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Abstract

We study the classic sequential screening problem in the presence of ex post participation con-

straints. We establish necessary and sufficient conditions that determine when the optimal selling

mechanism is either static or sequential. In the static contract, the buyers are not screened with

respect to their interim type and the object is sold at a posted price. In the sequential contract, the

buyers are screened with respect to their interim type and a menu of quantities is offered.

We completely characterize the optimal sequential contract with binary interim types and a

continuum of ex post values. Importantly, the optimal sequential contract randomizes the allocation

of the low-type buyer and awards a deterministic allocation to the high type buyer. Finally, we

provide additional results for the case of multiple interim types.
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1 Introduction

1.1 Motivation

Sequential screening models have been used extensively in economics and revenue management to study

optimal contract design when buyers learn their values over time. In the classic formulation of sequential

screening pioneered by Courty and Li (2000), a profit-maximizing seller (he) faces a single buyer (she)

or, alternatively, a continuum of buyers. The buyer initially has partial and private information about

her value, for example the mean, and privately learns her true value at some later time. In the classic

setting, each buyer is required to participate ex interim: her expected gains at the time of contracting

have to exceed their outside option. A salient example discussed by Courty and Li (2000) is the airline

industry, in which travelers purchase tickets in advance but may only realize their true value as the date

of the trip approaches.

Although the optimal contracts that arise may offer partial refunds, the initial advanced price is

high enough such that some travelers experience negative ex post utility while still being willing to

participate ex interim. This situation also arises in other industries, such as hotels, theaters or even

railroads where advanced pricing and partial refunds contracts are also offered.

In many online markets, however, the seller is constrained to sell products such that the buyer

obtains a nonnegative net utility once she has realized her value, thus ex post. For example, in online

shopping, buyers may have the option to return a purchased item after delivery, usually at zero or low

cost (Krähmer and Strausz (2015)). In the online display advertising market, typical business constraints

prohibit publishers from using upfront fees (Balseiro, Mirrokni, and Paes Leme (2018)). Instead, the

publishers run auctions, typically some version of first- or second-price auctions that satisfy the ex post

participation constraints. Thus, the seller needs to guarantee participation not only initially – at the

interim level – but also after the buyers have completely learned their value – at the ex post level.

Motivated by these new markets, we study the sequential screening problem as described by Courty

and Li (2000) and incorporate ex post participation constraints. Ex post participation constraints rule

out the optimal contracts derived by Courty and Li (2000) with upfront fees. As pointed out by

Krähmer and Strausz (2015), because different upfront fees cannot be used to price discriminate the

different buyers, it may be that a static contract, one that does not screen the buyers ex interim, becomes

optimal under ex post participation constraints. Building on the work by Krähmer and Strausz (2015),

our objective is to understand when the optimal selling mechanism is static (buyers are not screened

ex interim) or sequential (buyers are screened interim), and to obtain a full characterization of such

contracts. Our work highlights the significant revenue improvements that can be attained by using a
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sequential relative to a static contract, even in the presence of ex post participation constraints.

Our model considers a seller who is selling at most one unit of an object to a buyer. The sequence

of events unfolds in two periods. In the first period, the buyer privately learns her interim type, for

example the mean of her value distribution, and the parties contract. We begin the analysis assuming

binary interim types of the buyer, thus high and low. The high type has a distribution of ex post

values that dominates the distribution of the low-type in some stochastic order. The contract specifies

allocation and payments as a function of reported interim type and ex post value. In the second period,

the buyer privately learns her value, and allocations and transfers are realized. At this point, the buyer

accepts the contracting terms only if her realized net utility is weakly larger than her outside option.

This model aligns with our aforementioned examples. In online shopping, the first period corresponds

to the purchasing time. At this time the buyer possesses private information about her expected value

but she only learns her true realized value in the subsequent period. In the second period, the buyer is

delivered the item and has the option to return it, at low or no cost. In the case of display advertising,

some publishers use a sequence of auctions known as “waterfall auctions” that implicitly impose different

priorities over participants.1 Commonly, higher-priority auctions have higher reserve prices. The first

period can be regarded as the time at which the buyer decides in which auction (priority/reserve) to

participate. The second period is when the auctions are actually run.

1.2 Results

The first main result characterizes when a static contract—that is, a contract that does not sequentially

screen buyers—is optimal. In Theorem 1, we provide a necessary and sufficient condition for the

optimality of the static contract, termed the profit-to-rent condition. In the optimal static contract the

seller offers a single and uniform price to all types.

In Theorem 2, we characterize the optimal mechanism when this profit-to-rent condition fails and a

static contract is no longer optimal. The scope for revenue improvement through a sequential contract

is perhaps easiest to grasp by assuming for a moment that the seller were to know the interim type.

From this, admittedly hypothetical, perspective, the uniform static price is too high for the low-type

and too low for the high type. As each type has a different ex post distribution of values, the seller

would ideally prefer to better tailor the price to the distribution of ex post values. To increase his

revenue relative to the static contract, the seller could try to increase the price for the high-type buyer

or decrease the price for the low-type buyer. However, either change would lead the high type to

1See, for example, https://adexchanger.com/the-sell-sider/the-programmatic-waterfall-mystery. A similar dynamic oc-

curs when sellers offer “preferred deals” to advertisers (see, for example, Mirrokni and Nazerzadeh (2017)).
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mimic the low type. A more promising option is to lower the allocation for (some) low-type buyers

while simultaneously reducing the price charged to them. This allows the seller to serve more ex post

values of the low type while deterring the high types from taking the low types’ contract. Now, the

profit-to-rent condition establishes exactly when this pricing deviation is not profitable for the seller.

The profit-to-rent condition is hence necessary for the optimality of the static contract. Notably, we

also show that it is sufficient. The profit-to-rent condition is a weighted monotonicity condition for the

virtual value around the optimal static threshold. In the case of exponentially distributed values, we

can show that the static contract is optimal if and only if the means of the distributions of the low and

high types are sufficiently close.

In line with the above intuition, we find in Theorem 2 that the optimal sequential contract provides

a lower quantity to the low type, or equivalently randomizes the allocation of the object between 0 and

1, and assigns a deterministic allocation of 1 to the high type. Randomization is needed to deter the

high-type buyer from taking the low type’s contract. Specifically, the optimal contract is characterized

by an allocation probability x ∈ (0, 1), and three thresholds θ1, θ2, and θH with θ1 ≤ θH ≤ θ2. In

this contract, the seller allocates the object to a low-type buyer with probability x whenever her value

is between θ1 and θ2 and asks for a payment of θ1 · x. When the true value of the low type is above

θ2, then the object is always allocated to her, and the seller demands a payment of θ2 − (θ2 − θ1) · x.

The high-type buyer obtains the object with certainty and only when her value is above θH , at which

point the payment she has to make to the seller is θH . These parameters are set such that the interim

incentive compatibility constraints are satisfied.

A salient feature of this type of contract is that it discriminates the low type in two dimensions.

First, we establish that θ1 is above the threshold a seller would set if she were selling exclusively to low-

type buyers. That is, the low-type buyer is allocated the object less often in the presence of high-type

buyers. The opposite holds for high-type buyers: they are allocated the object more often than if they

were alone. Second, there is a range of values for which the object is sold to the low type with some

probability strictly below one, which further reduces the likelihood that a low type will receive the

object compared to a case in which there are no high-type buyers. We illustrate these results with

the example of the exponential distribution, for which we have explicit solutions. We find that for

exponential values, the sequential contract can exhibit revenue improvements exceeding 40% over the

static contract.

Towards the end of the paper, we consider several extensions of our base model. Notably, we study

the case of many interim types. Theorem 3 generalizes the profit-to-rent condition to a setting with an

arbitrary number of interim types. We also explore the structure of the optimal sequential contract and
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the challenges that arise in this setting.

1.3 Related Work

Our model builds on the sequential screening literature, as pioneered by Courty and Li (2000), with

an interim participation constraint.2 In contrast, in this paper, we impose an ex post participation

constraint. The most closely related paper to ours that studies sequential screening with ex post

participation constraints is Krähmer and Strausz (2015). They establish that the static contract is

optimal under a monotonicity condition regarding the cross-hazard rate functions. This condition

rules out some common distributions for values such as the exponential distribution. Furthermore, the

condition is only sufficient and, therefore, does not provide a complete characterization of when the

static contract is optimal. We close this gap by providing a necessary and sufficient condition under

which the static contract is optimal. Our condition leverages the economic intuition that lies behind

a potential profitable deviation from the optimal static contract. Furthermore and importantly, when

the condition fails, we characterize the optimal sequential mechanism and show that randomization of

one of the interim types is required for optimality.3

In terms of approaches, Krähmer and Strausz (2015) relax both the local incentive constraint of the

low-type and the monotonicity constraint. Then, they show that under these conditions, the contract

that maximizes the Lagrangian is deterministic and that, as a result, the static contract is optimal.

In contrast, we also relax the local incentive constraint but maintain the monotonicity constraint. For

the relaxed problem, we perform a first-principle analysis, in the style of Samuelson (1984) and Fuchs

and Skrzypacz (2015), that leads us to identify the structure of the optimal contract. In turn, this

permits us to characterize the optimal sequential contract when the static condition fails. In a recent

work, Heumann (2019) considers a setting in which a seller can design the screening mechanism and

the information disclosure mechanism with ex post participation constraints.

The sequential nature of our model and the presence of ex post participation constraints is related to

the work of Ashlagi, Daskalakis, and Haghpanah (2016) and Balseiro, Mirrokni, and Paes Leme (2018).

These authors consider a model (also motivated by the display advertising market) in which a seller,

2See Akan, Ata, and Dana (2015) for a recent adaptation of the Courty and Li (2000) formulation to study advanced

purchase contracts in revenue management settings.
3See also Manelli and Vincent (2007) and Daskalakis, Deckelbaum, and Tzamos (2015) for examples of multi-good envi-

ronments in which stochastic allocations can improve over deterministic allocations. In a separate contribution, Krähmer

and Strausz (2016) establish that with multiple units, as opposed to a single unit, generically, the static contract is not

optimal for the sequential screening problem with ex post participation constraints.
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constrained by ex post participation , repeatedly sells objects to a buyer whose values are independent

across periods. Both papers provide characterizations for a nearly optimal mechanism. They are

different from ours because we consider a single sale and construct the exact optimal mechanism in a

sequential screening model. Krähmer and Kovac (2016) share our concern with static vs. sequential

mechanisms in a delegation environment. While the delegation environment in Krähmer and Kovac

(2016) is substantially different from the quasi-linear environment that we investigate here, some of

our arguments are similar to theirs. In particular, in Theorem 1, we establish that a simple necessary

condition for optimality can be extended to a necessary and sufficient condition. The necessary condition

involves a comparison of cost and benefits in terms of virtual values, in a manner similar to Proposition

3 in Krähmer and Kovac (2016).4

Our optimal mechanism is related to the BIN-TAC auction derived in the context of online display

advertising by Celis, Lewis, Mobius, and Nazerzadeh (2014). This is a static auction that offers two

options to advertisers: a buy-it-now (BIN) option in which buyers can purchase the impression at a

posted high price, and a take-a-chance (TAC) option in which the highest bidders are randomly allocated

the impression (if no bidder went for the BIN). This auction is tailored to approximate ironing in the

classic static Myerson setting for nonregular distributions that commonly arise in display advertising

settings. This mechanism is similar in spirit to ours because it randomizes low-value buyers to separate

them from high-values buyers. However, with one bidder, the BIN-TAC auction reduces to a posted

price which corresponds to the static contract in our setting. In contrast to their static setting, we

study a two-period model in which the buyer is sequentially screened, and randomization occurs even

with a single bidder.

2 Model

2.1 Payoffs

We consider a seller (he) who is selling one unit of an object at zero cost to a buyer (she) with an

outside option of zero value. Both parties are risk-neutral and have quasilinear utility functions. The

sequence of events unfolds in two periods.

In the first period, the buyer privately learns her interim type (or simply type) and then the parties

contract. The type provides information about the distribution of the ex post values (or simply value)

of the buyer— her true willingness-to-pay for the object. The contract specifies allocation and payment

4We thank the editor and an anonymous referee for drawing our attention to the result in Krähmer and Kovac (2016).
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as a function of reported interim type and ex post value. In the second period, the buyer privately

learns her value, and allocations and transfers are realized.

There are finitely many types, denoted k ∈ {1, . . . ,K}, and the prior probability of type k is given

by αk with αk > 0 and
∑K

k=1 αk = 1. In the second period, a buyer of type k privately learns her value θ

which we assume to have a continuously differentiable distribution function Fk(θ) and associated density

function fk(θ), with full support in Θ ⊆ [0,∞]. We assume that Θ is a connected interval of the form

[0, θ]. It will be convenient to denote the upper cumulative distribution function by:

F k(θ) , 1− Fk(θ).

All the distributions are common knowledge. The virtual value of interim type k is given by:

µk(θ) , θ − 1− Fk(θ)
fk(θ)

, ∀k ∈ {1, . . . ,K}, ∀θ ∈ Θ.

For the remainder of the paper, we make the standard assumption that the hazard rate

fk(θ)

1− Fk(θ)
, is increasing in θ,∀k ∈ {1, . . . ,K}. (IHR)

This assumption facilitates our discussion. However, our formal results will require a weaker assumption

that we introduce later.

The terms of trade are specified by the seller in the first period. For a payment t ∈ R and a

probability of receiving the object x ∈ [0, 1], a buyer with value θ receives a utility of θ ·x− t, while the

seller is paid t.

We assume that the buyer agrees to purchase the object only if she is guaranteed a nonnegative net

utility for any possible value of the object she might have. That is, we require θ ·x− t to be nonnegative

for all θ. The seller’s problem is to design a contract that maximizes his expected payment, satisfying

the ex post participation and incentive compatibility constraints.

2.2 Direct Mechanism

By means of the revelation principle (see, e.g., Myerson (1979)) we can focus on incentive compatible

direct revelation mechanisms, with allocations xk : Θ→ [0, 1] and transfers tk : Θ→ R that depend on

reported interim type k′ and ex post value θ′. Then, for a buyer reporting an interim type k′ and an ex

post type θ′, the mechanism allocates the object with probability xk′(θ
′) and charges the buyer tk′(θ

′).

We define the ex post utility of a buyer who truthfully reported k in the first period and θ′ in the

second period while her true value is θ as

uk(θ; θ
′) , θ · xk(θ′)− tk(θ′),
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with the understanding that uk(θ) , uk(θ; θ) . Similarly, we define the interim expected utility of a

buyer whose true interim type is k but reported to the mechanism k′ and is truthful in the second period

as

Ukk′ ,
∫

Θ
uk′(z) · fk(z)dz.

We note that with distributions with common support Θ, we can restrict attention to single deviations.

There are two kinds of incentive compatibility constraints that must be satisfied by our mechanism.

The first is the ex post incentive compatibility constraint (ICxp), which requires that for any report in

the first period, truth-telling is optimal in the second period:

uk(θ) ≥ uk(θ; θ′) ∀k ∈ {1, . . . ,K}, ∀θ ∈ Θ. (ICxp)

The second is the interim incentive compatibility constraint (ICi) which requires that truth-telling is

optimal in the first period:

Ukk ≥ Ukk′ ∀k, k′ ∈ {1, . . . ,K}. (ICi)

Finally, we require the mechanism to satisfy the ex post individual rationality constraint (IRxp):

uk(θ) ≥ 0, ∀k ∈ {1, . . . ,K}, ∀θ ∈ Θ. (IRxp)

Then, the seller’s problem is

max
K∑
k=1

αk ·
∫

Θ
tk(z) · fk(z)dz (P)

s.t (ICi), (ICxp), (IRxp)

0 ≤ x ≤ 1 ,

where we use boldfaces to denote the vector x = (x1, ..., xK). Observe that (IRxp) implies interim

individual rationality (IR). In fact, if we were to relax (P) by considering only interim IR we would be

in the setting of Courty and Li (2000) for discrete interim types.

In general, one of two types of contracts can arise as an optimal solution to the seller’s problem (P):

static or sequential. A static solution to problem (P) corresponds to the case in which the allocations

and transfers (xk, tk) do not depend on the interim type k. In this case, we have a single menu (x, t)

that is offered to the buyer, and the contract does not screen among interim types. We use (Ps) to

denote the version of (P) constrained to static contracts, which we refer to as the static program. In

contrast, a sequential solution allows for different menus that depend on the interim type k, and each
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type of buyer self-selects into one of the menus. The problem (P), referred to as the sequential program,

allows for such solutions.

The main focus of this paper is twofold. The first is to study when the optimal solutions to the

static and sequential programs, (Ps) and (P), coincide. Second, when they do not coincide, we aim to

characterize the optimal solution to (P).

3 A Classic Example of Sequential Screening

We use the opening example of Courty and Li (2000) to illustrate the power of sequential screening in

the presence of an ex post participation constraint. We show that a sequential contract outperforms

the static contract.

In the opening example, there are two types of potential buyers, low-type and high type. One-third

of potential buyers are low-type with value uniformly distributed in [1, 2]; two-thirds are high-type

buyers with value uniformly distributed in [0, 1] ∪ [2, 3].5 Courty and Li (2000) regard of the low type

as a leisure traveler and the high type as a business traveler with the same mean but larger variance in

her value. The seller has a production cost equal to 1.

The optimal static contract sets the optimal monopoly price, p̂, equal to 2, which yields a profit of

1/3. The static contract only serves high types who have high realized values. Courty and Li (2000)

show that the seller can significantly increase his profits with sequential screening by offering a menu

of advanced payments/partial refund contracts subject to the weaker interim participation constraints.

The optimal contract offers an advanced payment of 1.5 and no refund to the leisure traveler and an

advanced payment of 1.75 and a partial refund of 1 to the business traveler. Note that in this contract

some buyers will experience a realized negative net utility. For example, the leisure traveler initially

pays 1.5, but her actual value can be any value within [1, 2], and therefore, half of the time, she will

obtain negative net utility after learning her value. Because of the advanced payment, the contract does

not satisfy the ex post participation constraint.

By contrast, the following version of a sequential contract does satisfy the ex post participation

constraints. The seller offers a menu of two quantities and prices, (xL, pL) and (xH , pH). The high item

is set equal to the optimal static contract, that is, (xH , pH) = (1, 2). Thus, the selling price for the high

type is 2, and high types that buy receive the full quantity. Next, we determine the optimal quantity

5We note that the opening example of Courty and Li (2000) violates the common support assumption made above in

Section 2. However, the failure of the common support does not affect our argument.
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and price for the low-type buyer. Given the contract for the high type, the seller’s profit is given by:

1

3
× xL × (pL − 1)× (2− pL) +

2

3
× 1

2
× (2− 1),

where xL ∈ [0, 1] and pL ∈ [1, 2]. We need to ensure that the menu is interim incentive compatible. The

incentive constraint of the low type is always satisfied (pH equals 2), and the incentive constraint of the

high type is given by:
1

2
×
(5

2
− 2
)
≥ 1

2
× xL ×

(5

2
− pL

)
.

Profit maximization implies that this constraint must be binding, and therefore, the seller’s profit

becomes:
1

3
× (pL − 1)× (2− pL)

5− 2pL
+

1

3
.

The first-order condition yields an optimal price equal to
(
5−
√

3
)
/2 that, in turn, delivers a profit of

2/3 − 1/(2
√

3). The improvement of the sequential contract versus the optimal static contract is then

1−
√

3/2 ≈ 13%.

From this basic exercise, we learn an important lesson: even in this simple setting, a sequential

contract can have substantial benefits over a static contract. In this paper, we study more generally

when a sequential contract outperforms a static contract and what drives this revenue improvement.

4 Optimality of Static Contract

In the main result of this section, Theorem 1, we provide a necessary and sufficient condition for

the static contract to be optimal. We begin with a reformulation of the problem based on standard

techniques that use the envelope theorem, and enable us to solve for the allocation and utilities of the

lowest ex post types instead of both allocations and transfers. Using the reformulation we characterize

the optimal static contract. In Section 4.2, we use the optimal static contract and a simple deviation

analysis to obtain an intuitive necessary condition for its optimality. In Section 4.3, we show that this

condition is both necessary and sufficient.

4.1 Problem Reformulation and Static Solution

We obtain a more amenable characterization of the constraints by eliminating the transfers as in the

classical Myersonian analysis.

