k=3 and found that the data favored a TS representation over a DS representation for
all of the series except consumer prices, velocity and bond yiclds. In the spirit of Geweke (1988), their analysis

focused on the modulus of the dominant root, A, of the equation 1-$(L)=0 and the time trend parameter § and
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they derived posterior densities for these parameters based on flat priors for the coefficients of (1) by Monte
Carlo integration methods”. Their inferences concerning trend behavior are based on the posterior
probabilities of the events {A > 975|A} and {8 < .001)A}, where A is the event {0 < # < 016, S55< A <
1.055}. They found appreciable probabilities for these events for a majority of the series only when they
restricted § to be equal to zero. Phillips (1990) also conducted a Bayesian analysis of the Nelson-Plosser data
using a flat prior and his approximate Jeffreys prior (5) for the model (17) with k=1 and k=3, Using a flat prior,
Phillips, in agreement with DeJong and Whiteman, found insufficient evidence in favor of the unit root model
for most of the series', Using the Jeffreys prior, however, he found substantially more support for the unit
root model for some series (notably, stock prices, industrial production and nominal GNP).

The analysis presented here is very similar to that given in Phillips (1990). We expand on his analysis
by considering different model specifications and by including posterior inferences for the deterministic trend
parameter. We utilize model (1") and compute posterior densities for the long-run autoregressive parameter p
and the time trend parameter § based on the modified Jeffreys prior (29) (MJ-posteriors), Phillips’ approximate
Jeffreys prior (5) (J-posteriors) and the flat prior #(f) & o' (F-posteriors). For each series, we compute the
posteriors for the case where k is specified as in Nelson and Plosser (1982) and for the case where k=3 (as in
DeJong and Whiteman (1989a)) to assess the sensitivity of the results to the specification of the model. In order
to use the modified prior (29), we must specify the mode of the implied prior for p by selecting a value for e.
This choice determincs the degree of nonstationarity allowed a priori and may have a large impact on posterior
inferences. Instead of confining ourselves to a single value of ¢ for each series, we exploit the convenience of
the analytic representation of our posteriors and report inferences based on a broad range of ¢ values. In this
manner, we can address the robustness or fragility of our inferences to the specification of the prior.

Figures 5-11 give the marginal posterior densities of p and 8 based on the three sets of priors for the

Since the dominant root, A, of the equation 1-¢y(L)=0 is a nonlinear function of the y’s, the implied prior
for A is not flat but instead is increasing in A. However, priors for the moduli of the other roots compensate
for this. For instance, when k=2 Phillips (1991) shows that the prior for the second root ) is decreasing in A.

“Phillips shows that the untruncated flat prior posteriors for p give good approximations to the truncated
posteriors for A used by DeJong and Whiteman. Some of the algebraic differences between these approaches
are explored in Phillips (1991).



4
Nelson-Plosser series computed using k=3. Each panel displays the MJ-posteriors computed for € equal to .001,
025 and .050. These values of ¢ were chosen to illustrate the sensitivity or lack of sensitivity of the posteriors
to the g priori degree of nonstationarity atlowed. To retain comparability with DeJong and Whiteman, we restrict
¢ to be less than .055. Table 3 reports the posterior probabilities of the events {p > 1} and {f# <-0} computed
from the three sets of posteriors for each series for Nelson and Plosser’s choice of k and k=3. We infer that
the unit root hypothesis is not implausible if P(p 2 1) > .05.

Visual inspection of the posteriors reveals that there can be considerable differences in the shapes for
the three sets of priors for some of the series. The F-posteriors are centered about the OLS estimates and,
except for consumer prices, velocity and bond yields, they give virtually no evidence for the unit root model.
For most of the series, the J-posteriors are quite similar in shape to the F-posteriors, although the modes of the
J-posteriors for p are always to the right of the corresponding F-posterior modes and the J-posterior modes for
B are always to the left of the respective F-posterior modes. The p-posteriors for industrial production,
unemployment rate, velocity and stock prices, however, are bimodal about unity. For industrial production, the
unemployment rate and velocity, the bimodality is such that the regions of highest posterior density (HPD) are
disjoint, indicating considerable uncertainty about the true value of p whereas the HPD region for stock prices
is not disjoint indicating less uncertainty about p. The S-posterior for industrial production is bimodal and
disjoint about zero whereas the posteriors for velocity and stock prices are not bimodal but have considerable
density to the left of the origin. Interestingly, even though the p-posterior for the unemployment rate is bimodal
and disjoint, the B-posterior is nearly symmetric and indicates that a deterministic trend is most likely not
present. The MJ-posteriors for p and 8 vary considerably depending on the series and on the value of . For
all values of ¢ considered, the posteriors for real GNP, per capita real GNP, industrial production,
unemployment, and real wages show little evidence of stochastic trends. In contrast, the posteriors for consumer
prices, velocity, bond yields and stock prices indicate that stochastic trends are quite possible, However, unlike
the F-posteriors or the J-posteriors, the MJ-posteriors for nominal GNP, employment, GNP deflator, nominal
wages and the money stock give some evidence for the unit root model. Moreover, this evidence is sensitive to

