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Abstract

Chen and Deo (2009a) proposed procedures based on restricted maximum likelihood

(REML) for estimation and inference in the context of predictive regression. Their method

achieves bias reduction in both estimation and inference which assists in overcoming size

distortion in predictive hypothesis testing. This paper provides extensions of the REML

approach to more general cases which allow for drift in the predictive regressor and multiple

regressors. It is shown that without modification the REML approach is seriously oversized

and can have unit rejection probability in the limit under the null when the drift in the

regressor is dominant. A limit theory for the modified REML test is given under a localized

drift specification that accommodates predictors with varying degrees of persistence. The

extension is useful in empirical work where predictors typically involve stochastic trends

with drift and where there are multiple regressors. Simulations show that with these

modifications, the good performance of the restricted likelihood ratio test (RLRT) is

preserved and that RLRT outperforms other predictive tests in terms of size and power

even when there is no drift in the regressor.
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distortion.
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It seemed a plausible assumption that if we could demonstrate the existence in

individuals or organizations of the ability to foretell the elusive fluctuations, either

of particular stocks, or of stocks in general, this might lead to the identification of

economic theories or statistical practices whose soundness had been established by

successful prediction. (Alfred Cowles 3rd,1933)

There is no way to predict the price of stocks and bonds over the next few days

or weeks. But it is quite possible to foresee the broad course of these prices over

longer periods, such as the next three to five years. (Royal Swedish Academy of

Sciences, Press Release on The Sveriges Riksbank Prize in Economic Sciences in

Memory of Alfred Nobel, 14 October, 2013)

1 Introduction

Stock return predictability is a significant area of empirical research in both economics and

finance with a vast literature stretching back at least to the early work of Cowles (1933), who

took pioneering steps in the statistical modeling of stock prices. Since Fama’s 1970 seminal

paper, many works have studied the martingale hypothesis of stock returns to assess whether

future returns can be predicted by past returns. Systematic accumulated evidence over the

intervening years has shown that at least in the short run stock returns are difficult to predict.

But since 1980 there has been considerable research on the question of whether financial asset

returns may be predictable over the long term.

Among the many empirical methods now available, a return forecast regression framework

has been particularly popular. An important contribution to this literature was made by

Campbell and Shiller (1988) in developing a log linear return approximation to stock returns

based on the following relationship:

pt − dt ≈ −rt+1 + ∆dt+1 + k + ρ (pt+1 − dt+1) , (1.1)

where pt is the log stock price at the end of period t, dt is the log dividend paid during the

period t, rt+1 is the log stock return, and the two parameters (k, ρ) are determined by sample

averages relating to the dividend-price ratio. The linear approximation has wide validity and

has been shown to be valid even in the presence of bubble effects under certain conditions

(Phillips and Lee, 2013). Engsted, Pedersen and Tanggaard (2012) provide simulation results

to support the use of the linear approximation when the log dividend-price ratio is subject to

bubbles.
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The approximate linear relationship (1.1) between stock returns and dividends has encour-

aged extensive use of linear econometric methods in forecasting stock returns. For example,

based on (1.1), Cochrane (2008) considered the following linear VAR representation

rt+1 = ar + br (dt − pt) + εrt+1,

∆dt+1 = ad + bd (dt − pt) + εdt+1,

dt+1 − pt+1 = adp + φ (dt − pt) + εdpt+1. (1.2)

Notably in (1.2), each equation has an intercept, which is motivated in part by the existence

of the constant term in (1.1). Of course, models such as (1.2) without an intercept (or the

implied drift in the case where dt follows a martingale) are nested as a special case.

The model (1.1) makes the second equation of (1.2) redundant, leading to the following

predictive regression framework (1.3) for testing stock return (yt) predictability by means of

a predictor (xt−1) that typically includes variables such as dividends, book-to-market ratios

and earnings-price ratios

yt = π + βxt−1 + u0t, (1.3)

xt = µ+ ρnxt−1 + uxt,

where the disturbances (u0t, uxt) are iid with zero means, covariance matrix

(
σ200 σ0x

σ0x σ2xx

)
and contemporaneous correlation λ = σ0x

σ00σxx
. Let u0t = φuxt+u0.xt with φ = E (u0tuxt) /E

(
u2xt
)

=

λ σ00σxx
and suppose the initialization satisfies x0 ∼d

(
0, σ2xx

)
. In empirical work the correla-

tion λ is usually negative and close to −1, capturing the negative relationship between stock

returns and predictors such as dividend-price ratios. For our purposes in the present paper,

we use this predictive regression model as the true generating mechanism with sample data

{yt, xt}nt=1. Gaussianity is frequently assumed in setting up the likelihood function but is not

required for the limit theory.

Two econometric issues with predictive regression have been a recent focus of attention,

one being the bias of the OLS estimator of the regression coefficient β and the other being

oversizing in the conventional t-test of the null of no predictability (β = 0). Both these

problems arise from the presence of a (typically) highly persistent predictor xt and (typically)

strong error correlation between uxt and u0t. The estimation bias of β̂ is −φE (ρ̂n − ρn)

(Stambaugh, 1999) and this bias transmits forecast bias in predicting stock returns. For a

predictor with a root that is the local to unity, the limit distribution of the t-test statistic is
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right skewed (Phillips, 2014). Hence, the null hypothesis of no predictability is often rejected

when one uses critical values from a symmetric t-distribution even when the null hypothesis is

correct. This explains oversizing in the standard t-test. The likelihood ratio test (LRT) also

suffers from oversizing, because the LRT statistic is approximately the squared t-test under

some regularity conditions (Chen and Deo, 2009a).

Chen and Deo (2009a) examined these econometric problems and proposed restricted

maximum likelihood (REML) and restricted likelihood ratio test (RLRT) procedures to resolve

them. The approach has the following desirable properties. First, REML produces a bias-

reduced estimate without loss of efficiency compared to MLE. REML is able to produce a

less biased estimator of β because the restricted likelihood (RL) is the likelihood of first

differenced yt and xt. Through differencing the adverse impact (on estimation bias) of the

intercept in the regression is reduced. This type of reduction occurs in the stationary AR(1)

case xt = µ + ρnxt−1 + uxt, where the bias of the OLS estimator of ρn is −(1+3ρn)
n when an

intercept is fitted but only −2ρnn when there is no intercept in the regression. Second, RLRT

leads to improved inference compared to a standard t-test, because RL possesses smaller

curvature (Chen and Deo, 2009a), thereby reducing the value of the statistic and reducing

size distortion in predictive regression. Also, the RLRT statistic is asymptotically χ2 for

stationary predictors and the approximation error is small, as shown in Chen and Deo (2009a).

Chen, Deo and Yi (2013) give the limit distribution for nearly nonstationary predictors by

using a weighted least squares approximation to the restricted likelihood (WLSRL, hereafter),

following Chen and Deo (2010). The corresponding test statistic is called QRLRT. A sup

bound critical value for QRLRT is suggested for implementation, since the QRLRT statistic

is nonpivotal.

While the restricted likelihood procedure has many advantages, its empirical size turns

out to be close to unity, as we show here, when the true DGP of xt has drift in the predictive

regression (1.3). This size distortion occurs for both the RLRT of Chen and Deo (2009a) and

the QRLRT of Chen et al. (2013). The reason for the distortion is that the associated RLRT

has a sample size and drift dependent distribution in the presence of time series drift. This

dependence applies even when the drift is small or local to zero in the sense of Phillips, Shi

and Yu (2014). The associated critical value of the RLRT is then an increasing function of

the drift, which produces size distortion in the use of standard χ2 critical values. Since many

financial time series and potential predictors manifest drift, use of the restricted likelihood

approach in predictive regression seems likely to involve drift-induced distortions in testing.

The goal of this paper is to extend the Chen and Deo (2009a) method to allow for the

presence of drift in the predictive regression (1.3) and develop a new approach to implementing
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the RLRT procedure. The limit distribution of the new RLRT is provided and test critical

values are shown to be no longer sample size or drift dependent. The limit distribution of

the new RLRT is not pivotal for all forms of localized drift in the generating mechanism but

simulation results demonstrate robustness in the procedure and a sup bound critical value

is recommended for implementation. In these simulations, we find that when the true DGP

has drift our RLRT procedure has stable size and good power compared with the methoesd

of Campbell and Yogo (2006) and Jansson and Moreira (2006) and improvements also hold

when there is no drift in the time series.

Our approach to the RLRT is developed here primarily for the case of a scalar predic-

tor and is shown to be easily applied when there are multiple predictors, as a generalization

of Chen et al. (2013). Another advantage of our intercept-robust method is that it conve-

niently accommodates a range of assumptions about initial conditions in the derivation of

limit distribution of the RLRT.

The paper is organized as follows. Section 2 extends Chen and Deo (2009a) to include

time series drift and demonstrates the impact of drift on the limit theory. We then develop

a drift-corrected RL function and provide the limit theory under the null of no predictability

using this procedure. Section 3 presents the limit distribution of the new RLRT for the case

of a multivariate predictor and shows that the asymptotics are equivalent to those of Chen

et al. (2013). Section 4 reports Monte Carlo simulations for estimation and inference, and

examines robustness under non-Gaussian errors. Section 5 concludes. Proofs of the main

results are collected in the Appendix. Detailed derivations and additional technical material

are provided in a supplementary document (Phillips and Chen, 2014) that is available online.

Throughout the paper, we adopt the following notations. The symbol “⇒” indicates weak

convergence as n→∞, “→p” and “→p” stand for convergence in probability, “→L” denotes

convergence in L2 norm, “∼” represents asymptotically equivalence, “:=” is definitional equal-

ity, CD signifies either estimation using REML or inference using RLRT as proposed by Chen

and Deo (2009a), and PC signifies the corresponding counterparts of CD proposed in the

present paper.

2 Restricted Likelihood Methods in Predictive Regression

This section explores the use of the RLRT to a framework that allows for drift in the

true DGP. For the reasons already discussed, extension to this case is likely to be relevant in

much empirical work. Following Phillips et al. (2014), it is convenient to use a localized drift
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mechanism in formulating the stochastic process xt so that

xt = µ+ ρnxt−1 + uxt, with µ = µ̃n−γ and γ ∈ [0,∞) (2.1)

When γ ∈ [0, 12 ], the intercept has a non-negligible effect on the asymptotic behavior of xt

when ρn is local to unity. When γ > 1
2 , the intercept has negligible effects, so that the drift

component of xt (which is of order O (t/nγ)) is dominated asymptotically by the stochastic

trend, which is of order Op
(
t1/2
)
.
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Figure 1: Estimates of an AR(1) model with fitted intercept using monthly D/P ratio of
NYSE/AMEX data from Campbell and Yogo (2006)

Empirical studies demonstrate that the drift is sample size and frequency dependent for

many financial time series (e.g. see Phillips et al., 2014). To illustrate, we fit the monthly

dividend-price ratio of the NYSE/AMEX value-weighted index data (1871-2002) from Camp-

bell and Yogo (2006) to an AR(1) model with intercept, under different rolling window sizes

(25, 50, 100 and 250). Figure 1 shows that for these data the slope coefficient estimates

fluctuate around unity, and the intercept estimates lie in the interval (−2.58, 0.56). As the

window sample size increases from T = 25 to T = 200, the magnitude of the drift tends on

average to become smaller. Similar results hold for estimates from quarterly data.

The localized drift specification µ = µ̃n−γ allows for such phenomena. In particular,

smaller window sizes can be associated with larger values of the drift and indicate the pos-

sibility that values of γ ∈ [0, 12 ] may be relevant in some applications. Small sample sizes

are particularly relevant in case of structural breaks, which may be empirically important

over subperiods where financial time series exhibit exuberant, crisis, or post-crisis behavior,
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leaving less data to study predictability of returns.

Chen and Deo (2009a) proposed the use of an RLRT statistic obtained under the fitted

model (2.2) given below, when the true DGP follows the predictive regression (1.3) with

neither π nor µ intercept present. However, when the true DGP follows (1.3) with drift,

simulations show that the rejection probability of the RLRT test is close to unity under the

null hypothesis β = 0. The rejection rate of the QRLRT test under this null is also close to

unity. To explain this phenomena, we show how the limit behavior of the RLRT test statistic

is sample size dependent for γ under three categories of localized drift (γ ∈ [0, 12), γ = 1
2 ,

γ > 1
2), making a unit rejection rate inevitable for this test as n → ∞. A new procedure to

address oversizing is then provided combined with the limit distribution for the associated

RLRT.

2.1 Oversizing in the RLRT

Chen et al. (2013) establish the limit distribution of RLRT under the following fitted

regression estimation model (CD):

yt = π + βxt−1 + u0t, (2.2)

xt = µ+ x̃t,

x̃t = ρnx̃t−1 + uxt.

with x0 = 0, while the true DGP follows (1.3) with zero intercepts π and µ. The limit behavior

of the RLRT under these conditions is of order Op (1). However, the following theorem shows

that, when the true DGP follows (1.3) with drift, the limit behavior of the RLRT using the

CD procedure is actually sample size dependent, and the corresponding 95% critical value

tends to infinity as the value of the drift and the sample size increase.

Let L (Θ) with Θ =
(
β, ρn, φ, σ

2
xx, σ

2
00.x

)
be the log RL function for the predictive regression

model with corresponding RLRT statistic defined as

Rn = −2L
(

Θ̂0

)
+ 2L

(
Θ̂
)

where the REML estimator is Θ̂0 under the null and Θ̂ under the alternative. Following

Hayakawa (1977), under the null of β = 0, the asymptotic expansion of the RLRT statistic

has the form

Rn = −h11s21 − 2h12s1s2 −
(
h22 − h−122

)
s22 +Op

(
n−1/2

)
. (2.3)

where si denotes the score function with respect to the i’th parameter in (β, ρn) , and (hij)
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and
(
hij
)

are elements of the Hessian matrix and inverse Hessian matrix, respectively.

Theorem 2.1 In predictive regression (1.3) with xt = µ + ρnxt−1 + ux,t, µ = µ̃n−γ under

H0 : β = 0, the asymptotic behavior of the RLRT using the CD procedure is as follows.

(1) If ρn = 1,

Rn


=⇒

{√
1− λ2gλZ + λ (gλ)1/2 τ

}2
, if γ > 1

2

= Op (1) , if γ = 1
2

= Op
(
n1−2γ

)
. if γ < 1

2

(2) If ρn = 1 + c/n,

Rn


=⇒

{√
1− λ2g1/2c,λ,µ̃pc,λ,µ̃ + λ

(
gc,λ,µ̃

)1/2
τc,λ,µ̃

}2

, if γ > 1
2

= Op (1) , if γ = 1
2

= Op
(
n1−2γ

)
. if γ < 1

2

(3) If ρn = 1 + c
kn

where c < 0, kn = nα with α ∈ (0, 1) ,

Rn

=⇒ χ2
1, if γ > 1

2 and 0 < α
2 < γ < 1

2

= Op
(
n1−2γ

)
. if 0 < γ 6 α

2 <
1
2

where λ2 = φ2σ2
xx

σ2
00

and Z is standard N (0, 1) independent of the (random) quantities gλ, gc,λ,

gc,λ,µ̃, pc,λ,µ̃, τ, τc, and τc,λ,µ̃, which are given in the Appendix in the proof of Theorem 2.1.

Remark 1 Specifically, using the CD procedure leads to an expansion for the RLRT statistic

Rn of the exlicit form

Rn =
{√

1− λ2gnpn + λ (gn)1/2 τn
}2

+Op

(
n−1/2

)
, (2.4)

with

pn =

(∑n
t=1 xt−1u0.xt −

1
n

∑n
t=1 xt−1

∑n
t=1 u0.xt

){∑n
t=1 x

2
t−1 − 1

n (
∑n

t=1 xt−1)
2
}1/2

1

σ00.x
,

gn =
1− 1

n (
∑n

t=1 xt−1)
2 /
∑n

t=1 x
2
t−1

1− λ2 1
n (
∑n

t=1 xt−1)
2 /
∑n

t=1 x
2
t−1

,
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τn =
µ
∑n

t=1 xt−1 +
∑n

t=1 xt−1uxt(∑n
t=1 x

2
t−1
)1/2 1

σxx
.

The asymptotic behavior of the quantities pn, gn, and τn follow by using results in the lemmas

given in Appendix A. The asymptotic behavior of the RLRT Rn then follows directly.

Remark 2 For a predictor with a unit root (ρn = 1) and an asymptotically negligible drift

satisfying γ > 1
2 , the associated limit distribution of the RLRT statistic is the same as when the

true DGP has no drift. The inclusion of such a drift in the generating mechanism introduces

additional terms, whose asymptotic order is smaller than Op
(
n−1/2

)
and these smaller order

terms may be retained in simulating critical values in order to improve inferential precision.

