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Abstract

We present new identification results for a class of nonseparable nonparametric si-
multaneous equations models introduced by Matzkin (2008). These models combine
traditional exclusion restrictions with a requirement that each structural error enter
through a “residual index.” Our identification results are constructive and encompass
a range of special cases with varying demands on the exogenous variation provided
by instruments and the shape of the joint density of the structural errors. The most
important of these results demonstrate identification even when instruments have lim-
ited variation. A genericity result demonstrates a formal sense in which the associated
density conditions may be viewed as mild, even when instruments vary only over a
small open ball.
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1 Introduction

Economic theory typically produces systems of equations characterizing the outcomes
observable to empirical researchers. The classical supply and demand model is a
canonical example, but systems of simultaneous equations arise in almost any eco-
nomic setting in which multiple agents interact or a single agent makes multiple
interrelated choices (see Appendix A for examples). The identifiability of simultane-
ous equations models is therefore an important question for a wide range of topics
in empirical economics. Although early work on (parametric) identification treated
systems of simultaneous equations as a primary focus,1 nonparametric identification
has remained a significant challenge. Despite substantial recent interest in identifica-
tion of nonparametric economic models with endogenous regressors and nonseparable
errors, there remain remarkably few such results for fully simultaneous systems.

A general representation of a simultaneous system (more general than we will
allow) is given by

mj(Y, Z, U) = 0 j = 1, . . . , J (1)

where Y = (Y1, . . . , YJ)
ᵀ ∈ RJ are the endogenous variables, U = (U1, . . . , UJ)

ᵀ ∈ RJ

are the structural errors, and Z is a set of exogenous conditioning variables. Assuming
m is invertible in U ,2 this system of equations can be written in “residual” form

Uj = ρj(Y, Z) j = 1, . . . , J. (2)

Identification of such models was considered by Brown (1983), Roehrig (1988), Brown
and Matzkin (1998), and Brown and Wegkamp (2002). However, a claim made in
Brown (1983) and relied upon by the others implied that traditional exclusion re-
strictions would identify the model when U is independent of Z. Benkard and Berry
(2006) showed that this claim is incorrect, leaving uncertain the nonparametric iden-
tifiability of fully simultaneous models.

Completeness conditions (Lehmann and Scheffe (1950, 1955)) offer one possible
approach, and in Berry and Haile (2014) we showed how identification arguments
in Newey and Powell (2003) or Chernozhukov and Hansen (2005) can be adapted
to an example of the class of models considered below.3 However, independent of
general concerns one might have with the interpretability of completeness conditions,
this approach may be particularly unsatisfactory in a simultaneous equations setting.
A simultaneous equations model already specifies the structure generating the joint
distribution of the endogenous variables, exogenous variables, and structural errors.

1See, e.g., Koopmans (1950), Hood and Koopmans (1953), and Fisher (1966).

2See, e.g., Palais (1959), Gale and Nikaido (1965), and Berry, Gandhi, and Haile (2013) for
conditions ensuring invertibility in different contexts.

3Chiappori and Komunjer (2009b) show identification in a related model by combining complete-
ness conditions with arguments using the classic change of variables approach.
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A high-level assumption like completeness implicitly places further restrictions on the
model, although the nature of these restrictions is typically unclear.4

Much recent work has focused on triangular (recursive) systems of equations (e.g.,
Chesher (2003), Imbens and Newey (2009), Torgovitzky (2015)). A two-equation
version of the triangular model takes the form

Y1 = m1(Y2, Z, U1) (3)

Y2 = m2(Z,X,U2) (4)

where U2 is a scalar error entering m2 monotonically and X is an exogenous ob-
servable excluded from the first equation. This structure often arises in a program
evaluation setting. To contrast this model with a fully simultaneous system, suppose
Y1 represents the quantity sold of a good and that Y2 is its price. If (3) is the struc-
tural demand equation, (4) should be the reduced form for price, with X denoting
a supply shifter excluded from demand. However, typically both the demand error
U1 and the supply error U2 would enter the reduced form for price.5 One obtains
the triangular model only when the two structural errors enter the reduced form for
price monotonically through a single index. This is a strong index assumption quite
different from the residual index structure we consider. Blundell and Matzkin (2014)
provide a necessary and sufficient condition for a simultaneous model to reduce to
the triangular model, pointing out that this condition is quite restrictive.

An important breakthrough in the literature on fully simultaneous models came
in Matzkin (2008). Matzkin considered a model of the form

mj(Y, Z, δ) = 0 j = 1, . . . , J

where δ = (δ1 (Z,X1, U1) , . . . , δJ (Z,XJ , UJ))
ᵀ

is a vector of indices

δj (Z,Xj, Uj) = gj (Z,Xj) + Uj, (5)

and each gj (Z,Xj) is strictly increasing in Xj. Here X = (X1, . . . , XJ)
ᵀ ∈ RJ play

a special role as exogenous observables (instruments) specific to each equation. This
formulation thus respects traditional exclusion restrictions in that Xj is excluded
from equations k 6= j (e.g., there is a “demand shifter” that enters only the demand
equation and a “cost shifter” that enters only the supply equation). However, it
restricts the more general model (1) by requiringXj and Uj to enter the nonparametric
function mj through a “residual index” δj (Z,Xj, Uj). Given invertibility of m (now
in δ), the analog of (2) is δj (Z,Xj, Uj) = rj (Y, Z), j = 1, . . . , J , or equivalently,6

rj (Y, Z) = gj (Z,Xj) + Uj j = 1, . . . , J. (6)

4Recent work on this issue includes D’Haultfoeuille (2011) and Andrews (2011).

5With J goods, all 2J demand shocks and cost shocks would typically enter the reduced form for
each price. Example 3 in Appendix A illustrates.

6This model can be interpreted as a generalization of the transformation model to a simultaneous
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This is the model we study as well. Appendix A illustrates this structure in several
important classes of applications. Some of these generalize classic systems of simulta-
neous equations that arise when multiple agents interact in equilibrium. The residual
index structure can be directly imposed on the system of nonparametric simultane-
ous equations or derived from assumptions on primitives generating this system. In
Appendix A we illustrate the latter in an equilibrium model of differentiated prod-
uct markets. This appendix also shows how the simultaneous equations model arises
from the interdependent decisions of a single agent, using an example of firm input
demand. In that example, the residual index structure again emerges naturally from
assumptions on model primitives.

Matzkin (2008) showed that the residual index model is identified when U is in-
dependent of X, (g1 (X1 Z) , . . . , gJ (XJ , Z)) has large support conditional on Z, and
the joint density (or log density) of U satisfies certain global restrictions.7 This was,
to our knowledge, the first result demonstrating identification in a fully simultaneous
nonparametric model with nonseparable errors. Matzkin (2015) provided additional
results and estimation strategies for a special case in which each residual index func-
tion gj (Z,Xj) is linear conditional on Z.8

We provide new constructive identification results for the model (6). Along
the way we point out that our primary sufficient conditions for identification are
verifiable—i.e., their satisfaction or failure is identified—and that the maintained as-
sumptions defining the model are falsifiable. After completing the model setup in
section 2, in section 3 we develop a general sufficient condition for identification of
the functions gj. This “rectangle regularity” condition is implied by Matzkin’s (2008)
combination of large support and global density conditions, but also holds when the
instruments X have limited support under a mild local density restriction. Once each
function gj is known, identification of the model follows as in the special case of a
linear residual index function. To exploit this fact, in section 4 we review that spe-

system. The semiparametric transformation model (e.g., Horowitz (1996)) takes the form t (Y ) =
Zβ + U , where Y ∈ R, U ∈ R, and the unknown transformation function t is strictly increasing.
Besides replacing Zβ with g (Z,X), (6) generalizes this model by dropping the requirement of a
monotonic transformation function and, more fundamental, allowing a vector of outcomes Y to enter
each unknown transformation function. Chiappori and Komunjer (2009a) considers a nonparametric
version of the single-equation transformation model. See also Berry and Haile (2009).

7Matzkin (2008) used a new characterization of observational equivalence to show identification
in a linear simultaneous equations model, a single equation model, a triangular (recursive) model,
and a fully simultaneous nonparametric model (her “supply and demand” example) of the form (6).

8Matzkin (2015) also provides conditions for identification of certain features in models that
partially relax the residual index structure. Chesher and Rosen (2015) consider a nonparametric
framework permitting simultaneity, providing a characterization of sharp identified sets under various
restrictions. Masten (2015) considers a linear (semiparametric) simultaneous equations model—
either with two equations or having a “linear-in-means” structure—with random coefficients on
the endogenous variables. Using combinations of support and density restrictions, he considers
identification of the marginal and joint distributions of the random coefficients.
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cial case and provide new sufficient conditions for identification. By combining these
results (section 5), one obtains identification of the full (nonlinear index) model (6)
under a variety of support and density conditions.

At one extreme, we show that the model is identified under large support con-
ditions without any restriction on the joint density of unobservables. Perhaps the
most important result, however, is given by Corollary 3 in section 5, which allows
instruments that vary only over a small open ball. Given the maintained technical
conditions of the model (Assumption 1), this result shows that identification holds
under two relatively mild conditions on the log density of unobservables. The first,
“Condition M,” requires the log density of U to have a nondegenerate local maximum.
The second requires the Hessian of that log density to be invertible at a sufficiently
rich set of (possibly isolated) points; a sufficient condition for this restriction is given
by “Condition H” in section 6. We argue that these are relatively mild density restric-
tions, satisfied (for example) by typical parametric densities on RJ . Formalizing this
notion, section 6 establishes that densities satisfying Conditions M and H are generic
among all C2 log densities that have a local maximum somewhere on RJ .9 Thus, un-
der mild (generic) density conditions, the model is identified even when instruments
have arbitrarily small support.

2 The Model

2.1 Setup

The observables are (Y,X,Z), with X ∈ RJ , Y ∈ RJ , and J ≥ 2. The exogenous
observables Z are important in applications but add no complications to the analysis
of identification. Thus, from now on we condition on an arbitrary value of Z and
drop it from the notation. As usual, this treats Z in a fully flexible way, and all
assumptions should be interpreted to hold conditional on Z. Stacking the equations
in (6), we then consider the model

r (Y ) = g (X) + U, (7)

where r (Y ) = (r1 (Y ) , . . . , rJ (Y ))
ᵀ

and g (X) = (g1 (X1) , . . . , gJ (XJ))
ᵀ
. Let X =

int (supp (X)), and let Y denote the pre-image of supp(g (X) + U) under r. The
following describes the maintained assumptions on the model, following Matzkin
(2008).10

9These generic log densities are sufficient to identify the functions (g1, . . . , gJ) on the support of
X and to identify the functions (r1, . . . , rJ) on the pre-image of any rectangle ×j

(
uj , uj

)
in RJ .

10We strengthen Matzkin’s (2008) assumption that f is continuously differentiable to twice con-
tinuous differentiability. Although we maintain this assumption from the beginning to simplify
exposition, all results up to equation (31) hold with only continuous differentiability, letting Condi-
tion M′ in Appendix B replace Condition M in the text. Our identification arguments using second
derivatives also generalize to differenced first derivatives (see Appendix F).
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Assumption 1. (i) X is nonempty and connected; (ii) g is continuously differentiable,
with ∂gj (xj) /∂xj > 0 ∀j, xj; (iii) U is independent of X and has a twice continu-
ously differentiable joint density f that is positive on RJ ; (iv) r is injective, twice
differentiable, and has nonzero Jacobian determinant J(y) = det (∂r(y)/∂y) ∀y ∈ Y.

Part (i) rules out instruments with discrete or disconnected support.11 Part (ii)
requires monotonicity and differentiability in the instruments. The primary role of
parts (iii) and (iv) is to allow us to attack the identification problem using a standard
change of variables approach (see, e.g., Koopmans, Rubin, and Leipnik (1950)), re-
lating the joint density of observables to that of the structural errors. In particular,
letting φ(·|X) denote the joint density of Y conditional on X, we have

φ(y|x) = f(r(y)− g(x)) |J(y)| . (8)

In addition, we have the following lemma.

Lemma 1. Under Assumption 1, (a) ∀y ∈ Y, supp(X|Y = y) =supp(X); (b) ∀x ∈ X,
supp(Y |X = x) =supp(Y ); and (c) Y is open and connected.

Proof. See Appendix C.

With this result, below we treat φ(y|x) as known for all x ∈ X and y ∈ Y.

