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Abstract

It is often suggested that incentive schemes under moral hazard can be gamed by an agent with

superior knowledge of the environment, and that deliberate lack of transparency about the incentive

scheme can reduce gaming. We formally investigate these arguments in a two-task moral hazard

model in which the agent is privately informed about which task is less costly for him to work on.

We examine two simple classes of incentive scheme that are “opaque” in that they make the agent

uncertain ex ante about the values of the incentive coefficients in the linear payment rule. We show

that, relative to deterministic menus of linear contracts, these opaque schemes induce more balanced

efforts, but they also impose more risk on the agent per unit of aggregate effort induced. We identify

settings in which optimally designed opaque schemes not only strictly dominate the best deterministic

menu but also completely eliminate the efficiency losses from the agent’s better knowledge of the

environment. Opaque schemes are more likely to be preferred to transparent ones when i) efforts

on the tasks are highly complementary for the principal; ii) the agent’s privately known preference

between the tasks is weak; iii) the agent’s risk aversion is significant; and iv) the errors in measuring

performance on the tasks have large correlation or small variance. (JEL D86, D21, L22)

1 Introduction

A fundamental consideration in designing incentive schemes is the possibility of gaming : exploitation of

an incentive scheme by an agent for his own self-interest, to the detriment of the objectives of the incentive

designer. Gaming can take numerous forms, among them i) diversion of effort away from activities that

are socially valuable but difficult to measure and reward, towards activities that are easily measured

and rewarded; ii) exploitation of the rules of classification to improve apparent, though not actual,
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performance; and iii) distortion of choices about timing to exploit temporarily high monetary rewards

even when socially efficient choices have not changed. Evidence of the first type of gaming is provided by

Burgess, Propper, Ratto, and Tominey (2012) and Carrell and West (2010), of the second type by Gravelle,

Sutton, and Ma (2010), and of the third type by Oyer (1998), Larkin (2013), and Forbes, Lederman,

and Tombe (2012).1 The costs of gaming are exacerbated when the agent has superior knowledge of

the environment: this makes the form and extent of gaming harder to predict and hence harder to deter.

It has been suggested that lack of transparency–deliberate opacity about the criteria upon which

rewards will be based and/or how heavily these criteria will be weighted–can help deter gaming. This idea

has a long intellectual history. It dates back at least to Bentham (1830), who argued that deliberate opacity

about the content of civil service selection tests would lead to the “maximization of the inducement afforded

to exertion on the part of learners, by impossibilizing the knowledge as to what part the field of exercise

the trial will be applied to, and thence making aptitude of equal necessity in relation to every part”.2

More recently, in the light of apparent gaming of incentive schemes introduced by the UK government to

give hospitals stronger incentives to reduce patient waiting times, Bevan and Hood, in an editorial in the

British Medical Journal, have argued, “What is needed are ways of limiting gaming. And one way of doing

so is to introduce more randomness in the assessment of performance, at the expense of transparency”

(2004, p. 598). Relatedly, Dranove, Kessler, McClellan, and Satterthwaite (2003) document that in the US,

report cards for hospitals “encourage providers to ‘game’ the system by avoiding sick patients or seeking

healthy patients or both” (p. 556), and they argue that such gaming is facilitated by providers having

better information about patients’ characteristics than do the analysts who compile the report cards.

The costs of transparency have also been discussed in the context of gaming, by law school deans, of the

performance indicators used by U.S. News to produce its highly influential law school rankings. The rank-

ing methodology is transparent and employs a linear scoring rule.3 Law scholars (e.g. Osler, 2010) have

argued that greater opacity in the ranking methodology could mitigate gaming, and U.S. News has itself

signaled its intention to move away from being “totally transparent about key methodology details”.4 5

One view as to why courts often prefer standards—which are somewhat vague—to specific rules is

that standards mitigate incentives for gaming. For example, Weisbach (2000) argues that vagueness can

reduce gaming of taxation rules, and Scott and Triantis (2006) argue that vague standards in contracts

1Burgess et al (2012) and Gravelle et al (2010) study UK public sector organizations (an employment agency and
the National Health Service, respectively), Carrell and West (2010) use data from postsecondary education, while Oyer
(1998), Larkin (2013) and Forbes et al (2012) examine private sector organizations (salespeople and executives across
various industries, enterprise software vendors, and airlines, respectively).

