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0 Abstract

This paper provides a theoretical overview of Wald tests for Granger causality in levels
vector autoregressions (VAR'’s) and Johansen-type error correction models (ECM’s). The
theory is based on results in Toda and Phillips (1991) and allows for stochastic and
deterministic trends as well as arbitrary degrees of cointegration. For VAR models the
results for inference are not encouraging. The limit theory typically involves nonstandard
distributions and nuisance parameters, and there is no sound statistical basis for testing
causality in such a framework. Granger causality tests in ECM’s also suffer from nujsance
parameter dependencies asymptotically and nonstandard limit theory. But, in spite of
these difficulties Johansen-type ECM’s do offer a sound basis for empirical testing of
the rank of the cointegration space and the rank of key submatrices that influence the
asymptotics. In consequence, we recommend some operational procedures for conducting
Granger causality tests in the important practical case of testing the causal effects of
one variable on another group of variables and vice versa. This paper also investigates
the sampling properties of these testing procedures through simulation exercises. Three
sequential causality tests in ECM’s are compared with conventional causality tests based
on VAR’s in levels and in differences. It is found that the sequential tests work reasonably
well at least in large samples and that they generally outperform the conventional VAR

causality tests.



1 Introduction

This paper provides a theoretical overview of Wald tests for Granger causality in levels
vector autoregressions (VAR's) and Johansen-type error correction models (ECM’s). The
theory is based on results in Toda and Phillips (1991) and allows for stochastic and
deterministic trends as well as arbitrary degrees of cointegration. For VAR models the
theory extends earlier work by Sims, Stock and Watson (1990) on trivariate systems. In
such models the results for inference are not encouraging. Explicit information on the
number of unit roots in the system and the rank of a certain submatrix in the cointegrating
space is needed to determine the appropriate limit theory in advance. Pretesting these
conditions involves major complications in levels VAR’s. But, even were the information
to be available, the limit theory would frequently involve both nuisance parameters and
nonstandard limit distributions, a situation where there is no satisfactory statistical basis
for mounting the tests.

Granger causality tests in ECM’s also suffer from nuisance parameter dependencies
asymptotically and, in some cases, nonstandard limit theory. Both these results are
somewhat surprising in the light of earlier research on the validity of asymptotic chi-
square criteria in such systems. But, in spite of these difficulties Johansen-type ECM’s do
offer a sound basis for empirical testing of the rank of the cointegration space and the rank
of key submatrices that influence the asymptotics. In consequence, we recommend some
operational procedures for conducting Granger causality tests in the important practical
case of testing the causal effects of one variable on another group of variables and vice
versa. This paper also investigates the sampling properties of these testing procedures
for Granger causality through simulation exercises. Three sequential causality tests in
ECM’s are compared with conventional causality tests based on VAR’s in levels and in
differences.

The plan of the paper is as follows. Section 2 reviews the theoretical results of Toda
and Phillips (1991). Section 3 introduces the sequential causality tests and explains our

experimental design for the Monte Carlo simulation. Section 4 reports the simulation



results. Some concluding remarks are made in Section 5. A summary word on notation.
We use vec(M) to stack the rows of a matrix M. We use “ 2,7 and “ =" to signify
convergence in distribution and equality in distribution, respectively. The inequality
“ > 0" denotes positive definite when applied to matrices. BM({2) denotes a multivariate
Brownian motion with covariance matrix 2. We write integrals with respect to Lebesgue

measure such as [, W(s)ds more simply as f; W to achieve notational economy. All limits

given in this paper are taken as the sample size T' — oo.

2 Theoretical Overview of Causality Tests

In this section we shall summarize the theoretical results of Toda and Phillips (1991).

Consider the n-vector time series {y,} generated by the k-th order VAR model !
yt=J(L)y,_1+ut t=—*k+1,,T (1)
where J(L) = Yt JiL'™! and

(A1) {u; = (ugs,....un)'} is an iid. sequence of n dimensional random
vectors with mean zero and covariance matrix £, > 0 such that E|u;[*t® < 0o

for some & > 0.

We shall initialize (1) at £ = =k +1,...,0 and allow the initial values {y_s11,...,%0} to

be any random vectors including constants. Define

k-1 k
JLy=SJLT with  Jr=— Y Ja

=1 h=1+41

We assume:

(A2} |I, —J(z)z] =0 implies |z| >1or z =1.

(A3) J(1) — 1, =T A where I and A are n x r matrices of full column rank
r,0<r<n-~1. (f r=0,thereisno T or A,and J(1)=1,)

1For simplicity of exposition, we discuss in detail the case where there is no constant term. If a VAR
has a constant term, y; may have a deterministic titne trend, and it affects the asymptotics for causality
tests in levels VAR’s. We will briefly discuss the results for such a case after the results for the model (1)
are presented.



(Ad) T".(J*()) — I,)AL is nonsingular, where I', and A, are n x (n —r)
matrices of full column rank such that I'\[' = 0 = A/ 4, {If r = 0, we take

Aizjﬁzl—‘l.)

Under the above conditions y, is CI(1,1) with r cointegrating vectors (ifr > 1).2 Condition
(A2) precludes explosive processes but allows for the model (1) to have some unit roots.
Condition (A3) defines the cointegrating space to be of rank r and A is a matrix whose
columns span this space. Condition (A4) ensures that Ay, is stationary. (See Theorem

3.1 of Johansen, 1989) Then, we can write (1) in the equivalent ECM format
Ay, = J (L)Ayi—1 + TA'yy_1 + uy. (2)
Further, we need an additional assumption:
(A5) Ezy,z{, > 0 where =y, = (Ay]_,,... yAY 1 (Ayicr)')

Note that Ezy,z], is the covariance matrix of the stationary component in the system, so
this is a standard assumption.
Suppose that we want to test if there are causal effects from the last ns elements of ¥,

to the first n; elements of this vector, and accordingly partition y, into three sub-vectors.

Y1t ny
Y = Yo Mg
Y3 ng

Next, we introduce the selector matrices which will be used below:

AIn]
5=(%)
532(10 )

We shall first summarize the asymptotic results for causality tests in levels VAR’s.

and

2The iid assumption (A1) is not, of course, necessary for g, to be CI(1,1). In Section 3 we will discuss
some cases where the u; are MA(1) processes.



2.1 Causality Tests in Levels VAR’s

The null hypothesis of noncausality can be formulated based on the model (1) as
H:Jipz==Jkza=0 (3)
where Jia(L) = 5, JiaaL*=! is the ny x n3 upper-right submatrix of J(L}). Define
R (T
which is an nk-vector, and write (1) as
y = llzy + uy
where 11 = (J;,...,Ji). Then the Wald statistic for noncausality can be written as
F= tr[S{flS[S'(X’X)'lS]"S’fI’Sl(S{i]uSl)‘l]

where II and L, are the least squares estimators of I and X%, X' = (zy,...,27), and
S = Ik “ 53.
Asymptotic distributions for levels VAR causality tests are given by the following

theorem. Let A; denote the last n3 rows of the matrix of cointegrating vectors A.

Theorem 1 Supposc assumptions (A1) — (A5] are satisfied. If rank(Az) = g(< n3),
then under the null hypothesis (3)

1 1 -1
F —E—-) X'i1[ﬂ3(k—l)+g] -+ tr l:f d”flﬂfl (] Eaﬁii) / li'_udrwrlr]
0 0 0

where

W, (s) = Wia(s) - jo Wy ( jo ] wag) Wils).

W (s) L, @, »
Wo(s) | = BM&l) with Q= Qn I, 0 .
W, (s) Y 0 Jaer)-(na-gp)

and

O

3In this subsection “ ~ " on top of a parameter signifies the least squares estimator of the parameter.
4Proofs of all theorems and corollaries in the present paper are given in the companion paper Toda
and Phillips {1991)}.



In the above theorem. €,y and €, in general depend on the long-run covariance ma-
trix of the system (u}, (A Ay,)')'.? i.c., the limit distributions typically involve nuisance

parameters. We have, however, two special cases that are noteworthy.