Remark 3 If γ = 1
2 , then µ = µ̃√

n
and n−1/2xt=bnrc = µ̃bnrc

n +
x̃bnrc√

n
∼ µ̃r+Bx (r) , where Bx

is Brownian motion with variance σ2xx. The limit behavior of τn in this case is easily seen to

be
µ̃2

2 + µ̃
∫ 1
0 Bx (r) dr +

∫ 1
0 Bx (r) dBx (r)

σxx

{
µ̃2

3 + 2µ̃
∫ 1
0 rBx (r) dr +

∫ 1
0 B

2
x (r) dr

}1/2
. (2.5)

Importantly, note that when µ is fixed and not local to zero (2.5) then

τn ∼
µ2n
2 + µn1/2Bx (1) +

∫ 1
0 Bx (r) dBx (r)

σxx

{
µ2n
3 + 2µn1/2

∫ 1
0 rBx (r) dr +

∫ 1
0 B

2
x (r) dr

}1/2
= Op

(
n1/2

)
,

since the numerator of τn has a higher asymptotic order than the denominator. Hence, for the

fixed intercept case, the quantity τn in (2.4) gives rise to sample size dependent critical values

of RLRT and the RLRT statistic diverges as n → ∞ at rate Op (n). Similarly, if γ < 1
2 , the

order of magnitude of the RLRT statistic is Op
(
n1−2γ

)
since the asymptotic order of τn in

this case is Op
(
n1/2−γ

)
. Precise results, including asymptotic representations of (pn, gn) , are

given in the Appendix. From this analysis over the three regions of γ, we find that the quantity

τn in Rn drives the critical values of the RLRT statistic to infinity as n → ∞ whenever the

intercept dominates the asymptotics. Similar results can be found for predictors with roots

local to unity or with roots moderate deviation from unity. These results are all given in the

Appendix.

Remark 4 The limit theory is provided under the assumption that x0 = 0 to simplify deriva-

tions. Simulated critical values under x0 = 0 are almost the same as those for x0 ∼d

N
(
0, σ2xx

)
= Op (1). The limit theory for the RLRT statistic can be extended to deal with

various other initial value conditions, such as distant past originations of the type considered
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in Phillips and Magdalinos (2009b). To perform these extensions some modifications of the

RL function are required and for brevity these are not considered in the present paper.

Remark 5 The errors in (1.3) are assumed to be iid for the asymptotic development and

are taken to be Gaussian for setting up the likelihood. The asymptotics continue to hold un-

der weaker conditions such as those in Phillips and Magdalinos (2007a), where the errors are

martingale differences satisfying the moment conditions E (uxt)
2+δ1 <∞ for some δ1 > 0, and

E (u0.xt)
2+δ2 < ∞ for some δ2 > 0. These moment conditions are used when the predictors

are moderately integrated and martingale central limit theory is used for the asymptotic devel-

opment. In that case, we have quasi restricted maximum likelihood estimation and likelihood

ratio tests.

2.2 Modifying the RLRT Procedure

We propose a new procedure to resolve the oversizing caused by the presence of drift.

This procedure starts with the exact formulation of the predictive regression model (2.8),

from which an associated restricted likelihood function is obtained and used to implement the

corresponding RLRT. We first introduce the procedure leading to the restricted maximum

likelihood (REML) estimator in the framework of the general linear model.

Patterson and Thompson (1971) introduced REML estimation into a mixed linear effect

model of the form

Yn×1 = Xn×pbp×1 + εn×1,

ε ∼ N(0, H). (2.6)

REML estimation was proposed to estimate the parameters in the variance component while

removing the impact of estimating the regression coefficients. Harville (1974) presented a

convenient representation of the likelihood function with respect to parameters in the variance

component as follows:

(2π)−
1
2
(n−p) {det

(
X ′X

)} 1
2 {det (H)}−

1
2
{

det
(
X ′H−1X

)}− 1
2 (2.7)

exp

{
−1

2

(
y −Xb̂

)′
H−1

(
y −Xb̂

)}
.

with b̂ = (X ′H−1X)−1X ′H−1y. Verbyla (1990) provided an interpretation of REML in terms

of marginal likelihood and Smyth and Verbyla (1996) further extended REML to generalized

linear model with varying dispersion.

10



There is now a growing literature on the use and advantages of REML estimation in time

series models which we briefly discuss. In particular, REML is known to produce substantial

bias reductions in time series models without loss of efficiency, to improve forecast perfor-

mance, and to provide a good base for inference. For example, Cooper and Thompson (1977)

applied REML estimation in estimating autoregressive moving average models. Tunnicliffe

Wilson (1989) used REML estimation in linear regression with ARMA process errors. Cheang

and Reinsel (2000) gave an approximate representation of the REML estimator and a bias

formula based on the OLS estimator of the linear regression model with stationary noise series

that follows an AR(p) process without drift. In this case, the bias involved in REML estima-

tion is shown to be much smaller than that of MLE for the estimate of the AR parameters.

For vector autoregressions, Chen and Deo (2010) derived a weighted least squares estimator

(WLSRL) as an approximation to the REML estimator and derived the bias formula and limit

distribution of this WLSRL estimator. They show, for the VAR(p) model with drift, that the

bias from REML estimation in this model equals that of OLS in the same model without drift

up to o
(
n−1

)
. The REML estimator also improves forecasts. Deo (2012) compares forecast

performance in terms of absolute forecast error using both WLSRL and OLS. The simulation

results reveal that for all forecast horizons the variance of the absolute forecast errors of OLS

is much higher than that of REML. With regard to inference, Chen and Deo (2009b) prove

that the RLRT distribution is well approximated as χ2 in both the AR(1) process with unit

root and near unit root coefficients. Chen and Deo (2011) show that RLRT produce con-

fidence intervals with good coverage probabilities in an AR(p) process. In addition to this

literature on estimation and forecasting, the restricted maximum likelihood is also used for

model selection, where the approach leads to the residual information criterion (RIC) – see

Shi and Tsai (2002), and Leng, Shi and Tsai (2008).

When the true DGP of xt in (1.3) has a drift, we develop the predictive regression estimator

by applying REML exactly to the following model (2.8):

yt = π + βxt−1 + u0t (2.8)

xt = ρtnx0 + µ

t−1∑
i=0

ρin + x̃t,

x̃t = ρnx̃t−1 + uxt.

with x0 ∼iid N
(
0, σ2xx

)
and x̃0 = 0. In comparison to the model of CD (2.2), observe that

there is a key difference in the specification of the stochastic process xt between the two

models. The representation of xt in (2.2) delivers an equivalent representation of xt to that of
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(1.3) only when t goes to infinity and |ρn| < 1. By contrast, in setting up REML using (2.8)

our approach builds in an exact representation of the process xt in (1.3) for all the possible

value of ρn and t allowing for both intercepts (π, µ) in the system.

Following Chen and Deo (2009a), the RL function for the predictive regression (1.3) is

factorized as the conditional RL function for Yt with respect to Xt and the RL function for

Xt. These RL functions relate to the models used in estimation. Hence, the representation of

xt is important in building the associated RL functions. The following Lemma presents the

RL function for predictive regression (1.3) using our procedure.

Lemma 2.2 The restricted maximum log-likelihood function for predictive regression (1.3)

under the estimation model (2.8) is given by

L (Θ, Y,X) = −n− 1

2
log σ200.x −

1

2σ200.x
S (β, ρn, φ)− n

2
log σ2xx +

1

2
P (ρn)− 1

2σ2xx
Q (ρn) ,

where Y = (y1, y2, . . . yn), X = (x0, x1, . . . xn). The quantities S (β, ρn, φ) , P (ρn) and Q (ρn)

are given in the Appendix in the proof of Lemma 2.2.

Remark 6 Lemma 2.2 corresponds to Theorem 2 in Chen and Deo (2009a). The difference

in the representation of xt corresponds to the difference between CD’s estimation model (2.2)

and our model (2.8). In particular, the vector 1 = [1, . . . 1]′ in the RL function in Theorem 2

in Chen and Deo (2009a) is replaced by

Z ′ =

(
1 ρ1n ρ2n · · · ρnn

0 1 1 + ρ1n · · · 1 + ρ1n + . . .+ ρn−1n

)
,

when formulating the associated restricted likelihood for xt. Simply put, this leads to a different

regressor X in (2.7).

Remark 7 The profile likelihood with respect to ρn is:

(n− 1) logQ (ρn)− P (ρn) . (2.9)

Remark 8 For AR(1) model with drift, i.e., xt = µ+ρnxt−1+ux,t, the associated RL function

is

L (Θ, X) = −n
2

log σ2xx +
1

2
P (ρn)− 1

2σ2xx
Q (ρn) . (2.10)

Chen and Deo (2009a) discuss the role of the intercept in REML and demean the series xt

12



first as

xt −
µ

1− ρn
= ρn

(
xt−1 −

µ

1− ρn

)
+ uxt,

giving a representation as a stationary AR(1) zero mean process x̃t−1 plus µ
1−ρn . This pro-

cedure requires the existence of the mean for the stochastic process xt and thereby limits the

use of REML to stationary processes. In contrast, our representation of xt can deal with

stationary processes with fixed mean and processes such as the unit root process, local to unity

processes, and mildly integrated processes (Phillips and Magdalinos, 2007a&b). .

Remark 9 Our approach also works with vector autoregressions with intercept. The estimat-

ing procedure is similar to that for the univariate case. For specification of the variance matrix

required in REML, readers may refer to the Appendix in Chen and Deo (2010).

2.3 Limit Distribution of the RLRT

Using the RL function of Lemma (2.2), we obtain the associated limit theory for the RLRT

test under the null hypothesis as follows.

Theorem 2.3 In predictive regression model (1.3) with xt = µ̃n−γ + ρnxt−1 + uxt and under

H0 : β = 0, the limit behavior of the RLRT statistic is as follows:

(1) If ρn = 1,

Rn =⇒



{∫ 1
0 W

m
x (r) dW0 (r)

}2
/
{∫ 1

0 [Wm
x (r)]2 dr

}
, if γ > 1

2{∫ 1
0 W

m
x (r)dW0(r)+

µ̃
σxx
{ 1

2
W0(1)−

∫ 1
0 W0(r)dr}

}2

∫ 1
0 {Wm

x (r)}2dr+ µ̃2

12σ2xx
+ µ̃
σxx
{2 ∫ 1

0 rWx(r)dr−
∫ 1
0 Wx(r)dr}

, if γ = 1
2

3
{
Wm

0 (1)−
∫ 1
0 W0(r)dr

}2
= χ2

1. if γ < 1
2

.

(2) If ρn = 1 + c/n,

Rn =⇒



{∫ 1
0 J

m
c (r) dW0 (r)

}2
/
{∫ 1

0 [Jmc (r)]2 dr
}
, if γ > 1

2{
µ̃
σxx

∫ 1
0 F

m
c (r)dW0(r)+

∫ 1
0 J

m
c (r)dW0(r)

}2

∫ 1
0

{
µ̃
σxx

Fmc (r)dr+Jmc (r)
}2
dr

, if γ = 1
2{∫ 1

0 F
m
c (r) dW0 (r)

}2
/
{∫ 1

0 {F
m
c (r)}2 dr

}
= χ2

1. if γ < 1
2

.

(3) If ρn = 1 + c
kn

with c < 0, kn = nα and α ∈ (0, 1) ,

Rn =⇒ χ2
1.
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(4) If ρn ∈ (−1, 1) ,

Rn =⇒ χ2
1,

where Fmc (r) is defined in the proof of Theorem 2.3.

Remark 10 Using our procedure, the limit distribution of RLRT is not sample size depen-

dent, in contrast to Theorem 2.1 which shows the sample size dependence of the limit theory

of RLRT under CD’s estimation model. In particular, as discussed in Remark 2, the value of

τn increases as either the value of the drift or the sample size increases. The corresponding

finite sample quantity in our limit theory is qn (given in (A.3) the Appendix in the proof of

Theorem 2.3) which is Op (1) as n→∞ because its numerator and denominator are balanced

in asymptotic order. It follows that the new RLRT procedure provides appropriate first differ-

encing of the data to correct for bias and delivers a stable limit theory for RLRT over values

of ρn and drift parameters.

Remark 11 In particular, uniform RLRT χ2
1 inference holds when localized drift with γ < 1

2

is present in predictive regression. Moreover, the limit theory for Rn with a local-to-unit root

predictor is the same as c → 0 to that for a unit root predictor and for all values of γ in the

three categories considered. Further, as c → −∞, Rn =⇒ χ2
1, corresponding to the case of

both stationary and mildly integrated predictors.

Remark 12 The test statistic Rn is pivotal asymptotic χ2
1 for all γ < 1

2 .

Remark 13 For γ > 1
2 , the test statistic Rn is nonpivotal asymptotically and its limit dis-

tribution is a function of c, λ, and µ̃. We examine the sensitivity of test critical values to

different parameter configurations in both the CD and new procedures. Figure 2 demonstrates

the sensitivity of 5% right tailed critical value to µ̃. We set σ2xx = σ200 = 1, φ = −0.95 and

allow µ̃ ∈ [−10, 10]. The columns correspond to values of γ ∈ {0.6, 0.5, 0.3}. The rows cor-

respond to unit root, local unit root and mildly integrated predictors. The graphs in Figure 2

reveal that the RLRT test critical values are highly sensitive to the drift value µ̃ in all cases

for the CD procedure. The graphs show broad robustness of the critical values in the new

procedure to drift, with some small sensitivity arising only in cases where µ ∼ 0.

Remark 14 Figure 3 shows the sensitivity of 5% right tailed critical values to φ for RLRT

with columns corresponding to values of γ ∈ {0.6, 0.5, 0.3}. The rows show critical values

corresponding to unit root (UR), local unit root (LUR), and mildly integrated (MI) processes.

We set σ2xx = σ200 = 1, µ̃ = 8 and allow φ ∈ [−0.9,−0.99]. The findings reveal that the CD

14



implementation of RLRT is quite sensitive to changes in φ whereas the 5% right tailed critical

values are stable using the new procedure.

Remark 15 Figure 4 shows the sensitivity of 5% right tailed critical values to the signal to

noise ratio σ2
xx

σ2
00

for RLRT using the CD and new (PC) procedures. We let σ200 = 1, µ̃ = 8,

φ = −0.95 and allow σ2xx ∈ [0.1, 2]. The column panels correspond to different values of

γ ∈ {0.6, 0.5, 0.3}. The row panels give critical values for predictors following UR, LUR, and

MI processes. The results confirm that the CD implementation of the RLRT has critical values

that are quite sensitive to changes in the signal to noise ratio in contrast to PC.

Remark 16 Table 1 reports 5% right tailed critical values of RLRT using the CD and PC

procedures, all obtained by simulations with 10, 000 replications and sample size n = 5000. The

results in Table 1 show the sensitivity of the CD critical values to the parameter configuration,

especially to the drift parameter µ̃ for which the CD critical value is apparently an increasing

function. In constrast, the PC implementation leads to critical values that are very stable with

respect µ̃, although there is some mild sensitivity to µ̃ for the UR case when µ ∼ 0. These

differences corroborate the asymptotic results in Theorems 2.1 and 2.3. The PC critical values

appear to decrease as µ̃ increases in the UR case for γ > 0.5. Figure 5 presents both the density

and the associated 5% right tailed critical values (given by the vertical lines in the graphs) of

RLRT using the CD and PC implementations for µ̃ = 8. The first and second panels give the

RLRT densities for the CD and PC procedures for selected values of γ ∈ {0.6, 0.5, 0.3} . The

graphs show the sample size and intercept dependence of the RLRT densities using the CD

procedure against the stability of these densities to the drift parameter using the PC procedure.

2.4 Implementation

To implement RLRT using our procedure we suggest a plug-in method to compute the

associated critical value. In order to avoid estimating the localized coefficient (slope) c, fol-

lowing Chen et al. (2013), we suggest using a sup bound critical value with respect to ρn,

which we define as

CV ρn,µ,λ = sup
ρn61
{CVρn,µ,λ : P (Rn > CVρn,µ,λ) = δ} .
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Table 1: Critical values of Alternative RLRT Statistics

γ = 0.6 γ = 0.5 γ = 0.3
ρn µ̃ µ CD PC µ CD PC µ CD PC

UR
1 1 0.006 4.344 7.902 0.014 4.847 7.611 0.078 31.553 3.926
1 2 0.012 4.706 7.756 0.028 8.112 6.199 0.155 92.009 3.926
1 4 0.024 6.833 6.636 0.057 19.389 4.592 0.311 307.724 3.926
1 8 0.048 15.683 4.867 0.113 54.144 4.059 0.621 1118.362 3.926
1 12 0.072 27.516 4.309 0.170 105.477 3.940 0.932 2434.610 3.926
1 20 0.121 60.037 4.041 0.283 258.558 3.917 1.554 6583.936 3.926

LUR
c = -200 0.96 1 0.006 3.981 3.860 0.014 3.967 3.857 0.078 6.057 3.925

0.96 2 0.012 3.950 3.860 0.028 4.532 3.846 0.155 10.613 3.925
0.96 4 0.024 4.285 3.850 0.057 9.868 3.839 0.311 23.752 3.925
0.96 8 0.048 7.638 3.833 0.113 40.956 3.837 0.621 65.699 3.925
0.96 12 0.072 15.688 3.844 0.170 98.232 3.846 0.932 128.535 3.925
0.96 20 0.121 47.234 3.842 0.283 255.139 3.860 1.554 316.876 3.925

MIUR
c = -200 0.906 1 0.006 3.809 3.892 0.014 3.865 3.892 0.078 12.576 3.892
α = 0.9 0.906 2 0.012 3.847 3.892 0.028 4.136 3.892 0.155 61.388 3.892

0.906 4 0.024 4.028 3.892 0.057 7.217 3.892 0.311 299.213 3.892
0.906 8 0.048 5.873 3.892 0.113 28.641 3.892 0.621 942.352 3.892
0.906 12 0.072 11.008 3.892 0.170 76.092 3.892 0.932 1426.162 3.892
0.906 20 0.121 33.405 3.892 0.283 246.253 3.892 1.554 1899.606 3.892

In the predictive regression model (1.3) with xt = µ̃n−γ+xt−1+uxt, under the null H0 : β = 0,

the sup bound RLRT statistic then satisfies

lim
n→∞

sup
ρn61

{
P
(
Rn > CV ρn,µ,λ

)}
6 δ.