2.2 Normalizations

We impose three standard normalizations.12 First, observe that all relationships
between (Y,X, U) would be unchanged if for some constant κj, gj (Xj) were replaced
by gj (Xj) + κj while rj (Y ) were replaced by rj (Y ) + κj. Thus, without loss, for an
arbitrary point ẏ ∈ Y and arbitrary point ṙ = (ṙ1, . . . , ṙJ) ∈ RJ we set

rj (ẏ) = ṙj ∀j. (9)

Similarly, since even with (9), (7) would be unchanged if, for every j, gj (Xj) were
replaced by gj (Xj) + κj for some constant κj while Uj were replaced by Uj − κj, we
take an an arbitrary point ẋ ∈ X and set

gj (ẋj) = ẋj ∀j. (10)

11Appendix G provides an initial exploration of identification when instruments are discrete.

12We follow Horowitz (2009, pp. 215–216), who makes equivalent normalizations in his semipara-
metric single-equation version of our model. His exclusion of an intercept is the implicit analog
of our location normalization (10). Alternatively we could follow Matzkin (2008), who makes no
normalizations in her supply and demand example and shows only that derivatives of each rj and
gj are identified up to scale.
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Given (9), this fixes the location of each Uj, but we must still choose its scale.13 In
particular, since (7) would continue to hold if, for each j, we multiplied rj, gj and Uj
by a nonzero constant κj, we normalize the scale of each Uj by setting

∂gj (ẋj)

∂xj
= 1 ∀j. (11)

Finally, given (9) and (10), a convenient choice of ṙ sets each ṙj = ẋj, so that

rj (ẏ)− gj (ẋj) = 0 ∀j. (12)

2.3 Identifiability, Verifiability, and Falsifiability

Before proceeding, we must define some key terminology. Following Hurwicz (1950)
and Koopmans and Reiersol (1950), a structure S is a data generating process, i.e.,
a set of probabilistic or functional relationships between the observable and latent
variables that implies (generates) a joint distribution of the observables. Let S denote
the set of all structures. The true structure is denoted S0 ∈ S. A hypothesis is any
nonempty subset of S. A hypothesis H is true (satisfied) if S0 ∈ H.14

A structural feature θ (S0) is a functional of the true structure S0. A structural
feature θ (S0) is identified (or identifiable) under the hypothesis H if θ (S0) is uniquely
determined within the set {θ (S) : S ∈ H} by the joint distribution of observables.
The primary structural features of interest in our setting are the functions r and
g.15 However, we will also be interested in binary features indicating whether key
hypotheses hold. Given a maintained hypothesis M, we will say that a hypothesis
H ⊂M is verifiable if the indicator 1 {S0 ∈ H} is identified underM.16 Thus, when
a hypothesis is verifiable, its satisfaction or failure is an identified feature.17

13Typically the location and scale of the structural errors can be set arbitrarily without loss.
However, there may be applications in which the location or scale of Uj has economic meaning. With
this caveat, we follow the longstanding convention of referring to these restrictions as normalizations.

14Hurwicz (1950) and Koopmans and Reiersol (1950) call any strict subset of S a model. Some
authors make distinctions between the notions of “model,”“identifying assumptions,” or “overiden-
tifying assumptions.” All of these notions are nested by the term hypothesis.

15Note that the joint density f is determined by these functions and the observables. In practice,
quantities of interest will often include particular functionals of (r, g, f). As pointed out by Hurwicz
(1950), identification of such functionals may sometimes be obtained under weaker conditions than
those needed for identification of the model. Exploration of such possibilities in particular applica-
tions is a potentially important topic for further work. See Berry and Haile (2014) for some results
in the case of differentiated products supply and demand.

16We use the symbol ⊂ for all (proper or not) subset relationships.

17We are not aware of prior formal use of the notion of verifiability in the econometrics literature
although informal use is common and, as our definition makes clear, this is merely a particular case
of identifiability.

6



A weaker and more familiar notion is that of falsifiability. Let PH denote the set
of probability distributions (for the observables) generated by structures in H. Given
a maintained hypothesis M, H ⊂M is falsifiable if PH 6= PM. Thus, as usual, a
hypothesis is falsifiable when it implies a restriction on the observables. A hypothesis
that is falsifiable is sometimes said to be testable or to imply testable restrictions.
We avoid this terminology because, just as identification does not imply existence
of a consistent estimator, falsifiability (or verifiability) does not imply existence of
a satisfactory statistical test. Although our arguments may suggest approaches for
estimation or hypothesis testing, we leave all such issues for future work.

3 Identification of the Index Functions

We begin by considering identification of the index functions gj. Taking logs in (8)
and differentiating yields18

∂ lnφ(y|x)

∂xj
= −∂ ln f(r(y)− g(x))

∂uj

∂gj(xj)

∂xj
(13)

∂ lnφ(y|x)

∂yk
=
∑
j

∂ ln f(r(y)− g(x))

∂uj

∂rj(y)

∂yk
+
∂ ln |J(y)|

∂yk
. (14)

Together (13) and (14) imply

∂ lnφ(y|x)

∂yk
= −

∑
j

∂ lnφ(y|x)

∂xj

∂rj(y)/∂yk
∂gj(xj)/∂xj

+
∂ ln |J(y)|

∂yk
. (15)

Our approach in this section builds on an insight in Matzkin (2008), isolating un-
knowns in (15) with critical points of the log density ln f and “tangencies” to its level
sets. We first introduce a property of (X, f, g) that we call rectangle regularity. We
then show that rectangle regularity is sufficient for identification of the index functions
gj. Finally, we discuss two simpler sufficient conditions for rectangle regularity.

3.1 Rectangle Regularity

To state our general sufficient condition for identification of g, we require two new
definitions. The first is standard and provided here only to avoid ambiguity.

Definition 1. A J-dimensional rectangle is a Cartesian product of J nonempty open
intervals.

Whenever we refer to a “rectangle” below, we mean a J-dimensional rectangle.

18J(y) is a polynomial in the first partial derivatives of r and is therefore differentiable. Then
because J(y) is everywhere nonzero, it can take only one sign on Y, ensuring that |J(y)| (and
therefore ln |J(y)|) is differentiable.
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Next, we introduce a notion of regularity, requiring that ln f have a critical point
u∗ in a rectangular neighborhood U in which its level sets are “nice” in a sense defined
by part (ii) of the following definition.

Definition 2. Given a J-dimensional rectangle U ≡ ×Jj=1

(
uj, uj

)
, ln f is regular on

U if (i) there exists u∗ ∈ U such that ∂ ln f(u∗)/∂uj = 0 ∀j; and (ii) for all j, almost
all u′j ∈

(
uj, uj

)
, and some û

(
j, u′j

)
=
(
û1

(
j, u′j

)
, . . . , ûJ

(
j, u′j

))
∈ U ,

ûj
(
j, u′j

)
= u′j and

∂ ln f(û(j, u′j))

∂uk
6= 0 iff k = j.

In Definition 2, û(j, u′j) has a geometric interpretation as a point of tangency

between a level set of ln f and the hyperplane
{
u ∈ RJ : uj = u′j

}
. Part (ii) of the

definition 2 requires such a tangency within the rectangle U in each dimension j.
Figure 1 illustrates an example in which J = 2 and u∗ is a local maximum. Within

a neighborhood of u∗ the level sets ln f are connected and smooth, and represent
strictly increasing values of ln f as one moves towards u∗. Therefore, each level set
is horizontal at (at least) one point above u∗ and one point below u∗. Similarly, each
level set is vertical at least once each to the right and to the left of u∗. There are
many J-dimensional rectangles on which the illustrated log density is regular. One
such rectangle, U = (u1, u1) × (u2, u2), is defined by tangencies to a single level set.
For each u′1 ∈ (u1, u1), the point û2(1, u′1) is the value of U2 at a tangency between
the vertical line U1 = u′1 and a level set of ln f closer to u∗ than that defining U .

We show below that the following condition ensures identification of the index
functions g.

Assumption 2 (“Rectangle Regularity”). For all x ∈ X there exists a rectangle
X (x) = ×j

(
xj (x) , xj (x)

)
⊂ X containing x such that for (i) some u∗ (x) such that

∂ ln f (u∗ (x)) /∂uj = 0 for all j and (ii) uj (x) and uj (x) defined by

uj (x) = u∗j(x) + gj (xj)− gj (xj (x))

uj (x) = u∗j(x) + gj (xj)− gj
(
xj (x)

)
,

(16)

ln f is regular on U (x) = ×j
(
uj (x) , uj (x)

)
.

Rectangle regularity requires, for each x, that ln f be regular on a rectangular
neighborhood around a critical point that maps through the model (7) to a rectangular
neighborhood in X around x. Specifically, take an arbitrary x. Let u∗ (x) be a critical
point of ln f and let ×j

(
uj (x) , uj (x)

)
3 u∗ (x) denote a rectangle on which ln f is

regular. Define y∗ (x) by
r (y∗ (x)) = g (x) + u∗ (x) , (17)

and define x (x) and x (x) by

rj (y∗ (x)) = gj
(
xj
)

+ uj (x) = gj (xj) + uj (x) ∀j. (18)

8



Figure 1: The solid curves are the level sets of a bivariate log density in a region of its support.

The point u∗ is a local maximum. For each u′1 ∈ (u1, u1) the point û(1, u′1) = (u′1, û2(1, u′1)) is a

point of tangency between the vertical line U1 = u′1 and a level set. The log density is regular on

U = ×j(uj , uj).

u2

u1

u2

u1

U

u′1

û2(1, u′1)

u∗

u1

u
2

x2(x)

x1(x)

x2(x)

x1(x)

X (x)

x

x1

x
2

Figure 2: For arbitrary x ∈ X, the rectangle U in Figure 1 is mapped to a rectangle X (x) using

(17) and (18), thereby satisfying (16).
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Figure 2 illustrates. Assumption 2 is satisfied if, for every x, there exist u∗ (x) and
×j
(
uj (x) , uj (x)

)
such that the resulting rectangle X (x) = ×j

(
xj (x) , xj (x)

)
lies

within X. It should be emphasized that although we write u∗ (x), the same critical
point may be used to construct X (x) for many (even all) values of x.

Because X is open, a rectangle X such that x ∈ X ⊂ X exists for every x ∈ X.
Furthermore, when X includes a rectangleM, it also includes all rectangles X ⊂M.
Thus, because g (X ) is a rectangle whenever X is, the set X (x) required by rectangle
regularity is guaranteed to exist as long as ln f is regular on some rectangle in RJ

whose dimensions are not too large relative to the support of X around x. We use
this insight to provide more transparent sufficient conditions for rectangle regularity
in section 3.3 below.

The following result (proved in Appendix C) shows that rectangle regularity is
equivalent to a condition on observables.

Proposition 1. Assumption 2 is verifiable.

3.2 Identification Under Rectangle Regularity

Under rectangle regularity, identification of the index functions gj follows in three
steps. The first exploits a critical point u∗ to pin down derivatives of the Jacobian
determinant at a point y∗ (x) for any x. The second uses tangencies to identify the

ratios
∂gj(x

′
j)/∂xj

∂gj(x0j )/∂xj
for all pairs of points (x0, x′) in a sequence of overlapping rectangular

subsets of X. The final step links these rectangular neighborhoods so that, using the
normalization (11), we can integrate up to the functions gj, using (10) as boundary
conditions.

The first step is straightforward. For any x ∈ X, if u∗ is a critical point of ln f
and y∗ (x) is defined by (17), equation (14) yields

∂ ln |J(y∗ (x))|
∂yk

=
∂ lnφ(y∗ (x) |x)

∂yk
∀k. (19)

For arbitrary x and x′, we can then rewrite (15) as∑
j

∂ lnφ(y∗ (x) |x′)
∂xj

∂rj((y
∗ (x))/∂yk

∂gj(x′j)/∂xj
=
∂ lnφ(y∗ (x) |x)

∂yk
− ∂ lnφ((y∗ (x) |x′)

∂yk
. (20)

By (13), the point y∗ (x) is identified, so the only unknowns in (20) are the ratios
∂rj(y

∗(x))/∂yk
∂gj(x′j)/∂xj

. This will allow us to demonstrate the second step in Lemma 2 below.