Corollary 1 Suppose assumptions (A1) - (A5) are satisfied. If rank(Az) = na, then
under the null hypothesis (3)

d 2
F anngk
O

Corollary 1 is a generalization of Sims, Stock and Watson’s (1990) result from their
analysis of trivariate VAR(k) systems with one cointegrating vector. Suppose that n; =
nz = n3 = 1 and the causal effect of y3 on y; is being tested. Then, they conclude that
if there is a linear combination involving ys which is stationary, the F-test will have an
asymptotic x7/k distribution. In their example A; is nonzero scalar and rank(A;) =
1 = nz. So our Corollary 1 applies. But it should perhaps be noted that in view of
Corollary 1 the situation concerning validity of chi-square asymptotics is more complex
than their analysis of the trivariate example might suggest. For instance, if we wish to
test the causal effects of two variables, say y, and ys. on another, say y;, then finding
a cointegrating vector with nonzero coefficients for both y, and y; does not guarantee
the usual chi-square asymptotics. Indeed, unless there are two cointegrating relations
that involve both y; and ys, the limit distribution will be nonstandard. Loosely put, we
need “sufficient cointegration” with respect to the variables whose causal effects are being
examined. Meanwhile, if there is no cointegration, we have nonstandard but nuisance

parameter free limit distributions:

Corollary 2 Suppose assumptions (A1) - (A5) are satisfied. If y, is not cointegrated,
i.e., 7 =0, then under the null hypothesis (3)

Fdiy2 +tr[/]dW1W’ (/lmW')_]fW dw']
nynsf{k—1) o 2 a o X o 2 a 1

EFor the precise form of the dependence, see Theorem 1 of Toda and Phillips (1991).




where

1 1 -1
W (s) = Wa(s) — /0 W, W ( fo 1@’,,1-1»’,;) Wi(s),

Was) \ ms _
() ™

ny + ng

and Wy(s) is the first n; elements of Wy(s). =

Corollary 1 is extended in a straightforward way to the case where the true model
and the estimated equation have a constant term, while Corollary 2 is not. If the true
model has a nonzero constant term and there is no cointegration in the system, then
y, contains a deterministic trend component. In order to obtain a nuisance parameter
free limit distribution in such a case, we need to eliminate the deterministic trend by
including not only a constant but also time as regressors in the estimated equation.®
Then, the limit distribution component corresponding to the second term in Corollary
2 will be free of nuisance parameters but the Brownian motions in Corollary 2 will be
replaced with “detrended Brownian motions”. For example, W,(s) will be replaced by
W,(s) = Wa(s) = fg W,r' (fol -r*r")“1 7(s) where 7(s) = (1,s)’. (For further discussion see
Section 3 of Toda and Phillips, 1991.)

Based on the foregoing formal results for causality tests in levels VAR’s, Toda and

Phillips {(1991) conclude as follows:

(i) Causality tests are valid asymptotically as chi-square criteria only when
there is sufficient cointegration with respect to the variables whose causal
effects are being tested. The precise condition for sufficiency involves a rank
condition on a submatrix of the cointegrating matrix. Since the estimates of
such matrices in levels VAR’s suffer from simultaneous equation bias (as shown
in Phillips, 1991), there is no valid statistical basis for determining whether

the required sufficient condition applies.

6In other words, if the estimated equation has a constant term but not a time trend, then the dis-
tribution corresponding to the second term in Corollary 2 will be dependent on nuisance parameters in
general.

-7



(1)  When the rank condition for sufficiency fails, the limit distribution is
more complex and involves a mixture of a chi-square distribution and a non-
standard distribution, which generally involves nuisance parameters. The pre-
cise form of the distribution depends on the actual rank of a submatrix of the
cointegrating matrix and again no valid statistical basis for mounting a Wald

test of causality applies.

(iii)  If there is no cointegration, the Wald test statistic for causality has a
nonstandard but nuisance parameter free limit distribution provided that the
estimated equation is appropriately specified with regard to the presence of a
deterministic time trend. This distribution could conceivably be used for tests
when it is known that there are stochastic trends but no cointegration in the

systermn.

2.2 Causality Tests in ECM’s

Next, we discuss the asymptotics for causality tests in Johansen-type ECM’s. The null

hypothesis of noncausality can be formulated based on the model (2) as
H :Jfg=-=Ji113=0 and T1A;=0 (4)

where Ji5(L) = 550 J¥5L71 is the ny x nz upper-right submatrix of J*(L), and T is
the first n; rows of the loading coefficient matrix I".

To test the hypothesis (4) we shall construct a Wald statistic. But before doing so,
we need to introduce some more notation. First, let A denote the Gaussian estimator of
A, i.e., the eigenvectors corresponding to the r largest eigenvalues that solve equation (9)
of Johansen (1988) and let A, be the eigenvectors corresponding to the n — r smallest

eigenvalues.” All the eigenvectors are normalized in the manner prescribed by Johansen

(1988, p.235). Then the estimator of (Jy,...,J;_,,T) is given by

(Ji,.o . Jiy, 1) = AY'Zy(Z: 2,)™?

"These n — r eigenvectors do not provide a consistent estimator of the space spanned by A;. But we
call them A, since their role in the derivation of the asymiptotic distribution is the same as that of 4, .

8



where 20 = (511....,317) with 2, = (Ayecgse .o, Aguoger, (A'1))® Also define Zj =
(2214 .., 22r) with Zp = A’ yi_,. Furthermore, let %, be the Gaussian estimator of ¥,,
ie.,

£, =T [AY'AY - AY'Z,(Z;2:)7 Z{AY |

where AY' = (Ay;,...,Ayr) and let

Q. = (V&7
Then we define
b Lo®Sies| 0 | 0
-7 0 | A @5 | ALaeT,

where /:13, /‘ij_s, and I'; are the last ng rows of A, the last ns rows of A_]_ and the first n;
rows of I, respectively, and let

- (Z1Z)"ef) 0
" 0 |(Z4Z) Q.

Now we consider the following Wald statistic for testing the hypothesis (4)

F*= vec(fi"i)' (f’*fl*ﬁ:)—l vec(&);) (5)
where &, = (jf,13~ e JA,‘:_L]a, I AY) with j‘-fle, being the estimates for J;; (1 = 1,...,k—

1).% We have the following asymptotic result for this statistic.

Theorem 2 If assumptions (A1) - (A5) are satisfied, and if rank(I'y) = ny or rank(As)
= na, then under the null hypothesis (§)

« d 2
F Xﬂ]ﬂak'
0

As shown in Johansen (1989), the asymptotic distribution of the Gaussian estimator of

A differs depending on whether the true model has a constant term or not, whether y,

[

®In this subsection ” on top of a parameter signifies the Gaussian estimator of the parameter.

9We cannot exclude the possibility that P.Q. P! is singular (even in the limit). But we ignore this
problem here because the conditions given in Theorem 2 below ensure its nonsingularity in the limit and
we will be interested only in such a situation.



actually contains a deterministic trend or not!°, and whether the presence or absence of
the deterministic trend is taken into account in the estimation. But if one of the condi-
tions in Theorem 2 is satisfied, Wald tests for causality will have asymptotic chi-squared
distributions even in such cases (provided that the Wald statistic (5) is appropriately
modified in obvious ways).

Theorem 2 shows that, as in levels VAR’s, causality tests in ECM’s are not in general
valid asymptotic chi-square criteria since the conditions that guarantee the usual chi-
square asymptotics do not always hold under the null. Suppose, for example, that there
is only one cointegrating vector in a VAR(1) system, ny = n3 = 1, and A3 = I’y = 0. Then,
as proved in Example 3 of Toda and Phillips (1991), the Wald statistic for the noncausality
hypothesis that T'yA; = 0 has a limit distribution which is a nonlinear function of two
independent chi-square variates, say \, and s, viz.,

prL, Xaxe
Xa + Xb
The density of this distribution is more concentrated near the origin and has a thinner
tail than 3. which is the limit distribution that we would obtain if either T, or Az is
nonzero. (Figure 1in Toda and Phillips, 1991)

Problems of both nuisance parameter dependencies' and nonstandard distributions
enter the limit theory in the general case. These problems compromise the validity of
conventional theory, and may be considered surprising and deserving of some emphasis in
view of the fact that other types of Wald test in ECM’s are known to be asymptotically
valid chi-square tests. Thus, before we apply conventional asymptotic chi-square tests
to noncausality hypotheses, we would have to test empirically whether rank(l';) = n; or
rank(As) = nj unless perhaps economic theory were to imply that one of them is of full
row rank. Unlike the levels VAR approach, these conditions can, in principle, be tested
using the Gaussian estimates of the submatrices of I'y and A;. Specifically, in the special
but important case of testing causal effects of a group of variables on another variable

and vice versa, the conditions can easily be tested. In the next section we discuss some

10A nonzero constant term does not always produce a deterministic trend if the system is cointegrated.
1 Example 4 in Toda and Phillips (1991) illustrates nuisance parameter dependencies of the Wald tests.

10



operational procedures for testing causality in such cases. The following results as well as
Theorem 2 provide the statistical basis for those sequential procedures.

