
 
Supplemental Material to 

INFERENCE BASED ON MANY CONDITIONAL 
MOMENT INEQUALITIES 

 
 

By 
 

Donald W. K. Andrews and Xiaoxia Shi 
 
 
 
 

July 2015 
Revised April 2016 

 
 
 

 
COWLES FOUNDATION DISCUSSION PAPER NO. 2010R 

 
 
 
 
 
 
 
 
 
 
 
 
 

COWLES FOUNDATION FOR RESEARCH IN ECONOMICS 
YALE UNIVERSITY 

Box 208281 
New Haven, Connecticut 06520-8281 

 
 http://cowles. yale.edu/  



This Appendix is not to be published. It will be made available on the web.

Appendix

to

Inference Based on

Many Conditional Moment Inequalities

Donald W. K. Andrews

Cowles Foundation for Research in Economics

Yale University

Xiaoxia Shi

Department of Economics

University of Wisconsin, Madison

June 2010

Revised: April 26, 2016



A Outline

This Appendix provides proofs of Theorems 5.1 and 6.1 of Andrews and Shi (2010)

“Inference Based on Many Conditional Moment Inequalities,” referred to hereafter as ASM.

In fact, the results given here cover a much broader class of test statistics than is considered

in ASM. We let AS1 abbreviate Andrews and Shi (2013a) and AS2 abbreviate Andrews and

Shi (2013b).

This Appendix is organized as follows. Section B defines the class of test statistics that

are considered. This class includes the statistics that are considered in ASM. Section B

also provides the definition of manageability that is used in Assumption PS2. Section C

introduces the critical values, the confidence sets (CS’s), and the tests. Section D establishes

the correct asymptotic size of the CS’s. Theorem 5.1 of ASM is a corollary to Lemmas D.1

and D.2, which are given in Section D. Section E establishes that the CS’s contain fixed

parameter values outside the identified set with probability that goes to zero. Equivalently,

the tests upon which the CS’s are constructed are shown to be consistent tests. Theorem

6.1 of ASM is a corollary to Theorem E.1, which is given in Section E. Section F provides

proofs of Lemma 7.1-8.2 of ASM, which verify Assumptions PS1, PS2, SIG1, and SIG2 in

the examples given in ASM. Section G provides additional Monte Carlo simulation results

for the two simulation examples considered in ASM. These results are designed to analyze

the robustness of the tests and CS’s to the tuning parameters that are used.

B General Form of the Test Statistic

B.1 Test Statistic

Here we define the general form of the test statistic Tn(θ) that is used to construct a

CS. We transform the conditional moment inequalities/equalities given Xi into equivalent

unconditional moment inequalities/equalities by choosing appropriate weighting functions

of Xi, i.e., Xi instruments. Then, we construct a test statistic based on the instrumented

moment conditions.
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The instrumented moment conditions are of the form:

EF0 [mj (Wi, θ0, τ) gj (Xi)] ≥ 0 for j = 1, ..., p and (B.1)

EF0 [mj (Wi, θ0, τ) gj (Xi)] = 0 for j = p+ 1, ..., k, for g = (g1, ..., gk)
′ ∈ G and τ ∈ T ,

where θ0 and F0 are the true parameter and distribution, respectively, g is the instrument

vector that depends on the conditioning variables Xi, and G is a collection of instruments.

Typically G contains an infinite number of elements.

The identified set ΘF0(G) of the model defined by (B.1) is

ΘF0(G) := {θ ∈ Θ : (B.1) holds with θ in place of θ0}. (B.2)

The collection G is chosen so that ΘF0(G) = ΘF0 , where ΘF0 is the identified set based on the

conditional moment inequalities and equalities defined in (2.2) of ASM. Section B.4 provides

conditions for this equality and shows that the instruments defined in (3.6) of ASM satisfy

the conditions. Additional sets G are given in AS1 and AS2.

We construct test statistics based on (B.1). The sample moment functions are defined in

(3.2) in ASM. The sample variance-covariance matrix of n1/2mn(θ, τ, g) is defined in (3.3) in

ASM. The matrix Σ̂n(θ, τ, g) may be singular with non-negligible probability for some g ∈ G.

This is undesirable because the inverse of Σ̂n(θ, τ, g) needs to be consistent for its population

counterpart uniformly over g ∈ G for the test statistics considered below. Thus, we employ

a modification of Σ̂n(θ, τ, g), denoted by Σn(θ, τ, g) and defined in (3.4) in ASM, such that

the smallest eigenvalue of Σn(θ, τ, g) is bounded away from zero.

The test statistic Tn(θ) is either a Cramér-von-Mises-type (CvM) or a Kolmogorov-

Smirnov-type (KS) statistic. The CvM statistic is

Tn(θ) := sup
τ∈T

∫
G
S(n1/2mn(θ, τ, g),Σn(θ, τ, g))dQ(g), (B.3)

where S is a non-negative function and Q is a weight function (i.e., probability measure) on

G. The functions S and Q are discussed in Sections B.2 and B.5 below, respectively.

The Kolmogorov-Smirnov-type (KS) statistic is

Tn(θ) := sup
τ∈T

sup
g∈G

S(n1/2mn(θ, τ, g),Σn(θ, τ, g)). (B.4)
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For brevity, the discussion in this Appendix focusses on CvM statistics and all results

stated concern CvM statistics. Similar results hold for KS statistics. Such results can be

established by extending the results given in Section 13.1 of Appendix B of AS2 and proved

in Section 15.1 of Appendix D of AS2.

B.2 S Function Assumptions

Let mI := (m1, ...,mp)
′ and mII := (mp+1, ...,mk)

′. Let ∆ be the set of k × k positive-

definite diagonal matrices. Let W be the set of k × k positive definite matrices.

Assumption S1. ∀ (m,Σ) ∈ {(m,Σ) : m ∈ (−∞,∞]p ×Rv,Σ ∈ W},
(a) S (Dm,DΣD) = S (m,Σ) ∀D ∈ ∆,

(b) S (mI ,mII ,Σ) is non-increasing in each element of mI ,

(c) S (m,Σ) ≥ 0,

(d) S is continuous, and

(e) S (m,Σ + Σ1) ≤ S (m,Σ) for all k × k positive semi-definite matrices Σ1.

It is worth pointing out that Assumption S1(d) requires S to be continuous in m at all

points m in the extended vector space (−∞,∞]p ×Rv, not only for points in Rp+v.

Let M denote a bounded subset of Rk. Let Wcpt denote a compact subset of W .

Assumption S2. S(m,Σ) is uniformly continuous in the sense that

lim
δ↓0

sup
µ∈Rp+×{0}v

sup
m,m∗∈M
‖m−m∗‖≤δ

sup
Σ,Σ∗∈Wcpt

‖Σ−Σ∗‖≤δ

|S(m+ µ,Σ)− S(m∗ + µ,Σ∗)| = 0.15

Assumption S3. S(m,Σ) > 0 if and only if mj < 0 for some j = 1, ..., k, where m =

(m1, ...,mk)
′

and Σ ∈ W .

Assumption S4. For some χ > 0, S(am,Σ) = aχS(m,Σ) for all scalar a > 0, m ∈ Rk, and

Σ ∈ W .

15It is important that the supremum is only over µ vectors with non-negative elements µj for j ≤ p.
Without this restriction on the µ vectors, Assumption S2 would not hold for typical S functions of interest.
Also note that Assumption S2 here is Assumption S2′, rather than Assumption S2, in AS1. Although
Assumption S2 in AS1 is seemingly weaker than Assumption S2′, the former implies the latter, i.e. the two
assumptions are equivalent. The equivalence can be established by adapting the proof of the well-known
result that continuous functions defined on compact sets are uniformly continuous.
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It is shown in Lemma 1 of AS1 that the functions S1-S3 in (3.9) satisfy Assumptions

S1-S4. The function S4 also does by similar arguments.

B.3 Definition of Manageability

Here we introduce the concept of manageability from Pollard (1990) that is used in

Assumption PS2 in ASM and Assumption M that is introduced in the following section.

This condition is used to regulate the complexity of T ×G. It ensures that {n1/2(mn(θ, τ, g)−
EFnmn(θ, τ, g)) : (τ, g) ∈ T × G} satisfies a functional central limit theorem (FCLT) under

drifting sequences of distributions {Fn : n ≥ 1}. The latter is utilized in the proof of the

uniform coverage probability results for the CS’s. See Pollard (1990) and Appendix E of

AS2 for more about manageability.

Definition (Pollard, 1990, Definition 3.3). The packing number D(ξ, ρ, V ) for a subset

V of a metric space (V , ρ) is defined as the largest b for which there exist points v(1), ..., v(b)

in V such that ρ(v(s), v(s′)) > ξ for all s 6= s′. The covering number N(ξ, ρ, V ) is defined to

be the smallest number of closed balls with ρ-radius ξ whose union covers V.

It is easy to see that N(ξ, ρ, V ) ≤ D(ξ, ρ, V ) ≤ N(ξ/2, ρ, V ).

Let (Ω,z,P) be the underlying probability space equipped with probability distribution

P. Let {fn,i(·, τ) : Ω→ R : τ ∈ T , i ≤ n, n ≥ 1} be a triangular array of random processes.

Let

Fn,ω := {(fn,1(ω, τ), ..., fn,n(ω, τ))′ : τ ∈ T }. (B.5)

Because Fn,ω ⊂ Rn, we use the Euclidean metric ‖ · ‖ on this space. For simplicity, we

omit the metric argument in the packing number function, i.e., we write D(ξ, V ) in place of

D(ξ, ‖ · ‖, V ) when V ⊂ Fn,ω.
Let � denote the element-by-element product. For example for a, b ∈ Rn, a � b =

(a1b1, ..., anbn)′. Let envelope functions of a triangular array of processes {fn,i(ω, τ) : τ ∈
T , i ≤ n, n ≥ 1} be an array of functions {Fn(ω) = (Fn,1(ω), ..., Fn,n(ω))′ : n ≥ 1} such that

|fn,i(ω, τ)| ≤ Fn,i(ω) ∀i ≤ n, n ≥ 1, τ ∈ T , ω ∈ Ω.

Definition (Pollard, 1990, Definition 7.9). A triangular array of processes {fn,i(ω, τ) :

τ ∈ T , i ≤ n, n ≥ 1} is said to be manageable with respect to the envelopes {Fn(ω) : n ≥ 1}
if there exists a deterministic real function λ on (0, 1] for which (i)

∫ 1

0

√
log λ(ξ)dξ <∞ and
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(ii) D(ξ‖α�Fn(ω)‖, α�Fn,ω) ≤ λ(ξ) for 0 < ξ ≤ 1, all ω ∈ Ω, all n-vectors α of nonnegative

weights, and all n ≥ 1.

B.4 X Instruments

The collection of instruments G needs to satisfy the following condition in order for

the unconditional moments {EF [m(Wi, θ, τ, g)] : (τ, g) ∈ T × G} to incorporate the same

information as the conditional moments {EF [m(Wi, θ, τ)|Xi = x] : x ∈ Rdx}.
For any θ ∈ Θ and any distribution F with EF [‖m(Wi, θ, τ)‖] <∞, ∀τ ∈ T , let XF (θ, τ)

be defined as in (6.2) in ASM.