2Bentham, 1830/2005, Ch. IX, §16, Art 60.1.
3The weights in the scoring rule are quality perception (40%), selectivity (25%), placement success (20%) and

faculty resources (15%) (U.S. News, March 11, 2013, http://www.usnews.com/education/best-graduate-schools/
top-law-schools/articles/2013/03/11/methodology-best-law-schools-rankings).

4U.S. News, May 20, 2010, http://www.usnews.com/education/blogs/college-rankings-blog/2010/05/20/

us-news-takes-steps-to-stop-law-schools-from-manipulating-the-rankings.
5Relatedly, Google has experienced manipulation of its search results by some retailers. Although many retailers have

been seeking greater transparency from Google about its search algorithm, Google has responded by moving in the direction
of greater opacity to prevent manipulation (Structural Search Engine Optimization, Google Penalty Solutions, November
4, 2011, http://www.re1y.com/blog/occupy-google-blog.html). Jehiel and Newman (2011) develop a dynamic model
in which principals learn from agents’ behavior about the possibilities for gaming of incentive schemes and then choose
whether to take costly measures to deter gaming.
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can improve parties’ incentives to fulfill the spirit of the contract rather than focusing on satisfying only

the narrowly defined stipulations.

There are numerous other examples of the deliberate use of vagueness in related incentive provision

settings. The use of speed cameras is often randomized, in order to encourage somewhat slower driving

everywhere, and security checks at airports and tax audits are often random. Randomization is also

routinely used in economic experiments: to encourage subjects to concentrate throughout the whole

experiment while also keeping the expected experimental expenditures low, subjects are often paid based

on their performance in one randomly chosen period of the experimental session.6

The settings discussed above all suggest that opacity of incentive schemes can be beneficial in reducing

gaming, especially where incentive designers care about multiple aspects of agents’ performance and

gaming takes the form of focusing efforts on easily manipulable indicators. This line of argument is,

however, incomplete. If agents are risk averse, then the additional risk imposed by opaque schemes is

per se unattractive to them. Understanding when and why opaque schemes are used requires analyzing

the tradeoff between their incentive benefits and their risk costs. This paper provides such an analysis.

We develop a formal model of gaming by an agent with superior knowledge of the environment, and we

explore when and to what extent “opacity”, i.e. lack of transparency about the weighting scheme used to

determine rewards, can mitigate gaming. A risk-averse agent performs two tasks, which are substitutes

in his cost-of-effort function, and receives compensation that is linear in his performance on each of

the tasks, just as in Holmström and Milgrom’s (1991) multi-task principal-agent model. Crucially, in our

model, unlike in Holmström and Milgrom’s, there are two types of agent, and only the agent knows which

type he is. One type has a lower cost of effort on task 1, and the other has a lower cost of effort on task

2.7 The principal’s benefit function is complementary in the efforts on the two tasks; other things equal,

he prefers to induce both types of agent to choose balanced efforts. The agent games transparent reward

schemes by choosing effort allocations that are excessively (from an efficiency perspective) sensitive

to his private information. In fact, we show that the agent’s superior knowledge of his preferences makes

it impossible for the principal, with transparent schemes, to induce both types of agent to exert positive

efforts on both tasks, even when menus of contracts are used as screening devices.

In this setting, we study the performance of two simple types of “opaque” incentive scheme. Each

scheme is opaque in that, while the agent knows that the compensation schedule ultimately used will take

one of two possible linear forms, at the time he chooses his efforts he does not know which form will be used.

The two possible compensation schedules differ with respect to which performance measure is more highly

rewarded. Under the scheme we term ex ante randomization, the principal chooses randomly, before

outputs are observed, which compensation schedule to use. Under the one we term ex post discretion,

the principal chooses which schedule to use after observing outputs on the two tasks. Although ex ante

randomization and ex post discretion differ with respect to the mechanism determining which of the two

possible linear schedules will ultimately be used, they are both opaque in that they make the agent uncertain

6Take the particular example of Healy and Pate (2011), who explain in their instructions to subjects, “In the experiment
today you will be asked to complete four different tasks [...] We will randomly select one of the tasks and pay you based
on your performance in that task. Once you have completed the four tasks, we determine which task counts for payment
by drawing a number between 1 and 4.” (p. 1 of Technical Appendix)

7The analysis would be very similar if the agent types differed with respect to the task on which they were more productive.
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ex ante about the incentive coefficients in the linear payment rule. We show that this ex ante uncertainty

of the agent produces qualitatively similar incentive effects under the two types of opaque scheme.8