10



Lemma 1 (Necessary and Sufficient Conditions for Implementation)

The mechanism (x, t) satisfies (ICi),(ICxp) and (IRxp) if and only if

1. xk(·) is a nondecreasing function for all k in {1, . . . ,K} and

uk(θ) = uk(0) +

∫ θ

0
xk(z)dz, ∀k ∈ {1, . . . ,K}, ∀θ ∈ Θ. (1)

2. uk(0) ≥ 0 for all k in {1, . . . ,K}.

3. uk(0) +
∫

Θ xk(z)F k(z)dz ≥ uk′(0) +
∫

Θ xk′(z)F k(z)dz for all k, k′ in {1, . . . ,K}.

All proofs are provided in the Appendix. The first condition in the lemma is the standard envelope

condition and comes from the ex post incentive compatibility constraint. The second condition is derived

from the ex post IR constraint and the fact that uk(θ) is nondecreasing. The third condition is the

envelope formula inserted into the interim incentive compatibility constraint.

Lemma 1 enables us to obtain a more compact formulation of the seller’s problem. Specifically, we

can use equation (1) and integration by parts to write the objective of (P) in terms of the allocation

rule x and the indirect utilities {uk(0)}Kk=1 of the lowest ex post types. To this end, we denote each

uk(0) as a new variable by uk. The new formulation is then:

max
0≤x≤1,u

−
K∑
k=1

αkuk +

K∑
k=1

αk

∫
Θ
xk(z)µk(z)fk(z)dz (P)

s.t xk(θ) nondecreasing, ∀k ∈ {1, . . . ,K}

uk ≥ 0, ∀k ∈ {1, . . . ,K}

uk +

∫
Θ
xk(z)F k(z)dz ≥ uk′ +

∫
Θ
xk′(z)F k(z)dz, ∀k, k′ ∈ {1, . . . ,K},

Note that in (P), the variables are the allocation rule x and the vector of the indirect utilities of the

lowest ex post types u. Once we solve for these variables the transfers are determined by equation (1).

As noted above, a solution to (P) that screens the interim types is a sequential contract. In contrast,

a static solution to (P) pools the interim types. Formally, we say that a solution to (P) or contract is

static when xk(·) , x(·) and uk , u for all k in {1, . . . ,K}.

We previously defined the virtual value µk(·) of interim type k. Given (IHR), the virtual value for

each type k has exactly one zero, which we denote by θ̂k. Without loss of generality, we assume for the

remainder of the paper that we have ordered the interim types such that

θ̂1 ≤ · · · ≤ θ̂K .
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It turns out that solving (P) over the space of static contracts is a simpler problem. The (ICxi)

constraints disappear from the problem because in this case there is effectively only one interim type.

Additionally, it is clear that any optimal solution sets uk = 0 for all k in {1, . . . ,K}. Therefore, the

static version of the seller’s problem is given by

max
0≤x≤1

∫
Θ
x(z) ·

( K∑
k=1

αkµk(z)fk(z)
)
dz (Ps)

s.t x(θ) nondecreasing,

where a simple calculation shows that the term in parentheses is equal to the virtual value function of

the mixture distribution times the density function of the mixture. Hence, this problem corresponds to

the classic optimal monopoly price problem applied to the mixture distribution over types. The relevant

quantity that shapes the optimal allocation x(·) is:

µ̄(θ) ,
K∑
k=1

αkµk(θ)fk(θ).

As shown by Riley and Zeckhauser (1983) in the case of a single buyer, an optimal solution that

maximizes ∫
Θ
x(z)µ̄(z)dz, (2)

is always given by a threshold value θ̂, which can be implemented by a single posted price p̂ = θ̂.

Lemma 2 (Threshold Allocation)

A solution to (Ps) is a threshold value characterized by θ̂ ∈ [θ̂1, θ̂K ] that maximizes (2).

4.2 A Necessary Condition

In the remainder of this and the next section, we state the results for the setting with binary interim

types. We denote the low-type by L and the high type by H. In Section 6.1, we return to the general

setting with finitely many interim types.

The static optimal solution is characterized by a threshold value θ̂. In this section, we leverage

this characterization and perform an analysis in the style of Bulow and Roberts (1989), to deduce an

intuitive necessary condition for the optimality of the static contract. As we will show later in Section

4.3 this condition turns out to be not only necessary but also sufficient.

For ease of exposition, we assume that the high type dominates the low-type in the hazard rate

order sense:
1− FH(θ)

fH(θ)
≥ 1− FL(θ)

fL(θ)
, ∀θ ∈ Θ. (3)
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0

µk(·)fk(·)

valuation

µH(·)fH(·)
µL(·)fL(·)

θ̂θ̂L θ̂H

Figure 1: Weighted virtual valuations for low-type (dotted line) and high type (dashed line) buyer

around θ̂. The shaded areas correspond to the virtual revenue that the seller misses when using a static

contract with respect to the case in which the interim types are public information.

We note that we do not need this assumption for the formal arguments.

Suppose now that a static contract is optimal, that is, setting a single posted price equal to θ̂ for

both types solves (P). Consider Figure 1, where we have plotted the virtual value weighted by the

density function for each type.6 If the types were public information, the seller would optimally set

posted prices equal to θ̂L and θ̂H for types L and H, respectively. In this way, the seller would serve

buyers if and only if they have positive virtual values. In contrast, when selecting a single posted price θ̂,

there is surplus that the seller is not extracting; the shaded area shows the regions of the virtual values

for each type that the static contract is not capturing. For the high type, the static contract serves too

many buyers, some of them with negative virtual values; hence, the seller would be better off by offering

a higher price. For the low-type, the static contract serves too few buyers, leaving positive virtual value

buyers unserved; hence, the seller would prefer to choose a lower price. A challenge, however, is that

the seller faces incentive compatibility constraints that restrict such possible deviations/improvements:

1. Selling to fewer high types implies increasing the price for high types; however, the high types

then have an incentive to accept the low-type contract, and such a deviation is not feasible.

2. Selling to more low types amounts to reducing the price from θ̂ to some value θ1. However, to

prevent the high types from taking the low-type contract the seller must decrease the quantity

6 Representing the virtual value weighted by the density fk(·) allows for a convenient geometric argument in which the

sellers revenue from each type k is the area under the corresponding curve representing µk(·)fk(·).
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valuation

µH(·)fH(·)
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χLµL(·)fL(·)

θ1

θ2

θ̂θ̂L θ̂H

A

B

Figure 2: Weighted virtual valuations for low-type (dotted line) and high-type (dashed line) buyers

around θ̂. The shaded areas correspond to the virtual revenue that the seller leaves on the table when

using a static contract with respect to the case in which the interim types are public information. We

display the deviation from the static contract for the low-type (solid line). If the solid areas A and B

are such that A−B ≥ 0, the deviation is profitable.

offered to the low types (or equivalently, randomize their allocation).

This second improvement is feasible by choosing a quantity (probability) 0 < xL < 1 for all low

types within an interval [θ1, θ2] with θ1 ≤ θ̂ ≤ θ2; see Figure 2.

Formally, these allocations correspond to the following menu:

xL(θ) ,


0 if θ < θ1,

xL if θ1 ≤ θ ≤ θ2,

1 if θ2 < θ;

xH(θ) ,

0 if θ < θ̂,

1 if θ̂ ≤ θ;
(4)

with uL = uH = 0. We refer to this deviation as an interior variation or improvement.

The interior improvement is feasible only if it satisfies both incentive compatibility constraints.

Inserting the menu (4) into the incentive constraints in (P), we obtain the following for the low-type:

xL

∫ θ2

θ1

(1− FL(θ))dθ +

∫ θ̄

θ2

(1− FL(θ))dθ ≥
∫ θ̄

θ̂
(1− FL(θ))dθ,

and for the high type:

∫ θ̄

θ̂
(1− FH(θ))dθ ≥ xL

∫ θ2

θ1

(1− FH(θ))dθ +

∫ θ̄

θ2

(1− FH(θ))dθ,
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and/or in a more compact form as a bracketing inequality:∫ θ2

θ̂
(1− FL(θ))dθ∫ θ2

θ1
(1− FL(θ))dθ

≤ xL ≤
∫ θ2

θ̂
(1− FH(θ))dθ∫ θ2

θ1
(1− FH(θ))dθ

, (5)

which contains both incentive compatibility constraints. The monotone hazard rate condition (3) guar-

antees that xL as given by (5) always exists.7 The interior variation is thus feasible, and we can select

xL to maximize the seller’s revenue.

Indeed, evaluating the interior variation in the seller’s objective yields:

xL ·
∫ θ2

θ1

µL(θ)fL(θ)dθ +

∫ θ̄

θ2

µL(θ)fL(θ)dθ,

and since µL(θ) ≥ 0 in [θ1, θ2] (see Figure 2) the right-hand side inequality in (5) must be tight.

With the interior variation, the seller serves more low-value buyers in [θ1, θ̂] at the level of xL. This

comes at the expense of offering a lower quantity, a loss of 1 − xL to buyers with values in [θ̂, θ2]. In

Figure 2, the area A corresponds to the additional revenue the seller can make due to the variation

because he is serving more low-type buyers, and region B is the efficiency loss due to the incentive

constraints.

If the static contract is optimal, then this variation cannot be profitable. In terms of Figure 2 this

means the areas must satisfy A ≤ B. Hence, if the static contract is optimal, then

A = xL ·
∫ θ̂

θ1

µL(θ)fL(θ)dθ ≤ (1− xL) ·
∫ θ2

θ̂
µL(θ)fL(θ)dθ = B.

In turn, since the optimal choice of xL always equals the right-hand side of (5), we can insert xL in

terms of the ratio, and after some rearranging, we obtain∫ θ̂
θ1
µL(θ)fL(θ)dθ∫ θ̂

θ1
(1− FH(θ))dθ

≤
∫ θ2

θ̂
µL(θ)fL(θ)dθ∫ θ2

θ̂
(1− FH(θ))dθ

. (6)

To better understand this inequality, consider a seller who faces a buyer with values distributed according

to Fk(·). Observe that at any given price θb the expected profit Πk(θb) of the seller and the expected

informational rent Ik(θb) of the buyer are given by:

Πk(θb) , θb · (1− Fk(θb)) =

∫ θ̄

θb

µk(θ)fk(θ)dθ and Ik(θb) ,
∫ θ̄

θb

(1− Fk(θ)) dθ.

7Indeed, condition (3) is equivalent to (1 − FL(θ))/(1 − FH(θ)) being decreasing. Then (1 − FL(θ))(1 − FH(θ′)) ≤

(1 − FL(θ′))(1 − FH(θ)) for θ′ ≤ θ̂ ≤ θ. Integrating both sides over θ′ ∈ [θ1, θ̂] and θ ∈ [θ̂, θ2] implies(∫ θ2
θ̂

(1− FL(θ))dθ
)(∫ θ̂

θ1
(1− FH(θ))dθ

)
≤
(∫ θ̂

θ1
(1− FL(θ))dθ

)(∫ θ2
θ̂

(1− FH(θ))dθ
)

from which (5) follows.
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If the monopolist considers lowering the price from θb to θa then the change in profit is Πk(θa)−Πk(θb).

The lower price positively impacts the information rents which increase by Ik(θa)− Ik(θb). The ratio

Πk(θa)−Πk(θb)

Ik(θa)− Ik(θb)
is then a measure of the average impact on profits per unit of consumer rents that seller experiences

due to the price variation.

Now, condition (6) can be rewritten to obtain a version of this ratio across different interim types.

To this end, we set k = L in the numerator and k = H in the denominator. This suggests the following:

Definition 1 (Average Profit-to-Rent Ratio)

The average profit-to-rent ratio is defined by:

Rjk(θa, θb) ,
Πj(θa)−Πj(θb)

Ik(θa)− Ik(θb)
=

∫ θb
θa
µj(θ)fj(θ)dθ∫ θb

θa
(1− Fk(θ))dθ

, ∀j, k ∈ {L,H}, 0 ≤ θa ≤ θb ≤ θ̄.

The average profit-to-rent ratio measures the changes in the seller’s profit in terms of the information

rents he gives away to the consumer due to a change in price. The ratio Rjk compares the impact on

profit from type j with the increase in the information rent to type k. This cross ratio arises because the

incentive compatibility constraint for type k implies that a modification in the contract for type j also

affects type k. This was clear from our discussion regarding the interior variation above. There, a price

θ1 (smaller than θ̂) for type L creates a profit improvement for the seller measured by the numerator of

R. Since the seller has to ensure that type H does not take the type-L contract (by reducing quantity),

this price decrease generates a loss for the seller quantified by the denominator of R.

Returning to (6), we note that the numerator in either ratio refers to the revenue that the seller

makes from the low type over some interval, and the denominator refers to the information rent of the

high type over the same interval. Now, since the choice of θ1, θ2 was arbitrary, we obtain the following

necessary condition by taking the minimum and maximum on both sides of the inequality in (6). If the

static contract is optimal, then

max
θ1≤θ̂

RLH(θ1, θ̂) ≤ min
θ̂≤θ2

RLH(θ̂, θ2), (7)

The above condition establishes that if the static contract is optimal, then any extra revenue the

seller can garner from low-type buyers is offset by the efficiency loss due to the incentive compatibility

constraints: A−B ≤ 0 for any possible choice of θ1 and θ2.

To prove sufficiency in Theorem 1, we rely on a dualization-type of argument. For the necessity,

we assume that condition (7) is not satisfied and then show that there is a profitable deviation as

established by the following proposition.
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Proposition 1 (Revenue Improvement)

Suppose that µL(θ)fL(θ)/(1−FL(θ)) is nondecreasing. Assume that condition (7) does not hold. Then,

there exists θ1, θ2 such that θ1 < θ̂ < θ2 and RLH(θ1, θ̂) > RLH(θ̂, θ2), for which the allocation in (4)

with

xL =

∫ θ2

θ̂
FH(θ)dθ∫ θ2

θ1
FH(θ)dθ

,

yields a strict improvement in (P) over the static contract.

In the proof of Proposition 1, we see that once condition (7) fails, two things happen. First, a

non-static contract becomes feasible, which does not violate the incentive constraints. The mere fact

that (7) fails implies the feasibility of the new allocation. Second, the sequential contract guarantees

an expected revenue greater than the static revenue.

4.3 A Necessary and Sufficient Condition

We now establish that condition (7) is in fact a sufficient condition for the optimal static solution

to coincide with the optimal solution to (P). Before we provide the main theorem, we introduce some

notation for the quantities of interest that will help us to further refine our intuition. While we maintain

the binary type framework here, we note that all definitions naturally extend to finitely many types as

we will see in Section 6.1.

The local version of the average profit-to-rent ratio, when θa < θ̂ < θb are close to θ̂, gives rise to

the profit-to-rent ratio.

Definition 2 (Profit-to-Rent Ratio)

The profit-to-rent ratio between type j and k is defined by:

rjk(θ) ,
µj(θ)fj(θ)

1− Fk(θ)
, ∀j, k ∈ {L,H},∀θ ∈ Θ.

The ratio rjk(θb) is obtained as limθa↑θb R
jk(θa, θb). Observe that condition (IHR) implies that

rkk(θ) is nondecreasing for each k ∈ {L,H}. The latter is the condition we use for our formal results.

Now, we are ready to state and discuss the main result of this section.

Theorem 1 (Optimality of Static Contract)

Suppose that rkk(θ) is nondecreasing for each k ∈ {L,H}. The static contract is optimal if and only if

max
θ≤θ̂

RLH(θ, θ̂) ≤ min
θ̂≤θ

RLH(θ̂, θ). (APR)
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This result complements the necessary condition given in Section 4.2 by showing that it is also

sufficient. We showed in Section 4.2 that condition (APR) established that the specific deviation that

increases the sales to the lower type with a lower quantity is not profitable relative to the static contract.

Theorem 1 now establishes that this in fact is not only a necessary but also a sufficient condition. The

sufficient condition is noteworthy because it arises from “simple” deviations, namely, those that assign

the low-type an interior allocation in a small interval around the static optimal price. In particular,

we do not need to be concerned with either more elaborate deviations that offer the low type several

options in her menu, nor do we need to trace simultaneous changes to the offers to the high type. The

core of the sufficiency argument is that the nonprofitability of simple deviations from the static optimal

contract is enough to establish optimality of the static contract. The present theorem confirms that this

type of interior improvement for the low-type is sufficient to study changes in the seller’s revenue. In

Section 5, we establish that the family of allocations suggested by the interior variation also completely

describes the optimal sequential mechanism.

In the Introduction, we noted that Krähmer and Kovac (2016) provided necessary and sufficient

conditions for the optimality of a static contract (versus a sequential contract) in a delegation environ-

ment similar to Amador and Bagwell (2013). Their Proposition 3 established necessary and (almost)

sufficient conditions by considering a ratio of virtual utilities similar to the ratio given by (6). While the

exact shape of the virtual utility differs in the quasi-linear and the delegation environment, the logic of

the argument is related.

4.4 The Exponential Example

Before we establish the optimal sequential contract, it might be helpful to build some intuition for the

above results. We will consider the case of exponentially distributed values. The main result of this

section establishes that the static contract is optimal if and only if the means of the interim types are

sufficiently close.

We consider the exponential density functions

fk(θ) = λke
−λkθ, k = {L,H} θ ≥ 0.

We assume that λL > λH , where L and H stand for the low and high type, respectively. Note that

H has a higher mean (1/λH) than L (1/λL) and that H dominates L in the sense of the hazard rate

stochastic order and in first-order stochastic dominance. In addition, for the interim probabilities, we

have αL + αH = 1 with αL, αH > 0.
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We begin by studying the optimal solution to the static formulation. The optimal static contract

is given by a threshold allocation. Thus, in the exponential case, the seller’s expected revenue for any

given threshold θ is

Πstatic(θ) ,
∫ ∞
θ

(αLµL(z)fL(z) + αHµH(z)fH(z))dz = αLθe
−λLθ + αHθe

−λHθ.

To find the optimal threshold, we simply need to maximize the expression above. The first-order

condition yields

αL(θ − 1

λL
)λLe

−λLθ + αH(θ − 1

λH
)λHe

−λHθ = 0. (8)

That is, the optimal threshold is a zero of the mixture virtual value. Note that equation (8) cannot be

explicitly solved; however, we can (as we do in the forthcoming results) provide comparative statics.

Interestingly, in Proposition 4 below, we show that we can obtain explicit expressions for the thresholds

characterizing the optimal sequential contract. The following lemma provides some initial properties of

the optimal static contract.

Lemma 3

The optimal solution to (Ps) is a threshold allocation characterized by θ̂ in [ 1
λL
, 1
λH

], solving (8). More-

over, θ̂ is a nonincreasing function of αL with θ̂(0) = 1
λH

and θ̂(1) = 1
λL
.

Next, we state a necessary and sufficient condition for the static contract to be optimal.

Proposition 2 (Necessity and Sufficiency for the Exponential Model)

The static contract is optimal if and only if

λL − λH ≤
1

θ̂
(9)

The result follows from Theorem 1. We note that the threshold value θ̂ in the inequality is a solution

to equation (8) and, therefore, depends on the parameters λL and λH . Subsequent corollaries provide

sharper characterizations that depend solely on the model primitives. We highlight that (9) corresponds

to a particular case of condition (APR).

Proposition 2 provides an intuitive characterization for when the seller is better off screening the

interim types than not. In terms of equation (9), when λL and λH are sufficiently close, equation (9)

should hold, in which case the static contract is optimal. Conversely, when λL and λH are sufficiently

distant, the static contract will not be optimal.

Intuitively, when the interim types are similar, any contract that screens the types would be close

in terms of expected revenue to the static contract because for each type it could obtain at most what
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it would obtain by setting thresholds 1/λL and 1/λH , respectively, but θ̂ belongs to [ 1
λL
, 1
λH

]. However,

when screening, the seller has to pay an extra cost to prevent the types from mimicking each other, and

since the contracts’ revenues will be similar, it is likely that this cost offsets the earnings from screening.

On the other hand, when interim types are sufficiently distant in their mean value, the seller can tailor

the contract to each type and in this way extract more from them than in the static contract.

Corollary 1 (Optimality of Static Contract)

If λL ∈ (λH , 2λH ], then for any αL ∈ [0, 1], the static contract is optimal.

This result establishes that when the distributions of the low- and high-type buyers are sufficiently

close to each other, the static contract is always optimal, regardless of the proportion between types.