Define

Fy= vee(As) [/’isl(Z;Zg)"l Agj_ & QC]_I vec(/i3)._
Fr = vee(Ty) (S; £.5 @ i.,)bl vee(l'y)
where . is the r x r lower-right block of (ZZ;)~7,"?
Fr = vee(®) [$1£081 © (-1 © S5)E4{Jics © 53)] ™ vec(dy)

where &, = (jf'm,...,j}:_m3) and ¥4 is the n(k — 1) x n(k — 1) upper-left block of
(Z1Z,)7?, and

Fpy = vee(D AL [$15.5) © A5, Ay + 14O T @ ,«im(Z;ZQ)-‘AgL]‘1 vee(l, AY).
Then:

Proposition 1 Suppose assumptions (A1) - (A§) are satisfied.
(a) Under the null hypothesis that Az = 0,
« d
F3 — )\'72131'“

(b) Under the null hypothesis that T'y = 0,

F;l"k

2 .
(c) Under the null hypothesis that J{ 3= -+ =Ji_;,3=0,
. d
Ff— Xi;ns(k—l}‘
(d) Under the null hypothesis that T1Ay = 0, if rank(T'y) = n; or rank(As) = na,
Fs =5 Xagng:
a

Proof : (a) follows from Lemma 4 of Toda and Phillips (1991), noting that Az, is of full
row rank if A3 = 0. (b) follows immediately from the same Lemma. (c) and (d) are just

restatements of Theorem 1 above. 0

12y fact, ¥, = T~!1, due to the normalization imposed by Johansen (1988, p.135)

11



3 Sequential Causality Tests and Experimental De-
sign

According to Theorem 2, asymptotic chi-square criteria are applicable to causality tests
based on (5) in ECM’s only if (i) I'; has full row rank or (i) Az has full row rank. Hence
we need to test these conditions empirically. But condition (i) or (ii) can be easily tested
if n; = 1 or if n3g = 1, respectively, since condition (i) is equivalent to 1, # 0 if ny = 1,
and condition (ii) is equivalent to a3z # 0 if n3 = 1.'® For example, let ng =1 and & > 1.
Suppose that the pretest about the dimension of the cointegrating space has produced the
estimate 7.1 Then, Theorem 2 suggests that we first test whether (an # dimensional row
vector) az = 0. If this is rejected, we may test noncausality using the Wald statistic (5).
If it is accepted, we have only to test whether Jy,, = ... = Ji-113 = 0 since a3 being zero
implies that y1a3 = 0. When ny = 1, we can proceed with a similar procedure. But if
both n; and ns are one, a different testing strategy is also possible. Since in that case we
can easily test both the hypotheses that 4, = 0 and that a3 = 0, it would be reasonable
to proceed as follows. Begin with testing whether Jy ;= -.. = Ji-113 = 0. Suppose this
1s accepted. Then, we test whether a3 = 0 and whether 4; = 0. We accept the null of
noncausality unless both are rejected. If both are rejected and # = 1, then reject the null
of noncausality. Otherwise test further whether 4,04 = 0.

To introduce the sequential procedures formally it is convenient to label each sub-

hypothesis that appears in the sequential procedures. Let

H;: ;,13:"'=Jl:—1,13=0
Hi:m=0
H;:a3=0

HIa : 710'3 = 0

and as in (4)

13In this section we use lower case letters to denote scalars and vectors. For example, a3 corresponds
to Az in the last section. _

In the simulation experiment below, the dimension of the cointegrating space will be estimated by
the likelihood ratio test proposed by Johansen (1988, 1989).

12



H s = = Jias =0 and mea; =0

Now the sequential testing procedures to be considered in this paper are the following'® :

* ! . ¢ .
(P1) Test Hj. { If HY is rejected, test H

Otherwise, test Hj.

(P2) Test H;

H H3 is rejected, test H*.
" | Otherwise, test H3.

[ If H; is rejected, reject the null
hypothesis of noncausality.
If both H} and Hj are rejected,
(P3) Test H;. | test Hi, if # > 1,
Otherwise, test H} and H3. or reject the null if 7 = 1.
Otherwise, accept the null
of noncausality.

where all the sub-hypotheses can be tested based on Theorem 2 and Proposition 1 in
the last section. As stated above, (P3) differs from (P1) and (P2) because it takes ad-
vantage of the fact that both n; and nj are equal to one (i.e., both H3 and Hiare tested
in the second step). Thus, (P1), for example, is applicable when n; = 1 but n3 > 1,
while (P3) is applicable only when n; = nz = 1. Note that in (P3) it does not make any
difference whether we start by testing M or by testing Hj and M3 (and Hj, if £ > 1),
i.e., the results should be unchanged e;'en though the order of testing is the other way
around.

In the simulation experiment below, we set the nominal size of each sub-test to be 5
% in (P1) and (P2). But in (P3) the nominal size of each sub-test is 2.5 % if k¥ > 1 and
5 % if ¥ = 1. Though exact control of the overall size (i.e., the mazimal probability of

rejecting the null hypothesis under the null) of causality tests is not feasible, a heuristic

!5The descriptions below assume that & > 1. If £ = 1, obvious modifications should be made.

13



analysis suggests these choices of the size for each sub-test, and the overall size is expected
to be approximately 5 % at least asymptotically.’®

Now we explain our experimental design for investigating the sampling properties of
the sequential test procedures introduced above. The prototype model for our simulation

experiment is the trivariate VAR(1) :
yo = Iy-1 + (6)
or in its equivalent ECM format
Ay, =72y + uy. ()

where y; = (Y11, Yar, yat)', @ = (@1, 02,03) and 7 = (41,92, 73)" are 3 x 1 vectors. We shall
later choose a and % so as to satisfy conditions (A2) - (A4) of the last section.

We consider two different error processes {;} in {7). Let
= ¢ — Qg (8)

where ¢, = 11dN(0, I5). and we consider the following ©’s:

Tl) ©=0
05 0 0
(V2) ©=| 005 0
s 0 0.5

Some remarks are necessary about the error processes. First, (U2) appears to be incon-
sistent with our assumption (A1} in the last section. But since (8) is an invertible MA
process when (U2) is employed as ©, we can rewrite (7) as an ECM that has an infinite

order AR lag polynomial:
Ay, = J(L)Ay—y + ‘701'3;:-1 + €; (%)

where J© = - 3001, Jy, with J, = eh_](']l -0) (4,h=1,2,..)and ¥ = (13—@)‘]‘7. In

view of this alternative expression (9) of the model (7), assumption (A1) is approximately

168ince the null of noncausality is consistent with different specifications of e and -y as we will see in
(N1)-(N3) below, we cannot avoid relatively large distortions in such a case as (N3) to keep the overall
size of causality tests approximately at 5 % level. See Section 4 below for more discussion.

14



satisfied at least when k is large enough. Second, note that if a and « are chosen so that
~yya3 = 0, then there is no causal effect from y; to y; in (9) since the (1,3} element of Jh
is equal to 2'~*4;a3 and §103 = 271a3. Third, simulations were run for different values
of 6,3 and X, {covariance matrix of ¢;}. But the results were qualitatively the same in all
cases except one, which we will discuss later. Therefore, in this paper we report mainly
the results for 6,3 = 1 with £, = I. In the following, we shall refer to the © with 6,3 =1
as (U2a}, i.e.,

05 0 0
(U2a) ©@=| 005 o]

1 0 05

Now we choose the values for a and v as follows. If we set J; = Is + vo' for any o
and v, condition {A3) in the last section is automatically satisfied. Further, it is easy to
show that if o and v satisfy

-2 < ady <0,

then condition (A2) is satisfied and the characteristic equation |3 —J; 2| = 0 has two unit
roots and one stable root equal to (1 + o’y)~!. Thus, in our experiment we shall use the

following values for o and ~ :

05 1 0
(N1) a=(—05,1,00 and y=(1,0,1), ie, J; = 010
—05 11

1 05 O

0
0
1

1 0 0
(N2} a=(1,0.5,-1) and ~v=(0,1,1), ie, J1=(l 1.5 —1)

o o

1
(N3) a=(1,-0.5,0) and v=(0,1,1), ie, S = ( 1 0.
1 -0
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05 1 0.1
(L1) o=(-0.5.1.0.1)) and ~=(1.0,1Y, ie., J, = 01 0
=05 1 1.1

11 0.05 —0.1
(L2) a=(1,05,-1Y and y=(0.1,1,1), ie, Jy=f 1 15 —1
1 05 0

1.1 —0.05 —0.01
(L3.1) e=(1,-05,-0.1) and 5= (0.1,1,1), ie., J; = 1 05 -0.
1 =05 0.9

1 6.5 -0.3
1 -05 0.7

1.3 —0.15 -0.09
(L32) o=(1,-05,-03) and 4 =(03,1,1), ie, J, =

In (N1) - {N3) the values of a and + were selected so that the stable root of the system is
equal to 2. It is straightforward to show that each pair of a and 4 above satisfies condition
(A4) also. Hence y, is CI{1,1) with one cointegrating vector a'?. Observe that when the
parameter values (N1) - (N3) are employed, there are no causal effects from y; to y, in
(7) if u, is iid, and in (9) if w is MA(1). Note also that (L1), (L2). (L3.1) and (L3.2)
serve as corresponding “ local ™ alternatives.

Next, in this study we concentrate on three different estimated equations which have
lag lengths £ = 1,2, and 4, reépective]y. That is, the estimated systems of equations

considered here are

Ay =T Ay + 4, (10)

if k=1, and
Ay, = ijyt_l 4+ 4 j;_1Ayt—k+] + f‘/‘i'yt—l + 4, (11)
if k = 2 and 4. The lag lengths & = 6 and 8 were also tried for the combination of (N1)

and (U2a), which we will discuss later.