Assumption CI. For any θ ∈ Θ and distribution F for which EF [‖m(Wi, θ, τ)‖] <∞, ∀τ ∈
T , if PF (Xi ∈ XF (θ, τ∗)) > 0 for some τ∗ ∈ T , then there exists some g ∈ G such that

EF [mj(Wi, θ, τ∗)gj(Xi)] < 0 for some j ≤ p or

EF [mj(Wi, θ, τ∗)gj(Xi)] 6= 0 for some j > p.

Note that CI abbreviates “conditionally identified.” The following Lemma indicates the

importance of Assumption CI. The proof of the lemma is the same as the proof of Lemma

2 in AS1, which is given in AS2, and in consequence, is omitted.

Lemma B.1 Assumption CI implies that ΘF (G) = ΘF for all F with supθ∈Θ

EF [‖m(Wi, θ, τ)‖] <∞.

Collections G that satisfy Assumption CI contain non-negative functions whose supports

are cubes, boxes, or other sets which are arbitrarily small.

The collection G also must satisfy the following “manageability” condition.

Assumption M. (a) 0 ≤ gj(x) ≤ G ∀x ∈ Rdx ,∀j ≤ k,∀g ∈ G, for some constant G < ∞,
and

(b) the processes {gj(Xn,i) : g ∈ G, i ≤ n, n ≥ 1} are manageable with respect to the

constant function G for j = 1, ..., k, where {Xn,i : i ≤ n, n ≥ 1} is a row-wise i.i.d. triangular

array with Xn,i ∼ FX,n and FX,n is the distribution of Xn,i under Fn for some (θn, Fn) ∈ F+

for n ≥ 1.16

16The asymptotic results given in the paper hold with Assumption M replaced by any alternative assump-
tion that is sufficient to obtain the requisite empirical process results given in Lemma D.2 below.
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Lemma 3 of AS1 establishes Assumptions CI and M for Gc-cube defined in (3.6) of ASM.17

B.5 Weight Function Q

The weight function Q can be any probability measure on G whose support is G. This

support condition is needed to ensure that no functions g ∈ G, which might have set-

identifying power, are “ignored” by the test statistic Tn(θ). Without such a condition, a

CS based on Tn(θ) would not necessarily shrink to the identified set as n → ∞. Section E

below introduces the support condition formally and shows that the probability measure Q

considered here satisfies it.

We now give an example of a weight function Q on Gc-cube.

Weight Function Q for Gc-cube. There is a one-to-one mapping Πc-cube : Gc-cube → AR :=

{(a, r) : a ∈ {1, ..., 2r}dx and r = r0, r0+1, ...}. Let QAR be a probability measure on AR. One

can take Q = Π−1
c-cubeQAR. A natural choice of measure QAR is uniform on a ∈ {1, ..., 2r}dx

conditional on r combined with a distribution for r that has some probability mass function

{w(r) : r = r0, r0 + 1, ...}. This yields the test statistic

sup
τ∈T

∞∑
r=r0

w(r)
∑

a∈{1,...,2r}dx

(2r)−dxS(n1/2mn(θ, τ, ga,r),Σn(θ, τ, ga,r)), (B.6)

where ga,r(x) := 1(x ∈ Ca,r) · 1k for Ca,r ∈ Cc-cube.

The weight function QAR with w(r) := (r2 + 100)−1 is used in the test statistics in ASM,

see (3.7).

B.6 Computation of Sums, Integrals, and Suprema

The test statistic Tn(θ) given in (B.6) involves an infinite sum. A collection G with

an uncountable number of functions g yields a test statistic Tn(θ) that is an integral with

respect to Q. This infinite sum or integral can be approximated by truncation, simulation,

or quasi-Monte Carlo (QMC) methods. If G is countable, let {g1, ..., gsn} denote the first sn

functions g that appear in the infinite sum that defines Tn(θ). Alternatively, let {g1, ..., gsn}
be sn i.i.d. functions drawn from G according to the distribution Q. Or, let {g1, ..., gsn} be

17Lemma 3 of AS1 and Lemma B2 of AS2 also establish Assumptions CI and M of this Appendix for the
collections Gbox, GB-spline, Gbox,dd, and Gc/d defined there.
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the first sn terms in a QMC approximation of the integral with respect to (wrt) Q. Then,

an approximate test statistic obtained by truncation, simulation, or QMC methods is

T n,sn(θ) := sup
τ∈T

sn∑
`=1

wQ,n(`)S(n1/2mn(θ, τ, g`),Σn(θ, τ, g`)), (B.7)

where wQ,n(`) := Q({g`}) when an infinite sum is truncated, wQ,n(`) := s−1
n when {g1, ..., gsn}

are i.i.d. draws from G according to Q, and wQ,n(`) is a suitable weight when a QMC

method is used. For example, in (B.6), the outer sum can be truncated at r1,n, in which

case, sn :=
∑r1,n

r=r0
(2r)dx and wQ,n(`) := w(r)(2r)−dx for ` such that g` corresponds to ga,r for

some a. The test statistics in (3.7) of ASM are of this form when r1,n <∞.18

It can be shown that truncation at sn, simulation based on sn simulation repetitions, or

QMC approximation based on sn terms, where sn →∞ as n→∞, is sufficient to maintain

the asymptotic validity of the tests and CS’s as well as the asymptotic power results under

fixed alternatives.

The KS form of the test statistic requires the computation of a supremum over g ∈ G.
For computational ease, this can be replaced by a supremum over g ∈ Gn, where Gn ↑ G as

n → ∞, in the test statistic and in the definition of the critical value (defined below). The

same asymptotic size results and asymptotic power results under fixed alternatives hold for

KS tests with Gn in place of G. For results of this sort for the tests considered in AS1 and

AS2, see Section 13.1 of Appendix B in AS2 and Section 15.1 of Appendix D in AS2.

C GMS Confidence Sets

C.1 Bootstrap GMS Critical Values

It is shown in Theorem D.3 in Section D.3.1 below that when θ is in the identified set

the “uniform asymptotic distribution” of Tn(θ) is the distribution of T (hn), where T (h) is

defined below, hn := (h1,n, h2), h1,n(·) is a function from T ×G to Rp
[+∞]×{0}v that depends

on the slackness of the moment inequalities and on n, where R[+∞] := R ∪ {+∞}, and

h2(τ, g, τ †, g†) is a k × k matrix-valued covariance kernel on (T × G)2.

18Typically, the supremum over τ is obtained through smooth optimization techniques and there is no
need to approximate T by a finite set. However, when smooth optimization is not applicable, we can also
approximate T with a finite subset in the same way as approximating G by a finite subset.
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For h := (h1, h2), define

T (h) := sup
τ∈T

∫
G
S(νh2(τ, g) + h1(τ, g), hε2(τ, g))dQ(g), (C.1)

where hε2(τ, g) = h2(τ, g, τ, g) + εIk, and

{νh2(τ, g) : (τ, g) ∈ T × G} (C.2)

is a mean zero Rk-valued Gaussian process with covariance kernel h2(·, ·) on (T × G)2, h1(·)
is a function from T ×G to Rp

[+∞]×{0}v, and ε is as in the definition of Σn(θ, τ, g) in (3.4).19

The definition of T (h) in (C.1) applies to CvM test statistics. For the KS test statistic, one

replaces
∫
G · · · dQ(g) by supg∈G · · · .

We are interested in tests of nominal level α and CS’s of nominal level 1− α. Let

c0(h, 1− α) (= c0(h1, h2, 1− α)) (C.3)

denote the 1− α quantile of T (h). If hn := (h1,n, h2) was known, we would use c0(hn, 1− α)

as the critical value for the test statistic Tn(θ). However, hn is not known and h1,n cannot

be consistently estimated. In consequence, we replace h2 in c0(h1,n, h2, 1−α) by a uniformly

consistent estimator ĥ2,n(θ) (:= ĥ2,n(θ, ·, ·)) of the covariance kernel h2 and we replace h1,n by

a data-dependent GMS function ϕn(θ) (:= ϕn(θ, ·)) on T ×G (defined in Section C.2 below)

that is constructed to be less than or equal to h1,n(τ, g) for all (τ, g) ∈ T ×G with probability

that goes to one as n→∞. Because S(m,Σ) is non-increasing in mI by Assumption S1(b),

where m := (m′I ,m
′
II)
′ and mI ∈ Rp, the latter property yields a test with asymptotic level

less than or equal to the nominal level α. The quantities ĥ2,n(θ) and ϕn(θ) are defined below.

Using ĥ2,n(θ) and ϕn(θ), in principle, one can obtain an approximation of c0(h1, h2, 1 −
α) using c0(ϕn(θ), ĥ2,n(θ), 1 − α). However, computing c0(ϕn(θ), ĥ2,n(θ), 1 − α) in practice

is not easy because it involves the simulation of the Gaussian process {νĥ2(θ)(τ, g) : T ×
G}. Although we approximate G by a finite set in ASM, we may not always do so for

T . Even when we also use a finite approximation for T , the number of pairs (τ, g) under

consideration often is large. That creates difficulty for simulating the Gaussian process.

19The sample paths of νh2
(·, ·) are concentrated on the set Ukρh2

(T × G) of bounded uniformly ρh2
-

continuous Rk-valued functions on T × G, where ρh2
is the pseudo-metric on T × G defined by ρ2h2

(ι, ι†) :=

tr(h2(ι, ι)− h2(ι, ι†)− h2(ι†, ι) + h2(ι†, ι†)), where ι := (τ, g) and ι† := (τ †, g†).
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Thus, we recommend using a bootstrap version of the critical value instead.

The bootstrap GMS critical value is20

c∗(ϕn(θ), ĥ∗2,n(θ), 1− α) := c∗0(ϕn(θ), ĥ∗2,n(θ), 1− α + η) + η, (C.4)

where c∗0(h, 1 − α) is the 1 − α conditional quantile of T ∗(h) and T ∗(h) is defined as in

(C.1) but with {νh2(τ, g) : (τ, g) ∈ T × G} replaced by the bootstrap empirical process

{ν∗n(θ, τ, g) : (τ, g) ∈ T × G} . The bootstrap empirical process is defined to be

ν∗n(θ, τ, g) := n−1/2D̂n(θ)−1/2

n∑
i=1

(m(W ∗
i , θ, τ, g)−mn(θ, τ, g)), (C.5)

where {W ∗
i : i ≤ n} is an i.i.d. bootstrap sample drawn from the empirical distribution of

{Wi : i ≤ n} and D̂n(θ) is defined in (C.10). The function ĥ∗2,n(θ, τ, g, τ †, g†) is defined as

ĥ∗2,n(θ, τ, g, τ †, g†) = D̂−1/2
n (θ)Σ̂∗n(θ, τ, g, τ †, g†)D̂−1/2

n (θ),where (C.6)

D̂n(θ) is defined in (C.10) below, and

Σ̂∗n(θ, τ, g, τ †, g†) : = n−1

n∑
i=1

(m(W ∗
i , θ, τ, g)−m∗n(θ, τ, g))

(
m(W ∗

i , θ, τ
†, g†)−m∗n(θ, τ †, g†)

)′
,

(C.7)

and m∗n(θ, τ, g) = n−1
∑n

i=1m(W ∗
i , θ, τ, g). Note that we do not recompute D̂n(θ) for the

bootstrap samples, which simplifies the theoretical derivations below. Also note that the

variance-covariance kernel ĥ∗2,n(θ, τ, g, τ †, g†) only enters c(ϕn(θ), ĥ∗2,n(θ), 1 − α) via indices

(τ, g, τ †, g†) such that (τ, g) = (τ †, g†).

