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Abstract

We analyse strategic experimentation in which information arrives through fully re-

vealing, publicly observable “breakdowns.” With hidden actions, there exists a unique

equilibrium that involves randomization over stopping times. This randomization in-

duces belief disagreement on the equilibrium path. When actions are observable, the

equilibrium is pure, and welfare improves. We analyse the role of policy interven-

tions such as subsidies for experimentation and risk-sharing agreements. We show that

the optimal risk-sharing agreement restores the first-best outcome, independent of the

monitoring structure.
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1 Introduction

We do not learn from observing others in the same way that we learn from our own ex-

periences. There are at least two reasons for this difference. First, experimentation differs

from classical conditioning: unlike Pavlov’s dogs, we choose our actions to enable learn-

ing, whereas observational learning is largely passive. Second, our information concerning

others is typically imperfect: often, we observe how well they do rather than what they

do. This paper explains why these differences must lead to differences in beliefs, including

higher-order beliefs, even provided perfectly aligned fundamentals and outcomes that are

common knowledge. Belief disagreement leads to dispersion in actions, and the resulting

lack of coordination has significant welfare consequences.

Both our premise and our conclusion are relevant: economic practices are often largely

confidential (whether they pertain to sales or to distribution methods, consumer profiles,

advertising strategies, lists of suppliers and clients, or manufacturing processes), especially

when they involve projects rather than products; economic outcomes are instead easier

to ascertain. Indeed, to the extent that they have been documented, there is substantial

dispersion in such practices and the resulting performance across firms and industries.1

To explain how dispersion arises, we rely on a well-known strategic experimentation

model. Players choose whether to experiment in the face of purely aggregate uncertainty.

Formally, they continuously choose how much weight to assign to a risky action. Externalities

are informational. Players observe only one another’s outcomes, not their actions. We assume

binary individual outcomes (a “breakdown” or not) and a common binary state of the world

(good or bad). Occasional, publicly observable breakdowns occur when a player puts weight

on the risky action and when the state is bad. Hence, whereas a breakdown reveals the state

of the world to all players, the absence thereof causes objective and strategic uncertainty:

inferences regarding the state interact with inferences regarding the actions of others. In the

continuing absence of any breakdown, players grow increasingly optimistic about the state

over time. As a result, they are tempted to delay their use of the risky arm to free-ride on

the experimentation of others.

The game admits a unique symmetric mixed-strategy equilibrium. In particular, no

pure-strategy Nash equilibrium exists.2 In light of the literature, this is surprising because

1A long history of empirical literature has documented heterogeneity in the adoption rates for new tech-

nologies: Mansfield (1961) observes patterns of “slow imitation” for a small number of innovations; Coleman,

Katz, and Menzel (1966) show distinct differences across physicians in the adoption of new medical technol-

ogy; and more recent studies (Bloom and Van Reenen, 2007, Syverson, 2011) document the wide dispersion

in managerial practices within an industry and relate it to persistent productivity differences.
2We show that with two players, no asymmetric mixed-strategy equilibrium exists either.

2



we do not assume discrete action sets: by definition, giving (say) equal weight to both the

risky action and its safe alternative is a pure action in our framework. Because time is also

continuous, mixing is caused not by discreteness but by the intrinsic nature of incentives.

This relationship stands in contrast to the experimentation literature, discussed below, in

which a “mixed strategy” is merely an interpretation of actions that are interior (i.e., players

assign positive weight to both arms) as opposed to extremal.

In equilibrium, mixing involves each player choosing at random a time before which he

exclusively plays safe and after which he only plays risky. The distribution of switching

times is continuously increasing over an interval, with an atom at the upper end. Despite

being indifferent over an entire interval of such random times, players are unwilling to play an

interior action during that interval (pure strategies involving such actions are strictly worse).

Another way to appreciate the difference is that, unlike with conventional interior “mixed”

strategies, players are uncertain of the aggregate amount of experimentation undertaken up

to a given time.

Randomization over switching times drives the dispersion of beliefs. Not observing a

breakdown can be explained in two ways: either the other players have not yet begun

experimenting, or the state of the world is good. A player’s own choice of action helps him

sort through these competing explanations: the earlier he began experimenting himself, the

more likely he is to believe that the lack of a breakdown can be attributed to the state of the

world being good rather than to the other players waiting to experiment. In the absence of

a breakdown, beliefs about the state remain private at all times: while there exists a finite

time at which players commonly know that everyone is experimenting, they still do not know

when everyone else began experimenting.

Why do players mix? Two forces are combined here. The first and familiar force is

mentioned above: free-riding prevents players from adopting the same extremal pure strategy.

If one’s opponent is switching to the risky arm at a given time, then a player’s best reply

can involve experimenting immediately to avoid wasting time, as nothing will be learnt until

then, or taking advantage of his experimentation by choosing to wait long enough to benefit

from it. In standard experimentation models, this force drives the players’ equilibrium

choice of interior actions. Here, a second force compels players to choose extremal actions.

Experimentation breeds experimentation: a player who deviates from an interior action to

an action that places greater emphasis on the risky arm will see his choice confirmed by the

absence of a breakdown; this observation makes him more optimistic about the state of the

world. If he were indifferent between risky and safe if he had not deviated, his deviation

would have led him to strictly prefer experimentation in the future. In a sense, payoffs are

convex in the weight assigned to the risky action.
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This equilibrium adds two sources of inefficiency (dispersion in practices and dispersion

in beliefs) to the familiar cost of under-experimentation: given the overall amount of ex-

perimentation, the dispersion in timing is costly; holding his opponents’ strategies fixed, a

player would be strictly better off if he could determine when his opponents actually began

experimenting.

This last statement extends to equilibrium analysis. As we show, players are better off

in the (symmetric) Markov equilibrium in the game in which they can observe one another’s

actions. They also benefit from a mediator helping them to coordinate their play via private

recommendations.

More radical policy interventions that modify the payoffs of the game can be further

helpful. In particular, risk-sharing has several advantages over other types of interventions.

By risk-sharing, we refer to a well-calibrated group-insurance scheme whereby a player who

suffers a breakdown obtains partial compensation from the other players. First, such a

scheme restores the first-best outcome in contrast to, for instance, externally funded subsidies

that improve the amount of experimentation without solving the coordination problem.

Second, the optimal scheme is robust to the specific monitoring structure: whether players

observe one another’s actions is irrelevant to the calibration of this scheme.

Applications. Our choice to adopt the simplest experimentation model is deliberate, as

it makes the analysis as transparent as possible. One could certainly extend some of the

analysis to richer settings.3 However, we believe that even our simple model already captures

the essential features of economically relevant applications and provides useful insights.

Bad-news learning processes naturally occur upon the introduction of a new technology

that promises cost savings over the status quo but entails additional risks. Examples of such

risky technologies that are especially relevant to our model include new drugs and medical

devices; innovative processes such as hydraulic fracturing for oil production; and new crops

in agriculture, such as hybrids and high-yielding varieties.

Although their technological and institutional details differ, these settings share the key

features of our model: (i) Privately observed adoption decisions: there is growing evidence of

significant barriers to information in several markets.4 Factors such as geographical distance,

social and information networks, and costly attention can hinder the observability of other

agents’ actions. (ii) The potential for public catastrophic outcomes: such breakdowns may

3Our earlier working paper provides an analysis of the case in which some learning occurs even in the ab-

sence of experimentation; Section 6 introduces payoff externalities in addition to informational externalities,

and the conclusions discuss the case in which learning remains incomplete even after a breakdown.
4For example, Duflo, Kremer and Robinson (2006) document Kenyan farmers’ limited knowledge of their

neighbours’ choice of crops.
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include a malpractice suit following the failure of a new drug or medical equipment; an oil-

drilling accident, such as a spill or a blowout;5 or the loss of an entire harvest. (iii) Weak

market competition (pure informational externalities): drillers and farmers are largely price-

takers, and doctors may not even be aware of other potential adopters of a new device.6 Of

course, when discussing our welfare implications, we must consider cross-market externalities,

such as the environmental impact of an oil-drilling accident.

A growing body of empirical evidence is broadly consistent with our model’s findings. In

particular, Skinner and Staiger (2007) document U.S. state-level variation in the adoption

rates for four technological innovations (hybrid corn, tractors, computers, and beta-blockers)

and suggest informational barriers as a potential explanation. Consistent with the idea that

barriers to information generate cross-sectional heterogeneity in the new technology adoption

rate, Bandiera and Rasul (2006) relate farmers’ decisions to adopt a new crop variety to the

information available in their social networks, Conley and Udry (2010) collect direct data on

social interconnections and document the importance of “information neighbourhoods” for

the local diffusion of fertilizer and other chemicals, and Covert (2014) documents frictions

in drilling companies’ learning processes regarding the relationship between inputs and oil

production.

With monitoring used as a design variable, our results in Section 6.1 help explain the

information sharing observed in several industries. Indeed, in health care, industry associ-

ations and government agencies promote the sharing of information on best practices;7 in

oil drilling, regulations encourage sharing information regarding input choices for fracking

operations (see Covert, 2014); and for an example in agriculture, BenYishay and Mobarak

(2014) show how “extension agents” affect the flow of information and technology diffusion

across villages in Malawi.

Finally, our results in Section 6.2 highlight the benefits of risk-sharing agreements and

warn against the ability of externally funded subsidies to reduce dispersion in adoption rates.

These results may suggest an additional explanation for the low and heterogeneous take-up

rates for agricultural subsidies, as documented, for example, by Carter, Laajaj and Yang

5See, for example, “The Downside of the Boom,” The New York Times, November 22, 2014.
6The consequences of informational externalities for technology adoption in the context of agriculture are

the object of a large body of empirical literature. However, most studies of social learning have assumed

unconstrained information flows among potential adopters, i.e., perfect monitoring of actions and outcomes,

at least among subsets of agents. See Foster and Rosenzweig (2010) and Jack (2013) for an overview.
7The US Food and Drug Administration (FDA) is launching a Unique Device Identifier (UDI) sys-

tem “to adequately identify medical devices through their distribution and use.” The system pro-

vides information on outcomes and indirectly provides data on adoption rates through usage intensity

(http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/UniqueDeviceIdentification/).
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(2013). Surprisingly, although risk-sharing agreements in developing countries have been

widely studied (e.g., Townsend, 1994 and 1995), the link with technology adoption seems

untested thus far.

Related Literature. Our motivation is closest to that of Murto and Välimäki (2011), em-

phasizing the interplay between experimentation and observational learning. In their model,

players receive exogenous (random) private signals over time. In the present study, however,

learning is endogenous, with players’ actions influencing their private beliefs. Another major

difference is that although signals are private in their model, actions (exit or not) are publicly

observed. As a result, the dynamics that they identify are very different from ours, with

waves of exits alternating with what they term “flow modes” until a collapse ends the game.

In our game, however, unless a breakdown occurs, players’ unobserved behaviour leads to

smooth updating of their beliefs, except for the atom at the last switching time assigned a

positive probability.

From a theoretical perspective, our paper is closest to the work of Keller and Rady

(2015) and our earlier paper (Bonatti and Hörner, 2011). Our game differs from the former

in that actions are not observed and differs from the latter in that the news is bad rather

than good.8 The resulting differences are significant: with good news, the equilibrium is

not unique, and the symmetric equilibrium involves interior pure strategies, with experimen-

tation dwindling but never ceasing altogether. With good news, an off-path deviation to

greater experimentation leads to increased pessimism and hence less experimentation; thus,

behaviour is “mean-reverting,” and best replies are necessarily pure and possibly interior.

This behaviour also explains why, in the context of good news, the Markov equilibrium with

observable actions is actually worse than the symmetric equilibrium with unobservable ac-

tions, contrary to what we find with bad news. A comparison with the results of Keller and

Rady is provided in Section 6.1.

As noted, the necessity of considering mixed strategies in our game should not be con-

fused with the necessity of allowing pure actions that are not extremal appearing elsewhere.

To restore existence in games of strategic experimentation without needing to confront the

measure-theoretic difficulties raised by the modeling of independent randomization in con-

tinuous time, various authors (e.g., Bolton and Harris 1999; Keller, Rady and Cripps, 2005;

Keller and Rady, 2015) have redefined the space of actions available to a player at a given

instant to be a convex set (that is, the set of pure strategies is sectionally convex). This redef-

inition is usually achieved by simple convexification, replacing the lotteries over {0, 1} by the

interval [0, 1] (with the interpretation of players choosing how to allocate a unit resource),

8Another difference is that the game of Bonatti and Hörner (2011) features payoff externalities.
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but is not always accomplished in this way: in Keller and Rady (2003), this redefinition

involves players choosing two actions at every instant–a mean price and a mean variance. In

these papers, this redefinition suffices to restore the existence of an equilibrium in pure (but

not extremal) strategies.9,10 In fact, there are special games for which privately randomizing

over stopping times and using non-extremal pure strategies are equivalent. The question of

whether to describe equilibrium strategies with a hazard rate or with a pure strategy taking

value in a convexified set is then merely a matter of convenience. Examples include wars of

attrition (for instance, Milgrom and Weber, 1985) or more recent versions of timing games

allowing for additional learning (Murto and Välimäki, 2011; Rosenberg, Salomon and Vieille,

2013).