Here we exploit the fact that, under Assumption 2, as x̂ varies around the arbitrary
point x, r (y∗ (x)) − g (x̂) takes on all values in a rectangular neighborhood of u∗ on
which ln f is regular.
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Lemma 2. Let Assumptions 1 and 2 hold. Then for every x ∈ X there exists a
J-dimensional rectangle X (x) 3 x such that for all x0 ∈ X (x)\x and x′ ∈ X (x)\x,

the ratio
∂gj(x

′
j)/∂xj

∂gj(x0j )/∂xj
is identified for all j = 1, . . . , J .

Proof. Take arbitrary x ∈ X. Let u∗ and U = ×j
(
uj, uj

)
be as defined in Assumption

2, and let y∗ be as defined by (17).19 By Assumption 2 there exists X = ×i (xi, xi) ⊂ X
(with x ∈ X ) such that (18) holds and (recalling (13)) such that for each j and almost
every x′j ∈

(
xj, xj

)
there is a J-vector x̂

(
j, x

′
j

)
∈ X satisfying

x̂j
(
j, x′j

)
= x′j and

∂ lnφ
(
y∗|x̂(j, x′j)

)
∂xk

6= 0 iff k = j. (21)

Since φ (y|x) and its derivatives are observed for all y ∈ Y and x ∈ X, the point y∗ is
identified, as are the pairs

(
xj, xj

)
and the point x̂

(
j, x

′
j

)
for any j and x′j ∈

(
xj, xj

)
.20

Taking arbitrary j, k, x′j ∈
(
xj, xj

)
, and the known point x̂

(
j, x

′
j

)
, (20) becomes

∂ lnφ(y∗|x̂(j, x′j))

∂xj

∂rj(y
∗)/∂yk

∂gj(x′j)/∂xj
=
∂ lnφ(y∗|x)

∂yk
−
∂ lnφ(y∗|x̂(j, x′j))

∂yk
.

By (21), we may rewrite this as

∂rj(y
∗)/∂yk

∂gj(x′j)/∂xj
=

∂ lnφ(y∗|x)
∂yk

− ∂ lnφ(y∗|x̂(j,x′j))

∂yk
∂ lnφ(y∗|x̂(j,x′j))

∂xj

. (22)

Since the right-hand side is known,
∂rj(y

∗)/∂yk
∂gj(x′j)/∂xj

is identified for almost all (and, by

continuity, all) x′j ∈
(
xj, xj

)
. By the same arguments leading up to (22), but with x0

j

taking the role of x′j, we obtain

∂rj(y
∗)/∂yk

∂gj(x0
j)/∂xj

=

∂ lnφ(y∗|x)
∂yk

− ∂ lnφ(y∗|x̂(x0j ))

∂yk

∂ lnφ(y∗|x̂(x0j ))

∂xj

(23)

yielding identification of
∂rj(y

∗)/∂yk
∂gj(x0j )/∂xj

for all x0
j ∈

(
xj, xj

)
. Because the Jacobian deter-

minant J(y) is nonzero, ∂rj(y
∗)/∂yk cannot be zero for all k. Thus for each j there

is some k such that the ratio

∂rj(y
∗)/∂yk

∂gj(x0
j)/∂xj

/
∂rj(y

∗)/∂yk
∂gj(x′j)/∂xj

19To simplify notation, we suppress dependence of u∗,U , y∗, xj , xj , uj , and uj on the point x.

20Note that we do not require uniqueness of u∗ or U , nor therefore uniqueness of the associated
y∗ or X . We use only the fact (under Assumption 2) that for a given x there exist both (i) a value
y∗ mapping through (17) to a critical point u∗ and (ii) a rectangle X around x mapping through
(18) to a rectangle U around u∗ on which ln f is regular.
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is well defined. This establishes the result.21 �

The final step of the argument yields the main result of this section.

Theorem 1. Let Assumptions 1 and 2 hold. Then g is identified on X.

Proof. We first claim that Lemma 2 implies identification of the ratios
∂gj(x

′
j)/∂xj

∂gj(x0j )/∂xj

for all j and any two points x0 and x′ in X. This follows immediately if there is
some x such that X (x) = X. Otherwise, observe that because each rectangle X (x)
guaranteed to exist by Lemma 2 is open, {X (x)}x∈X is an open cover of X. Since X is
connected, for any x0 and x′ in X there exists a simple chain from x0 to x1 consisting

of elements (rectangles) from {X (x)}x∈X.22 Since the ratios
∂gj(x

1
j )/∂xj

∂gj(x2j )/∂xj
are known for

all points
(
x1
j , x

2
j

)
in each of these rectangles, it follows that the ratios

∂gj(x
′
j)/∂xj

∂gj(x0j )/∂xj
are

identified for all j. Now observe that because X is a connected open subset of RJ ,
X is path-connected. Taking x0

j = ẋj for all j, the conclusion of the theorem then
follows from the normalization (11) and boundary condition (10). �

3.3 Sufficient Conditions for Rectangle Regularity

Here we offer two alternative sufficient conditions for Assumption 2 that are more
easily interpreted. The first combines large support with regularity of ln f on RJ ;
this is equivalent to the combination of conditions required by Matzkin (2008).23

Proposition 2. Let Assumption 1 hold. Suppose that g (X) = RJ and that ln f is
regular on RJ . Then Assumption 2 holds.

Proof. Let X (x) = ×j
(
g−1
j (−∞) , g−1

j (∞)
)

for all x. Then by (16), U (x) = RJ ,
yielding the result. �

Our second sufficient condition allows limited—even arbitrarily small—support
for X while requiring only a local condition on the log density ln f .24

Condition M. ln f has a nondegenerate local maximum.

21Since the last step of the argument can be repeated for any k such that ∂rj(y
∗)/∂yk 6= 0, the

ratios of interest in the lemma may typically be overidentified.

22See, e.g., van Mill (2002), Lemma 1.5.21.

23The density restriction stated in Matzkin (2008) is actually stronger, equivalent to assuming
regularity of ln f on RJ but replacing “almost all u′j ∈

(
uj , uj

)
” in the definition of regularity

with “all u′j ∈
(
uj , uj

)
.” The latter is unnecessarily strong and rules out many standard densities,

including the multivariate normal. Throughout we interpret the weaker condition as that intended
by Matzkin (2008).

24A nondegenerate local minimum would also suffice.
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Proposition 3. Let Assumption 1 and Condition M hold. Then Assumption 2 holds.

Proof. See Appendix B. �

The proof of Proposition 3 requires several steps, but intuition can be gained by
returning to Figure 1. Recall that rectangle regularity holds when, for each point
x, ln f is regular (has the requisite critical point and tangencies) on a rectangle
that is not too big relative to the support of X around x. In Figure 1, u∗ is a non-
degenerate local max. By the Morse lemma (e.g., Matsumoto (2002), Corollary 2.18.),
nondegenerate critical points are isolated. As the figures suggests, this ensures that
there exist arbitrarily small rectangles around u∗ on which ln f is regular.

Neither of these two sufficient conditions for rectangle regularity implies the other.25

Nonetheless, because Proposition 3 avoids any extreme requirement, it may be more
important. In fact it does not merely avoid the large support assumption: it permits
instruments that vary only over a small open ball. And it does so while requiring
only a relatively mild condition on the log density (see section 6).

4 Identification with a Linear Index Function

When each gj is known, the model (7) reduces to the special case26

rj (Y ) = Xj + Uj j = 1, . . . , J. (24)

where (8) becomes
φ(y|x) = f(r(y)− x) |J(y)| . (25)

We consider this “linear index model” primarily to address identification of each
rj given knowledge of the functions gj obtained through Theorem 1. However, the
linear index model is also of independent interest and has been studied previously
by Matzkin (2015).27 Below we give two theorems demonstrating identification of
this model.28 The first shows that when instruments have large support, there is no
need for a density restriction. The second demonstrates identification with limited
(even arbitrarily small) support. Although the latter requires a restriction on the log
density, this condition is covered by our genericity result in section 6.

25Any setting in which g (X) 6= RJ violates the requirements of Proposition 2. And if g (X) = RJ ,
a log density satisfying that condition but violating Condition M is one whose critical points all lie
in flat regions but are sufficiently separated that tangencies incan be found somewhere in RJ for
every j = 1, . . . , J and u′j ∈ R.

26 More formally, for each j, redefine Xj = gj (Xj), then redefine gj to be the identity function.
All properties required by Assumption 1 are preserved.

27Note also that if one specifies gj (Xj) = Xjβj , the normalization (11) implies βj = 1 ∀j.
28Similarly, given identification of g, the falsifiable restrictions derived in Propositions 6 and 7

below imply falsifiable restrictions in the more general model. Under the verifiable hypothesis of
Assumption 2, the model defined by (7) and Assumption 1 is also falsifiable (see Proposition 8 in
Appendix C).
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4.1 Identification without Density Restrictions

When the instruments X have large support (e.g., Matzkin (2008)), there is no need
to restrict the log density ln f .29

Theorem 2. Let Assumption 1 hold and suppose X = RJ . Then in the linear index
model, r is identified on Y.

Proof. Because
∫∞
−∞ · · ·

∫∞
−∞ f (r (y)− x) dx = 1, (25) implies

|J(y)| =
∫ ∞
−∞
· · ·
∫ ∞
−∞

φ (y|x) dx.

So by (25),

f (r (y)− x) =
φ (y|x)∫∞

−∞ · · ·
∫∞
−∞ φ (y|t) dt

.

Thus the value of f (r (y)− x) is uniquely determined by the observables for all x ∈ RJ

and y ∈ Y. Let Fj denote the marginal CDF of Uj. Since∫
x̂j≥xj ,x̂−j

f (r (y)− x̂) dx̂ = Fj (rj (y)− xj) (26)

the value of Fj (rj (y)− xj) is identified for all xj ∈ R and y ∈ Y. By (12),

Fj (rj (ẏ)− ẋj) = Fj (0) . For every y ∈ Y we can then find the value
o
x (y) such

that Fj

(
rj (y)− o

x (y)
)

= Fj (0), which reveals rj (y) =
o
x (y). This identifies each

function rj on Y. �

Note that although J(y) is a functional of r, this relationship was not imposed
in our proof; rather, the Jacobian determinant was treated as a nuisance parameter
to be identified separately. Thus, the definition J (y) = det (∂r(y)/∂y) provides a
falsifiable restriction of the model and large support assumption.

Proposition 4. If X = RJ , then the joint hypothesis of the linear index model (24)
and Assumption 1 is falsifiable.

4.2 Identification with Limited Support

To demonstrate identification when X has limited support, a different approach is
needed. In the linear index model (13) and (15) become, respectively,

∂ lnφ(y|x)

∂xj
= −∂ ln f(r(y)− x)

∂uj
(27)

29The argument used to show Theorem 2 was first used by Berry and Haile (2014) in combination
with additional assumptions and arguments to demonstrate identification in a model of differentiated
products demand and supply.
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and
∂ lnφ(y|x)

∂yk
=
∂ ln |J(y)|

∂yk
−
∑
j

∂ lnφ(y|x)

∂xj

∂rj(y)

∂yk
. (28)

We rewrite (28) as
ak (x, y) = d (x, y)

ᵀ
bk (y) (29)

where we define ak (x, y) = ∂ lnφ(y|x)
∂yk

, d (x, y)
ᵀ

=
(

1,−∂ lnφ(y|x)
∂x1

, . . . ,−∂ lnφ(y|x)
∂xJ

)
, and

bk (y) =
(
∂ ln|J(y)|
∂yk

, ∂r1(y)
∂yk

, . . . , ∂rJ (y)
∂yk

)ᵀ
. Here ak (x, y) and d (x, y) are observable whereas

bk (y) involves unknown derivatives of the functions rj. From (29) it is clear that bk (y)

is identified if there exist points x̃ =
(
x̃0, . . . , x̃J

)ᵀ
, with each x̃j ∈ X, such that the

(J + 1)× (J + 1) matrix

D (x̃, y) ≡

 d (x̃0, y)
ᵀ

...

d
(
x̃J , y

)ᵀ
 (30)

has full rank.30 This yields the following observation, obtained previously by Matzkin
(2015).

Lemma 3. Let Assumption 1 hold. For a given y ∈ Y, suppose there exists no
nonzero vector c = (c0, c1, . . . , cJ)

ᵀ
such that d (x, y)

ᵀ
c = 0 ∀x ∈ X. Then in the

linear index model, ∂r(y)/∂yk is identified for all k.