the value of e. When ¢=.001, the p-posteriors are heavily skewed toward unity and the S-posteriors are skewed



Table 3: Posterior Probabilities of Stochastic and Deterministic Nonstationarity

Nelson-Plosser Data

35

Event P{p> 1} P{p < 0}
Series k| F J MI' MP MP F J MI' MP MP
Nominal GNP 2| 011 042 031 120 245 | 010 035 031 104 206
3| 020 081 069 324 647 | 019 068 074 310 625
Real GNP 21002 012 006 022 048 | 002 009 006 019 041
31002 015 014 064 048 | 002 011 013 060 174
Per Capita Real GNP 21002 010 006 019 042 |.002 007 .008 .04 026
31002 013 012 055 .15 | 002 008 020 047 120
Industrial Production 6 | 005 964 067 .287 518 | 007 955 .182 353 556
31001 .9 006 031 099 | .001 .55 012 033 094
Employment 31 .04 044 024 236 418 | 006 039 044 131 360
Unemployment Rate 4 { 001 092 007 .032 099 | .591 587 556 .556 556
3001 625 005 .018 038 | 813 810 793 .793 .793
Consumer Prices 4 1.024 063 173 925 99 | .003 .007 030 662 954
31073 181 221 922 992 | 020 .050 082 654 894
GNP Deflator 21006 027 023 122 305 | 005 .018 .017 096 250
31005 024 044 429 875 | 004 016 038 410 876
Wages 31013 053 059 35 747 | 011 .042 .49 333 730
Real Wages 21001 012 004 013 .024 § 001 .009 .003 010 .020
31002 017 o011 042 201 f 001 013 007 037 097
Velocity 2| 040 313 051 197 382 | 816 658 687 662 604
310/ 533 095 421 736 | 762 511 507 420 282
Money Stock 21,001 005 012 133 381 |.002 005 012 114 328
3 /003 010 045 751 982 | 003 011 048 720 978
Bond Yields 31 .758 9% 506 982 999 | .039 020 685 032 018
Stock Prices 2 (004 043 012 055 .147 | 003 015 011 .028 .063
31017 220 046 235 548 | 009 077 024 161 428

Notes: See the notes for Table 1. The first value of k is the value specified in Table 5 of Nelson and Plosser
{1982). For some series, this value is equal to 3.

toward the origin. The posterior modes for p (), for the above series, are .961 (.003), .933 (.002), .892 (.002),

944 (.002) and 933 (.004), respectively. For larger values of ¢, the posteriors become bimodal and give



substantial evidence of stochastic nonstationarity'®,

The posterior probabilities presented in Table 3 allow us to compare trend behavior across model
specifications and priors. Consider first the model specifications chosen by Nelson and Plosser (1982). Under
the flat prior we have P(p > 1) > .05 and P(8 < 0) > .02 only for the bond yields series. For Phillips’
approximate prior, we include industrial production, the unemployment rate, nominal wages and velocity. For
the modified Jeffreys prior with e=.001 we get the same results as with the Phillips prior except we include
consumer prices and exclude the unemployment rate. When e=.050, the probability inequalities hold for all
series except real GNP, per capita real GNP and real wages. The large posterior probabilities of stochastic
nonstationarity for industrial production are due mostly to-the dominating behavior of the prior, which occurs
since the lag length is large (k = 6). Notice that the MI-posteriors for unemployment do not indicate that a unit
root is present as opposed to the J-posteriors.

For the model with k set equal to three, the posterior probabilitics computed under the flat prior satisfy
P(p > 1) > .05 and P(§ < 0) for consumer prices, velocity and bond yields. Using the J-posteriors we add
nominal GNP, industrial production, unemployment, nominal wages and stock prices. The MJ-posteriors for

€=.001 give the same results as the J-posteriors except for industrial production, unemployment and stock prices.