Corollary 2 (Comparative Statics in αL)

If λL > 2λH , then there exists ᾱ ∈ (0, 1) such that for all αL ∈ (0, ᾱ) the sequential contract is strictly

optimal, and for all αL ∈ [ᾱ, 1] the static contract is optimal.

Corollary 2 asserts that when the means of low and high types are sufficiently distinct, the optimality

of the static vs. the sequential contract is determined by the frequency of each type. If the proportion

of low types is sufficiently low (but not zero), then the seller is better off screening the types. On the

other hand, if there is a large proportion of low types, then the static contract is optimal. This follows

because the threshold value θ̂ decreases as αL increases.

Corollary 3 (Comparative Statics in λL)

For fixed λH and αH , there exists λ̄L such that for all λL ∈ (λ̄L,∞), the sequential contract is strictly

optimal.

4.5 Discussion

We previously introduced the increasing hazard rate condition (IHR) :

hkk(θ) =
fk(θ)

1− Fk(θ)
is increasing.

Krähmer and Strausz (2015) introduced an expanded monotonicity condition that relates any pair of

interim types to the hazard rate:

hjk(θ) =
fj(θ)

1− Fk(θ)
are increasing in θ, ∀j, k ∈ {L,H}. (R)
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is no longer optimal.

Krähmer and Strausz
Necessity

Krähmer and Strausz
Sufficiency

This paper
Sufficiency and Necessity

rLH(·) non-decreasing at θ̂

(APR)

(IHR)

(R)
Outside this set the static contract

Figure 3: Optimality of the static contract for (IHR) distributions, with K = 2 and a single buyer.

They show that under condition (R), the optimal solutions to (P) and (Ps) coincide; thus, the static

contract is optimal. In fact, they show this result for multiple interim types. We discuss our generaliza-

tion of condition (APR) to multiple types in Section 6.1. However, condition (R) is rather restrictive

and not satisfied by some common distributions. For example, the condition is not satisfied by any pair

of exponential distributions, because in this case, the cross-hazard rate is given by:

hjk(θ) = λje
−(λj−λk)θ, j, k = L,H.

If, without loss of generality, we consider λL > λH , then hLH(θ) is a decreasing function, and therefore,

it violates condition (R). However, note that (IHR) is satisfied because the simple hazard rate functions

are constant and equal to 1/λk.

We can also compare Theorem 1 with Lemma 12 in Krähmer and Strausz (2014). In that Lemma,

they assume that hHH(θ) < hLL(θ), which implies θ̂L < θ̂H , and establish that a necessary condition

for the static contract to be optimal is to have the profit-to-rent ratio rLH(θ) being increasing at θ̂. Our

result contains this lemma because if rLH(·) were decreasing at θ̂, then we could always find θ1 < θ̂ and

θ2 > θ̂ such that

RLH(θ1, θ̂) > RLH(θ̂, θ2).

Thus, (APR) does not hold, and therefore, the static contract would not be optimal. Figure 3 illustrates

how our condition (APR) closes the gap between those offered by Krähmer and Strausz (2015).

We can compare conditions (R) and (APR). Note that condition (R) implies the monotonicity of

the profit-to-rent ratios, and therefore condition (APR) holds as

RLH(θ, θ̂) =

∫ θ̂
θ FH(z)rLH(z)dz∫ θ̂

θ FH(z)dz
≤ rLH(θ̂), ∀θ ≤ θ̂,
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and

RLH(θ̂, θ) =

∫ θ
θ̂ FH(z)rLH(z)dz∫ θ

θ̂ FH(z)dz
≥ rLH(θ̂), ∀θ ≥ θ̂.

Hence, the result obtained by Krähmer and Strausz (2015) that if condition (R) holds then the static

contract is optimal follows as a corollary of Theorem 1. We highlight that while condition (R) implies

that the profit-to-rent ratios are increasing, our condition (APR) only implies the monotonicity of an

appropriately weighted average of the profit-to-rent ratios. This is sensible because we are dealing with

interim expected seller’s revenues and interim incentive compatibility constraints.

In terms of methodology, our approach differs from that of Krähmer and Strausz (2015). Their

approach consists of relaxing the low to high interim incentive constraint and then – by using their

condition (R) – they relax the monotonicity constraint and prove that the solution must be a threshold

schedule for each type. From there, they show that the threshold for the two types must be equal and,

therefore, that the static contract is optimal.

In our approach, we do not use a relaxation of the general formulation or impose conditions on

the primitives other than that the ratios rkk(θ) are nondecreasing. For the sufficiency, we construct a

Lagrangian relaxation with multipliers for the incentive compatibility constraints, but we do not relax

the monotonicity constraints. The multipliers relate to the profit-to-rent ratios at the static threshold

θ̂; they measure the change in the objective per unit of change in the constraints. Then, by leveraging

the result of Riley and Zeckhauser (1983) that an optimal contract is a threshold allocation, we prove

that under (APR), the solution to the relaxation is the static contract. The multipliers have a natural

structure: the low to high incentive constraint is slack, and for the high to low constraint, the change

in the objective is given by the ratio of the seller’s profit to the information rent of the high type. Once

the multipliers are set, however, the key to the proof is to establish that condition (APR) delivers the

optimality of the static contract.

5 Sequential Contracts

We now proceed to provide the complete characterization of the optimal sequential contract when the

necessary and sufficient condition associated with the static contract fails. As suggested in Section 4.2

and by Proposition 1, the optimal sequential contract provides a deterministic allocation to the high

type and, for mid-range values, it randomizes the low-type buyer (or, equivalently, reduces the quantity

allocated).
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5.1 The Structure of the Sequential Contract

We analyze the following relaxation of (P)

max
0≤x≤1

−
∑

k∈{L,H}

αkuk +
∑

k∈{L,H}

αk

∫
Θ
xk(z)µk(z)fk(z)dz (PR)

s.t xk(θ) nondecreasing, ∀k ∈ {L,H}

uk ≥ 0,∀k ∈ {L,H}

uH +

∫
Θ
xH(z)FH(z)dz ≥ uL +

∫
Θ
xL(z)FH(z)dz.

The difference between (PR) and the original problem (P) is the omission of the incentive constraint for

the low-type to report truthfully. Importantly, we do not relax the monotonicity constraint. We obtain

a characterization of the optimal solution to (PR) as stated by the following theorem.

Proposition 3 (Relaxed Solution)

Suppose that rkk(θ) is nondecreasing for each k ∈ {L,H}. The optimal solution of (PR) has allocations

x?L(θ) ,


0 if θ < θ1,

xL if θ1 ≤ θ ≤ θ2,

1 if θ2 < θ;

x?H(θ) ,

0 if θ < θH ,

1 if θH ≤ θ.

for some threshold values θ1, θH , θ2 satisfying θ̂L ≤ θ1 ≤ θH ≤ θ2, θH ≤ θ̂H and

xL ,

∫ θ2

θH
FH(z)dz∫ θ2

θ1
FH(z)dz

.

Note that if θ1 = θH , we would recover the static contract. Importantly, the optimal contract of

(PR) has the same structure as the profitable deviation to the static contract presented in Proposition

1. The only difference is that in the former, the threshold for the high type may not necessarily be equal

to θ̂ as in the latter. With this generalization, one can show that the proposed profitable deviation is

indeed optimal for (PR). The associated transfers are given by:

t?L(θ) =


0 if θ < θ1,

θ1 · xL if θ1 ≤ θ ≤ θ2,

θ2 − (θ2 − θ1) · xL if θ2 < θ;

t?H(θ) =

0 if θ < θH ,

θH if θH ≤ θ.

We use an argument based on infinite dimensional linear programming (which may be of more

general interest by itself) to show that the extreme points of (PR) are step functions with at most one
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randomization step. We then use an improvement argument to show that the optimal contract of (PR)

only requires a simple threshold allocation without randomization for the high type.8

Further, consider a low-type allocation that randomizes within an interval [θa, θb]. Recall the argu-

ment in Section 4.3, where we found a revenue improvement while maintaining feasibility, in particular,

while maintaining the incentive constraint of the high type. Using a similar reasoning, we can show

that feasibly improving upon the random allocation requires the following condition to hold for some θ̃:

RLH(θa, θ̃) =

∫ θ̃
θa
FH(z)rLH(z)dz∫ θ̃
θa
FH(z)dz

≤
∫ θb
θ̃
FH(z)rLH(z)dz∫ θb
θ̃
FH(z)dz

= RLH(θ̃, θb). (10)

In general, this condition is not satisfied because the profit-to-rent ratio rLH(·) does not need to be a

nondecreasing function. Therefore, we cannot find a feasible improvement over the random allocation

contract, and hence, we cannot restrict attention to deterministic contracts for the low-type. In contrast,

a similar argument for the high type yields the expression RHH(θa, θ̃) ≤ RHH(θ̃, θb), which always holds

when rHH(·) is nondecreasing. Hence, we can restrict attention to a deterministic threshold contract

for the high type.

The discussion above again highlights the importance of the average profit-to-rent ratios in our

analysis, as they quantify revenue improvements while maintaining incentive compatibility. We can

now characterize the optimal sequential contract.

Theorem 2 (Optimal Sequential Contract)

Suppose that rkk(θ) is nondecreasing for each k ∈ {L,H}. The optimal sequential contract coincides

with the optimal solution of (PR) as given by Proposition 3.

In Proposition 3, we provided the characterization of the optimal solution to (PR). In the proof

of Theorem 2, we argue that the optimal solution to (PR) is feasible for (P) and thus optimal. In

turn, we obtain a full characterization of the optimal sequential contract in terms of three parameters

((θ1, θ2, θH) that we characterize in Lemma B-1 in the Appendix ). We note that the proof of the

theorem relies on the structure of x and the thresholds derived in Proposition 3. In turn, we do not

exploit any single crossing-like property (e.g., stochastic order) but solely the monotonicity of rkk(θ).

The sequential contract makes the low-type worse off and the high type better off with respect to

the contract the seller would offer if he could perfectly screen each type. For the low-type, that contract

would set a threshold equal to θ̂L and would always allocate the object when her value is above the

threshold. However, the sequential contract allocates the object to the low-type whenever her value is

8We thank an anonymous referee for a valuable suggestion regarding the proof technique.
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above θ1 ≥ θ̂L with positive probability. Therefore, the low type is worse off in two dimensions: she is

allocated the object less often and with less probability. On the other hand, the high type receives the

object more often and with certainty since θH ≤ θ̂H . A comparison of the thresholds of the optimal

static contract with those of the optimal screening contract is more subtle because the optimal static

contract may display nonmonotone behavior in the primitives. In the next section, we elaborate more

on this issue (c.f Figure 4).

5.2 The Exponential Example Continued

In Section 4.4, we studied the properties and structure of the optimal static contract for exponential

values. We now derive the optimal sequential contract for this environment.

Proposition 4 (Optimal Sequential Contract for Exponential Distributions)

If condition (9) fails, then the optimal allocation is:

x?L(θ) =

0 if θ < θ1,

x if θ1 ≤ θ;
and x?H(θ) =

0 if θ < θH ,

1 if θH ≤ θ.

The thresholds are given by:

θ1 =
1

λL − λH
and θH =

1

λH
− αL
αH

e−1

λL − λH
,

with θ1 ≤ θH . The probability of receiving the object for the low-type is:

x = exp
(
− λH

[ 1

λH
− αL
αH

e−1

λL − λH
− 1

λL − λH

])
. (11)

This result follows from Theorem 2. We note that in the exponential case, we only have two intervals

for the low type’s allocation, and thus θ2 =∞. That is, the low-type is uniformly restricted to a quantity

below one for all realized values θ ≥ θ1.

We now illustrate our findings below and vary the difference in the mean between the low and high

type. Specifically, we fix αL to be 0.7 and λH to be 0.5, that is, the high type has mean 2. Since

we are assuming λL > λH , we consider λL = λH + δ with δ > 0. Figure 4 shows how the different

thresholds vary as δ increases or, equivalently, as the mean of the low-type decreases to zero. As we can

see, there is a value of δ (δ =0.93) to the left of which the static contract is optimal, and to its right,

the sequential contract is optimal. As suggested by Proposition 2, as δ increases, (λL − λH) increases,

and therefore, we expect it to be larger than 1/θ̂ (see Corollary 2 and Corollary 3). As δ increases, the

two distributions become more distant from each other, and there is a gain from screening the types.
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Static optimal Dynamic optimal

θ̂ = 1
λL−λH

δ0.93

2
θ

0.2

θH

θ1

θ̂

Figure 4: Optimal thresholds for static and sequential contracts when setting λL = λH+δ, with αL = 0.7

and λH = 0.5.

In terms of thresholds, we observe that for the static contract, θ̂ is initially decreasing and then it

increases getting closer to 1/λH = 2. This happens because as we increase δ, we are making 1/λL smaller.

However, at some point, this value becomes too small, and therefore, the probability of allocating the

object to a low type, P (value low-type > θ̂) = e−λLθ̂, will be so low that the seller would be better

off by choosing a threshold tailored for the high type, that is, close to 1/λH = 2. For the sequential

thresholds, the threshold for the low type is decreasing while that for the high type is increasing in δ.

As δ increases, the distributions become more different, and therefore, it is optimal to set thresholds

closer and closer to the threshold that a seller would set if he knew the types in advance, that is, 1/λL

and 1/λH .

We can also compare the different mechanisms in terms of the resulting revenue. The optimal

revenue for the sequential contract Πseq is given by:

Πseq = αL · x · θ1 · e−λLθ1 + αH · θH · e−λHθH .

Then, we can plot the different revenues as we vary δ. Figure 5 (left panel and thick line in right panel)

depicts the results. When αL is large, the static threshold θ̂ is tailored to the low types, so (9) holds for

more values of λL. As screening occurs when the mean of the low type is sufficiently small, and thus

δ is large, the revenue improvement due to sequential contracts becomes more significant and is above

40% when αL = 0.95. In recent work, Bergemann, Castro, and Weintraub (2020) compare the revenue

of the optimal third-degree price discrimination policy against a uniform pricing policy. The optimal

sequential screening policy is upper bounded by the third-degree pricing policy. As a corollary, they

establish that the sequential screening policy can yield at most twice the revenue of the uniform pricing
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policy under some regularity conditions (Corollary 3.3). By means of an example, one can show that

the bound can be attained.

Revenue

θ̂ = 1
λL−λH

0.22

0.58

0.93 2.5 δ

Sequential (Πseq)

Static (Πstatic)
%

0

35

40

16.5

7.29

δ12

αL = 0.5
αL = 0.7

αL = 0.9

αL = 0.95

100× (Πseq−Πstatic)

Πstatic

Figure 5: Left: Optimal expected revenue for static and sequential. Right: Percentage improvement of

the sequential over the static contract. In both figures we set λL = λH + δ with λH = 0.5. In the left

figure, we set αL = 0.7, while in the right figure, αL takes values in {0.5, 0.7, 0.9, 0.95}.

5.3 Menu Implementation

Next, we discuss how the optimal sequential contract can be implemented in practice. By means of the

taxation principle, we can verify that the following menu of contracts is an indirect implementation of

our optimal mechanism:

• contract H: there is a single posted price of pH = θH ;

• contract L: the buyer can choose between two items:

(a) buy at a price of pL = θ1 · xL and be allocated with probability xL.

(b) buy at a price of pL = θ2 − (θ2 − θ1) · xL and be allocated with probability 1.

The prices in the above menu of contracts are set using the values in Proposition 3. This implemen-

tation offers a posted price to the high-type buyer and offers the low-type buyer two options. In option

(a), the low-type buyer can pay a low price, but this carries the possibility of not acquiring the item

or, equivalently, obtaining a reduced quantity; in (b), the low-type buyer pays a high price and always

obtains the object.

An appealing feature of the implementation is that if we regard allocations as quantities, then we

can order the per unit prices. In contract L, the per unit prices are θ1 and θ1 · xL + θ2 · (1− xL) for (a)
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and (b), respectively. Hence, the per unit price in (a) is less than or equal to that in (b). That is, the

low type in (a) receives less of the good but at a discounted price compared to the low type in (b). For

contract H, the per unit price is θH , and since θ1 is less than or equal to θH , the low type in (a) also

receives less of the good at a discounted price compared to the high-type buyer.

6 Extensions

In this section, we consider three extensions to our base model. First, we consider the case of multiple

interim types. Then, for two interim types, we study both a setting with weaker ex post IR constraints

and a three-stage setting.

6.1 Multiple Types

Thus far, we have studied the optimality of the static and sequential contract for two interim types.

In this section, we extend the analysis to an arbitrary number of interim types {1, . . . ,K} and in-

vestigate some properties of the solution to (P). In particular, we provide a generalized version of

condition (APR). Then, we provide numerical evidence and highlight the challenges associated with

the characterization of the optimal sequential mechanism when K > 2.

6.1.1 A Necessary and Sufficient Condition

Our generalized necessary and sufficient condition continues to rely on small variations in the objective

around the static solution. To this end, we consider the following set:

A ,
{

(λij)i,j∈{1,··· ,K}2 ≥ 0 :
∑
j 6=k

λjk · F j(θ̂) = αk · µk(θ̂) · fk(θ̂) + F k(θ̂) ·
∑
j 6=k

λkj ,

αk ≥
∑
j 6=k

λkj −
∑
j 6=k

λjk, ∀k ∈ {1, . . . ,K}
}
.

The set A contains the multipliers associated with the incentive constraints that encode the change

in the objective as we deviate from the optimal static allocation. Roughly speaking, when the static

contract is optimal, allocation perturbations in the contract of each type should equal the dualized costs

associated with such perturbations in the incentive constraints. In other words, the derivative of the

Lagrangian with respect to the posted price around the static solution equals zero. This is captured by

the set of equalities in the definition of A. In addition, the set of inequalities ensures that the optimal ex

post utilities of the lowest value buyers are zero. Note that multipliers being in the set A is a necessary

condition for optimality. The next result provides a necessary and sufficient condition.
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Theorem 3 (Necessary and Sufficient Conditions for Finitely Many Types)

The set A is nonempty. If there exists a feasible solution to (P) that strictly satisfies all the incentive

constraints, then the static contract is optimal if and only if there exist (λij)i,j∈{1,··· ,K}2 ∈ A such that:

max
θ≤θ̂

{
αk ·Rkk(θ, θ̂)−

∑
j 6=k

λjk ·
∫ θ̂
θ F j(z)dz∫ θ̂
θ F k(z)dz

}
≤ min

θ̂≤θ

{
αk ·Rkk(θ̂, θ)−

∑
j 6=k

λjk ·
∫ θ
θ̂ F j(z)dz∫ θ
θ̂ F k(z)dz

}
, (APRM )

for all k ∈ {1, . . . ,K}.

The strict feasibility for (P) corresponds to the standard Slater condition. Condition (APRM ) is

obtained by analyzing the Lagrangian when the static contract is optimal and disentangling the key

conditions it must satisfy. To do, so we consider simple threshold deviations from the static contract

and study their impact on the Lagrangian. We note that this condition is easy to verify – it amounts

to minimizing a convex program. Indeed, both sides of the inequality in (APRM ) correspond to convex

(left) and concave (right) functions of λ. Their difference, left side minus right side, is thus a convex

function. Moreover, because we can always choose θ equal to θ̂ , this difference is always bounded

below by zero. Condition (APRM ) establishes that we can find λ such that this convex function equals

zero; that is, its minimum value equals zero. This can be readily verified by using, for example, a

subgradient-type method.

To obtain a better understanding of this condition, it is helpful to see how it generalizes the necessary

and sufficient condition provided in Theorem 1 for two types. The general condition of Theorem 3 turns

in the binary case for the low type (type 1):

max
θ≤θ̂

{
α1 ·R11(θ, θ̂)− λ21 ·

∫ θ̂
θ F 2(z)dz∫ θ̂
θ F 1(z)dz

}
≤ min

θ̂≤θ

{
α1 ·R11(θ̂, θ)− λ21 ·

∫ θ
θ̂ F 2(z)dz∫ θ
θ̂ F 1(z)dz

}
, (12)

and for the high type (type 2):

max
θ≤θ̂

{
α2 ·R22(θ, θ̂)− λ12 ·

∫ θ̂
θ F 1(z)dz∫ θ̂
θ F 2(z)dz

}
≤ min

θ̂≤θ

{
α2 ·R22(θ̂, θ)− λ12 ·

∫ θ
θ̂ F 1(z)dz∫ θ
θ̂ F 2(z)dz

}
, (13)

where λ12 and λ21 belong to A. We next argue that condition (APR) holds if and only if there exists

λ12, λ21 ∈ A such that conditions (12) and (13) hold. Suppose that (APR) holds. Since we expect the

incentive constraint of the low type not to be binding, we set λ12 equal to zero. Because λ must belong

to A, this necessarily implies that λ21 is equal to α1r
12(θ̂). For this choice of multipliers, the inequality

(13) follows directly from the fact that rkk is increasing. Moreover, the choice of multipliers, together

with (APR), implies that both the maximum and the minimum in (12) are equal to zero. To see this
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consider the maximum in (12) and take θ = θ̂; since λ21 is equal to α1r
12(θ̂), the expression inside the

brackets is zero. Hence, the maximum in (12) is bounded below by zero. It is also bounded above by

zero:

α1 ·R11(θ, θ̂)− λ21 ·
∫ θ̂
θ F 2(z)dz∫ θ̂
θ F 1(z)dz

≤ 0⇔ R12(θ, θ̂) ≤ r12(θ̂), ∀θ ≤ θ̂.