This result provides identification of ∂r(y)/∂yk at a point y when the support of
X covers points x̃ such that D (x̃, y) is invertible. Matzkin (2010) has provided a
sufficient condition: that there exist x̃ such that D (x̃, y) is diagonal with nonzero
diagonal terms. Using our earlier geometric interpretation, that condition requires
the log density to have an appropriate set of critical values and tangencies within the
set {r (y)−X}. When X = RJ , that is a mild requirement (and can be made slightly
milder by requiring only triangular D (x̃, y) with nonzero diagonal). However, The-
orem 2 shows that with large support we may dispense with all density restrictions.
And when X 6= RJ , densities having the requisite tangencies and critical values in
{r (y)− X} to obtain a diagonal or triangular D (x̃, y) for every y (or even all y in a
substantial subset of its support) would be quite special.

Of course, most invertible matrices are not diagonal or triangular, suggesting that
these sufficient conditions are much stronger than necessary. By instead considering
conditions on the second derivatives of ln f , we can show that a mild restriction

30In particular, let Ak (x̃, y) =
(
ak
(
x̃0, y

)
· · · ak

(
x̃J , y

))ᵀ
and stack the equations obtained from

(29) at each of the points x̃(0), . . . , x̃(J), yielding Ak (x̃, y) = D (x̃, y) bk (y) . When D (x̃, y) is invert-

ible we obtain bk (y) = D (x̃, y)
−1
Ak (x̃,y) .
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ensures identification, even when X has arbitrarily small support.31

Define the second-derivative matrix

Hφ (x, y) =
∂2 lnφ (y|x)

∂x∂xᵀ
=


∂2 lnφ(y|x)

∂x21
· · · ∂2 lnφ(y|x)

∂xJ∂x1
...

. . .
...

∂2 lnφ(y|x)
∂x1∂xJ

· · · ∂2 lnφ(y|x)

∂x2J

 . (31)

Observe that, fixing a value of y and c = (c0, c1, . . . , cJ)
ᵀ
, d (x, y)

ᵀ
c is a function of

x, with gradient Hφ (x, y) (c1, . . . , cJ)
ᵀ
. This leads to the following lemma, and the

theorem that follows.32 Note that although the theorem allows for the possibility of
identification on a strict subset of Y, the case Y′= Y is also covered.

Lemma 4. For a nonzero vector c = (c0, c1, . . . , cJ)
ᵀ
,

d (x, y)
ᵀ
c = 0 ∀x ∈ X (32)

if and only if for the nonzero vector c̃ = (c1, . . . , cJ)
ᵀ

Hφ (x, y) c̃ = 0 ∀x ∈ X. (33)

Proof. See Appendix C. �

Theorem 3. Let Assumption 1 hold and let Y′⊂ Y be open and connected. Suppose
that, for almost all y ∈ Y′, there is no nonzero J-vector c̃ such that

∂2 ln f (r (y)− x)

∂u∂uᵀ
c̃ = 0 ∀x ∈ X.

Then in the linear index model, r is identified on Y′.

Proof. From (27), ∂2 lnφ (y|x) /∂xj∂xk = ∂2 ln f (r (y)− x) /∂uj∂uk. Identification
of ∂r(y)/∂yk for all k and y ∈ Y′ then follows from the definition (31), Lemma 4,
Lemma 3, and continuity of the derivatives of r. Since Y′ is an open connected
subset of RJ , every pair of points in Y′ can be joined by a piecewise linear (and, thus
piecewise continuously differentiable) path in Y′.33 With the boundary condition (9),
identification of rj (y) for all y and j then follows from the fundamental theorem of
calculus for line integrals. �

Corollary 1 follows immediately from Theorem 3.

31Matzkin (2015, Theorem 4.2) considers a different type of second-derivative condition to show
partial identification in a related model. Chiappori and Komunjer (2009b) combine a completeness
condition with a different second-derivative condition to obtain identification in a discrete choice
model requiring more than one instrument per equation.

32Using related arguments, Propositions 6 and 7 in Appendix E demonstrate falsifiability of the
linear index model.

33See, e.g., Giaquinta and Modica (2007), Theorem 6.63.
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Corollary 1. Let Assumption 1 hold and let Y′⊂ Y be open and connected. Suppose
that, for almost all y ∈ Y′, ∂2 ln f (u) /∂u∂uᵀ is nonsingular at some u ∈ {r(y)− X}.
Then in the linear index model, r is identified on Y′.

This corollary covers many different combinations of restrictions on (X, f) suf-
ficient for identification. Given Theorem 2, those of interest permit instruments
with limited support. For example, if ∂2 ln f (u) /∂u∂uᵀ is nonsingular almost every-
where, identification of r on Y holds even with arbitrarily small X. Nonsingularity
of ∂2 ln f (u) /∂u∂uᵀ almost everywhere holds for many standard joint probability
distributions; examples of densities that violate this condition are those that are flat
(uniform) or log-linear (exponential) on an open set. Of course, nonsingularity almost
everywhere is much more than required: for Corollary 1 to apply, it is sufficient that
∂2 ln f (u) /∂u∂uᵀ be nonsingular once in {r(y)− X} for each y ∈ Y′.34 We will see
below that this is requirement holds generically, even when X is a small open ball.

In addition, we observe that (27) immediately implies verifiability of the rank
condition hypothesized in Corollary 1.

Proposition 5. For any y ∈ Y, the following condition is verifiable: ∂2 ln f (u) /∂u∂uᵀ

is nonsingular at some u ∈ {r(y)− X}.

5 Identification of the Full Model

Together, the results in sections 3 and 4 yield many combinations of sufficient con-
ditions for identification of the full (nonlinear index) model. We summarize many
of these combinations in two corollaries. The first follows the prior literature in ex-
ploiting instruments with large support, but generalizes Matzkin’s (2008) result by
allowing Condition M to replace regularity on RJ . The second Corollary offers a more
significant step forward. It provides the first result showing identification of the full
model without a large support condition.

Corollary 2. Suppose Assumption 1 holds and that g (X) = RJ . If either (a) Condi-
tion M holds or (b) f is regular on RJ , then g is identified on X, and r is identified
on Y.

Proof. By Theorem 1, identification of g follows from Propositions 2 (in case (b)) and
3 (in case (a)). Identification of r then follows from Theorem 2. �

We view Corollary 3, below, as our most important result. This result shows that
identification of the full model can be attained even when instruments vary only over
a small open ball.

34In some applications it may be reasonable to assume that Uj and Uk are independent for all k 6= j.
Because ∂2 ln f (u) /∂u∂uᵀ is diagonal under independence, it is then sufficient that ∂2 ln fj (ûj) /∂u

2
j

be nonzero for all j at some û ∈ {r (y)− X} .
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Corollary 3. Let Y′⊂ Y be open and connected, and suppose that Assumption 1 and
Condition M hold. If, for almost all y ∈ Y′, ∂2 ln f (u) /∂u∂uᵀ is nonsingular at some
u ∈ {r (y)− g (X)}, then g is identified on X and r is identified on Y′.

Proof. By Theorem 1 and Proposition 3, g is identified on X. Identification of r on
Y′ then follows from Corollary 1. �

Although Corollary 3 permits instruments with limited support, it requires two
conditions on the log density: Condition M and invertibility of the Hessian matrix
at some point in the set {r (y)− g (X)} for almost all y ∈ Y′. The importance of
the result depends on the restrictiveness of these requirements. This is a topic we
take up in the following section. There we use a standard notion of genericity to
show that, even when X has arbitrarily small support, simultaneous satisfaction of
these conditions can be viewed as “typical” among log densities on RJ that are twice
continuously differentiable an possess a local maximum.35 Thus, there is at least one
formal sense in which the requirements of Corollary 3 may be viewed as mild.

6 Generic Identification

In this section we demonstrate that, if Y′ is the pre-image of any (open) rectangle
in RJ (or more generally, any bounded open connected set), the requirements of
Corollary 3 hold generically among log densities on RJ that are twice continuously
differentiable an possess a local maximum. This is true even when instruments vary
only over an arbitrarily small open ball. This implies a form of generic identification
of g on X and of r on Y′.36

To demonstrate this result, first let G =×j
[
gj
(
xj
)
, gj (xj)

]
⊂ g (X) be a compact

“square” in RJ with width wx = gj (xj)−gj
(
xj
)
> 0 for all j.37 We form a tessellation

of RJ using squares of width wx/2.38 Let σ = (σ1, . . . , σJ) denote a J-vector of

35Existence of a local maximum is a mild requirement for a continuously differentiable log density
on RJ . A local max always exists when J = 1. More generally, one sufficient condition is existence
of a global maximum, which is guaranteed under the following vanishing tails condition: for any
ε > 0 there exists a compact set S (ε) such that f (u) < ε for all u /∈ S (ε).

36Because r (Y′) may be arbitrarily large, the gap between generic identification on Y′ and generic
identification on the pre-image of RJ (i.e., on Y) may be of little importance.

37Such a square must exist. Because X is open and each component gj of g is continuous and
strictly increasing, g (X) is open. Given any open ball in g (X), there exists wx > 0 sufficiently small
that some square of width wx lies inside the ball.

38In three or more dimensions, a tessellation is also known as a honeycomb, and a what we call
a square is a cube or hypercube. For simplicity, as with our use of the term “rectangle,” we use
the language of the two-dimensional case. We point out, however, that our definition of rectangle
involves an open set while what we call a square is closed.
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integers. For each σ ∈ ZJ define the square

sqσ = ×j
[

2σj − 1

4
wx,

2σj + 1

4
wx

]
.

Then {sqσ}σ∈ZJ forms a regular tessellation of RJ such that, for every y ∈ Y, the set
{r (y)− G} (and therefore {r (y)− g (X)}) covers some square sqσ.

Given any open set S ⊂ RJ that is bounded and connected, let YS denote the pre-
image of S under r. Because r is continuous, YS is open; and because r has continuous
inverse (see proof of Lemma 1), YS is connected. Boundedness of S implies that there
is a finite set ZS ⊂ ZJ such that

∪σ∈ZSsqq ⊃ {r (YS)− G} , (34)

where here the minus sign denotes the Minkowski difference. By construction, for ev-
ery y ∈ YS there exists σ ∈ ZS such that {r (y)− g (X)} covers sqσ. So if Assumption
1 and Condition M hold, the following is sufficient for Corollary 3 to apply, yielding
identification of g on X and of r on YS.

Condition H. For every σ ∈ ZS, ∂2 ln f (u) /∂u∂uᵀ is nonsingular at some u ∈ sqσ.

We show below that simultaneous satisfaction of Conditions M and H is generic
in the space of log densities on RJ that are twice continuously differentiable and
possess a local maximum. To define this space, first let C2

(
RJ
)

denote the space of
twice continuously differentiable real valued functions on RJ . We define a topology
on C2

(
RJ
)

using the C2 extended norm ‖·‖C2 , where

‖h‖C2 = sup
u∈RJ
|h (u)|+ max

j∈{1,...,J}
sup
u∈RJ

∣∣∣∣∂h (u)

∂uj

∣∣∣∣+ max
j,k∈{1,...,J}

sup
u∈RJ

∣∣∣∣∂2h (u)

∂uj∂uk

∣∣∣∣
for any h ∈ C2

(
RJ
)
. Under the induced extended metric,39 two functions h and ĥ in

C2
(
RJ
)

are deemed to be “close” if these functions and their partial derivatives up to
order 2 are uniformly close.40 Let F ⊂ C2

(
RJ
)

denote the subspace (with subspace
topology) of twice continuously differentiable log densities on RJ that possess a local
maximum. We say that functions in a set H ⊂ F are generic in F if H is a dense
open subset of F (see, e.g., Mas-Colell (1985)).41

39A metric inducing the same topology is d̃ (h′, h) =
‖h′−h‖

C2

1+‖h′−h‖C2
. We work with the C2 extended

metric to simplify exposition.

40Our genericity result also holds under the alternative (coarser) topology of compact convergence
(of sequences of functions in C2

(
RJ
)

and their partial derivatives up to order 2). Results regarding
denseness in F trivially extend to any coarser topology. And our arguments demonstrating openness
rely only on convergence within explicitly defined compact subsets of RJ .

41A weaker notion of genericity is that of a residual set (countable intersection of dense open
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Theorem 4. Let Assumption 1 hold, let S ⊂ RJ be bounded, open, and connected,
and let ZS be as defined in (34). The set F∗S = {ln f ∈ F : Conditions M and H hold}
is dense and open in F .