The nominal level 1− α GMS CS is given by

CSn := {θ ∈ Θ : Tn(θ) ≤ c∗n,1−α(θ)}, (C.8)

20The constant η is an infinitesimal uniformity factor (IUF) that is employed to circumvent problems that
arise due to the presence of the infinite-dimensional nuisance parameter h1,n that affects the distribution of
the test statistic in both small and large samples. The IUF obviates the need for complicated and difficult-
to-verify uniform continuity and strict monotonicity conditions on the large sample distribution functions of
the test statistic.
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where the critical value c∗n,1−α(θ) abbreviates c∗(ϕn(θ), ĥ∗2,n(θ), 1− α).

When the test statistic, T n,sn(θ), is a truncated sum, simulated integral, or a QMC quan-

tity, a bootstrap approximate-GMS critical value can be employed. It is defined analogously

to the bootstrap GMS critical value but with T ∗(h) replaced by T ∗sn(h), where T ∗sn(h) has the

same definition as T ∗(h) except that a truncated sum, simulated integral, or QMC quantity

appears in place of the integral with respect to Q, as in Section B.6. The same functions

{g1, ..., gsn} are used in all bootstrap critical value calculations as in the test statistic T n,sn(θ).

Next, we define the asymptotic covariance kernel, {h2,F (θ, τ, g, τ †, g†) : (τ, g), (τ †, g†) ∈
T × G}, of n1/2(mn(θ, τ, g) − EFmn(θ, τ, g)) after normalization via a diagonal matrix

D
−1/2
F (θ). Define

h2,F (θ, τ, g, τ †, g†) := D
−1/2
F (θ)ΣF (θ, τ, g, τ †, g†)D

−1/2
F (θ), where

ΣF (θ, τ, g, τ †, g†) := CovF (m(Wi, θ, τ, g),m(Wi, θ, τ
†, g†)′), (C.9)

DF (θ) := Diag(σ2
F,1(θ), . . . , σ2

F,k(θ)),

and σ2
F,j(θ) is introduced above Assumption PS1.

Correspondingly, the sample covariance kernel ĥ2,n(θ) (= ĥ2,n(θ, ·, ·)), which is an esti-

mator of h2,F (θ, τ, g, τ †, g†), is defined by

ĥ2,n(θ, τ, g, τ †, g†) := D̂−1/2
n (θ)Σ̂n(θ, τ, g, τ †, g†)D̂−1/2

n (θ), where

Σ̂n(θ, τ, g, τ †, g†) := n−1

n∑
i=1

(m(Wi, θ, τ, g)−mn(θ, τ, g))
(
m(Wi, θ, τ

†, g†)−mn(θ, τ †, g†)
)′
,

D̂n(θ) := Diag(σ̂2
n,1(θ), . . . , σ̂2

n,k(θ)), (C.10)

and σ̂2
n,j(θ) is a consistent estimator of σ2

F,j(θ) introduced below (3.4).

Note that Σ̂n(θ, τ, g), defined in (3.3), equals Σ̂n(θ, τ, g, τ, g).

C.2 Definition of ϕn(θ)

Next, we define ϕn(θ). As discussed above, ϕn(θ) is constructed such that ϕn(θ, τ, g) ≤
h1,n(τ, g) ∀(τ, g) ∈ T × G with probability that goes to one as n → ∞ uniformly over
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(θ, F ) ∈ F . Let

ξn(θ, τ, g) := κ−1
n n1/2D

−1/2

n (θ, τ, g)mn(θ, τ, g), where Dn(θ, τ, g) := Diag(Σn(θ, τ, g)),

(C.11)

Σn(θ, τ, g) is defined in (3.4), and {κn : n ≥ 1} is a sequence of constants that diverges

to infinity as n → ∞. The jth element of ξn(θ, τ, g), denoted by ξn,j(θ, τ, g), measures the

slackness of the moment inequality EFmj(Wi, θ, τ, g) ≥ 0 for j = 1, ..., p.

Define ϕn(θ, τ, g) := (ϕn,1(θ, τ, g), ..., ϕn,p(θ, τ, g), 0, ..., 0)′ ∈ Rk via, for j ≤ p,

ϕn,j(θ, τ, g) := h
1/2

2,n,j(θ, τ, g)Bn1(ξn,j(θ, τ, g) > 1),

h2,n(θ, τ, g) := D̂−1/2
n (θ)Σn(θ, τ, g)D̂−1/2

n (θ), and

h2,n,j(θ, τ, g) := [h2,n(θ, τ, g)]jj. (C.12)

We assume:

Assumption GMS1.(a) ϕn(θ, τ, g) satisfies (C.12) and {Bn : n ≥ 1} is a nondecreasing

sequence of positive constants, and

(b) κn →∞ and Bn/κn → 0 as n→∞.

In ASM and Andrews and Shi (2014), we use κn = (0.3 ln(n))1/2 and Bn =

(0.4 ln(n)/ ln ln(n))1/2, which satisfy Assumption GMS1.

The multiplicand h
1/2

2,n,j(θ, τ, g) in (C.12) is an “ε-adjusted” standard deviation estima-

tor for the jth normalized sample moment based on g (see (3.4) for the ε-adjustment in

Σn(θ, τ, g)). It provides a suitable scaling for ϕn(θ, τ, g).

D Asymptotic Size

In this section, we show that the bootstrap GMS CS’s have correct uniform asymptotic

coverage probabilities, i.e., correct asymptotic size.
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D.1 Notation

First, define

h1,n,F (θ, τ, g) := n1/2D
−1/2
F (θ)EFm(Wi, θ, τ, g),

hn,F (θ, τ, g, τ †, g†) := (h1,n,F (θ, τ, g), h2,F (θ, τ, g, τ †, g†)),

ĥ2,n,F (θ, τ, g, τ †, g†) := D
−1/2
F (θ)Σ̂n(θ, τ, g, τ †, g†)D

−1/2
F (θ),

h2,n,F (θ, τ, g) := ĥ2,n,F (θ, τ, g, τ, g) + εD
−1/2
F (θ)D̂n(θ)D

−1/2
F (θ)

= D
−1/2
F (θ)Σn(θ, τ, g)D

−1/2
F (θ), and (D.1)

νn,F (θ, τ, g) := n−1/2

n∑
i=1

D
−1/2
F (θ)[m(Wi, θ, τ, g)− EFm(Wi, θ, τ, g)],

where m(Wi, θ, τ, g), Σ̂n(θ, τ, g, τ †, g†), Σn(θ, τ, g), DF (θ), and D̂n(θ) are defined in (3.2),

(3.3), (3.4), and (5.1) of ASM, and (C.10), respectively.

Below we write Tn(θ) as a function of the quantities in (D.1). As defined, (i) h1,n,F (θ, τ, g)

is the k-vector of normalized means of the moment functions for (τ, g) ∈ T ×G, which mea-

sures the slackness of the population moment conditions under (θ, F ), and it has the very

useful feature that it is non-negative when (θ, F ) ∈ F by (2.1) of ASM, (ii) hn,F (θ, τ, g, τ †, g†)

contains the approximation to the normalized means of D
−1/2
F (θ)m(Wi, θ, τ, g) and the co-

variances of D
−1/2
F (θ)m(Wi, θ, τ, g) and D

−1/2
F (θ)m(Wi, θ, τ

†, g†), (iii) ĥ2,n,F (θ, τ, g, τ †, g†) and

h2,n,F (θ, τ, g) are hybrid quantities—part population, part sample—based on the matrices

Σ̂n(θ, τ, g, τ †, g†) and Σn(θ, τ, g), respectively, and (iv) νn,F (θ, τ, g) is the sample average of

the moment functions D
−1/2
F (θ)m(Wi, θ, τ, g) normalized to have mean zero and variance that

is O(1), but not o(1). Note that νn,F (θ, ·, ·) is an empirical process indexed by (τ, g) ∈ T ×G
with covariance kernel given by h2,F (θ, τ, g, τ †, g†).

The normalized sample moments n1/2mn(θ, τ, g) can be written as

n1/2mn(θ, τ, g) = D
1/2
F (θ)(νn,F (θ, τ, g) + h1,n,F (θ, τ, g)). (D.2)

The test statistic Tn(θ), defined in (B.3), can be written as

Tn(θ) = sup
τ∈T

∫
G
S(νn,F (θ, τ, g) + h1,n,F (θ, τ, g), h2,n,F (θ, τ, g))dQ(g). (D.3)

12



Note the close resemblance between Tn(θ) and T (h) (defined in (C.1)).

Let H1 denote the set of all functions from T × G to Rp
[+∞] × {0}v.

For notational simplicity, for any function of the form rF (θ, τ, g) for (τ, g) ∈ T × G, let

rF (θ) denote the function rF (θ, ·, ·) on T ×G. Correspondingly, for any function of the form

rF (θ, τ, g, τ †, g†) for (τ, g), (τ †, g†) ∈ T × G, let rF (θ) denote the function rF (θ, ·, ·, ·, ·) on

(T × G)2. Thus, h2,F (θ) abbreviates the asymptotic covariance kernel {h2,F (θ, τ, g, τ †, g†) :

(τ, g), (τ †, g†) ∈ T × G} defined in (C.9). Define

H2 := {h2,F (θ) : (θ, F ) ∈ F}, (D.4)

where, as defined at the end of Section 2, F is the subset of F+ that satisfies Assumption

PS3. On the space of k×k matrix-valued covariance kernels on (T ×G)2, which is a superset

of H2, we use the uniform metric d defined by

d(h
(1)
2 , h

(2)
2 ) := sup

(τ,g),(τ†,g†)∈T ×G
‖h(1)

2 (τ, g, τ †, g†)− h(2)
2 (τ, g, τ †, g†)‖. (D.5)

Let ⇒ denote weak convergence. Let {an} denote a subsequence of n. Let ρh2(θ) be the

intrinsic pseudometric on T ×G for the tight Gaussian process νh2(θ) with variance-covariance

kernel h2:

ρh2(τ, g, τ
†, g†) (D.6)

:= tr
(
h2(τ, g, τ, g)− h2(τ, g, τ †, g†)− h2(τ †, g†, τ, g) + h2(τ †, g†, τ †, g†)

)
.

D.2 Proof of Theorem 5.1

Theorem 5.1 of ASM is a result of two lemmas. The two lemmas together imply the

uniform validity of the GMS CS over F under Assumptions M, S1,, S2, andGMS1.

The first lemma below establishes the uniform asymptotic size under two high-level as-

sumptions (given below). The second lemma verifies these two assumptions under Assump-

tions M, S1, and S2.

Assumption PS4. For any subsequence {an} of {n} and any sequence {(θan , Fan) ∈ F+ :

n ≥ 1} for which

lim
n→∞

d(h2,Fan (θan), h2) = 0 (D.7)
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for some k × k matrix-valued covariance kernel h2(τ, g, τ †, g†) on (T × G)2, we have

(i) νan,Fan (θan)⇒ νh2(·) and

(ii) d(ĥ2,an,Fan (θan), h2)→p 0 as n→∞, where ĥ2,an,Fan (θan) is defined in (D.1).