Ex ante randomization encourages the risk-averse agent to choose relatively balanced efforts on

the tasks as a means of partially insuring himself against the risk generated by the random choice of

compensation schedule. Ex post discretion, too, provides the agent with a self-insurance motive but also

provides an additional incentive for effort balance: the principal’s strategic ex post choice of which of the

two compensation schedules to use means that the more the agent focuses his effort on his preferred task,

the less likely that task is to be the more highly compensated one, so the lower the relative marginal

return to that task. For both types of opaque incentive scheme, we show that the more unequal are

the weights on the performance measures in the two possible compensation schedules, the stronger are

the agent’s incentives to choose balanced efforts.

We demonstrate that the performance of opaque incentive schemes is more robust to uncertainty

about the agent’s preferences than is the performance of deterministic ones. With opaque schemes, the

efforts exerted on the two tasks vary continuously when a small amount of such uncertainty is introduced,

whereas they vary discontinuously for deterministic ones.

The benefits of opaque incentive schemes in deterring gaming do, nevertheless, come at a cost, as

mentioned above: such schemes impose more risk on the agent. While ex post discretion can be shown

to impose lower risk than ex ante randomization, still, for any level of aggregate effort induced on the two

tasks, we show that a deterministic contract imposes lower risk costs than either type of opaque scheme.

As a consequence, as we prove in Proposition 6, if the principal faces no uncertainty about the agent’s

preferences, then both types of opaque scheme can be dominated by a linear deterministic one. When,

however, the agent’s preferences are private information, the principal faces a trade-off between the stronger

incentives for balanced efforts under opaque schemes and the lower risk costs under deterministic ones.

Our key contribution is to identify settings in which both of our simple types of opaque incentive

scheme, when designed optimally, strictly dominate all deterministic linear menus of contracts. We

identify three such environments. In each one, optimally weighted opaque contracts induce both types of

agent to choose perfectly balanced efforts on the two tasks. In the first such setting, the agent has private

information about his preferences but the magnitude of his preference across tasks becomes very small.

The second is the case where the agent’s risk aversion becomes very large and the variance of the shocks

to outputs becomes very small. In the final setting, the correlation of the output shocks becomes very

high. In all three of these settings, as we show in Propositions 7, 8, and 9, both ex ante randomization and

ex post discretion allow the principal to achieve a payoff arbitrarily close to what he could achieve in the

absence of the agent’s hidden information. That is, in these settings, both simple types of opaque incentive

scheme completely eliminate the efficiency losses from the agent’s better knowledge of the environment.

Though our propositions focus on limiting environments to prove analytically that ex ante random-

ization and ex post discretion can strictly dominate all deterministic linear menus, our results have

more general implications about what characteristics of contracting environments increase the relative

attractiveness of opaque schemes. Opaque schemes are more likely to be preferred when i) efforts on

8The term “opaque” may have alternative definitions in other contexts, but in this paper, it will be used exclusively
in the sense just defined.
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the tasks are highly complementary for the principal; ii) the agent’s privately known preference between

tasks is weak, so even a small amount of uncertainty about the weights in the compensation schedule has

a large effect on how balanced the agent’s chosen efforts are; iii) the agent’s risk aversion is significant,

so opaque schemes provide the agent with a powerful self-insurance motive for balancing efforts; and

iv) the errors in measuring performance on the tasks have large correlation or small variance.

1.1 Related Literature

Our paper builds on the theoretical analyses of Holmström and Milgrom (1987, 1991). The first of these

provides conditions in a dynamic moral hazard setting under which a linear contract is optimal. A key

message of Holmström and Milgrom (1987) is that linear contracts are appealing because they are robust

to limitations on the principal’s knowledge of the contracting environment. Discussing Mirrlees’s (1974)

result that the first-best outcome in a hidden-action model can be approximated by a step-function

(hence highly non-linear) incentive scheme, they argue “to construct the [Mirrlees] scheme, the principal

requires very precise knowledge about the agent’s preferences and beliefs, and about the technology

he controls. The two-wage scheme performs ideally if the model’s assumptions are precisely met, but can

be made to perform quite poorly if small deviations in the assumptions [...] are introduced” (p. 305).9

Motivated not only by these robustness arguments, but also by the simplicity and pervasiveness of linear

contracts, we focus our analysis on compensation schedules in which, ex post, after all choices are made

and random variables are realized, payments are linear functions of the performance measures.