The following is a manifestation of the difference between the equilibria of the games

considered in these papers (whether strategic experimentation or games of timing) and the

approach in our study: in these equilibria, a player is indifferent regarding all his strategies

(over the relevant time interval). In the unique equilibrium of our game, a player is indifferent

over stopping times (over some interval), but he strictly prefers any of these stopping times

to a strategy that uses an interior action over a set of times of positive measure: he is willing

to mix, but not to play the pure strategy that specifies the expected value of the mixture.

We are not aware of another paper with a clear economic interpretation in which mixed

strategies must be considered to ensure existence, despite convex action sets.11 Our paper

shows that such phenomena are both relevant to economic applications and amenable to

mathematical analysis. (See Akcigit and Liu, 2014, Board and Meyer-ter-Vehn, 2014, for

models in which mixed-strategy equilibria might exist.) Note that such equilibria might

also arise when outcomes rather than actions are private, as in Rosenberg, Solan and Vieille

(2007). Although this is not the case in their analysis, it is conceivable that equilibrium

existence calls for such private strategies to be played in related environments. Relatedly,

non-Markovian equilibria might also be required for games with incomplete (rather than

9Pure but non-extremal optimal policies contrast with the solution of decision-theoretic versions of bandit

problems, which admit optimal solutions within the class of extremal policies. See Yushkevich (1988) or

Presman and Sonin (1990).
10One should not confuse such a convexification with some clever application of Kuhn’s theorem that would

obviate mathematical difficulties. Kuhn’s theorem also applies to continuous-time games (see Weizsäcker,

1974, or Shmaya and Solan, 2014), but the set of behavioural strategies (properly defined) is much larger

than the set of pure strategies, even when action sets are convex.
11Of course, it is well known in optimization that sectional convexity is insufficient to guarantee the type

of convexity in the policy space that is required for the existence of solutions of optimal control problems. A

fortiori, the problem arises in games, and there are well-known examples of zero-sum games with sectionally

convex action spaces for which the optimal policies cannot be found within the class of pure policies (see

Karlin, 1959, and references therein).
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imperfect) information and payoff externalities, see Décamps and Mariotti (2004).

Conditional on the state, breakdowns occur independently across players; thus, the het-

erogeneity in outcomes is obviously neither surprising nor original. Dispersion in beliefs

would also be rather expected if players received idiosyncratic, private signals. In this con-

text, however, breakdowns–or their absence–are common-knowledge events. Heterogeneity

in beliefs despite public signals arises in only one other setting of which we are aware: re-

peated games in which players use private strategies (which is precisely what occurs in this

situation). However, our game features incomplete information, not simply imperfect public

monitoring. More important, in contrast to repeated games, equilibria in private strategies

are not merely some of many possibilities: the equilibrium that we solve for is the unique

equilibrium of the game.

Indeed, uniqueness of equilibrium is another surprising result, given the literature on

strategic experimentation. By contrast, Keller, Rady and Cripps (2005), Bonatti and Hörner

(2011) and Keller and Rady (2015) admit multiple equilibria, whereas Bolton and Harris

(1999) do not attempt to characterize any equilibrium beyond the symmetric equilibrium.

2 The Model

2.1 Setup

Time is continuous, and the horizon is infinite. Players i = 1, . . . , I (I ≥ 2) choose an action

ui ∈ [0, 1] at all times.

There is a binary state of the world ω ∈ {B,G}. Players assign a common prior prob-

ability p0 ∈ (0, 1) to the event {ω = B}. Conditional on ω, player i’s action controls the

instantaneous intensity of a conditionally independent Poisson process {N i
t : t ≥ 0}. The

process N i
t is interpreted as the number of lump-sum payoffs observed up to time t. That

is, the action paths ui = (uit)
∞
t=0, alongside ω, define the instantaneous intensity of an inho-

mogeneous Poisson process with intensity λ(t) := λ1{ω=B}(1 − uit), where λ > 0 and 1A is

the indicator function of an event A. Note that this intensity is zero if ω = G, independent

of the actions chosen. When ui = 1, player i exclusively pulls the safe arm, as this choice

prevents the occurrence of (costly) lump sums.12 When player i sets ui to 0, we state that

he pulls the risky arm exclusively. Unless a player pulls the safe arm only, he might learn

12It might be desirable to allow for “background learning” such that learning is slowed when the safe arm

is pulled but does not come to a halt. That is, we may assume that λ(t) := λ1{ω=B}(ū/I−ui
t), where ū > I.

Clearly, long-run beliefs are very different in that case. However, as we explain in Section 6.2, there is no

discontinuity in payoffs or equilibrium policies.
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about the state. Hence, we state that player i experiments when ui < 1.

Each lump sum entails a cost h > 0. That is, given an integrable function ui = (uit) and

the realization of the process {N i
t : t ≥ 0}, the realized cost of player i is given by
∫ ∞

0

re−rt(hdN i
t + suitdt),

where r, s > 0. Note that this is a game of informational externalities only, as player j 6= i’s

actions do not enter player i’s cost.

Throughout this setup, we assume that player i observes the realization of the processes

{N i
t : i ∈ I}, the breakdowns, and can condition his action on it; however, he observes

nothing else. In particular, player i does not observe past values of ujt , j 6= i. That is,

players observe outcomes but not actions.

We assume that g := λh > s. Therefore, conditional on {ω = B}, to minimize the

expected cost, it is optimal to allocate the resource exclusively to the safe arm, that is, to set

uit = 1 ∀t. Conditional on {ω = G}, the risky arm is optimal, independent of other players’

actions.

Hence, player i’s problem reduces to a course of action up to the first arrival of a lump sum

for any player, as it is strictly dominant to pull the safe arm thereafter. Let τ ∈ R+∪{+∞}

be the time of this first arrival. (Note that τ = +∞ if ω = G.) Therefore, we can and do

assume that the game ends at time τ .

A terminal history hτ specifies the stopped action paths {(uit)
τ
t=0 : i = 1, . . . , I} up to

time τ . We can rewrite the cost for which we minimize the expectation as

Ci(ui) =

∫ τ

0

(

re−rtsuitdt+ e−rtrhdN i
t

)

+ e−rτs, (1)

where the last term is the “terminal” cost equal to the expected cost over an infinite horizon

conditional on {ω = B} under uit = 1 ∀t.

Some of the parameters are relevant only in combination. In particular, up to normal-

ization, g and s enter only through the cost-benefit ratio γ := (g − s)/s, and by a standard

change in the variable, the discount rate r and intensity parameter λ appear via the ratio

µ := r/λ only.

2.2 Policies and Equilibrium

A deterministic (or “pure”) policy for player i is a measurable function πi : R+ → [0, 1] that

specifies player i’s action ui at time t conditional on the event {t < τ}.13 Note that the

13The policy does not define behaviour after one’s own deviation, an unnecessary specification given the

information structure. In those rare instances in which we comment on behaviour after such off-path histories,
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range of πi is convex (although the set of deterministic policies is not): we interpret uit as

the share of i’s resources allocated to the safe arm. Let Πi denote the set of all deterministic

policies. Of special importance are stopping policies, which are defined as follows. Given

t ≥ 0, let πi
t be the policy that sets πi

t(s) = 1 for s < t and πi
t(s) = 0 for s ≥ t. The set of

stopping policies is denoted Πi
S.

Ultimately, it is not sufficient to consider deterministic policies. Mixed policies must be

introduced. We adopt the following definition of mixed policies based on Aumann (1964). A

mixed policy is a measurable map φi : [0, 1] → Πi such that for all βi ∈ [0, 1], φi(βi) ∈ Πi.14

This definition can be interpreted as follows: player i privately flips a “coin” at the beginning

of the game, and its realization βi determines the deterministic policy that he then follows.

Let Φi denote the set of (mixed) policies of player i.

Given φ−i ∈ Φ−i := ×j 6=iΦ
j , player i minimizes

Cφi

:= E
φi

p0

[

Ci(ui)
]

over φi ∈ Φi.

Of particular interest are stopping time policies–“random” stopping policies. According

to these policies, for some non-decreasing function ti : [0, 1] → R+, φi(βi) = πi
ti(βi) (a.s.).

Hence, in these policies, player i randomizes over the time that he stops pulling the safe

arm. Let Φi
S denote the set of stopping time policies of player i (including Πi

S). It is often

more convenient to represent such policies using the distribution function F i : R+ → [0, 1],

defined as F i(t) := sup{βi | ti(βi) ≤ t}; that is, ti is the quantile function of F i.

Given that players do not observe one another’s actions, there is no loss in considering

Nash equilibria. Hence, an equilibrium is a vector φ∗ ∈ Φ := ×iΦ
i such that for all i and

for all βi ∈ [0, 1], φ∗i(βi) minimizes Cφi

over φi ∈ Φi, given φ∗−i. Of particular interest

are symmetric equilibria, which are equilibria in which φj = φi for all i, j. However, our

attention is not restricted to those equilibria.

3 Learning

Players face two sources of uncertainty. First, they do not know the state of the world. As

time passes without lump sums occurring, they learn about the state. Second, players do

we use the word “strategy” instead.
14Let B[0,1] (resp., B) denote the σ-algebra of Borel sets of [0, 1] (resp., R+) with the Lebesgue measure.

We endow the set of measurable functions from (R+,B) to ([0, 1],B[0,1]) with the σ-algebra generated by

sets of the form {f : f(s) ∈ A} with s ∈ R+ and A ∈ B[0,1]. The notion that such a definition is equivalent

to the use of “behavioural decision rules” follows from Weizsäcker (1974). See also Shmaya and Solan (2014)

on the equivalence and Touzi and Vieille (2002) on mixed policies in timing games.
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not know the specific deterministic policy selected by the other players–if indeed this policy

was chosen at random. In this regard, time is also informative: because lump sums are more

likely if others pull the risky arm, the absence of such lump sums is indicative of safe play.

Both sources of uncertainty affect the choice of optimal action: if player i knew that others

were experimenting, then he might be tempted to “free-ride” on this experimentation and

pull the safe arm unless he is very optimistic (about the risky arm being the correct one).

Nonetheless, we argue here that it is unnecessary for player i’s belief to be “multidimensional.”

As we show below, a one-dimensional statistic suffices.

A second difficulty is that players’ beliefs are private. A player who adopts a riskier

policy becomes optimistic at a faster pace than if he had adopted a safer policy; indeed, if he

pulled the safe arm exclusively, he would only learn from others. This statement implies that

other players do not know player i’s beliefs. Those players have a belief about his belief, as

in equilibrium, they know the distribution over deterministic policies that player i is using.15

However, given player i’s policy, all these beliefs (including higher-order beliefs) are de-

rived from a common source of information: time. Because the game ends with the first

lump sum, there is only one information set corresponding to a given time t (conditional on

i’s policy throughout). Player i faces no “uncertainty” regarding these conditional beliefs:

he can perfectly forecast at time t what his beliefs will be at any time t′ > t, conditional on

no lump sum occurring in the meantime. In particular, he can forecast the instantaneous

probability with which a lump sum will occur on that date–but this forecast reflects the

two sources of uncertainty that he faces. This hazard rate process is all that matters for

determining best replies.

Formally, fix a player i throughout. Define pit := P
φ
p0[ω = B | (uis)

t
s=0] for t < τ . As the

conditioning clearly indicates, it is player i’s belief and his only, although we occasionally

omit the superscript. Two properties of his belief process are important. First, we can

express the probability of the event that no breakdown has occurred by time t, denoted ∅t,

in terms of pi; by the martingale property of beliefs,

P
φ
p0[∅t] · p

i
t + (1−P

φ
p0[∅t]) · 1 = p0,

so that

P
φ
p0[∅t] =

1− p0

1− pit
.

Second, we can derive the law of motion of the (deterministic) process pit taking into ac-

count the uncertainty regarding the realized policies π−i used by other players. Given that

15However, this second-order belief is not common knowledge because player j’s posterior belief regarding

i’s adopted policy depends on j’s belief regarding the state of the world, which depends on his own policy

(which is not known to others).
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breakdowns follow an exponential distribution, the probability of no breakdown by time t,

conditional on {ω = B} and (uis)
t
s=0, is given by

P
φ
p0[∅t | ω = B] = E

φ
p0

[

e−
∫ t

0
λ(I−

∑

j u
j
s)ds | (uis)

t
s=0

]

= e−
∫ t
0 λ(I−ui

s)dsΠj 6=iE
φ
p0

[

e
∫ t
0 λuj

sds
]

,

based on the independence of the players’ policies. Hence,

pit
1− pit

/

p0

1− p0
=

P
φ
p0[∅t | ω = B]

P
φ
p0[∅t | ω = G]

= e−
∫ t
0 λ(I−ui

s)dsΠj 6=iE
φ
p0

[

e
∫ t
0 λuj

sds
]

. (2)

Because the first term on the right-hand side is only a function of player i’s own action,

uncertainty appears only via the second term. Hence, the log-likelihood ratio is given by

ln
P

φ
p0[∅t | ω = B]

P
φ
p0[∅t | ω = G]

=
∑

j 6=i

lnEφ
p0

[

e
∫ t

0
λ(uj

s−I)ds
]

− λ(I − uit).