Assumption PS5. For any subsequence {an} of {n} and any sequence {(θan , Fan) ∈ F+ :

n ≥ 1}, conditional on any sample path ω for which

lim
n→∞

d(ĥ2,an,Fan (θan)(ω), h2) = 0, (D.8)

for some k × k matrix-valued covariance kernel h2(τ, g, τ †, g†) on (T × G)2, we have (i)

ν∗an(θ)⇒ νh2 and (ii) d(ĥ∗2,an(θan), h2)→p 0.

Lemma D.1 Suppose Assumptions PS4, PS5, S1, S2, and SIG1 hold, and Assumption

GMS1 holds when considering GMS critical values. Then, for any compact subset H2,cpt of

H2, the GMS CS satisfies:

lim inf
n→∞

inf
(θ,F )∈F :

h2,F (θ)∈H2,cpt

PF (θ ∈ CSn) ≥ 1− α.

Lemma D.2 Suppose Assumptions M, S1, and S2 hold. Then,

(a) Assumption PS4 holds and

(b) Assumption PS5 holds.

Comments. 1. Lemma D.1(a) shows that GMS CS has correct uniform asymptotic size.

The uniformity results hold whether the moment conditions involve “weak” or “strong” IV’s

Xi.

2. Theorem 5.1 of ASM for the case r1,n = ∞ is proved by verifying the conditions of

Lemma D.2 (that is, by showing that Assumptions M, S1, S2, and GMS1 hold for the Gc-cube

set and the S functions considered in ASM).21 The functions S1, S2, and S3 in (3.9) of ASM

satisfy Assumptions S1 and S2 by Lemma 1 of AS1 and the function S4 of ASM satisfy

Assumptions S1 and S2 by similar arguments. Lemma 3 of AS1 establishes Assumption M

for Gc-cube defined in (3.6) of ASM. Assumption GMS1 holds immediately for κn and Bn

used in (4.1) and (4.2) of ASM, respectively. Theorem 5.1 of ASM holds for r1,n such that

r1,n <∞ and r1,n →∞ as n→∞ by minor alterations to the proofs.

21The quantity r1,n is the test statistic truncation value that appears in (3.7) of ASM. It satisfies either
r1,n =∞ for all n ≥ 1 or r1,n <∞ and r1,n →∞ as n→∞.
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D.3 Proof of Lemma D.1

D.3.1 Theorem D.3

The following Theorem provides a uniform asymptotic distributional result for the test

statistic Tn(θ). It is an analogue of Theorem 1 in AS1. It is used in the proof of Lemma D.1.

Theorem D.3 Suppose Assumptions PS4, S1, S2, and SIG1 hold. Then, for all compact

subsets H2,cpt of H2, for all constants xhn,F (θ) ∈ R that may depend on (θ, F ) and n through

hn,F (θ), and all δ > 0, we have

(a) lim sup
n→∞

sup
(θ,F )∈F :

h2,F (θ)∈H2,cpt

[
PF (Tn(θ) > xhn,F (θ))− P

(
T (hn,F (θ)) + δ > xhn,F (θ)

)]
≤ 0 and

(b) lim inf
n→∞

inf
(θ,F )∈F :

h2,F (θ)∈H2,cpt

[
PF (Tn(θ) > xhn,F (θ))− P

(
T (hn,F (θ))− δ > xhn,F (θ)

)]
≥ 0,

where T (h) is the function defined in (C.1).

Proof of Theorem D.3. Theorem D.3 is similar to Theorem 1 in AS1. The proof of the

latter theorem goes through with the following modifications:

(i) Redefine SubSeq(h2) to be the set of subsequences {(θan , Fan) ∈ F : n ≥ 1} where

{an} is a subsequence of {n}, such that (D.7) holds.

(ii) Replace
∫
· · · dQ(g) by supτ∈T

∫
G · · · dQ(g). In other instances where g and G appear,

replace g with (τ, g) and G with T × G.

(iii) Replace “by Lemma A1” with “by Assumption PS4.”

(iv) Change the paragraph at the bottom of p. 6 of AS2 to the following:

“Given this and Assumption SIG1, by the almost sure representation theorem, e.g., see

Pollard (1990, Thm. 9.4), there exists a probability space and random quantities ν̃an(·),
h̃2,an(·), Ṽan , and ν̃0(·) defined on it such that (i) (ν̃an(·), h̃2,an(·), Ṽan) has the same distri-

bution as (νan,Fan (θan , ·), ĥ2,an,Fan (θan , ·), D
−1/2
Fan

(θan)D̂an(θan)D
−1/2
Fan

(θan)), (ii) (ν̃0(·)) has the

same distribution as νh2,0(·), and

(iii) sup
(τ,g)∈T ×G

∥∥∥∥∥∥∥∥


ν̃an(τ, g)

h̃2,an(τ, g)

vec(Ṽan)

−


ν̃0(τ, g)

h2,0(τ, g)

vec(Ik)


∥∥∥∥∥∥∥∥→ 0 as n→∞, a.s. (D.9)

(v) Replace Diag(h̃2,an(1k)) by Ṽan .
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With the above modifications, the proof of Theorem 1 in AS2 up to the proof of (12.7)

of AS2 goes through. The proof of (12.7) in AS2, which relies on a dominated convergence

argument, does not go through because the test statistic considered in this paper is not of

the pure CvM type, and thus, T̃an and T̃an,0 are not integrals with respect to (τ, g).

We change the proof of (12.7) in AS2 to the following.

As in the proof of (12.7) in AS2, we fix a sample path ω at which (ν̃an(τ, g), h̃2,an(τ, g))(ω)

converges to (ν̃0(τ, g), h2,0(τ, g))(ω) uniformly over (τ, g) ∈ T ×G as n→∞ and sup(τ,g)∈T ×G

‖ν̃0(τ, g)(ω)‖ < ∞. Let Ω̃ be the collection of such sample paths. By (D.9), P (Ω̃) = 1. For

a fixed ω ∈ Ω̃, by Assumption S2, we have

sup
(τ,g)∈T ×G

sup
µ∈[0,∞)p×{0}v

|S(ν̃an(τ, g)(ω) + µ, h̃ε2,an(τ, g)(ω))− S(ν̃0(τ, g)(ω) + µ, hε2,0(τ, g))| → 0,

(D.10)

as n → ∞, where h̃ε2,n(τ, g) := h̃2,n(τ, g) + εṼan , and hε2,0(τ, g) := h2,0(τ, g) + εIk. Thus, for

every ω ∈ Ω̃,

|T̃an(ω)− T̃an,0(ω)| ≤ sup
(τ,g)∈T ×G

|S(ν̃an(τ, g)(ω) + h1,an,Fan (θan , τ, g), h̃ε2,an(τ, g)(ω))−

− S(ν̃0(τ, g)(ω) + h1,an,Fan (θan , τ, g), hε2,0(τ, g))|

→ 0 as n→∞. (D.11)

This verifies (12.7) in AS2. �

D.3.2 Proof of Lemma D.1

Lemma D.1 is similar to Theorem 2(a) of AS1 and we modify the proof of the latter

in AS2 to fit the context of Lemma D.1. In addition to notational changes, a substantial

modification is needed because Theorem 2 of AS1 does not cover bootstrap critical values.

Specifically, the proof of Theorem 2(a) in AS2 with the following modifications provides

the proof of Lemma D.1.

(i) Replace all references to “Assumption M” of AS1 by references to “Assumption PS4”

stated above and Assumptions S1 and S2 of AS1 by Assumptions S1 and S2 stated above.

Replace
∫
· · · dQ(g) by supτ∈T

∫
G · · · dQ(g). In other instances where g and G appear, replace

g with (τ, g) and G with T × G. Let D̂an(θan) be defined as in (C.10) above, rather than as
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in AS1 and AS2.

(ii) Replace references to “Theorem 1(a)” of AS1 with references to “Theorem D.3(a)”

stated above.

(iii) Redefine SubSeq(h2) to be the set of subsequences {(θan , Fan) ∈ F : n ≥ 1} for

which (D.7) holds, where {an} is a subsequence of {n}.
(iv) Replace references to “Lemma A1” of AS2 to references to “Assumption PS4” stated

above.

(v) In both the statement and the proof of Lemma A3 in AS2, replace c(ϕn(θ), ĥ2,n(θ), 1−
α) with c0(ϕn(θ), h2,F (θ), 1−α), and c(h1,n,F (θ), ĥ2,n(θ), 1−α) with c0(h1,n,F (θ), h2,F (θ), 1−α).

The proof of Lemma A3 given in AS2 goes through with the following changes:

In the 6th and 7th last lines of the proof of Lemma A3 in AS2, delete “ε−1/2h
−1/2
2,0,j (1k,

1k)(1 + op(1)) =”, and change “by Lemma A1(b) and (5.2)” to “by Assumption SIG1 and

(D.1).”

(vi) Replace Lemma A4 in AS2 with Lemma D.4 given immediately below. The proof of

the Lemma D.4 given below is self-contained and does not rely on an analogue of Lemma

A5 of AS2.

No other changes are needed in the proof of Theorem 2(a) in AS2. �

The following lemma is used in the proof of Lemma D.1 given immediately above.

Lemma D.4 Suppose Assumptions PS4, PS5, S1, S2, and GMS1 hold. Then, for all δ ∈
(0, η), where η > 0 is defined in (C.4),

lim
n→∞

sup
(θ,F )∈F :

h2,F (θ)∈H2,cpt

PF

(
c∗(ϕn(θ), ĥ∗2,n(θ), 1− α) < c0(ϕn(θ), h2,F (θ), 1− α) + δ

)
= 0.

Prove of Lemma D.4. The result of the Lemma is equivalent to

lim
n→∞

sup
(θ,F )∈F :

h2,F (θ)∈H2,cpt

PF (c∗0(ϕn(θ), ĥ∗2,n(θ), 1− α + η) + η < c0(ϕn(θ), h2,F (θ), 1− α) + δ) = 0.

(D.12)

By considering a sequence {(θn, Fn) ∈ F : n ≥ 1} that is within ζn → 0 of the supremum in

the above display for all n ≥ 1, it suffices to show that

lim
n→∞

PFn(c∗0(ϕn(θn), ĥ∗2,n(θn), 1− α + η) + η < c0(ϕn(θn), h2,Fn(θn), 1− α) + δ) = 0. (D.13)
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Given any subsequence {un} of {n}, there exists a further subsequence {wn} such that

d(h2,Fwn (θwn), h2,0) → 0 as n → ∞ for some matrix-valued covariance function h2,0 by the

compactness of H2,cpt. It suffices to show that (D.13) holds with wn in place of n.

By Assumption PS4(ii), d(h2,Fwn (θwn), h2,0)→ 0 implies that d(ĥ2,wn,Fwn (θwn), h2,0)→p 0,

which then implies

d(ĥ2,wn(θwn), h2,0)→p 0, (D.14)

where ĥ2,n(θ) and ĥ2,n,F (θ) are defined in (C.10) and (D.1), respectively. Then, by a gen-

eral convergence in probability result, given any subsequence of {wn} there exists a further

subsequence {an} such that

d(ĥ2,an(θan), h2,0)→ 0 a.s. (D.15)

Hence, it suffices to show (D.13) with an in place of n. Let Ω̄ be the set of sample paths ω

such that d(ĥ2,an(θan)(ω), h2)→ 0. The above display implies that P (Ω̄) = 1.