Multi-task principal-agent models (e.g., Holmström and Milgrom (1991), Baker (1992)) have high-

lighted that precise incentive contracts based on verifiable performance measures can be distortionary.

When efforts on different tasks are technological substitutes for the agent, incentives on one task crowd

out incentives on others, and as a result, even on easily measured tasks, optimal incentives may be

low-powered. Models of self-enforcing contracts (e.g., MacLeod and Malcomson (1989), Baker, Gibbons,

and Murphy (1994), Bernheim and Whinston (1998)) have shown how agency costs can be reduced by

allowing the principal to respond in a discretionary fashion to indicators of the agent’s behavior that are

observable but non-contractible. In our model, the incentive scheme that we term ex post discretion can

be beneficial even when the performance measures are contractible. None of the models above studies the

potential benefits of exogenous randomization, as is used in the scheme we term ex ante randomization.

In general single-task hidden-action models allowing arbitrarily complex contracts, Gjesdal (1982)

and Grossman and Hart (1983) show that exogenous randomization may be optimal, but only if the

agent’s risk tolerance varies with the level of effort he exerts. In our model, the agent’s risk tolerance is

independent of his effort level; the attractiveness of ex ante randomization and ex post discretion stems

from their ability to mitigate the agency costs of multi-task incentive problems when compensation

schedules are constrained to be ex post linear.

The potential benefits of exogenous randomization have also been explored in hidden-information

models, especially those studying the design of optimal tax schedules. Stiglitz (1982) and Pestieau,

9Carroll (2012) also demonstrates an appealing robustness property of linear contracts. He shows that, in a static
model with limited liability, when the principal knows some but not all of the actions available to the agent and evaluates
contracts according to their worst-case performance, a linear contract is optimal.
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Possen, and Slutsky (1997), among others, have shown that randomization can facilitate the screening of

privately-informed individuals and is especially effective when private information is multi-dimensional.

In our hidden-action cum hidden-information setting, in contrast, ex ante randomization in fact eliminates

the need for screening, as we show in Section 7.5.

The costs and benefits of transparency in incentive design are also explored in Jehiel (2011), Rahman

(2012), and Lazear (2006). Jehiel (2011) shows in an abstract moral hazard setup that a principal may

gain by keeping agents uninformed about some aspects of the environment (e.g., how important specific

tasks are). The benefits of suppressing information in relaxing incentive constraints can outweigh the

costs of agents’ less efficient adaptation of actions to the environment. Rahman (2012) examines how a

principal can provide incentives for an individual tasked with monitoring and reporting on the behavior

of an agent. He shows that randomization by the principal over what he asks the agent to do allows

the principal to incentivize the monitor effectively. Finally, Lazear (2006), in a model in which agents

have no hidden information, explores high-stakes testing in education and the deterrence of speeding

and terrorism, identifying conditions under which a lack of transparency can have beneficial incentive

effects. In Lazear’s analysis of testing, there is an exogenous restriction on the number of topics that

can be tested, whereas in our model, even when all tasks can be measured and rewarded, we show that

deliberate opacity about the weights in the incentive scheme can be desirable.

The costs and benefits of transparency are also a focus of interest in international relations. Baliga and

Sjöström (2008) show in a model of arms proliferation that a small country may be able to use what they

term “strategic ambiguity” about whether it possesses weapons of mass destruction as a substitute for

actual investment and thereby help to deter an attack. Wikipedia defines the policy of “strategic ambiguity”

as “the practice by a country of being intentionally ambiguous on certain aspects of its foreign policy [...]. It

may be useful if the country has contrary foreign and domestic policy goals or if it wants to take advantage

of risk aversion to abet a deterrence strategy.”10 Multiple objectives of the principal and risk aversion

of the agent are also important in our model in generating the beneficial incentive effects of opacity.11

The model perhaps most closely related to ours is that of MacDonald and Marx (2001). Like us, they

analyze a principal-agent model with two tasks where the agent’s efforts on the tasks are substitutes for the

agent but complements for the principal, and where the agent is privately informed about his preferences.