Indeed, player i’s belief (as measured by the log-likelihood ratio) is private, but his private

information appears additively, as captured by the second term on the right-hand side.

The contribution to his belief attributable to all other players’ expected policies is common

knowledge.

Because this log-likelihood ratio is differentiable with respect to t, we define

ν−i
t :=

∑

j 6=i

1

λ

∂

∂t
lnEφ

p0[e
∫ t
0 λuj

sds]. (3)

Note that ν−i
t ∈ [0, I − 1] because ujs ∈ [0, 1], all s ≤ t, j 6= i.

This can be interpreted as the expected contribution from the other players’ experimen-

tation to the hazard rate of player i’s belief. Player j 6= i’s experimentation affects player i’s

belief revision at time t, and it is not simply a matter of whether player j is playing safe at

that time. The entire path of player j’s actions affects player i’s belief regarding the state of

the world at time t and, hence, how much this belief must be revised if no breakdown occurs

in the next instant.

It follows from (2) that pi is also differentiable and that it solves the differential equation

ṗit = −λpit(1− pit)(I − uit − ν−i
t ), pi0 = p0. (4)

Because the function ν−i plays an important role in the analysis, it is important to develop

some intuition for it. Suppose that players use stopping time policies such that φ ∈ ΦS.

Hence, players switch from the safe arm to the risky arm at time t according to some

distribution function F j : R+ → [0, 1]. Write F̄ j = 1−F j for the complementary distribution

12



function. This approach also allows us to provide an alternative, perhaps more expressive,

formula for ν−i. By definition,

ν−i
t =

1

λ

∑

j 6=i

∂

∂t
lnEφ

p0[e
∫ t

0
λ1

{s≤ti(βi)}
ds] =

1

λ

∑

j 6=i

∂

∂t
ln

[

eλt(1− F j
t ) +

∫ t

0

eλsdF j
s

]

,

such that, explicitly,

ν−i
t =

∑

j 6=i

eλtF̄ j
t

F̄ j
0 +

∫ t

0
λeλsF̄ j

s ds
≥

∑

j 6=i

eλtF̄ j
t

1 +
∫ t

0
λeλsds

=
∑

j 6=i

F̄ j
t . (5)

It follows that ν−i
t is a function that begins at I − 1, remains there as long as F j(t) = 0 for

all j 6= i, discontinuously decreases when F j discontinuously increases for some j 6= i, and

continuously increases when t /∈ ∪j 6=i suppF
j, strictly, unless it is equal to 0, which occurs

when F j(t) = 1 for all j 6= i.16 It always exceeds the total probability of others not having

stopped pulling their risky arm, as the likelihood of a breakdown is lowest when they have

not yet done so, and player i must entertain the possibility that they already have begun

pulling the risky arm.

Figure 1 illustrates this scenario for the case of two players from the perspective of player

i: in the case of some (arbitrary) pure policy (when player j selects a deterministic policy

uj), the hazard rate ν−i coincides with it; in the case of a mixed policy, ν−i and F̄ j coincide

(at least) at the initial instant and once they reach 0.

ν−i
t , F̄ j

t

ν−i
0 = F̄ j

0
b

b

F̄ j
t

ν−i
t

0 0.5 1 1.5 2 t

0.2

0.4

0.6

0.8

1

ν−i
t = F̄ j

t

(a) Mixed policy

ν−i
t , ujt

0 0.5 1 1.5 2 t

0.2

0.4

0.6

0.8

1

ν−i
t = ujt

(b) Pure policy

Figure 1: Hazard rate ν−i compared with F̄ j, uj, I = 2.

16Given a distribution G, we write suppG for the set of points of increases in G.
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4 Best Replies

This section elucidates the structure of the best-reply function of a fixed player i, taking

the behaviour of others as given, as summarized by the hazard rate ν−i. This procedure

involves five steps. First, we explain why this hazard rate is indeed a summary statistic

for the best-reply problem. Second, we show that any best reply is necessarily a stopping

time policy. Third, we derive the unique cooperative solution as an immediate by-product, in

which ν−i = I−1. Fourth, in the case of two players, we solve for the best-reply function and

show how its structure–first increasing and then decreasing to 0–eliminates the possibility

of the existence of an equilibrium in pure policies. Fifth, we explain why this non-existence

extends to the case of more than two players.

4.1 The Certainty-Equivalent Problem

The optimization problem faced by player i satisfies certainty equivalence: the optimal ac-

tion uit is exactly the same as it would be if all unknowns were known and if their values

equaled their best estimates (the conditional expectations), given by (pi, ν−i). Furthermore,

a separation principle holds: optimal estimation and optimal control can be decoupled. As

clearly illustrated in the definition of (pi, ν−i), the choice of ui does not affect this estimate.

As an illustration of this, according to the law of iterated expectations, we may now

rewrite the problem of minimizing (1) as, equivalently, minimizing

∫

t≥0

e−rt
(

rpitg
(

1− uit
)

+ ruits+ λpit(I − uit − ν−i
t )s

) 1− p0

1− pit
dt (6)

over measurable policies πi : R+ → [0, 1], subject to (4), e.g.,

ṗit = −λpit(1− pit)(I − uit − ν−i
t ), pi0 = p0.

This is the program P.17 Here, the function ν−i : R+ → [0, I − 1] is treated as an exogenous

(measurable) function. We omit it as an explicit argument of P. By the Filippov-Cesari

theorem (see Cesari, 1983), a solution exists, that is to say, the infimum is achieved. We will

examine the necessary conditions given by Pontryagin’s maximum principle.

The interpretation of the objective is as follows. As explained above, (1−p0)/(1−pit) is the

probability of reaching time t without a breakdown. At that time, if player i invests uit in the

safe arm, then the instantaneous probability that he suffers a breakdown is (1−uit)λp
i
tdt, with

the expected cost rh. If any of the players has a breakdown (which occurs with probability

17With a slight abuse: the program P examined in the appendix is a slight modification of it.
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λpit(I − uit − ν−i
t )dt), then player i switches to the safe arm, yielding the net present cost s.

As was the case for learning dynamics, the pair (pi, ν−i) also summarizes all the information

that matters for computing payoffs.

4.2 Stopping Time Policies

Here, we show that any best reply must be within the class of stopping time policies.

Lemma 1 If πi ∈ Πi solves P, then πi ∈ Πi
S.

Informally, Lemma 1 states that if a player begins experimenting, he should do so indefinitely

(i.e., until a breakdown occurs), and conversely, if he plays safe, he must have played safe at

all earlier times. To gain further intuition, consider the arbitrage equation of player i, which

describes the trade-off between backloading and frontloading experimentation. This equation

is silent regarding the optimal amount of experimentation at time t and suggests only the

optimal timing of a fixed amount of experimentation. The marginal value of backloading

experimentation is given by

r
(

pitg − s
)

+ λpit
(

I − uit − ν−i
t

)

(g − s)− λpit (g − s)
(

1− uit
)

. (7)

The first term is the time-preference effect of delaying the expected flow cost ptg and

anticipating the cost s. The second term pertains to the event of a breakdown (at rate

λpit
(

I − uit − ν−i
t

)

): if so, safe play would occur at t + dt regardless of the player’s earlier

action; in that event, pulling the safe arm more at t yields marginal savings of g−s. Finally,

the third term considers the effect of the player’s action on the likelihood of a breakdown:

by frontloading safe play, the player reduces (at a rate λpit) the arrival of a breakdown, in

which case he would switch from the current action uit to ui = 1; because this scenario can

occur only in the bad state, this action yields a loss g − s.

Note that the sum of the last two terms is non-negative. Hence, equation (7) implies

that backloading is profitable when p is sufficiently large. Conversely, if a player were certain

that the state is good, discounting would suggest frontloading the risky action. Lemma 1

then establishes that over the relevant range of beliefs (i.e., for pi ≥ p∗; see Lemma 2), the

marginal value of backloading is positive.

Finally, note that Lemma 1 does not imply that the solution to P is unique; rather,

it implies that all deterministic solutions are in Πi
S. Furthermore, one can determine the

bounds on how early or late a player is willing to switch to the risky arm. Next, we provide

such bounds in terms of player i’s beliefs. We define

p∗

1− p∗
:=

µ+ I

µ+ I − 1

1

γ
,
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as well as
p∗∗

1− p∗∗
:=

µ+ 1

µ

1

γ
,

where we recall that γ = (g − s)/s and µ = r/λ. As is immediately observed from the

formula, p∗∗ > p∗, given I ≥ 2. The next result establishes that once a player becomes

sufficiently optimistic (specifically, when pit < p∗), he allocates his entire resource to the

risky arm.

Lemma 2 If πi solves P, then uit = 0 for all t such that pit < p∗. Conversely, if uit = 0 yet

pit > p∗, then ν−i
t > 0.

The belief p∗ is the threshold value at which a player is willing to experiment if all

other players are pulling the risky arm thereafter. Lemma 2 establishes a lower bound

on experimentation because, intuitively, the temptation to free-ride is strongest when all

other players are pulling the risky arm. Hence, if p0 < p∗, we have finished: in the unique

equilibrium, all players choose uit = 0 at all times. In what follows, we assume that p0 ≥ p∗.

The next result establishes that at least one player must assign positive probability to

switching to the risky arm no later than when his belief reaches p∗∗.

Lemma 3 If ν−i
t = I − 1 and player i’s best reply is F̄ i(t) = 1, then pit ≥ p∗∗.

It can be shown (previewing the cooperative solution characterized below) that the upper

bound on the amount of experimentation p∗∗ coincides with the threshold belief for the

single-agent problem. This theme is familiar in exponential-bandit models (Keller, Rady and

Cripps, 2005, and Bonatti and Hörner, 2011) in which players are not willing to experiment

more than in the single-player case. However, in contrast to good-news models, in which

equilibrium beliefs “reach” the stopping region, the lower bound p∗ depends on the number

of players because of the amount of information generated by I − 1 players pulling the risky

arm.

4.3 Cooperative Solution

We briefly mention the cooperative solution, which is easily derived from the previous re-

sult. Assume that players perfectly observe one another’s actions (an innocuous assumption

because the optimum involves pure policies) and choose them so as to minimize the sum of

their costs. We define
pFB

1− pFB
:=

µ+ I

µ

1

γ
.
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Note that pFB is larger than p∗∗, given I ≥ 2. In fact, it coincides with p∗∗ and hence also

p∗ when I = 1 is inserted into the formulas.

Given a pair (p, u) such that p is the belief path generated by u :=
∑

i u
i, given p0, along

the history with no breakdown, the action path (ut)t is measurable with respect to the belief

path (pt)t if pt = pt′ ⇒ ut = ut′ for all t, t′. We write u(p) for the value of u of belief p ≤ p0,

which is then well defined. The cooperative solution given in the next lemma is measurable

with respect to its belief path.

Unsurprisingly, the optimal policy involves having all players employ the safe arm until

belief pFB is reached and then switching to the risky arm. This approach is stated below

(see also Keller and Rady 2015, Proposition 1). The next lemma also establishes that total

costs decrease in the intensity with which the risky arm is pulled, as long as the ranking of

intensities holds pointwise in the beliefs.

Lemma 4 The cooperative solution uFB is given by uFB
t = I for all t such that pt ≥ pFB

and uFB
t = 0 otherwise. Furthermore, let p′, p′′ : R+ → R be two feasible paths such that

the corresponding action paths u′, u′′ are measurable with respect to their belief path, with

uFB(p) ≤ u′(p) ≤ u′′(p) for all p ≤ p0. The cost is then weakly lower under p′ than under p′′

and strictly lower when u′(p′t) < u′′(p′t) for a set of times t of positive measure.

4.4 Best Replies with Two Players

To understand why equilibrium is necessarily in mixed policies (unless p0 /∈ (p∗, p∗∗)), it is

useful to derive the best-reply correspondence in the special case of two players. Suppose

that player j 6= i switches (with probability one) to the risky arm at time tj . We may

distinguish player i’s cost according to whether he switches to the safe arm first or second.

If player i decides to go second, he must do so when his private belief reaches the threshold

p∗ (or immediately if this belief has been reached by the time j switches). Hence, if going

second is best, then player i’s best reply must be

ti = tj + λ−1 ln

(

p0

1− p0

/

p∗

1− p∗

)

.

The fixed delay is equal to the time required for beliefs to reach the threshold p∗ based on

player j’s experimentation alone.

If i decides to go first, then player i will begin experimenting immediately, conditional

on wanting to preempt player j. Intuitively, player i will not learn before time tj unless

he experiments. If player i is not willing to wait until then, he should begin immediately.