17 Again, the iid assumption (A1) is not necessary for y, to be CI(1,1).

16

|
|



In our experiment we start by estimating » using the likelihood ratio test, specifically
the “trace test”, proposed by Johansen (1988, 1989). Then, having estimated 7, we
proceed as follows. If # = 0, 2 VAR in differences is estimated and causality is tested in
the usual manner. If # = 3, the data are regarded as stationary and causality is tested
based on a levels VAR. If 0 < # < 3, we apply the sequential testing procedures (P1) -
(P3). In this case the null hypothesis of noncausality is, if £ =1,

His :maz =10

and if £ > 1,
H ==Y =0 and mez =0

where v, and ag are # dimensional vectors, and J{;5 (¢ = 1,...,k — 1) are scalars. Note
that even though 7, and ag are scalars in the true model (7), they are not necessarily so

in H3; and H™.
4 Simulation Results

For each combination of a, v, O, lag length (k) in estimated equations, and a sample size
(T'), 5000 series of 7'+ k + 100 observations were generated according to equation (6) with
yo = 0. The innovation series {¢,} were generated by the RNDN function of the GAUSS
ma/_trix" programinig. language. The initial 100 observations were discarded, generating a
series of length T + k, i.e., T ohservations for the dependent variables Ay, in estimated
equations (10) and (11). For each of those samples, the sequential testing procedures (P1)
~ (P3) described in the last section were applied and their performance was examined.
Simulation results are reported in Tables 1 - 16. Each of Tables 1 - 14 corresponds
to one combination of a, 4, and ©. For each k, the first column shows the results
(%) of Johansen’s likelihood ratio test about the dimension, r, of cointegrating spaces.
The second through fourth columns show rejections (%) of noncausality conditioned on
the estimated r’s and in total replications. These tables also show the performance of

causality tests in levels VAR’s and differences VAR’s, based on a common 5000 replications
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generated as above.'® We note that testing causality in this conventional fashion does not
yield a valid asymptotic chi-square criterion for all pairs of a and 4 that are consistent
with the null of noncausality. (See below for further discussion.)

Tables 1 - 3 show the simulation results of the tests under the null of noncausality
when {u,} is an iid sequence’®. Hence the correct specification of the estimated equation
is (10). The testing procedures (P1) - (P3) perform similarly when & = 1, but {P3)
appears to have less size distortions in (N2) and (N3) compared to the other two when
k > 1. If we compare (P1) and (P2) when k > 1, (P1) seems better than (P2) in (N1)
and (N3). All of (P1) - (P3) perform reasonably well when k is chosen correctly and/or
the sample size is 100 or greater, though the results are rather sensitive to the values of
a and 7.

Although size distortion due to wrong estimation of r is an inevitable nature of the
sequential procedures, a case of notable size distortion under correct estimation of r (i.e.,
7 = 1) occurs when k = 1 and the true values of a3 and v, are both equal to zero (Table
3). The distortions in (P3) are due to the fact that we reject the null of noncausality only
if the statistically independent sub-tests, H} and H3, each of which has 5 % nominal size,
arc both rejected®®. Thus the probability of rejecting the null of noncausality conditioned
on 7 =1 is expected to be about 0.25 %. If we chose 22 % critical values for those sub-
tests, then we would have approximately 5 % significance level for the overall causality
test in this particular case of parameter values, but of course we cannot do so without
allowing large upward size distortions in other cases where one of a3 and 4, is not equal
to zero. The tests (P1) and (P2) have the same distortional property in the case of (N3)
with & = 1, and in fact the distortions are worse in (P1) and (P2) because in the case
(N3) the limit distribution of the Wald test FY;, is highly concentrated near the origin (see
Example 3 and Figure 1 in Toda and Phillips, 1991) and the sub-test H}; almost never

rejects the null.

18But those series were generated independently of the series which were used for the sequential pro-
cedures (P1) - (P3).

19If the pretest about the dimension of cointegrating spaces gives the estimate # = 0 or 3, then there
is no difference in (P1) — (P3).

204 and o3 have independent limit distributions by Lemma 4 of Toda and Phillips (1991)
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This kind of downward size distortion can also explain why the test (P3) suffers from
less size distortion in (N3) when k > 1. In fact, since we had to choose the nominal size
of each sub-test to be 2.5 % when 0 < # < n and k > 1, the probability of rejecting
the noncausality null conditioned on # = 1 in (N3) is expected to be about 2.56 % if
the sub-test H} were independent of H; and H3. Though H; and HS are correlated in
general, this probability is likely to be less than 5 % and it actually was for large samples
as Table 3 shows. But, again, we cannot do better in (N3) without allowing large upward
distortions in the cases of (N1) and (N2). Though, as Table 3 shows, this downward
distortion of the conditional probability happened to contribute to “seemingly” less size
distortions of the test (P3) in (N3), this might not be always the case. In (P1) and (P2),
however, this sort of downward bias does not occur if k > 1 since the size of each sub-test
can be selected to be 5 % even in (N3) without causing additional distortions in such
cases as (N1) and (N2).

Note that in (N2) causality tests based on levels VAR’s are valid since the cointegrating
vector involves the variable y; whose causal effect is examined, i.e., there is “sufficient
cointegration™ with respect to ys; (Corollary 1). Further, in (N2) and (N3) causality tests
based on differences VAR'’s are valid since if 4; = 0, then the first equation of the ECM
(7) dose not involve any level variables. Moreover, even when causality tests based on
levels VAR’s do not provide correct asymptotic chi-square tests, we expect that the more
lags we include in estimated equations, the less serious the distortion becomes in general.
This is because the limit distribution of the Wald statistic for testing causal effect, say,

from one variable to another in levels VAR’s has the form

Xio1+¢

by Theorem 1, where the random variable { has some unit root type distribution. Hence
the relative effect of the ¢ term is expected to become smaller as the lag length k increases.

The figures in Tables 1 — 3 verify the above heuristic arguments. The performance of
our sequential tests (P1) — (P3) and the tests based on levels VAR’s seem similar in the

case of (N2). Furthermore, Table 1 shows that, as predicted by the asymptotic theory, the
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advantage of the sequential procedures over the levels VAR based tests becomes smaller
as k increases and, in fact, the tests (P1) - (P3) lose the advantage when & = 4 even in
the sample size 200. Since in practice econometricians probably tend to include more lags
than the true number of & (if * is finite), this result could be interpreted as supporting
the use of levels VAR's even when the system is subject to “insufficient™ cointegration
with respect to the variable whose causality is tested. But Table 1 suggests that the
performance of the sequential tests (P1) - (P3) is significantly better than that of the
levels VAR based tests provided that the lag specification is correct. Moreover, Table
3 shows that in the case of (N3) the sequential tests are much better even when k = 4.
Finally, the tests based on VAR’s in differences perform better than our testing procedures
in the cases (N2) and (N3) especially if sample sizes are small. However, the distortion
in (N1) is enormous.

Tables 4 — 7 report the power of the tests under the “local” alternatives in the case of
iid errors (Ul). Note that (L2) and (L3.2) are comparable since under these settings the
values of 4,03, 1.e., the (1,3) element of J;, are —0.1, and —0.09, respectively. Again, the
sequential tests (P1) — (P3) perform rather similarly especially if ¥ = 1, and the power
of those tests significantly depends on the true values of & and 4. In (L2), (L3.1) and
(L3.2) our testing procedures do not have much power unless the lag length & is specified
correctly. This is not very surprising because if £ > 1 the coefficients of the lagged
differences of y; are all zero. For example, in (L2) with & = 4 the values of the coefficients
which are tested for causality are : (J} 3,313, J513, mas) = (0,0,0,—-0.1). (Notice that
if £ > 1, the tests based on VAR’s in levels and in differences do not have much power,
either.) But at least for ¥ = 1, Tables 4 - 7 show that the sequential procedures (P1)
- (P3) have reasonable power and are in general more powerful than the tests based on
levels VAR’s. The comparison of the power among the tests (P1) — (P3) does not reveal
any superiority of one of those sequential tests uniformly over the specifications of a,
4, and k. Thus, we have no strong reason to favor any particular one of (P1) — {(P3)
compared to the others in terms of its power.

Tables 8 — 10 show the performance of the tests when the error is an MA(1) process
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with (U2a). In the present case the (approximately) correct specification of the estimated
equation is (11) with £ = 4. As in the case of iid errors (U1), our sequential testing
procedures perform rather well if & is specified “correctly” and the sample size is large.
But they are not recommendable if the sample size is less than 100. In (N1) - (N3) with
k = 4 the test (P3) seems to suffer from less size distortions than the tests (P1) and
(P2). As we discussed in the iid error case, the “seemingly” less size distortion of the
test (P3) in (N3) can be explained by the downward bias in the probability of rejecting
the noncausality null conditioned on 7 = 1. Comparing (P1) and (P2) when k = 4, (P1)
seems to perform better than (P2) in all cases. Since the estimated equation with k =4
in the case of (U2a) is only an approximation of the true model, the test performance is,
of course, not as good as the iid case with k =1.

Table 9 shows that when causality tests based on levels VAR’s are asymptotically
valid (i.e., o and 4 are chosen as (N2)), their performance with ¥ = 4 is similar to that
of the sequential testing procedures (P1) - (P3). But in (N1) and (N3) with & = 4 they
suffer from significantly more distortion compared to our sequential tests (Tables § and
10). When causality tests based on differences VAR’s are valid (Tables 9 and 10), they
outperform the sequential procedures (P1) — (P3), though the size distortion in the case
of (N1) is enormous (Table 8). These tendencies are also observed when the error is an
iid sequence and k > 1.