When (APR) holds, the right-hand side inequality always holds. A similar argument applies to the

minimum. Therefore, the condition provided in Theorem 1 implies (APRM ) for the binary case. The

converse implication follows from a contradiction argument, which we omit for the sake of brevity.

The two-type case is amenable to this simplification because one can readily solve for the multipliers:

λ12 equal to zero is a natural choice, and λ21 = α1r
12(θ̂) then follows from the definition of A. Unfor-

tunately, when K > 2, the space of deviations is richer, and so is the possible selection of multipliers.

In turn, this precludes a transparent characterization as in the two-type case.

An appealing feature of (APRM ) is that it provides a practical and simple way to verify that for a

range of distributions, the static contract is optimal, as shown in the following result.

Proposition 5 (Alternative Sufficient Conditions)

Under the Slater condition of Theorem 3 and when either

(i) condition (R) holds or

(ii) z · fk(z) is nondecreasing for all k,

the static contract is optimal.

In the proposition above, we show that either (i) or (ii) implies condition (APRM ) and, consequently,

the optimality of the static contract (cf. Theorem 3). Roughly speaking, in the proof of the proposition,

we show that under (i) or (ii), for all types, an appropriate function is nondecreasing. This function

relates to the integrand in the numerator of the expression inside the maximum and minimum in

(APRM ). In turn, by leveraging this monotonicity property, we establish that the maximum equals the

minimum in (APRM ).

The conditions in Proposition 5 are very different in nature. Condition (i) is the same property

under which Krähmer and Strausz (2015) prove the optimality of the static contract (here, we provide

an alternative proof). This is a “cross” condition, in the sense that it links the distribution of different

interim types. It is satisfied when the density of each type is increasing, for example, for natural families

of distributions such as fk(z) = zβk for some βk > 1 and z ∈ [0, 1]. Condition (ii) does not associate
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the distributions of different types—it is not a cross condition. This property is satisfied by some

truncated heavy-tailed distribution, for example, the log-normal distribution truncated between zero

and the exponential of the mean of its logarithmic value.

Theorem 3 provides a simple, easy-to-verify set of inequalities for the optimality of the static con-

tract with multiple types. By contrast, a complete characterization of the sequential contract seems

substantially more complex with finitely many types. Next, in the context of exponentially distributed

ex post types, we briefly describe partial results and highlight the challenges associated with multiple

types that already appear in the numerical analysis.

6.1.2 The Exponential Example Continued

Despite the challenges that we discussed above, we are able to provide the following result for the

exponential environment.

Proposition 6 (Structure of Sequential Contract with Exponential Distributions)

For exponential values, the optimal allocations have at most one randomized interval.

Proposition 6 establishes that for exponentially distributed values, the optimal contract is simple in

the sense that each interim type allocation is randomized in at most one interval. The proof proceeds by

establishing that the monotonicity constraints form a cone, using duality and complementary slackness.

It is worth mentioning that the proof method applies more generally, but the structure of the contract

in general depends on the values of the dual variables corresponding to the incentive constraints. In the

exponential case, the argument can be simplified to show that the simple structure in the result arises

independent of these variables’ values.

The characterization in Proposition 6 only establishes the structure of the optimal allocations; it

does not provide information on the number of contracts that the optimal solutions will ultimately

feature. For example, if K = 4, Proposition 6 does not say whether the optimal solution will pool the

interim types to create either one, two, three or four different contracts. In general, the full range of

contracts from static to fully sequential (K different contracts ) is possible.

To further explore the structure of optimal contracts, we provide numerical results. In Figure 6,

we depict the optimal allocations when K = 4 and all interim types have exponentially distributed

values. A first observation is that for different proportions αk of interim types, the optimal contract can

feature different levels of separation. Panel (a) of the figure corresponds to an optimal static contract

(no separation), and panel (d) corresponds to an optimal sequential contract that features a different

contract for each interim type (full separation). As a second observation, note that of the four instances
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Figure 6: Optimal allocations for K = 4; types have exponential distributions with means

(2.2, 5.0, 12, 50) (for numerical simplicity, we use truncated versions of these distributions in the in-

terval [0,60]). In each panel the vertical axis corresponds to buyers’ valuations, and the horizontal axis

corresponds to the interim type. Each bar represents the allocation for each type; lighter gray indicates

lower probability of allocation, while darker gray indicates a higher probability of allocation. White

represents no allocation and black full allocation. From panels (a) to (d) ,the fractions, αk, for each

type are (0.7, 0.2, 0.05, 0.05), (0.4, 0.1, 0.4, 0.1), (0.3, 0.2, 0.4, 0.1) and (0.25, 0.25, 0.1, 0.4), respectively.

depicted in Figure 6, only one, (d), has four contracts in the optimal solution. Finding the minimal

number of contracts that provides a good approximation of the optimal multiple-type sequential contract

is a question beyond the scope of this paper but may be of interest to study in the future.

Observe that across the instances in Figure 6, each optimal contract has at most one interval of

value for which randomization occurs (see Proposition 6). This simple structure of the optimal contract

does not appear robust to other specifications of the value distributions. When we consider the case

of normally distributed values (using truncated normal random variables), the optimal contract might

exhibit several different intervals of randomization for a given type. In general, richer contract features

may arise when we combine exponential, normal, uniform or other distributions. As a consequence,

generally speaking, it is challenging to analytically characterize the optimal solution. The challenge

here is that classic relaxation approaches, used in the mechanism design literature, do not apply in our

setting. For example, relaxing all the upward incentive constraints and leaving only the local downward

incentive constraints does not work because, in general, global downward incentive constraints bind.

Moreover, binding constraints are highly sensitive to model primitives. Improving our understanding

of this setting may be an interesting avenue for future research.
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6.2 Weaker Ex Post Participation Constraints

In this section, we generalize our base model and allow for less rigid participation constraints. Consider a

scenario in which the seller can ask the buyer to pay a nonrefundable amount upon signing the contract.

In this case, the contract must guarantee that the interim utility of the buyer is nonnegative, but the ex

post utility can be negative. Effectively, we are relaxing the ex post participation constraints. Krähmer

and Strausz (2015) refer to this type of contract as bonds because it is as if the buyer pays a costly bond

just before signing the contract. In this setting we can prove, using a similar argument to Theorem 1,

that if the nonrefundable payment is not too large, then our necessary and sufficient condition remains

valid.

Proposition 7 Let B > 0. Suppose that the buyer’s ex post utility must be greater or equal than −B

and that her interim utility is nonnegative. If mink∈{L,H}
∫ θ̄
θ̂ F k(z)dz ≥ B, then the static contract is

optimal if and only if condition (APR) is satisfied.

In the proposition, we consider the following participation constraints

uk ≥ −B and uk +

∫ θ̄

0
xk(z)F k(z)dz ≥ 0, ∀k ∈ {L,H}. (14)

The proposition establishes that in this setting, when B is not too large, (APR) is still a necessary and

sufficient condition for the optimality of the static contract. Krähmer and Strausz (2015) prove a related

result that establishes the optimality of the static contract when B is small enough and condition (R)

is satisfied.9

6.3 A Three-Stage Model

As an extension of our base model, we also study a simple multi-stage setting in which buyers learn

progressive information about their valuations over time. In particular, we show that from an initial

condition in which the seller offers a static contract, as more information becomes available to the

buyers over time and the types become more separated, the seller may wait for this to sequentially

screen buyers.

Consider the following three-stage model. In the first stage, the buyer possesses imperfect informa-

tion about her type. In the second stage, the buyer learns precisely whether her type is low or high.

9Interestingly, one can also show that in the case
∫ θ̄
θ̂
FL(z)dz < B <

∫ θ̄
0
FL(z)dz, the optimal static contract may exhibit

randomization despite the absence of the interim IC constraints, but due to the presence of the interim IR constraint. We

omit the details for brevity.
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Later, in the third stage, the buyer learns her valuation. More precisely, in the first stage, the buyer

knows that her distribution is the mixture

βFL(·) + (1− β)FH(·), (15)

where β ∈ [0, 1] is also known by the seller. In the second stage, the buyer learns her type, and from

the seller’s perspective, there is a probability αL or (1− αL) that the buyer is of the low or high type,

respectively. That is, from the second stage on, the situation is exactly the same as in our original

model.

The seller can either decide to sell the item in the first stage or wait until the second stage. Any

contract the seller designs must respect ex post participation constraints. In the first stage, neither the

buyer nor the seller possesses private information about the buyer’s valuation of the item—both know

that it will be drawn from the mixture distribution in equation (15). In turn, the only contract that the

seller can offer in the first stage is a static contract without screening. The optimal ex post IR static

contract is a posted price against the mixture distribution. Now, the seller could also choose to wait

and offer a contract in the second stage. In this case, the buyer gains information because she effectively

knows her type while the seller only knows that the buyer is of the low type with probability αL (and

of high type with probability (1 − αL). The optimal contract in this case can be static or sequential

depending on the parameters as characterized by condition (APR).

At this point, it is possible for us to assess whether the seller would prefer to offer a static contract in

the first stage or to wait and screen in the second stage. Interestingly, it might be optimal for the seller

to wait until the second stage despite that the buyer becomes more informed. Suppose that β = αL.

In this case, the static contracts in the first and second stages coincide. As a result, if (APR) is not

satisfied, waiting for the second stage to screen the buyer becomes optimal. In contrast, if (APR) holds,

then there is no point in waiting, and offering the static contract in the first stage is optimal. From

this, it follows that if αL and β are different but close to each other, it might indeed be strictly optimal

for the seller to wait until the second stage to screen the buyer.

7 Conclusion

We considered the scope of sequential screening in the presence of ex post participation constraints.

The ex post participation constraints limit the ability of the seller to extract surplus from the buyer.

As the buyer has to be willing to participate in the contractual arrangement following every realization

of her value, the surplus has to be extracted ex post rather than at the interim level.
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Despite these ex post restrictions, sequential screening frequently allows the seller to increase his

revenue beyond the statically optimal revenue. The gains from sequential screening become more pro-

nounced to the extent that the interim types differ in their willingness to pay. A natural implementation

of the optimal mechanism simply offers the buyer the choice among different menus in the first stage.

The choice of menu in the first period merely restricts the possible choices in the second period. In

particular, it is not necessary to ask the buyer for any transfer before the final transaction occurs.

Moreover, the buyer only has to make a transfer if she receives the object.

In contrast to the static solution where an optimal policy is always to sell the maximum quantity

of 1, the sequential screening policy offers intermediate quantities. This departure from the bang-bang

policy in a linear utility setting arises due to the presence of the ex post participation constraint, in

conjunction with the incentive compatibility constraints.

There are several natural directions to extend the present work. Our stronger results were for the

case of binary interim types while allowing for a continuum of values for each type. We also presented

an extension of Theorem 1 to multiple types, as well as a characterization and numerical results for

exponential values. We would like to further explore the characterization of the optimal sequential

contract to multiple types and general value distributions. An interesting question here concerns the

number of randomization intervals per type and whether the number of intermediate allocations increases

with the number of interim types. Additionally, is there a fixed number of intermediate allocations that

yield a good approximation to the optimal solution for an arbitrary number of interim types? Similarly,

is there a fixed number of contracts that yield a good approximation to the optimal solution for an

arbitrary number of interim types?

We might also be interested in analyzing how the number of competing buyers may affect the nature

of the optimal mechanism. This has important practical consequences, particularly in industries that

use market mechanisms such as auctions, for example, in the case of display advertising alluded to at

the beginning of the paper. We note that this extension is not immediate because with multiple buyers,

we may lose the threshold structure of the optimal static allocation. However, we conjecture that in this

case, an approximately optimal market design would consist of running a series of “waterfall auctions”

with different priorities across participants.
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A Appendix: Proofs of Main Results

The appendix contains the proof of all results except for those related to the exponential distributions

that are contained in the supplementary appendix B.

Proof of Lemma 1. The proof of this result is standard and thus omitted.

Proof of Lemma 2. The fact that the optimal solution is a threshold allocation is explained in the

main text. Thus, we only need to provide a proof of θ̂ being in the interval [θ̂1, θ̂K ]; however, this is

exactly Lemma 1 in Krähmer and Strausz (2014).

Proof of Theorem 1. We first show the sufficiency of our condition and then its necessity. We

denote by Ω the space of nondecreasing allocations, that is,

Ω , {x : [0, θ̄]→ [0, 1] : x(·) is nondecreasing}.

Sufficiency. We assume that condition (APR) holds. We want to verify that the static contract is

optimal. In order to do so we dualize the incentive constraints. The Lagrangian is

L(u,x,λ,w) = uL(wL − λHL − αL) + uH(λHL − αH + wH)

+

∫ θ̄

0
xL(z) ·

[
αLµL(z)fL(z)− λHLFH(z)

]
dz

+

∫ θ̄

0
xH(z) ·

[
αHµH(z)fH(z) + λHLFH(z)

]
dz,

where wL, wH correspond to the multipliers for the ex post IR constraints, and λ ∈ {λHL, λLH} to the

multipliers for the incentive constraints. In the Lagrangian above we have chosen the multipliers as

follows

wL = αL − αHrHH(θ̂), wH = αH + αHr
HH(θ̂), λHL = αLr

LH(θ̂), λLH = 0, (A-1)

these multipliers are nonnegative because rHH(θ̂) ≤ 0, rLH(θ̂) ≥ 0 and

wH = αH + αHr
HH(θ̂) ≥ 0⇔ rHH(θ̂) ≥ −1⇔ [θ̂ − FH

fH
(θ̂)] ≥ −FH

fH
(θ̂)⇔ θ̂ ≥ 0.

Hence, maximizing the Lagrangian over nondecreasing allocation xL and xH yields an upper bound

for the relaxed problem. Note that this choice of multipliers (together with equation (A-4) below)

eliminates the uL and uH terms in the Lagrangian. We next show that under (APR) the solution to

the Lagrangian relaxation is the static solution. We first claim that

max
xL∈Ω

∫ θ̄

0
xL(z) ·

[
αLµL(z)fL(z)− λHLFH(z)

]
dz =

∫ θ̄

θ̂

[
αLµL(z)fL(z)− λHLFH(z)

]
dz. (A-2)
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To prove this, first note that the optimal solution xL on the left-hand side of (A-2) must be of the

threshold type, that is, xL(θ) = 1{θ≥θ?}, because xL(·) is nondecreasing (see, e.g., Myerson (1981) or

Riley and Zeckhauser (1983)). Hence (A-2) is equivalent to∫ θ̄

θ?

[
αLµL(z)fL(z)− λHLFH(z)

]
dz ≤

∫ θ̄

θ̂

[
αLµL(z)fL(z)− λHLFH(z)

]
dz, ∀θ? ∈ [0, 1].

Replacing the value of λHL, this equation can be cast over values θ?1 ≤ θ̂ and θ?2 ≥ θ̂ as∫ θ̂
θ?1
αLµL(z)fL(z)dz∫ θ̂
θ?1
FH(z)dz

≤ αLrLH(θ̂) ≤

∫ θ?2
θ̂
αLµL(z)fL(z)dz∫ θ?2
θ̂
FH(z)dz

, ∀θ?1 ≤ θ̂ ≤ θ?2 (A-3)

Condition (APR) ensures that the equation above always holds. Indeed, condition (APR) implies that

for any θ?1 ≤ θ̂ and ε > 0 ∫ θ̂
θ?1
αLµL(z)fL(z)dz∫ θ̂
θ?1
FH(z)dz

≤
∫ θ̂+ε
θ̂

αLµL(z)fL(z)dz∫ θ̂+ε
θ̂

FH(z)dz
.

Taking ε ↓ 0 yields the left-hand side inequality in (A-3). The right-hand side inequality in (A-3) can

be verified using an analogous argument. This shows (A-2), that is, the static contract maximizes the

part of the Lagrangian that corresponds to interim type L. We now prove the same for type H. Note

first that the optimality of the static contract implies

λHL = αLr
LH(θ̂) = −αHrHH(θ̂). (A-4)

Then

max
xH∈Ω

∫ θ̄

0
xH(z) ·

[
αHµH(z)fH(z) + λHLFH(z)

]
dz

= max
xH∈Ω

∫ θ̄

0
xH(z) · αH ·

[
µH(z)fH(z)− rHH(θ̂)FH(z)

]
dz

(a)
= max

xH∈Ω

∫ θ̄

0
xH(z) · αH ·

[
rHH(z)− rHH(θ̂)

]
FH(z)dz

(b)
=

∫ θ̄

θ̂
αH ·

[
rHH(z)− rHH(θ̂)

]
FH(z)dz

where in (a) we have used the definition of rHH(·) and in (b) our assumption that rHH(·) is increasing.

Since the value of the Lagrangian coincides with the primal objective at the static solution, and this

solution is always primal feasible, we conclude that the static contract is optimal.

Necessity. We defer this proof to the proof of Proposition 1. In it, we show that whenever condition

(APR) is not satisfied, there is a contract different from the static one with a strictly larger revenue.
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Proof of Proposition 1. Assume that (APR) does not hold; then, by Lemma A-1 (which we state

and prove after the current proof) there exist θ1 < θ̂ < θ2 such that∫ θ̂
θ1
FH(z)rLH(z)dz∫ θ̂
θ1
FH(z)dz

>

∫ θ2

θ̂
FH(z)rLH(z)dz∫ θ2

θ̂
FH(z)dz

, (A-5)

Consider a contract in which we set uL = uH = 0, and

xL(θ) =


0 if θ < θ1

x if θ1 ≤ θ ≤ θ2

1 if θ2 < θ,

xH(θ) =

0 if θ < θ̂

1 if θ̂ ≤ θ,

where x =
∫ θ2

θ̂
FH(z)dz/

∫ θ2

θ1
FH(z)dz. We next show that this solution is feasible and yields a strict

revenue improvement over the static contract.

Feasibility. The ex post participation constraints are clearly satisfied. Additionally, since θ1 < θ̂ <

θ2 we have xL ∈ (0, 1), and both xL(·) and xH(·) are nondecreasing allocations. We verify the incentive

constraints

uL +

∫ θ̄

0
xL(θ)FL(θ)dθ ≥ uH +

∫ θ̄

0
xH(θ)FL(θ)dθ,

uH +

∫ θ̄

0
xH(θ)FH(θ)dθ ≥ uL +

∫ θ̄

0
xL(θ)FH(θ)dθ.

By replacing the allocations and ex post utilities we obtain that the incentive constraints are equivalent

to ∫ θ2

θ̂
FH(z)dz∫ θ2

θ1
FH(z)dz

≥
∫ θ2

θ̂
FL(z)dz∫ θ2

θ1
FL(z)dz

. (A-6)

To see why this is true, rewrite equation (A-5) as∫ θ2

θ̂
FH(z)dz∫ θ̂

θ1
FH(z)dz

>

∫ θ2

θ̂
FH(z)rLH(z)dz∫ θ̂

θ1
FH(z)rLH(z)dz

, (A-7)

note that we are using here that by Lemma A-1 the denominator on the right-hand side is strictly
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positive. Moreover, note that∫ θ2

θ̂
FH(z)rLH(z)dz∫ θ2

θ̂
FL(z)dz

=

∫ θ2

θ̂
FL(z)rLL(z)dz∫ θ2

θ̂
FL(z)dz

≥ rLL(θ̂)

∫ θ2

θ̂
FL(z)dz∫ θ2

θ̂
FL(z)dz

= rLL(θ̂)

∫ θ̂
θ1
FL(z)dz∫ θ̂

θ1
FL(z)dz

≥
∫ θ̂
θ1
FL(z)rLL(z)dz∫ θ̂
θ1
FL(z)dz

=

∫ θ̂
θ1
FH(z)rLH(z)dz∫ θ̂
θ1
FL(z)dz

,

where the inequalities come from the fact that rLL(·) is an increasing function and rLL(θ̂) ≥ 0. This

gives ∫ θ2

θ̂
FH(z)rLH(z)dz∫ θ̂

θ1
FH(z)rLH(z)dz

≥
∫ θ2

θ̂
FL(z)dz∫ θ̂

θ1
FL(z)dz

,

note that we are using here that by Lemma A-1 the denominator on the left-hand side is strictly positive.