If delaying experimentation is not as costly as choosing the risky arm while still being
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Figure 2: Best-reply curves with two players for (r, λ, γ, p0) = (1/10, 1, 4, 1/2).

pessimistic, then player i will choose to “freeze” beliefs until tj . This scenario is intuitive:

the incentive to wait and “be second” only grows as time passes: if a player were to delay his

decision to switch to the risky arm, then his incentive to move second would only grow, as he

would have to wait for less time before benefiting from the other player’s experimentation.

Hence, if moving first is the preferred course of action, then moving immediately is best.

What remains to be determined is when player i prefers to go first or second. This

preference depends on when player j switches. Unsurprisingly, the larger tj is, the more

tempting it is to go first. Intuitively, if tj is very high, then the cost of waiting until player

j’s actions take beliefs to the threshold causes an overly costly delay in learning. Conversely,

when player j is expected to switch to the risky arm soon, the benefits of free-riding on his

experimentation when beliefs are most pessimistic outweigh the cost of delay. This scenario

is summarized by the following lemma.

Lemma 5 The best-reply correspondence ti : R+ ⇒ R+ is given by, for some t̂ ∈ R+,

ti(tj) =



















tj + λ−1 ln
(

p0

1−p0

/

p∗

1−p∗

)

if tj < t̂,
{

0, t̂+ λ−1 ln
(

p0

1−p0

/

p∗

1−p∗

)}

if tj = t̂,

0 if tj > t̂.
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Consequently, player i’s best-reply curve shifts downward at t̂. The two best-reply curves do

not cross, and no pure-policy equilibrium exists. Figure 2 provides an illustration.

If player j uses precisely t̂, then player i has two best replies. However, consider Figure 2:

for each of his choices, player j’s best reply would be much smaller than p̂ (indeed, it would

be 0 if i used the larger best reply and λ−1 ln
(

p0

1−p0

/

p∗

1−p∗

)

if he uses 0). Unsurprisingly,

regardless of how player i randomizes between these two choices, player j’s best reply is

strictly lower than t̂. We immediately obtain the following result.

Lemma 6 Suppose that I = 2 and p0 > p∗. There exists no equilibrium in which either

player uses a pure policy.

4.5 More Than Two Players

Can an equilibrium in pure policies exist when I > 2? Deriving best-reply curves is no longer

an easy task. However, a pure-policy equilibrium cannot exist based on the following simple

argument. Suppose that such an equilibrium exists, and let ti denote the time at which player

i switches to the risky arm. Without loss of generality, suppose that t1 ≥ t2 ≥ · · · . Suppose

first that p(t3) > p∗. Consider the game starting at time t3 and the corresponding initial

belief p(t3). This game involves only two players, players 1 and 2 (assuming indeed that t3

is optimal for player 3). A necessary condition for the policy profile to be an equilibrium is

that players 1 and 2 play mutual best replies in this game–yet the two-player game admits

no pure-policy equilibrium. If instead p(t3) = p∗, then given Lemma 3, because p(tI) ≥ p∗∗,

there exists j such that p(tj) > p∗ = p(tj−1) = · · · = p(t1). As in the two-player case, past

time tj, any player i = 1, . . . , j − 1 would gain from unilaterally deviating to the risky arm

immediately.18

5 Main Results

5.1 Symmetric Equilibrium

We now turn to the equilibrium analysis. Recall that we assume throughout that p0 > p∗.

Given F−i and, hence, given ν−i, each time τ ∈ suppF i is such that the stopping policy

πi
τ is a solution to P. Furthermore, it holds that, given any τ ∈ suppF i, pτ ≥ p∗. We let

τ̄ i := max{τ ∈ R+ : τ ∈ suppF i}.

18For any number of players I, the proof of Lemma 5 establishes that if players −i switch at t = T , then

player i wants to switch at a different time.
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First, we focus on symmetric equilibria and accordingly write F , τ̄ for F i, τ̄ i, unless

we emphasize a given player’s perspective. The next result derives the unique symmetric

equilibrium of the game.

Theorem 1 There exists a unique symmetric equilibrium. If p0 ≥ p∗∗, then the equilibrium

is pure and involves F i(t) = 0 at all times.

If p0 ∈ (p∗, p∗∗), the equilibrium involves mixed policies. Specifically, player i chooses a

stopping policy πt among the set [0, τ̄ ], with τ̄ > 0 and pτ̄ = p∗; this distribution is positive

and continuous over (0, τ̄) and has an atom at times t = 0, τ̄ .

The equilibrium distribution function can be solved in closed form. Namely, let

A :=

(

1− γ
µ

1 + µ

p0

1− p0

)−1

.

We obtain, normalizing λ to 1,

F̄ (t) =

(

A− eµt

A− 1

)
1

I−1
(

1−
µ

(I − 1)(Ae−µt − 1)

)

,

and

τ̄ =
1

µ
ln





I − 1

(I + µ− 1)
(

1 + µ− γµ p0

1−p0

)



 .

Figure 3 illustrates the equilibrium distribution (left panel) and compares the complemen-

tary distribution function F̄ i
t with the hazard rate ν−i

t (right panel). Recall the two sources

of uncertainty that each player faces. Over time, players learn from their own experience

and from that of others. In particular, as time passes, a player assigns growing weight to the

event in which this opponent has already switched to the risky arm, conditional on which

learning occurs faster. Moreover, the contribution of other another player’s experimentation

to player i’s learning (ν−i) is always smaller than the survival rate of the opponent’s dis-

tribution because, as time passes and no breakdown occurs, player i also assigns growing

weight to subsequent realizations of his opponent’s switching time, which slows this learning

process.

The maximum range of stopping times in the symmetric equilibrium has a natural in-

terpretation: the “earliest” that a player may switch to the risky arm is when his belief is

p∗∗: this is the belief for which he would switch if he were on his own (cf. Section 4.3). The

latest he might switch is when his belief reaches p∗: this would be his uniquely optimal belief

if all others were always experimenting. Because his opponents’ behaviour lies somewhere

between these two extremes, so does his set of best replies.
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Figure 3: Equilibrium distributions F i
t (left), F̄ i

t and hazard rate ν−i
t (right) for

(r, λ, γ, I, p0) = (1/10, 1, 4, 3, 1/2).

In contrast to typical mixed-strategy equilibria of normal-form games, player j does not

need to randomize over stopping policies to make player i indifferent over all stopping times

in the relevant time interval. He could just as easily play a deterministic policy uj = ν−i.

The reason that players randomize is that player j is not willing to play such a deterministic

but interior policy. Randomizing over stopping policies is the unique cost-minimizing way

to make player i indifferent over stopping times. This fact has rich implications for the

dispersion of equilibrium beliefs.

Figure 4 illustrates belief paths as a function of time and behaviour. For instance, pc

is the belief path of player i who chooses the latest possible equilibrium stopping time, τ̄ .

The solid line indicates when he pulls the safe arm; the dashed line indicates when he has

already switched to the risky arm. Trajectories pa and pb correspond to earlier switching

stopping times. Once the player begins pulling the risky arm, his belief decreases faster,

reinforcing his preference for the risky arm (absent any breakdown). Trajectories pd and pe

are “counterfactual” trajectories in which player i is more pessimistic than is possible. He

then has an incentive to pull the safe arm longer than in equilibrium and to switch once

his belief reaches p∗, which is later than the latest possible equilibrium time at which his

opponents might have switched.

This elucidates the “off-path” behaviour of player i. After an arbitrary history (uis)
t
s=0

(along which he might have deviated from the prescribed behaviour), Lemmas 1–2 remain

valid: player i’s optimal policy is a stopping policy (from time t onward) that prescribes

stopping no later than the first time his belief reaches p∗.

Finally, the necessity to randomize is a robust phenomenon: as Figure 2 clearly indi-

cates, given that best-reply curves vary continuously with the parameters, the non-existence

of pure-policy equilibrium is robust to perturbations in parameters, regardless of whether

symmetry is preserved. Furthermore, it is not necessary to consider that when the safe
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Figure 4: Belief trajectories for (γ, p0, I, µ) = (3, 13/20, 2, 1/8).

arm is pulled, no learning occurs. Our results generalize to the case containing background

learning. In that case, even if the initial belief is above p∗∗, players use stopping time poli-

cies in the unique symmetric equilibrium, which is mixed. However, the smallest stopping

policy with the support of randomization has a stopping time that is strictly positive and

that precisely corresponds to the time when their belief reaches p∗∗. Background learning is

further discussed in Section 6.2 below.

Derivation of the equilibrium distribution. Fix the other players’ behaviour in terms

of ν−i
t , and consider player i’s stopping time. The first-order effect of playing safe longer

(differentiating (6)) is given by

e−µT

1− pT
(µs− pT (µg + s)) +

∫ ∞

T

e−µt
(

µg + (I − ν−i
t )s

) pt
1− pt

dt.

The first term (which is negative) captures the myopic benefit (cost reduction) of playing

safe longer. The second term is instead the added cost of slower learning, which is captured

by a higher hazard rate of a breakdown at all future times.

Pointwise indifference requires the marginal cost of playing safe longer to be nil over the

entire support. Thus, we turn to the second-order effect of playing safe, which is given by
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the sum of the following four terms,

−
e−µTµ

1− pT
(µs− pT (µg + s))− (I − ν−i

T − 1)
e−µTpT
1− pT

(µs− (µg + s))

−
e−µT pT
1− pT

(

µg + (I − ν−i
T )s

)

+

∫ ∞

T

e−µtpt
1− pt

(

µg + (I − ν−i
t )s

)

dt.

The second-order effect is given by (a) the delayed myopic benefit, (b) the lower myopic

benefit (note that (I− ν−i
T −1)pT/(1−pT ) is the derivative of the hazard rate), (c) the post-

poned cost of diminished learning, and (d) the higher marginal cost of diminished learning

(because the hazard rate is exponential in ui). Because the first-order condition must hold

pointwise, the last term is equal to the myopic (first-order) benefit of delaying switching.

These four terms can be combined into an expression characterizing the equilibrium ν−i

as a function of the belief p,

p

1− p
(g − s)

(

I + µ− ν−i − 1
)

− s(µ+ 1). (8)

Note that these beliefs are those of the most pessimistic type, i.e., the player who has not

yet switched to the risky arm.

Next, we use the state equation to derive ν−i
t as a function of time alone. We then derive

the equilibrium distribution from the definition of ν−i as

ν−i
t

I − 1
=

(1− Ft)e
λt

(1− Ft)eλt +
∫ t

0
eλsdFs

,

which yields a differential equation for Ft, resulting in

Ft = 1−
ν−i
t

I − 1
e

∫ t
0

(

ν
−i
s

I−1
−1

)

ds
,

and we then plug the formula for ν−i
t .

5.2 Uniqueness

As discussed above, no equilibrium in pure (deterministic) policies exists, regardless of sym-

metry. Thus, asymmetric equilibria in mixed policies is possible. As Figure 2 clarifies, our

game is not supermodular: in particular, best-reply curves are not monotone, which makes

it difficult to establish uniqueness. This implies the failure of standard methods to prove

uniqueness.19 Moreover, the different methods and tricks described in Karlin (1959) do not

19See Vives (1999) for an excellent discussion. Because best-reply curves are downward sloping, existing

arguments based on supermodular games are ineffective; the best-reply function is not a contraction either

(otherwise, the equilibrium would be pure), and the fact that the equilibrium is mixed implies that the

Gale-Nikaido theorem or the Poincaré-Hopf theorem cannot work either or rather that one should work with

the mixed-strategy space directly and possibly use an infinite-dimensional extension of those.
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appear to be effective. In the case of two players, it can be shown that no such equilibrium

exists.20 Our proof carries no philosophical charm and is based on particular features of the

payoff function.

Theorem 2 Assume that I = 2. The equilibrium is then unique (and thus equal to the

mixed equilibrium of Theorem 1).

Uniqueness contrasts with the multiplicity that is prevalent in games with strategic ex-

perimentation, not only when actions are observable (Keller, Rady and Cripps, 2005; Keller

and Rady, 2015) but also when they are not (Bonatti and Hörner, 2011). Because of the

pervasive free-riding incentives, asymmetric equilibria typically exist when players alternate

(finitely or infinitely often) between experimenting and taking advantage of the opponent’s

experimentation–leading to the existence of additional asymmetric equilibria. By contrast,

in our game, free-riding finds its expression in how early a player is willing to begin experi-

menting; the earlier the opponent begins experimenting, the later the player finds it optimal

to do so. However, the ordering of actions is unambiguous: for a given total amount of

experimentation, it is always optimal to use a stopping policy, pulling the safe arm if and

only if a threshold time has not yet been reached.21 It is impossible to determine a player’s

incentives to use a policy that would involve pulling the risky arm before the safe arm,

precluding any type of alternation in the experimentation that players conduct.

5.3 Comparative Statics

As the number of players increases, the free-rider problem worsens in terms of both the

timing and the amount of experimentation.