When €=.005, the unit root model appears plausible for all of the series except real GNP and per capita GNP.
Even though the posterior probabilities of stochastic nonstationarity for the GNP deflator, money stock and stock
price series are not very large, their p-posteriors are heavily skewed toward unity and their S-posteriors are
skewed toward the origin. The posteriors are also very senmsitive to the a priori amount of stochastic
nonstationarity permitted. Thus, the unit root model is not necessarily implausible for these series as well.
Our empirical results are in general agreement with the results obtained by Phillips (1990). The only
series for which our interpretation of stochastic structure differs substantially from that of Phillips are industrial
production and the unemployment rate. For k=3, Phillips’ unmodified prior produces posteriors for p that have

significant second modes beyond unity. Our modified prior that atteauates extreme unstable values of p does

15The shapes of the posteriors based on the three sets of priors for the models based on Nelson and Plosser’s
choice of k are, in general, very similar to those described above for models with k=3. The two exceptions are
for industrial production and the unemployment rate.
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not produce posteriors that reflect this much uncertainty.

4.2, Stock price and dividend data

In this section we analyze the annual stock price and dividend data examined by DeJong et al. (1988)
and DeJong and Whiteman (1989b). These include the Dow Jones Industrial Averages (1928-1978) used by
Shiller (1978), the value-weighted New York Stock Exchange Index data (1926-1981) used by Marsh and Merton
(1987) and the Standard and Poor’s 500 scrics (1871-1985) used by DeJong et al. (1988)%.

DeJong et al. (1988) conducted various classical unit root tests on the above data and they could not
reject the unit root hypothesis at the 5% level for all of the series except the Standard and Poor’s dividead series.
Using a trend stationarity test, however, they could not reject the null hypothesis at the 5% level that § # 0 and

p = .B3 cither, Faced with these conflicting results, DeJong and Whiteman (1989b) resort to a flat prior

Baycesian analysis of the type used in their earlier paper to try to settle the issue. Based on their Bayesian
analysis, they find that trend-stationarity is strongly supported by the data and only when the trend coefficient
is restricted to zero a priori do the data admit unit roots.

Our Bayesian analysis of these series is summarized in Table 4, where we compute posterior
probabilities of stochastic and deterministic nonstationarity for models with k=3 (as in DeJong and Whiteman
(1989b)) and k=4 (as in DeJong et al (1988)). Figures 12-14 display the posterior pdf’s of p and 8 computed
under the three sets of priors described earlier for a model with k=3. As in the previous section, the MJ-
posteriors are computed for three values of € to show the sensitivity of the posteriors to the specification of the
prior.

The posteriors computed under the three sets of priors vary considerably. As with the Nelson-Plosser
data, the F-posteriors for the stock price and dividend data give very little, if any, evidence in support of the unit
root model. For all of the series, the posterior probability that p exceeds umity is less than .036 and the

probability that 8 exceeds zero is greater than 938,

'*Charles Whiteman generously provided the data sets. They are described in detail in DeJong and
Whiteman (1989b).



Table 4: Posterior Probabilities of Stochastic and Deterministic Nonstationarity
Stock Price and Dividend Data
Event P{p=1} P{p < 0}

025 389 144 232 | 029 181 142 186 238
013 065 | 001 003 009 .009 .017
000 394 050 261 | 000 012 021 028 083
007 411 025 123 328 | 037 069 156 .149 164

002 132 034 257 726 | .017 030 131 .40 .209

SP 500 Dividends

SP 500 Prices

Series k F I MI' M MP F J] MI' MP MP
Dow Jones Dividends 3] .003 368 009 025 042 | 008 027 054 .048 .052
4 | 001 445 010 029 050 | 003 016 048 048 051
Dow Jones Stock Prices 3] .015 563 .02 070 114 | 051 091 186 175 175
4 | 022 .89 048 147 244 | 068 154 353 351 367
NYSE Dividends 3] 009 227 025 078 147 § 011 116 051 088 .140
4 | 005 .09 024 073 126 | 004 053 022 061 104
NYSE Stock Prices 3] .035 530 045 A31 218 | 054 265 165 197 243
4 047
3 001
4 007
3
4

Notes: See the notes for Table 1.