This inequality together with (A-7) yields (A-6), and therefore, the proposed solution is feasible.

Revenue improvement. We need to prove that∫ θ̄

θ̂
[αLfL(z)µL(z) + αHfH(z)µH(z)]dz < x ·

∫ θ2

θ1

αLfL(z)µL(z)dz +

∫ θ̄

θ2

αLfL(z)µL(z)dz

+

∫ θ̄

θ̂
αHfH(z)µH(z)dz,

this is equivalent to ∫ θ2

θ̂
αLfL(z)µL(z)dz <

∫ θ2

θ̂
FH(z)dz∫ θ2

θ1
FH(z)dz

·
∫ θ2

θ1

αLfL(z)µL(z)dz

which is the same as ∫ θ2

θ̂
FH(z)rLH(z)dz∫ θ2

θ̂
FH(z)dz

<

∫ θ̂
θ1
FH(z)rLH(z)dz∫ θ̂
θ1
FH(z)dz

which is exactly the property satisfied by θ1, θ2 in (A-5).

Lemma A-1 Suppose that

max
0≤θ≤θ̂

RLH(θ, θ̂) > min
θ̂≤θ≤θ̄

RLH(θ̂, θ).

Then, there exist θa, θb ∈ [0, θ̄] with θa < θ̂ < θb such that RLH(θa, θ̂) > RLH(θ̂, θb). Moreover,

0 <
∫ θ̂
θa
FH(z)rLH(z)dz =

∫ θ̂
θa
FL(z)rLL(z)dz, and 0 <

∫ θb
θ̂
FH(z)rLH(z)dz =

∫ θb
θ̂
FL(z)rLL(z)dz.
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Proof of Lemma A-1. Note that both RLH(·, θ̂) and RLH(θ̂, ·) are continuous functions. Thus

the maximum and the minimum in the statement are achieved by some θ̃a ∈ [0, θ̂] and θ̃b ∈ [θ̂, θ̄],

respectively. Therefore, by assumption, we have that

RLH(θ̃a, θ̂) > RLH(θ̂, θ̃b).

Using the continuity of both functions, we can find θa < θ̂ and θb > θ̂ such that the inequality above is

satisfied.

To finalize, we argue why 0 <
∫ θ̂
θa
FH(z)rLH(z)dz. Note that since θb > θ̂ ≥ θ̂L (see Lemma 2) we

have RLH(θ̂, θb) > 0. Therefore, RLH(θa, θ̂) > 0, which implies the desired inequalities.

Extreme points. We next show that the extreme points in the feasible set of (PR) are step functions

with at most one intermediate step for the low and high type. We follow notation and definitions from

Anderson and Nash (1987).

Let us define the convex cone

P , {x(θ) : [0, θ̄]→ R+ : x(θ) is a nondecreasing function}.

We consider P to be a subset of X—the set of Lebesgue-measurable functions defined in [0, θ̄] taking

values in R+. Let the relation ≥P be defined by y ≥P x if and only if y − x ∈ P , for x, y ∈ X. We use

0X to denote the null vector in X. Furthermore, define the linear functionals

A1 : X → R, x 7→
∫ θ̄

0
x(z)FH(z)dz,

A2 : X → R, x 7→ x(θ̄).

Under this notation the feasible set in (PR) is

xL, xH ∈ X, xL, xH ≥P 0X , uL, uH ≥ 0, uH +A1xH ≥ uL+A1xL, A2xk ≤ 1, k ∈ {L,H}. (A-8)

Note that to study the extreme points of the set above, we can simply focus on either xL or xH . For

example, we can analyze the set {x ∈ X : x ≥P 0X , A1x ≥ C, A2x ≤ 1} for some constant C. Indeed,

note that

∃xL, xH ∈ X : uH+A1xH ≥ uL+A1xL ⇐⇒ ∃(t, xL, xH) ∈ R×X×X : A1xL+uL ≤ t,−A1xH−uH ≤ −t.

In turn, we can fix t and uL, uH and obtain two decoupled problems for xL and xH for which the feasible

sets are

FL , {x ∈ X : x ≥P 0X , A1x ≤ t−uL, A2x ≤ 1} and FH , {x ∈ X : x ≥P 0X , A1x ≥ t−uH , A2x ≤ 1},
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respectively. From this, it follows that the extreme points in the feasible set of (PR) correspond to the

extreme points of FL and FH . We have the following result.

Lemma A-2 Fix t and uL, uH , if x is an extreme point of FL or FH then

x(θ) ,


0 if θ < θ1,

χ if θ1 ≤ θ ≤ θ2,

1 if θ2 < θ,

for χ ∈ [0, 1] and 0 ≤ θ1 ≤ θ2 ≤ θ̄.

Proof. We next prove the above result from first principles. We only provide a proof for FH ; the

proof for FL is analogous and thus omitted. Let C = t− uH . We argue that the extreme points of the

expanded set

F̃H = {(x, s, r) ∈ X × R× R : x ≥P 0X , s, r ≥ 0, A2x+ s = 1, A1x− r = C},

correspond to step functions with at most one intermediate step, s = 0 and r ≥ 0.

Since we added slack variables, s and r, we need to consider an expanded cone: P̃ = P ×R+ ×R+.

We also define the expanded linear functional Ã by (x, s, r) 7→ (A2x+ s,A1x− r). For any (x, s, r) ∈ P̃

define

B((x, s, r)) , {(ξ, η, ρ) ∈ X × R2 : (x, s, r) + λ(ξ, η, ρ) ∈ P̃ , (x, s, r)− λ(ξ, η, ρ) ∈ P̃ for some scalar λ > 0},

N(Ã) , {(ξ, η, ρ) ∈ X × R2 : A2ξ + η = 0, A1ξ − ρ = 0}.

By Theorem 2.2 in Anderson and Nash (1987), we have that (x, s, r) is an extreme of point F̃H if and

only if B((x, s, r)) ∩ N(Ã) = {(0X , 0, 0)}. Therefore, to characterize the extreme points, it suffices to

characterize the points (x, s, r) ∈ F̃H that make the latter property true. Fix (x, s, r) ∈ F̃H ; then,

(ξ, η, ρ) ∈ B((x, s, r)) ∩N(Ã) if and only if there exists λ > 0 such that

x+ λξ, x− λξ ∈ P, s+ λη, s− λη ≥ 0, ξ(θ̄) + η = 0, (A-9)

and

r + λρ, r − λρ ≥ 0,

∫ θ̄

0
ξ(θ)F̄H(θ)dθ = ρ. (A-10)

First, note that because (x, s, r) ∈ F̃H , we have

r = C −
∫ θ̄

0
x(θ)F̄H(θ)dθ.
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There are two cases, r > 0 and r = 0. Consider first the case r > 0. If x is not a step function, we

analyze two subcases: (1) x is strictly increasing and continuous in some interval [θ1, θ2], or (2) x has

two consecutive intermediate steps.

Suppose that we are in (1); by the mean value theorem, there exists θm ∈ (θ1, θ2) such that x(θm) =

(x(θ+
1 ) + x(θ−2 ))/2. Consider η = 0 and ξ(θ) equal to zero outside (θ1, θ2) and

ξ(θ) =


1
λ(x(θ)− x(θ+

1 )) if θ ∈ (θ1, θm]

1
λ(x(θ−2 )− x(θ)) if [θm, θ2),

(A-11)

and we set ρ =
∫ θ̄

0 ξ(θ)F̄H(θ)dθ and λ small enough such that r+λρ, r−λρ ≥ 0 (this is possible because

r > 0). Note that ξ 6= 0X but (ξ, η, ρ) satisfies conditions (A-9) and (A-10). In turn, no extreme point

can be such that is strictly increasing in an interval. Now consider (2), that is, x is such that there are

two consecutive intervals in which it takes different and strictly positive values. That is, x(θ) equals χ1

in (θ1, θ2) and χ2 in (θ2, θ3) with χ1 < χ2 and x(θ−1 ) < χ1. We can set η = 0 and ξ(θ) = 1{θ∈[θ1,θ2)}

ρ =
∫ θ̄

0 ξ(θ)F̄H(θ)dθ; and let λ1 be small enough such that r + λρ, r − λρ ≥ 0. We consider λ equal

to min{λ1, χ1 − x(θ−1 ), χ2 − χ1}/2 (here we are assuming, without loss of generality, that x is right

continuous). Again, note that ξ 6= 0X but (ξ, η, ρ) satisfies conditions (A-9) and (A-10). Now, suppose

that x(θ) has a single step, that is, x(θ) = χ1{θ≥θ1}. Any ξ that satisfies condition (A-9) must equal

zero for θ ≤ θ1 and it must be constant in [θ1, θ̄]. Note that (x, s, r) ∈ F̃H then χ+ s = 1, in turn, this

means that if η satisfies condition (A-9) then η ∈ [−1−χ
λ , 1−χ

λ ]. Therefore, if χ < 1 it is possible to find

(ξ, η, ρ) 6= (0X , 0, 0) that verify conditions (A-9) and (A-10). In turn, the only possible extreme points

of F̃H are such that χ = 1. We have thus proved that the extreme points of FH correspond to step

functions for the first case r > 0.

For the second case, suppose that r = 0. In turn, condition (A-10) becomes ρ = 0 and
∫ θ̄

0 ξ(θ)F̄H(θ)dθ =

0. Suppose that x is strictly increasing and continuous in some interval (θ1, θ2). Consider some

θm ∈ (θ1, θ2) (to be defined precisely later), and consider θa, θb such that θa ≤ θm ≤ θb and

x(θa) =
x(θ+

1 ) + x(θm)

2
and x(θb) =

x(θ−2 ) + x(θm)

2
. (A-12)

Given this we can define ξ to be equal to zero outside (θ1, θ2) and

ξ(θ) =


x(θ)− x(θ+

1 ) if θ ∈ (θ1, θa];

x(θm)− x(θ) if θ ∈ [θa, θb];

x(θ)− x(θ−2 ) if θ ∈ [θb, θ2).
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Note that for λ = 1 we have

x(θ) + λξ(θ) =


2x(θ)− x(θ+

1 ) if θ ∈ (θ1, θa];

x(θm) if θ ∈ [θa, θb];

2x(θ)− x(θ−2 ) if θ ∈ [θb, θ2).

and

x(θ)− λξ(θ) =


x(θ+

1 ) if θ ∈ (θ1, θa];

2x(θ)− x(θm) if θ ∈ [θa, θb];

x(θ−2 ) if θ ∈ [θb, θ2).

Note that ξ 6= 0X but (ξ, η) satisfies condition (A-9), with η = 0. Therefore, we only need to verify

condition (A-10), that is,
∫ θ̄

0 ξ(θ)F̄H(θ)dθ = 0. We show that this condition can be satisfied by judi-

ciously choosing θm as follows. Given our current definition of ξ, the second part of condition (A-10) is

equivalent to∫ θa

θ1

(x(θ)− x(θ+
1 ))FH(θ)dθ︸ ︷︷ ︸

L1(θm)

+

∫ θb

θa

(x(θm)− x(θ))FH(θ)dθ︸ ︷︷ ︸
L2(θm)

+

∫ θ2

θb

(x(θ)− x(θ−2 ))FH(θ)dθ︸ ︷︷ ︸
L3(θm)

= 0, (A-13)

where each term above is a function of θm(because θa and θb are functions of θm) and continuous. Let

θr ∈ (θ1, θ2) be such that x(θr) =
x(θ+

1 )+x(θ−2 )
2 . Note that L1(θ+

1 ) = 0, and

L2(θ+
1 ) + L3(θ+

1 ) =

∫ θr

θ1

(x(θ+
1 )− x(θ))FH(θ)dθ +

∫ θ2

θr

(x(θ)− x(θ−2 ))FH(θ)dθ < 0. (A-14)

We also have that L3(θ−2 ) = 0, and

L1(θ−2 ) + L2(θ−2 ) =

∫ θr

θ1

(x(θ)− x(θ+
1 ))FH(θ)dθ +

∫ θ2

θr

(x(θ−2 )− x(θ))FH(θ)dθ > 0. (A-15)

In turn, there must exist θm for which Eq. (A-13) holds. In conclusion, this rules out allocations x that

are strictly increasing in some interval as possible extreme points. We next consider the case in which

there are two consecutive intermediate steps.

Consider x(θ) equal to χ1 in (θ1, θ2) and χ2 in (θ2, θ3) with χ1 < χ2, x(θ−1 ) < χ1 and χ2 < x(θ+
3 ).

Without loss of generality, we can assume that θ1 > 0 and θ3 < θ̄(if this is not satisfied, then we can

apply a similar argument to the one we present next). We can consider

ξ(θ) =

ξ1 ·min{χ1 − x(θ+
1 ), (χ2−χ1)

2 } if θ ∈ (θ1, θ2);

ξ2 ·min{x(θ−3 )− χ2,
(χ2−χ1)

2 } if θ ∈ [θ2, θ3),
(A-16)
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where the constants ξ1 ∈ (0, 1) and ξ2 ∈ (−1, 0) are defined in such a way that
∫ θ̄

0 ξ(θ)F̄H(θ)dθ = 0. In

turn, ξ 6= 0X but (ξ, η, ρ) satisfy conditions (A-9) and (A-10), with η = ρ = 0. This shows that there

are no extreme points such that there are two intermediate steps χ1, χ2 ∈ (0, 1).

Next, assume that there is only one such intermediate step as in the statement of the lemma. In

turn, s = 0 which implies that η = 0 and that we must have ξ(θ̄) = 0. Moreover, any ξ that satisfies

condition (A-9) must be constant in [0, θ1), [θ1, θ2) and [θ2, θ̄]). In turn, ξ(θ) equals zero in both [0, θ1)

and (θ2, θ̄], and equals some constant ξ1 in (θ1, θ2). But condition (A-10) requires
∫ θ̄

0 ξ(θ)F̄H(θ)dθ = 0

which in turn implies that ξ1 = 0. In conclusion, ξ(θ) = 0 for all θ ∈ [0, θ̄]. We have thus proved

that the extreme points of F̃H correspond to step functions with at most one intermediate step. This

concludes the proof of the lemma that characterizes the extreme points of FH .

We note that in the case of K > 2 interim types, we can show using a similar argument based

on extreme points that in a model with finitely many ex post valuations, one can restrict attention

to contracts that have at most 2(K − 1) intermediate (randomized) step.10 We believe that by using

arguments similar to Winkler (1988) one may be able to extend this argument for K > 2 types to

the setting of continuous valuation distributions, but this may require additional technical arguments

that may be worth exploring in future work. More broadly, we believe that the results based on infinite

dimensional linear programming presented here and their possible extensions may be of separate interest

in mechanism design.

Proof of Proposition 3.

We separate this proof into two parts. In part 1 we show that the optimal solution has the structure

in the statement of the theorem. Note that it is enough to provide a proof for the structure of the

allocation, the transfers can be readily derived from Lemma 1. In part 2 we derive the properties about

the thresholds, xL and uH and uL.

Part 1. First we argue that we can restrict attention to allocations that randomize each type in at

most one connected interval. Then we show that for the high type there is no need for a randomized

allocation.

According to Theorem 2.5 in Anderson and Nash (1987), the optimal solution to (PR), which is an

infinite dimensional linear program, is achieved at an extreme point. In turn, we must argue that the

extreme points in the feasible set of (PR) are step functions with at most one intermediate step for the

low and high types. However, this follows immediately from Lemma A-2, which we state and prove

immediately before the present proof on pages A-5 and A-6.

10Note that in the case of K = 2, we only have one constraint because we can show that we can relax the low type’s IC

constraint.
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To conclude Part 1 of the proof, we show that for the high type, the intermediate step can be

eliminated. Suppose x?H(·) is an optimal solution to (PR) for which there exists θ1 < θ2 and 0 < x < 1

such that x?H(θ) = x in (θ1, θ2). Similar to the proof of type L, assume that x?H(θ−1 ) < x < x?H(θ+
2 ).

Consider the following deviation xdevH which coincides with x?H outside (θ1, θ2), and on (θ1, θ2) is given

as

xdevH (θ) =


x?H(θ−1 ) if θ ∈ (θ1, θ1 + ε1)

x?H(θ) if θ ∈ [θ1 + ε1, θ2 − ε2]

x?H(θ+
2 ) if θ ∈ (θ2 − ε2, θ2)

for some ε1, ε2 > 0. We can set ε1 and ε2(ε1) such that xdevH is feasible. It is enough to impose that

x−H

∫ θ1+ε1

θ1

FH(z)dz + x

∫ θ2−ε2

θ1+ε1

FH(z)dz + x+
H

∫ θ2

θ2−ε2
FH(z)dz = x

∫ θ2

θ1

FH(z)dz, (A-17)

with x−H = x?H(θ−1 ) and x+
H = x?H(θ+). Note that this equation defines ε2(ε1). Also, ε2(ε1) defined in this

way is strictly increasing. Moreover, the values that ε2(ε1) can take are limited by θ2− ε2(ε1) ≥ θ1 + ε1,

that is, the integration interval in the middle term on the left-hand side of (A-17) must be well defined

(such that the integral is nonnegative). Therefore, the function ε2(ε1) is always bounded above by

θ2 − θ1 − ε1. The unique ε?1 such that these two functions are equal, ε2(ε?1) = θ2 − θ1 − ε?1, represents

the upper limit in the domain of ε2(ε1). Note that at this point the middle term on the left-hand side

of (A-17) vanishes.

Taking the derivative in (A-17) with respect to ε1 yields the following:

ε′2(ε1) =
(x− x−H)FH(θ1 + ε1)

(x+
H − x)FH(θ2 − ε2)

. (A-18)

The change in profit for the seller is (proportional to)

∆ = (x−H − x)

∫ θ1+ε1

θ1

µH(z)fH(z)dz + (x+
H − x)

∫ θ2

θ2−ε2
µH(z)fH(z)dz,

so that

d∆

dε1
= (x−H − x)µH(θ1 + ε1)fH(θ1 + ε1) + (x+

H − x)µH(θ2 − ε2)fH(θ2 − ε2)ε′2

(A-18)
= (x−H − x)FH(θ1 + ε1)

[
µH(θ1 + ε1)fH(θ1 + ε1)

FH(θ1 + ε1)
− µH(θ2 − ε2)fH(θ2 − ε2)

FH(θ2 − ε2)

]
= (x−H − x)FH(θ1 + ε1)

[
rHH(θ1 + ε1)− rHH(θ2 − ε2)

]
Because rHH is nondecreasing and (x−H − x) < 0, this expression is (weakly) positive. In turn, we

can conclude that by moving from ε1 = 0 to ε1 = ε?1 we obtain a weak revenue improvement. Since at
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ε?1 the intermediate step, x, vanishes, we obtain the desired result. This completes the proof for interim

type 2 and case (2).

In conclusion, we can always consider x?H to be a threshold allocation as in the statement of the

proposition.

Part 2. From what we have just proved, we can write (PR) as follows

max −
∑

k∈{L,H}

αkuk + αLx

∫ θ2

θ1

µL(z)fL(z)dz + αL

∫ θ̄

θ2

µL(z)fL(z)dz + α2

∫ θ̄

θH

µH(z)fH(z)dz

s.t x ∈ [0, 1], θ1 ≤ θ2

uk ≥ 0, k ∈ {L,H}

uH +

∫ θ̄

θH

FH(z)dz ≥ uL + x

∫ θ2

θ1

FH(z)dz +

∫ θ̄

θ2

FH(z)dz.

We prove the properties satisfied by uL, θ1, θH and θ2. From the formulation above it is clear that is

always optimal to set uL = 0. To see that θ̂L ≤ θ1 suppose the opposite, that is, θ̂L > θ1. This implies

that between θ1 and θ̂1, µL(·) is negative. Then, we can increase θ1 while maintaining feasibility and,

simultaneously, increasing the objective function. Note that this argument is also valid when θ1 = θ2.