The critical value CV ρn,µ,λ depends on the intercept parameter µ̃ and localizing exponent

γ in the representation µ = µ̃n−γ . We propose setting γ = 1
2 (for which the drift effect has

the same order as the stochastic trend in the UR and LUR cases).1 We then estimate the

coefficient µ̃ from the fitted intercept. The associated sup bound critical value that we use

for implementation is then defined as

CV
γ= 1

2
ρn,λ

= sup
ρn61

{
CVρn,λ : P

(
Rn > CV

γ= 1
2

ρn,λ

)
= δ

}
. (2.11)

1In fact, the parameter γ can be consistently estimated when 0 6 γ 6 1
2

and the estimator of γ converges
in probability to 1

2
for γ > 1

2
for predictors of different persistence, as is shown in the Appendix following the

argument given in Phillips et al. (2014). Simulations (not reported here) show that there are no effective gains
in inference from such estimation of γ in comparison to the use of the sup bound critical value with setting
γ = 1

2
that is implemented here.
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Simulations show that CV
γ= 1

2
ρn,λ

is an increasing function of ρn for given λ. This monotonicity

is demonstrated in Figure 6.

The estimate of µ̃ carries the conditional normalization effect of the exponent setting

γ = 1
2 in the sup bound critical value (2.11). In the Monte Carlo study, we report the result

using sup bound critical value CV
γ= 1

2
ρn,λ

. We also report the result in the Appendix using

exact critical values simulated under the true parameter configurations. As the results show,

inference using critical values from the sup bound critical value are very close to those based

on exact critical values computed under the true parameter configurations.

2.5 Scale-Invariant RLRT

The estimator µ̂ is affected by scaling the data. However, inference results on predictability

are scale-invariant. This is because the test statistic itself is scale-invariant. The scale-

invariance property can be verified from the asymptotic expansion of the RLRT statistic in

the new implementation. Specifically, if the data are multiplied by a common factor m, then

the resulting the REML estimates µ̂, σ̂2xx and σ̂200.x are scaled by m, m2 and m2 respectively.

Hence, the RLRT statistic and asymptotic critical values remain invariant and inferences

are unaffected by the data scaling. In addition, the REML estimates β̂, ρ̂n and φ̂ are all

scale-invariant.

The following example illustrates the scale-invariance property of the RLRT statistic. Data

are generated under the DGP (1.3) under the null for sample size n = 50 with a local to unit

root predictor and with γ = 0.6, µ̃ = 10, and c = −5 as in Table 2. We scale the data (X,Y )

by 1/100. The results shown in Table 2 reveal the scale-invariance of the REML estimates

β̂, ρ̂n and φ̂, and the scale effects on the estimates µ̂, σ̂2xx and σ̂200.x of 10−2, 10−4, and 10−4,

respectively. Table 3 shows that inferences are unaffected. The PC RLRT statistic is 0.122,

which is much smaller than the 5% right tailed critical value (CV-PCγ= 1
2
) of 3.899, suggesting

the null cannot be rejected, which is consonant with the null β = 0 under which the data

is generated. The CD RLRT statistic is 6.408, which exceeds the 5% right tailed critical

value (CV-CD) of 4.177, thereby rejecting the null. This example corroborates the finding

of Theorem 2.1, which suggests a tendency of the CD procedure towards rejection under the

null when the true DGP has drift.

3 Multivariate Predictors

This section details the limit distribution of RLRT for multivariate predictors allowing

for UR, LUR and MI predictor processors. This theory completes the asymptotic findings of
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Table 2: Estimation results for alternative (CD and PC) REML estimators under H0 : β = 0,
when the predictor xt has intercept and the data are scaled.

Parameters CD PC CD-Scaled PC-Scaled

µ 0.000 0.524 0.000 0.005
ρ 0.989 0.920 0.989 0.920
β -0.087 -0.023 -0.087 -0.023
φ -0.939 -0.939 -0.939 -0.939
σ200.x 0.093 0.093 0.000 0.000
σ2xx 1.028 0.962 0.000 0.000

Table 3: Inference results under CD and PC implementations of RLRT for the null H0 : β = 0,
when the predictor xt has an intercept, using sup bound critical values.

Data RLRT-CD RLRT-PC CV-CD CV-PCγ= 1
2

̂̃µ
Unscaled 6.408 0.122 4.177 3.899 0.037
Scaled 6.408 0.122 4.177 3.899 0.037

Chen et al. (2013) for a wide class of predictors. To simplify presentation, we concentrate on

the case of a bivariate predictor, which covers many cases of practical interest.

For the case of a univariate predictor in predictive regression without drift, as in predic-

tive regression (1.3), Chen et al. (2013) provide the limit distribution of the QRLRT. The

QRLRT is based on the weighted restricted likelihood function (WLSRL) function and has

the advantage that it delivers the estimators of β and ρn in closed form. Chen and Deo (2010)

showed that this estimator is asymptotically equivalent to the exact REML estimator.

As in Theorem 3.2 for a univariate predictor, the limit distribution of RLRT is derived

from a direct Taylor expansion of Rn. Following Theorem(3.2, we start with the asymptotic

expansion of Rn, whose representation depends on the specification of the estimation model.

We first present asymptotics for the CD version of RLRT with bivariate predictors. The CD

estimation model is as follows:

yt = π + β′xt + u0t,

xt = µ+ x̃t,

x̃t = ρ
′
x̃t−1 + ux,t,

u0t = φ
′
ux,t + u0.xt, (3.1)
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The true DGP in Chen and Deo (2009a) has the simpler form

yt = β′xt + u0t,

xt = ρ
′
xt−1 + ux,t,

u0t = φ
′
ux,t + u0.xt. (3.2)

Based on Hayakawa (1977), under the null of β1 = β2 = 0, we have the following asymp-

totic expansion of the RLRT

Rn = S′ZS +Op

(
n−1/2

)
where S is a 9×1 vector with si denoting the score function with respect to the i’th parameter

in

Θ =
(
β1, β2, ρ1n, ρ2n, φ1, φ2, σx1x2, σ

2
xx1, σ

2
xx2

)
,

H indicates the Hessian matrix with elements (hij), and H−10 =

(
0 0

0 H−111

)
is a 9×9 matrix

with H11 containing the elements of second derivative with respect to the unrestricted param-

eters. It is noted that for each parameter in Θ2 =
(
φ1, φ2, σx1x2, σ

2
xx1, σ

2
xx2

)
, the associated

normalized second partial derivatives such as ∂RL
∂θ2i ∂θj

are of the order op (1) , where θ2i 6= θj , θ
2
i

indicates the i’th parameter in Θ2, and θj is the j’th parameter in Θ . Hence, we retain only

the score functions and Hessian elements with respect to the four parameters (β1, β2, ρ1n, ρ2n)

involved in the asymptotic expansion of Rn.

Theorem 3.1 In the context of the predictive regression (3.2), under H0 : β1 = β2 = 0, the

asymptotic distribution of the RLRT using the CD procedure is given by(
AkS

)′
AkZA

k
S (3.3)

where k = 1, 2 . . . 6 stands for the following cases: (1) ρ1n = 1 and ρ2n = 1; (2) ρ1n = 1 + c1
n

and ρ2n = 1 + c2
n ; (3) ρ1n = 1 + c1

kn
and ρ2n = 1 + c2

kn
(c1, c2 < 0, kn = nα with α ∈ (0, 1));

(4) ρ1n = 1 and ρ2n = 1 + c2
n ; (5) ρ1n = 1 and ρ2n = 1 + c2

kn
; and (6) ρ1n = 1 + c1

n and

ρ2n = 1 + c2
n . In (3.3) the notation Ak(·) stands for the asymptotic distribution of the quantity

in parentheses (·) under normalization, as given in the proof of Theorem 3.1 in the Appendix.

For completeness, we present the corresponding result for the univariate predictor case

where the notation is the same as that in Theorem 2.1.
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Theorem 3.2 In the predictive regression (1.3) when the univariate predictor xt has no drift,

under H0 : β = 0, the asymptotic distribution of the RLRT using the CD procedure is as

follows:

(1) If ρn ∈ (−1, 1), Rn =⇒ χ2
1;

(2) If ρn = 1, Rn =⇒
{√

1− λ2gλZ + λ (gλ)1/2 τ
}2

;

(3) If ρn = 1 + c/n,Rn =⇒
{√

1− λ2gc,λZ + λ (gc,λ)1/2 τc

}2
;

(4) If ρn = 1 + c
kn

with c < 0, kn = nα with α ∈ (0, 1) , Rn =⇒ χ2
1.

Remark 17 This result matches that of Chen et al. (2013). In Theorem 2 of Chen et al.

(2013), the QRLRT is based on the loss function Qn (β, ρn), which shares a similar estimating

equation (or first order condition) with the RL function. The resulting WLSRL estimator

is the exact REML estimator. Unlike the REML estimator, the WLSRL estimator has a

closed form expression but retains its good finite sample properties. In deriving the limit

distribution of QRLRT, which equals the difference between Qn (β, ρn) evaluated at the null

and the alternative, Chen et.al (2013)expand the difference by a Taylor series at the WLSRL

estimate, and obtain the limit distribution of QRLRT using its expanded representation. On

the contrary, our REML estimator is based on the RL function. The RLRT statistic is equal

to the difference between the log RL function evaluated at the null and that at the alternative.

In deriving the limit distribution of the RLRT statistic, a closed form of the REML estimator

is not required.

We present the corresponding asymptotics of the PC version of the RLRT based on the

following estimation model

yt = π + β′xt + u0t,

xt = ρtnx0 + µ
t−1∑
i=0

ρin + x̃t,

x̃t = ρ
′
x̃t−1 + ux,t,

u0t = φ
′
ux,t + u0.xt, (3.4)

where in the bivariate predictor case β = [β1, β2]
′, ρ =

(
ρ1n 0

0 ρ1n

)
, Σ =

(
σ2x1x1 σx1x2

σx1x2 σ2x2x2

)
,

φ = [φ1, φ2]
′ and ux,t = [ux1,t ux2,t]. It is further assumed that [u0.xt,ux,t] ∼iid N

(
0, diag

(
σ200.x,Σ

))
and x0 ∼ N (0,Σ). The diagonal structure of ρ can be achieved by transformation and is

supported in some cases by empirical evidence, as in Amihud and Hurvich (2004). The true
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DGP in Chen and Deo (2009a) has the following form

yt = π + β′xt + u0t,

xt = µ+ρ
′
xt−1 + ux,t,

u0t = φ
′
ux,t + u0.xt. (3.5)

Lemma 3.3 The restricted log-likelihood function for predictive regression (3.5) under the

estimation model (3.4) is given by

L (Θ, Y,X) = −n− 1

2
log σ200.x −

1

2σ200.x
S (β,ρ,φ) +

1

2
P (ρ,Σ)− 1

2σ2xx
Q (ρ,Σ) ,

where Y = (y1, y2, . . . yn), X = (x0,x1, . . .xn)′. The quantities S (β,ρ,φ) , P (ρ,Σ) and

Q (ρ,Σ) are given in the Appendix in the proof of Lemma 3.3.

Remark 18 Lemma 3.3 gives the restricted likelihood function using CD’s procedure. To ease

implementation of REML and RLRT we suggest, following Chen and Deo (2009a), we repa-

rameterize the parameters set as
(
Σ, σ200.x,ρ,φ,γ

)
with γ = β − ρφ. The reparameterization

allows estimating ρ and Σ first by concentrating other parameters out of the likelihood and

then obtaining the remaining REML estimators by minimizing S (φ,γ).

Theorem 3.4 For the predictive regression (3.5) under H0 : β1 = β2 = 0, the asymptotic

null distribution of the RLRT using the PC procedure is represented as(
Bk
S

)′
Bk
ZB

k
S , (3.6)

where k = 1, 2 . . . 6 stands for the following cases: (1) ρ1n = 1 and ρ2n = 1; (2) ρ1n = 1 + c1
n

and ρ2n = 1 + c2
n ; (3) ρ1n = 1 + c1

kn
and ρ2n = 1 + c2

kn
(c1, c2 < 0, kn = nα with α ∈ (0, 1)); (4)

ρ1n = 1 and ρ2n = 1+ c2
n ; (5) ρ1n = 1 and ρ2n = 1+ c2

kn
; and (6) ρ1n = 1+ c1

n and ρ2n = 1+ c2
n .

In (3.6) the notation Bk
(·) stands for the asymptotic distribution of the quantity in parentheses

(·) under normalization, as given in the proof of Theorem (3.4) in the Appendix.

Remark 19 The predictors are assumed to fall within three categories covering unit root,

local unit root, and mildly integrated processes. The representation of the limit distribution of

the RLRT is therefore given under six scenarios for the bivariate predictor case, which covers

all possible combinations of the predictors with varying degrees of persistence.

Remark 20 The limit distribution in Theorem 3.4 is derived under the joint null β1 = β2 = 0

but may be extended to the marginal null hypotheses β1 = 0 and β2 = 0.
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Remark 21 If both predictors x1t and x2t are mildly integrated processes, the associated limit

distribution is derived by assuming kn = nα for both x1t and x2t. In this case, differences in the

deviation from unity are reflected through the localizing coefficients c1 and c2. This assumption

provides a substantial simplification in the proof but may be extended using recent results on

multivariate mildly integrated processes with differing rates by Magdalinos and Phillips (2009).

4 Simulations

This section examines the finite sample estimation and inferential performance of the new

procedures. Section 4.1 compares estimation performance among REML-CD, REML-PC and

MLE procedures when the true DGP follows an AR(1) model with drift. Section 4.2 extends

this comparative study to an AR(2) model with drift and the predictive regression model

with drift. Section 4.3 reports inferential performance on size and power between RLRT-

CD and RLRT-PC procedures in predictive regression DGPs with and without intercept.

These simulations are complemented by a further comparative study between the predictive

regression methods of RLRT-PC, Campbell and Yogo (2006), Jansson and Moreira (2006),

and Phillips and Magdalinos (2009a). The number of replications is 5000 throughout.

4.1 Autoregression with Drift

This section considers both AR(1) and AR(2) models with parameter configurations that

range from stationary to near unit root and unit root processes. The drift coefficient in both

AR(1) and AR(2) models is set to 0.5, which fits within the localized drift form of Phillips

et al. (2013) for different values of γ and T. The error variance is normalized to unity. For

the AR(1) model, we consider values of ρn from 0.1 to 1.03 with sample sizes from 25 to 200.

These parameter values capture properties of stationary autoregressions as well as models

with persistence characteristics that arise for ρn in the vicinity of unity. Strictly speaking,

the CD representation of xt in (2.2) requires ρn < 1, thereby excluding unit root and local

unit root processes on the explosive side of unity. However, Chen and Deo (2009a) show that

REML can achieve bias reductions of around 50% even when the AR parameter is close to

unity. Hence, for comparative purposes, we include their approach in this study for cases

where ρn > 1. Autoregressive coefficients greater than unity are associated with explosive

behavior, which is demonstrated empirically by some financial time series during periods of

market exuberance.

Table 4 reports finite sample estimation performance of REML-CD, REML-PC and MLE

procedures in terms of bias, variance, and root mean square error (RMSE hereafter). The
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Table 4: Finite sample performance comparison between MLE and alternative REML esti-
mators for the AR(1) model with intercept.