In computing beliefs, we encounter a difficulty: the belief that player i holds at a given

time is not uniquely determined in the mixed equilibrium; the earlier a player stops, the lower

is his belief at a given time t, provided that no breakdown has occurred. We are thus led to

adopt the perspective of an outside observer who observes nothing at all: conditional on a

given time t being reached without a breakdown under either informational assumption, what

probability does he attach to the event {ω = B}? In the observable case, this belief coincides

with that of any player on path. In the unobservable case, it is some weighted average of a

player’s belief where the weight reflects the probability attached by this observer to a player

20For more than two players, uniqueness is an open problem.
21This is also the key reason why the equilibrium must be in mixed policies and not in pure policies with

non-extremal actions: for a given amount of experimentation, players have strict incentives to backload,

eliminating the possibility of pulling arms with non-extremal intensity over any interval of time.
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switching to risky play at a given time, suitably updated given that time t is reached without

a breakdown. Formally, we compute

pt = P
φ
p0[ω = B | ∅t],

where, unlike in Section 3, we do not condition on any particular player’s action path. It

follows that the outside observer’s belief satisfies

ṗt = −pt(1− pt)I(1− νit).

For the purpose of the next proposition, we index distributions and stopping times, among

others, by the number of players I ≥ 1.

Proposition 1

1. The distributions F I are ranked by stochastic dominance: F I
t decreases in I, for all t.

2. For an outside observer, νI
′

t ≥ νIt for all I ′ > I, with strict inequality for all t < τ̄I′.

3. For I ′ > I, the belief path pI
′

t crosses pIt once (from above).

4. For all I > 1, total individual costs in the symmetric equilibrium are given by

p0(gµ+ s)− µs. (9)

In summary, as the number of players increases, the “mixing phase” lasts longer (until

τ̄I) and drives beliefs to a lower threshold p∗. The worsening free-riding problem implies

full dissipation of the positive informational externalities generated by an additional player.

Moreover, adding one player does not modify the upper bound on experimentation p∗∗.

Thus, although the social planner would like to experiment even under more pessimistic

prior beliefs, there can be no experimentation in equilibrium if the prior is below a constant

threshold.

The distributions of stopping times Ft with different I are ranked by first-order stochas-

tic dominance: a larger number of players increases the likelihood of later stopping times.

Furthermore, the expected hazard rate from the outside observer’s perspective I − νIt is de-

creasing in I as long as p∗ has not been reached. The outside observer’s beliefs facing I ′ > I

players eventually overtake the beliefs that he would hold with I players. In Figure 5, we

illustrate the hazard rate I − νIt and the belief paths for I = 2, 4.
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Figure 5: Hazard rate and belief paths for (µ, γ, p0) = (1/4, 1, 1/2).

6 Remedies: Information and Subsidies

Given the inefficiencies of the equilibrium outcome, it is natural to ask what interventions

could possibly be helpful. The first possibility is to provide more information to the players.

For instance, does better monitoring help in this scenario, in contrast to good-news models?

If an intermediary could provide private recommendations to the players, what would he do?

These questions are examined in the first subsection. In the second, we consider the scope

for transfers (specifically, subsidies and cross-insurance) in improving the outcome.

6.1 The Role of Information

6.1.1 Perfect Monitoring

We begin by recalling Keller and Rady’s result regarding symmetric Markov equilibria in the

game with observable actions. Players are restricted to Markov policies ui : [0, 1] → [0, 1]

with the left limit pt− of the common posterior belief as the state variable. Policies are

required to be left-continuous and piecewise Lipschitz. We define p̄ as (the unique solution

of)
p̄

1− p̄
:=

p∗

1− p∗
exp

(

−
1 + µ

µ
−W−1

(

−γ
p∗

1− p∗
e−

1+µ
µ

))

,
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where W−1 is the (negative branch of the) Lambert function. We also define uo : [0, 1] → [0, 1]

as

uo(p) =



















1 if p ≥ p̄,

I+µ−1
I−1

− µ(ln(p/(1−p))−ln(p∗/(1−p∗)))+1
(I−1)(γp/(1−p)−1)

if p ∈ [p∗, p̄),

0 if p < p∗.

Theorem 3 (Keller and Rady, 2015) The unique symmetric Markov equilibrium is given

by uo.

It is worth emphasizing that this is not the unique Markov equilibrium: asymmetric Markov

equilibria exist, and the ranking in terms of welfare can go either way. (See Section 3.3 of

Keller and Rady, 2015.) Theorem 3 is established by Keller and Rady (2015), although they

do not provide the closed-form expression for the policy, and the reader is referred to their

paper for a proof of this result.

Under observable actions, players benefit from a larger group, although not at the same

rate as the social planner. Furthermore, as the number of players (and hence the value of

information) grows, the first-best policy eventually involves immediate full experimentation.

Each player’s cost then converges to its level under complete information: the arrival rate of

a breakdown grows, conditional on the bad state, and the probability of suffering a break-

down is inversely proportional to I. This relationship cannot be found when actions are

not observable because experimentation does not even begin unless p0 < p∗∗. Even under

observable actions, the threshold belief p̄ for experimentation to begin is increasing in I

but converges to a finite value. Furthermore, the duration of the mixing phase does not

decline as the number of players grows. Therefore, the cost under complete information is

not attainable if p0 > p∗.

Next, we compare the total amount of experimentation up to some t under both ob-

servable and unobservable actions. We write pot , p
n
t and pFB

t for these beliefs, depending on

whether we consider the observable, unobservable or cooperative case, respectively. We can

show stronger results than the ranking of the belief paths. For the unobservable case, let

ν(p) := νt(p), where t(p) denotes the time at which the outside observer’s belief reaches a

value of p. Formally, we can show that ν(p) is ranked across the three cases.

Proposition 2 The following inequalities hold for all p

νn(p) ≥ νo(p) ≥ νFB(p).

The second inequality is strict when p < pFB, and the first is strict when po < p̄. In

particular, p̄ > p∗∗.
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Therefore, for all t,

pnt ≥ pot ≥ pFB
t ,

with strict inequalities as described in the previous proposition. Furthermore, Lemma 4

implies the ranking of the symmetric equilibrium costs C(p0).

Corollary 1 The following inequalities hold for all p = p0

Cn(p) ≥ Co(p) ≥ CFB(p).

Both inequalities are strict when p > p∗ and µ > 0.

Hence, monitoring is helpful in our context, although it is not helpful with good news.22

The basic intuition is easy to grasp: when actions are observable, a player’s incentive to

deviate is related not only to the direct cost or benefit from this deviation but also to the

indirect cost or benefit in terms of the change in actions by other players. By deviating to

the risky arm, a player accelerates the common learning that, in the absence of news, leads to

greater optimism and more experimentation by others; this outcome is good because players

do not experiment enough. By contrast, with good news, experimentation by a player leads

to greater pessimism in the absence of news and hence depresses experimentation provision.

6.1.2 Coordination

Forcing players to disclose their actions might not be easy to achieve in practice. A less dras-

tic intervention might involve introducing a disinterested intermediary who makes private

but correlated recommendations to each player regarding when they should begin exper-

imenting. Mediation is a particularly weak form of intervention; it is self-enforcing and

costless. Its formal implementation requires no more than a private correlation device, but

in practice, this mediation is undertaken by trade associations, political representatives, or

any institution commonly involved in the social dialogue.

Clearly, the optimal correlation scheme should be in the extensive form: there is no

benefit in telling a player when to switch before the intermediary intends for him to do so,

as telling him the specific stopping time in advance only makes it more difficult to induce

compliance with the recommendation, giving him more information than needed. However,

22See Bonatti and Hörner (2011) and related games with incomplete information. Holmström (1999) is

perhaps the most famous example, although arguably the mechanism through which the lack of observability

operates is very different.
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as we explain, even in the normal form (by telling each player privately at the beginning of

the game when he should stop playing safe), such correlation is helpful.23

Specifically, for the case of two players, consider the joint distribution over switching times

in our symmetric equilibrium, F (t1, t2) = F (t1)F (t2). We construct a new distribution by

slightly perturbing the independent randomization according to a bivariate FGM copula.24

Let ρ denote the correlation parameter of the joint distribution F .

We modify our equilibrium marginal distribution to introduce a small amount of corre-

lation and preserve incentives. At an abstract level, the incentive-compatibility constraint

for obeying the recommendation to switch at time t is a functional equation that is linear

in the distribution F . We can then write this constraint as the combination of two linear

operators K0 and K1. In particular, we have

K0(F ) + ρK1(F ) = 0.

We can use this constraint to capture the restriction that incentives (under a small amount

of correlation) impose on the marginal distribution. In particular, we identify a distribution

that we use to (locally) modify our equilibrium distribution while preserving incentives. We

denote this distribution by F1(t; ρ).

Clearly, regardless of the degree of correlation ρ, no player can begin experimenting before

p∗∗ or after p∗. The design variable is the degree of correlation but requires adjusting the

support of the marginal distribution to match p∗ of the most pessimistic type. In particular,

the mass point at time τ̄ is now a function of ρ. We then differentiate total costs under the

distribution F1(t; ρ) in a neighborhood of ρ = 0.

For any value of the parameters, the derivative of the cost is negative, i.e., positive cor-

relation is beneficial. We conclude that some (possibly small) amount of positive correlation

of switching times (subject to incentive compatibility) improves upon independence.25

However, the role of positive correlation (across switching times) must not be confused

with a simple reduction in the dispersion of practices. Recall that only switching policies are

optimal for any player. It is then important and immediately clear that the symmetric (“co-

ordinated”) pure-policy profile {νit}
I
i=1 yields strictly higher costs than our mixed equilibrium.

23We are unable to solve for the optimal correlation scheme in the extensive form. In fact, even in the

normal form, we are able to solve for it only in the special case of a particular parametrized family of

correlation schemes, as described below. But this case suffices to show that independence is not optimal.
24For a marginal distribution F (t), the Farlie-Gumbel-Morgenstern (FGM) copula is given by F (t1, t2) =

F (t1)F (t2)(1+ρ(1−F (t1))(1−F (t2))), with parameter ρ ∈ [−1, 1]. See Nelsen (2006). Throughout this case,

we assume symmetry of this distribution, and we introduce an (arbitrarily small amount of) background

learning, i.e., ṗit = −pit(1− pit)(ū − ui
t − νjt ), with ū > 2.

25The details of the calculations leading to this comparative statics result are in the annotated Mathematica

file correlated.nb on the authors’ websites.
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Again, from each player’s perspective, it is irrelevant whether others randomize (holding ν−i

fixed). However, the best-reply problem admits only switching-policy solutions–it is costlier

for a player to use the pure (non-extremal) policy νit than to use the distribution F i over

stopping times that is equivalent to νit , from the perspective of the other players.

6.2 The Role of Payoffs

The potentially beneficial role of government policy for technology adoption has been the

subject of a large body of theoretical and empirical literature. We examine the role of policy

interventions and their interaction with the monitoring structure.

We introduce payoff externalities in our model through a cross-subsidization or insurance

scheme: when a breakdown occurs, we assume that the player who suffers this breakdown

receives in turn a fraction α ≤ 1 as compensation, evenly shared by the other players

(throughout this case, we assume that the identity of the player who suffers a breakdown is

observable). Our baseline model corresponds to the special case α = 0.

Formally, the total realized cost of player i is now, given the realization of the process

{N i
t : t ≥ 0}i=1,...,I ,

∫ ∞

0

re−rt

(

h

(

α

I − 1

∑

j 6=idN
j
t + (1− α)dN i

t

)

+ suitdt

)

.

To avoid equilibrium multiplicity at least under complete information,26 we assume through-

out that

α < α̂ := γ
I + µ− 1

I + µ
.

Under cross-subsidies α, the two bounds on experimentation we introduced earlier can be

written as
p∗∗α

1− p∗∗α
:=

1 + µ

µ

1

γ − α(1 + γ)
,

and
p∗α

1− p∗α
:=

I + µ

(I + µ) ((1 + γ)(1− α)− 1)− γ
.

26With bad news, when payoff externalities are strong, multiple equilibria exist when players are sufficiently

patient, even when neither the actions nor the identity of the player suffering the breakdown is publicly

observed. The absence of payoff externalities is key to the argument that behaviour after the first breakdown

is trivial, as playing safe is then strictly dominant. For instance, if a breakdown entails the same cost to all

players independent of who suffered it and if the state of the world is known to be bad, then one can follow

Abreu, Milgrom and Pearce (1991) in constructing multiple Pareto-ranked equilibria.
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It is easy to observe that p∗∗α and p∗α are strictly increasing and continuous in α (when α < α̂

for p∗α and when α < α̃, defined below, for p∗∗α ). Furthermore, note that

p∗∗α > p∗α ⇐⇒ α < α∗ :=
γ

1 + γ

I − 1

I + µ
. (10)

We obtain the following theorem that generalizes Theorem 1.

Theorem 4 Consider the game with unobservable actions. There exists a unique symmetric

equilibrium.