The J-posteriors, on the other hand, give considerable support for the unit root model for all of the
series with the possible exception of the S & P 500 dividend series. The p-posteriors are bimodal about unity,
with the stock price series exhibiting more substantial second modes (for p > 1) than the dividend series. The
B-posteriors are not bimodal like the p-posteriors but they often have significant density to the left of the origin.
When k=3, all of the stock price series have P(p > 1) > .41 and P(8 < 0) > .69. The Dow Jones and NYSE
dividend series satisfy P(p 2 1) > .22 and P(8 < 0) > .02. Although the S & P 500 dividend series has P(p >
1) = .14, it has P(f < 0) = .003 which is quite small. The evidence for the unit root model for this series is
tenuous.

The MJ-posteriors for the stock price series show some support for the unit root model whereas the
posteriors for the dividend series, with the possible exception of the NYSE series, give relatively little support.
For the stock price series with k=3 and ¢ =001, the p-posteriors are heavily skewed toward unity. The posterior
modes are .963 (Dow Jones), .975 (NYSE) and .915 (S & P 500). The f-posteriors arc more symmetric than

the p-posteriors but they have substantial density to the left of the origin: the f-posteriors for the three stock
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price series satisfy P(8 < 0) > .15. In addition, for all of the stock price series except the S & P 500 series, as

€ is incrcased the posteriors for p and 8 do not change very much. For the dividend series with k=3 and €= 001,
the p posterior modes are .719, 855 and .798 and all series have P(p > 1) < .025 and P(8 < 0) < .051. The
posteriors for the NYSE dividend series are sensitive to the value of ¢, indicating that inferences concerning the
unit root hypothesis are fragile.
As illustrated above, posterior inferences concerning the stochastic structure of these stock price and
dividend series are quite sensitive to the specification of the priors. They are not, however, particularly sensitive
to the model specification. If one adopts a fiat prior, like DeJong and Whiteman (1989b), then one is led to
belicve that the data are trend stationary, If, on the other hand, one uses a Jeffreys-type prior then one is led
to believe that only some of the dividend series are trend stationary, One cannot easily dismiss the unit root

model for the stock price series and the NYSE dividend series.

43. The Nelson-Plosser data set revisited

In this section we reexamine some of the Nelson-Plosser data by considering models that allow for the
possibility of structural change in the deterministic components. Specifically, we utilize two versions of (30).
The first model we analyze, which we call Model (A), has the restriction that d; = 0 a priori. This model allows
for a one time change in the level of the series occurring at time r. Perron (1989) called this the "crash” model.
Our second model, Model (B), allows d, # 0 and d, # 0. Perron used a variant of these two models for some
of the Nelson-Plosser data to test the null hypothesis of a unit root with structural change against the alternative
of trend stationarity with a broken trend where the point of structural change was set a priori at 1929, By
allowing for a flexible trend under the alternative, Perron could reject the unit root hypothesis at the 5% level
of significance for all of the series except consumer prices, velocity and bond yields.

We now examine the sensitivity of Perron’s results to his exogeneity assumption concerning the break
date by assuming ignorance about the location of the change point and computing the marginal posterior pmf
of r and the unconditional posterior pdf's for p, # and d, (and d, for stock prices). We focus our analysis on

the series for which we earlier found evidence of stochastic trends, These series include nominal GNP, GNP
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deflator, consumer prices, employment, nominal wages, money stock, velocity, stock prices and bond yields.
Following Perron, we usc Model (A) for all of the above series except stock prices, for which we use Model (B).
We compute the posteriors with values of k used in section 4.1 and with values of k used by Perron (1989).
Figures 15-23 display the posterior pmf of the break date r, the unconditional marginal pdf's of p, f and
d, (and d, for stock prices) as well as the conditional densities of thesc paramecters for r=1929. As in the
previous sections, these posteriors are computed under three sets of priors. The mass functions and densities
are plotted for g, the prior probability of no structural change, equal to zero to illustrate the most extreme case.
Table 5 summarizes the posterior pmfs of r, Table 6 summarizes the posterior pdf’s of the trend determining
parameters for the Model (A) series and Table 7 gives the results for the Model (B) series (stock prices).
Consider first the posterior pmfs of r. Notice that the pmfs computed under the three sets of priors
for a given lag length are very similar and, in most cases, give the highest posterior mass to the same value of
r. In addition, the F-posteriors are generally larger than the J or MJ-posteriors'’. Second, the break date with
highest posterior mass varies with the lag specification for some of the series. If we define the Bayes estimator
of the break date to be the date with highest posterior mass, then r=1929 is chosen as the Bayes estimate for
nominal GNP and nominal wages irrespective of the value of k and it is chosen for employment only when k=38,
When k=3, the most likely change date for employment is 1894, With q, the prior probability of no structural
change, equal to zero the MJ-posterior (¢=.001) masses associated with r=1929 for these series are .830, .208
and 314, respectively. The Bayes estimate of r for the money stock is 1928 (1929 had the second highest
posterior mass) with posterior mass equal to .095. In addition, from the plots of the pmPs we see that most of
the posterior mass is concentrated around r=1929. These results indicate that a structural break most likely
occurred near 1929. The results for the other series are mixed. There is no evidence of structural change
occurring at 1929 for the consumer prices or bond yields series since the most likely break dates for these serics
occur at the sample endpoints. For the GNP deflator, structural change is most likely to have occurred in 1920