Sample Size 25 50 100 200
ρn Stats MLE PC CD MLE PC CD MLE PC CD MLE PC CD

0.1 Bias -0.058 -0.005 -0.013 -0.028 -0.003 -0.005 -0.014 -0.002 -0.003 -0.028 -0.003 -0.005
Var 0.040 0.050 0.044 0.020 0.022 0.021 0.010 0.011 0.010 0.020 0.022 0.021
RMSE 0.209 0.224 0.210 0.145 0.148 0.145 0.102 0.103 0.102 0.145 0.148 0.145

0.5 Bias -0.101 0.011 -0.023 -0.051 -0.009 -0.018 -0.026 -0.005 -0.010 -0.013 -0.003 -0.005
Var 0.034 0.075 0.044 0.016 0.018 0.018 0.008 0.008 0.008 0.004 0.004 0.004
RMSE 0.210 0.275 0.211 0.138 0.135 0.134 0.093 0.092 0.091 0.064 0.064 0.063

0.7 Bias -0.108 0.013 0.096 -0.058 -0.006 0.044 -0.030 -0.006 -0.001 -0.015 -0.003 -0.004
Var 0.025 0.055 0.049 0.012 0.016 0.027 0.006 0.006 0.007 0.003 0.003 0.003
RMSE 0.191 0.235 0.242 0.123 0.125 0.169 0.081 0.077 0.086 0.054 0.053 0.054

0.9 Bias -0.056 -0.010 0.122 -0.035 -0.007 0.105 -0.022 -0.004 0.099 -0.013 -0.002 0.097
Var 0.008 0.009 0.001 0.003 0.003 0.000 0.002 0.002 0.000 0.001 0.001 0.000
RMSE 0.106 0.097 0.126 0.066 0.058 0.106 0.045 0.041 0.099 0.032 0.030 0.097

0.95 Bias -0.030 -0.004 0.090 -0.016 -0.003 0.065 -0.010 -0.002 0.055 -0.007 -0.001 0.051
Var 0.003 0.004 0.000 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000
RMSE 0.066 0.061 0.091 0.035 0.031 0.066 0.023 0.021 0.055 0.017 0.016 0.051

0.99 Bias -0.013 0.000 0.066 -0.004 0.000 0.036 -0.002 0.000 0.022 -0.001 0.000 0.015
Var 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
RMSE 0.039 0.038 0.067 0.014 0.013 0.037 0.006 0.006 0.022 0.003 0.003 0.015

1 Bias -0.011 0.000 0.060 -0.003 0.000 0.030 -0.001 0.000 0.015 -0.003 0.000 0.030
Var 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
RMSE 0.034 0.033 0.062 0.011 0.011 0.030 0.004 0.004 0.015 0.011 0.011 0.030

1.01 Bias -0.008 0.001 0.055 -0.002 0.000 0.025 0.000 0.000 0.010 0.000 0.000 0.003
Var 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
RMSE 0.029 0.029 0.056 0.008 0.008 0.025 0.002 0.002 0.010 0.000 0.000 0.003

1.03 Bias -0.005 0.001 0.045 0.000 0.000 0.015 0.000 0.000 0.003 0.000 0.000 0.000
Var 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
RMSE 0.022 0.023 0.046 0.005 0.005 0.016 0.001 0.001 0.003 0.000 0.001 0.001

main findings are summarized as follows. (1) For all cases, REML-PC produces the smallest

bias for each ρn and for each sample size among three estimators. (2) When ρn is smaller

than 1
2 , both REML-CD and REML-PC produce estimator with similar variance, which is

close to but slightly bigger than that yielded by MLE. When taking into account the reduced

bias, all three methods have similar RMSE. (3) When ρn is bigger than 1
2 , we can see the

advantage of REML-PC. It is able to give rise to not only the greatest bias reduction, but

also the smallest RMSE. In addition, there is no trade-off between the bias and variance by

REML-PC for many cases.

Table 5 reports the result for AR(2) process with drift, in which the sum of the autore-

gressive coefficients (the long run AR coefficient) measures the persistence of the process. The
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Table 5: Finite sample performance comparison between MLE and alternative REML esti-
mators for AR(2) model with intercept.

Sample Size 25 50 100 200

Sum (ρ1n, ρ2n ) Stats MLE PC CD MLE PC CD MLE PC CD MLE PC CD

0.2 (0.7,-0.5) Bias 0.002 0.008 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Var 0.037 0.106 0.036 0.016 0.018 0.016 0.008 0.008 0.008 0.004 0.004 0.004
RMSE 0.195 0.331 0.191 0.129 0.135 0.127 0.088 0.090 0.088 0.061 0.062 0.061

0.6 (1.19,-0.59) Bias -0.032 -0.017 0.007 -0.015 -0.006 -0.003 -0.007 -0.002 -0.002 -0.003 -0.001 -0.001
Var 0.033 0.112 0.031 0.014 0.017 0.014 0.007 0.007 0.007 0.003 0.003 0.003
RMSE 0.189 0.352 0.181 0.123 0.131 0.120 0.084 0.084 0.083 0.058 0.058 0.058

0.8 (0.2,0.6) Bias -0.058 -0.010 0.109 -0.036 -0.007 0.099 -0.021 -0.004 0.094 -0.012 -0.002 0.083
Var 0.032 0.063 0.032 0.014 0.016 0.013 0.007 0.007 0.006 0.003 0.003 0.004
RMSE 0.190 0.251 0.226 0.126 0.128 0.156 0.085 0.085 0.123 0.058 0.058 0.104

0.91 (1.05,-0.14) Bias -0.025 -0.004 0.054 -0.016 -0.003 0.047 -0.010 -0.002 0.044 -0.006 -0.001 0.044
Var 0.042 0.075 0.036 0.020 0.022 0.017 0.010 0.010 0.009 0.005 0.005 0.004
RMSE 0.220 0.273 0.223 0.145 0.148 0.155 0.101 0.101 0.111 0.070 0.070 0.082

0.96 (1.1,-0.14) Bias -0.012 -0.001 0.036 -0.007 -0.001 0.026 -0.004 -0.001 0.022 0.000 0.000 0.003
Var 0.042 0.073 0.037 0.020 0.022 0.018 0.010 0.010 0.009 0.005 0.005 0.005
RMSE 0.224 0.270 0.244 0.147 0.149 0.183 0.101 0.102 0.128 0.071 0.071 0.085

0.99 (1.31,-0.32) Bias -0.004 0.000 0.020 -0.002 0.000 0.012 -0.001 0.000 0.008 -0.001 0.000 0.006
Var 0.041 0.094 0.032 0.019 0.022 0.014 0.009 0.010 0.007 0.005 0.005 0.003
RMSE 0.237 0.307 0.249 0.151 0.148 0.215 0.102 0.099 0.183 0.070 0.069 0.141

1 (1.47,-0.47) Bias -0.001 -0.001 0.012 0.000 0.000 0.005 0.000 0.000 0.002 0.000 0.001 0.001
Var 0.039 0.120 0.026 0.018 0.021 0.010 0.008 0.009 0.004 0.004 0.004 0.002
RMSE 0.246 0.348 0.242 0.152 0.145 0.225 0.100 0.095 0.219 0.067 0.065 0.218

1.01 (1.14,-0.13) Bias -0.002 0.000 0.019 0.000 0.000 0.007 0.000 0.000 0.001 0.000 0.000 -0.001
Var 0.042 0.071 0.040 0.020 0.023 0.019 0.010 0.011 0.009 0.005 0.005 0.004
RMSE 0.229 0.266 0.278 0.152 0.153 0.259 0.104 0.104 0.269 0.072 0.072 0.310

1.03 (1.12,-0.19) Bias 0.000 0.001 0.014 0.001 0.000 0.001 0.000 0.000 -0.004 0.000 0.000 -0.006
Var 0.043 0.068 0.043 0.021 0.024 0.020 0.010 0.011 0.009 0.005 0.005 0.005
RMSE 0.229 0.261 0.295 0.153 0.154 0.296 0.105 0.106 0.343 0.073 0.074 0.408

long run AR coefficients considered range from 0.2 to 1.03. Some parameter configurations

are adopted from published empirical studies in order to make the DGP more realistic. To

be specific, we set (ρ1n, ρ2n) to be (1.10,−0.14), (1.05,−0.14), (0.2, 0.6) with corresponding

long run AR parameters 0.96, 0.91 and 0.8, respectively. The first two pairs are taken from

Amihud, Hurvich and Wang (2010), which assumes the predictor variable in predictive regres-

sion follow an AR(2) model with intercept, and the associated coefficients are (1.10,−0.14)

and (1.05,−0.14). The pair (0.2, 0.6) follows the setting in Zhu (2012). We report the mean

squared bias, mean variance and mean RMSE for ρ1n and ρ2n.

A summary of the results from Table 5 is as follows. (1) REML-PC produces the smallest

bias in most cases. (2) When the sum of the slope coefficients is smaller than 0.6, REML-CD

has a slight advantage in producing an estimator with a smaller RMSE than that of REML-

PC. This is similar to the AR(1) case. (3) When ρ1n + ρ2n exceeds 0.6, REML-PC produces
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the greatest bias reduction, compared to REML-CD and MLE. In addition, REML-PC yields

the smallest RMSE for sample sizes of 50, 100 and 200. (4) When sample size is 25, REML-CD

has a better finite sample performance in terms of RMSE.

Overall, Tables 4 and 5 suggest that REML-PC provides improvements over the estimation

procedure of Chen and Deo (2009a). Specifically, the results show that REML-PC reduces

bias, and substantially so in the vicinity of unity, without increasing RMSE for the autore-

gressive model with drift. Bias reduction is achieved in the PC implementation because the

representation of xt in (2.8) is equivalent to that in the predictive regression (1.3) for any t

and ρn, whereas the CD representation (2.2) uses an approximate form for xt in (1.3). More-

over, REML-PC applies to unit root, local unit root, and even mildly explosive processes.

This implementation of REML reduces the impact of the intercept on the estimation of the

slope parameters in autoregression and provides a foundation for inference using RLRT in

predictive regression, which we now discuss.

4.2 Predictive Regression – Estimation

This section and the following section report simulations with predictive regressions. The

results cover: (1) finite sample comparisons between MLE, REML-CD, and REML-PC con-

cerning the estimation of β; (2) size and power comparisons using MLE, RLRT-CD, and

RLRT-PC when the true DGP has drift or not; (3) and similar size and power comparisons

with the Campbell and Yogo (2006), Phillips and Magdalinos (2009a), and Jansson and Mor-

eira (2006) procedures.

We set ρn in the interval [0.8, 1] , which covers many empirical applications. The error

variances are set to unity (σ200 = σ2xx = 1) and φ is set to −0.95 unless otherwise specified,

concordant with the high negative correlation between stock returns and many commonly

used predictors. Standardizing the variances helps focus attention on the impact of other

parameters on the RLRT. We parameterized the predictive slope coefficient in local form as

β = b
√

1− φ2/n, providing size analysis for b = 0 and local power analysis with b 6= 0.

Since financial data are often skewed and have heavy tails, we also considered (in unreported

simulations) cases with t distributed errors (with 5 degrees of freedom) to measure the impact

of thick tail behavior in stock returns and found results similar to those reported here, so the

new procedures appear to be robust to this type of distributional error specification.

Table 6 reports finite sample performance for estimates of β obtained by MLE, REML-CD

and REML-PC under the null hypothesis β = 0. The findings can be summarized as follows.

(1) In terms of bias, REML-PC yields the smallest bias of all methods. REML-PC often

reduces bias in the other procedures by 80% or more, and in some cases, almost removes bias
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completely. (2) REML-PC typically achieves bias reduction while maintaining or lowering

RMSE. When the sample size exceeds 50, the results Table 6 shows that REML-PC actually

produces a slightly smaller RMSE than that by MLE for several cases. It appears from table

6 that REML is able to remove the bias by a large extent without loss of efficiency.

4.3 Predictive Regression – Inference

We first present size comparisons in alternative implementations of RLRTs involving pre-

dictors with and without intercepts. The simulations findings show that when the true DGP

has an intercept, RLRT-CD suffers size distortion whereas RLRT-PC maintains stable size

and has good power. When the predictor follows an autoregression without intercept both

RLRT-PC and RLRT-CD perform well in terms of size and power.

Table 7 shows size comparisons between MLE, RLRT-CD and RLRT-PC, when the pre-

dictor follows an AR(1) process with intercept. Right sided testing is performed under a

5% nominal significance level and the critical value for RLRT-CD is simulated using the sup

bound critical value from Chen et al. (2013). Similar results apply when using the critical

value from Theorem 2.1 for RLRT-CD. The findings reveal that RLRT-PC has a uniform

advantage over RLRT-CD in terms of size and that the actual size of the CD test is close to

unity for local to unity and mildly integrated predictors. For a unit root predictor, the CD

test has size closer to the nominal size but can produce negative RLRT values. Table 8 reports

complementary results for power, showing that RLRT-PC provides a uniform advantage in

terms of power compared to RLRT-CD.

Figure 7 provides power curves of the RLRT using the two implementations in the case of

a mildly integrated predictor xt with intercept. The power curve for RLRT-PC is monotonic

and that of RLRT-CD is U shaped, declining to zero before climbing to unity as b increases.

The U shaped behavior of the power curve explains the bias in the RLRT-CD test and why the

power reported in Table 8 is smaller than the size reported in Table 7 for a mildly integrated

predictor.

For AR(1) predictors without an intercept, Table 9 reports finite sample comparisons of

rejection rates for RLRT-CD and RLRT-PC tests. This specialization conforms exactly to

the CD implementation of RLRT and so reveals any potential disadvantages in the RLRT-PC

procedure’s allowance for intercept effects. We find the following results. (1) Both RLRT-

CD and RLRT-PC generally show good test size overall but the CD test is oversized in the

unit root case and the PC test tends to be conservative. (2) In terms of power, RLRT-PC

maintains good power except in the case of a mildly integrated predictor when b = 25, but its

local power is dominated by RLRT-CD for local unit root and mildly integrated predictors.
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Figure 8 shows power curves for the mildly unit root predictor when γ = 1
2 , β =

b
√

1−φ2
n

with a (shifted) logarithmic scale for b ∈ [0, 50] and with other parameters following the

configurations in Table 8. The power loss in allowing for an intercept in the RLRT-PC

procedure is particularly evident in the mildly integrated case.

4.4 Additional Comparisons

We next compare the RLRT procedure with the methods of Campbell and Yogo (2006;

CY), Phillips and Magdalinos (2009a) and Jansson and Moreira (2006). These methods

are particularly designed to allow for local to unity predictors. CY (2006) used Bonferroni

methods to produce feasible tests for a single predictor in such cases, refining the procedure

proposed by Cavanagh, Elliott and Stock (1995). Recent work (Phillips, 2014) has shown that

in no intercept cases the CY tests are undersized for near unit root predictors and oversized for

mildly integrated predictors with rejection probabilities close to unity. We focus here on the

effects of intercept corrections on the performance of these tests in comparision with RLRT

procedures.

Table 10 provides size comparisons between RLRT-PC and the conventional regression

t-test, Bonferroni t-test, Bonferroni Q-test, and Sup Q-test, as recommended in CY (2006).

The DGP used here includes intercepts for both yt and xt. The results show that for a nom-

inal 5% size, the conventional t-test is oversized and the Bonferroni t-test is undersized for

a unit root predictor with a rejection rate less than 1%. The corresponding rejection rate of

the Bonferroni Q-test is close to 0%. Hence drift impacts the Q-test statistic performance

even though the test is said to be invariant to the presence of an intercept in CY (2006).

The Sup Q-test has relatively good size performance for a unit root predictor but is otherwise

undersized. In comparison to all these tests, the RLRT-PC test does well, with an over-

whelming advantage in size control in the predictive regression context, allowing for different

sample sizes and predictors with various degrees of persistence. Power is reported in Table

11 and the findings show that RLRT-PC has uniformly better power than CY (2006) for all

parameter configurations and all sample sizes. In addition to improved size, RLRT methods

have a computational advantage because they do not rely on confidence belts that have to

be prepared to implement the test. Moreover, unlike the Bonferroni-based procedures, RLRT

extends readily to the multiple predictor case.

In the case of multiple predictors we compare our procedure with the IVX method of

Phillips and Magdalinos (2009a) which has the dual advantages of convenient treatment of

multiple predictors and a common chi-square limit theory. The IVX framework is based on
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the multivariate cointegrated system

yt = Axt + uot

xt = Rnxt−1 + uxt, t = 1, .., n (4.1)

where A is an m × k coefficient matrix and Rn = IK + C
nα is a autoregressive matrix with

roots |λi (Rn)| 6 1. The matrix C = diag (c1, . . . ck) is a diagonal matrix with ck 6 0 for

all i = 1, . . . k. IVX constructs an instrument zt directly from the predictor xt using the

autoregression zt = Rnzzt−1 + uzt for some known Rnz = IKz + Cz
nω , ω ∈ (0, 1) , and Cz =

diag (cz,1, . . . cz,Kz) with inputs uzt = ∆xt. The IVX Wald test for predictability is pivotal

and follows a standard χ2 distribution. Kostakis, Magdalinos and Stamatogiannis (2014)

employ IVX as a tool for predictive regression and modify the IVX method to accommodate

the presence of the intercept in yt in the true DGP. The following comparative study follows

their procedure in implementation.