1. If (10) holds and p0 ∈ (p∗α, p
∗∗
α ), then the equilibrium involves mixed policies. Specifi-

cally, player i chooses a stopping policy πt among the set t ∈ [0, τ̄α], with τ̄α > 0 and

pτ̄α = p∗α; this distribution is positive and continuous over (0, τ̄α) and has an atom at

times t = 0, τ̄α. If p0 ≥ p∗∗α , then equilibrium is pure and involves F i(t) = 0 at all

times.

2. If (10) does not hold, then the equilibrium involves pure policies. Specifically, player i

chooses uit = 1 for all t such that pt ≥ p∗α and uit = 0 otherwise.

Thus, even for moderate levels of risk sharing, the equilibrium is in pure (cutoff) policies.

To gain some insight into pure- vs. mixed-policy equilibria, consider the two effects of risk

sharing: on the one hand, players are partially insured against their own breakdowns; on the

other hand, they may need to compensate other players for theirs. When α is sufficiently

large, it is no longer profitable to delay experimentation (free-ride) beyond p∗∗ = p∗: if

others experiment, the risk of needing to pay compensation is too high. Furthermore, it

is not profitable to preempt others because risk sharing shifts the threshold beliefs, which

makes experimentation less attractive.

A significant consequence of Theorem 4 is the following.

Proposition 3 The threshold α∗ in (10) satisfies p∗α∗ = pFB. Furthermore, α∗ < α̂.

In other words, there exists a cross-subsidy that makes players use the first-best cutoff as

their unique equilibrium policy. In contrast to the analysis of moral hazard in teams by

Holmström (1982), the players in our model can identify individual contributions and can

condition payments on the identity of the agent suffering a breakdown.

Greater experimentation by others is always desirable in terms of the informational ex-

ternality, as it results in more learning. However, more experimentation by others is not

desirable in terms of payoff (cost) externality: a player who shares the cost of other players’

breakdowns prefers less experimentation by others in terms of direct costs. The combina-

tion of positive informational externalities and negative payoff externalities is ambiguous a
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priori. The optimal level of the subsidy precisely offsets the payoff and informational ex-

ternalities, yielding the socially efficient outcome. In particular, the optimal subsidy causes

the two bounds on experimentation to coincide. Recall that the two bounds correspond to

the single-agent thresholds under the two constant policies ν−i
t ∈ {0, I − 1}. When the two

thresholds coincide, player i is willing to experiment from p∗ onward independent of the

actions of others.

The first-best cost-sharing level α∗ is increasing in the cost of a breakdown γ and in the

number of players I. As we saw in Section 5.3, as either parameter increases, the cost-sharing

rule must cancel the effect of a greater informational externality. A more striking result is

that α∗ is independent of the monitoring structure. In other words, for the right subsidy,

whether actions are observed is irrelevant, and the unique symmetric (in the observable case,

Markov) equilibrium achieves the first-best outcome.

When actions are observable, whether other players experiment too little or too much for a

player’s taste, he can nudge their action towards his preferred action by deviating accordingly.

A policy of playing risky leads to accelerated learning, prompting others to experiment,

whereas playing safe leads to slower learning and delayed experimentation by others. As a

result, one would expect the equilibrium payoff and the amount of experimentation to be

closer to their first-best levels when actions are observable, regardless of whether there is

over-experimentation. In particular, when we obtain first-best outcomes in the unobservable

case, we should also obtain the first-best outcomes with observable actions.

To substantiate this claim, we now turn to the observable case. We define

p̄α
1− p̄α

:=
p∗α

1− p∗α
exp

(

−
1 + µ

µ
−W−1

(

−γ
p∗α

1− p∗α
e−

1+µ
µ

))

.

This threshold generalizes the threshold p̄ introduced in Section 6.1 (that is, p̄0 = p̄). It is

easy to show that this threshold is strictly increasing in α.

We have the following generalization of Theorem 3 (we omit the specification of the

precise amount assigned to the risky arm in the interior region).

Theorem 5 Consider the game with observable actions.

1. For α ∈ [0, α∗], a unique symmetric Markov equilibrium exists. The safe arm is pulled

for p ≥ p̄α, the risky arm is pulled for p ≤ p∗α, and the amount assigned to the safe

arm is continuous and strictly increasing in the range of p ∈ [p∗α, p̄α].

2. For α ∈ (α∗, α̂), multiple symmetric Markov equilibria exist, indexed by an (arbitrary)

value p∗ ∈ [pFB, p∗α], such that the safe arm is pulled for p ≥ p∗ and the risky arm for

p < p∗.
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Figure 6: Pure- and mixed-policy equilibria with subsidies for (I, µ, γ) = (2, 1/4, 3).

The multiplicity for α > α∗ reflects complementarities among the players’ actions: if other

players switch to the risky action, then there are strict benefits of also doing so. The choice

p∗ = pBα is that for which smooth-pasting holds at the boundary. Figure 6 illustrates these

boundaries.

The analysis substantiates our discussion: for α > α∗, over-experimentation is observed

irrespective of whether actions are observed, but the extent of this over-experimentation is

worsened by the lack of observability. Similarly, for α < α∗, under-experimentation is the

result, and a lack of observability worsens this outcome. Thus, although better monitoring is

beneficial independent of the magnitude of payoff externalities, our results suggest that with

the correct intervention in the payoff environment, one can dispense with improvements in

the monitoring technology.

Finally, our paper suggests a plausible explanation for the failure of third-party subsidies

to foster the diffusion of agricultural innovations in developing countries (see Carter, Laajaj

and Yang, 2013, for a discussion of low and heterogeneous adoption rates). In particular, we

highlight an important difference between externally funded subsidies and budget-balanced

(formal or relational) risk-sharing agreements. To understand this difference, contrast the

role of risk sharing with a subsidy for experimentation that reduces γ (for example, through

an increase in the opportunity cost of playing safe or through an external insurance policy

that reduces g).

This effect is best observed when we introduce background learning,27 but also applies

27This means that beliefs never “freeze,” as ṗit = −pit(1− pit)(ū − ui
t − ν−i

t ) < 0, given ū > I, see ft. 12.
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qualitatively in the baseline model. An important property of background learning is that

the magnitude of the lump-sum losses affects only the timing of experimentation: as the

relative cost of a breakdown γ increases, the thresholds (τ , τ̄), with τ > 0, shift forward.

In other words, a higher γ delays the beginning of experimentation and the beginning of

full experimentation by an equal amount without affecting the equilibrium distribution of

stopping times. Consequently, provided that p0 > pFB, there is no subsidy that yields the

first-best cutoff as an equilibrium policy.

Figure 7 shows the effect of doubling the risk-sharing rate α or halving the risk factor γ.

(a) γ = 1.5
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Figure 7: Risk sharing vs. subsidies for (ū, I, µ, p0) = (2.2, 2, 0.25, 0.88).

7 Conclusions

Our results require a number of assumptions. Here, we briefly discuss how we expect them

to extend in two important dimensions.

Inconclusive bad news. A complete analysis under a scenario of inconclusive bad news

(that is, when a breakdown does not reveal the state) seems out of reach. However, we believe

that the belief-disagreement result would become more pronounced. First, if all agents stop

experimenting upon observing a breakdown, then learning stops and beliefs freeze at different

levels depending on the agents’ prior actions. Such endogenous belief heterogeneity has an

effect on policy effectiveness, e.g., if an external agent (the government) were to attempt

to subsidize the risky arm to resume experimentation. Second, behaviour after the first

breakdown can potentially differ across players. In particular, some players may revert to
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the risky arm for some time, whereas others may not. Conditional on the true state, this

exacerbates performance differences, as the agents who were experimenting earlier are those

who continue to do so.

Monitoring and payoff externalities in games of strategic experimentation. De-

spite the stylized nature of the learning processes involved, several economically relevant

implications may be drawn by contrasting the good-news and bad-news models of strategic

experimentation.

We have already remarked on the different welfare implications of observable actions in

the two models. Observability improves welfare under bad news, whereas it is detrimental

under good news. This contrast is easy to understand. Pulling the safe arm slows learning

in both models. However, slowed learning results in more experimentation by others with

good news, whereas it results in less experimentation with bad news.

However, unobservable actions have similar strategic effects under both signal structures.

In the absence of payoff externalities, unobservable actions imply that every best reply

involves frontloading risky (safe) actions in models with good (bad) news.28 In other words,

the pure interior action paths described by Keller, Rady and Cripps (2005), Keller and Rady

(2015), and Bonatti and Hörner (2011) rely on either observable actions (the former two) or

payoff externalities (the latter).

This result has differing implications for outcomes and provides a clear, if stylized, crite-

rion to guide policy interventions depending on the nature of the technology. In particular,

in the good-news case, unobservable actions eliminate inefficient delay but preserve the sub-

optimal amount of experimentation. Thus, subsidies can be used to augment the amount

of experimentation. Under bad-news learning, we highlighted three sources of inefficiency:

players experiment too little, with excessive dispersion in both practices and beliefs. Fur-

thermore, in the presence of background learning (see Figure 7), subsidies are able to address

the first source only, and group insurance may be more appropriate.

28For the good-news case, this result can be obtained by modifying Theorem 1 in Bonatti and Hörner

(2011) to account for pure informational externalities. Instead, the welfare comparison above does not rely

on the payoff externality.
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Appendix

A Reformulation of the Objective

Here we reformulate each player’s objective, and we keep track of additional cost terms that

will be necessary for comparative statics. Each player minimizes

∫

t≥0

e−rt
(

rptg
(

1− uit
)

+ ruits+ λpt(I − uit − ν−i
t )s

) 1− p0

1− pt
dt, (11)

subject to

ṗ = −λpt(1− pt)(I − uit − ν−i
t ), p0 = p0.

Let us do the transformations one by one, first rewriting the objective in terms of the log-

likelihood ratio ℓt := ln(pt/(1− pt)). The objective becomes

∫

t≥0

e−rt
(

reℓtg(1− uit) + ruits(1 + eℓt) + λeℓt(I − uit − ν−i
t )s

)

(1 + eℓ
0

)−1dt.

Next, we make the change of variable t 7→ t/λ, and we define γ := (g − s)/s and µ := r/λ.

Finally, we factor out (1 + eℓ
0
)−1 to get

∫

t≥0

e−µt
(

µeℓtg + µ(s(1 + eℓt)− geℓt)(ℓ̇t + I − ν−i
t )− ℓ̇te

ℓts
)

dt.

Integrating the last term yields

eℓ
0

s+

∫

t≥0

e−µt
(

eℓt(µg + µ(s− g)(ℓ̇t + I − ν−i
t )) + µs(ℓ̇t + I − ν−i

t )− µseℓt
)

dt.

Integrating the first two terms by parts, and factoring out s, we obtain the following expres-

sion for the expected cost:

W (ℓ0) :=
s(1 + µγ)

1 + e−ℓ0
+

µs

1 + eℓ0

∫

t≥0

e−µt
(

µ(ℓt − ℓ0)− γ(I − ν−i
t − 1 + µ)eℓt + I − ν−i

t

)

dt.

(12)

Therefore, ignoring constant terms, player i minimizes

∫

t≥0

e−µt
(

µℓt − γ(I − ν−i
t − 1 + µ)eℓt

)

dt,

subject to

ℓ̇t = uit + ν−i
t − I.
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B Proofs for Section 4

Proof of Lemma 1. The proof of this lemma relies on the proof of Lemma 2, proved next

and independently (except for the last sentence of that next proof, which is not used here).

We apply the maximum principle to P. It is easy to see that the program P is not

abnormal (see Seierstad and Sydsæter 1987, Ch.2.4, Note 5).29 The maximum principle

implies that there exists an absolutely continuous ψ : R+ → R such that (i) ψt > 0 ⇒ uit = 0,

(ii) ψt < 0 ⇒ uit = 1, and (iii) almost everywhere

ψ̇te
µt = γ(I − ν−i

t − 1 + µ)eℓt − µ.

Because ν−i
t ≤ I − 1, a sufficient condition for ψ̇t > 0 at any time t such that ℓt ≥ ℓ∗ is that

γµeℓ
∗

> µ.

Using the definition of ℓ∗, this is equivalent to

(µ+ I)µ ≥ µ(µ+ I − 1),

which is true.

It follows that ψ is strictly increasing at all times t such that ℓt ∈ [ℓ∗, ℓ0]; hence, given

(i), there exists t̄ ≥ 0 such that any solution must specify uit = 1 for all t < t̄ and uit = 0 for

t ≥ t̄ (recall that uit = 0 when ℓt < ℓ∗).