To prove this result, define the following subsets of F :

FHσ =
{

ln f ∈ F : ∂2 ln f(u)/∂u∂u
ᵀ

is nonsingular at some u ∈ sqσ
}

FH = {ln f ∈ F : Condition H holds}
FM = {ln f ∈ F : Condition M holds} .

Then we have
FH = ∩σ∈ZSFHσ (35)

and
F ∗S = FM ∩ FH . (36)

Thus F ∗S is a finite intersection of subsets of F . In Corollary 4 below (section 6.1), we
show that F∗S is dense in F . Lemmas 7 and 8 below (section 6.2) show that FM and
each FHσ (for σ ∈ ZJ) is open in F . Theorem 4 then follows from (35) and (36).42

6.1 Dense

Let
F∗ = FM ∩σ∈ZJ FHσ . (37)

In this subsection we prove the following result, whose Corollary is immediate from
the fact that F∗ ⊂ F∗S.

Lemma 5. F∗ is dense in F .

Corollary 4. F∗S is dense in F .

Fix any ln f ∈ F and let u∗ denote a local max. To prove Lemma 5, it is sufficient
to show that for any ε > 0, there exists ln f ∗ ∈ F∗ such that ||ln f ∗ − ln f ||C2 < ε. Let

subsets). With minor modification, our arguments below demonstrate that even the set F∗ ⊂ F∗S
(defined in (37)) is residual in F . By Corollary 3, log densities in F∗ ensure identification even for
the case Y′ = Y. However, because F is not a complete metric space, we use the more demanding
genericity notion, requiring a dense open subset. As noted by Mas-Colell (1985), these topological
notions of genericity are standard in infinite dimensional spaces but can sometimes provide too
weak a notion of “typical” (see also Hunt, Sauer, and Yorke (1992), Anderson and Zame (2001), or
Stinchcombe (2002)). Exploration of other notions of genericity applicable to our setting is beyond
the scope of this paper.

42Although we focus on genericity of the conditions required by Corollary 3, Lemmas 5 and 7
below also imply that FM is a dense open subset of F (see Corollary 2).
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wf > 0 be such that ln f (u∗) ≥ ln f (u) for all u in the square ×j
[
u∗j −

wf
2
, u∗j +

wf
2

]
.43

Let s∗ be a closed square with center u∗ and width

w = min
{wx

4
, wf

}
.

For all j, let uj and uj be defined such that s∗ = ×j
[
uj, uj

]
.

Starting from s∗, form another tessellation of RJ using squares of width w. Let
τ = (τ1, . . . , τJ) denote a J-vector of integers. For each τ ∈ ZJ define the square
sτ = ×j

[
uj + τjw, uj + τjw

]
. Then {sτ}τ∈ZJ forms a regular tessellation of RJ .44 Let

u̇τ = (u̇τ1, . . . , u̇τJ) denote the center of square τ . For τ = (0, . . . , 0), we then have
sτ = s∗ and u̇τ = u∗. For all u ∈ RJ , let τ (u) ∈ ZJ denote the index of a square
such that u ∈ sτ(u).

45 Observe that every cell of the tessellation {sqσ}σ∈ZJ covers
at least one cell of the tessellation {sτ}τ∈ZJ . We prove Lemma 5 by constructing an
arbitrarily small perturbation of ln f that (i) lies in F , (ii) has a nondegenerate local
max at u∗, and (iii) has a nonsingular Hessian matrix at the center of every square
sτ .

Let f denote the probability density function associated with the fixed log density
ln f (i.e., f = exp (ln f)). For v ∈ R define46

p(v) = 1{|v| ≤ 1}
(
1− v2

)3
.

Given any λ > 0 and {λτ ∈ (0, λ]}τ∈ZJ , for all u ∈ RJ let

fλ (u) = κf (u) exp

(
λτ(u)

J∏
j=1

p

(
uj − u̇τ(u)j

w/2

))
, (38)

with particular values of each λτ to be determined below. The scalar κ is chosen to
ensure that fλ (u) integrates to one on RJ , i.e.,

κ =

[∫
RJ
f (u) exp

(
λτ(u)

J∏
j=1

p

(
uj − u̇τ(u)j

w/2

))
du

]−1

. (39)

43Such wf must exist since around any local max is an open ball on which ln f (u∗) is (at least
weakly) maximal.

44Unlike the tessellation {sqσ}σ∈ZJ , this tessellation may vary with the choice of ln f through the
choice of the point u∗ and width w.

45There will be only one such square for almost all u. However, any u on the boundary of one
square will also be on the boundary of at least one other square. How the function τ (u) resolves
this ambiguity does not matter for what follows.

46The function p is proportional to a triweight kernel (see, e.g., Silverman (1986)). In Appendix
D we discuss some relevant properties of p and of a log density perturbed on a square using this
function as in (38).
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Because the term λτ(u)

∏J
j=1 p

(
uj−u̇τ(u)j

w/2

)
takes only values between 0 and λτ(u), κ

must lie in the interval [exp (−λ) , 1]. Thus, by construction the perturbed function
fλ is positive on RJ , integrates to one, and (see Appendix D) is twice continuously
differentiable on RJ .

We first show that ln fλ is made arbitrarily close to ln f by setting λ sufficiently
small. The proof follows easily from (38) and is relegated to Appendix C.

Claim 5. For any ε > 0, there exists λ∗ > 0 such that for any λ ∈ (0, λ∗) and any
{λτ ∈ (0, λ]}τ∈ZJ , ‖ln fλ − ln f‖C2 < ε.

To complete the proof of Lemma 5 we show that, given any λ > 0, the scaling
parameters {λτ}τ∈ZJ can be chosen to ensure that ln fλ ∈ F∗.

Claim 6. For any λ > 0, there exist {λτ ∈ (0, λ]}τ∈ZJ such that ln fλ ∈ F∗.

Proof. Fix any λ > 0. We first show that there exist {λτ ∈ (0, λ]}τ∈ZJ such that, for
all σ ∈ ZJ , ∂2 ln fλ (u) /∂u∂uᵀ is nonsingular at some u ∈ sqσ. Because every square
sqσ covers the square sτ for some τ ∈ ZJ , it is sufficient that, for each τ and some
λτ ∈ (0, λ], ∂2 ln fλ (u) /∂u∂uᵀ is nonsingular at u = u̇τ . Take any τ ∈ ZJ . Equations
(C.4)–(C.6) imply47

∂2 ln fλ (u̇τ )

∂u∂uᵀ
=
∂2 ln f (u̇τ )

∂u∂uᵀ
−
(

24λτ
w2

)
IJ ,

where IJ is the identity matrix. The eigenvalues of ∂2 ln fλ (u̇τ ) /∂u∂u
ᵀ are therefore

equal to those of ∂2 ln f (u̇τ ) /∂u∂u
ᵀ minus 24λτ

w2 . So for almost all values of λτ ∈
(0, λ], all eigenvalues of ∂2 ln fλ (u̇τ ) /∂u∂u

ᵀ are nonzero, ensuring that ln fλ ∈ FH .48

Fixing any such {λτ ∈ (0, λ]}τ∈ZJ , we then complete the proof by showing that ln fλ ∈
FM . By our choice of the point u∗ and square s∗, u∗ ∈ arg maxu∈s∗ ln f (u). And
because u∗ = u̇τ for τ = (0, . . . , 0), u∗ = arg maxu∈s∗ [ln fλ (u)− ln f (u)]. Thus,
u∗ is a local maximum of ln fλ and, by the choice of λτ above for τ = (0, . . . , 0),
∂2 ln fλ (u∗) /∂u∂uᵀ is nonsingular. �

6.2 Open

To prove the required openness results, we begin with a result from the literature on
Morse functions.49 Given any compact K ⊂ RJ , let C2 (K) denote the space of twice

47See the values of p(0), p′(0) and p′′(0) given in section D.

48Since we needed only one such λτ we have shown more than necessary. Thus the “abundance”
of perturbations lying in F∗ is even greater than required by the notion of C2-denseness.

49See, e.g., Lemma 5.32 in Banyaga and Hurtubise (2004). We provide a proof in Appendix C.
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continuously differentiable real valued functions on K. For h ∈ C2 (K), let

‖h‖C2
K

= sup
u∈K
|h (u)|+ max

j∈{1,...,J}
sup
u∈K

∣∣∣∣∂h (u)

∂uj

∣∣∣∣+ max
j,k∈{1,...,J}

sup
u∈K

∣∣∣∣∂2h (u)

∂uj∂uk

∣∣∣∣ .
Lemma 6. Suppose that f ∈ C2 (K) has no degenerate critical point. Then there
exists ε > 0 such that any g ∈ C2 (K) satisfying ‖f− g‖C2

K
< ε has no degenerate

critical point.

Next we show that FM is an open subset of F .

Lemma 7. For every ln f ∈ FM there exists ε > 0 such that if ln f̂ ∈ F and∥∥∥ln f̂ − ln f
∥∥∥
C2
< ε, then ln f̂ ∈ FM .

Proof. Take any ln f ∈ FM and let u∗ denote a nondegenerate local maximum. In the
proof of Lemma 9 (see Appendix B) we show that for some compact connected set Σ
with nonempty interior there exists c such that (i) the upper contour set A (c,Σ) =
{u ∈ Σ : ln f (u) ≥ c} lies in the interior of Σ and (ii) the restriction of ln f to A (c,Σ)
attains a maximum c̄ = ln f (u∗) > c at its unique critical point. Let K = A (c,Σ).
Because ln f is continuous, A (c,Σ) is closed in RJ . And because A (c,Σ) lies on the
interior of the compact set Σ, A (c,Σ) is bounded. Thus K is compact, and ln f
has no degenerate critical point on K. So by Lemma 6, for all sufficiently small

ε > 0,
∥∥∥ln f̂ − ln f

∥∥∥
C2

< ε ensures that also has no degenerate critical point on

K. To complete the proof it suffices to show that, for all sufficiently small ε > 0,∥∥∥ln f̂ − ln f
∥∥∥
C2
< ε ensures that the restriction of ln f̂ to K has a maximum on the

interior of K. By continuity of ln f , ln f (u) = c for all u on the boundary of K. So

when supu∈K

∣∣∣ln f̂(u)− ln f(u)
∣∣∣ < ε (implied by

∥∥∥ln f̂ − ln f
∥∥∥
C2
< ε), ln f̂ must take

values no more than c + ε on the boundary of K and no less than c̄ − ε at u∗. For
sufficiently small ε > 0 we have c + ε < c̄ − ε, requiring that the restriction of ln f̂
toK have an interior maximum. �

Finally, we show that for every σ ∈ ZJ , FH
σ is an open subset of F .

Lemma 8. For any σ ∈ ZJ and any ln f ∈ FHσ , there exists ε > 0 such that if

ln f̂ ∈ F and
∥∥∥ln f̂ − ln f

∥∥∥
C2
< ε, ln f̂ ∈ FHσ .

Proof. Fix σ ∈ ZJ and ln f ∈ FHσ , the latter implying that for some δ > 0
and some û ∈ sqσ, |det (∂2 ln f (û) /∂u∂uᵀ)| > δ. Recall that ‖h‖C2 < ε requires

maxj,k∈{1,...,J} supu∈S

∣∣∣ ∂2h(u)
∂uj∂uk

∣∣∣ < ε. So for sufficiently small ε > 0,
∥∥∥ln f − ln f̂

∥∥∥
C2
< ε

implies
∣∣∣ det

(
∂2 ln f(û)
∂u∂uᵀ

)
− det

(
∂2 ln f̂(û)
∂u∂uᵀ

) ∣∣∣ < δ, ensuring that
∣∣∣det

(
∂2 ln f̂(û)
∂u∂uᵀ

)∣∣∣ > 0. �
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7 Conclusion

We have developed new sufficient conditions for identification in a class of nonpara-
metric simultaneous equations models introduced by Matzkin (2008, 2015). These
models combine traditional exclusion restrictions with an index restriction linking
the roles of unobservables and observables. Our results establish identification of
these models under more general and more interpretable conditions than previously
recognized. Our most important results are those demonstrating identification with-
out a large support condition. Indeed, our genericity result demonstrates a standard
formal sense in which, even when instruments have arbitrarily small support, our suf-
ficient conditions for identification may be viewed as mild. We have also shown that
instruments with large support allow identification under even weaker density condi-
tions or, in the case of the linear index model, no density restriction at all. We have
also shown that key identifying assumptions required by our results are verifiable,
and that the maintained assumptions of the model are falsifiable.