Table 12 compares both RLRT-CD and RLRT-PC with IVX in the context of bivariate

predictors and with a 10% right tailed critical value. The parameter configuration follows

Table 4 in Kostakis et al. (2014). In particular, we choose $ = 0.95 and Cz = Ik. When

intercepts are present in the true DGP, we set the intercept for yt, x1t and x2t to be 0.5, 5×n−0.5

and 5× n−0.5 (n = 100) respectively. For power comparisons, we set βi =
25
√

1−φ2i
n (i = 1, 2).

In this case, φ1 = −0.8474 and φ2 = 0.012. Table 12 shows that RLRT-CD has less size

distortion and better power by a small margin compared to IVX when there is no intercept in

the true DGP. When there are intercepts in the true DGP, RLRT-PC is oversized by around

1%, whereas IVX is undersized by around 1% so both methods perform well in terms of size

control. RLRT-PC demonstrates some advantage in terms of power for stationary predictors

over IVX. Thus, for bivariate predictors the results slightly favor RLRT-PC for unit root and

stationary predictors and IVX is favored for the remaining cases.

In the appendix of the supplement to this paper, we report size and power comparisons

between RLRT-PC and IVX for the case of a univariate predictor in Table S4, S5 and S6 for

configurations that corresponds to Table 7, 8 and 9. In the univariate case, when there is an

intercept in the true DGP, IVX is undersized with size close to zero yet still has very good

power except when T is as small as 50, in which case IVX has less power than RLRT-PC. When

there is no drift term in the true DGP, IVX is slightly oversized and has stable size across all

generating mechanisms, while RLRT-PC is generally undersized; and IVX dominates RLRT-

PC in terms of power particularly for mildly integrated predictors but is slightly dominated

by RLRT in the unit root case. Importantly, in this case the power of IVX increases with the
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sample size, whereast both CD and PC versions of RLRT show decline in power as the sample

size increases in the mildly integrated case. In sum, for a univariate predictor and small

sample sizes RLRT appears to have a power advantage only for highly persistent predictors.

In general, IVX is competitive in terms of both size and power, and is generally far superior

in power to both RLRT methods when the predictor is mildly integrated except for small

sample sizes.

Some further size and power comparisons were conducted with the Jansson and Moreira

(2006) procedure. Chen and Deo (2009a) point out that the likelihood used in Jansson and

Moreira (2006; JM) is already restricted because it relates to the likelihood of a maximal

invariant. However, RLRT exploits the restricted likelihood in developing the inferential pro-

cedure, whereas JM (2006) considers the maximal invariant test statistic without resorting to

the associated likelihood. One similarity of the two approaches is that they both reduce or

remove curvature in the test problem. The relatively smaller curvature in the likelihood ratio

test delivered by the restricted likelihood ensures an improved approximation of the asymp-

totic to the finite sample distribution, in comparison to the standard likelihood. On the other

hand, removing curvature by conditioning on some specific ancillary statistics enables JM

(2006) to produce a uniformly most powerful conditionally unbiased test. In particular, JM

first derive a maximal invariant statistic based on transforming observations of yt and xt to

(yt − yt−1, xt). Chen and Deo (2009a) point out that this transformation under the assump-

tion of no intercept in xt enables the use of the exact likelihood rather than the restricted

likelihood. JM (2006) find a sufficient statistic for the distribution of the maximal invari-

ant which is used to construct a test with a uniformly most powerful conditional optimality

property.

Table 13 is the counterpart of Table 7 in Chen and Deo (2009a) and we additionally

examine the impact of Corr (uxt, u0t) on size and power. The same parameter configuration

is used in Table 2 in Jansson and Moreira (2006). Chen and Deo (2009a) show how, with

this particular parameter configuration, extremely high values of Corr (uxt, u0t) can degrade

size performance for RLRT-CD. However, when the predictor has an intercept, it is apparent

from Table 13 that the JM (2006) method has size and power both close to zero, indicating

the sensitivity of this method to the presence of drift. RLRT-PC, on the other hand, is seen

to be robust to Corr (uxt, u0t).

When the predictor has no drift, we refer to the size performance of RLRT-PC given

already in Table 9. Table 6 in Chen and Deo (2009a) shows that the RLRT-CD is oversized

when the predictor is nonstationary and Corr (uxt, u0x.t) ' −1. However, RLRT-CD is no

longer oversized at the unit root when Corr (uxt, u0x.t) ' −0.5. Chen and Deo suggest that it
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is the correlation in the innovations that is responsible for the size distortion. Our simulation

results indicate that it is the form of the AR(1) model specified for the predictor (rather than

the error correlation) that impacts inferential performance by producing size distortion as the

RLRT-PC test shows virtually no size distortion for all sample sizes and all ρn. Finally, as is

now well known (e.g. Kasparis, Andreou, Phillips, 2014) the JM procedure involves substantial

computation and encounters numerical difficulties in some parameter configurations. RLRT

demonstrates better size and power properties and involves far less computational time.

5 Conclusion

Building on the work of Chen and Deo (2009a), this paper shows the advantages of the

use of restricted likelihood techniques in predictive regression models. The REML estimator

and RLRT test both exhibit good finite sample properties. The REML estimator reduces the

bias of the MLE by around 50% and the RLRT test for predictability corrects size distortion

in the standard t-test and outperforms several commonly used predictive regression tests in

terms of size and power when drift is present in persistent predictors. The main contribution

of the paper lies in the extension of earlier research on RLRT testing by including drift in the

specification and by allowing for multiple predictors in the generating mechanism, thereby

providing a wider field of potential applications.

The modifications involved in the new procedure directly remove the impact of the drift

in implementing the RLRT by using the exact form of the predictor model in building the

restricted likelihood. This procedure is shown to easily accommodate multiple predictors

and autoregressive predictors with different initializations. Simulations show that the RLRT

procedure has superior finite sample performance in terms of size and power compared to

both Campbell and Yogo (2006) and Jansson and Moreira (2006) methods, even for a true

DGP without drift. Our simulations show that the IVX method of Phillips and Magdalinos

(2009a) and Kostakis, Magdalinos and Stamatogiannis (2014) also performs well and is robust

to the presence of intercepts and multiple predictors, giving particularly good performance in

relation to RLRT methods when the predictors are mildly integrated.
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Figure 2: The sensitivity of 5% right tailed critical values to µ̃ for RLRT using alternative
procedures. The horizontal axis in each case shows µ̃ ∈ [−10, 10] for intercept µ = µ̃n−γ . The
vertical axis indicates simulated 5% right tailed critical values for n = 5000. ( UR ≡ Unit
root with ρn = 1, LUR ≡ Local unit root with ρn = 1 + c

n , MIUR ≡ Moderately integrated
root with ρn = 1 + c

nα .)

34



Figure 3: The sensitivity of 5% right tailed critical values to φ for RLRT under the CD and new
(PC) implementation. The horizontal axis in each case measures values of φ ∈ [−0.99,−0.9]
with intercept µ = 8 × n−γ for various γ. The vertical axis shows simulated 5% right tailed
critical values for n = 5000.
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Figure 4: The sensitivity of 5% right tailed critical value to signal to noise ratio σ2
xx

σ2
00

for RLRT

using alternative procedures. Horizontal axis in each case indicates σ2xx ∈ [0.1, 2] with σ200 = 1
for intercept µ = 8 × n−γ . Vertical axis indicates 5% right tailed critical value of simulated
asymptotics of n = 5000.
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Figure 5: The sensitivity of the RLRT density to µ using alternative procedures for the case
of a unit root predictor xt.
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Figure 6: 5% right tailed sup bound critical values (CV
γ= 1

2
ρn,λ

) of RLRT for ρn in the vicinity
of unity.
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Table 6: Finite sample performance comparison between MLE and alternative REML esti-
mators for β under H0 : β = 0, when the predictor xt has intercept.

γ = 0.6 µ̃=10 γ = 0.5 µ̃=5 γ = 0.3 µ̃=3
ρn n Statis MLE CD PC MLE CD PC MLE CD PC

UR
c = 0 1 50 Bias 0.003 -0.028 0.000 0.005 -0.028 0.000 0.003 -0.028 0.000

SD 0.011 0.005 0.011 0.015 0.007 0.015 0.011 0.006 0.011
RMSE 0.011 0.029 0.011 0.016 0.029 0.015 0.011 0.029 0.011

1 100 Bias 0.002 -0.014 0.000 0.003 -0.014 0.000 0.001 -0.014 0.000
SD 0.006 0.003 0.006 0.008 0.004 0.008 0.005 0.002 0.005
RMSE 0.006 0.014 0.006 0.008 0.014 0.008 0.005 0.014 0.005

1 200 Bias 0.001 -0.007 0.000 0.001 -0.007 0.000 0.000 -0.007 0.000
SD 0.003 0.001 0.003 0.004 0.002 0.004 0.002 0.001 0.002
RMSE 0.003 0.007 0.003 0.004 0.007 0.004 0.002 0.007 0.002

1 400 Bias 0.001 -0.003 0.000 0.001 -0.003 0.000 0.000 -0.004 0.000
SD 0.002 0.001 0.002 0.002 0.001 0.002 0.001 0.000 0.001
RMSE 0.002 0.004 0.002 0.002 0.004 0.002 0.001 0.004 0.001

LUR
c = -5 0.9 50 Bias 0.033 -0.094 0.007 0.046 -0.088 0.008 0.035 -0.094 0.007

SD 0.056 0.017 0.058 0.069 0.033 0.072 0.057 0.018 0.059
RMSE 0.065 0.096 0.058 0.083 0.094 0.073 0.067 0.096 0.059

0.95 100 Bias 0.019 -0.047 0.003 0.024 -0.045 0.003 0.015 -0.047 0.003
SD 0.030 0.009 0.031 0.035 0.012 0.036 0.026 0.008 0.026
RMSE 0.035 0.048 0.031 0.042 0.047 0.037 0.030 0.048 0.026

0.975 200 Bias 0.011 -0.023 0.002 0.013 -0.023 0.002 0.006 -0.024 0.001
SD 0.016 0.005 0.017 0.018 0.005 0.019 0.012 0.003 0.012
RMSE 0.019 0.024 0.017 0.022 0.023 0.019 0.013 0.024 0.012

0.9875 400 Bias 0.006 -0.012 0.001 0.006 -0.011 0.001 0.003 -0.012 0.001
SD 0.009 0.002 0.009 0.009 0.003 0.010 0.005 0.002 0.005
RMSE 0.011 0.012 0.009 0.011 0.012 0.010 0.006 0.012 0.005

MIUR
c = -5 0.8521 50 Bias 0.044 -0.130 0.007 0.054 -0.103 0.005 0.045 -0.129 0.007
α = 0.9 SD 0.074 0.044 0.079 0.084 0.080 0.093 0.075 0.047 0.080

RMSE 0.086 0.137 0.079 0.100 0.130 0.093 0.088 0.137 0.081

0.9208 100 Bias 0.025 -0.070 0.003 0.030 -0.063 0.002 0.022 -0.073 0.003
SD 0.041 0.016 0.044 0.045 0.026 0.050 0.038 0.013 0.039
RMSE 0.049 0.072 0.044 0.054 0.068 0.050 0.044 0.074 0.040

0.9575 200 Bias 0.015 -0.037 0.002 0.016 -0.034 0.002 0.011 -0.040 0.002
SD 0.023 0.008 0.025 0.024 0.009 0.027 0.019 0.006 0.020
RMSE 0.028 0.038 0.025 0.029 0.036 0.027 0.022 0.040 0.020

0.9772 400 Bias 0.008 -0.019 0.001 0.009 -0.018 0.001 0.005 -0.021 0.001
SD 0.013 0.004 0.013 0.013 0.004 0.014 0.009 0.003 0.010
RMSE 0.015 0.020 0.014 0.015 0.019 0.014 0.011 0.022 0.010
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Table 7: Size comparisons of RLRT using alternative procedures to test H0 : β = 0, when the
predictor xt has an intercept.

γ = 0.6 µ̃=10 γ = 0.5 µ̃ = 5 γ = 0.3 µ̃ = 3
ρn n µ CD PC µ CD PC µ CD PC

UR
c = 0 1 50 0.956 0.049 0.053 0.707 0.045 0.051 0.928 0.051 0.053

1 100 0.631 0.049 0.057 0.500 0.043 0.061 0.754 0.048 0.058
1 200 0.416 0.031 0.048 0.354 0.031 0.049 0.612 0.032 0.049
1 400 0.275 0.031 0.048 0.250 0.031 0.049 0.497 0.032 0.049

LUR
c = -5 0.900 50 0.956 0.975 0.052 0.707 0.781 0.051 0.928 0.967 0.053

0.950 100 0.631 0.960 0.055 0.500 0.847 0.058 0.754 0.991 0.049
0.975 200 0.416 0.958 0.052 0.354 0.878 0.054 0.612 1.000 0.054
0.988 400 0.275 0.958 0.052 0.250 0.878 0.054 0.497 1.000 0.054

MIUR
c = -5 0.852 50 0.956 0.895 0.051 0.707 0.606 0.046 0.928 0.868 0.052
α = 0.9 0.921 100 0.631 0.925 0.054 0.500 0.739 0.052 0.754 0.986 0.054

0.958 200 0.416 0.943 0.047 0.354 0.827 0.041 0.612 1.000 0.055
0.977 400 0.275 0.943 0.047 0.250 0.827 0.041 0.497 1.000 0.055

Table 8: Power comparisons of RLRT using alternative procedures for true β =
25
√

1−φ2
n ,

when the predictor xt has an intercept.

γ = 0.6 µ̃=10 γ = 0.5 µ̃ = 5 γ = 0.3 µ̃ = 3
ρn n µ CD PC µ CD PC µ CD PC

UR
c = 0 1 50 0.956 1.000 1.000 0.707 1.000 1.000 0.928 1.000 1.000

1 100 0.631 1.000 1.000 0.500 1.000 1.000 0.754 1.000 1.000
1 200 0.416 1.000 1.000 0.354 1.000 1.000 0.612 1.000 1.000
1 400 0.275 1.000 1.000 0.250 1.000 1.000 0.497 1.000 1.000

LUR
c = -5 0.900 50 0.956 0.922 0.993 0.707 0.835 0.944 0.928 0.918 0.991

0.950 100 0.631 0.895 0.979 0.500 0.821 0.944 0.754 0.941 0.991
0.975 200 0.416 0.904 0.977 0.354 0.854 0.947 0.612 0.985 1.000
0.988 400 0.275 0.904 0.977 0.250 0.854 0.947 0.497 0.985 1.000

MIUR
c = -5 0.852 50 0.956 0.113 0.510 0.707 0.125 0.352 0.928 0.111 0.491
α = 0.9 0.921 100 0.631 0.037 0.355 0.500 0.045 0.253 0.754 0.036 0.476

0.958 200 0.416 0.009 0.248 0.354 0.011 0.206 0.612 0.012 0.466
0.977 400 0.275 0.009 0.248 0.250 0.011 0.206 0.497 0.012 0.466
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Figure 7: Power curves of RLRT using alternative procedures in the case of a mildly integrated
predictor xt with intercept.
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Table 9: Size and power comparisons of RLRT tests of H0 : β = 0, with true β =
b
√

1−φ2
n ,

when the predictor xt has no intercept.

b = 0 b = 25 b = 50
ρn n CD PC CD PC CD PC

UR
c = 0 1 50 0.068 0.050 1.000 1.000 1.000 1.000

1 100 0.064 0.042 1.000 1.000 1.000 1.000
1 200 0.061 0.042 1.000 0.999 1.000 0.999
1 400 0.067 0.047 0.999 0.999 0.999 0.999

LUR
c = -5 0.900 50 0.034 0.029 0.869 0.622 1.000 1.000

0.950 100 0.043 0.038 0.877 0.588 1.000 1.000
0.975 200 0.033 0.024 0.896 0.561 1.000 1.000
0.988 400 0.041 0.023 0.882 0.560 1.000 1.000

MIUR
c = -5 0.852 50 0.037 0.036 0.480 0.152 1.000 0.998
α = 0.9 0.921 100 0.047 0.041 0.435 0.094 0.999 0.999

0.958 200 0.034 0.027 0.426 0.079 1.000 0.993
0.977 400 0.043 0.027 0.421 0.078 1.000 0.992
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Figure 8: Power curves of RLRT using alternative procedures for a mildly integrated predictor
xt without intercept.