Tables 11 - 14 show, as in the case of iid errors (Ul), that when k = 4, neither our
sequential tests nor the conventional tests have much power under the “local alternatives”
except for the case (L1)}. (Some high rejection rates in the case of k =1 or k = 2 are, of
course, due to misspecification of the estimated equations and hence do not mean that the
tests are powerful.) Again this is rather an expected result. Though they are not strictly
zero unlike the iid error case, the magnitude of the coefficients for the lagged differences
Ay are very small since they are derived from inverting the MA(1) lag polynomial I3~OL.
See the model (9). (This fact reflects also in the results for levels VAR’s and differences
VAR’s.) But we may still examine the relative power of the sequential tests (P1) - (P3).

As in the case of iid errors (U1), comparing them when k& = 4 suggests that any one of
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these tests does not outperform the others uniformly over the specifications of 4 and a,
e.g., (P1) and (P2) seem more powerful than (P3) in (L2) and vice versa in (L3.2).

In n-variate VAR (and ECM) frameworks the number of parameters increases by n?
as the number of lags to be included in estimated equations increases by one. Hence,
we would expect that the estimator may deteriorate if “too many” lags relative to the
sample size are included in estimation. Moreover, as pointed out earlier, the asymptotic
theory implies that the size distortion from which the tests in levels VAR’s suffer becomes
relatively small as k increases even though they do not yield correct asymptotic chi-square
criteria. Therefore, it is of some interest to see how the test performances are affected
by an increase in the number of lags included in estimation. Thus, we ran simulations
with & > 4 for the combination of (N1) and (U2a). We chose (N1) rather than (N3)
because levels VAR’s are likely to perform better in (N1) than in (N3) though both (N1)
and (N3) are the case where levels VAR's do not provide asymptotically chi-square tests.
The results are shown in Table 15. For T' = 200, the procedures (P1) ~ (P3) are still
better than levels VAR’s when & = 6. but when k = 8, only (P1) outperforms the levels
VAR based tests. The table show that for the sequential procedures, & = 4 provides the
best results for all sample sizes and as k increases the test performance deteriorates fairly
quickly even though the true model has an infinite lag polynomial. The tests in levels
VAR'’s reveal a similar tendency. (But for 7' = 200 the performance begins to worsen only
as k exceeds 6.) However, in the sequential tests (P1) - (P3) this sort of deterioration
is expected to be and actually was more serious since the Johansen-type ML method on
which the sequential causality tests are based is more complicated than ordinary VAR
estimation.

One interesting observation on levels VAR’s which have been widely used in the econo-
metric literature is that causality tests begin to deteriorate as k exceeds 6 even for the
sample size equal to 200, which is relatively large in practice. Since k = 8, for example,
is not an excessively long lag length compared with those used in practice (e.g., in in-
vestment studies), this finding is of some importance for interpreting existing empirical

studies.
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We also ran simulations for some parameter constellations of © and ¥, other than
reported in Tables 1 - 14. For example, in addition to (U2a) the following © and X, were

tried in the case (N1):

05 0 0
(U2b) @=| 0 05 0
-1 0 05
1.0 02 05 1.0 02 —0.5
(S1) ZT.=1{ 02 1.0 02 ($2) T.=| 02 10 02
0.5 0.2 1.0 05 02 1.0

For each combination of © and I, taken from (U2a) - (U2b) and (S1) - (52), the test
performance was examined. The results are basically the same as in Table 8 in all com-
binations except one, that is, (U2b) and (S2), as reported in Table 16. In this case levels
VAR’s suffer significantly less size distortion than the sequential tests (P1) - (P3).*' Note
that for this combination of © and ¥,, Johansen’s likelihood ratio test does not work very
well even for the sample size 200, and more importantly that the size distortion when
7 = 1 is much larger than in other Tables, i.e., the Gaussian ML method provides poor
estimates of the coefficients even though r is correctly specified. This is obviously because
the inclusion of four lags in the estimated model could not remove the serial correlation in
the errors effectively enough for the ML method to work well in the present case. Hence,
we would have to include more lags in the estimated equations to improve the test per-
formance. But Table 15 suggests that we must also have larger samples in order to allow

more lags in the estimated equations without deteriorating the test performance.

5 Conclusions

This paper has provided a theoretical overview of Wald tests for Granger causality in
levels VAR’s and Johansen-type ECM’s. In the ECM framework we have proposed some

operational testing procedures that are applicable in the important practical case of testing

Z1But in the case of (N3) the sequential tests still performed significantly better than levels VAR based
tests even when (U2b) and {S2) are used for the error process.
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the causal effects of one variable on another group of variables and vice versa. We have
also investigated the finite sample properties of these sequential causality tests through
Monte Carlo simulations. Since the data generating processes we employed in this study
are simple, it would be unwise to make strong general claims from this simulation study.

But our findings may be summarized as follows:

(i) The sequential testing procedures perform well at least in large samples

when the lag length is correctly specified.

(ii) The sequential tests outperform conventional VAR tests in the sense that
the former tests work reasonably well for all specifications of cointegrating vec-
tors and loading coeflicients that are consistent with the null of noncausality,
while the latter tests suffer from significant size distortion in cases where tests

are not valid asymptotically as chi-square criteria.

(iii) For some types of serially correlated error processes the Johansen approach

and hence our testing procedures that are based on it do not work well.

(iv) The simulation results do not support the use of either our sequential
procedures or conventional causality tests in samples smaller than 100, at
least if the system has three or more variables; and if these testing procedures
are to be used in practice it is desirable that sample sizes be greater than 100

observations.

(v) Our simulations show the important role played by the choice of lag length

in the performance of these tests.

Comparisons among the sequential test procedures themselves show similar perfor-
mance and there is little evidence favoring any one of them. Hence it is not clear which
one should be used if all of them are applicable, i.e., if n; = nz = 1. But one possible
suggestion on this matter is the following. Since the null hypothesis of noncausality is
consistent with different combinations of values of @ and +, it is impossible to choose the

nominal size of each sub-test so that the probability of rejecting the null of noncausality is
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always, say 5 %, independent of the specifications of a3 and 7;, and hence we will not be
able to avoid significant distortions in some cases. Therefore, we might want to proceed
with the testing procedure for which the probability of rejecting the null depends on the
true parameter values the least. Though a rigorous analysis of this problem would be
very difficult, at least a heuristic analysis suggests that the tests (P1) and (P2) are less
vulnerable with respect to this kind of distortion than (P3) because they have simpler
structures than the test (P3). Thus, combining this observation and the simulation result
that (P3) did not necessarily perform better than the others, it would seem reasonable to
work with (P1) or (P2) rather than (P3).

If we exclude the test {P3), comparing the tests (P1) and (P2) when £ > 1 shows that
the test (P1) performs better than the test (P2). Furthermore, Table 15 suggests that the
deterioration of the test performance associated with the increase in k seems less serious
in (P1). Since we expect k& > 1 in most practical applications, the test (P1) could be
regarded as a better testing procedure. Therefore, if both n; and n3 are equal to one, we

conclude that a reasonable choice is to apply the sequential procedure (P1).
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Table 1: (N1} as =0 =1 (U1)®=0
k=1 k=2 k=4
LR Rejections Rejections LR Rejections
Test (P1) (P2) (P3) | Test (P1) (P2) (P3)| Test (P1) (P2) (P3)
T =50
r=90 0.0 - - - 09 956 956 956|309 602 602 60.2
r=1 923 86 86 93|96 141 159 161 580 289 336 36.1
r=2 69 353 344 344 75 296 301 293! 93 351 348 363
r=23 08 268 268 268 | 10 250 250 25.0( 1.8 427 427 427
Total - 106 105 11t - 1861 178 179 - 394 421 437
T = 100
r= 0.0 - - -i 00 - - - 1.2 887 887 887
r=1 93.1 59 b9 631926 86 109 93| 903 140 150 176
r=2 6.2 202 289 289 68 260 263 284 77 240 243 26.1
r= 07 361 361 361| 05 154 154 154| 07 162 162 162
Total - 76 76 78 - 99 120 106 - 1537 167 19.2
T = 200
r=20 0.0 - - -| 00 - - -| 0.0 - - -
r= 839 60 60 62942 68 85 67933 80 90 95
r= 56 295 288 288 | 52 266 274 266| 6.2 249 246 278
r=3 06 207 207 207 06 226 226 226| 0.6 107 10.7 10.7
Total - 74 73 75 - 79 96 79 - 91 9.9 106
VAR(k-1) in differences
Rejections
k=1 k=2 k=4
T =50 - 849 55.6
T = 100 - 98.9 85.6
T = 200 - 100.0 99.7
VAR(k) in levels
Rejections
k=1 k=2 k=4
T =50 13.7 14.0 19.6
T =100 11.9 111 13.7
T = 200 12.1 10.4 10.1