Together these results demonstrate the robust identifiability of fully simultaneous
models satisfying Matzkin’s (2008, 2015) residual index structure. These models cover
a range of important applications in economics. Although we have focused exclusively
on nonparametric identification, our results provide a more robust foundation for ex-
isting (parametric and nonparametric) estimators and may suggest strategies for new
estimation and testing approaches. Among other important topics left for future work
are (a) a full treatment of identification when instruments have discrete support, and
(b) in particular applications, the potential identifiability of specific counterfactual
quantities of interest under conditions that relax the assumptions we impose to ensure
point identification of the model itself.
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Appendices

A Examples of Simultaneous Economic Models

Here we provide a few examples of simultaneous systems arising in important eco-
nomic applications, relate the structural forms of these models to their associated
residual forms, and describe nonparametric functional form restrictions generating
the residual index structure.

Example 1. Consider first a nonparametric version of the classical simultaneous
equations model, with the structural equations given by

Yj = Γj (Y−j, Z,Xj, Uj) j = 1, . . . , J, (A.1)

where Y−j denotes {Yk}k 6=j. This system demonstrates full simultaneity in the most
transparent form: all J endogenous variables Y appear in each of the J equations.
The system (A.1) also reflects the exclusion restrictions that each Xj appears only in
equation j. Thus, for each equation j, X−j are excluded exogenous variables that may
serve as instruments for the included right-hand-side endogenous variables Y−j. Ex-
tensive discussion and examples can be found in the theoretical and applied literatures
on parametric (typically, linear) simultaneous equations models.

The residual index structure arises by requiring

Γj (Y−j, Z,Xj, Uj) = γj (Y−j, Z, δj (Z,Xj, Uj)) ∀j

where δj (Z,Xj, Uj) = gj (Z,Xj) + Uj. The resulting model features nonseparable
structural errors but requires them to enter the nonseparable nonparametric function
Γj through the index δj (Z,Xj, Uj). If each function γj is invertible (e.g., strictly in-
creasing) in δj (Z,Xj, Uj), then one obtains (6) from the inverted structural equations
by letting rj = γ−1

j . Identification of the functions rj and gj for each j then implies
identification of each Γj.

Example 2. Although simultaneity often arises when multiple agents interact, single-
agent settings involving interrelated choices also give rise to fully simultaneous sys-
tems. In addition, the structural equations obtained from the economic model need not
take the form (A.1). As an example illustrating both points, consider identification of
a production function when firms are subject to shocks to the marginal product of each
input. Suppose that a firm’s output is given by Q = Ψ (Y, E), where Ψ is a concave
production function, Y ∈ RJ

+ is a vector of input quantities, and E ∈ RJ is a vector of
factor-specific productivity shocks affecting the firm.50 The shocks are known by the
firm when input levels are chosen, but unobserved to the econometrician. Let P and

50Alternatively, one can derive the same structure from a model with a Hicks-neutral productivity
shock and factor-specific shocks for J − 1 of the inputs.
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W denote exogenous prices of the output and inputs, respectively. The observables
(from a population of firms) are (Q, Y, P,W ).

Profit-maximizing behavior is characterized by a system of first-order conditions

p
∂Ψ (y, ε)

∂yj
= wj j = 1, . . . , J. (A.2)

The solution(s) to this system of equations define input demand correspondences
yj (p, w, ε). Here, full simultaneity is reflected by the fact that demand for each input
j (or, equivalently, each first-order condition in (A.2)) depends on the entire vector
of shocks.

The index structure can be obtained by assuming that, for some unknown function
ψj and unknown strictly increasing function hj,

∂Ψ (y, ε)

∂yj
= hj (ψj (y) εj) .

This restriction combines a weak form of multiplicative separability with a formal-
ization of the notion that the shocks are factor-specific: εj is the only shock directly
affecting the marginal product of input j.51

The first-order conditions (A.2) then take the form

hj (ψj (y) εj) =
wj
p

or, equivalently,

ψj (y) εj = h−1
j

(
wj
p

)
.

Taking logs, we have

ln (ψj (y)) = gj

(
wj
p

)
− ln (εj) j = 1, . . . , J

where gj = lnhj is an unknown strictly increasing function. Defining Xj =
Wj

P
,

Uj = ln (Ej), and rj = lnψj, we then obtain a model of the form (6). Our identifi-
cation results above then imply identification of the functions ψj and, therefore, the
realizations of each productivity shock Ej. Since Q and Y are observed, this implies
identification of the production function Ψ.

Example 3. Example 1 covers the elementary supply and demand model for a sin-
gle good in a competitive market. Allowing multiple goods (including substitutes or
complements) and firms with market power typically leads to demand and “supply”
equations with a different form. Let P = (P1, . . . , PK) denote the prices of goods

51A similar form of additive separability would also lead to the residual index structure.
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1, . . . , K, with Q = (Q1, . . . , QK) denoting their quantities (expressed, e.g., in levels
or shares). Let Vj ∈ R and ξj ∈ R denote, respectively, observed and unobserved
demand shifters for good j. All other observed demand shifters have been conditioned
out, treating them fully flexibly. Let V = (V1, . . . , VK) and ξ = (ξ1, . . . , ξK). Demand
for each good j then takes the form

Qj = Dj (P, V, ξ) . (A.3)

Observe that each demand function Dj depends on K (endogenous) prices as well as
K structural errors ξ. To impose the index structure, first define

δj = αj (Vj) + ξj

where αj is strictly increasing. Then, letting δ = (δ1, . . . , δJ), suppose that (A.3) can
be written

Qj = σj (P, δ) . (A.4)

On the supply side, let Wj ∈ R and ωj ∈ R denote observed and unobserved cost
shifters, respectively (all other observed shifters of costs or markups have been condi-
tioned out, treating these fully flexibly). Assuming single-product firms for simplicity,
let each firm j have a strictly increasing marginal cost function

cj (κj) ,

where, for some strictly increasing function βj,

κj = βj (Wj) + ωj.

Let κ = (κ1, . . . , κK). Suppose that prices are determined through oligopoly competi-
tion, yielding a reduced form52

Pj = πj (δ, κ) j = 1, . . . , K. (A.5)

Note that here each price Pj depends on all 2K structural errors.
Berry, Gandhi, and Haile (2013) and Berry and Haile (2014) provide conditions

ensuring that the system of equations (A.4) and (A.5) can be inverted, yielding a
2K × 2K system

αj (Vj) + ξj = σ−1
j (Q,P )

βj (Wj) + ωj = π−1
j (Q,P ) .

Letting J = 2K, r =
(
σ−1

1 , . . . , σ−1
K , π−1

1 , . . . , π−1
K

)ᵀ
, X = (V1, . . . , VK ,W1, . . . ,WK)

ᵀ
,

and U = (ξ1, . . . , ξK , ω1, . . . , ωK)
ᵀ
, we obtain the system (6). The primary objects of

52Berry and Haile (2014) show that such a reduced form arises under standard models of oligopoly
supply.
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interest in applications include demand derivatives (elasticities) and firms’ marginal
costs, as these allow construction of a wide range of counterfactual predictions. Iden-
tification of all αj, βj, σ

−1
j and π−1

j immediately implies identification of all πj and σj,
and thus all demand derivatives. Specifying the extensive form of oligopoly competi-
tion then typically yields a mapping from prices, quantities, and the demand functions
σj to marginal costs (see Berry and Haile (2014)), yielding identification of marginal
costs as well.

B Proof of Proposition 3

In this appendix we show that (given Assumption 1) Condition M implies rectangle
regularity (Assumption 2). Along the way we establish additional (weaker) sufficient
conditions for rectangle regularity. We let B (u, ε) denote an ε-ball around a point
u ∈ RJ . For c ∈ R and Σ ⊂ RJ , we let A (c; Σ) denote the upper contour set of the
restriction of ln f to Σ. We begin with a new condition and new definition.

Condition M′. There exists c ∈ R and a compact connected set S ⊂ RJ with
nonempty interior such that (i) A (c;S) ⊂ int (S), and (ii) the restriction of ln f to
A (c;S) attains a maximum c > c at its unique critical point.

Definition 3. ln f satisfies local rectangle regularity if it possesses a critical point
u∗ such that for all ε > 0, ln f is regular on a rectangle R (u∗, ε) such that u∗ ∈
R (u∗, ε) ⊂ B (u∗, ε).

Condition M′ requires that if we “zoom in” to a sufficiently small neighborhood of
a local max (first to S, then further to an upper contour set of ln f on the restricted
domain S), the local max is the only critical point “in sight.” Note that Condition
M′ requires no second derivatives of ln f . Local rectangle regularity requires that,
around some critical point u∗, there exist arbitrarily small rectangles on which ln f
is regular. Below we show that Condition M =⇒ Condition M′ =⇒ local rectangle
regularity =⇒ rectangle regularity.

Lemma 9. Condition M implies Condition M′.

Proof. Let u∗ be a point at which ln f has a nondegenerate local max, and let
c̄ = ln f (u∗). By the Morse lemma, a nondegenerate critical point is an isolated
critical point.53 So there exists ε > 0 such that on the open ball B(u∗, ε), u∗ is both
the only critical point and a strict maximum. Let S be a compact connected subset
of B(u∗, ε) with u∗ in its interior. Because u∗ is the only critical point of ln f on S and
maximizes ln f on S, we need only show that there exists c < c̄ such that the upper
contour set A (c;S) lies in the interior of S. Continuity of ln f implies that A (c;S)

53See, e.g., Matsumoto (2002), Corollary 2.18.
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is upper hemicontinuous in c.54 So because u∗ is the only point in A (c̄;S) and S has
nonempty interior, we obtain A (c;S) ⊂ intS by setting c = c̄− δ for any sufficiently
small δ > 0. �

Lemma 10. Local rectangle regularity implies Assumption 2 (rectangle regularity).

Proof. Let u∗ denote the critical point referenced in Definition 3. Given any x ∈ X, let

u∗ (x) = u∗ and let X (x) = ×j
(
x
j
(x) , xj (x)

)
be a rectangle such that x ∈ X (x) ⊂ X.

Define y∗ (x) by (17) and let U (x) = ×j
(
u
j
(x) , uj (x)

)
, where u

j
(x) and uj (x) are

defined by

gj

(
x
j
(x)
)

+ uj (x) = gj
(
xj (x)

)
+ u

j
(x) = gj (x) + u∗ (x) j = 1, . . . , J .

Local rectangle regularity implies that ln f is regular on some rectangle

U (x) = ×j
(
uj (x) , uj (x)

)
⊂ U (x)

such that u∗(x) ∈ U (x). Let X (x) = ×j
(
xj (x) , xj (x)

)
, where each xj (x) and xj (x)

is defined by (18). By construction, X (x) ⊂ X (x) ⊂ X and U (x) satisfies (16). �

The final step is to show that Condition M′ implies local rectangle regularity.
We will require two lemmas before showing this. For these two results, let S be a
connected compact subset of RJ with nonempty interior, and let h : S → R be a
continuous function with upper contour sets A (c) = {u ∈ S : h (u) ≥ c}

Lemma 11. Suppose that for some c < cmax ≡ maxu∈S h(u), A (c) ⊂int(S). Then
A (c) has nonempty interior for all c < cmax.