43



Table 10: Finite sample rejection rate (size) comparison between conventional t-test, Bonfer-
roni t-test, Bonferroni Q-test, Sup Q-test and RLRT-PC for testing H0 : β = 0, when the
predictor xt has intercept, using normal critical value for the t ratio and confidence belt based
critical values for the Q tests.

n c=0 µ t Bonf.t Bonf.Q Sup Q PC

γ = 0.6 µ̃ = 10
c = 0 50 1 0.956 0.088 0.008 0.000 0.059 0.062

100 1 0.631 0.084 0.008 0.000 0.052 0.057
200 1 0.416 0.082 0.005 0.000 0.054 0.057
400 1 0.275 0.090 0.007 0.000 0.054 0.059

c = -5
50 0.900 0.956 0.142 0.055 0.000 0.000 0.052
100 0.950 0.631 0.139 0.046 0.000 0.000 0.050
200 0.975 0.416 0.142 0.045 0.000 0.000 0.050
400 0.988 0.275 0.144 0.050 0.000 0.000 0.055

c = -5
α = 0.9 50 0.980 0.956 0.138 0.053 0.001 0.000 0.053

100 0.990 0.631 0.135 0.048 0.000 0.000 0.052
200 0.995 0.416 0.133 0.051 0.000 0.000 0.051
400 0.998 0.275 0.139 0.054 0.000 0.000 0.052

γ = 0.5 µ̃ = 5
c = 0 50 1 0.707 0.079 0.007 0.000 0.058 0.063

100 1 0.500 0.070 0.007 0.000 0.053 0.057
200 1 0.354 0.067 0.004 0.000 0.055 0.058
400 1 0.250 0.073 0.005 0.000 0.051 0.059

c = -5
50 0.900 0.707 0.123 0.055 0.000 0.000 0.050
100 0.950 0.500 0.114 0.046 0.000 0.000 0.049
200 0.975 0.354 0.105 0.046 0.000 0.000 0.050
400 0.988 0.250 0.112 0.049 0.000 0.000 0.054

c = -5
α = 0.9 50 0.980 0.707 0.123 0.058 0.000 0.000 0.051

100 0.990 0.500 0.117 0.049 0.000 0.000 0.052
200 0.995 0.354 0.116 0.054 0.000 0.000 0.055
400 0.998 0.250 0.115 0.054 0.000 0.000 0.052

γ = 0.3 µ̃ = 3
c = 0 50 1 0.928 0.065 0.005 0.000 0.058 0.062

100 1 0.754 0.057 0.006 0.000 0.053 0.058
200 1 0.612 0.055 0.003 0.000 0.055 0.058
400 1 0.497 0.061 0.003 0.000 0.051 0.059

c = -5
50 0.900 0.928 0.083 0.055 0.000 0.000 0.051
100 0.950 0.754 0.076 0.049 0.000 0.000 0.050
200 0.975 0.612 0.065 0.047 0.000 0.000 0.052
400 0.988 0.497 0.067 0.045 0.000 0.000 0.050

c = -5
α = 0.9 50 0.980 0.928 0.091 0.057 0.000 0.000 0.052

100 0.990 0.754 0.080 0.047 0.000 0.000 0.051
200 0.995 0.612 0.076 0.050 0.000 0.000 0.052
400 0.998 0.497 0.073 0.050 0.000 0.000 0.055
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Table 11: Power comparison between RLRT-PC and Bonf Q, true β =
25
√

1−φ2
n , when the

predictor xt has an intercept, using confidence belt based critical values for the Q test.

γ = 0.6 µ̃=10 γ = 0.5 µ̃=5 γ = 0.3 µ̃=3
ρn n µ Bonf Q PC µ Bonf Q PC µ Bonf Q PC

UR
c = 0 1 50 0.956 0.999 1.000 0.707 0.988 1.000 0.928 0.999 1.000

1 100 0.631 0.999 1.000 0.500 0.991 1.000 0.754 1.000 1.000
1 200 0.416 0.998 1.000 0.354 0.990 1.000 0.612 1.000 1.000
1 400 0.275 0.996 1.000 0.250 0.990 1.000 0.497 1.000 1.000

LUR
c = -5 0.900 50 0.956 0.252 0.993 0.707 0.290 0.944 0.928 0.254 0.991

0.950 100 0.631 0.160 0.979 0.500 0.183 0.944 0.754 0.154 0.991
0.975 200 0.416 0.131 0.977 0.354 0.141 0.947 0.612 0.122 1.000
0.988 400 0.275 0.113 0.977 0.250 0.120 0.947 0.497 0.106 1.000

MIUR
c = -5 0.852 50 0.956 0.171 0.510 0.707 0.233 0.352 0.928 0.179 0.491
α = 0.9 0.921 100 0.631 0.080 0.355 0.500 0.116 0.253 0.754 0.060 0.476

0.958 200 0.416 0.048 0.248 0.354 0.066 0.206 0.612 0.025 0.466
0.977 400 0.275 0.034 0.248 0.250 0.043 0.206 0.497 0.014 0.466

Table 12: Size and power comparison between IVX, RLRT-CD and RLRT-PC for testing
H0 : β1 = β2 = 0, for a predictor xt with and without intercept and for a nominal 10% size.

No intercept Intercept
Size Power Size Power

C IVX CD IVX CD IVX PC IVX PC

0 0.185 0.144 1.000 1.000 0.150 0.150 1.000 1.000
-5 0.143 0.114 1.000 1.000 0.083 0.113 1.000 1.000

-10 0.129 0.113 1.000 1.000 0.080 0.115 1.000 1.000
-15 0.118 0.114 1.000 1.000 0.083 0.118 0.997 1.000
-20 0.110 0.113 0.998 0.999 0.085 0.117 0.989 1.000
-50 0.094 0.112 0.560 0.656 0.093 0.117 0.534 0.669

45



Table 13: Size and power comparison between Jansson and Moreira(2006) and RLRT-PC for

testing H0 : β = 0.True β =
b
√

1−φ2
n , n = 400, and the predictor xt has an intercept.

b=0 b=5 b=10 b=15
φ c ρn PC JM PC JM PC JM PC JM
-0.5 0 1.000 0.053 0.012 0.999 0.013 1.000 0.013 1.000 0.013

-5 0.988 0.058 0.000 0.270 0.000 0.810 0.000 0.978 0.000
-10 0.975 0.052 0.000 0.113 0.000 0.371 0.000 0.729 0.000

0.5 0 1.000 0.061 0.000 0.999 0.000 1.000 0.013 1.000 0.013
-5 0.988 0.048 0.000 0.357 0.000 0.750 0.000 0.932 0.000
-10 0.975 0.038 0.000 0.198 0.000 0.468 0.000 0.737 0.000
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A Appendix A: Univariate predictor

This Appendix provides some basic limit theory that assists in deriving the limit dis-

tributions of the RLRT test statistics with a scalar predictor. We first present the limit

behavior of standardized forms of the sample moments
∑n

t=1 xt−1,
∑n

t=1 x
2
t−1,

∑n
t=1 xt−1u0.xt

and
∑n

t=1 xt−1uxt for a univariate predictor xt under a localized drift specification. These

results are, in the main, direct applications of results in Phillips (1987a&b) and Phillips and

Magdalinos (2007a&b) so we simply list them here. The results from Lemma A.1 to Lemma

A.4 are derived assuming the random process xt is generated by xt = µ+ ρnxt−1 +uxt with µ

= µ̃n−γ . Full details of the derivations are provided in the supplementary document to this

paper (Phillips and Chen, 2014).

In the following section, we denote by W0 (r), Wx (r), and W0.x (r) the standard Brownian

motions, corresponding to the functional limits standardized partial sums of the errors u0t,

uxt, and u0.xt, each with variance normalized to unity. At the same time, we have Brownian

motions B0 (r), Bx (r), and B0.x (r) associated with the unstandardized errors. We define the

linear diffusion Kc (r) := σxxJc (r) =
∫ r
0 e

c(r−s)dWx (r), and the demeaned process Wm
x (r) :=

Wx (r)−
∫ 1
0 Wx (r) dr.

A.1 Preliminary Lemmas

Lemma A.1 If ρn = 1, we obtain,

(1)

1

n3/2

n∑
t=1

xt−1 =⇒


∫ 1
0 Bx(r)dr if γ > 1

2 ,

µ̃
2 +

∫ 1
0 Bx(r)dr if γ = 1

2 ,

1

n2−γ

n∑
t=1

xt−1 → p µ̃

2
if γ <

1

2
.

(2)

1

n2

n∑
t=1

x2t−1 =⇒


∫ 1
0 B

2
x(r)dr if γ > 1

2 ,

µ̃2

3 + 2µ̃
∫ 1
0 rBx(r)dr +

∫ 1
0 B

2
x(r)dr if γ = 1

2 ,

1

n3−2γ

n∑
t=1

x2t−1 → p µ̃
2

3
if γ <

1

2
.
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(3)

1

n

n∑
t=1

xt−1u0.xt =⇒


∫ 1
0 Bx(r)dB0.x(r) if γ > 1

2 ,

µ̃
{
B0.x (1)−

∫ 1
0 B0.x(r)dr

}
+
∫ 1
0 Bx(r)dB0.x(r) if γ = 1

2 ,

1

n3/2−γ

n∑
t=1

xt−1u0.xt =⇒ µ̃

{
B0.x (r)−

∫ 1

0
B0.x(r)dr

}
if γ <

1

2
.

(4) Replacing B0.x (r) with Bx (r) in (3), the corresponding asymptotic results for
∑n

t=1 xt−1uxt

follow.

Lemma A.2 If ρn = 1 + c
n , then we have:

(1)

1

n3/2

n∑
t=1

xt−1 =⇒


∫ 1
0 Kc(r)dr if γ > 1

2 ,

µ̃
∫ 1
0 Fc (r) dr +

∫ 1
0 Kc(r)dr if γ = 1

2 ,

1

n2−γ

n∑
t=1

xt−1 → p µ̃

∫ 1

0
Fc (r) dr if γ <

1

2
.

(2)

1

n2

n∑
t=1

x2t−1 =⇒


∫ 1
0 Kc(r)

2dr if γ > 1
2 ,

µ̃2
∫ 1
0 F

2
c (r) dr + 2µ̃

∫ 1
0 Fc (r)Kc(r)dr +

∫ 1
0 Kc(r)

2dr if γ = 1
2 ,

1

n3−2γ

n∑
t=1

x2t−1 → p µ̃2
∫ 1

0
F 2
c (r) dr if γ <

1

2
.

(3)

1

n

n∑
t=1

xt−1u0.xt =⇒


∫ 1
0 Kc(r)dB0.x(r) if γ > 1

2 ,

µ̃
∫ 1
0 Fc (r) dB0.x(r) +

∫ 1
0 Kc(r)dB0.x(r) if γ = 1

2 ,

1

n3/2−γ

n∑
t=1

xt−1u0.xt =⇒ µ̃

∫ 1

0
Fc (r) dB0.x(r) if γ <

1

2
.

(4) The corresponding asymptotic results for the sample covariance
∑n

t=1 xt−1uxt follow

by replacing B0.x (r) with Bx (r) in (3)

Lemma A.3 If ρn = 1 + c
kn

with c < 0, and kn = nα with α ∈ (0, 1), then for some

δ = δ (α, γ) with 0 < δ (α, γ) 6 1
2 :

48



(1) For γ > 1
2 or 0 < α

2 < γ < 1
2 ,

(i) 1√
n
x̃n ⇒ 0; (ii) 1

nx
2
n = Op

(
n−δ

)
; (iii) 1

nα/2+1

∑n
t=1 x̃t−1 = Op

(
n−δ

)
.

(2) For 0 < γ 6 α
2 <

1
2 ,

(i) 1
nα/2−γ+1/2 x̃n ⇒ 0; (ii) 1

nα−2γ+1x
2
n = Op

(
n−δ

)
; (iii) 1

nα−γ+1

∑n
t=1 x̃t−1 = Op

(
n−δ

)
.

Lemma A.4 If ρn = 1 + c
kn

with c < 0, kn = nα with α ∈ (0, 1), then for some δ = δ (α, γ)

with 0 < δ (α, γ) 6 1
2 :

(1) If γ > 1
2 or 0 < α

2 < γ < 1
2 ,

(i)
1

nα/2+1

n∑
t=1

xt−1 = Op

(
n−δ

)
,

(ii)
1

nα+1

n∑
t=1

x2t−1 =
σ2xx
−2c

+Op

(
n−δ

)
,

(iii)
1

nα/2+1/2

n∑
t=1

xt−1u0.xt =⇒ N

(
0,
σ2xxσ

2
00.x

−2c

)
,

(iv)
1

nα/2+1/2

n∑
t=1

xt−1uxt =⇒ N

(
0,
σ4xx
−2c

)
.

(2) If 0 < γ 6 α
2 <

1
2 ,

(i)
1

nα−γ+1

n∑
t=1

xt−1 =
µ̃

−c
+Op

(
n−δ

)
,

(ii)
1

n2α−2γ+1

n∑
t=1

x2t−1 =
µ̃2

c2
+Op

(
n−δ

)
,

(iii)
1

nα−γ+1/2

n∑
t=1

xt−1u0.xt =⇒ µ̃

−c
B0.x (1) ,

(iv)
1

nα−γ+1/2

n∑
t=1

xt−1uxt =⇒ µ̃

−c
Bx (1) .

A.2 Proofs of the Main Results

A.2.1 Proof of Theorem 2.1

Proof. Under CD’s estimation model (2.2), the unnormalized score function and second

order partial derivatives are as follows:

s1 :=
1

σ200.x

(
n∑
t=1

xt−1u0.xt −
1

n

n∑
t=1

xt−1

n∑
t=1

u0.xt

)
,
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s2 := −φs1 +
1

σ2xx

n∑
t=1

(xt − ρnxt−1)xt−1,

h11 := −φ2σ2xx

(
n∑
t=1

x2t−1

)−1
− σ200.x


n∑
t=1

x2t−1 −
1

n

(
n∑
t=1

xt−1

)2

−1

,

h22 := −σ2xx

(
n∑
t=1

x2t−1

)−1
,

h−122 :=


(
− φ2

σ200.x
− 1

σ2xx

) n∑
t=1

x2t−1 +
φ2

nσ200.x

(
n∑
t=1

xt−1

)2

−1

,

h12 := φh22 = h21.

Let λ2 = φ2σ2
xx

(φ2σ2
xx+σ

2
00.x)

= φ2σ2
xx

σ2
00

, and given the expressions for si and hij , we have

Rn = −h11s21 − 2h12s1s2 −
(
h22 − h−122

)
s22 +Op

(
n−1/2

)
=

{√
1− λ2gnpn + λ (gn)1/2 τn

}2
+Op

(
n−1/2

)
,

with

pn =

(∑n
t=1 xt−1u0.xt −

1
n

∑n
t=1 xt−1

∑n
t=1 u0.xt

){∑n
t=1 x

2
t−1 − 1

n (
∑n

t=1 xt−1)
2
}1/2

1

σ00.x
,

gn =
1− 1

n (
∑n

t=1 xt−1)
2 /
∑n

t=1 x
2
t−1

1− λ2 1
n (
∑n

t=1 xt−1)
2 /
∑n

t=1 x
2
t−1

,

τn =

∑n
t=1 xt−1 (xt − ρnxt−1)(∑n

t=1 x
2
t−1
)1/2 1

σxx
=
µ
∑n

t=1 xt−1 +
∑n

t=1 xt−1uxt(∑n
t=1 x

2
t−1
)1/2 1

σxx
.

After normalization for each component in pn, gn and τn, we obtain the limit distribution

of Rn for different parameter scenarios using the preliminary lemmas above. Specifically, we

consider the following cases:

(1) If ρn = 1 we have the following.

(i) When γ > 1
2 ,

pn =⇒
∫ 1
0 W

m
x (r) dW0.x (r){∫ 1

0 [Wm
x (r)]2 dr

}1/2
= Z,
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gn =⇒ gλ =
1− (

∫ 1
0 Wx(r)dr)

2∫ 1
0 W

2
x (r)dr

1− λ2 (
∫ 1
0 Wx(r)dr)

2∫ 1
0 W

2
x (r)dr

,

τn =⇒ τ =

∫ 1
0 Wx (r) dWx (r)√∫ 1

0 W
2
x (r) dr

.

(ii) When γ = 1
2 ,

pn =⇒ pλ,µ̃ =

µ̃
2σxx

W0.x (1)− µ̃
σxx

∫ 1
0 W0.x (r) dr +

∫ 1
0 W

m
x (r) dW0.x (r){

µ̃2

12σ2
xx

+ µ̃
σxx

{
2
∫ 1
0 rWx (r) dr −

∫ 1
0 Wx (r) dr

}
+
∫ 1
0 {Wm

x (r)}2 dr
}1/2

,

gn =⇒ gλ,µ̃ =

1−
µ̃2

4σ2xx
+ µ̃
σxx

∫ 1
0 Wx(r)dr+(

∫ 1
0 Wx(r)dr)

2

µ̃2

3σ2xx
+ 2µ̃
σxx

∫ 1
0 rWx(r)dr+

∫ 1
0 W

2
x (r)dr

1− λ2
µ̃2

4σ2xx
+ µ̃
σxx

∫ 1
0 Wx(r)dr+(

∫ 1
0 Wx(r)dr)

2

µ̃2

3σ2xx
+ 2µ̃
σxx

∫ 1
0 rWx(r)dr+

∫ 1
0 W

2
x (r)dr

,

τn =⇒ τλ,µ̃ =

µ̃2

2σ2
xx

+ µ̃
σxx

Wx (1) +
∫ 1
0 Wx (r) dWx (r){

µ̃2

3σ2
xx

+ 2µ̃
σxx

∫ 1
0 rWx (r) dr +

∫ 1
0 W

2
x (r) dr

}1/2
.