(P(r=1920) = .496) and r=1929 has the second highest posterior mass (P(r=1929) = .054). There is no clearly

"Because the posterior pmf's of r give essentially the same inferences for most of the series, we only discuss
the values of the mass functions computed from the MJ-posterior with ¢=.001. See Table 5 for a complete set
of results.
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Table 5: Break Dates with Highest Posterior Mass: q = 0

Rack 1 2 3
Serics k E J MP MP F J M M F J M Mmr
e B B e T ——

Nominal 2 1929 1929 1929 1929 1928 1928 1928 1923 1926 1926 1926 1926
GNP .BB4 886 845 .849 055 058 060 .060 015 017 019 018
3 1929 1929 1929 1929 1928 1928 1928 1928 1926 1926 1926 1926

501 882 .830 836 044 047 .051 051 012 015 018 018

9 1929 1929 1929 1932 1930 1930 1933 1929 1928 1928 1938 1933

993 992 .603 999 004 .004 262 000 000 002 110 000

Employment 3 1894 1894 1894 1894 1893 1893 1893 1893 1897 1897 1897 1897
681 675 647 648 183 195 .235 238 031 028 022 022

B 1929 1929 1929 1929 1928 1923 1928 1928 1927 1938 1938 1938

449 422 .208 .208 167 .161 108 108 046 057 .063 063

Consumer 4 1864 1864 1864 1864 192¢ 1920 1920 1920 1873 1867 1919 1919
Prices 999 599 997 997 000 .000 001 001 000 000 000 .000
3 1864 1864 1864 1864 1863 1863 1863 1863 1367 1867 1867 1867

999 999 999 999 000 000 .000 .000 .000 000 000 000

GNP 2 1920 1920 1920 1920 1929 1929 1928 1928 1928 1928 1929 192¢
Deflator 539 578 580 567 .073 061 054 058 072 061 .054 058
3 1920 1920 1920 1920 1929 1929 1929 1929 1928 1928 1928 1928

419 472 496 486 .133 A1 .085 089 .103 .088 069 071

6 1920 1920 1920 1920 1929 1929 1929 1929 1928 1928 1918 1918

438 .549 626 625 179 143 045 045 082 .069 038 036

Nominal 3 1929 1929 192¢ 1929 1928 1928 1928 1928 1930 1930 1930 1930
Wages 405 377 314 319 .234 228 .203 206 114 106 092 094
L] 1929 1929 1929 1929 1930 1930 1920 1920 1928 1928 1930 1930

.626 .623 .243 243 281 272 124 124 044 048 098 0ge

Velocity 2 1946 1946 1946 1946 1949 1949 1949 1949 1947 1947 1880 1880
157 .153 147 150 152 136 119 123 130 124 114 116

3 1880 1880 1880 1880 1946 1946 1946 1946 1849 1849 1947 1947

.237 237 215 218 133 127 117 120 119 105 .083 084

Money 3 1928 1928 1928 1928 1929 1929 1929 1929 1930 1930 1927 1930
Stock 140 127 095 098 103 092 068 071 062 .055 L043 044
7 1928 1928 1896 1896 1929 1929 1928 1928 1930 1930 1929 1929

154 .146 102 102 141 .130 .054 054 135 a2 044 044

Bond 3 1967 1967 1967 1918 1965 1920 1965 1935 1966 1921 1966 1920
Yields 681 262 686 .163 113 178 125 089 .078 174 093 .0B4
Stock 2 1953 1953 1953 1953 1954 1954 1954 1954 1952 1952 1952 1952
Prices 547 528 514 515 143 139 134 135 098 099 .099 099
3 1936 1936 1936 1936 1937 1937 1937 1937 1939 1953 1953 1953