Proof. Since A (c) ⊂ int (S), we must have h (ũ) < cmax for some ũ ∈ S. Therefore,
since the continuous image of a connected set is connected, h (S) is a nondegenerate
interval. For any c < cmax there must then exist u ∈ S such that max {c, c} <
h(u) < cmax. Since A (c) ⊂ int (S), such u lies in {A (c) ∩ A (c)} ⊂ int (S). Thus, for
sufficiently small ε > 0, we have both B (u, ε) ⊂ S and (by continuity of h) h (û) > c
∀û ∈ B (u, ε). �

Lemma 12. Suppose that for some c ∈ R, A (c) ⊂ int (S) and the restriction of h
to A (c) attains a maximum c > c at its unique critical point u∗. Then (a) A is a
continuous (upper and lower hemicontinuous) correspondence on (c, c]; and (b) A (c)
is a connected set for all c ∈ (c, c)

54 Take any compact Ω ⊂ RJ and continuous h : Ω → R with upper contour sets A (c) =
{u ∈ Ω : h (u) ≥ c}. Since Ω is compact and h is continuous, A is compact-valued. Take any ĉ ∈ R
and a sequence cn such that cn → ĉ. Let un be a sequence such that un ∈ A (cn)∀n and un → û.
If û /∈ A (ĉ) then, because û must lie in Ω, we must have h (û) < ĉ. But then continuity of h would
require h (un) < cn for n sufficiently large, contradicting the fact that un ∈ A (cn) ∀n. So û ∈ A (ĉ).
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Proof. (a) Upper hemicontinuity follows from continuity of h (see footnote 54). To
show lower hemicontinuity,55 take any ĉ ∈ (c, c], any û ∈ A (ĉ), and any sequence
cn → ĉ. If û = u∗ then û ∈ A (c) for all c ≤ c, so with the constant sequence un = û
we have un ∈ A (cn) for all n and un → û. So now suppose that û 6= u∗. Letting ‖ · ‖
denote the Euclidean norm, define a sequence un by

un = arg min
u∈A(cn)

‖u− û‖ (B.1)

so that un ∈ A (cn) by construction. We now show un → û. Take arbitrary
ε > 0. Since h is continuous and h (û) > c, for all sufficiently small δ > 0 we
have B (û, δ) ⊂ A (c). Thus, {B (û, ε) ∩ A (c)} contains an open set. If h (u) ≤ h (û)
for all u in that set, û would be a critical point of the restriction of h to A (c). Since û
is not a critical point, there must exist uε ∈ {B (û, ε) ∩ A (c)} such that h (uε) > h (û).
Since h (û) ≥ ĉ, this implies h (uε) > ĉ. Recalling that cn → ĉ, for n sufficiently large
we then have h (uε) > cn and, therefore, uε ∈ A (cn). So, recalling (B.1), for n suffi-
ciently large we have ‖un − û‖ ≤ ‖uε − û‖ < ε.

(b) Proceeding by contradiction, suppose that for some c ∈ (c, c) the upper con-
tour set A (c) is the union of disjoint nonempty open (relative to A (c)) sets A1 and
A2. Without loss let u∗ lie in A1. By continuity of h, A (c) is a compact subset of
RJ . This requires that A2 be a compact subset of RJ as well.56 The restriction of h
to A2 must therefore attain a maximum at some point(s) u∗∗, which must be on the
interior of A (c). Any such u∗∗ would be another critical point of h on A (c). �

The following result, whose construction is illustrated by Figure 3, then completes
the proof of Proposition 3.

Lemma 13. Condition M′ implies local rectangle regularity.

Proof. Let S, c and c be as defined in Condition M′, and let u∗ denote the critical
point referenced in Condition M′. We first show that, for any ε > 0, there exists
c0 ∈ (c, c̄) such that A (c0;S) ⊂ U ⊂ B (u∗, ε) for some rectangle U . Observe that by
continuity of ln f , u∗ ∈ intA (c;S) for all c0 ∈ (c, c̄). Because S is compact and ln f
is continuous, A (c;S) is compact for all c. And by Lemma 12 (part (a)), A (c;S)
is a continuous correspondence on (c, c].57 Thus maxu∈A(c;S) uj and minu∈A(c;S) uj are

55This argument is similar to that used to prove Proposition 2 in Honkapohja (1987)

56Bounded is immediate. Suppose A2 is not closed: let u /∈ A2 be a limit point of a sequence in
A2. Since A (c) is closed, it must then be that u ∈ A1. But since u was a limit point of a sequence
in A2, for all ε > 0 there exists û ∈ {B (u, ε) ∩ A(c)} such that û ∈ A2. Because A1 and A2 are
disjoint, this requires û /∈ A1, contradicting openness of A1 relative to A (c).

57In Lemmas 11 and 12, let A (c) = A (c;S) and let h be the restriction of ln f to S.
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u∗

S
A(c;S)

U

u1

u
2

Figure 3: Curves show level sets of a bivariate log density in a region of its support. The shaded

area is a connected compact set S. The darker subset of S is an upper contour set A(c;S) of the

restriction of ln f to S. The point u∗ is a local max and the only critical point of ln f on A(c;S). The

rectangle U is defined by tangencies to the upper contour set A(c0;S) for some c0 ∈ (c, ln f(u∗)).

Given any ε > 0, we obtain U ∈ B(u∗, ε) by setting c0 sufficiently close to ln f(u∗).

continuous in c ∈ (c, c], implying continuity of the function

H (c) = max
j

max
u+∈A(c;S)
u−∈A(c;S)

u+
j − u−j c ∈ (c, c].

So, because H (c) = 0, given any ε > 0 there must exist c0 ∈ (c, c) such that the
rectangle

U = ×j
(

min
u−∈A(c0;S)

u−j , max
u+∈A(c0;S)

u+
j

)
(B.2)

lies in B (u∗, ε) (Lemma 11 ensures that each interval is nonempty). Thus, A (c0;S) ⊂
U ⊂ B (u∗, ε). To complete the proof, we show that ln f is regular on U . By con-
struction u∗ ∈ A (c0;S) ⊂ U . Now take arbitrary j and any uj 6= u∗j such that
(uj, u−j) ∈ U for some u−j. By Lemma 12 (part b) and the definition of U , there
must also exist ũ−j such that (uj, ũ−j) ∈ A (c0;S). Let û (j, uj) solve

max
û∈A(c;S): ûj=uj

ln f (û) .

This solution must lie in A (c0;S) ⊂ U and satisfy ∂ ln f (û (j, uj)) /∂uk = 0 for all
k 6= j. Since uj 6= u∗j , we have ∂ ln f (û (j, uj)) /∂uj 6= 0. �
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C Other Proofs Omitted from the Text

Proof of Lemma 1. With (7), part (iii) of Assumption 1 immediately implies (a)
and (b). Parts (iii) and (iv) then imply that r has a continuous inverse r−1 : RJ → RJ .
Connectedness of Y follows from the fact that the continuous image of a connected
set (here RJ) is connected. Since r−1 is continuous and injective and r−1

(
RJ
)

= Y,
Brouwer’s invariance of domain theorem implies that Y is an open subset of RJ . �

Proof of Proposition 1. Fix an arbitrary x ∈ X. By (13),

∂φ(y∗ (x) |x)

∂xj
= 0 (C.1)

if and only if, for u∗ = r (y∗ (x))− g (x), ∂f(u∗)
∂uj

= 0. Thus, existence of the point u∗ in

part (i) of Assumption 2 is equivalent to existence of y∗ (x) ∈ Y such that (C.1) holds.
This is verifiable. Now observe that for X (x) and U (x) as defined in Assumption 2,

x′ ∈ X (x) ⇐⇒ (r (y∗ (x))− g (x′)) ∈ U (x) .

Thus, part (ii) holds if and only if there is a rectangle X (x) =×j
(
xj (x) , xj (x)

)
, with

x ∈ X (x) ⊂ X, such that for all j and almost all x′j ∈
(
xj (x) , xj (x)

)
there exists

x̂
(
j, x′j

)
∈ X (x) satisfying

x̂j
(
j, x′j

)
= x′j and

∂φ(y∗ (x) |x̂
(
j, x′j

)
)

∂xk
6= 0 iff k = j.

Satisfaction of these conditions is observable. Thus, part (ii) is verifiable. �

Proof of Lemma 4. Recall that d (x, y)
ᵀ

=
(

1,−∂ lnφ(y|x)
∂x1

, . . . ,−∂ lnφ(y|x)
∂xJ

)
. Sup-

pose first that (32) holds for nonzero c = (c0, c1, . . . , cJ)
ᵀ
. Differentiating (32) with

respect to x yields (33), with c̃ = (c1, . . . , cJ)
ᵀ
. If c0 = 0 then the fact that c 6= 0

implies cj 6= 0 for some j > 0. If c0 6= 0, then because the first component of d (x, y)
is nonzero and d (x, y)

ᵀ
c = 0, we must have cj 6= 0 for some j > 0. Thus (33) must

hold for some nonzero c̃. Now suppose (33) holds for nonzero c̃ = (c1, . . . , cJ)
ᵀ
. Take

an arbitrary point x0 and let c0 =
∑J

j=1

∂ lnφ(y|x0)
∂xj

cj so that, for c = (c0, c1, . . . , cJ)
ᵀ
,

d (x0, y)
ᵀ
c = 0 by construction. Since the first component of d (x, y) equals 1 for all

(x, y) and X is an open connected subset of RJ , (33) implies that ∂
∂xj

[
d (x, y)

ᵀ
c
]

= 0

for all j and every x ∈ X. Thus (32) holds for some nonzero c. �

Proof of Claim 5. Fix any ε > 0. From (38),

ln fλ (u)− ln f (u) = λτ(u)

∏
j

p

(
uj − u̇τ(u)j

w/2

)
+ lnκ. (C.2)
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So because lnκ ∈ [−λ, 0] (see (39) and the discussion that follows in the text) and

λτ(u)

∏
j p
(
uj−u̇τ(u)j

w/2

)
∈ [0, λ],

sup
u∈RJ
|ln fλ (u)− ln f (u)| ≤ λ. (C.3)

Further, differentiating (C.2) (see Appendix D) we have

∂ ln fλ (u)

∂uj
− ∂ ln f (u)

∂uj
= λτ(u)

∏
` 6=j

p

(
u` − u̇τ(u)`

w/2

) p′(uj − u̇τ(u)j
w/2

)(w
2

)−1
(C.4)

∂2 ln fλ (u)

∂u2j
− ∂2 ln f (u)

∂u2j
= λτ(u)

∏
` 6=j

p

(
u` − u̇τ(u)`

w/2

) p′′(uj − u̇τ(u)j
w/2

)(w
2

)−2
(C.5)

while for j 6= k,

∂2 ln fλ (u)

∂uk∂uj
−
∂2 ln f (u)

∂uk∂uj
= λτ(u)

 ∏
6̀=j,k

p

(
u` − u̇τ(u)`

w/2

) p′ (uk − u̇τ(u)k
w/2

)
p′
(
uj − u̇τ(u)j

w/2

)(w
2

)−2
. (C.6)

The function p is bounded, as are its first and second derivatives (see Appendix D).
So because λτ(u) ∈ (0, λ] , (C.3)–(C.6) demonstrate that

sup
u∈RJ
|ln fλ (u)− ln f (u)|+ max

j∈{1,...,J}
sup
u∈RJ

∣∣∣∣∂ ln fλ (u)

∂uj
− ∂ ln f (u)

∂uj

∣∣∣∣+
max

j,k∈{1,...,J}
sup
u∈RJ

∣∣∣∣∂2 ln fλ (u)

∂uj∂uk
− ∂2 ln f (u)

∂uj∂uk

∣∣∣∣ < ε

for all sufficiently small λ > 0. �

Proof of Lemma 6. For any h ∈ C2 (K) and u ∈ K define ρh (u) =
∑

j

∣∣∣∂h(u)
∂uj

∣∣∣ +∣∣∣det
(
∂2h(u)
∂u∂uᵀ

)∣∣∣. A function h ∈ C2 (K) has no degenerate critical point on K if and

only if ρh (u) > 0 for all u ∈ K. So by the hypothesis of the Lemma, ρf (u) > 0 for
all u ∈ K. Because K is compact and ρf is continuous, there must exist δ > 0 such
that ρf (u) > δ for all u ∈ K. If ||f− g||C2

K
< ε, then∣∣∣∣∂f (u)

∂uj
− ∂g (u)

∂uj

∣∣∣∣ < ε ∀j,∀u ∈ K∣∣∣∣ ∂2f (u)

∂uj∂uk
− ∂2g (u)

∂uj∂uk

∣∣∣∣ < ε ∀j, k,∀u ∈ K.

For sufficiently small ε > 0 these imply∑
j

∣∣∣∣ ∣∣∣∣∂f (u)

∂uj

∣∣∣∣− ∣∣∣∣∂g (u)

∂uj

∣∣∣∣ ∣∣∣∣ <
δ

2
∀u ∈ K∣∣∣∣ ∣∣∣∣det

(
∂2f (x)

∂x∂xᵀ

)∣∣∣∣− ∣∣∣∣det

(
∂2g (u)

∂u∂uᵀ

)∣∣∣∣ ∣∣∣∣ <
δ

2
∀u ∈ K
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which require ∑
j

∣∣∣∣∂g (u)

∂uj

∣∣∣∣ >
∑
j

∣∣∣∣∂f (u)

∂uj

∣∣∣∣− δ

2
∀u ∈ K (C.7)∣∣∣∣det

(
∂2g (u)

∂u∂uᵀ

)∣∣∣∣ >

∣∣∣∣det

(
∂2f (x)

∂x∂xᵀ

)∣∣∣∣− δ

2
∀u ∈ K (C.8)

Summing (C.7) and (C.8), for all u ∈ K we have ρg (u) > ρf (u)− δ > 0. �

D Triweight Perturbation on a Square

The proof of Lemma 5 uses a particular perturbation of a log density on a square in
RJ . Here we provide some additional discussion of this perturbation and derive some
elementary properties referenced in the proof.