Additionally, note that we can obtain a strict improvement only when x > 0; however, when x = 0

we can only obtain a weak improvement. In either case, we can always consider θ̂L ≤ θ1. To see that

θH ≤ θ̂H , suppose the opposite, θH > θ̂H . Since µH(θ) > 0 for all θ ≥ θ̂H , we can can decrease θH and

obtain an objective improvement while maintaining feasibility.

Next, we argue that uH = 0. Suppose that uH > 0; then, we must have

uH +

∫ θ̄

θH

FH(z)dz = x

∫ θ2

θ1

FH(z)dz +

∫ θ̄

θ2

FH(z)dz, (A-19)

otherwise, we could decrease uH and, by doing so, improve the objective. Since uH > 0, equation (A-19)

yields

0 < uH = x

∫ θ2

θ1

FH(z)dz +

∫ θ̄

θ2

FH(z)dz −
∫ θ̄

θH

FH(z)dz, (A-20)

then it must be true that θ1 < θH ; otherwise, from equation (A-20) we would have (θ1 ≤ θ2)∫ θ1

θH

FH(z)dz +

∫ θ2

θ1

FH(z)dz +

∫ θ̄

θ2

FH(z)dz < x

∫ θ2

θ1

FH(z)dz +

∫ θ̄

θ2

FH(z)dz,

which implies ∫ θ1

θH

FH(z)dz < 0,

a contradiction. Thus, θ1 < θH .
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Now consider a new contract for type H that consists of decreasing the cutoff θH by ε > 0 sufficiently

small, but at the same time maintaining the equality in equation (A-19). Specifically, let θH(ε) =

θH − ε > 0 (which we can do because as we just saw θH > θ1 ≥ 0) and let uH(ε) be

uH(ε) = x

∫ θ2

θ1

FH(z)dz +

∫ θ̄

θ2

FH(z)dz −
∫ θ̄

θH(ε)
FH(z)dz.

Note that by taking ε small we still have uH(ε) > 0. We claim that this new contract, characterized by

θ1, θ2, x, θH(ε) and uH(ε), yields a larger value than the old contract, characterized by θ1, θ2, x, θH and

uH . The old contract’s objective is

−αHuH + αLx

∫ θ2

θ1

µL(z)fL(z)dz + αL

∫ θ̄

θ2

µL(z)fL(z)dz + αH

∫ θ̄

θH

µH(z)fH(z)dz,

and using equation (A-19) it becomes

x

∫ θ2

θ1

(αLµL(z)fL(z)− αHFH(z))dz +

∫ θ̄

θ2

(αLµL(z)fL(z)− αHFH(z))dz + αH

∫ θ̄

θH

zfH(z)dz.

We obtain a similar expression for the new contract’s objective. Specifically, the first two terms in the

expression above are the same and the third term differs in θH . Hence, the new contract yields an

improvement over the old one if and only if∫ θ̄

θH

zfH(z)dz <

∫ θ̄

θH(ε)
zfH(z)dz.

Since θH(ε) < θH this last inequality is true. Thus, if uH > 0 we can always construct a new contract

yielding a larger objective value and, therefore, at any optimal contract we must have uH = 0.

To show that θH ≤ θ2, note that since at any optimal solution uH = 0, the incentive constraint is∫ θ̄

θH

FH(z)dz ≥ x
∫ θ2

θ1

FH(z)dz +

∫ θ̄

θ2

FH(z)dz.

Hence, if θH > θ2 from the expression above we would have∫ θ̄

θH

FH(z)dz ≥ x
∫ θ2

θ1

FH(z)dz +

∫ θH

θ2

FH(z)dz +

∫ θ̄

θH

FH(z)dz,

which implies that θH = θ2, a contradiction.

Next, we argue that θ1 ≤ θH . First, we show that θ1 ≤ θ̂H . Suppose the opposite, that is, θ1 > θ̂H .
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Then, since θ̂H ≥ θH we must have θ1 > θH , and therefore,∫ θ̄

θH

FH(z)dz =

∫ θ1

θH

FH(z)dz +

∫ θ̄

θ1

FH(z)dz

>

∫ θ̄

θ1

FH(z)dz

=

∫ θ2

θ1

FH(z)dz +

∫ θ̄

θ2

FH(z)dz

≥ x
∫ θ2

θ1

FH(z)dz +

∫ θ̄

θ2

FH(z)dz.

That is, the incentive constraint is not binding. Therefore, since θ1 > θ̂H ≥ θ̂L, we can slightly decrease

θ1 and, in this way, obtain an objective improvement whenever x > 0. When x = 0, because θ2 ≥ θ1,

we can decrease θ2 and obtain an objective improvement as well. Hence, at any optimal solution we

must have θ1 ≤ θ̂H .

To complete the proof, suppose that θ1 > θH ; then, as before, we have∫ θ̄

θH

FH(z)dz > x

∫ θ2

θ1

FH(z)dz +

∫ θ̄

θ2

FH(z)dz.

Using that θ1 ≤ θ̂H implies θH < θ̂H , we can slightly increase θH (maintaining feasibility) and thus

obtain an objective improvement. In conclusion, at any optimal solution, we must have θ1 ≤ θH .

Finally we must have that x =
∫ θ2

θH
FH(z)dz/

∫ θ2

θ1
FH(z)dz. Indeed, since θ̂L ≤ θ, the part of the

objective that involves x is always nonnegative and, therefore, it is optimal to make x as large as possible.

The incentive constraints provide an upper bound for x, which is precisely
∫ θ2

θH
FH(z)dz/

∫ θ2

θ1
FH(z)dz,

thus the result.

Proof of Theorem 2. We next show that the solutions to the relaxed problem and the original

problem coincide. It is enough to show that the solution of (PR) is feasible in (P). From Proposition 3

we know that we can formulate (PR) as

(PdR) max αLx

∫ θ2

θ1

µL(z)fL(z)dz + αL

∫ θ̄

θ2

µL(z)fL(z)dz + αH

∫ θ̄

θH

µH(z)fH(z)dz

s.t x =

∫ θ2

θH
FH(z)dz∫ θ2

θ1
FH(z)dz

θ̂L ≤ θ1 ≤ θH ≤ θ2, θH ≤ θ̂H∫ θ̄

θH

FH(z)dz ≥ x
∫ θ2

θ1

FH(z)dz +

∫ θ̄

θ2

FH(z)dz.
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Let θ1, θH , θ2 and x be the optimal solution to (PdR). If this solution corresponds to the optimal static

contract or yields the same objective as it, we are done because this contract is always feasible in (P).

If this solution is different from the optimal static contract and yields a strictly larger objective, it must

be the case that∫ θ̄

θH

µ̄(z)dz < αLx

∫ θ2

θ1

µL(z)fL(z)dz + αL

∫ θ̄

θ2

µL(z)fL(z)dz + αH

∫ θ̄

θH

µH(z)fH(z)dz. (A-21)

This is true because the contract (u1, u2, x1, x2) = (0, 0,1{θ≥θH},1{θ≥θH}) is a feasible static contract,

and therefore, its associated revenue is bounded by that of the optimal static contract. From the

formulation of (PdR) we know that θ̂L ≤ θ1 ≤ θH ≤ θ2, this and equation (A-21) deliver

0 ≤
∫ θ2

θH

µL(z)fL(z)dz < x

∫ θ2

θ1

µL(z)fL(z)dz.

Hence, θ1 < θ2, θH < θ2 (otherwise x = 0) and∫ θ2

θH
µL(z)fL(z)dz∫ θ2

θ1
µL(z)fL(z)dz

< x. (A-22)

Also, since x ≤ 1 we must have θ1 < θH . Note that since θ̂L ≤ θ1 < θ2 the denominator above is strictly

positive.

Now we argue that the contract optimizing (PdR) characterized by θ1, θH , θ2 and x is feasible for (P).

Since the high to low incentive constraint is satisfied, we only need to verify the low to high incentive

constraint. That is, we need to verify the following inequality

construct a new contract that is feasible for (Pd) and yields a strictly larger objective value than

the optimal static contract. In fact, this new contract is the one that optimizes (PdR). Therefore, we

only need to check feasibility. Since the high to low IC constraint is satisfied we need to verify the low

to high IC constraint, that is, we need to verify the following inequality

x

∫ θ2

θ1

FL(z)dz +

∫ θ̄

θ2

FL(z)dz ≥
∫ θ̄

θH

FL(z)dz, (A-23)

or, equivalently, x ≥
∫ θ2

θH
FL(z)dz/

∫ θ2

θ1
FL(z)dz. In order to see why (A-23) holds, observe that from

Lemma A-3 (which we state and prove after the present proof) we have∫ θ2

θ1
µL(z)fL(z)dz∫ θ2

θ1
FL(z)dz

≤
∫ θ2

θH
µL(z)fL(z)dz∫ θ2

θH
FL(z)dz

⇔
∫ θH
θ1

µL(z)fL(z)dz∫ θH
θ1

FL(z)dz
≤
∫ θ2

θH
µL(z)fL(z)dz∫ θ2

θH
FL(z)dz

. (A-24)

The right-hand side in (A-24) always holds thanks to (IHR), indeed,∫ θH
θ1

µL(z)fL(z)dz∫ θH
θ1

FL(z)dz
=

∫ θH
θ1

FLr
LL(z)dz∫ θH

θ1
FL(z)dz

≤ rLL(θH) ≤
∫ θ2

θH
FLr

LL(z)dz∫ θ2

θH
FL(z)dz

=

∫ θ2

θH
µL(z)fL(z)dz∫ θ2

θH
FL(z)dz

.
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Thus the left-hand side in (A-24) holds. Equivalently,∫ θ2

θH
FL(z)dz∫ θ2

θ1
FL(z)dz

≤
∫ θ2

θH
µL(z)fL(z)dz∫ θ2

θ1
µL(z)fL(z)dz

Using this, together with equation (A-22), delivers equation (A-23). This concludes the proof .

Lemma A-3 Let θi ∈ [0, θ̄] for i = 1, 2, 3 be such that θ1 < θ2 < θ3. Additionally, consider functions

f, g : [θ1, θ3]→ R, with
∫ θ2

θ1
g(z)dz,

∫ θ3

θ2
g(z)dz > 0. Then,∫ θ3

θ1
f(z)dz∫ θ3

θ1
g(z)dz

≤
∫ θ3

θ2
f(z)dz∫ θ3

θ2
g(z)dz

if and only if

∫ θ2

θ1
f(z)dz∫ θ2

θ1
g(z)dz

≤
∫ θ3

θ2
f(z)dz∫ θ3

θ2
g(z)dz

.

Proof of Lemma A-3.∫ θ3

θ1
f(z)dz∫ θ3

θ1
g(z)dz

≤
∫ θ3

θ2
f(z)dz∫ θ3

θ2
g(z)dz

⇔
(∫ θ3

θ2

g(z)dz
)(∫ θ3

θ1

f(θ)dz
)
≤
(∫ θ3

θ1

g(z)dz
)(∫ θ3

θ2

f(z)dz
)

⇔
(∫ θ3

θ2

g(z)dz
)(∫ θ2

θ1

f(z)dz
)
≤
(∫ θ2

θ1

g(z)dz
)(∫ θ3

θ2

f(z)dz
)

⇔
∫ θ2

θ1
f(z)dz∫ θ2

θ1
g(z)dz

≤
∫ θ3

θ2
f(z)dz∫ θ3

θ2
g(z)dz

Proof of Proposition 7. The problem we analyze in this proposition is:

max
0≤x≤1,u

−
∑

k∈{L,H}

αkuk +
∑

k∈{L,H}

αk

∫ θ̄

0
xk(z)µk(z)fk(z)dz (PB)

s.t xk(θ) nondecreasing, ∀k ∈ {L,H}

uk ≥ −B, ∀k ∈ {L,H}

uk +

∫ θ̄

0
xk(z)F k(z)dz ≥ uk′ +

∫ θ̄

0
xk′(z)F k(z)dz, ∀k, k′ ∈ {L,H}

uk +

∫ θ̄

0
xk(z)F k(z)dz ≥ 0, ∀k ∈ {L,H},

To prove that (APR) implies the optimality of the static contract we consider (PB) and relax the

interim IR constraint. The resulting problem is the same as the original screening problem (P) except

for the change that uk ≥ −B. Then by following the same exact steps in the sufficiency part of the

proof of Theorem 1 the implication follows.

Now for the reverse implication, if (APR) does not hold when the static contract is optimal then it

is possible to construct a dynamic contract as in the proof of Proposition 1 that gives a strict revenue
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improvement. The only subtlety is that now we must verify that the constraint uk+
∫ θ̄

0 x(z)F k(z)dz ≥ 0

is satisfied for k ∈ {L,H}. This can be readily verified, following the notation in the proof of Proposition

1 we have (for uL = uH = −B) for the H type

uH +

∫ θ̄

0
x(z)FH(z)dz ≥ 0⇔

∫ θ̄

θ̂
FL(z)dz ≥ B (A-25)

which is true because we are assuming mink∈{L,H}
∫ θ̄
θ̂ F k(z)dz ≥ B. For the L type, we have

uL +

∫ θ̄

0
x(z)FL(z)dz ≥ 0⇔ x ≥

B −
∫ θ̄
θ2
FL(z)dz∫ θ2

θ1
FL(z)dz

. (A-26)

Moreover, in that proof we established that

x =

∫ θ2

θ̂
FH(z)dz∫ θ2

θ1
FH(z)dz

≥
∫ θ2

θ̂
FL(z)dz∫ θ2

θ1
FL(z)dz

, (A-27)

but note that since
∫ θ̄
θ̂ FL(z)dz ≥ mink∈{L,H}

∫ θ̄
θ̂ F k(z)dz ≥ B we have that

x ≥
∫ θ2

θ̂
FL(z)dz∫ θ2

θ1
FL(z)dz

≥
B −

∫ θ̄
θ2
FL(z)dz∫ θ2

θ1
FL(z)dz

. (A-28)

In conclusion, if
∫ θ̄
θ̂ FL(z)dz ≥ B, the static contract is optimal if and only if (APR) holds, that is,

Theorem 1 still holds.

Proof of Theorem 3. In Lemma A-4 (which we state and prove after this proof) we show that A is

nonempty. Next, we prove the necessary and sufficient condition.

We prove both directions separately. First we show that if there exists λ ∈ A satisfying the properties

then the static contract is optimal. Then we show that if the static contract is optimal then we can

always solve for λ satisfying the properties.

Define

Ω , {x : [0, θ̄] −→ [0, 1] : x(·) is nondecreasing}, and ΩK , Ω× · · · × Ω︸ ︷︷ ︸
K times

.

For the first part we use a Lagrangian relaxation approach. That is, we dualize the incentive constraints

for a specific set of multipliers. This gives an upper bound to the seller’s problem. Then we show that

for our choice of multipliers the relaxation is maximized at the static allocation. The Lagrangian is

L(x, u,λ,w) =

K∑
k=1

uk

(
− αk + wk +

∑
j:j 6=k

λkj −
∑
j:j 6=k

λjk

)

+
K∑
k=1

∫ θ̄

0
xk(z)

(
αkµk(z)fk(z) + F k(z) ·

∑
j:j 6=k

λkj −
∑
j:j 6=k

λjkF j(z)
)
dz,
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where λ correspond to the multipliers associated with the incentives, and w to the multipliers associated

with the ex post IR constraints. Let us define λ to be equal to the (λij)i,j∈{1,··· ,K}2 we are assuming to

exist, that is λ ∈ A, and let

wk = αk +
∑
j:j 6=k

λjk −
∑
j:j 6=k

λkj , ∀k ∈ {1, . . . ,K}. (A-29)

Note that by our choice of λ (λ ∈ A), wk is nonnegative for all k. With this choice of w the first

summation in the Lagrangian becomes zero. Now, we need to show that for this choice of multipliers

the Lagrangian is maximized at the static contract. In order to show this observe that

max
x∈ΩK ,u≥0

L(x, u,λ,w) =

K∑
k=1

max
xk∈Ω

∫ θ̄

0
xk(z)

(
αkµk(z)fk(z)+F k(z)·

∑
j:j 6=k

λkj−
∑
j:j 6=k

λjkF j(z)
)
dz. (A-30)

Thus we only need to verify that the RHS of (A-30) is bounded above by

K∑
k=1

∫ θ̄

θ̂

(
αkµk(z)fk(z) + F k(z) ·

∑
j:j 6=k

λkj −
∑
j:j 6=k

λjkF j(z)
)
dz. (A-31)

Note that the RHS of (A-30), for each k, is maximized at some threshold contract θk ∈ [0, 1]. To prove

that (A-31) is an upper bound of (A-30) is enough to show that for all k and for any θk ∈ [0, 1]∫ θ̄

θk

(
αkµk(z)fk(z) + F k(z) ·

∑
j:j 6=k

λkj −
∑
j:j 6=k

λjkF j(z)
)
dz ≤

∫ θ̄

θ̂

(
αkµk(z)fk(z) + F k(z) ·

∑
j:j 6=k

λkj

−
∑
j:j 6=k

λjkF j(z)
)
dz. (A-32)

Consider θk ≥ θ̂ in (A-32), then (A-32) becomes

0 ≤
∫ θk

θ̂

(
αkµk(z)fk(z) + F k(z) ·

∑
j:j 6=k

λkj −
∑
j:j 6=k

λjkF j(z)
)
dz,

this is equivalent to

−
( ∑
j:j 6=k

λkj

)
·
∫ θk

θ̂
F k(z)dz ≤

∫ θk

θ̂

(
αkµk(z)fk(z)−

∑
j:j 6=k

λjkF j(z)
)
dz, ∀θk ≥ θ̂,

which can be rewritten as

−
( ∑
j:j 6=k

λkj

)
≤ min

θ̂≤θ

{
αk

∫ θ
θ̂ µk(z)fk(z)dz∫ θ

θ̂ F k(z)dz
−
∑
j:j 6=k

λjk ·
∫ θ
θ̂ F j(z)dz∫ θ
θ̂ F k(z)dz

}
. (A-33)

Similarly, if θk ≤ θ̂ then (A-32) is equivalent to

0 ≥
∫ θ̂

θk

(
αkµk(z)fk(z) + F k(z) ·

∑
j:j 6=k

λkj −
∑
j:j 6=k

λjkF j(z)
)
dz, ∀θk ≤ θ̂,
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which is equivalent to

max
θ≤θ̂

{
αk

∫ θ̂
θ µk(z)fk(z)dz∫ θ̂

θ F k(z)dz
−
∑
j:j 6=k

λjk ·
∫ θ̂
θ F j(z)dz∫ θ̂
θ F k(z)dz

}
≤ −

( ∑
j:j 6=k

λkj

)
. (A-34)

In summary, proving that (A-32) holds is equivalent to showing that both (A-33) and (A-34) hold. To

see why this is true, note that

lim
θ→θ̂+

αk

∫ θ
θ̂ µk(z)fk(z)dz∫ θ

θ̂ F k(z)dz
−
∑
j:j 6=k

λjk·
∫ θ
θ̂ F j(z)dz∫ θ
θ̂ F k(z)dz

=
αk · µk(θ̂) · fk(θ̂)−

∑
j:j 6=k λjk · F j(θ̂)

F k(θ̂)
= −

( ∑
j:j 6=k

λkj

)
,

(A-35)

where the last equality comes from the choice of the multipliers. Since the limit is taken for values

above θ̂, this implies that

min
θ̂≤θ

{
αk

∫ θ
θ̂ µk(z)fk(z)dz∫ θ

θ̂ F k(z)dz
−
∑
j:j 6=k

λjk ·
∫ θ
θ̂ F j(z)dz∫ θ
θ̂ F k(z)dz

}
≤ lim

θ→θ̂+
αk

∫ θ
θ̂ µk(z)fk(z)dz∫ θ

θ̂ F k(z)dz
−
∑
j:j 6=k

λjk ·
∫ θ
θ̂ F j(z)dz∫ θ
θ̂ F k(z)dz

= −
( ∑
j:j 6=k

λkj

)
.

A similar argument(taking the limit for values below θ̂ this time) can be used to show that

−
( ∑
j:j 6=k

λkj

)
≤ max

θ≤θ̂

{
αk

∫ θ̂
θ µk(z)fk(z)dz∫ θ̂

θ F k(z)dz
−
∑
j:j 6=k

λjk ·
∫ θ̂
θ F j(z)dz∫ θ̂
θ F k(z)dz

}
.