Table 2: (N2)az=-1 5,=0 (U1)©=0
k=1 k=2 k=4
Rejections Rejections Rejections
LR L LR
Test (P1) (P2) (P3)|Test (P1) (P2) (P3)|Test (P1) (P2) (P3)
T=250 .
r=0 0.0 - - - 0.4 9.1 9.1 911288 116 116 116
r= 92.8 5.4 5.4 541 900 100 9.1 85| 604 173 187 179
r=2 66 4.0 152 140 8.5 9.5 9.5 8.0 95 198 183 143
r=3 0.7 176 176 176 1.1 56 5.6 5.6 1.3 269 269 269
Total - 6.0 6.1 6.1 - 9.9 6.1 8.5 - 160 168 159
T = 100
r=0 0.0 - - -1 0.0 - - -1 1.0 38 38 38
r=1 93.2 5.4 5.4 54| 928 7.0 6.2 5.4 | 90.8 9.4 94 8.7
r=2 62 11.0 120 110 6.4 6.9 7.5 6.2 7.1 101 104 6.4
r=3 0.6 3.2 3.2 3.2 0.7 8.1 8.1 8.1 1.0 4.0 4.0 4.0
Total - 5.8 5.8 5.8 - 7.0 6.3 5.5 - 9.4 9.3 8.5
T =200
r=10 0.0 - - - 0.0 - - - 0.0 - - -
r= 936 55 55 H5H1 937 6! 56 46933 68 69 6.2
r=2 5.6 8.6 8.9 8.6 5.8 6.9 6.9 48 6.1 101 105 8.5
r=13 08 184 184 184 0H 87 87 87 06 100 100 100
Total - 58 5.8 5.8 - 6.1 .Y 4.7 - 7.0 71 6.4
VAR(k-1) in differences
Rejections
k=1 k=2 k=4
T = 50 - 6.0 10.5
T = 100 - 5.2 8.2
T = 200 - 5.2 6.1
VAR(k} in levels
Rejections
k=1 k=2 k=4
T =150 7.7 88 14.7
T = 1060 5.7 6.4 9.4
T = 200 6.4 5.6 6.9
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Table 3: (N3)az =0 =0 (Ul)O=0
k=1 k=2 k=4
Rejections Rejections Rejections
LR LR LR
Test (P1) (P2) (P3)| Test (Pl) (P2} (P3) | Test (P1) (P2) (P3)
T =50
r=20 0.0 - - -1 07 118 118 118} 302 128 128 128
r= 920 00 O0G 05902 67 T4 50589 163 167 154
r=2 7.1 47.8 514 478 | 81 496 496 452 | 93 443 456 441
r=3 09 512 512 51.2 1.0 429 429 429 1.6 415 415 415
Total - 3% 41 43 - 108 112 87 - 183 186 17.7
T = 100
r=0 0.0 - - -1 00 - - -1 16 85 85 85
r= 93.0 00 00 031934 52 62 38|87 73 75 59
r=2 6.4 464 498 464 6.0 483 477 437 76 421 424 453
r=3 06 393 393 393 06 429 429 429 10 3066 306 306
Total - 32 34 35 - 80 B89 64 - 102 104 92
T = 200
r=20 0.0 - - 0.0 - - - 0.0 - - -
r= 938 00 00 04933 44 b2 32719029 57 60 38
r=2 5.7 52.7 558 527 | 62 457 473 415)| 64 376 389 398
r=3 06 321 321 321, 05 269 269 269) 07 170 171 171
Total - 32 33 35 - 71 79 57 - 78 81 62
VAR(k-1) in differences
Rejections
k=1 k=2 k=4
T =50 - 5.9 11.2
T = 100 - 55 7.3
T = 200 - 5.7 59
VAR(k) in levels
Rejections
k=1 k=2 k=4
T = 50 I7.8 17.3 22.7
T = 100 17.2 14.5 15.9
T = 200 16.4 13.7 12.6
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Table 4: (L1) a3 =01 53,=1 (U1)©=0
k=1 k=2 k=4
Rejections Rejections Rejections
LR L LR
Test (P1) (P2) (P3)| Test (P1) (P2) (P3)]| Test (P1) (P2) (P3)
T =30
r=0 0.0 - - -1 05 958 958 9581 285 925 925 925
r=1 922 929 929 9331 897 927 926 925 594 868 946 828
r=2 68 956 933 953| 86 942 940 914101 917 933 87T
r=3 1.0 980 980 980 | 1.2 1000 1000 100010 20 93.9 939 939
Total - 932 931 93.5 - 929 928 9235 - 890 938 863
T = 100
r=0 0.0 - - -i 00 - -~ -1 1.2 1000 1000 100.0
r=1 926 997 99.7 99.7 ] 92.1 998 008 908 | 897 994 997 986
r=2 6.9 100.0 1000 1000 7.3 1000 100.0 100.0| 83 1000 1000 993
r=3 0.5 1000 1000 1000 | 0.7 100.0 1000 131000 09 1000 1000 100.0
Total - 997 997 097 - 998 948 999 - 994 997 987
T = 200
I = 0.0 - - -1 00 - - -1 00 - - -
r=1 93.3 100.0 100.0 100.0 | 93.2 100.0 100.0 100.0 | 92.7 1006 1000 100.0
r=2 6.1 100.0 100.0 100.0 59 100.0 1000 100.06| 6.4 100.0 100.0 10C.0
r=3 0.7 100.6 100.0 100.0 0.9 1000 1000 100.0| 0.9 1000 100.0 100.0
Total - 100.0 1000 100.0 - 1006 100.0 100.0 - 100.0 100.0 100.0
VAR(k-1) in differences
Rejections
k=1 k=2 k=4
T = 50 - 97.3 90.8
T = 100 - 100.0 99.8
T = 200 - 100.0 100.0
VAR(k) in levels
Rejections
k=1 k=2 k=4
T = 50 97.1 85.0 92.4
T = 100 100.0 100.0 99.8
T = 200 100.0 100.0 100.0
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Table 5: (L2) az=-1 5, =01 (U1)©@ =0
k=1 k=2 k=4
LR Rejections LR Rejections LR Rejections
Test (P1) (P2) (P3) | Test (P1) (P2) (P3)| Test (P1) (P2) (P3)
T = 50
r=20 0.0 - - - 04 4.8 4.8 48 270 137 137 137
r= 816 278 278 278 | 898 155 144 129 61.1 232 232 223
r=2 78 260 291 26.0 8BS 195 174 165} 103 214 216 190
r=3 07 303 303 303 1.3 159 159 159 1.5 250 250 250
Total - 17 M9 217 - 158 146 13.2 - 205 205 197
T =100
r=0 0.0 - - - 0.0 - - - 08 167 167 167
r=1 927 456 456 456 | 921 207 161 165|900 169 166 142
r=2 6.7 387 420 387 | 7.2 179 156 134| 80 160 150 135
r=3 06 469 469 469 | 08 105 105 105 1.1 179 179 179
Total - 451 454 451 - 204 160 162 - 168 165 142
T = 200
r=0 0.0 - - -] 00 - - -1 0.0 - - -
r=1 93.2 721 721 721|933 300 239 2471934 220 203 178
r=2 63 691 729 691 6.1 248 221 248 59 208 215 140
r=3 0.5 600 600 600] 06 167 167 167{ 07 108 108 108
Total - 719 721 719 - 206 237 246 - 218 203 175
VAR(k-1) in differences
Rejections
k=1 k=2 k=4
T = 50 10.6 15.2
T = 100 13.1 14 4
T = 200 19.1 16.2
VAR(k) in levels
Rejections
k=1 k=2 k=4
T =50 25.0 13.3 18.9
T = 100 43.0 15.4 16.3
T = 200 70.3 23.1 20.1
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Table 6: (L3.1) a3z = -0.1 5, =0.1