Consider an arbitrary sample path ω ∈ Ω̄. Below we show that for all constants xn ∈ R
(possibly dependent on ω) and all ξ > 0,

lim sup
n→∞

[
P
(
T ∗(ϕan(θan), ĥ∗2,an(θan)) ≤ xan|ω

)
−

P
(
T (ϕan(θan), h2,Fan (θan)) ≤ xan + ξ|ω

)]
≤ 0, (D.16)

where in the first line P (·|ω) denotes bootstrap probability conditional on the original sam-

ple path ω, in the second line P (·|ω) denotes νh2,Fan (θan )(·) probability conditional on the

original sample path ω, and νh2,Fan (θan )(·) is the Gaussian process defined in (C.2) with

h2 = h2,Fan (θan), which is taken to be independent of the original sample {Wi : i ≤ n} and,

hence, is independent of ϕan(θan).

The interval (0, η − δ) is non-empty because δ ∈ (0, η) by assumption. Using (D.16), we

obtain, for all ξ ∈ (0, η − δ),

lim sup
n→∞

P
(
T ∗(ϕan(θan), ĥ∗2,an(θan)) ≤ c0(ϕan(θan), h2,Fan (θan), 1− α) + δ − η|ω

)
≤ lim sup

n→∞
P
(
T (ϕan(θan), h2,Fan (θan)) ≤ c0(ϕan(θan), h2,Fan (θan), 1− α) + δ − η + ξ|ω

)
≤ 1− α, (D.17)
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where the second inequality holds because δ − η + ξ < 0 for ξ ∈ (0, η − δ). For any df

F with 1 − α + η quantile denoted by q1−α+η, we have F (q1−α+η) ≥ 1 − α + η. Hence, if

F (x) < 1 − α + η, then x < q1−α+η. Combining this with the result in (D.17) implies that

given any δ ∈ (0, η), for n sufficiently large,

c0(ϕan(θan)(ω), h2,Fan (θan), 1− α) + δ − η < c∗0(ϕan(θan), h2,Fan (θan), 1− α + η)(ω), (D.18)

where the indexing by ω denotes that the result holds for fixed ω ∈ Ω̄. Because (D.18) holds

for all ω ∈ Ω̄ and P (Ω̄) = 1, the bounded convergence theorem applies and establishes

(D.13).

It remains to prove the result in (D.16). This result follows from an analogous argument

to that used to prove Theorem D.3(b). Note the common structure of the original sample

and bootstrap sample test statistics:

Tn(θn) = sup
τ∈T

∫
S(νn,Fn(θn, τ, g) + h1,n,Fn(θn, τ, g), h2,n,Fn(θn, τ, g))dQ(g),

T ∗n(ϕn(θn), ĥ∗2,n(θn)) = sup
τ∈T

∫
S(ν∗n(θn, τ, g) + ϕn(θn, τ, g), h

∗
2,n(θn, τ, g))dQ(g), where

h
∗
2,n(θ, τ, g) := ĥ∗2,n(θ, τ, g) + εIk,

νn,F , h1,n,F , and h2,n,F are defined in (D.1), ϕn(θ) is defined in (C.12), and ĥ∗2,n(θ) is defined

following (C.5) using (C.10) with W ∗
i in place of Wi.

The result of Theorem D.3(b) with Tn(θn) replaced by T ∗n(ϕn(θn), ĥ∗2,n(θn)), with T (hn,F (θ))

replaced by T (ϕn(θn), h2,Fn(θn)), and with δ replaced by ξ, when applied to the subsequence

{(θan , Fan) : n ≥ 1} is the result of (D.16). The result in (D.16) follows by the same argument

as that for Theorem D.3(b) with νan,Fan (θan , ·) replaced by ν∗an(θan , ·)(ω), where ν∗an(θan , ·)(ω)

denotes the bootstrap empirical process given the sample path ω of the original sample, with

ĥ2,an,Fan (θan , ·, ·) replaced by ĥ∗2,an(θan , ·, ·)(ω), and with Assumption PS4 replaced by As-

sumption PS5, which guarantees that ν∗an(θan)(ω) ⇒ νh2,0 and d(ĥ∗2,an(θan)(ω), h2,0) →p 0.

�
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D.4 Proof of Lemma D.2

The verification of Assumption PS4 is the same as the proof of Lemma A1 given in

Appendix E of AS2 except with some notation changes and with Lemma D.5 below replacing

Lemma E1(a) in AS2 in the proof. (Lemma A1 of AS2 is stated in Appendix A of AS2.)

The verification of Assumption PS5 is the same as that of Assumption PS4 except that all

arguments are conditional on the sample path ω (specified in Assumption PS5). Details are

omitted for brevity.

Lemma D.5 Let (Ω,F, P ) be a probability space and let ω denote a generic element in Ω.

Suppose that the row-wise i.i.d. triangular arrays of random processes {φn,i(ω, g) : g ∈
G, i ≤ n, n ≥ 1} and {cn,i(ω, τ) : τ ∈ T , i ≤ n, n ≥ 1} are manageable with respect to the

envelopes {Fn(ω) : Ω → Rn : n ≥ 1} and {Cn(ω) : Ω → Rn : n ≥ 1}, respectively. Then,

{φn,i(ω, g)cn,i(ω, τ) : (τ, g) ∈ T ×G, i ≤ n, n ≥ 1} is manageable with respect to the envelopes

{Fn(ω)� Cn(ω) : n ≥ 1}, where � stands for the coordinate-wise product.

Proof of Lemma D.5. For a positive number ξ and a Euclidean space G, the packing

number D(ξ,G) is defined in Section B.3. For each ω ∈ Ω and each n ≥ 1, let Fn,ω :=

{(φn,1(ω, g), ..., φn,n(ω, g))′ : g ∈ G}, and let Cn,ω := {(cn,1(ω, τ), ..., cn,n(ω, τ))′ : τ ∈ T }. Let

λφ(ε) and λc(ε) be the deterministic functions that (i) bound from above D(ε||α�Fn(ω)||, α�
Fn,ω) and D(ε||α�Cn(ω)||, α� Cn,ω), respectively, for an arbitrary nonnegative n-vector α,

and (ii) satisfy
∫ 1

0

√
log λφ(x)dx < ∞ and

∫ 1

0

√
log λc(x)dx < ∞. Such functions exist by

the assumed manageability of the triangular arrays of random processes in the lemma.

For an arbitrary ε > 0, construct a bound for D(ε||α�Fn(ω)�Cn(ω)||, α�Fn,ω �Cn,ω)

as follows:

D(ε||α� Fn(ω)� Cn(ω)||, α�Fn,ω � Cn,ω)

≤ D((ε/4)||α� Fn(ω)� Cn(ω)||, α� Fn(ω)� Cn,ω)

×D((ε/4)||α� Fn(ω)� Cn(ω)||, α� Cn(ω)�Fn,ω)

≤ sup
α∗∈Rn+

D((ε/4)||α∗ � Cn(ω)||, α∗ � Cn,ω) sup
α∗∈Rn+

D((ε/4)||α∗ � Fn(ω)||, α∗ �Fn,ω)

≤ λφ(ε/4)λc(ε/4), (D.19)

where the first inequality holds by the displayed equation following (5.2) in Pollard (1990),
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the second inequality holds because α�Fn(ω), α�Cn(ω) ∈ Rn
+, and the last inequality holds

by the definitions of λφ(ε) and λc(ε).

Then, the manageability of {φn,i(ω, g)cn,i(ω, g) : (τ, g) ∈ T × G, i ≤ n, n ≥ 1} with

respect to the envelopes {Fn(ω)� Cn(ω) : n ≥ 1} is proved by the following calculations:

∫ 1

0

√
log(λφ(x/4)λc(x/4))dx ≤

∫ 1

0

√
log λφ(x/4)dx+

∫ 1

0

√
log λc(x/4)dx

= 4

∫ 1/4

0

√
log λφ(y)dy + 4

∫ 1/4

0

√
log λc(y)dy

≤ 4

∫ 1

0

√
log λφ(y)dy + 4

∫ 1

0

√
log λc(y)dy

< ∞, (D.20)

where the first inequality holds by the inequality
√
a+ b ≤

√
a +
√
b for a, b > 0, the

equality holds by a change of variables, the second inequality holds because the integrands

are nonnegative on (1/4, 1], and the last inequality holds by the definitions of λφ(ε) and

λc(ε). �

E Power Against Fixed Alternatives

We now show that the power of the GMS test converges to one as n → ∞ for all fixed

alternatives. Thus, the test is a consistent test.

Recall that the null hypothesis is

H0 : EF0 [mj(Wi, θ∗, τ)|Xi] ≥ 0 a.s. [FX,0] for j = 1, ..., p and

EF0 [mj(Wi, θ∗, τ)|Xi] = 0 a.s. [FX,0] for j = p+ 1, ..., k, ∀τ ∈ T , (E.1)

where θ∗ denotes the null parameter value and F0 denotes the fixed true distribution of the

data. The alternative is that H0 does not hold. Assumption MFA of ASM specifies the

properties of fixed alternatives. For convenience, we restate this assumption here. Recall

that XF (θ, τ), defined in (6.2), is the set of points x ∈ Rdx such that under F there is a

violation of some conditional moment inequality or equality, evaluated at (θ, τ), conditional

on Xi = x.

Assumption MFA. The value θ∗ ∈ Θ and the true distribution F0 satisfy: (a) for some
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τ∗ ∈ T , PF0(Xi ∈ XF0(θ∗, τ∗)) > 0 and (b) (θ∗, F0) ∈ F+.

The following assumption requires the measure Q on G to have full support. For each

(θ, F, τ) ∈ F+ × T , define a pseudometric on G: d(θ,,F,τ)(g, g
†) = ‖EF [m(Wi, θ, τ)(g(Xi)

− g†(Xi))]‖ for g, g† ∈ G. Let Bd(θ,F,τ)(g0, δ) = {g ∈ G : d(θ,F,τ)(g, g0) ≤ δ}.

Assumption MQ. The support of Q under d(θ,F,τ) is G for all (θ, F, τ) ∈ F+ × T . That is,

∀(θ, F, τ) ∈ F+ × T , ∀δ > 0, and ∀g0 ∈ G, Q(Bd(θ,F,τ)(g0, δ)) > 0.

The following theorem shows that the GMS test is consistent against all fixed alternatives

defined in Assumption MFA.

Theorem E.1 Suppose Assumptions PS4, PS5, MFA, CI, MQ, S1, S3, S4, and SIG2 hold.

Then,

(a) limn→∞ PF0(Tn(θ∗) > c∗(ϕn(θ∗), ĥ
∗
2,n(θ∗), 1− α) = 1, and

(b) limn→∞ PF0(Tn(θ∗) > c∗(0kT ×G, ĥ
∗
2,n(θ∗), 1− α) = 1.

Comments. 1. Theorem 6.1 of ASM for the case r1,n = ∞ is proved by verifying that

the conditions of Theorem E.1 (except Assumption MFA) hold for the Gc-cube set, the S

functions, and the measure QAR defined as in ASM. (See Section B.5 for the definition of

QAR with weight function w(r) := (r2 + 100)−1.) Assumption CI holds for Gc-cube defined

in (3.6) of ASM by Lemma 3 of AS1. Assumption MQ holds for Gc-cube and QAR because

Gc-cube is countable and QAR has a probability mass function that is positive at each element

in Gc-cube. Assumptions S1-S4 hold for the functions S1, S2, and S3 defined in (3.9) of ASM by

Lemma 1 of AS1, and for S4 in (3.9) by similar arguments. Assumptions PS4 and PS5 hold

by Lemma D.2 provided Assumption M holds. Assumption M holds for Gc-cube by Lemma 3

of AS1. (Note that Assumption M with F0 in place of Fn in part (b) holds because Cc-cube is

a Vapnik-Cervonenkis class of sets.)