Proof of Lemma 2. Consider the continuation cost corresponding to the objective (12),

defined as

C(ℓ, t) :=

∫

s≥t

e−µs
(

µ(ℓ+ χs) + γ(ν−i
s − I − µ+ 1)eℓ+χs

)

ds,

where we define χs :=
∫ s

τ=t
(ν−i

τ − I)dτ as the value from setting ui = 0 (identically), given ℓ

and t. Note that, integrating by parts,

C(ℓ, t) = e−µt(ℓ− γeℓ) +

∫

s≥t

e−µs
(

µχs + γeℓ+χs
)

ds,

which is differentiable with respect to ℓ, with

∂C(ℓ, t)

∂ℓ
= e−µt

(

1− γeℓ + γeℓ
∫

s≥t

eχs−µ(s−t)ds

)

,

29The argument given Seierstad and Sydsæter (1987) must be slightly modified, as it applies to a fixed

horizon. The adjustment is straightforward.
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which is minimized by setting ν−i
τ = 0 for all τ ≥ t. In that case, the right-hand side is equal

to

e−µt

(

1− γeℓ −
γeℓ

I + µ

)

,

which is positive if and only if ℓ < ℓ∗. Hence, independently of ν−i, C(ℓ, t) is strictly

increasing in ℓ whenever ℓ < ℓ∗. It follows that, for ℓ < ℓ∗, C solves the Hamilton-Jacobi-

Bellman (“HJB”) equation

∂C(ℓ, t)

∂t
+min

ui

{

∂C(ℓ, t)

∂ℓ
(uit + ν−i

t − I) + e−µt
(

µℓt − γ(I − ν−i
t − 1 + µ)eℓt

)

}

= 0,

so that setting uit = 0 is optimal. Because of the “if and only if” above, if ν−i
s = 0 for all

s ≥ t (for which it suffices that ν−i
t = 0), yet ℓt = ℓ > ℓ∗, it cannot be that uis = 0 for all

s ≥ t (and so it must be that uit > 0).

Proof of Lemma 3. Ignoring some irrelevant constants, the cost can be rewritten as

(abusing notation for C)

Ci
t :=

e−µt

µ

(

µγeℓ
i
t

∫ ∞

t

e
∫ s
t
(ν−i

τ −(µ+I))dτds− 1

)

. (13)

If ν−i
t = I − 1 and t ∈ suppF i, yet ℓit < ℓ∗∗, then because the time derivative Ci′

t = 0,

Ci′′

t e
µt = γµeℓ

i
t − (µ+ 1) < 0,

by definition of ℓ∗∗. It follows that for small enough ε > 0, Ci
t−ε < Ci

t , a contradiction.

Proof of Lemma 4. See Keller and Rady (2015, Proposition 1) for the cooperative solution

uFB. Note that if ℓ > ℓFB, uFB(ℓ) ≤ u′(ℓ) ≤ u′′(ℓ) implies that uFB(ℓ) = u′(ℓ) = u′′(ℓ) = I

and costs are the same under all three policies. Hence, without loss, we assume ℓ0 < ℓFB.

Given some measurable U, Ū : (−∞, ℓ0] → [0, I), with 0 ≤ U(ℓ) < Ū(ℓ) and Ū bounded

away from I, consider the program PFB(u):

min

∫

t

e−µt
(

µℓt − γ(I − 1 + µ)eℓt
)

dt

over all π : R+ → [0, I], measurable, subject to

ℓ̇t = ut − I, ℓ0 = ℓ0,

with, for all t ≥ 0 and ℓt ≤ ℓ0, ut ∈ [U(ℓt), Ū(ℓt)]. By standard arguments, the optimal u is

measurable with respect to the belief ℓ, and is the solution to the program

min

∫

ℓ

e−µt(ℓ)
(

µℓ− γ(I − 1 + µ)eℓ
)

dℓ,
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over all measurable u : (−∞, ℓ0] → [0, I] such that u(ℓ) ∈ [U(ℓ), Ū(ℓ)], where t(ℓ) solves

t(ℓ0) = 0 and

t′(ℓ) = (u(ℓ)− I)−1,

which is well defined because u(ℓ) < Ū(ℓ) < I. A routine application of the maximum

principle (Theorem 4.2, Cesari, 1983) yields that the optimal policy solves u(ℓ) = U(ℓ) a.e.

Given u′, u′′ as stated in the lemma, the result follows if u′′ < I by setting U = u′, Ū = u′′

and noting that u′′ does not satisfy the necessary conditions. The same argument applies

with trivial modifications if Ū = I.

Proof of Lemma 5. Suppose that players j 6= i stop at some fixed time T ∈ R+. For

clarity, we use I rather 2 for the number of players, as the arguments do not depend on it

(though the statement of Lemma 5 is specialized to that case). Throughout, we assume that

ℓ0 ∈ [ℓ∗, ℓ∗∗], as the result is trivial otherwise. Then, inserting into the objective of player i,

he chooses τ to minimize
∫

t≤T

e−rt
(

µ(ℓ0 + λ(t ∧ τ − t))− γµeℓ
0+l(t∧τ−t)

)

dt

+

∫

t≥T

e−rt
(

µ(ℓ0 + λ(t ∧ τ + (I − 1)T − It))− γ(I − 1 + µ)eℓ
0+λ(t∧τ+(I−1)T−It)

)

dt.

This gives two expressions for the cost depending on τ ≷ T . Let us write C1 for the cost

when τ ≤ T , and C2 for τ ≥ T (the costs coincide when τ = T ). It is useful to use x = λτ

and y = λT , instead of (τ, T ). We explicitly compute both costs, which gives

C1(x) = −
γ(I − 1)eℓ

0+x−(µ+1)y

(µ+ 1)(I + µ)
−

(I − 1)e−µy

µ
− γeℓ

0

+
γeℓ

0−µx

µ+ 1
+ l −

e−µx

µ
,

and

C2(x) =

e−(I+µ)x−(µ+1)y
(

γµeℓ
0+µy

(

eIy+x − (I + µ)ex(I+µ)+y
)

− (I + µ)eIx+y
(

(I − 1)eµx − µℓ0eµ(x+y) + eµy
)

)

µ(I + µ)
.

It is readily checked that C1 is concave, and so minimized either at x = 0 or x = y, while C2

is convex, and minimized at

x∗ := y +
ℓ0 − ℓ∗

I − 1
.

Hence, we have only two candidates as global minimizer of the total cost, namely 0 and x∗.

Note that (as shown in Figure 2) the candidate minimizer x∗ (resp., τ) is affine in y (resp.,
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T ). We compute the difference ∆ := C2(x∗)− C1(0). Computing,

∆(y) := γeℓ
0

(

(I − 1)e−(µ+1)y

(µ+ 1)(I + µ)
− 1

)

+
1−

(I−1)( γ(I+µ−1)
I+µ )

µ
1−I e

µ

(

− ℓ0

I−1
−y

)

I+µ−1

µ
+
γµeℓ

0

µ+ 1
.

We claim that ∆(y) < 0 if and only if y ≤ ŷ, for some ŷ ≥ 0, and this will establish the

result. First,

lim
y→∞

∆(y) =
1

µ
− γ

eℓ
0

1 + µ
> 0,

as ℓ0 < ℓ∗∗. Second, ∆(0), viewed as a function of eℓ
0
, is concave, zero at ℓ∗, with zero

derivative at ℓ∗. Hence, ∆(0) ≤ 0 for all ℓ0 ∈ [ℓ∗, ℓ∗∗] (the inequality being strict for ℓ0 > ℓ0).

Finally, with the change of variable Y = e−(1+µ)y , we get that ∆ is convex in Y , and hence

admits at most one root Y , hence y.

Proof of Lemma 6. If any player j uses a pure policy in equilibrium, it must be tj = t̂

so that, by the best-reply analysis in Lemma 5, player i is indifferent between ti = 0 and

ti = t̂+ T , where T := (ℓ0 − ℓ∗).

Lemma 5 further establishes that the best reply to ti = t̂+ T is tj = 0 and that the best

reply to ti = 0 is tj = T . We shall show that T < t̂, so that tj = t̂ cannot be a best reply to

any randomization over ti ∈ {0, t̂+ T}.

It suffices to establish that the best reply to t = T is, in fact, τ = 2T . To do so,

consider player i’s marginal cost ∂Ci/∂ti evaluated ti = 0 when player j uses tj = T . This is

proportional to

(

µ+ 2

γµ+ γ

)µ
(

−e−µℓ0
)

+ µ
(

µ− γ(µ+ 1)eℓ
0

+ 2
)

+ 1. (14)

We want to show this expression is negative, so that switching to the risky arm later than

t = 0 yields strict cost savings (hence that the best reply must be 2T ). Consider the

derivative of the marginal cost with respect to ℓ0. This is given by

µ

(

µ+ 2

γµ+ γ

)µ

− γµ(µ+ 1)eℓ
0(1+µ).

This expression is strictly decreasing in ℓ0 and negative (it is equal to −µ(1 + µ)) when

evaluated at ℓ0 = ℓ∗. Therefore ∂2Ci/∂ti∂ℓ0 < 0 for all ℓ0. To sign the marginal cost ∂Ci/∂ti

evaluated at ti = 0, it is sufficient to show that it is non-positive when ℓ0 = ℓ∗. This is

indeed the case, as the expression in (14) can be easily verified to be nil for ℓ0 = ℓ∗.
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C Proofs for Section 5

Proof of Theorem 1. We first argue that in every symmetric equilibrium the support of

the distribution is an interval: for all i, suppF i = [τ , τ̄ ], for some τ ≤ τ̄ , with ℓτ̄ = ℓ∗.

Using the same notation as in the proof of Lemma 2, let χt =
∫ t

τ=0
(ν−i

τ − I)dτ . By

stopping at time t, starting at time 0 with a “belief” ℓ, player i’s cost is equal to (integrating

(13) by parts)

ℓ− γeℓ +

∫ ∞

0

e−µsµχsds+
1− e−µt

µ
+ γ

∫ ∞

t

eℓ+χs−µs+tds, (15)

which is differentiable in t. If t ∈ suppF i, it must be that the derivative with respect to t

be zero, that is,

e−µt
(

1− γeℓ+χt+t
)

+ γ

∫ ∞

t

eℓ+χs−µs+tds = 0. (16)

Furthermore, this expression being itself differentiable in t, the second derivative must be

non-negative, which is equivalent to (differentiating and using the first-order condition)

γ(I − 1− ν−i
t + µ)− (1 + µ)e−ℓt ≥ 0. (17)

Note that the left-hand side of (17) is decreasing in t if t /∈ ∪j 6=i suppF
j. Hence, if t1, t2 ∈

suppF i, with t1 < t2, it must be that (t1, t2)∩ suppF j 6= ∅ for at least one j 6= i. Otherwise,

(15) must admit a local maximum at some t ∈ (t1, t2), at which value the inequality of (17) is

reversed. This is inconsistent with the monotonicity of the left-hand side of (17) over (t1, t2),

and the fact that it is positive as either t ↓ t1 or t ↑ t2. Because we focus on symmetric

equilibria, this implies that, for any t1, t2 ∈ suppF i, t1 < t2, there exists t ∈ (t1, t2) such

that t ∈ suppF i. Hence, the support of F i (a closed set by definition) must be an interval,

and by Lemma 2, we must have ℓτ̄ = ℓ∗.

Because no pure-policy equilibrium exists, we know τ̄ > τ . Assume for the time being

that τ = 0 (we show later that τ > 0 cannot occur). Because the cost from stopping must be

constant over [0, τ̄ ], the second derivative given by (17) must be identically zero over (0, τ̄).

Inequality (17) immediately gives ν−i
t as a function of ℓt. Because ℓ is differentiable, so must

ν−i be. Hence, defining ξ−i
t = (I − 1 − ν−i

t )/µ and differentiating (17) (eliminating eℓt by

using (17)) gives that ξ−i obeys the differential equation

ξ̇−i
t = µξ−i

t (1 + ξ−i
t ),

and so ξ−i
t = (A1e

−µt − 1)−1 for some A1 > 0 (because ξ−i
t > 0), yielding

ν−i
t = I − 1 +

µ

1− A1e−µt
, (18)
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for all t ∈ (0, τ̄). Hence,

lnEτ j [e
∫ t
0 uj

sds] =
1

I − 1

∫
(

I − 1 +
µ

1− A1e−µs

)

ds =
ln(A1 − eµt)

I − 1
+ t+ A2,

for some A2 ∈ R. That is,
∫ t

s=0

esdF (s) + (1− F (t))et = eA2e
1

I−1(ln(A1−eµt)+(I−1)t)

= eA2(A1 − eµt)
1

I−1 et.

Differentiating both sides gives finally

1− F (t) =
eA2

I − 1
(A1 − eµt)

1
I−1 et

(

I − 1−
µ

A1e−µt − 1

)

. (19)

It remains to determine the constants A1, A2.

If ℓ0 < ℓ∗∗, combine (17) (with equality) at t = 0 with (18) to get

A1 =

(

1−
µ

1 + µ
γeℓ

0

)−1

.