(U1)@ =0

k=1 k=2 k=4
Rejections Rejections Rejections
LR L LR
Test (P1) (P2) (P3) | Test (P1) (P2) (P3)| Test (P1) (P2) (P3)
T = 50 T
r=20 0.0 - - -1 07 28 28 28307 122 122 122
r= 922 123 123 158|906 97 89 89| 57.7 184 185 202
r=2 71 384 412 384 | 77 370 363 208 99 347 345 300
r=3 07 324 324 324 1.0 320 320 320] 1.6 444 444 444
Total - 142 144 175 - 120 112 W7 - 186 186 191
T =100
r = 0.0 - - -1 0.0 - - -1 14 69 69 69
r= 929 938 238 256|925 97 94 861|905 103 98 99
r=2 65 406 449 406 | 67 350 353 282 70 252 258 215
r=3 06 323 323 323| 08 275 275 275| 1.1 170 17.0 170
Total - 249 252 266 - 116 11.3 10.1 - 114 109 108
T = 200
r=20 0.0 -~ - - 0.0 - - - 0.0 - - -
r=1 94.1 432 432 438 939 127 142 1137930 85 &6 8.7
r=2 bb 443 465 443 5.7 286 286 237 65 173 182 14.2
r=13 05 417 417 47| 04 100 100 100} 05 222 222 222
Total - 432 434 438 - 136 150 120 - 91 93 9.1
VAR(k-1) in differences
Rejections
k=1 k=2 k=4
T =50 6.3 11.4
T = 100 7.2 74
T = 200 8.4 6.8
VAR(k) in levels
Rejections
k=1 k=2 k=4
T = 50 17.7 143 19.6
T = 100 19.5 127 116
T = 200 25.7 146 10.1
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Table 7: (L3.2) a3 = —03 5, =03 (Ul)©=0
k=1 k=2 k=4
LR Rejections LR Rejections LR Rejections
Test (P1) (P2) (P3) | Test (P1) (P2) (P3){ Test ({(PI) (P2) (P3)
T = 50 T
r=20 0.0 - - -| 04 0.0 @0 900|295 119 11.9 119
r=1 921 739 739 747|910 238 232 237|588 263 2.7 27.1
r=2 7.0 481 490 481 ) 7.7 203 295 249! 101 206 306 964
r=3 09 279 279 279 08 190 190 190| 16 220 220 9220
Total - 717 71T 724 - 241 235 236 - 223 227 225
T =100
r=20 0.0 - - - 00 - - -f 11 123 123 123
r= 032 958 958 958 | 925 366 372 367|904 217 210 231
r=2 6.1 650 654 650| 69 364 359 324| 78 229 214 198
r= 06 531 531 H31| 06 200 200 200 07 306 306 30.6
Total - 936 936 937 - 365 370 36.3 - 217 210 228
T = 200
r=20 0.0 - - -1 00 - - - 0.0 - - -
r=1 943 999 999 999 | 94.0 627 63.2 641|930 307 296 355
r=2 52 874 874 874 | 55 bHTT 584 529 | 62 345 332 335
r=3 0.5 1000 1000 1000 0.3 630 630 63.0| 08 190 19.0 19.0
Total - 993 903 983 - 624 629 635 - 309 297 353
VAR(k-1) in differences
Rejections
k=1 k=2 k=4
T =50 6.3 12.0
T = 100 6.3 9.8
T = 200 6.7 9.7
YAR(k} in levels
Rejections
k=1 k=2 k=4
T = 50 47.3 21.7 21.2
T = 100 7.6 33.7 20.5
T = 200 98.1 59.6 28.3
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Table 8: (N1) a3 =0 1 = (U2a) 6,3 =1
k=1 k=2 k=4
Rejections Rejections Rejections
LR LR
Test (P1) (P2) (P3)| Test (P1) (P2) (P3) | Test (P1) (P2) (P3)
T = 50 -
= 0.0 - - -1 0.0 - - - 02 900 90.0 900
r=1 877 53 53 58904 114 157 108 87.8 159 190 15.7
r= 116 296 206 206 89 406 411 3971 105 404 408 448
r=3 06 258 258 258 07 405 405 405 1.5 486 486 486
Total - 82 82 87 - 142 181 136 - 191 219 194
T = 100 | —
r=10 0.0 - - -§ 00 - - - -1 00 - - -
r=1 877 38 38 41915 157 236 166|914 93 105 78
r=2 116 257 257 2571 78 490 503 472} 7.7 346 346 404
r=3 0.7 41.7 417 417 | 07 429 429 429 | 09 39.1 391 39.1
Total - 6.6 6.6 6.9 - 185 258 192 - 115 126 106
T = 200
r=20 0.0 - - -1 00 - - -1 0.0 - - -
r=1 83 34 34 36919 269 381 284}927 68 86 5.5
r=2 138 269 266 266 73 553 581 526 6.7 387 39.0 464
r=3 09 283 283 283 | 08 474 474 474 05 444 444 444
Total - 68 68 7.0 - 291 397 303 - 91 109 84
VAR(k-1) in differences
Rejections
k=1 k=2 k=4
T=230 85.9 90.2
T = 100 99.1 99.9
T = 200 100.0 100.0
VAR(K) in levels
Rejections
=1 k=2 k=4
T = 50 16.5 22.9 22.5
T = 100 16.4 27.7 16.2
T = 200 16.9 39.8 14.3
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Table 9: (N2} az=~1 11 =0 (U2a)é3=1
k=1 k=2 k=4
LR Rejections Rejections LR Rejections
Test (P1) (P2) (P3) | Test (P1) (P2) (P3)| Test (P1) (P2) (P3)
T = 50
r=20 0.0 - - -1 00 - - -1 26 92 92 92
r= 240 36.7 367 368|620 228 184 188 | 845 144 159 137
r=2 720 85 90 85358 150 144 120|117 199 210 169
r=3 39 142 142 142 22 135 135 135 1.1 158 158 158
Total - 155 158 143 - 198 168 16.2 - 150 163 140
T = 100
r=0 0.0 - - -1 00 - - -1 00 - - -
r= 182 662 662 663|583 312 243 257|880 88 97 89
r=2 7795 162 169 162 | 420 157 135 12114111 126 125 11.2
r=3 39 275 275 275 | 17T 81 81 81 09 43 43 43
Total - 238 263 235.8 - 243 185 197 - 952 9% 91
T = 200
r=0 0.0 - - -i 0.0 - - -1 00 - - -
r=1 155 964 964 964 541 506 420 4541 89.1 72 72 72
r=2 BO.T 449 450 449 437 246 210 210104 7.1 77 b4
r=3 38 568 568 568} 22 358 358 358 06 107 107 107
Total - 533 534 533 - 389 327 346 - 72 73 70
VAR(k-1) in differences
Rejections
k=1 k=2 k=4
T = 50 - 10.8 11.1
T =100 - 14.5 7.7
T = 200 - 217 6.9
VAR(k) in levels
Rejections
k=1 k=2 k=4
T = 50 14.2 14.3 146
T =100 25.5 16.5 9.4
T = 200 52.6 29.7 7.2
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Table 10: (N3) a3 =0 v =0 (U2a)f;3=1
k=1 k=2 k=4
Rejections Rejections Rejections
LR L LR
Test (P1) (P2) (P3) | Test (P1) (P2) (P3)|Test (P1) (P2) (P3)
T = 50 T
r=0 0.0 - - -1 0.0 - - - 58 107 10.7 107
r=1 81.2 2.6 26 57| 913 7.4 7.9 54| 839 122 122 9.6
r= 181 399 399 399 80 4b5 455 420 89 517 515 49.0
r=3 07 222 222 222 07 459 459 459 14 458 458 458
Total - 9.5 95 120 -~ 107 112 8.7 - 161 161 137
T =100
r=20 0.0 - - -1 00 - - - 0.0 - - -
r=1 77.1 1.8 1.8 33 61.1 5.5 7.0 4.0 | 92.2 84 85 5.5
r=2 216 390 39.0 39.0 83 432 440 41.1 7.0 416 419 444
r=3 1.3 143 143 143 | 06 300 300 300| 08 333 333 333
Total - 100 10.0 112 - 88 102 7.2 - 109 110 84
T = 200 ]
r=0 0.0 - - -1 0.0 - - -1 0.0 - - -
r= 75.2 1.9 1.9 28 90.7 5.2 7.5 52| 93.1 6.7 6.9 41
r=2 234 410 408 408 87 439 439 419 6.2 337 340 410
r=3 1.3 134 134 134 06 286 286 286 0.7 364 364 364
Total - 112 111 118 - 87 108 8.6 - 86 88 6.6
VAR(k-1) in differences
Rejections
k=1 k=2 k=4
T = 50 - 6.8 11.7
T = 100 - 7.0 7.8
T = 200 - 8.1 6.5
VAR(k) in levels
Rejections
k=1 k=2 k=4
T == 50 20.7 16.8 228
T = 100 208 16.1 15.2
T = 200 20.8 16.1 12.9
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Table 11: (L1) a3 =0.1 =1 (U2a)63=1

k=1 k=2 k=4
Rejections Rejections Rejections
LR LR LR
Test (P1}) (P2) (P3)| Test (P1) (P2) (P3)| Test (P1) (P2) (P3)
T = 50
r=20 0.0 - - -1 0.0 - - -1 02 1000 100.0 100.0

r=1 8.4 994 994 995 | 89.9 1000 1000 100.0 | 866 97.0 1000 926
r=2 128 995 995 995! 92 1000 1000 996 | 116 983 1000 96.2
r=3 0.8 100.0 100.0 1000 | 09 1000 1000 100.0 | 1.7 100.0 100.0 100.0

Total - 994 994 995 - 1000 100.0 99.9 - 97.2 1000 931
T = 100

r=20 0.0 - - -1 0.0 - - -1 00 - - -

r=1 86.4 100.0 100.0 100.0 91.4 100.0 1000 100.0 | 1.4 1000 1000 100.0

r= 13.1 1000 100.0 100.0; 7.9 100.0 1000 1000 | 7.6 100.0 100.0 100.0

r=3 0.5 1000 100.0 1000} 0.8 1000 1000 100.0| 1.0 100.0 100.0 100.0

Total - 100.0 100.0 100.0 - 100.0 100.0 100.0 - 100.0 1000 100.0
T = 200

r= 0.0 - - -1 0.0 - - -1 0.0 - - -

r=1 851 100.6 1000 100.0 [ 92.1 100.0 100.0 100.0 | 93.1 100.0 100.0 100.0
r=2 14.0 1000 1000 1000 | 7.1 1000 100.0 1000 | 6.4 100.0 100.0 100.0
r=3 0.9 1000 1000 1000 | 69 1000 100.0 100.0) 0.5 1000 100.0 100.0