2. Theorem 6.1 of ASM holds for r1,n such that r1,n < ∞ and r1,n → ∞ as n → ∞ by

making some alterations to the proof of Theorem E.1. The alterations required are the same

as those described for A-CvM tests in the proof of Theorem B2 in Appendix D of AS2.22

22The proof of Theorem B2 describes alterations to the proof of Theorem 3 of AS1, which is given in
Appendix C of AS2, to accommodate A-CvM tests based on truncation, simulation, or quasi-Monte Carlo
computation and KS tests. Theorem 3 of AS1 establishes that the tests in AS1 have asymptotic power equal
to one for fixed alternative distributions.
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Proof of Theorem E.1. Because ϕn(θ∗) ≥ 0 and c∗(·, ĥ∗2,n(θ∗), 1− α) is weakly decreasing

by definition, we have that part (a) is implied by part (b). Therefore, it suffices to show part

(b) only.

Let

A(θ∗) := sup
τ∈T

∫
G
S(EF0 [m(Wi, θ∗, τ)g(Xi)],ΣF0(θ∗, τ, g)dQ(g). (E.2)

First, we show that

|n−χ/2Tn(θ∗)− A(θ∗)| →p 0. (E.3)

For any δ > 0,

PF0(|n−χ/2Tn(θ∗)− A(θ∗)| > δ)

≤ PF0

 sup
µ∈[0,∞)

(τ,g)∈T ×G

∣∣∣S(n−1/2νn,F0(θ∗, τ, g) + µ, ĥε2,n,F0
(θ∗, τ, g))− S(µ, hε2,F0

(θ∗, τ, g))
∣∣∣ > δ


≤ PF0

(
sup

(τ,g)∈T ×G
||n−1/2νn,F0(θ∗, τ, g)||+ sup

(τ,g)∈T ×G
||ĥε2,n,F0

(θ∗, τ, g)− hε2,F0
(θ∗, τ, g)|| > ξδ

)
→ 0 as n→∞, (E.4)

where ĥε2,n,F0
(θ, τ, g) := ĥ2,n,F0(θ, τ, g)+εD

−1/2
F0

(θn)D̂0(θn)D
−1/2
F0

(θn), hε2,F0
(θ∗, τ, g) := h2,F0(θ∗,

τ, g) + εIk, the first inequality uses Assumption S4, and the second inequality holds for some

ξδ > 0 by Assumptions PS4, S2 and SIG2. This establishes (E.3).

Next we show that A(θ∗) > 0. By Assumption MFA, there exists a τ∗ ∈ T and ei-

ther a j0 ≤ p such that PF0(EF0 [mj0(Wi, θ∗, τ∗)|Xi] < 0) > 0 or a j0 > p such that

PF0(EF0 [mj0(Wi, θ∗, τ∗)|Xi] 6= 0) > 0. Without loss of generality, assume that j0 ≤ p. By

Assumption CI, there is a g∗ ∈ G such that EF0 [mj0(Wi, θ∗, τ∗)g∗j0(Xi)] < 0, where g∗j0(Xi)

denotes the j0th element of g∗(Xi).

Because EF0 [mj0(Wi, θ∗, τ∗)g∗j0(Xi)] is continuous in g with respect to the pseudo-metric

d(θ∗,F0,τ∗), there exists a δ > 0 such that ∀g ∈ Bd(θ∗,F0,τ∗)(g∗, δ), EF0 [mj0(Wi, θ∗, τ∗)gj0(Xi)]

has the same sign as EF0 [mj0(Wi, θ∗, τ∗)g∗j0(Xi)], i.e., EF0 [mj0(Wi, θ∗, τ∗)gj0(Xi)] < 0, ∀g ∈
Bd(θ∗,F0,τ∗)(g∗, δ). By Assumption MQ, Q(Bd(θ∗,F0,τ∗)(g∗, δ)) > 0. Therefore,

A(θ∗) ≥
∫
Bd(θ∗,F0,τ∗)(g∗,δ)

S(EF0 [m(Wi, θ∗, τ∗)g(Xi)],ΣF0(θ∗, τ∗, g)dQ(g) > 0, (E.5)
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where the second inequality holds by Assumption S3 and Q(Bd(θ∗,F0,τ∗)(g∗, δ)) > 0.

Analogous arguments to those used to establish (14.34) of AS2 show

c∗(0kT ×G, ĥ
∗
2,n(θ∗), 1− α) = Op(1). (E.6)

Equations (E.3), (E.5), and (E.6) give

PF0(Tn(θ∗) > c∗(0kT ×G, ĥ
∗
2,n(θ∗), 1− α))

= PF0(n
−χ/2Tn(θ∗) > n−χ/2c∗(0kT ×G, ĥ

∗
2,n(θ∗), 1− α))

= PF0(A(θ∗) + op(1) > op(1))

→ 1 as n→∞, (E.7)

which establishes part (b). �

F Proofs of Results Concerning the Examples

Proof of Lemma 7.1. Assumption PS1(a) holds because Θ = {0}. Assumptions PS1(b)

holds by the condition given in the lemma. Assumption PS1(c) holds because σ2
F,1(0) = 1.

Assumption PS1(d) holds because |1{Y2 ≤ τ} − 1{Y1 ≤ τ}| ≤ 1. Assumption PS1(e) holds

because

EFM
2+δ(W ) = 1/σ2+δ

F (0) = 1. (F.1)

Next, we verify Assumption PS2. For j = 1, 2, consider the set Mn,j,yj := {(−1{yj,i ≤
τ})ni=1 ∈ Rn : τ ∈ T } for an arbitrary realization {yj,i : i ≤ n} of the random vector

{Yj,i : i ≤ n}. The set has pseudo-dimension (defined on p. 15 of Pollard (1990)) at most

one by Lemma 4.4 of Pollard (1990). Then, by Corollary 4.10 of Pollard (1990), there exist

constants c1 ≥ 1 and c2 > 0 (not depending on j, n, ε, or {yj,i : i ≤ n}) such that

D(ε||α||, α�Mn,j,yj) ≤ c1ε
−c2 (F.2)

for ε ∈ (0, 1], every rescaling vector α ∈ Rn
+, and j = 1, 2. In consequence, by the stability
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of the L2 packing numbers (see Pollard (1990, p. 22)), we have

D(2ε||α||, (α�Mn,1,y1)⊕ (α�Mn,2,y2))

≤ D(ε||α||, α�Mn,1,y1)D(ε||α||, α�Mn,2,y2)

≤ c2
1ε
−2c2 , (F.3)

where A⊕B = {a+ b : a ∈ A, b ∈ B} for any two sets A,B ⊂ Rn.

Now consider the set Mn,y1,y2 := {(1{y2,i ≤ τ} − 1{y1,i ≤ τ})ni=1 ∈ Rn : τ ∈ T }. By

definition, α�Mn,y1,y2 ⊂ (α�Mn,1,y1)⊕ (α�Mn,2,y2). Thus,

D(2ε||α||, α�Mn,y1,y2) ≤ c2
1ε
−2c2 . (F.4)

Lastly, because c1 and c2 do not depend on n or {(Y1i, Y2i) : i ≤ n}, the manageability of

{1{Y2,i ≤ τ} − 1{Y1,i ≤ τ} : τ ∈ T , i ≤ n, n ≥ 1} holds by the following calculations:

∫ 1

0

√
log(c2

1ε
−2c2)dε =

∫ ∞
√

log(A)

(2A1/W/W )x2e−x
2/Wdx <∞, (F.5)

where A := c2
1, W := 2c2, log(A) ≥ 0 because c1 ≥ 1, and the equality holds by change

of variables with x =
√

log(Aε−W ) or, equivalently, ε = A1/W e−x
2/W , which yields dε =

(2A1/W/W )xe−x
2/Wdx. This completes the proof. �

Proof of Lemma 7.2. We prove part (a) first. Assumption PS1(a) holds because Θ = {0}.
Assumptions PS1(b) and PS1(c) hold by conditions (i) and (ii) of the lemma, respectively.

Assumption PS1(d) holds because

|(τ − Y2)s−11{Y2 ≤ τ} − (τ − Y1)s−1)1{Y1 ≤ τ}|

≤ (τ − Y2)s−11{Y2 ≤ τ}+ (τ − Y1)s−1)1{Y1 ≤ τ}

≤ (B − Y2)s−1 + (B − Y1)s−1. (F.6)

Assumption PS1(e) holds because

M(W ) ≤ 2(B − (−B))s−1/σF,1(0) ≤ 2sBs−1/σ. (F.7)
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Next, we verify Assumption PS2. Consider the set Mn,1,y1 := {(−(τ − y1,i)
s−11{y1,i ≤

τ})ni=1 ∈ Rn : τ ∈ T } for an arbitrary realization {y1,i : i ≤ n} of the random vector

{Y1,i : i ≤ n}. First, we show that this set has pseudo-dimension (as defined in Pollard

(1990, p. 15)) at most one. Suppose not. Then, there exists a vector x = (x1, x2)′ ∈ R2

and a pair (i, i′) such that {(−(τ − y1,i)
s−11{y1,i ≤ τ}, (−(τ − y1,i′)

s−11{y1,i′ ≤ τ}) : τ ∈ T }
surrounds x.23 Thus, there exists τ1, τ2 ∈ T such that

(τ1 − y1,i)
s−11{y1,i ≤ τ1} > x1,

(τ1 − y1,i′)
s−11{y1,i′ ≤ τ1} < x2,

(τ2 − y1,i)
s−11{y1,i ≤ τ2} < x1, and

(τ2 − y1,i′)
s−11{y1,i′ ≤ τ2} > x2. (F.8)

This yields

(τ1 − y1,i)
s−11{y1,i ≤ τ1} > (τ2 − y1,i)

s−11{y1,i ≤ τ2} and

(τ1 − y1,i′)
s−11{y1,i′ ≤ τ1} < (τ2 − y1,i′)

s−11{y1,i′ ≤ τ2}. (F.9)

Due to the monotonicity of the function Gs(y, τ) := (τ − y)s−11{y ≤ τ} in τ for any y,

the first inequality in the equation above implies that τ1 > τ2, and the second inequality

implies that τ1 < τ2, which is a contradiction. Therefore, Mn,1,y1 has pseudo-dimension at

most one.

The remainder of the proof of part (a) is the same as the corresponding part of the proof

of Lemma 7.1 and, hence, for brevity, is omitted.