(iii) When γ < 1
2 ,

pn =⇒ p =
µ̃
2W0.x (1)− µ̃

∫ 1
0 W0.x (r) dr(

µ̃2

12

)1/2 =
√

3

(
W0.x (1)− 2

∫ 1

0
W0.x (r) dr

)
,

gn =⇒ gλ =

1−
µ̃2

4
µ̃2

3

1− λ2
µ̃2

4
µ̃2

3

=
1

4− 3λ2
,

τn =⇒ τλ,µ̃,γ =

µ̃2n1/2−γ

2σxx
+ µ̃

(
Wx (1)−

∫ 1
0 Wx (r) dr

)
(
µ̃2

3

)1/2
=

√
3

(
µ̃

2σxx
n1/2−γ +Wx (1)−

∫ 1

0
Wx (r) dr

)
.
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Hence,

Rn =


√

3
(
4−4λ2
4−3λ2

)(
W0.x (1)− 2

∫ 1
0 W0.x (r) dr

)
+

√
3λ
(

1
4−3λ2

)1/2 (
µ̃

2σxx
n1/2−γ +Wx (1)−

∫ 1
0 Wx (r) dr

)


2

= Op
(
n1−2γ

)
.

(2) For ρn = 1 + c
n , the following results hold.

(i) When γ > 1
2 ,

pn =⇒
∫ 1
0 J

m
c (r) dW0.x (r){∫ 1

0 [Jmc (r)]2 dr
}1/2

= Z,

gn =⇒ gλ =
1− (

∫ 1
0 Jc(r)dr)

2∫ 1
0 Jc(r)

2dr

1− λ2 (
∫ 1
0 Jc(r)dr)

2∫ 1
0 Jc(r)

2dr

,

τn =⇒ τ =

∫ 1
0 Jc (r) dWx (r)√∫ 1

0 Jc (r)2 dr
.

(ii) When γ = 1
2 ,

pn =⇒ pc,λ,µ̃ =

µ̃
σxx

∫ 1
0 F

m
c (r) dW0.x (r) +

∫ 1
0 J

m
c (r) dW0.x (r){∫ 1

0

{
µ̃
σxx

Fmc (r) + Jmc (r)
}2
dr

}1/2
,

gn =⇒ gc,λ,µ̃ =

1−
µ̃2

σ2xx
{∫ 1

0 Fc(r)dr}
2
+ 2µ̃
σxx

∫ 1
0 Fc(r)dr

∫ 1
0 Jc(r)dr+(

∫ 1
0 Jc(r)dr)

2

µ̃2

σ2xx

∫ 1
0 F

2
c (r)dr+

2µ̃
σxx

∫ 1
0 Fc(r)Jc(r)dr+

∫ 1
0 Jc(r)

2dr

1− λ2
µ̃2

σ2xx
{∫ 1

0 Fc(r)dr}
2
+ 2µ̃
σxx

∫ 1
0 Fc(r)dr

∫ 1
0 Jc(r)dr+(

∫ 1
0 Jc(r)dr)

2

µ̃2

σ2xx

∫ 1
0 F

2
c (r)dr+

2µ̃
σxx

∫ 1
0 Fc(r)Jc(r)dr+

∫ 1
0 Jc(r)

2dr

,

τn =⇒ τc,λ,µ̃ =

µ̃2

σ2
xx

∫ 1
0 Fc (r) dr + µ̃

σ2
xx

∫ 1
0 Jc (r) dr + µ̃

σxx

∫ 1
0 Fc (r) dWx (r) +

∫ 1
0 Jc (r) dWx (r){

µ̃2

σ2
xx

∫ 1
0 F

2
c (r) dr + 2µ̃

σxx

∫ 1
0 Fc (r) Jc(r)dr +

∫ 1
0 Jc(r)

2dr
}1/2

.

(iii) When γ < 1
2

pn =⇒ pc,µ̃ =

∫ 1
0 F

m
c (r) dW0.x (r){∫ 1

0 {Fmc (r)}2 dr
}1/2

,
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gn =⇒ gc,λ =
1− {

∫ 1
0 Fc(r)dr}

2∫ 1
0 F

2
c (r)dr

1− λ2 {
∫ 1
0 Fc(r)dr}

2∫ 1
0 F

2
c (r)dr

,

τn =⇒ τc,µ̃,λ,γ =

µ̃n1/2−γ

σxx

∫ 1
0 Fc (r) dr +

∫ 1
0 Fc (r) dWx (r){∫ 1

0 F
2
c (r) dr

}1/2
.

(3) If ρn = 1 + c
kn

with c < 0, kn = nα with α ∈ (0, 1) , we have the following results.

(i) When γ > 1
2 and 0 < α

2 < γ < 1
2 ,

pn =⇒
N
(

0,
σ2
xxσ

2
00.x

−2c

)
√

σ2
xx
−2c

1

σ00.x
= N (0, 1) ,

gn =⇒ 1 +Op

(
n−δ

)
,

τn =⇒
N
(

0, σ
4
xx
−2c

)
√

σ2
xx
−2c

1

σxx
= N (0, 1) .

Hence,

Rn =
{
N (0, 1)

(
1− λ2

)1/2
+ λN (0, 1)

}2
+Op

(
n−δ

)
= χ2

1 +Op

(
n−δ

)
.

(ii) When 0 < γ 6 α
2 <

1
2 ,

pn = Op

(
n−δ

)
,

gn =
1

2− λ2
+Op

(
n−δ

)
,

τn ∼
µ̃n1/2−γ µ̃

σxxc
+ µ̃

cWx (1)(
2µ̃2

c2

)1/2 +Op

(
n−δ

)
=

{
µ̃n1/2−γ

σxx
+Wx (1)

}
√

2
+Op

(
n−δ

)
.

Hence

Rn ∼

λ
{
µ̃n1/2−γ

σxx
+Wx (1)

}
√

2

(
1

2− λ2

)1/2


2
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=
λ2

2 (2− λ2)

({
µ̃n1/2−γ

σxx
+Wx (1)

})2

.

A.2.2 Proof of Lemma 2.2

Proof. For the DGP xt = µ+ ρnxt−1 + ux,t with constant x0, by backward iteration, we

have

xt = µ

t−1∑
i=0

ρin + ρtnx0 +

t−1∑
i=0

ρinux,t−i.

Hence, the associated restricted likelihood function is

L (Θ, Y,X) = −n− 1

2
log− 1

2σ200.x
S (β, ρn, φ)− n

2
log σ2xx +

1

2
P (ρn)− σ2xx

2
Q (ρn) ,

where

S (φ, β, ρn) =
[
Y − φXt − (β − φρn)Xt−1

]′ [
Y − φXt − (β − φρn)Xt−1

]
,

P (ρn) = log |Z ′Z|,

Q (ρn) = (X − Zτ̂)′Σ−1 (X − Zτ̂) ,

with τ̂ =
(
Z ′Σ−1Z

)−1 (
Z ′Σ−1X

)
such that Σ = var (X) = σ2xx (B′B)−1 where

B =



1 0 0 . . . 0 0

−ρn 1 0 . . . 0 0

0 −ρn 1 . . . 0 0
...

...
...

0 0 0 . . . 1 0

0 0 0 . . . −ρn 1


,

and Z is the associated regressor matrix

Z ′ =

(
1 ρ1n ρ2n · · · ρnn

0 1 1 + ρ1n · · · 1 + ρ1n + . . .+ ρn−1n

)
.
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A.2.3 Proof of Theorem 2.3

Proof. From the REML under the estimation model (2.8), the unormalized score functions

and its second derivatives are:

s1 :=
1

σ200.x

(
n∑
t=1

xt−1u0.xt −
1

n

n∑
t=1

xt−1

n∑
t=1

u0.xt

)
,

s2 := −φs1 +
1

σ2xx

(
n∑
t=1

xt−1uxt −
1

n

n∑
t=1

xt−1

n∑
t=1

uxt

)
,

h11 := −
(
φ2σ2xx + σ200.x

) n∑
t=1

x2t−1 −
1

n

(
n∑
t=1

xt−1

)2
−1 ,

h22 := −σ2xx

 n∑
t=1

x2t−1 −
1

n

(
n∑
t=1

xt−1

)2
−1 ,

h−122 := −
(
φ2σ2xx + σ200.x

)
σ200.xσ

2
xx

 n∑
t=1

x2t−1 −
1

n

(
n∑
t=1

xt−1

)2
−1 ,

h12 := φh22 = h21.

After some calculation, we find that

Rn = {σ00.xpn + φσxxq
n}2

(
φ2σ2xx + σ200.x

)−1
+Op

(
n−1/2

)
, (A.1)

with

pn =

(∑n
t=1 xt−1u0.xt −

1
n

∑n
t=1 xt−1

∑n
t=1 u0.xt

){∑n
t=1 x

2
t−1 − 1

n (
∑n

t=1 xt−1)
2
}1/2

1

σ00.x
, (A.2)

qn =

(∑n
t=1 xt−1uxt −

1
n

∑n
t=1 xt−1

∑n
t=1 uxt

){∑n
t=1 x

2
t−1 − 1

n (
∑n

t=1 xt−1)
2
}1/2

1

σxx
. (A.3)

We consider the following cases of ρn in turn. (1) ρn = 1.

(i) When γ > 1
2 ,

qn =⇒ q =

∫ 1
0 W

m
x (r) dWx (r){∫ 1

0 [Wm
x (r)]2 dr

}1/2
.
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Hence

Rn =⇒
∫ 1
0 W

m
x (r) d {σ00.xW0.x (r) + φσxxWx (r)}{∫ 1

0 [Wm
x (r)]2 dr

}1/2
=

∫ 1
0 W

m
x (r) dW0 (r){∫ 1

0 [Wm
x (r)]2 dr

}1/2
.

(ii) When γ = 1
2 ,

qn =⇒ qµ̃ =

µ̃
2σxx

Wx (1)− µ̃
σxx

∫ 1
0 Wx (r) dr +

∫ 1
0 W

m
x (r) dWx (r){

µ̃2

12σ2
xx

+ µ̃
σxx

{
2
∫ 1
0 rWx (r) dr −

∫ 1
0 Wx (r) dr

}
+
∫ 1
0 {Wm

x (r)}2 dr
}1/2

.

Hence,

Rn =⇒
µ̃

2σxx
W0 (1)− µ̃

σxx

∫ 1
0 W0 (r) dr +

∫ 1
0 W

m
x (r) dW0 (r){

µ̃2

12σ2
xx

+ µ̃
σxx

{
2
∫ 1
0 rWx (r) dr −

∫ 1
0 Wx (r) dr

}
+
∫ 1
0 {Wm

x (r)}2 dr
}1/2

.

(iii) When γ < 1
2 ,

qn =⇒
µ̃
2Wx (1)− µ̃

∫ 1
0 Wx (r) dr(

µ̃2

12

)1/2 =
√

3

(
Wx (1)− 2

∫ 1

0
Wx (r) dr

)
.

Hence,

Rn =⇒ 3

{
B0.x (1) + φBx (1)− 2

∫ 1

0
(B0.x (r) + φBx (r)) dr

}2 (
φ2σ2xx + σ200.x

)−1
= 3

{
W0(1)− 2

∫ 1

0
W0(r)dr

}2

.

(2) ρn = 1 + c
n .

(i) When γ > 1
2 , q

n =⇒
∫ 1
0 J

m
c (r) dWx (r) /

{∫ 1
0 {J

m
c (r)}2 dr

}1/2
.

Hence, Rn =⇒
∫ 1
0 J

m
c (r) dW0 (r) /

{∫ 1
0 {J

m
c (r)}2 dr

}1/2
.

(ii) When γ = 1
2 ,

qn =⇒ qc,λ,µ̃ =

µ̃
σxx

∫ 1
0 F

m
c (r) dWx (r) +

∫ 1
0 J

m
c (r) dWx (r){∫ 1

0

{
µ̃
σxx

Fmc (r) + Jmc (r)
}2
dr

}1/2
,
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and then

Rn =⇒

{
µ̃
σxx

∫ 1
0 F

m
c (r) dW0 (r) +

∫ 1
0 J

m
c (r) dW0 (r)

}2

∫ 1
0

{
µ̃
σxx

Fmc (r) + Jmc (r)
}2
dr

(iii) When γ < 1
2 , q

n =⇒
∫ 1
0 F

m
c (r) dWx (r) /

{∫ 1
0 {F

m
c (r)}2 dr

}1/2
.

Hence, Rn =⇒
∫ 1
0 F

m
c (r) dW0 (r) /

{∫ 1
0 {F

m
c (r)}2 dr

}1/2

(3) ρn = 1 + c
kn

with c < 0, kn = nα with α ∈ (0, 1) .

(i) When γ > 1
2 and 0 < α

2 < γ < 1
2 ,

qn =⇒
N
(

0, σ
4
xx
−2c

)
√

σ2
xx
−2c

= N
(
0, σ2xx

)
,

and then

Rn =⇒
{
N
(
0, σ200.x

)
+ φN

(
0, σ2xx

)}2 (
φ2σ2xx + σ200.x

)−1
= χ2

1.

(ii) When 0 < γ 6 α
2 <

1
2 , both the numerator and denominator go to zero and higher order

terms need to be considered. In this case, we have

pn ∼
n−

α
2
+γN

(
0,

σ2
xxσ

2
00.x

−2c

)
+ nγ−

1
2
Bx(1)B0.x(1)

c(
n−α+2γ σ

2
xx
−2c − n2γ−1

{Bx(1)}2
c2

)1/2 ∼
N
(

0,
σ2
xxσ

2
00.x

−2c

)
+ op (1)(

σ2
xx
−2c + op (1)

)1/2 =⇒ N
(
0, σ200.x

)
,

qn ∼
n−

α
2
+γN

(
0, σ

4
xx
−2c

)
+ nγ−

1
2
{Bx(1)}2

c(
n−α+2γ σ

2
xx
−2c − n2γ−1

{Bx(1)}2
c2

)1/2 ∼ N
(

0, σ
4
xx
−2c

)
+ op (1)(

σ2
xx
−2c + op (1)

)1/2 =⇒ N
(
0, σ2xx

)
,

and then

Rn =⇒
{
N
(
0, σ200.x

)
+ φN

(
0, σ2xx

)}2 (
φ2σ2xx + σ200.x

)−1
= χ2

1.

B Appendix B: Bivariate predictors

This Appendix provides results for deriving the limit distribution of RLRT in the case of

bivariate predictors. The Lemmas are given for a bivariate predictor (x1t, x2t) generated as

in the predictive regression (3.5). We use the notation for the limit Brownian motion and

diffusion processes given in Appendix A.
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B.1 Preliminary Lemmas

Lemma B.1 (1)(i) If ρ1n = 1 and ρ2n = 1 + c2
kn
, define

x̃1,n (r):=
x̃1,bnrc√

n
=

1√
n

bnrc∑
j=1

ρj1nux1,bnrc−j ,

x̃2,n (c2):=
x̃2,bnsc√
kn

=
1√
kn

bnsc∑
j=1

ρj2nux2,bnsc−j ,

and we have joint convergence
(
x̃1,n (r) , x̃2,bnsc (c2)

)
⇒ (Bx1 (r) , Nx2), with Nx2 ∼ N

(
0,

σ2
xx2
−2c2

)
for all r, s > 0.

(ii) If ρ1n = 1+ c
nand ρ2n = 1 + c2

kn
, let

x̃c1,n (r) :=
x̃1,bnrc√

n
=

1√
n

bnrc∑
j=1

ρj1nux1,bnrc−j ,

and we have the joint convergence
(
x̃c1,n (r) , x̃2,bnsc (c2)

)
⇒ (Jc1 (r) , Nx2), with Nx2 ∼ N

(
0,

σ2
xx2
−2c2

)
for all r, s > 0.

(iii) If ρ1n = 1+ c1
kn

and ρ2n = 1 + c2
kn
, let

x̃1,n (c1):=
x̃1,bnrc√
kn

=
1√
kn

bnrc∑
j=1

ρj1nux1,bnrc−j ,

x̃2,n (c2):=
x̃2,bnsc√
kn

=
1√
kn

bnsc∑
j=1

ρj2nux2,bnsc−j ,

and we have the joint convergence
(
x̃1,bnrc (c1) , x̃2,bnsc (c2)

)
⇒ (Nx1, Nx2), with Nx1 ∼ N

(
0,

σ2
xx2
−2cc

)
and Nx2 ∼ N

(
0,

σ2
xx2
−2c2

)
. for all r, s > 0.