102 100 091 102 101 097 091 091 090 086 088 .088

—— i ——

Notes: q denotes the prior probability of no structural change. Model (A) is used for all of the series except stock prices, for which Model (B) is used.
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Table 6: Posterior Probabilities of Stochastic and Deterministic Nonstationarity
Model (A)' Y= 4 + ﬁt + dpDU(r)l + PYv1 + Efl ﬁoiAYI-i + L)

Event Plp = 1) P{g < 0} P{d, = 0}
Series l k F I P MP F ) M M F 1 M M
— — .
Nominal 3 .00t 004 .007 .043 .001 .004 016 041 009 014 040 036
GNP (000)  (.000) (000  (.003) (000) 000y (000  (.000) (:000)  (00O)  (000)  (.000)
Employment | 8 .000 .008 097 846 005 .012 305 .807 .191 216 271 281
(000)  (000)  (025)  (.763) (000)  (000) (059  (663) | (001) (001  (009)  (.009)
Consumer 3 004 012 024 114 000 000 000 004 000 000 000 .000
Prices (101) (U5 (259 (9% (0365)  (48) (09T (111} | (364)  (330)  (.284)  (.299)
GNP 3 .002 .010 020 339 001 002 010 .295 .050 054 081 081
Deflator (000 (000 (002} (2D (000)  (000)  (002)  (.253) (001 (001  (004)  (.004)
Nominal 3 .001 .009 .014 .203 .003 010 024 224 .049 066 119 116
Wages (000) (00D (001  (04D) (000) ©  (.000)  (.001)  (.001) (000)  (000)  (.00Z)  (.002)
Velocity 3 .007 130 .029 2n 936 878 .790 .750 537 517 483 485
(078)  (5T®) (101 (759) (625 (478 (362  (299) (355) (341 (329  (339)
Money Stock | 3 003 .002 .038 960 008 014 .05% 956 343 364 417 418
Bood Yiclds 3 239 871 an 977 360 302 .969 .518 767 .509 .9%0 248
(370 (M6 (314 (987 (005)  (184) (163  (969) (024) (09 (00 (80D
————— e —— —— —
Table 7: Posterior Probabilities of Stochastic and Deterministic Nonstationarity
Model (B): y, =p + pt + dpDU(r)t + dﬂDT(r)t + Y + Ell‘1 @ly + o€
Event Pp = 1} P{g = 0} B{d, = 0} Pld, = 0}
Ser | & F 1 My MP F ] My MP F ] M MP F ) My M?
Srock 3 000 123 001 016 002 004 005 010 404 402 Al2 412 018 022 033 033
Pricce (.000) ¢o0D)  (000) (00D | (000)  (00O)  (.000) o | m (oo (000)  (000) | (OO0} (OOD)  (00®)  (.00O)

Notes: See the Noies for Table 1. q denotes the prior probebility of no structural change. The probabilitics in pareniheses are conditional an v = 1929,
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dominant change date for the stock price series. The Bayes estimate of r is 1936 with a posterior mass of .091
and P(r=1929) = 07. The posterior pmf of r for the velocity series is bimodal with one mode at 1880 and
another at 1946 and there is very little posterior mass at 1929. These results suggest that Perron’s conditional
unit root testing results are most likely applicable to the nominal GNP, employment, nominal wage and money
stock series. His results appear tenuous for the GNP deftator and stock price series.

Now consider the posterior pdf’s of the trend determining parameters. For nominal GNP, since the
posterior mass at r=1929 is near .8 for all of the priors, the unconditional posterior pdf's (with q=0) are almost
identical to the pdf's conditional on r=1929. In addition, the posteriors computed from the three sets of priors
are very similar. The p-posteriors and f-posteriors give virtually no indication of stochastic nonstationarity and
the d,-posteriors clearly indicate a drop in the level of the scries at 1929. The trend stationarity structural change
model appears to be gquite plausible for this series unless one has a large prior probability of no structural
change. Similar inferences can be made for the employment and nominal wage series based on the F and J
postcriors. Since k=8 for employment, the MJ-prior has a large influence on the shape of the posteriors, as is
clearly indicated from the plots of the posteriors, and, consequently, the unit root model is given considerable
posterior probability. The MJ-posteriors for the nominal wage series indicate more uncertainty about the true
values of the trend parameters than the F or J posteriors but not enough to sway inferences toward the unit root
model. Inferences concerning the stochastic structure of the money stock series, however, are not as clear cut.
The unconditional F and J posteriors for p and f are close to the conditional distributions and they give
negligible support for the unit root model. The unconditional MJ-posteriors for these parameters display much
more uncertainty about the true values of p and f. Further, the posteriors are very sensitive to the value of ¢.
When ¢=.001, we have P(p > 1) = .038 and P(8 < 0) = .051 and when ¢=.05 these probabilities become .960
and .956, respectively. More importantly, however, the unconditional posterior pdPs of d, for the three priors
are much different from the conditional pdf's. The unconditional pdfs are centered near zero and indicate
considerable uncertainty about the presence of structural change. For the three sets of posteriors we have P(d,
> 0) > .34. For the GNP deflator, the unconditional pdf's give substantial evidence for the TS SC model with