Since task outcomes in their model are binary, contracts are automatically linear in each outcome and

specify at most four distinct payments. In this simple environment, it is possible to solve for the optimal

contract, and they show that the more complementary the tasks are for the principal, the more the optimal

reward scheme makes successes on the tasks complementary for the agent. They assume that the principal

can commit to such a nonseparable contract. In fact, their optimal outcome could be implemented using

the scheme we term ex post discretion, which requires less commitment power and uses (ex post) payment

schemes that are simpler, because they are separable in the task outcomes. Moreover, under the specific

assumptions of their model, ex ante randomization over separable payment schemes would have no power

to mitigate gaming, because even for risk averse agents it would not generate a self-insurance motive for

10Wikipedia, “Policy of Deliberate Ambiguity”, http://en.wikipedia.org/wiki/Policy_of_deliberate_ambiguity.
11It is important to stress that our results on the benefits of opacity do not rely on Knightian uncertainty or on the

presence of ambiguity-averse agents.
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choosing more balanced efforts. In contrast, our analysis reveals (see Section 7.3) that even beyond the

exponential-normal setting on which we focus, ex ante randomization will generate a self-insurance motive

and will thereby mitigate the excessive sensitivity of agents’ effort allocations to their private information.

Section 2 outlines the model, and Section 3 studies deterministic incentive schemes. Section 4 analyzes

our two classes of opaque schemes, ex ante randomization and ex post discretion. Section 5 identifies

settings in which opaque schemes are dominated by deterministic ones. Section 6, which is the heart

of the paper, identifies environments in which optimally weighted opaque schemes dominate the best

deterministic one. Section 7 discusses the robustness of our results as well as some extensions, and

Section 8 concludes. Proofs not provided in the text are in the appendix.

2 The Model

A principal hires an agent to perform a job for him. The agent’s performance on the job has two distinct

dimensions, which we term “tasks”. Measured performance, xj , on each task j = 1, 2 is verifiable and de-

pends both on the effort devoted by the agent to that task, ej , and on the realization of a random shock, εj .

Specifically, xj = ej +εj , where (ε1, ε2) have a symmetric bivariate normal distribution with mean 0, vari-

ance σ2, and covariance ρσ2 ≥ 0. The efforts chosen by the agent are not observable by the principal. In

addition, at the time of contracting, the agent is privately informed about his cost of exerting efforts. With

probability one-half, the agent’s cost function is c1 (e1, e2) = 1
2 (e1 + λe2)

2 , in which case we will term him

a type-1 agent, and with probability one-half his cost function is c2 (e1, e2) = 1
2 (λe1 + e2)

2, in which case

he will be termed a type-2 agent. The parameter λ is common knowledge, and λ ≥ 1. For each type of agent

i = 1, 2, efforts are perfect substitutes: ∂ci/∂e1
∂ci/∂e2

does not vary with (e1, e2).12 Nevertheless, since λ ≥ 1,

the type-i agent has a preference for task i: the marginal cost of effort on task j (j 6= i) is λ times as large

as that on task i. We assume that both types of agent have an exponential von Neumann-Morgenstern

utility function with coefficient of absolute risk aversion r, so the type-i agent’s utility function is

U = − exp{−r (w − ci (e1, e2))}, wherew is the payment from the principal. The two types of agent are as-

sumed to have the same level of reservation utility, which we normalize to zero in certainty-equivalent terms.

An important feature of the model is that the agent’s efforts on the tasks are complementary for the

principal. We capture this by assuming that the principal’s payoff is given by

Π = min {e1, e2}+
1

δ
max {e1, e2} − w.

The larger is the parameter δ ≥ 1, the more complementary are the agent’s efforts on the tasks. In the

extreme case where δ =∞, the principal’s payoff function reduces to Π = min {e1, e2}−w, and the efforts

are perfect complements. At the other extreme, when δ = 1, Π = e1 + e2 − w, so the efforts are perfect

substitutes—here the principal is indifferent as to how the agent allocates his total effort across the tasks.13

The relative size of δ and λ determines what allocation of effort across tasks would maximize social

surplus. If δ > λ, so the principal’s desire for balanced efforts is stronger than the agent’s preference

12In Section 7.2, we show that our key results hold even when the degree of substitutability of efforts for the agent
is high but imperfect.

13We assume throughout that difficulties of coordination would prevent the principal from splitting the job between
two agents, with each agent responsible for only one dimension (task).
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across tasks, then the surplus-maximizing effort allocation involves both types of agent exerting equal

effort on the two tasks. If, instead, δ < λ, then in the socially efficient effort allocation, each type of

agent focuses exclusively on his preferred task.