Total - 1000 100.0 100.0 - 100.0 100.0 100.0 - 100.0 100.0 100.0
VAR(k-1) in differences
Rejections
k=1 k=2 k=4
T = 50 - 05.8 99.9
T = 100 - 100.0 100.0
T = 200 - 100.0 160.0
VAR(K) in levels
Rejections
=1 k=2 k=
T = 50 998 100.0 104.0
T = 100 100.0 100.0 100.0
T = 200 100.0 100.0 10¢.0
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Table 12: (L?) Gz = -1 Y1 = 0.1 (U2a) 9]3 =1
k=1 k=2 k=4
Rejections Rejections Rejections
LR LR
Test (P1) (P2) (P3) | Test (P1) (P2) (P3) | Test (P1) (P2) (P3)
T = 50
r=0 0.0 - - -| 00 - - -1 1.6 183 183 183
r= 253 46 46 47642 91 74 67846 175 179 154
r=2 | 698 183 200 183|338 168 164 142|123 185 190 141
r=3 49 77 77 T7| 20 98 98 98 15 176 176 176
Total - 143 1b5 144 - 117 105 93 - 176 181 153
T =100
r=20 0.0 - - -1 0.0 - - -1 00 - - -
r=1 212 53 53 53601 80 68 63)89 153 1562 13.0
r=2 75.0 192 202 1923 382 138 124 121|101 17.2 179 144
r=3 38 85 85 85| 17 5T 67T 57| 09 128 128 128
Total - 138 166 15.8 - 101 89 85 - 154 155 13.2
T =200
r=10 0.0 - - -| 0.0 - - -1 00 - - -
r= 170 53 53 53|53 79 64 56884 193 181 158
r=2 795 172 177 172 | 429 123 104 95 ) 109 206 202 164
r= 35 102 102 102| 18 136 136 136| 07 189 189 189
Total - 149 153 149 - 99 82 74 - 195 183 159
VAR(k-1) in differences
Rejections
k=1 k=2 k=4
T = 50 - 6.6 14.3
T =100 - 6.4 12.6
T = 200 - 5.2 15.9
VAR(k) in levels
Rejections
k=1 k=2 k=4
T = 50 14.7 11.2 17.7
T = 100 15.6 89 14.2
T = 200 14.3 8.5 17.8
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Table 13: (1.3.1) a3 = =0.1 7, =0.1 (U2a) 63 =1
k=1 k=2 k=4
Rejections Rejections Rejections
LR LR LR
Test (P1) (P2) (P3) | Test (P1) (P2) (P3) | Test (P1) (P2) (P3)
T =50
r=20 0.0 - - - 0.0 - - - 34 119 119 119
r= 81.0 220 220 348 | 91 94 8.1 88852 135 129 126
r= 183 319 326 319 84 395 383 364102 380 382 388
r=3 07 88 88 88| 05 269 269 269 12 295 25 25
Total - 237 238 34t - 120 107 112 - 162 156 155
T =100
r=0 0.0 - - -1 0.0 - - -1 0.0 - - -
r=1 7.9 672 672 7824907 16 87 1071919 97 87 9t
r=2 21.2 320 321 320; 86 402 397 343| 75 310 307 9283
r=3 09 205 205 205} 07 189 189 1891} 06 167 167 16.7
Total - 593 593 679 - 41 114 127 - 114 104 106
T = 200 '
r=90 0.0 - - - 00 - - -~ 00 - - -
r=1 746 994 994 997|914 159 134 146|935 83 8.1 8.1
r=2 244 307 307 307 80 309 322 204| 59 202 205 215
r= 10 146 146 146 05 222 222 222 05 148 148 148
Total - B81.8 818 821 - 172 149 158 - 91 B8 9.0
VAR(k-1} in differences
Rejections
k=1 k=2 k=4
T = 50 7.4 10.4
T = 100 7.1 7.6
T = 200 7.2 59
VAR(k) in levels
Rejections
k=t k=2 k=
T =50 218 15.7 18.5
T = 100 28.3 14.2 12.6
T = 200 44.2 15.2 9.9
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Table 14: (L32) G3 = -0.3 Tt = 0.3 (U2a.) 013 =1
k=1 k=2 k=4
Rejections Rejections Rejections
LR L LR
Test (P1) ({(P2) (f3) Test (P1) (P2) (P3)| Test (P1) (P2) (P3)
T B T = 50
r=0 0.0 - - -1 00 - - - 1.0 83 8.3 8.3
r=1 72.0 7.1 7.1 93|85 180 162 17.1 ) 8.6 234 223 23.0
r=2 268 194 239 194 | 106 293 289 26.1;11.1 300 300 253
r=3 1.2 B.2 8.2 82| 09 159 159 159 | 14 265 265 265
Total - 104 116 120 - 192 176 181 - 240 231 231
T = 100
r= 0.0 - - -1 00 - - -1 0.0 - - -
r= 67.9 9.2 9.2 96| 879 302 289 202916 268 255 304
r=2 305 164 209 164|114 204 2904 262 | 75 263 263 26.3
r=3 1.5 6.5 65 65 07 242 242 242 0.8 262 262 262
Total - 114 128 116 - 301 289 288 - 267 265 301
T = 200
r=0 0.0 - - -1 00 - - - 0.0 - - -
r=1 628 124 124 126 | 867 522 520 530 | 93.6 415 403 50.6
r=2 38 139 182 139 126 379 3J81 352 | 58 399 392 441
r=3 1.4 8.8 8.8 88| 07 400 400 400} 06 258 258 2508
Total - 129 144 130 - 504 501 506 - 413 402 500
VAR(k-1) in differences
Rejections
k=1 k=2 k=4
T = 50 6.4 11.7
T = 100 58 8.3
T = 200 6.4 7.1
VAR(k} in levels
Rejections
k=1 k=2 k=4
T =50 124 16.6 22.0
T =100 119 247 23.5
T = 200 12.5 41.0 37.4
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Table 15: (N1) a3 =0 m =1 (U2a)b5=1
k=4 k=6 k=8
LR Rejections . Rejections LR Rejections
Test (P1) (P2) (P3) | Test (P1) (P2) (P3)| Test (P1) (P2) (P3)
T = 50 -
r=0 02 90.0 900 90| 80 758 758 758/ 199 760 76.0 76.0
r= 878 159 19.0 157|744 279 385 288|580 485 609 46.1
r= 16.5 404 408 4441 155 513 522 526|182 656 660 632
r=3 | 015 486 486 486 2.1 490 490 49.0] 39 629 629 629
Total - 191 219 194 - 358 438 366 - 576 649 558
T = 100
r=20 0.0 - - - @0 1000 1000 1000} 18 913 913 913
r=1 914 9.3 105 781895 143 186 146 | 8.7 187 289 197
r=2 7.7 346 346 404 93 348 351 4191 101 433 441 451
r=3 0.9 391 391 391 | 12 356 356 356| 13 369 369 369
Total - 11,5 126 106 - 165 204 178 - 227 317 238
T = 200
r=10 0.0 - - - 0.0 - - - 0.0 - - ~
r=1 | 927 68 86 551 925 89 10.0 851|925 113 158 128
r=2 6.7 387 39.0 464 6.7 303 300 411 6.7 336 327 426
r=3 05 444 444 444 0.8 244 244 244 07 243 243 243
Total - 91 109 84 - 104 115 108 - 129 170 148
VAR(k-1) in differences
Rejections
k=4 k=6 k=8
T =50 50.2 9.7 74.1
T =100 99.9 98.3 89.8
T = 200 100.0 100.0 100.0
VAR(k) in levels
Rejections
k=4 k=6 k=8
T =50 22.5 342 50.5
T = 100 16.2 186 234
T = 200 14.3 13.2 14.1
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10 02 -05
Table 16 : (N1)aa =0 m =1 (U2b)fiz=-1 (S2)%.= ( 02 10 02 )
-05 02 10
k=1 k=2 k=4
Rejections Rejections Rejections
LR LR LR
Test (P1) (P2) (P3) | Test (P1) (P2) (P3){ Test (P1} (P2) (P3)
- T = 50 —
r=0 0.0 - - -1 0.3 923 923 923 | 281 442 442 442
r= 249 31.1 31.1 326|652 420 471 457 61.1 502 523 565
r=2 722 564 564 564 327 221 221 112 9.7 203 203 181
r=3 29 462 462 462 | 18 1908 198 198} 10 176 176 176
Total - 498 498 50.2 - 352 385 340 - 453 465 489
T = 100
r= 0.0 - - - 0.0 - - -1 04 850 B850 850
r= 164 242 242 248 545 424 508 435|888 256 273 292
r=2 | 800 669 669 669|437 271 272 1481101 132 152 150
r=3 35 506 506 506 18 341 341 341 08 71 71 71
Total - 593 593 594 - 355 402 308 - 246 261 278
T = 200
r=20 0.0 - - - 0.0 - - - 0.0 - - -
r= 120 212 212 215|511 552 656 559 | BRT 164 183 177
r=2 841 753 753 753} 474 453 453 304|104 136 136 1567
r= 39 615 615 615 15 355 355 35| 09 47 47 47
Total - 683 683 683 - 502 555 435 - 160 17.7 174
VAR(k-1) in differences
Rejections
k=1 k=2 k=4
T=50 70.7 40.1
T = 100 0944 61.1
T = 200 99.9 90.6
VAR(k) in levels
Rejections
k=1" k=2 k=4
T = 50 420 20.2 18.0
T = 100 55.6 276 11.7
T = 200 65.8 43.9 113
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