a change occurring at 1920 instead of 1929. For €=.05, however, the MJ-posteriors indicate that the unit root
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mode] is still plausible. Last, the posterior pdf's of the trend parameters for the stock price series indicate that
the SC model with r=1929 is not very plausible. The unconditional posterior pdfs of d, and d, are quite
different from the pdf's conditional on r=1929.

In sum, our Bayesian analysis indicates that the trend stationary structural change model with r=1929
is quite likely for nominal GNP and nominal wages if the prior probability of no structural change is not too
large. Further, these inferences are robust across different priors and lag specifications. The TS SC inference

for employment is fragile since it depends on a particular lag specification.

5. CONCLUSIONS

This paper expands on the methodology introduced in Phillips (1990) and provides a comprehensive
Bayesian posterior analysis of trend behavior in general autoregressive time series models based on a modified
information matrix prior that incorporates thc intcractions between short-run and long-run dynamics and which
permits the researcher to limit the amount of stochastic nonstationarity allowed. Analytic posterior densities for
all of the trend determining parameters are derived using Laplace approximation techniques. Simulations show
that Bayesian methods based on our modified information matrix priors work well when there are transicnt
system dynamics. Bayesian methods of trend determination in models that permit structural change or trend
breaks are also presented.

These Bayesian techniques are applied to the Nelson-Plosser historical US macroeconomic data and to
various stock price and dividend series. Our empirical results for the Nelson-Plosser series are generally in
accord with those of Phillips (1990) concerning the presence of stochastic trends. Our Bayesian analysis also
shows evidence of trend breaks in some of the macroeconomic series with the breaks occurring around 1929,

thereby providing some partial support to the conclusion reached by Perron (1989).
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6. APPENDIX

PROOF OF PROPOSITION 1: The joint posterior is given by
P(PoSysie) & 02 |AY () |"TH(L + 07A3(0,8)) 0 exp{-(1/20)E1 (s, - s - Bt - ¥%1)T) (A1)
= CTI AP [I + 073 (08)) exp{-(1/20)m(E) + (5 - PYmy(y)]}
x exp{-(1/20(5 - S(e)YV'V(s - (e},
where the last line follows from the decomposition (15).
To determine the marginal posterior density of p we must integrate the joint posterior with respect to
6 and o
P(el3to) [ p(p,05 ly.o)dsdo. (A2)
We first integrate (A1) with respect to § to give
PP 1y,t0) x 0T Pexp{-(1/20°)[m(B) + (o - A)’my(y.)]}
x [IA%(p0) "I + 0™A%(p,5)) %exp{-(1/207)(6 - 5()YV'V(S - §(p))}ds. (A3)
Recognizing that the major contribution to the integral occurs about the vector of points & = §(p)’ =
(#(p),B(0):®(p)), the Laplace approximation reduces the integral to
[VV[26 A3 (p.2(0)) [T + 07X} (p,6(0)))"™, (A9
Since the elements of V'V are at least O(T), this approximation has a relative error of O(T"'). Combining (A3)
with (Ad) gives
P(p.oyste} & |AZ(,@ (N IPITHL + o2A¥(p8(p)))"”
x 0T *0exp{-(1/20°)[m(0) + (¢ - A)’my(y.)]}. (A5)
The marginal density of p is then given by
P(olyite) & [AF(p.P()) "™ [TIH1 + o203 (p,5(p))) "0 T+¥
x exp{-(1/20)[m(8) + (¢ - PYmy(y.)]}do. (as)
Making the change of variables z = o2 in the above integral gives
plolyte) & |A3(.2(N) " [T + 223 (0,5(p))) %2+
x exp(-(z/Dm(@) + (¢ - Pmyly.)}dz, (A7)
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where g = (T+2-k)/2. The integral in (A7) may be expressed as a confluent hypergeometric function of the
second kind with multiple arguments (see Phillips (1988)). If {m(d) + (p - p)*my(y.))] is large, then most of the
value of the integral comes from a neighborhood of z near the origin. In this case we may approximate T
+ 22%(p,5(p)))'? by 1 and (A7) becomes