To prove part (b), consider an arbitrary sequence {Fn : n ≥ 1} such that (0, Fn) ∈ F+

23As defined in Pollard (1990, p. 15), a set A ⊂ R2 surrounds x if there exists points a, b, c, d ∈ A, where
a = (a1, a2)′ etc., such that a1 > x1, a2 > x2, b1 > x1, b2 < x2, c1 < x1, c2 > x2, d1 < x1, and d2 < x2.
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for all n. Under this sequence, we have for any ζ > 0 and j = 1, 2,

PrFn(|Y j,n − EFn(Yj)| > ζ) ≤ EFn(Y j,n − EFn(Yj))
2

ζ2

=
EFn(Yj − EFn(Yj))

2

nζ2

≤
EFn(Y 2

j )

nζ

≤ B2/(nζ)→ 0 as n→∞, (F.10)

where the last inequality holds because the support of Yj is contained in T and T is contained

in [−B,B] by condition (iii) of the lemma. Similarly, we have under the sequence {Fn : n ≥
1},

n−1

n∑
i=1

(Yj,i − EFn(Yj))
2(s−1) − EFn(Yj − EFn(Yj))

2(s−1) →p 0, (F.11)

for j = 1, 2. Therefore, we have

n−1

n∑
i=1

(Yj,i − Y j,n)2(s−1) − EFn(Yj − EFn(Yj))
2(s−1)

= n−1

n∑
i=1

(Yj,i − EFn(Yj))
2(s−1) − EFn(Yj − EFn(Yj))

2(s−1)

+

2(s−1)−1∑
b=0

(
2(s− 1)

b

)[
n−1

n∑
i=1

(Yj,i − EFn(Yj))
b

]
(EFn(Yj)− Y j,n)2s−2−b,

= op(1)

+

2(s−1)−1∑
b=0

(
2(s− 1)

b

)[
n−1

n∑
i=1

(Yj,i − EFn(Yj))
b

]
(EFn(Yj)− Y j,n)2s−2−b,

= op(1), (F.12)

where the second equality holds by (F.11), and the last equality holds by (F.10) and the

boundedness of Yj.
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Therefore,

|σ̂2
n,1(0)− σ2

Fn,1(0)|/σ2
Fn,1(0) ≤ σ−2|σ̂2

n,1(0)− σ2
Fn,1(0)|

≤ σ−2

2∑
j=1

∣∣∣∣∣n−1

n∑
i=1

(Yj,i − Y j,n)2(s−1) − EFn(Yj − EFn(Yj))
2(s−1)

∣∣∣∣∣
→p 0, as n→∞. (F.13)

Because this holds for an arbitrary sequence {Fn : n ≥ 1} such that (0, Fn) ∈ F+, it

establishes both Assumptions SIG1 and SIG2. Thus, part (b) holds. �

Proof of Lemma 8.1. We show that parts (a) and (b) are equivalent by solving a linear

programming problem. We show that parts (b) and (c) are equivalent by employing the

convex polyhedral cone representation of linear inequalities developed in Gale (1951).

First, we show the equivalence between parts (a) and (b).

For a set A ⊂ Rdβ , let Ac denote the complement of A in Rdβ . By basic set operations,

the statement in part (a) is equivalent to

∩mj=1 H(cj)
c ⊂ H(c)c. (F.14)

Because m is finite and H(c)c is an open set for any c ∈ Rdβ\{0}, (F.14) is equivalent to

∩mj=1 cl(H(cj)
c) ⊂ cl(H(c)c). (F.15)

Note that cl(H(c)c) = {b ∈ Rdβ : b′c ≤ 0} and (F.15) is equivalent to the redundancy of the

inequality restriction b′c ≤ 0 on b relative to the system of linear inequalities b′cj ≤ 0 for

j = 1, ...,m. In turn, the latter is equivalent to the statement that V = 0, where

V := max
b∈Rdβ

b′c subject to b′cj ≤ 0 for j = 1, ...,m and b′c ≤ 1. (F.16)

Now we solve the linear programming problem in (F.16) using the Lagrange multiplier

method. It is well known that

V = min
λj≥0:j=1,...,m+1

max
b∈Rdβ

(
b′c−

m∑
j=1

λjb
′cj − λm+1(b′c− 1)

)
. (F.17)
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Because the maximization over b is unconstrained, for any λ1, ..., λm+1 ≥ 0 such that (1 −
λm+1)c −

∑m
j=1 λjcj 6= 0, the maximum is infinite. But, V ≤ 1 by the inequality b′c ≤ 1 in

(F.16). Thus, the optimal λ1, ..., λm+1 must satisfy

(1− λm+1)c−
m∑
j=1

λjcj = 0. (F.18)

This implies that

V = min
λj≥0:j=1,...,m+1

λm+1 subject to (1− λm+1)c−
m∑
j=1

λjcj = 0. (F.19)

Now we show that V = 0 iff there exist λ1, ..., λm ≥ 0 such that

c =
m∑
j=1

λjcj, (F.20)

which establishes the equivalence between parts (a) and (b). Suppose that there exists

λ1, ..., λm ≥ 0 such that (F.20) holds, then V ≤ min{λm+1 ≥ 0 : λm+1c = 0dβ} = 0 by

(F.19). However, by (F.16) (with b = 0dβ), V ≥ 0. Thus, V = 0. Conversely, suppose that

V = 0, then there exists λ1, ..., λm ≥ 0 such that (1−0)c−
∑m

j=1 λjcj = 0dβ by (F.19), which

implies (F.20).

Next, we establish the equivalence between parts (b) and (c). Using the terminology in

Gale (1951), let P (c1, ..., cm) denote the convex polyhedral cone generated by the vectors

(c1, ..., cm). That is,

P (c1, ..., cm) :=

{
c ∈ Rdβ : c =

m∑
j=1

λjcj for some λ1, ..., λm ≥ 0

}
.

Then, part (b) is equivalent to c ∈ P (c1, ..., cm).

If rk([c1, ..., cm]) = dβ, then by Weyl’s Theorem (see Theorem 1 of Gale (1951)),

P (c1, ..., cm) is an intersection of at most
(

m
dβ−1

)
half-spaces or, in other words, there ex-

ist b1, ..., bN ∈ Rdβ , where N :=
(

m
dβ−1

)
, such that P (c1, ..., cm) = {c : [b1, · · · , bN ]′c ≥ 0}.

Then, the equivalence between parts (b) and (c) is established with B(c1, ..., cm) := [b1, · · · ,
bN , 0dβ×(M−N)] for an arbitrary [b1, · · · , bN ] that satisfies P (c1, ..., cm) = {c : [b1, · · · , bN ]′c ≥
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0}.
If rk([c1, ..., cm]) < dβ, let L(c1, ..., cm) be the linear subspace spanned by c1, ..., cm. Let

the dimension of this linear subspace be dL. Applying Weyl’s Theorem on L(c1, ..., cm),

we have that there exist b1, ..., bN1 ∈ Rdβ , where N1 :=
(

m
dL−1

)
, such that P (c1, ..., cm) =

{c : [b1, · · · , bN1 ]′c ≥ 0} ∩ L(c1, ..., cm). Moreover, by the property of linear subspaces,

there exist bN1+1, ..., bN2 ∈ Rdβ , where N2 := N1 + dβ − dL, such that L(c1, ..., cm) = {c :

[bN1+1, · · · , bN2 ]′c = 0}. Therefore,

P (c1, ..., cm) = {c : [b1, · · · , bN2 ,−bN1+1, · · · ,−bN2 ]′c ≥ 0}. (F.21)

Then, the equivalence between parts (b) and (c) holds with B(c1, ..., cm) := [b1, · · · , bN2 ,

−bN1+1, · · · ,−bN2 , 0dβ×(M−2N2+N1)] for arbitrary b1, ..., bN2 that satisfy (F.21). �

Proof of Lemma 8.2. Assumption PS1(a) holds because θ ∈ Θ. Assumptions PS1(b) holds

by the i.i.d. condition in the lemma. Assumption PS1(c) holds by σ2
F,1(θ) = 1. Assumption

PS1(d) holds because |Fβ(S, θ) − 1{S(Y1, Y2, X1) ⊂ S}| ≤ 1. Assumption PS1(e) holds

because

EFM
2+δ(W ) = 1/σ2+δ

F,1 (0) = 1. (F.22)

Next, we verify Assumption PS2. Consider the set Mn := {(Fβ(S(τ), θ) − 1{(y1i −
1/2)B(τ)′(1, x′1i, y

′
2i)
′ ≥ 0})ni=1 ∈ Rn : τ = (c1, . . . , cm), c1, . . . , cm ∈ Rdβ\{0dβ}} for an

arbitrary realization {(y1,i, y
′
2,i, x

′
1,i)
′ : i ≤ n} of {(Y1,i, Y

′
2,i, X

′
1,i)
′ : i ≤ n}. The set has pseudo-

dimension at most M by Lemma 4.4 of Pollard (1990). Then, by Corollary 4.10 of Pollard

(1990), there exist constants c1 ≥ 1 and c2 > 0 (not depending on n, {(y1,i, y
′
2,i, x

′
1,i)
′ : i ≤ n},

or ε) such that

D(ε‖α‖, α�Mn) ≤ c1ε
−c2 (F.23)

for all 0 < ε ≤ 1 and every rescaling vector α ∈ Rn
+. In consequence, the manageability of

{(Fβ(S(τ), θ)− 1{Y1,i− 1/2)B(τ)′(1, X ′1,i, Y
′

2,i)
′ ≥ 0})ni=1 ∈ Rn : τ = (c1, . . . , cm), c1, . . . , cm ∈

Rdβ\{0dβ}} follows from the calculations in (F.5) with A := c1 and W := c2, which completes

the proof. �

Proof of Lemma 9.1 Assumptions PS1(a)-(c) and (e) hold by assumption. Next, we show
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Assumption PS1(d) holds. We have

|h(Qθ(w, v), u)| = | sup
q∈Qθ(w,v)

q′u| ≤ sup
q∈Qθ(w,v)

‖q‖‖u‖ ≤ sup
q∈Qθ(w,v)

‖q‖ ≤M(w)/2, (F.24)

where the first inequality holds by the Cauchy-Schwarz inequality, the second inequality

holds because u satisfies ‖u‖ ≤ 1, and the last inequality holds by condition (iii) of the

lemma. Assumption PS1(d) follows from the following calculations:∣∣∣∣∫ h(Qθ(W, v), u)dFV |X(v,X; θ)− u′q(X)

∣∣∣∣ ≤ ∫ |h(Qθ(W, v), u)|dFV |X(v,X; θ) + |u′q(X)|

≤M(W )/2 + |u′q(X)|

≤M(W )/2 + ‖u‖‖q(X)‖

≤M(W ), (F.25)

where the second inequality holds by (F.24), the third inequality holds by the Cauchy-

Schwarz inequality and the last inequality holds by ‖u‖ ≤ 1 and condition (iv) of the

lemma.

Now, we show that Assumption PS2 holds. Let m(W, θ, u) :=
∫
h(Qθ(W, v), u)

dFV |X(v,X; θ) − u′q(X). Consider an arbitrary sequence (θn, Fn) that satisfy the condi-

tions in the lemma. Arguments similar to those for Assumption PS1(d) above show that

m(W, θ, u) is Lipschitz continuous in u with Lipschitz constant M(W ) for all θ. Given the

Lipschitz continuity, for any nonnegative n-vector α := (α1, . . . , αn), any u1 ∈ Rd, u2 ∈ Rd

such that ‖u1‖ ≤ 1 and ‖u2‖ ≤ 1, and any n realizations (w1, . . . , wn) of W (under Fn), we

have

n∑
i=1

(αim(wi, θn, u1)− αim(wi, θn, u2))2 ≤

(
n∑
i=1

(αiM(wi))
2

)
‖u1 − u2‖2. (F.26)

Let Fn(w1,...,wn) = {(m(wi, θn, u)ni=1 : u ∈ Rd, ‖u‖ ≤ 1} and let ~Mn(w1, . . . , wn) = (M(w1), . . . ,

M(wn))′. Then, (F.26) implies that, for all ξ ∈ (0, 1],

D(ξ‖α� ~Mn(w1, . . . , wn)‖, α�Fn(w1,...,wn)) ≤ D(ξ, {u ∈ Rd : ‖u‖ ≤ 1}) ≤ C/ξd, (F.27)

for some constant C <∞. Assumption PS2 holds because
∫ 1

0

√
logC − d log ξdξ = 2C1/dd−1
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∫∞
0
x2e−x

2/ddx <∞. �

Proof of Lemma 9.2. We prove part (a) first. Assumptions PS1(a)-(e) hold by assumption.