Recall that for v ∈ R we defined

p(v) = 1{|v| ≤ 1}(1− v2)3.

The function p(v) is equal to zero at −1 and 1, strictly increasing for v ∈ (−1, 0),
and strictly decreasing for v ∈ (0, 1). It attains a maximum (of 1) at v = 0. For
v ∈ [−1, 1], its first and second derivatives are given by

p′ (v) = −6v
(
1− v2

)2

p′′ (v) = 24v2
(
1− v2

)
− 6(1− v2)2,

which are continuous and bounded. The first and second derivatives of p at −1, 0,
and 1 are given in Table 1 below.

Table 1: Some Values of p(v) and Its Derivatives

v p(v) p′(v) p′′(v)
-1 0 0 0
0 1 0 -6
1 0 0 0

Let s denote a (closed) square ×j
[
uj, uj

]
in RJ , with uj − uj = w̄ > 0 for all

j = 1, . . . , J . Let u̇s =
(
u1+u1

2
, . . . ,

uJ+uJ
2

)
denote the center of this square. Let ln f

be a twice continuously differentiable log density defined on RJ , with f = exp (ln f)
its associated probability density function. Given any finite scalar λs > 0 and κ > 0,
let

fλs (u) = κf (u) exp

[
λs

J∏
j=1

p

(
uj − u̇sj
w̄/2

)]
u ∈ s.
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Then, on the square s, ln fλs is equal to the sum of ln f , the rescaled multivari-

ate triweight function λs
∏J

j=1 p
(
uj−u̇sj
w̄/2

)
, and the constant ln (κ). Observe that

λs
∏J

j=1 p
(
uj−u̇sj
w̄/2

)
takes values in the interval [0, λs], attaining λs only at the center

of the square. Figure 4 illustrates the scaled multivariate triweight function for the
case J = 2 with λs = 1 and κ = 0.

Figure 4: Plot of a Scaled Bivariate Triweight Function

Recalling Table 1, observe that, regardless of λs, for any u on the boundary of the
square s we have

ln fλs (u) = ln f (u) + ln (κ)

∂

∂uj
ln fλs (u) =

∂

∂uj
ln f (u) ∀j

∂2

∂uj∂uk
ln fλs (u) =

∂2

∂uj∂uk
ln f (u) ∀j, k.

These properties ensure that when we perturb ln f on adjacent squares—potentially
with different scaling factors λs for each square (but the same κ for all squares)—the
perturbed log density function will remain twice continuously differentiable, even on
the boundaries of the squares.
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E Further Falsifiability Results

Here we provide additional falsifiability results—two for the linear index model and
one for the full model. First, recalling (29) and the definition

bk (y) =

(
∂ ln |J (y)|

∂yk
,
∂r1(y)

∂yk
, . . . ,

∂rJ(y)

∂yk

)ᵀ
,

observe that Theorem 3 shows, for all y ∈ Y′ and k = 1, . . . , J , separate identification
of the derivatives ∂r(y)/∂yk and the derivatives ∂ ln |J (y)| /∂yk. However, knowledge
of the former also implies knowledge of the latter. So under the hypotheses of Theorem
3 we have the falsifiable restrictions

∂

∂yk
ln

∣∣∣∣∣∣∣det


∂r1(y)
∂y1

. . . ∂r1(y)
∂yJ

...
. . .

...
∂rJ (y)
∂y1

. . . ∂rJ (y)
∂yJ


∣∣∣∣∣∣∣ =

∂

∂yk
ln |J (y)| ∀k. (E.1)

Proposition 6. Under the hypotheses of Theorem 3, the model defined by (24) and
Assumption 1 is falsifiable.

Suppose now that there exist two sets of points satisfying the rank condition of
Lemma 3—a verifiable condition. Then the maintained assumptions of the linear
index model are falsifiable.

Proposition 7. Suppose that, for some y ∈ Y, X contains two sets of points,

x̃ =
(
x̃0, . . . , x̃J

)ᵀ
and ˜̃x =

(
˜̃x0, . . . , ˜̃xJ

)ᵀ
, such that (i) x̃ 6= ˜̃x and (ii) D (x̃, y) and

D
(
˜̃x, y
)

have full rank. Then the model defined by (24) and Assumption 1 is falsifi-

able.

Proof. By Lemma 3, ∂r(y)/∂yk is identified for all k using the derivatives of φ (y|x)

at points x in x̃ (only) or in ˜̃x (only). Letting ∂r(y)/∂yk [x̃] and ∂r(y)/∂yk

[
˜̃x
]

denote

the implied values of ∂r(y)/∂yk, we obtain the verifiable restrictions ∂r(y)/∂yk [x̃] =

∂r(y)/∂yk

[
˜̃x
]

for all k. �

As noted in the text, all falsifiability results for the linear index model extend to
the full model when sufficient conditions for identification of g hold. The following
provides an additional falsifiable restriction of the full model.

Proposition 8. The joint hypothesis of (7), Assumption 1, and Assumption 2, is
falsifiable.

Proof. The proof of Lemma 2 began with an arbitrary x ∈ X and the associated y∗ (x)
defined by (17). It was then demonstrated that for some open rectangle X (x) 3 x
the ratios

∂gj(x
′
j)/∂xj

∂gj(x0
j)/∂xj
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are identified for all j = 1, . . . , J , all x0 ∈ X (x)\x and all x′ ∈ X (x)\x. Let

∂gj(x
′
j)/∂xj

∂gj(x0
j)/∂xj

[x]

denote the identified value of
∂gj(x

′
j)/∂xj

∂gj(x0j )/∂xj
. Now take any point x̃ ∈ X (x)\x and repeat

the argument, replacing y∗ (x) with the point y∗∗ (x̃) such that (assuming the model
is correctly specified) r (y∗∗ (x̃)) = g (x̃) + u∗∗ where ∂f (u∗∗) /∂uj = 0 ∀j and f is
regular on a rectangle around u∗∗ (u∗∗ may equal u∗, but this is not required). For
some open rectangle X (x̃), this again leads to identification of the ratios

∂gj(x
′
j)/∂xj

∂gj(x0
j)/∂xj

for all j = 1, . . . , J , all x0 ∈ X (x̃)\x̃ and all x′ ∈ X (x̃)\x̃. Let

∂gj(x
′
j)/∂xj

∂gj(x0
j)/∂xj

[x̃]

denote the identified value of
∂gj(x

′
j)/∂xj

∂gj(x0j )/∂xj
. Because both x and x̃ are in the open set

X (x), {X (x) ∩ X (x̃)} 6= ∅. Thus we obtain the falsifiable restriction

∂gj(x
′
j)/∂xj

∂gj(x0
j)/∂xj

[x] =
∂gj(x

′
j)/∂xj

∂gj(x0
j)/∂xj

[x̃]

for all j and all pairs (x0, x′) ∈ {X (x) ∩ X (x̃)}. �

F Differenced Derivatives

In section 4.2 we relied on second derivatives of the log density ln f . It is straight-
forward to extend our arguments to cases without twice differentiability, replacing
any matrix of second derivatives with differences of the first derivatives. To see this,
suppose that (32) holds for some nonzero c = (c0, c1, . . . , cJ). This implies that for
any x and x′ in X,

[d (y, x)− d (y, x′)]
ᵀ
c = 0.

Since the first component of d (y, x)−d (y, x′) is zero, this is equivalent to the condition
∂ lnφ(y|x)

∂x1
− ∂ lnφ(y|x′)

∂x1
...

∂ lnφ(y|x)
∂xJ

− ∂ lnφ(y|x′)
∂xJ


ᵀ

c̃ = 0 ∀x ∈ X, x′ ∈ X, (F.1)

where c̃ = (c1, . . . , cJ). Thus, for identification to (possibly) fail there must exist a
nonzero vector c̃ satisfying (F.1).
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G Discrete Support

In this appendix we relax Assumption 1 (retaining only its requirements of injective
r and exogenous X) in order to provide an initial exploration of identification when
X and U have discrete support. Here we limit attention to the case of a linear index
function. Let f now denote the probability mass function for U . Let X , U , and Y
denote the supports of X, U , and Y , respectively.

G.1 Point Identification with Large Discrete Support

We first consider a version of our Theorem 2, replacing its assumption

X = U = RJ (G.1)

with
X = U = ZJ . (G.2)

Thus we now have discrete supports for X and U but retain the assumption that vari-
ation in X can compensate one-for-one for all variation in U. The support condition
(G.2) may be more appealing than (G.1); however, the following result demonstrates
that continuous variation in the instruments is not itself essential, even for point
identification.

Proposition 9. Suppose r is injective, U is independent of X, and X = U = ZJ .
Then in the linear index model, r is identified on Y.

Proof. The proof is nearly identical to that of Theorem 2. Here the change of variables
simplifies to

Pr (y|x) = f (r(y)− x) . (G.3)

The LHS of (G.3) is observed for all y ∈ Y and x ∈ X . Letting F1 (·) denote the
marginal CDF of U1, for any y ∈ Y we have

lim
T→∞

T∑
x̂1=x1

T∑
x̂2=−T

· · ·
T∑

x̂J=−T

Pr (y|x̂1, x̂2, . . . , x̂J) = F1 (r1 (y)− x1) .

So the value of F1 (r1 (y)− x1) is identified for all y ∈ Y and x1 in its support. Recall
that by our normalizations,

r1 (ẏ)− ẋ1 = 0 (G.4)

for known (arbitrary) ẏ and ẋ1. Thus, for any y we can find the unique value
o
x1 (y)

such that
F1

(
r1 (y)− o

x1 (y)
)

= F1 (0) ,

implying
r1 (y) = x0

1 (y) .

An analogous argument applies to all j 6= 1, yielding identification of rj (y) for all y
and j at all y. �
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G.2 Partial Identification with an Injective PMF

Now consider arbitrary finite support for X and U . Let U =
(
u1, . . . , uK

)
, with

K < ∞. Let fk = f
(
uk
)

and suppose that f is injective.58 Let Yk denote the
support of Y |{U = uk}.

Once again, the change of variables takes the form (G.3). So by injectivity of f ,
for every x and every k = 1, . . . K we can find the (unique) vector yk (x) such that

f
(
r
(
yk (x)

)
− x
)

= fk,

implying
r
(
yk (x)

)
− x = uk. (G.5)

Although the value of each uk is unknown, for any x̂ and x in yk (X ) we can take
differences of (G.5) to obtain

rj
(
yk (x̂)

)
− r

(
yk (x)

)
= x̂j − xj.

For every k, this gives point identification of the first differences of r on Yk. This can
be interpreted as identification of approximations to the first derivatives of r at each
point in Y (cf. Lemma 3).

If Yk ∩ Yk′ is nonempty for some k′ 6= k, the first differences on Yk and Yk′ can
be linked to deliver identification of the first differences within on a larger subset of
Y . In some cases this can again yield point identification of r on all of Y . Suppose,
for example, that there is a permutation (potentially with repetition) p = 1, . . . , P of
the indices k = 1, . . . , K such that Yp ∩ Yp+1 is nonempty for each p = 1, . . . , P − 1
(this hypothesis is verifiable under the injectivity of f). Then we have identification
of the first differences of r on ∪kYk, i.e., on Y . Recalling the location normalization
rj (ẏ)− ẋj = 0 for all j, this implies identification of r.

58Injectivity is generic in the set of K-dimensional probability mass functions. The set M of
probability mass functions f with support

(
u1, . . . , uK

)
is the relative interior of the (K − 1)-simplex.

The subset M̂ ⊂M for which f̂
(
uk
)

= f̂
(
uk

′
)

for at least one pair (k, k′ 6= k) is a closed (relative

toM) set such that for any ε > 0 and any f̂ ∈M, there exists f ∈ {M\M̂} satisfying ‖f̂ − f‖ < ε.
(For example, with K = 2, M is the relative interior of a line segment in R2 and M̂ is a point on
this segment. With K = 3,M is the relative interior of a triangle in R3 and M̂ is the union of three
half-open line segments on the face of the triangle). Thus, the set {M\M̂} is an open (relative to
M) dense subset of M.
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