Since we are assuming that the minimum is an upper bound to the maximum above, we can conclude

that both (A-33) and (A-34) hold (with equality). This concludes the proof for the first direction.

For the second direction we need to show that if the static contract is optimal then we can find

λ satisfying condition (APRM ). Theorem 1 in Luenberger (1969, p. 217) gives then the existence of

Lagrange multipliers such that the static contract maximizes the Lagrangian(here we use the interior

point condition in the assumptions). In other words, ∃λ,w ≥ 0 such that

L(xs,0,λ,w) ≥ L(x,u,λ,w), ∀u,x ∈ RK+ × ΩK . (A-36)

Note that (A-36) holds for any u,x ∈ RK+ × ΩK . Thus we can first consider x equal to xs in (A-36),

this yields

0 ≥
K∑
k=1

uk

(
− αk + wk +

∑
j:j 6=k

λkj −
∑
j:j 6=k

λjk

)
, ∀u ∈ RK+ .

Which implies that

−αk + wk +
∑
j:j 6=k

λkj −
∑
j:j 6=k

λjk = 0, ∀k,
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and since wk ≥ 0 we can conclude that

αk ≥
∑
j:j 6=k

λkj −
∑
j:j 6=k

λjk, ∀k,

as required. Now, fix k and consider a solution x ∈ ΩK such that xj , xs for all j 6= k and xk is 1{θ≥θk}

for some θk ∈ [0, 1]. Then equation (A-36) delivers equation (A-32). And we already saw that (A-32)

is equivalent to both equations (A-33) and (A-34). Combining these two equations yields

max
θ≤θ̂

{
αk

∫ θ̂
θ µk(z)fk(z)dz∫ θ̂

θ F k(z)dz
−
∑
j:j 6=k

λjk ·
∫ θ̂
θ F j(z)dz∫ θ̂
θ F k(z)dz

}
≤ −

( ∑
j:j 6=k

λkj

)

≤ min
θ̂≤θ

{
αk

∫ θ
θ̂ µk(z)fk(z)dz∫ θ

θ̂ F k(z)dz
−
∑
j:j 6=k

λjk ·
∫ θ
θ̂ F j(z)dz∫ θ
θ̂ F k(z)dz

}
,

that is, condition (APRM ) holds for any k. We only need to check that λ ∈ A. Observe that both the

maximum and the minimum are bounded from below and above (respectively) by

αk · µk(θ̂) · fk(θ̂)−
∑

j:j 6=k λjk · F j(θ̂)
F k(θ̂)

. (A-37)

To see this, we can take the limit as before. For the maximum we take the limit of θ approaching θ̂

from below. This limit converges to the expression in (A-37) and is bounded above by the maximum.

The same argument applies to the minimum but this time taking the limit from above θ̂. This in turn

implies that

αk · µk(θ̂) · fk(θ̂)−
∑

j:j 6=k λjk · F j(θ̂)
F k(θ̂)

= −
( ∑
j:j 6=k

λkj

)
,

and we can conclude that λ ∈ A.

Lemma A-4 The set B ⊂ A defined by

B ,
{

(λij)i,j∈{1,··· ,K}2 ≥ 0 :
∑
j 6=k

λjk · F j(θ̂) = αk · µk(θ̂) · fk(θ̂) + F k(θ̂) ·
∑
j 6=k

λkj ,

αk ≥
∑
j 6=k

λkj , ∀k ∈ {1, . . . ,K}
}
,

is non-empty. Hence, the set A is non-empty.

Proof of Lemma A-4. We want to show that B 6= ∅, which amount to proving that the linear system

K∑
j=1,j 6=k

λjk · F j(θ̂) = αk · µk(θ̂) · fk(θ̂) + F k(θ̂) ·
K∑

j=1,j 6=k
λkj , ∀k ∈ {1, . . . ,K},

αk = wk +

K∑
j=1,j 6=k

λkj ∀k ∈ {1, . . . ,K},
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with (λ,w) ≥ 0 has a solution. We begin by writing down the system with matrices and then we apply

Farkas’ lemma.

First, the vector λ is given by

(λ12, λ13, · · · , λ1K︸ ︷︷ ︸
Type1

, λ21, λ23, · · · , λ2K︸ ︷︷ ︸
Type2

, · · · , λK1, λK2, · · · , λKK−1︸ ︷︷ ︸
TypeK

).

Note that the terms λkk for any k ∈ {1, . . . ,K} do not form part of the vector. Now, consider matrix

A with K(K − 1) +K columns and 2K rows given by

A =

F1 F2 · · · FK 0K×K

B1 B2 · · · BK IK×K

 ,
where 0K×K is the zero matrix of dimension K × K and IK×K is the identity matrix of dimension

K ×K. Furthermore, Fk and Bk are matrices of dimension K × (K − 1) defined by

Fk
ij =



−F k(θ̂) if i = k

F k(θ̂) if i < k, j = i

F k(θ̂) if i > k, j = i− 1

0 if o.w,

Bk
ij =

1 if i = k

0 if o.w.

Finally, let b be a vector defined by b = (αLµ1(θ̂)f1(θ̂), α2µ2(θ̂)f2(θ̂), · · · , αKµK(θ̂)fK(θ̂), αL, · · · , αK).

Then, the linear system can be rewritten as

A ·

λ
w

 = b, λ,w ≥ 0.

Now we use Farkas’ lemma, if this system does not have a solution then it must be the case that the

following system has a solution

Aᵀ ·

yF
yB

 ≥ 0, bᵀ ·

yF
yB

 < 0. (A-38)

Explicitly, we have (yF , yB) solve

F k(θ̂) · (yFj − yFk ) + yBk ≥ 0, ∀k, ∀j 6= k

yBk ≥ 0, ∀k
K∑
k=1

αkµk(θ̂)fk(θ̂) · yFk +

K∑
k=1

αk · yBk < 0.

A-20



Let yFm be equal to mink{yFk } (m is the index that achieves the minimum) then

K∑
k=1

αkµk(θ̂)fk(θ̂) · yFk +
K∑
k=1

αk · yBk
(a)
=

K∑
k=1

αkµk(θ̂)fk(θ̂) · (yFk − yFm) +
K∑
k=1

αk · yBk

=

K∑
k=1

αk

(
θ̂ − F k(θ̂)

fk(θ̂)

)
fk(θ̂) · (yFk − yFm) +

K∑
k=1

αk · yBk

=
K∑
k=1

αk

(
θ̂fk(θ̂)− F k(θ̂)

)
· (yFk − yFm) +

K∑
k=1

αk · yBk

(b)

≥ −
K∑
k=1

αkF k(θ̂) · (yFk − yFm) +
K∑
k=1

αk · yBk

=

K∑
k=1

αkF k(θ̂) · (yFm − yFk ) +

K∑
k=1

αk · yBk

(c)

≥ −
K∑
k=1

αk · yBk +
K∑
k=1

αk · yBk

= 0,

a contradiction. Where in (a) we use the fact that
∑K

k=1 αkµk(θ̂)fk(θ̂) = 0, in (b) we use the definition

of yFm, and in (c) we use the first set of equations in (A-38).

Proof of Proposition 5. We apply Theorem 3. For any k, consider the function

Lk(z) ,
αkµk(z)fk(z)−

∑
j 6=k λjkF j(z)

F k(z)
. (A-39)

We next show that under any of the two conditions in the statement of the proposition we can always

find λ ∈ A such that (APRM ) holds. To prove this, it is enough to verify that (a) Lk(z) ≤ Lk(θ̂) for all

z ≤ θ̂, and (b) Lk(z) ≥ Lk(θ̂) for all z ≥ θ̂, for some suitable λ ∈ A, for all k. Indeed, if such λ exists
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then for any k, any θ1 ≤ θ̂ and θ2 ≥ θ̂ we have

αk ·Rkk(θ1, θ̂)−
∑
j 6=k

λjk ·
∫ θ̂
θ1
F j(z)dz∫ θ̂

θ1
F k(z)dz

=

∫ θ̂
θ1
Lk(z)F k(z)dz∫ θ̂
θ1
F k(z)dz

≤
∫ θ̂
θ1
Lk(θ̂)F k(z)dz∫ θ̂
θ1
F k(z)dz

= Lk(θ̂)

≤
∫ θ2

θ̂
Lk(z)F k(z)dz∫ θ2

θ̂
F k(z)dz

= αk ·Rkk(θ̂, θ2)−
∑
j 6=k

λjk ·
∫ θ2

θ̂
F j(z)dz∫ θ2

θ̂
F k(z)dz

,

which is precisely (APRM ). The first inequality above comes from (a) and the second from (b).

To conclude we next verify conditions (a) and (b). We start by choosing λ ∈ A such that αk ≥∑
j 6=k λjk, for all k. Lemma A-4 guarantees the existence of such λ. Next note that because λ ∈ A we

have that Lk(θ̂) = −
∑

j 6=k λkj for all k. Hence, (a) is equivalent to

αkzfk(z)− (αk −
∑
j 6=k

λkj)F k(z)−
∑
j 6=k

λjkF j(z) ≤ 0, ∀z ≤ θ̂, ∀k.

Note that (αk −
∑

j 6=k λkj) ≥ 0 for all k. If condition (i) holds, we can divide the inequality above by

fk(z) and use that F j(z)/fk(z) is non-increasing for any j(this is true under (i)) to conclude that the

resulting function on the left-hand side is nondecreasing. If condition (ii) holds then because all F j(z)

are non-increasing functions and zfk(z) is nondecreasing then the resulting function on the left-hand

side is nondecreasing. In conclusion the left-hand side in the equation above is bounded above by its

value at θ̂; however, since λ ∈ A, this value equals zero. This establishes (a). Condition (b) can be

verified in an analogous manner.
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B Proofs for Leading Example: Exponential Distribution

The supplementary appendix, possibly for online publication, contains the proofs for all the results

related to the exponential distribution.

Proof of Lemma 3. From Lemma 2 we have that θ̂L ≤ θ̂ ≤ θ̂H . For exponential distributions,

θ̂L = 1/λL and θ̂H = 1/λH . Therefore, θ̂ ∈ [1/λL, 1/λL]. Moreover, θ̂ must satisfy (8); if not, we could

increase it or decrease it and obtain a strict revenue improvement.

We provide a proof for the rest of the properties for general distributions satisfying (IHR). Note first

that θ̂ can be seen as a function of αL and αH but since αH equals 1− αL, we can effectively consider

θ̂ just a function of αL. Then, when αL equals 0 is as we only had type H buyers and, therefore,

the optimal threshold is θ̂H . While when αL equals 1 is as we only had type L buyers so the optimal

threshold is θ̂L. Hence, θ̂(0) equals θ̂H and θ̂(1) equals θ̂L.

Now we prove that θ̂(αL) is non-increasing. Consider αaL < αbL and suppose that θ̂(αaL) < θ̂(αbL).

Define

`(θ, αL) ,
∫ θ̄

θ
αLfL(z)µL(z) + (1− αL)fH(z)µH(z)dz,

note that this is a linear function of αL and, for fixed αL, it is maximized at θ̂(αL). Hence,

`(θ̂(αaL), αbL) ≤ `(θ̂(αbL), αbL)

= `(θ̂(αbL), αbL − αaL) + `(θ̂(αbL), αaL)

≤ `(θ̂(αbL), αbL − αaL) + `(θ̂(αaL), αaL)

therefore∫ θ̂(αbL)

θ̂(αaL)
αbLfL(z)µL(z)+(1−αbL)fH(z)µH(z)dz ≤

∫ θ̂(αbL)

θ̂(αaL)
αaLfL(z)µL(z)+(1−αaL)fH(z)µH(z)dz. (B-1)

Recall that θ̂ is in [θ̂L, θ̂H ], and therefore, θ̂L ≤ θ̂(αaL) < θ̂(αbL) ≤ θ̂H . This in turn implies that

µL(z) > 0 and µH(z) < 0, ∀z ∈ (θ̂(αaL), θ̂(αbL)),

hence for z in (θ̂(αaL), θ̂(αbL)) we have

αaLfL(z)µL(z) + (1− αaL)fH(z)µH(z) < αbLfL(z)µL(z) + (1− αbL)fH(z)µH(z),

which contradicts (B-1).

Proof of Proposition 2. We make use of Theorem 1. Condition (APR) for the exponential distri-

bution is

max
θ≤θ̂

{ θ̂e−λLθ̂ − θe−λLθ
e−λH θ̂ − e−λHθ

}
≤ min

θ̂≤θ

{θe−λLθ − θ̂e−λLθ̂
e−λHθ − e−λH θ̂

}
. (B-2)
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Before we begin the proof, we need some definitions and observations. Define the following functions

g(θ) ,
θ̂e−λLθ̂ − θe−λLθ

e−λH θ̂ − e−λHθ
and g(θ) ,

θe−λLθ − θ̂e−λLθ̂

e−λHθ − e−λH θ̂
.

Note the following

lim
θ→θ̂+

g(θ) = lim
θ→θ̂−

g(θ) =
(λLθ̂ − 1)

λH
· e−θ̂(λL−λH), (B-3)

and

lim
θ→∞

g(θ) = θ̂ · e−θ̂(λL−λH). (B-4)

Finally note that

(λLθ̂ − 1)

λH
· e−θ̂(λL−λH) ≤ θ̂ · e−θ̂(λL−λH) ⇐⇒ θ̂ ≤ 1

λL − λH
. (B-5)

Now, suppose that condition (APR) holds and

θ̂ >
1

λL − λH
(B-6)

From equations (B-3),(B-4) and (B-5) we see that

g(θ̂) = g(θ̂) > lim
θ→∞

g(θ),

which implies

max
θ≤θ̂

{ θ̂e−λLθ̂ − θe−λLθ
e−λH θ̂ − e−λHθ

}
> min

θ̂≤θ

{θe−λLθ − θ̂e−λLθ̂
e−λHθ − e−λH θ̂

}
(B-7)

contradicting the fact that condition (APR) holds.

For the other direction, assume that equation (9) holds. We first prove that for θ ≤ θ̂ we have

g(θ) ≤ g(θ̂); indeed,

g(θ) ≤ g(θ̂)⇐⇒ θ̂e−λLθ̂ − θe−λLθ

e−λH θ̂ − e−λHθ
≤ (λLθ̂ − 1)

λH
· e−θ̂(λL−λH)

⇐⇒ λH · (θ̂e−λLθ̂ − θe−λLθ) ≥ (e−λH θ̂ − e−λHθ) · (λLθ̂ − 1) · e−θ̂(λL−λH)

⇐⇒ λH θ̂ · (1−
θ

θ̂
e−λL(θ−θ̂))− (1− e−λH(θ−θ̂)) · (λLθ̂ − 1) ≥ 0,

and hence we simply need to verify that this last inequality holds for θ ≤ θ̂. For doing so define

H(θ) , λH θ̂ · (1−
θ

θ̂
e−λL(θ−θ̂))− (1− e−λH(θ−θ̂)) · (λLθ̂ − 1),

and note that H(θ̂) = 0 and

H(0) = λH θ̂ + (eλH θ̂ − 1) · (λLθ̂ − 1) ≥ λH θ̂ + λH θ̂(λLθ̂ − 1) = λH θ̂ · λLθ̂ > 0,
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where the inequality comes from convexity of the exponential function and the fact that θ̂ ≥ 1/λL.

Furthermore the derivative of H is given by

dH

dθ
= λH(λLθ − 1)e−λL(θ−θ̂) − λH(λLθ̂ − 1)e−λH(θ−θ̂),

and it can be easily verified that for θ ≤ θ̂ we have dH/dθ ≤ 0. This together with the facts that

H(0) > 0 and H(θ̂) = 0 imply that g(θ) ≤ g(θ̂) for all θ ≤ θ̂. This in turn implies

max
θ≤θ̂

{ θ̂e−λLθ̂ − θe−λLθ
e−λH θ̂ − e−λHθ

}
=

(λLθ̂ − 1)

λH
· e−θ̂(λL−λH).

Now we prove that for θ ≥ θ̂ we have g(θ) ≥ g(θ̂). Note that if we prove this we are done because this

and what we have just proven imply condition (APR). As before we do

g(θ) ≥ g(θ̂)⇐⇒ θe−λLθ − θ̂e−λLθ̂

e−λHθ − e−λH θ̂
≥ (λLθ̂ − 1)

λH
· e−θ̂(λL−λH)

⇐⇒ λH(θ̂e−λLθ̂ − θe−λLθ) ≥ (λLθ̂ − 1) · (e−λH θ̂ − e−λHθ) · e−θ̂(λL−λH)

⇐⇒ λH(θ̂ − θe−λL(θ−θ̂))− (λLθ̂ − 1) · (1− e−λH(θ−θ̂)) ≥ 0,

note that the LHS of this last inequality is again the function H(·) but this time defined for θ ≥ θ̂. We

have H(θ̂) = 0. It is easy to prove that for θ̂ ≤ θ ≤ θ̃ the function H(θ) is increasing, and then for θ > θ̃

is decreasing, where θ̃ > θ̂ and dH(θ̃)/dθ = 0. Additionally,

lim
θ→∞

H(θ) = λH θ̂ − (λLθ̂ − 1) ≥ 0.

Hence, for θ ≥ θ̂, we have H(θ) ≥ 0, and therefore, g(θ) ≥ g(θ̂) for all θ ≥ θ̂, as desired.

Proof of Corollary 1. Recall that for any λL > λH , from Lemma 3, we have

1

λL
≤ θ̂(αL) ≤ 1

λH
,

and

λL ≤ 2λH ⇐⇒
1

λH
≤ 1

λL − λH
,

therefore, for any αL ∈ [0, 1] equation (9) is satisfied. Then by Proposition 2 we conclude that the static

contract is optimal for any αL ∈ [0, 1].

Proof of Corollary 2. First, we show that θ̂(·) is continuous from the right at zero. Let {αnL} ∈ [0, 1]

be any sequence such that

lim
n→∞

αnL = 0,
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and suppose that θ̂(αnL) does not converge to θ̂(0) = 1/λH . That is,

∃ε > 0,∀n0,∃n ≥ n0, | 1

λH
− θ̂(αnL)| > ε,

since θ̂(αnL) ≤ 1
λH

we have

| 1

λH
− θ̂(αnL)| > ε⇐⇒ 1

λH
− θ̂(αnL) > ε.

This in turn means that we can create a subsequence {α`nL } ⊂ {αnL} such that

∀n, 1

λH
− ε > θ̂(α`nL ). (B-8)

However, since θ̂(α`nL ) is a maximizer of Πstatic(·), we must have

α`nL θ̂(α
`n
L )e−λLθ̂(α

`n
L ) + (1− α`nL )θ̂(α`nL )e−λH θ̂(α

`n
L ) ≥ α`nL

1

λH
e
−λL 1

λH + (1− α`nL )
1

λH
e
−λH 1

λH ,

because λL > λH we can bound the LHS above to obtain

θ̂(α`nL )e−λH θ̂(α
`n
L ) ≥ α`nL

1

λH
e
−λL 1

λH + (1− α`nL )
1

λH
e
−λH 1

λH . (B-9)

Note that the function θe−λHθ has a unique maximum at θ = 1/λH and since θ̂(α`nL ) satisfies equation

(B-8), we can always find δ(ε) > 0 such that( 1

λH
+ δ(ε)

)
e
−λH( 1

λH
+δ(ε))

> θ̂(α`nL )e−λH θ̂(α
`n
L ), ∀n,

plugging this into equation (B-9) yields( 1

λH
+ δ(ε)

)
e
−λH( 1

λH
+δ(ε))

> α`nL
1

λH
e
−λL 1

λH + (1− α`nL )
1

λH
e
−λH 1

λH , ∀n,

therefore, taking the limit over n gives a contradiction. In conclusion, we have proved that θ̂(·) is

continuous from the right at zero. Now, to finalize the proof, recall that we are assuming that λL > 2λH

or equivalently 1
λH

> 1
λL−λH . However, since θ̂(0) = 1/λH and θ̂(·) is continuous from the right, we can

always find ᾱL ∈ (0, 1] such that
1

λH
≥ θ̂(ᾱL) ≥ 1

λL − λH
,

so thanks to Proposition 2, the sequential contract is optimal when we set αL > ᾱL. Note that the

same argument is valid for 1/λL. That is, we can show that θ̂(αL) is continuous from the left at 1 and

then using the fact that
1

λL − λH
>

1

λL
,
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we can find ᾱH ∈ [ᾱL, 1) such that

1

λL − λH
> θ̂(ᾱH) ≥ 1

λL
.