(2)The limit behavior of standardized versions of
∑n

t=1 x̃1,t−1x̃2,t−1 is as follows:

(i) 1
n2

∑n
t=1 x̃1,t−1x̃2,t−1 ⇒

∫ 1
0 Bx1(r)Bx2(r)dr, if ρ1n = 1 and ρ2n = 1,

(ii) 1
n2

∑n
t=1 x̃1,t−1x̃2,t−1 ⇒

∫ 1
0 Jc1(r)Jc2(r)dr, if ρ1n = 1 + c1

n and ρ2n = 1 + c2
n ,

(iii) 1
nkn

∑n
t=1 x̃1,t−1x̃2,t−1 ⇒

∫ 1
0 Nx1Nx2dr, if ρ1n = 1 + c1

kn
and ρ2n = 1 + c2

kn
(c1, c2 <

0, kn = nα with α ∈ (0, 1)),

(iv) 1
n2

∑n
t=1 x̃1,t−1x̃2,t−1 ⇒

∫ 1
0 Bx1(r)Jc2(r)dr, if ρ1n = 1 and ρ2n = 1 + c2

n ,

(v) 1
n
√
nkn

∑n
t=1 x̃1,t−1x̃2,t−1 →p 0, if ρ1n = 1 and ρ2n = 1 + c2

kn
,

(vi) 1
n
√
nkn

∑n
t=1 x̃1,t−1x̃2,t−1 →p 0 if ρ1n = 1 + c1

n and ρ2n = 1 + c2
kn
.
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Lemma B.2 The limit behavior of suitably standardized versions of
∑n

t=1 x1,t−1x2,t−1 is as

follows:

(i) If ρ1n = 1 and ρ2n = 1,

1

n2

n∑
t=1

x1,t−1x2,t−1 =⇒


∫ 1
0 Bx1(r)Bx2(r)dr if γ > 1

2 ,

µ̃1µ̃2
3 + µ̃2

∫ 1
0 rBx1(r)dr+

µ̃1
∫ 1
0 rBx2(r)dr +

∫ 1
0 Bx1(r)Bx2(r)dr

if γ = 1
2 ,

1

n3−2γ

n∑
t=1

x1,t−1x2,t−1 → p µ̃1µ̃2
3

if γ <
1

2
.

(ii) If ρ1n = 1 + c1
n and ρ2n = 1 + c2

n ,

1

n2

n∑
t=1

x1,t−1x2,t−1 =⇒


∫ 1
0 Jc1(r)Jc2(r)dr if γ > 1

2 ,

µ̃1µ̃2
∫ 1
0 Fc1 (r)Fc2 (r) dr + µ̃2

∫ 1
0 Jc1(r)Fc2 (r) dr

+µ̃1
∫ 1
0 Jc2(r)Fc1 (r) dr +

∫ 1
0 Jc1(r)Jc2(r)dr

if γ = 1
2 ,

1

n3−2γ

n∑
t=1

x1,t−1x2,t−1 → p µ̃1µ̃2

∫ 1

0
Fc1 (r)Fc2 (r) dr if γ <

1

2
.

(iii) If ρ1n = 1 + c1
kn

and ρ2n = 1 + c2
kn

(c1, c2 < 0, kn = nα with α ∈ (0, 1)),

1

nkn

n∑
t=1

x1,t−1x2,t−1 ⇒
∫ 1

0
Nx1Nx2dr if γ >

1

2
, 0 <

α

2
< γ <

1

2

1

n1+2α−2γ

n∑
t=1

x1,t−1x2,t−1 ⇒ µ̃1µ̃2
c1c2

if 0 < γ <
α

2
<

1

2

(iv) If ρ1n = 1 and ρ2n = 1 + c2
n ,

1

n2

n∑
t=1

x1,t−1x2,t−1 =⇒


∫ 1
0 Bx1(r)Jc2(r)dr if γ > 1

2 ,

µ̃1µ̃2
∫ 1
0 rFc2 (r) dr + µ̃2

∫ 1
0 Bx1(r)Fc2 (r) dr

+µ̃1
∫ 1
0 Jc2(r)rdr +

∫ 1
0 Bx1(r)Jc2(r)dr

if γ = 1
2 ,

1

n3−2γ

n∑
t=1

x1,t−1x2,t−1 → p µ̃1µ̃2

∫ 1

0
rFc2 (r) dr if γ <

1

2
.
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(v)If ρ1n = 1 and ρ2n = 1 + c2
kn
,

1

n
√
nkn

n∑
t=1

x1,t−1x2,t−1 ⇒
∫ 1

0
Bx1 (r)Nx2dr if γ >

1

2

1

n2+α−2γ

n∑
t=1

x1,t−1x2,t−1 ⇒ µ̃1µ̃2
−2c2

if 0 < γ <
α

2
<

1

2

(vi) If ρ1n = 1 + c1
n and ρ2n = 1 + c2

kn
.

1

n
√
nkn

n∑
t=1

x1,t−1x2,t−1 ⇒
∫ 1

0
Jc1 (r)Nx2dr if γ >

1

2

1

n2+α−2γ

n∑
t=1

x1,t−1x2,t−1 ⇒ µ̃1µ̃2

∫ 1

0
Fc1 (r) dr if 0 < γ <

α

2
<

1

2

Lemma B.3 The following joint convergence results hold: (i) If ρ1n = 1 + c1
kn

and ρ2n =

1 + c2
kn

(c1, c2 < 0, kn = nα with α ∈ (0, 1)), then

(
1√
nkn

∑n
t=1 x̃1,t−1u0.xt,

1√
nkn

∑n
t=1 x̃2,t−1u0.xt,

1√
nkn

∑n
t=1 x̃1,t−1ux1,t,

1√
nkn

∑n
t=1 x̃2,t−1ux2,t,

1√
nkn

∑n
t=1 x̃1,t−1ux2,t,

1√
nkn

∑n
t=1 x̃2,t−1ux1,t

)

converges weakly to a multivariate normal with zero mean and corresponding variance matrix

M1.

(ii) If ρ1n = 1
(
or 1 + c1

n

)
and ρ2n = 1 + c2

kn
(c1, c2 < 0, kn = nα with α ∈ (0, 1)), then(

1√
nkn

n∑
t=1

x̃2,t−1u0.xt,
1√
nkn

n∑
t=1

x̃2,t−1ux2,t,
1√
nkn

n∑
t=1

x̃2,t−1ux1,t,
x̃2,n√
kn

)

converges weakly to a multivariate normal with zero mean and corresponding variance matrix

M2. Explicit forms of M1 and M2 are given in the Supplement.

B.2 Proof of the Main Results

B.2.1 Proof of Theorem 3.1

Proof. Without standardization, we have the following expressions for (si) and (hij) :

s1 :=
1

σ200.x

(
n∑
t=1

x1,t−1u0x.t −
1

n

n∑
t=1

x1,t−1

n∑
t=1

u0.xt

)
,
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s2 :=
1

σ200.x

(
n∑
t=1

x2,t−1u0x.t −
1

n

n∑
t=1

x2,t−1

n∑
t=1

u0.xt

)
,

s3 := −φ1s1 + eσ2xx2

n∑
t=1

x1,t−1ux1,t − eσx1x2
n∑
t=1

x1,t−1ux2,t,

s4 := −φ2s2 + eσ2xx1

n∑
t=1

x2,t−1ux2,t − eσx1x2
n∑
t=1

x2,t−1ux1,t,

h11 :=
−1

σ200.x


n∑
t=1

x21,t−1 −
1

n

(
n∑
t=1

x1,t−1

)2
 ,

h12 :=
−1

σ200.x

{
n∑
t=1

x1,t−1x2,t−1 − n

(
1

n

n∑
t=1

x1,t−1

)(
1

n

n∑
t=1

x2,t−1

)}
,

h22 :=
−1

σ200.x


n∑
t=1

x22,t−1 −
1

n

(
n∑
t=1

x2,t−1

)2
 ,

h23 := −φ1h12,

h24 : = −φ2h22,

h33 := φ21h11 − eσ2xx2
n∑
t=1

x21,t−1,

h34 := φ1φ2h12 + eσx1x2

n∑
t=1

x1,t−1x2,t−1,

h44 := φ22h22 − eσ2xx1
n∑
t=1

x22,t−1,

h13 := −φ1h11,

h14 := −φ2h12,

with e = 1
σ2
xx1σ

2
xx2−σ2

x1x2
. Given the limit results reported in the preliminary lemmas, the

limit forms of standardized versions of the (si) and (hij) follow by continuous mapping and

joint convergence, as does the corresponding limit distribution of Rn. In particular, for each

k = 1, 2, . . . 6, we define AkS = (As1 , As2 , As3 , As4)′ and

AkZ =


Ah11 · · ·
Ah21 Ah22 · ·
Ah31 Ah32 Ah33 ·
Ah41 Ah42 Ah43 Ah44


−1

−


02×2 02×2

02×2

(
Ah33 ·
Ah43 Ah44

)−1
 .
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We discuss the associated asymptotic results for Ak(·) under the following six scenarios:

(1) If ρ1n = 1 and ρ2n = 1, notice, the superscript 1, 2 and 3 stand for linear,quadratic,

and stochastic integral respectively:

n−3/2
n∑
t=1

xj,t−1 =⇒ A1
j =

∫ 1

0
Bxjdr, (j = 1, 2),

n−2
n∑
t=1

x2j,t−1 =⇒ A2
j =

∫ 1

0
Bxj (r)

2dr (j = 1, 2)

1

n

n∑
t=1

xj,t−1uat =⇒ A3
j,a =

∫ 1

0
Bxj (r)dBa(r), (j = 1, 2; a = x1, x2, 0.x)

(2) If ρ1n = 1 + c1
n and ρ2n = 1 + c2

n ,the results follows (1) with replacing Bxj (r) with

Kcj (r).

(3) If ρ1n = 1 + c1
kn

and ρ2n = 1 + c2
kn
,

1

n
√
kn

n∑
t=1

xj,t−1 −→p A1
j = 0, (j = 1, 2),

1

nkn

n∑
t=1

x2j,t−1 → p A2
j =

∫
NxjNxjdr (j = 1, 2),

1√
nkn

n∑
t=1

xj,t−1uat =⇒ A3
j,a = N

(
0,
σ2xxjσ

2
aa

−2cj

)
(j = 1, 2;

a = x1, x2, 0.x and aa = xx1, xx2, 00.x)

where the affix signifier ‘a’ on the left side in A and uat corresponds to the element on the

right side associated with the affix signifier ‘aa’.

(4) If ρ1n = 1 and ρ2n = 1 + c2
n , the results follows (1) with replacing Bx2(r) with Kc2(r).

(5) If ρ1n = 1 and ρ2n = 1 + c2
kn
,

1

n

n∑
t=1

x1,t−1 =⇒ A1
1 =

∫ 1

0
Bx1 (r) dr

1

n
√
kn

n∑
t=1

x2,t−1 → p A1
2 = 0

1

n

n∑
t=1

x21,t−1 =⇒ A2
1 =

∫ 1

0
Bx1 (r)2 dr
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1

nkn

n∑
t=1

x22,t−1 → p A2
2 =

∫
(Nx2)2 dr

1√
nkn

n∑
t=1

x1,t−1u0.xt =⇒ A3
1,0.x =

∫ 1

0
Bx1 (r) dB0.x (r)

1√
nkn

n∑
t=1

x2,t−1u0.xt =⇒ A3
2,0.x = N

(
0,
σ2xx2σ

2
00.x

−2c2

)
1

n

n∑
t=1

x1,t−1ux1,t =⇒ A3
1,x1 =

∫ 1

0
Bx1 (r) dBx1 (r)

1√
nkn

n∑
t=1

x2,t−1ux2,t =⇒ A3
2,x2 = N

(
0,
σ4xx2
−2c2

)
1

n

n∑
t=1

x1,t−1ux2,t =⇒ A3
1,x2 =

∫ 1

0
Bx1 (r) dBx2 (r)

1√
nkn

n∑
t=1

x2,t−1ux1,t =⇒ A3
2,x1 = N

(
0,
σ2xx1σ

2
xx2

−2c2

)
1

n
√
nkn

n∑
t=1

x1,t−1x2,t−1 =⇒ A2
1,2 =

∫ 1

0
Bx1 (r)Nx2dr

(6) If ρ1n = 1+ c1
n and ρ2n = 1+ c2

kn
, the results follows (1) with replacing Bx1(r) with Kc1(r).

B.2.2 Proof of Theorem 3.2

Proof. (i) If ρn ∈ (−1, 1) ,

Rn ⇒

 1

σ00.x

N
(

0,
σ2
xxσ

2
00.x

1−ρ2n

)
(
σ2
xx

1−ρ2n

)1/2 √
1− λ2 +

(
N
(

0, σ4
xx

1−ρ2n

))
(
σ2
xx

1−ρ2n

)1/2 λ

σxx


2

=

{√
1− λ2
σ00.x

N
(
0, σ200.x

)
+
λN

(
0, σ2xx

)
σxx

}2

= {N (0, 1)}2 = χ2
1.

(ii) If ρn = 1 + c
n ,

Rn ⇒
{
λτcg

1/2
c,λ +

√
1− λ2gc,λZ

}2

.
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(iii) If ρn = 1 + c
kn
,

Rn ⇒

 1

σ00.x

N
(

0,
σ2
xxσ

2
00.x

−2c

)
(
σ2
xx
−2c

)1/2 √
1− λ2 +

(
N
(

0, σ
4
xx
−2c

))
(
σ2
xx
−2c

)1/2 λ

σxx


2

⇒ {N (0, 1)}2 = χ2
1.

B.2.3 Proof of Lemma 3.3

Proof. Follow the proof of Lemma 2.2, we have

L (Θ, Y,X) = −n− 1

2
log σ200.x −

1

2σ200.x
S (β,ρ,φ) +

1

2
P (ρ,Σ)− 1

2
Q (ρ,Σ) ,

where

S (β,ρ,φ) =
n∑
t=1

[
yt − φ′xt −

(
β′−φ′ρ

)
xt−1

]2
,

P (ρ,Σ) = log |Z ′Z|+ (n+ 3) log |Σ|,

Q (ρ,Σ) =
n∑
t=1

(
xt − ρxt−1

)′
Σ−1

(
xt − ρxt−1

)
− 1

n

{
n∑
t=1

(
xt − ρxt−1

)}′
Σ−1

{
n∑
t=1

(
xt − ρxt−1

)}
,

and

Z ′ =

(
02×2 I2×2 I2×2 + ρ . . . I2×2 + ρ+ . . . ρn−2 I2×2 + ρ+ . . . ρn−1

I2×2 ρ ρ2 . . . ρn−1 ρn

)

B.2.4 Proof of Theorem 3.4

Proof. Without standardization, we have the following expressions for (si) and (hij) :

s1 :=
1

σ200.x

(
n∑
t=1

x1,t−1u0x.t −
1

n

n∑
t=1

x1,t−1

n∑
t=1

u0.xt

)
,

s2 :=
1

σ200.x

(
n∑
t=1

x2,t−1u0x.t −
1

n

n∑
t=1

x2,t−1

n∑
t=1

u0.xt

)
,
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s3 := −φ1s1 + eσ2xx2

{
n∑
t=1

x1,t−1ux1.t −
1

n

(
n∑
t=1

x1,t−1

)
n∑
t=1

ux1.t

}

+eσx1x2

{
n∑
t=1

x1,t−1ux2.t −
1

n

(
n∑
t=1

x1,t−1

)
n∑
t=1

ux2.t

}
,

s4 := −φ2s2 + eσ2xx2

{
n∑
t=1

x2,t−1ux2.t −
1

n

(
n∑
t=1

x2,t−1

)
n∑
t=1

ux2.t

}

+eσx1x2

{
n∑
t=1

x2,t−1ux1.t −
1

n

(
n∑
t=1

x2,t−1

)
n∑
t=1

ux2.t + (µ1 − µ2)
n∑
t=1

x2,t−1

}
,

h11 :=
−1

σ200.x


n∑
t=1

x21,t−1 −
1

n

(
n∑
t=1

x1,t−1

)2
 ,

h12 :=
−1

σ200.x

{
n∑
t=1

x1,t−1x2,t−1 − n

(
1

n

n∑
t=1

x1,t−1

)(
1

n

n∑
t=1

x2,t−1

)}
,

h22 :=
−1

σ200.x


n∑
t=1

x22,t−1 −
1

n

(
n∑
t=1

x2,t−1

)2
 ,

h23 := −φ1h12, h24 := −φ2h22,

h33 := φ21h11 − eσ2xx2


n∑
t=1

x21,t−1 −
1

n

(
n∑
t=1

x1,t−1

)2
 ,

h34 := φ1φ2h12 + eσx1x2

{
n∑
t=1

x1,t−1x2,t−1 −
1

n

(
n∑
t=1

x1,t−1

)(
n∑
t=1

x2,t−1

)}
,

h44 := φ22h22 − eσ2xx1


n∑
t=1

x22,t−1 −
1

n

(
n∑
t=1

x2,t−1

)2
 ,

h13 := −φ1h11,

h14 := −φ2h12,

with e = 1
σ2
xx1σ

2
xx2−σ2

x1x2
. Given some limit results reported in the preliminary lemmas, the

limit forms of standardized versions of the (si) and (hij) follow by continuous mapping and

joint convergence, as does the corresponding limit distribution of Rn.
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