Moreover, note from (5) that 1− F (0) = ν−i
0 /(I − 1). Plugging in (19) for t = 0 using (18)

gives A2 = (A1 − 1)−
1

I−1 . The resulting distribution is given by

F̄ (t) =

(

A1 − eµt

A1 − 1

)
1

I−1
(

1−
µ

(I − 1)(A1e−µt − 1)

)

. (20)

Let us make a few final remarks. First, note that this density is 0 at ℓ0 = ℓ∗∗. That is, if

the game starts with this belief, it never changes and the safe arm is pulled throughout. We

must now rule out that τ > 0 for this special case. If ℓ0 = ℓ∗∗, there is nothing to show (as

the safe arm is pulled forever anyhow). If ℓ0 > ℓ∗∗, the safe arm must be pulled throughout

(the support of the distribution of stopping beliefs must be convex, yet the cost is strictly

quasi-convex in t for ℓ0 > ℓ∗∗, yielding a contradiction if this region included a stopping

time). Now suppose ℓ0 < ℓ∗∗ and τ > 0. Given Lemma 1, the only potentially profitable

deviations are stopping policies πi
τ with τ < τ . Note that, given that players j 6= i use the

stopping policy F j, it holds that ν−i
t = I − 1 for all t < τ . Hence, a necessary condition for

player i to follow the equilibrium policy is that his cost be convex at t = τ . Note that the

value of (17) at t = τ is

γ(I − 1 + µ− ν−i
τ )− (1 + µ)e−ℓτ = γµ− (1 + µ)e−ℓ0, (21)

which, using the definition of ℓ∗∗, is negative. Because player i’s cost is constant over (τ , τ̄),

we conclude that deviating to pulling the risky arm at time τ − ε would be a profitable

deviation for ε > 0 small enough.
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Proof of Theorem 2. As mentioned, the proof of this theorem is rather tedious, and

the interested reader might want to consult both the supplementary materials file and a

Mathematica file with some of the omitted algebraic operations, available on the authors’

websites (entitled supplementary.pdf and theorem2proof.nb).

The logic of the argument is as follows. Suppose another equilibrium exists. Because

on any interval over which a player’s opponent does not switch with positive probability,

a player’s cost is convex, there is at most one time during such an interval at which he is

willing to switch. Because of Lemma 6, we know that each player’s equilibrium policy must

include in its support at least two switching times. If the support of a player’s policy is

a dense subset of some interval, then so must be his opponent’s (because of convexity, as

explained), and continuity of the cost function then implies that this support is precisely

[0, τ̄ ], as defined in Theorem 1, and the equilibrium is the one described there. Hence, we

might assume that there exists at least two times t1, t3, with 0 < t1 < t3, such that, say,

player 1’s policy assigns positive probability of switching at times t1 and t3, and at no time

in between. This however implies (convexity again) that there is some time t2 ∈ (t1, t3)

and some time t0 < t1 such that player 2 is willing to switch at time t0 and t2, but at no

time in between (and 1 does not switch at any time in (t0, t1) either).30 We then derive

a contradiction, showing that independently of how players behave at times not in [t0, t4],

the necessary (first- and second-order) conditions cannot hold simultaneously at those four

dates. See supplementary.pdf for the details.

Proof of Proposition 1. (1.) The stopping-time distribution F I
t is given by

F I
t = 1−

νt
I − 1

e
∫ t
0

νs
I−1

ds−t.

For a given t, the first term is increasing in I. The second term is equal to





e−ℓ0
(

1 + µ+ eµt
(

µ
(

γeℓ
0
− 1

)

− 1
))

γµ





1
I−1

,

hence it is smaller than one and increasing in I. Therefore, the partial derivative of F I
t with

respect to I is positive for all t < τ̄ . In addition, 1− F I
0 = ν0/(I − 1) which is increasing in

I. Therefore the distributions F I
t are ranked by first-order dominance.

(2.) From the outside observer’s perspective,

νIt =
I

I − 1

(

µ−
µ(µ+ 1)

µ+ eµt (µ (γeℓ0 − 1)− 1) + 1

)

+ I.

30More precisely, either there is such a t0 < t1, or a t4 > t3 in the support of 2’s policy, but relabeling the

players if necessary, we may as well assume it is t0 < t1.
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Notice that the first term is negative (as νIt ≤ 1). This implies νIt is increasing in I.

(3.) The speed of learning of the outside observer is

−ℓ̇It = I − νIt ,

which is decreasing by inspection of νIt . Therefore, during the mixing phase, beliefs decrease

faster with a lower number of players. Furthermore, as I increases, the length of the mixing

phase increases. However, for t > τ̄ , beliefs decrease at rate I, which implies faster learning

for a higher number of players. Therefore, the outside observer’s belief trajectories for I ′ > I

cross once at a time t > τ̄I′.

(4.) Straightforward computations of the total cost yield expression (9) in the text. This

cost is constant for any I ≥ 2 and (because of positive informational externalities) strictly

lower than the single-agent cost.

D Proofs for Section 6

Proof of Proposition 2. The second inequality of the proposition (νo(p) ≥ νfb(p)) being

immediate given that p̄ < pFB, it is the first inequality that must be established. Given ℓ0

and ℓ < ℓ0, we let t(ℓ) denote the time at which the belief of the outside observer reaches

belief ℓ. Let νit denote the hazard rate of the outsider’s belief at time t, i.e., his belief satisfies

ℓ̇t = −I(1− νit), ℓ0 = ℓ0.

Now suppose towards a contradiction that there exists a “belief” ℓ̂ such that the outside

observer’s hazard rate in the unobservable case νn(ℓ̂) is equal to the hazard rate in the

observable case νo(ℓ̂). We derive an ordinary differential equation for ν−i(ℓ) := (I − 1)νit(ℓ)
in both cases.

In the unobservable case, we know from the proof of Theorem 1 that

ν−i
t = −1 + I +

µ

1 + e−µt(1+µ)

eℓ0γµ−1−µ

.

Differentiating ν−i
t with respect to t, we obtain

dν−i
t

dt
=
µ2(µ+ 1)eµt

(

µ
(

γeℓ
0
− 1

)

− 1
)

(eµt (µ (γeℓ0 − 1)− 1) + µ+ 1)
2 .

Solving for eµt from the definition of ν−i
t and plugging back into the derivative, we obtain

dν−i(ℓ)

dℓ
= −(−1 + I − ν−i(ℓ))(−1 + µ+ I − ν−i(ℓ))t′(ℓ),
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where

t′(ℓ) =
1

I
I−1

ν−i(ℓ)− I
.

Finally, we obtain the derivative

dν−i(ℓ)

dℓ
= (µ+ I − ν−i(ℓ)− 1)

I − ν−i(ℓ)− 1

I − ν−i(ℓ)− ν−i(ℓ)
I−1

. (22)

Note that ν−i(ℓ) is increasing in ℓ, as expected. Also notice that the second term in (22) is

smaller than one, because ν−i ≤ I − 1.

In the observable case, we already have the expression for the hazard rate

ν−i(ℓ) = µ+ I − 1−
1 + (ℓ− ℓ∗)µ

eℓγ − 1
.

Differentiating with respect to ℓ and replacing eℓ with the solution to the previous equation,

we obtain the following differential equation

dν−i(ℓ)

dℓ
= (µ+ I − ν−i(ℓ)− 1)

I − ν−i(ℓ) + µ(ℓ− ℓ∗)

1 + µ(ℓ− ℓ∗)
. (23)

Notice that I − ν−i > 1, and therefore the ratio in (23) is larger than one. Furthermore,

the first term (µ + I − ν−i − 1) is identical in the two expressions (22) and (23). Thus,

if the two paths νo(ℓ) and νn(ℓ) cross, the observable path must be steeper. This yields a

contradiction, because

νo(ℓ∗∗) < νn(ℓ∗∗) = I − 1,

and therefore if the paths ν(ℓ) cross, the unobservable path must be steeper at the crossing

point closest to ℓ∗∗.

Proof of Theorem 4. (1.) Under a risk-sharing rule α, player i’s expected cost can be

written as
∫

t≥0

e−rt

(

rptgα

(

1−
ν−i
t

I − 1

)

+ rptg(1− α)
(

1− uit
)

+ ruits+ λpt(I − uit − ν−i
t )s

)

1− p0

1− pt
dt.

With transformations analogous to those performed in Appendix A, the objective becomes
∫

t≥0

e−µt

(

eℓtgα

(

1−
ν−i
t

I − 1

)

+ µsℓt − eℓt(g(1− α)− s)(I − ν−i
t − 1 + µ)

)

dt. (24)

Substituting a stopping policy πt for player i, differentiating twice with respect to t, and

setting the first derivative equal to zero yields

γ
(

I + µ− ν−i
t − 1

)

− (1 + µ)e−ℓt − α(1 + γ)

(

I

(

1−
ν−i
t

I − 1

)

+ µ

)

, (25)
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which is the analogue of expression (17).

The construction of the equilibrium distribution then mirrors the proof of Theorem 1.

In particular, let ξ := (I − ν−i
t − 1)/µ, and differentiate with respect to time to obtain the

differential equation

ξ̇ = µξ(1 + ξ) + ξB,

where

B :=
α(1 + γ)(I + µ− I)

γ(I − 1)− α(1 + γ)I
.

This yields as solution

ξt =
1

A1e−(B+µ)t − B
B+µ

,

hence

ν−i
t = I − 1−

µ

A1e−(B+µ)t − B
B+µ

. (26)

The same steps as in the proof of the main theorem yield

1− Ft =
eA2+t

I − 1

(

A1

(

1 +
B

µ

)

− e(B+µ)t

)
1

I−1
(

I − 1−
B + µ

A1(1 +B/µ)e−(B+µ)t − 1

)

,

which reduces to our baseline Ft if α and hence B are equal to zero. To solve for A1, A2 we

then combine (25) (equal to zero) and (26), with ℓt = ℓ0, to solve for ν−i
0 . Finally, we impose

F0 = 1− ν−i
0 /(I − 1).

(2.) Let players −i follow the threshold policy p∗α. It follows from Lemma 2 that player i

wishes to begin experimentation immediately whenever p0 < p∗α (and hence players −i pull

the risky arm). When p0 ≥ p∗α, players −i never experiment. We know from Lemma 3 that

player i is willing to experiment for all p ≤ p∗∗α . But when (10) does not hold, p∗∗α < p∗α,

hence player i is not willing to experiment.

Proof of Proposition 3. Note that the social planner’s problem is unaffected by the

transfers associated with risk-sharing. Thus, we still have

pFB

1− pFB
= ln

µ+ I

µγ
.

We can then solve for the value of α that equates the two beliefs pFB and p∗α, obtaining the

expression for α∗ in equation (10). It is then immediate to verify that

α∗ =
γ(I − 1)

(1 + γ)(I + µ)
<
γ(I − 1 + µ)

I + µ
= α̂.
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Proof of Theorem 5. Let γ̃ := (g(1 − α) − s)/s, and write the expression for expected

costs (24) recursively. The HJB equation for player i is given by

µCo(ℓ) = µℓ−ν−i(ℓ)−γ̃(I−ν−i(ℓ)−1+µ)eℓ+eℓα
g

s

(

1−
ν−i(ℓ)

I − 1

)

+min
ui

{

(ui + ν−i(ℓ)− I)
∂Co(ℓ)

∂ℓ

}

.

(27)

This corresponds to the objective in Keller and Rady (2015), up to an additional term

(the validity of this approach can be validated by a verification theorem, the HJB equation

admitting a closed-form solution). The value at the threshold ℓ∗α is given by

Co
1 = ℓ∗α −

γ̃

µ
(I − 1 + µ)eℓ

∗
α +

αg

sµ
eℓ

∗
α = ℓ∗α − 1−

I

µ
.

Therefore, during the interior-action phase, we have

µℓ∗α − µ− I = µℓ− (I − 1)ui(ℓ)− γ̃((I − 1)(1− ui(ℓ)) + µ)eℓ + eℓα
g

s

(

1− ui(ℓ)
)

.

Solving for ui(ℓ), and setting equal to one, we obtain the following equation for the threshold

ℓ̄α:

µℓ∗α − µ− I = µℓ− (I − 1)− γ̃µeℓ,

yielding the expression in the text. Further, it is easy to verify that α∗ and ℓ∗ solve the

above equation, i.e., the two thresholds ℓ∗ and ℓ̄ coincide.

What happens for α > α∗? Consider a player’s expected cost when all other players

experiment starting from a belief ℓ. This is given by

C(ℓ) =

∫ ∞

0

e−µt
(

µ(ℓ− It)− γ̃(I − 1 + µ)eℓ−It + α
g

s
eℓ−It

)

dt. (28)

Now compute the belief such that ∂Co/∂ℓ = 0 from the HJB equation (27) when all players

are playing safe and the continuation payoff is given by C(ℓ) in (28). This belief ℓBα satisfies

µC(ℓ) = µℓ− (I − 1)− γ̃µeℓ,

which can be solved in closed form to yield

pBα
1− pBα

=
µ+ I

γµ
=: pFB.

Therefore, for α > α∗ there is a single switching belief p∗. At the first-best belief, play-

ers are indifferent given that all others play safe. At the threshold p∗α, they are indifferent

given that all others play risky. Thus, any symmetric equilibrium with observable actions

involves strictly less experimentation than the unique equilibrium under non-observable ac-

tions (which involves pure policies with threshold p∗α) but nevertheless a (weakly) excessive

amount of experimentation from the planner’s perspective.
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