Hence, in [ᾱH , 1], the static contract is optimal. All of this implies that since θ̂(·) is a nonincreasing

function, we can always find ᾱ ∈ (0, 1) with the desired property.

Proof of Corollary 3. Fix λH and αL. Suppose the result is not true, that is,

∀λ̄L ≥ 2λH ,∃λL ≥ λ̄L, θ̂(λL) ≤ 1

λL − λH
.

From this we can construct a sequence λnL ≥ 2λH such that

lim
n→∞

λnL =∞ and θ̂(λnL) ≤ 1

λnL − λH
, ∀n ∈ N,

therefore θ̂(λnL) converges to 0, and we have

Πstatic(θ̂(λnL)) = θ̂(λnL)e−λH θ̂(λ
n
L)
(
αLe

−(λnL−λH)θ̂(λnL) + αH

)
≤ θ̂(λnL)e−λH θ̂(λ

n
L) n→∞→ 0.

However, since θ̂(λnL) maximizes Πstatic(·) it must be the case that Πstatic(1/λH) ≤ Πstatic(θ̂(λnL)), that

is,

αL
1

λH
e
−λnL

1
λH + αH

1

λH
e
−λH 1

λH ≤ Πstatic(θ̂(λnL)).

Taking the limit over n on both sides of the previous equation yields

αH
1

λH
e
−λH 1

λH ≤ 0,

a contradiction.

Proof of Proposition 4. We use the sufficient conditions in Lemma B-1 (which we state and proof

after the present prove). First note that since the support of the exponential distribution is unbounded

from above, we can take θ2 =∞ which eliminates condition (1). Conditions (2) and (3) can be cast as

θ1e
−θ1(λL−λH) ≥ θe−θ(λL−λH) ∀θ ≥ 0 and αL · λHθ1e

−θ1(λL−λH) = −αH · (λHθH − 1), (B-10)

By optimizing the first term in (B-10), we obtain

θ1 =
1

λL − λH
,

and then solving for θH yields

θH =
1

λH
− αL
αH

e−1

λL − λH
.
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What we need to check is that θ1 ≤ θH . First, we show that

Q , αL(θ1 −
1

λL
)λLe

−λLθ1 + αH(θ1 −
1

λH
)λHe

−λHθ1 < 0. (B-11)

To prove this inequality, note that since θ̂ is the optimal static cutoff, we have

αLθ̂e
−λLθ̂ + αH θ̂e

−λH θ̂ ≥ αLθ1e
−λLθ1 + αHθ1e

−λHθ1 . (B-12)

Then, we have

Q = αLθ1(λL − λH)e−λLθ1 + αLθ1λHe
−λLθ1 + αHθ1λHe

−λHθ1 − αLe−λLθ1 − αHe−λHθ1

= αLe
−λLθ1 + λH(αLθ1e

−λLθ1 + αHθ1e
−λHθ1)− αLe−λLθ1 − αHe−λHθ1

(a)

≤ λH(αLθ̂e
−λLθ̂ + αH θ̂e

−λH θ̂)− αHe−λHθ1

(b)
< λH(αLθ̂e

−λLθ̂ + αH θ̂e
−λH θ̂)− αHe−λH θ̂

= λHαLθ̂e
−λLθ̂ + λHαHe

−λH θ̂(θ̂ − 1

λH
)

(c)
= λHαLθ̂e

−λLθ̂ − λLαLe−λLθ̂(θ̂ −
1

λL
)

= αLe
−λLθ̂

(
− θ̂(λL − λH) + 1

)
(d)
< 0,

where (a) comes from equation (B-12), (b) is true because the function −e−λHθ increasing and θ1 < θ̂,

and (c) comes from equation (8). Moreover, (d) comes from θ1 < θ̂. With this, we have proven (B-11),

and thus

λLαH · (θH −
1

λH
)

(a)
= −λLαL · θ1e

−θ1(λL−λH)

= −λLαL ·
(
θ1 −

1

λL

)
e−θ1(λL−λH) − λLαL ·

1

λL
e−θ1(λL−λH)

(b)
> αH(θ1 −

1

λH
)λH − αL · e−θ1(λL−λH)

(c)
= αH(θ1 −

1

λH
)λH +

αH
θ1
· (θH −

1

λH
),

where in (a) and (c) we used the definition of θH , and in (b) we used equation (B-11). From this we

have that

(θH −
1

λH
) ·
(
λLαH −

αH
θ1

)
> αH(θ1 −

1

λH
)λH ,

but replacing θ1 with 1/(λL − λH) in this last expression we get θH > θ1.
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Finally, x is given by

x =

∫ θ3

θH
FH(z)dz∫ θ3

θ1
FH(z)dz

=
e−λHθH

e−λHθ1
= exp

(
− λH

[ 1

λH
− αL
αH

e−1

λL − λH
− 1

λL − λH

])
.

Lemma B-1 The following conditions for the thresholds θ1 ≤ θH ≤ θ2 (as in Proposition 3) are

sufficient for their optimality in (PR):

1. RLH(θ1, θ2) ≤ minθ2≤θ R
LH(θ2, θ);

2. maxθ≤θ2 R
LH(θ, θ2) ≤ RLH(θ1, θ2);

3. αL ·RLH(θ1, θ2) + αHr
HH(θH) = 0.

Proof of Lemma B-1.

It is enough to prove that under these conditions, the optimal contract characterized by (θ1, θH , θ2)

is optimal for (PR). To prove this we use a Lagrangian relaxation (we do not relax the monotonicity

constraints) and show that this relaxation is optimized by the contract characterized by (θ1, θH , θ2).

First, we establish some properties that can be derived from conditions (1) to (3). Condition (3)

implies that θ2 ≥ θ̂L; otherwise, θ1, θ2 < θ̂L which would imply that RLH(θ1, θ2) < 0. In turn,

condition (3) would give RHH(θH) > 0 which would imply that θ̂H < θH . Since θH ≤ θ2 we would have

θ̂H < θH ≤ θ2 < θ̂L, that is, θ̂H < θ̂L which is not possible. Moreover, condition (2) together with the

fact that θ2 ≥ θ̂L imply that θ1 ≥ θ̂L. This yields RLH(θ1, θ2) ≥ 0, and thus we can use condition (3)

again to deduce that θH ≤ θ̂H . In summary, θ̂L ≤ θ1 and θH ≤ θ̂H .

Now, we provide the main argument. If θ1 = θ2, then we also have θ1 = θ2 = θH . Condition (3)

implies that the contract characterized by (θ1, θH , θ2) is the static contract. Conditions (1) and (2)

together yield (APR), and therefore, from Theorem 1, we deduce that the static contract is optimal.

Next suppose that θ1 < θ2, and define

Ω , {x : [0, θ̄]→ [0, 1] : x(·) is nondecreasing}.

We use x? to denote the solution characterized by (θ1, θH , θ2). The Lagrangian for (PR) is

L(u,x,λ,w) = uL(wL − λ− αL) + uH(λ− αH + wH)

+

∫ θ̄

0
xL(z) ·

[
αLµL(z)fL(z)− λFH(z)(z)

]
dz

+

∫ θ̄

0
xH(z) ·

[
αHµH(z)fH(z) + λFH(z)

]
dz.
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Consider the following multipliers

λ = αL ·RLH(θ1, θ2), wL = λ+ αL, wH = −λ+ αH .

Note that λ and wL are nonnegative, and for wH we have

wH ≥ 0⇔ αH + αHr
HH(θH) ≥ 0⇔ rHH(θH) ≥ −1⇔ [θH − hHH(θH)] ≥ −hHH(θH)⇔ θH ≥ 0,

where in the first if and only we made use of condition (3) above. Thus when we optimize the Lagrangian

we obtain:

max
(u,x)∈Ω

L(x,u,λ,w) = max
0≤θ≤θ̄

∫ θ̄

θ

[
α1µ1(z)f1(z)− λF 2(z)

]
dz

+ max
0≤θ≤θ̄

∫ θ̄

θ

[
αHµH(z)fH(z) + λFH(z)

]
dz , (B-13)

where we can reduce attention to threshold strategies because xL(·), xH(·) are nondecreasing (see, e.g.,

Myerson (1981) or Riley and Zeckhauser (1983)). If we are able to show that L(x,u,λ,w) evaluated at

our candidate solution is an upper bound for the RHS above we are done. Let us begin with the second

term. Take any 0 ≤ θ ≤ θ̄; then,∫ θ̄

θ

[
αHµH(z)fH(z) + λFH(z)

]
dz =

∫ θ̄

θ

[
αHµH(z)fH(z)− αHrHH(θH)FH(z)

]
dz

=

∫ θ̄

θ
αHFH(z)

[
rHH(z)− rHH(θH)

]
dz

≤
∫ θ̄

θH

αHFH(z)
[
rHH(z)− rHH(θH)

]
dz

=

∫ θ̄

0
x?H(z)

[
αHµH(z)fH(z) + λFH(z)

]
dz,

where in the first equality we used condition (3) and the inequality comes from the fact that rHH(·) is

nondecreasing. Now we look into the first term in equation (B-13), consider first θ ≥ θ2∫ θ̄

θ

[
αLµL(z)fL(z)− λFH(z)

]
dz =

∫ θ̄

θ2
L

[
αLµL(z)fL(z)− λFH(z)

]
dz

−
∫ θ

θ2
L

[
αLµL(z)fL(z)− λFH(z)

]
dz

≤
∫ θ̄

θ2
L

[
αLµL(z)fL(z)− λFH(z)

]
dz,

where we have used the following

−
∫ θ

θ2

[
αLµL(z)fL(z)− λF 2(z)

]
dz ≤ 0⇔ αL ·

∫ θ2

θ1
FH(z)rLH(z)dz∫ θ2

θ1
FH(z)dz

= λ ≤ αL ·
∫ θ
θ2
F 2(z)rLH(z)dz∫ θ
θ2
FH(z)dz

,

B-8



which thanks to condition (1) in our hypothesis is true. A similar argument holds for θ ≤ θ2, but using

condition (2). Since L(x?, 0,λ,w) equals

x

∫ θ2

θ1

[
α1µ1(z)f1(z)−λFH(z)

]
dz+

∫ θ̄

θ2

[
α1µ1(z)f1(z)−λFH(z)

]
dz+

∫ θ̄

θH

[
αHµH(z)fH(z)+λFH(z)

]
dz,

which by the definition of λ simplifies to∫ θ̄

θ2

[
α1µ1(z)f1(z)− λFH(z)

]
dz +

∫ θ̄

θH

[
αHµH(z)fH(z) + λFH(z)

]
dz,

we conclude that max(u,x)∈Ω L(u,x,λ,w) ≤ L(0,x?,λ,w), as required.

Proof of Proposition 6. We make use of Lemma B-2 which we state and prove after the present

proof. In that lemma we need to define the function

Lk(z|λ) , αkµk(z) +
F̄k(z)

fk(z)
·
∑
`:`6=k

λk` −
∑
`:`6=k

λ`k
F̄`(z)

fk(z)
,

for any λ ≥ 0. For exponential distributions Lk(z|λ) becomes:

Lk(z|λ) = αk · z +
1

λk
·
( ∑
`:` 6=k

λk` − αk
)

︸ ︷︷ ︸
linear

−
∑
`:`>k

λ`k
e−z(λl−λk)

λk︸ ︷︷ ︸
increasing and convex

−
∑
`:`<k

λ`k
e−z(λl−λk)

λk︸ ︷︷ ︸
decreasing and convex

.

Hence, Lk(·|λ) is concave, which means that it crosses zero at most two times. Using Lemma B-2 we

conclude that in the exponential case allocations have at most one step in which randomization occurs.

Lemma B-2 For any dual-feasible variable λ associated with the incentive constraints, define

Lk(z|λ) , αkµk(z) +
F̄k(z)

fk(z)
·
∑
`:`6=k

λk` −
∑
`:`6=k

λ`k
F̄`(z)

fk(z)
. (F)

If Lk(z|λ) crosses zero at most p, times then the optimal allocation xk has at most bp/2c intervals where

randomization occurs.

Proof of Lemma B-2. We divide the proof into two parts. In the first part, we construct a new dual

problem and state the complementary slackness conditions. This part of the proof follows the general

theory of linear programming in infinite dimensional space developed by Anderson and Nash (1987). In

the second part we exploit the complementary slackness conditions to show that the optimal allocation

xk has at most bp/2c intervals where randomization occurs.
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Part 1. Define the cone of nonnegative nondecreasing functions

K , {x : [0, θ̄]→ R|x is nonnegative and nondecreasing function}.

The general formulation of the seller’s problem is

(P) max −
K∑
k=1

αkuk +
K∑
k=1

αk

∫ θ̄

0
xk(z)µk(z)fk(z)dz

s.t xk(·) ∈ K, ∀k ∈ {1, . . . ,K}

xk(θ) ≤ 1, ∀θ ∈ [0, θ̄] ,∀k ∈ {1, . . . ,K}

uk ≥ 0, ∀k ∈ {1, . . . ,K}

uk +

∫ θ̄

0
xk(z)F̄k(z)dz ≥ uk′ +

∫ θ̄

0
xk′(z)F̄k(z)dz, ∀k, k′ ∈ {1, . . . ,K}.

Note that the dual cone of K is

K∗ = {β :

∫ θ̄

θ
β(z)dz ≥ 0, ∀θ ∈ [0, θ̄]}.

The Lagrangian is

L(x, u,λ,β,w) =

K∑
k=1

uk ·
(
− αk + wk +

∑
`:` 6=k

λk` −
∑
`:` 6=k

λ`k

)

+
K∑
k=1

∫ θ̄

0
xk(z)

(
αkµk(z)fk(z) + F̄k(z) ·

∑
`:`6=k

λk` −
∑
`:`6=k

λ`kF̄`(z) + βk(z)− ηk(z)
)
dz

+
K∑
k=1

∫ θ̄

0
ηk(z)dz,

where βk are the dual variables associated with the monotonicity constraints, ηk are dual variables

associated with the constraints xk(θ) ≤ 1, and λ,w correspond to the dual variables associated with

the incentive an non-negativity constraints respectively. This yields the following dual program (D):

(D) min
K∑
k=1

∫ θ̄

0
ηk(z)dz

s.t− αk + wk +
∑
`:` 6=k

λk` −
∑
`:`6=k

λ`k = 0, ∀k

αkµk(z)fk(z) + F̄k(z) ·
∑
`:`6=k

λk` −
∑
`:`6=k

λ`kF̄`(z) = ηk(z)− βk(z), ∀k, ∀z ∈ [0, θ̄]

λ,w, ηk(·) ≥ 0, βk ∈ K∗, ∀k.
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We must have complementary slackness. That is, for the monotonicity constraints (the cone constraints)

this means that if xk(·) changes at some θ, then
∫ θ̄
θ βk(z)dz = 0. Moreover, x(0) ·

∫ θ̄
0 β(z)dz = 0. All of

this for all k. For the upper bound constraints, we must have (1 − xk(θ)) · ηk(θ) = 0 for all θ ∈ [0, θ̄]

and for all k.

Part 2. Consider an optimal primal-dual pair. Let xk be the primal solution for interim type k,

and βk, ηk and λ,w be the corresponding dual solutions. Observe that from dual feasibility, we must

have

fk(z) · Lk(z|λ) = ηk(z)− βk(z), ∀z ∈ [0, θ̄]. (B-14)

Let us denote by ẑ1 < · · · < ẑp the points where Lk(·|λ) crosses zero, and we let ẑ0 = 0 and ẑp+1 = θ̄.

Note that Lk(θ̄|λ) = α · θ̄ > 0, and by the feasibility of λ we have Lk(0|λ) = −wk/fk(0) ≤ 0.

Let z?1 , inf{z ∈ [0, θ̄] : xk(z) = 1} (if xk(z) never equals 1 we take z?1 = θ̄). We can assume

that z?1 > 0; otherwise, xk(z) would be equal to 1 everywhere in [0, θ̄] and the result would follow.

In turn, there has to be a change in xk around z?1 , and therefore, complementary slackness implies

that
∫ θ̄
z?1
βk(z)dz = 0. Moreover, since xk(z) < 1 for all z < z?1 , complementary slackness implies that

ηk(z) = 0 for all z < z?1 . Therefore, Eq. (B-14) becomes

fk(z) · Lk(z|λ) = −βk(z), ∀z ∈ [0, z?1). (B-15)

Let q be the largest index in {0, 1, . . . , p} such that ẑq ≤ z?1 . Note that z?1 ∈ [ẑq, ẑq+1]. We show the

following claim:

Claim 1. Lk(·|λ) is positive in (ẑq, ẑq+1) and z?1 = ẑq.

Proof of Claim 1. First, suppose that Lk(·|λ) is positive in (ẑq, ẑq+1); we show that z?1 = ẑq. If

not, then for any z ∈ (ẑq, z
?
1), we have Lk(z|λ) > 0, which thanks to Eq. (B-15) yields βk(z) < 0 for

any z ∈ (ẑq, z
?
1), and therefore,∫ θ̄

z
βk(z)dz =

∫ z?1

z
βk(z)dz +

∫ θ̄

z?1

βk(z)dz︸ ︷︷ ︸
=0

=

∫ z?1

z
βk(z)dz < 0, (B-16)

but, this contradicts the fact that βk ∈ K∗. That is, z?1 ≤ ẑq but since ẑq ≤ z?1 we conclude that ẑq = z?1 .

To complete the argument, suppose that Lk(·|λ) is negative in (ẑq, ẑq+1) then, in particular, Lk(·|λ) is

negative in (z?1 , ẑq+1), and from Eq. (B-14), we deduce that βk(z
′) > 0 for all z′?1 , ẑq+1). Hence, for any

z′?1 , ẑq+1)

0 =

∫ θ̄

z?1

βk(z)dz =

∫ z′

z?1

βk(z)dz︸ ︷︷ ︸
>0

+

∫ θ̄

z′
βk(z)dz︸ ︷︷ ︸
≥0

> 0, (B-17)
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a contradiction. In the second bracket, we use the fact that βk ∈ K∗. This concludes the proof of Claim

1.

This shows that xk(·) equals 1 in (ẑq, θ̄] and that it changes value at ẑq. Now, from Claim 1, we

know that Lk(·|λ) is negative in (ẑq−1, ẑq), and therefore, from Eq. (B-15) we deduce that βk(·) is

positive in (ẑq−1, ẑq). This together with
∫ θ̄
z?1
βk(z)dz = 0 imply that xk(·) is constant in (ẑq−1, ẑq) (by

means of complementary slackness any change would yield a contradiction). Let us denote the value of

xk(·) in (ẑq−1, ẑq) by χq. Note that if χq = 0, we are done. Similar to what we did before, we define

z?2 , inf{z ∈ [0, ẑq−1] : xk(z) = χq}. Note that z?2 < ẑq−1. If z?2 = 0, then xk(·) equals χq for all values

below zq, and therefore, there is nothing more to prove. Thus, assume that z?2 > 0. If z?2 = ẑq−1 then

xk(·) changes value at ẑq−1 and, therefore, by complementary slackness
∫ θ̄
ẑq−1

βk(z)dz = 0. However,

Lk(·|λ) is positive in (ẑq−2, ẑq−1) which by Eq. (B-15) implies that βk is negative in (ẑq−2, ẑq−1), but

this would contradict the dual feasibility of βk. Hence, we can assume that z?2 < ẑq−1.

Let q2 be the largest index in {0, 1, . . . , q − 1} such that ẑq2 ≤ z?2 . Note that z?2 ∈ [ẑq2 , ẑq2+1]. As

before, we can show that Lk(·|λ) is positive in (ẑq2 , ẑq2+1) and z?2 = ẑq2 . Note that this implies that the

value χq of xk(·) extends for at least two intervals, namely, (ẑq−2, ẑq−1) and (ẑq−1, ẑq).

The previous argument can be applied iteratively over all intervals defined by ẑ1 < · · · < ẑp. Since

in each step of the argument we cover two intervals, we deduce that there can be at most bp/2c different

values of χq′ , where q′ is defined in every step as we did before. Moreover, if Lk(0|λ) < 0, then in the

interval (0, ẑ1), the dual variable βk(·) is positive. Because
∫ θ̄
ẑ1
βk(z)dz = 0 (this follows from the steps

of the argument) and x(0) ·
∫ θ̄

0 β(z)dz = 0, we must have x(0) = 0, and so in the last interval xk, equals

0.
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