P(plyta) o | A3, B(0) |2 [#°Pexp{-(z/D)m(B) + (o - HYmy(y.)]}dz. (A8)
If we let w = z[m(@) + (p - §)*my(y.,)), then using propertics of the gamma function and ignoring terms that
do not depend on p leaves us with

P(plyite) o |AS(0.(0)) " [m(B) + (o - B)’my(y. )]+ (A9)
This completes the proof for part (a).

The proofs for parts (b) and (c) follow in a similar fashion using the sum of squares decompositions (16)

and (17).

PROOF OF THEOREM 2: Part (a). Using the sum of squares decomposition (37), the joint posterior is given
by
DExrlé, Yio) & T (TTkat (p,0)) Zerpf-o>
x exp{-(1/20)[m(8(®) + (¢ - EOYX@XEE - EO)]}- (A10)
To determine the marginal posterior mass functions of r, r=2, . . ., T-2, we must integrate the joint
posteriors with respect to £ and o
p(rle, yito) = [[p(Eorlye)dédo, r=2,.. ., T-2 (a11)
We first integrate (A10) with respect to £ to give
P@rle, yitn) & o™ Pexp{-m(a(r))/20%} [ [Wiasi(p0)) "exp (-2}
x exp{-(1/20)(¢ - E()KEKE(E - £,
Recognizing that the major contribution to the integral occurs about & = &) = (AI)A1),A(r),2(r)), the
Laplace approximation yields
Pl Yio) o XYK" ™Ity 1) 2exp(-3(1) >+ jexp(-m(ar)) /207,

which has a relative error of O(T) since the elements of X(r)’X(r) are at least O(T). Next we integrate with
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respect to o, and find

Prle, yta) o [X(YX(0) (I3 (P(e) b (2))) Penp{-(x)° D)

X f o™ exp{-m{fi(r))/20?} do. (A12)
Making the change of variables z = m(ii(r))/20* and using the Gamma integral, we have
p(rle, o) o [X(YX() " @Waga(p(r). (1)) exp{-p@) >+ ym(am)y ™o, (A13)

r=2, ..., T-2. This proves part (a).
Consider now the determination of the posterior density of p. Using the sum of squares decomposition
(23), we may rewrite the joint posterior as
P(p.oS e, Yto) o 0T (TTiadi(p,0)) Zexp{-p "))
x exp{-(1/20°)[m(i(r)) + (p - p(1))'my,,(y.) + (§ - BE) V(Y V(E)(E - §E)I). (A14)
We proceed as before and start by integrating (A14) with respect to § to give
P(e.orle, Vo) & 0™ Vexp{-o> 4 yexp{-(1/20Dm(ar)) + (8 - HE) i)}
x [(Taga(pse))"exp{-(1/20)(6 - S@YVE) V@) - 5())}- (A15)
Using the Laplace approximation, and ignoring terms that do not depend on p, ¢ or r, the integral that appears
in (A15), may be reduced to
V@) V() [0 (Tiags (o607, (A16)
which has a relative error of O(T"). Combining (A15) with (A16) gives

P(B.OTIE, Vo) ¢ [V()V(r) [0 ™+ ([Tiag (p,3(r))) Zexp{-p> )

x exp{-(1/207)[m(i(r)) + (o - A()Ymy(y.)]}- ' (A17)
Integration with respect to o, ignoring terms thal do not depend on p, then yields
plole, Tyia) e (WiabilpB(r))) "exp{-o" ) m@@) + (2 - e muiy)TT". (a19)

Since ppirle, yito) = p(ple, r.Y,0)P(r|€, yito), averaging (A18) with respect to (A13) thus gives the marginal
posterior density function of p. This proves part (b).
The proofs for parts (c) - (e} are straightforward extensions of the above reasoning based on the

decompositions (34) - (36). They are therefore omitted.
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Figure 4

DCGP: Unit Root with Drift
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