Now we verify Assumption PS2.

Let (θn, Fn) be an arbitrary sequence that satisfies all the conditions of the lemma.

Consider n arbitrary realizations (w1, . . . , wn) of W under Fn for arbitrary n ≥ 1. By (9.2)

and conditions (iii) and (iv) of the lemma, {M(wi) : i ≤ n, n ≥ 1} are envelopes for the

triangular array of processes {m(wi, θn, τ) : i ≤ n, n ≥ 1, τ = 1, 2, . . . }. Let

Fn(w1,...,wn) = {(m(w1, θn, τ), . . . ,m(wn, θn, τ))′ : τ = 1, 2, . . . }. (F.28)

Let ~Mn(w1, . . . , wn) = (M(w1), . . . ,M(wn))′. Then, for any ξ ∈ (0, 1] and any nonnegative

n-vector α, D(ξ‖α� ~Mn(w1, . . . , wn)‖, α�Fn(w1,...,wn)) ≤ λT (ξ) because α�(m(w1, θn, τ), . . . ,

m(wn, θn, τ))′ belongs to the ξ‖α � ~Mn(w1, . . . , wn)‖-neighborhood of 0n for all τ ≥ λT (ξ).

The latter holds because, for all τ ≥ λT (ξ),

n∑
i=1

(αim(wi, θ, τ))2 = w2
T (τ)

n∑
i=1

(αim̃(wi, θ, τ))2

≤ w2
T (τ)

n∑
i=1

(αiM(wi))
2

≤ ξ2‖α� ~Mn(w1, . . . , wn)‖2, (F.29)

where the last inequality holds because τ ≥ λT (ξ) iff wT (τ) ≤ ξ (because λT (ξ) is the inverse

function of the decreasing function wT (ξ)). By assumption,
∫ 1

0

√
log(λT (ξ))dξ <∞. Hence,

Assumption PS2 holds.

The proof of part (b) is similar to that of Lemma 7.2(b) and is omitted for brevity. �

G Additional Simulation Results

In this section we report additional Monte Carlo simulation results that investigate the

sensitivity of the performance of the MCMI tests to different choices of tuning parameters.

Tables 3-6 report the null and alternative hypothesis rejection probabilities of the CvM/

GMS and KS/GMS tests in the first-order stochastic dominance example studied in Sec-

tion 7.2 for various choices of the tuning parameters. The first two tables cover null data
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generating processes for which first-order stochastic dominance holds. The last two tables

cover alternative data generating processes for which first-order stochastic dominance does

not hold. These data generating processes are the same as those considered in Tables 1 and

2.

In each table, we report the rejection probabilities of the nominal .05 level CvM/GMS

and KS/GMS tests for a base case specification of the tuning parameters and 12 vari-

ants of the base case. The base case sets r1,n = 3, Nτ = 25, κn = (0.3 ln(n))1/2, Bn =

(0.4 ln(n)/ ln(ln(n)))1/2, ε = 0.01, and Weight Constant = 100, where the weight constant is

the constant added to r2 in (3.7). The larger the weight constant is, the more weight is given

to smaller hypercubes relative to the larger cubes. In each variant of the base case, one and

only one tuning parameter is changed in order to isolate the effect of that tuning parameter

on the performance of the tests. The power results in Tables 5 and 6 are size-corrected

based on the data generating process for Table 3 under which the tests have asymptotic null

rejection probabilities equal to .05.

As one can see from the tables, the base case specification performs well compared to the

other specifications. Overall, the sensitivity to the choice of tuning parameters is not large

for the range of tuning parameter values that is considered.
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Table 3: Sensitivity to Tuning Parameters for First-Order Stochastic Dom-
inance Tests – Null 1: (c1, c2, c3, c4) = (0, 0, 0.85, 0.6)

CvM/GMS KS/GMS

Base case .057 .064

r1,n = 2 .056 .054

r1,n = 4 .059 .055

Nτ = 20 .061 .074

Nτ = 30 .062 .068

κn = (0.3 ln(n))1/2/2 .070 .077

κn = 2(0.3 ln(n))1/2 .052 .055

Bn = (0.4 ln(n)/ ln(ln(n)))1/2/2 .057 .064

Bn = 2(0.4 ln(n)/ ln(ln(n)))1/2 .057 .064

ε = 0.005 .056 .065

ε = 0.02 .058 .056

Weight Constant = 50 .056 .067

Weight Constant = 200 .057 .064

Note: Sample size n = 250. The critical values use 1000 repetitions. Nominal
size = .05. Base case specifications: r1,n = 3, Nτ = 25, κn = (0.3 ln(n))1/2,
Bn = (0.4 ln(n)/ ln(ln(n)))1/2, ε = 0.01, Weight Constant = 100.
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Table 4: Sensitivity to Tuning Parameters for First-Order Stochastic Dom-
inance Tests – Null 2: (c1, c2, c3, c4) = (0.15, 0, 0.85, 0.6)

CvM/GMS KS/GMS

Base case .014 .019

r1,n = 2 .016 .018

r1,n = 4 .014 .019

Nτ = 20 .015 .015

Nτ = 30 .018 .019

κn = (0.3 ln(n))1/2/2 .026 .029

κn = 2(0.3 ln(n))1/2 .010 .011

Bn = (0.4 ln(n)/ ln(ln(n)))1/2/2 .013 .019

Bn = 2(0.4 ln(n)/ ln(ln(n)))1/2 .016 .019

ε = 0.005 .014 .018

ε = 0.02 .014 .017

Weight Constant = 50 .014 .019

Weight Constant = 200 .014 .019

Note: Sample size n = 250. The critical values use 1000 repetitions. Nominal
size = .05. Base case specifications: r1,n = 3, Nτ = 25, κn = (0.3 ln(n))1/2,
Bn = (0.4 ln(n)/ ln(ln(n)))1/2, ε = 0.01, Weight Constant = 100.
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Table 5: Sensitivity to Tuning Parameters for First-Order Stochastic Dom-
inance Tests – Alternative 1: (c1, c2, c3, c4) = (−0.25, 0.2, 0.85, 0.6)

CvM/GMS KS/GMS

Base case .505 .379

r1,n = 2 .513 .411

r1,n = 4 .509 .367

Nτ = 20 .486 .359

Nτ = 30 .470 .405

κn = (0.3 ln(n))1/2/2 .493 .363

κn = 2(0.3 ln(n))1/2 .507 .384

Bn = (0.4 ln(n)/ ln(ln(n)))1/2/2 .508 .379

Bn = 2(0.4 ln(n)/ ln(ln(n)))1/2 .506 .379

ε = 0.005 .505 .381

ε = 0.02 .504 .392

Weight Constant = 50 .505 .379

Weight Constant = 200 .506 .379

Note: Sample size n = 250. The critical values use 1000 repetitions. Nominal
size = .05. Base case specifications: r1,n = 3, Nτ = 25, κn = (0.3 ln(n))1/2,
Bn = (0.4 ln(n)/ ln(ln(n)))1/2, ε = 0.01, Weight Constant = 100.
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Table 6: Sensitivity to Tuning Parameters for First-Order Stochastic Dom-
inance Tests – Alternative 2: (c1, c2, c3, c4) = (0.35, 0, 0.85, 0.23)

CvM/GMS KS/GMS

Base case .581 .295

r1,n = 2 .628 .397

r1,n = 4 .609 .246

Nτ = 20 .560 .275

Nτ = 30 .539 .309

κn = (0.3 ln(n))1/2/2 .590 .318

κn = 2(0.3 ln(n))1/2 .463 .159

Bn = (0.4 ln(n)/ ln(ln(n)))1/2/2 .532 .258

Bn = 2(0.4 ln(n)/ ln(ln(n)))1/2 .589 .301

ε = 0.005 .615 .302

ε = 0.02 .529 .268

Weight Constant = 50 .580 .295

Weight Constant = 200 .582 .295

Note: Sample size n = 250. The critical values use 1000 repetitions. Nominal
size = .05. Base case specifications: r1,n = 3, Nτ = 25, κn = (0.3 ln(n))1/2,
Bn = (0.4 ln(n)/ ln(ln(n)))1/2, ε = 0.01, Weight Constant = 100.
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(b) Higher Tuning Parameter Values

Figure 3: Sensitivity to Tuning Parameters for the KS/GMS CS Applied on the IV Random-
Coefficients Binary-Outcome Model. (Nominal size = .95, n = 250, (α0, γ0, γ1) = (0,−1, 1),
and (α0, α1, γ0, γ1) is in the identified set if and only if α1 ≤ −0.8274.)

In the random-coefficient binary-outcome example studied in Section 8.2, the KS/GMS

CS is the best performing CS. For this reason, we perform sensitivity analysis on this CS.

Figure 3 reports the coverage probabilities of the KS/GMS CS under various choices of the

tuning parameters. The base case values for r1,n, κn, Bn, ε, and the Weight Constant are

the same as they are in the stochastic dominance example. The base case value for Nτ2 is

15, which results in 120 grid points on T . In the sensitivity analysis, we alter one and only

one tuning parameter each time, and recompute the coverage probabilities.

Graph (a) of Figure 3 depicts the coverage probabilities when the tuning parameters are

altered to lower values. The lower values are: r1,n = 2, Nτ2 = 10, κn = (0.3 ln(n))1/2/2,

Bn = (0.4 ln(n)/ ln(ln(n)))1/2/2, ε = 0.005, and Weight Constant = 50. Graph (b) depicts

the coverage probabilities when they are altered to higher values. The higher values are:

r1,n = 4, Nτ2 = 20, κn = 2(0.3 ln(n))1/2, Bn = 2(0.4 ln(n)/ ln(ln(n)))1/2, ε = 0.02, and

Weight Constant = 200.

Recall that the coverage probabilities are computed for fixed values of (α0, α1, γ0, γ1).

The fixed values considered are (0, α1,−1, 1) for α1 running from −1 (its true value), to

−0.8274 (right boundary of the identified set at (α0, γ0, γ1) = (0,−1, 1)), and finally to 1.5.

The coverage probabilities when α1 ≤ −0.8274 should ideally be 0.95 or higher, and those

when α1 > −0.8274 are false coverage probabilities, and should ideally be lower than 0.95

and get lower as α1 moves to the right.
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As one can see, the base case specification performs well relative to the other specifica-

tions. The coverage probabilities are generally insensitive to the tuning parameter changes

considered, except when Nτ2 is changed. Coarser τ grids result in noticeably higher (worse)

false coverage probabilities.

The sensitivity analysis sheds some light on the choice of the grid points for approximating

T . In both examples, we find that the size of the test or the coverate probability of the CS

for points in the identified set is insensitive to T , but the power or false coverage probability

is noticeably worse when an insufficient number of grid points is used. Based on this, we

recommend increasing the number of grid points until the test statistic value stabilizes, or

increasing it to the maximum that the computational resources of the user allows.
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