The principal’s benefit, min {e1, e2}+ 1
δ max {e1, e2}, is assumed non-verifiable. Therefore, the only

measures on which the agent’s compensation can be based are x1 and x2. The principal chooses a

compensation scheme to maximize his expected payoff, subject to participation and incentive constraints

for the agent that reflect the agent’s hidden information and hidden actions. Incentive schemes will

be compared according to the (expected) payoff generated for the principal.

Below we consider a variety of incentive schemes. Throughout the analysis, we restrict attention to

compensation schedules in which, ex post, after all choices are made and random variables are realized,

the agent’s payment is a linear and separable function of the performance measures: w = α+β1x1 +β2x2.

We will say an incentive scheme (possibly involving menus) is deterministic if, at the time the agent

signs the contract or makes his choice from the menu, he is certain about what values of α, β1, and β2

will be employed in determining his pay. If, instead, even after making his choice from a menu, the agent

is uncertain about the values of α, β1, or β2, we will say that the incentive scheme is opaque.

In the next section, we study deterministic incentive schemes. Section 4 then analyzes the performance

of the two simple classes of opaque schemes on which we focus. A contract with ex ante randomization

(EAR) specifies that with probability 1
2 , the agent will be compensated according to w = α+βx1 +kβx2,

and with probability 1
2 , he will be compensated according to w = α + βx2 + kβx1, where the parameter

k ∈ (−1, 1). Under EAR, the principal commits to employ a randomizing device to determine whether

the agent’s pay will be more sensitive to performance on task 1 or task 2. Thus the agent is uncertain at

the time he chooses his efforts about which performance measure will be more highly rewarded, and by

varying the level of k, the principal can affect how much this uncertainty matters to the agent. Under a

contract with ex post discretion (EPD), the principal, after observing the performance measures x1 and

x2, chooses whether to pay the agent according to w = α + βx1 + kβx2 or w = α + βx2 + kβx1, where

again k ∈ (−1, 1). Under both classes of opaque incentive schemes, the agent is ex ante uncertain about

what weights the two performance indicators will be given in the linear formula determining his pay, but

under ex post discretion the agent’s efforts themselves influence which set of weights is ultimately used.

3 Deterministic Contracts

3.1 The No Hidden Information Benchmark

Suppose that the principal can observe the agent’s type and offer each type a different contract. We

will refer to this as the “no hidden information benchmark” (NHI). The NHI benchmark is important

because, as we will see, there are environments in which optimally designed opaque contracts allow

the principal, even in the presence of hidden information, to achieve a payoff arbitrarily close to that

achievable in this benchmark.

In this setting, the optimal pair of contracts (one for each type of agent) can take one of two possible
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forms. The first form is a pair of contracts (Cbal1 , Cbal2 ), where

Cbal1 : w1 = α+ βx1 + λβx2 and Cbal2 : w2 = α+ βx2 + λβx1,

and where the principal assigns the contract Cbali to the type-i agent. The incentive coefficients in Cbali

are chosen to equate the ratio of the marginal benefits of efforts on the two tasks to the ratio of their

marginal costs for type i. As stressed by Holmstrom and Milgrom (1991) and Milgrom and Roberts

(1992, p.228), equalizing these ratios is necessary for a contract to induce strictly positive efforts on both

tasks, an observation often referred to as the “equal compensation principle”. Here, since these ratios

are constant, independent of the chosen efforts, it follows that type i is indifferent over all non-negative

effort pairs satisfying β = ei + λej . Among such effort pairs, the principal prefers type i to choose

ei = ej = β
1+λ , since efforts on the tasks are complementary for the principal, and we assume that type

i does indeed choose this perfectly balanced effort allocation.

In the special case where λ = 1, there is only one type of agent, and Cbal1 and Cbal2 both reduce to

the “symmetric deterministic” (SD) contract

SD : w = α+ βx1 + βx2.

When λ = 1, the SD contract makes the agent willing to choose e1 = e2 = β
2 . In the no hidden

information (NHI) benchmark, the efforts induced by the contract pair (Cbal1 , Cbal2 ), and hence the payoff

received by the principal, are continuous in λ, approaching their values under the SD contract as λ→ 1.

The second type of contract pair which can be optimal in the NHI benchmark is a pair of the form

Cfoc1 : w1 = α+ βx1 − ρβx2 and Cfoc2 : w2 = α+ βx2 − ρβx1,

where the principal assigns Cfoci to the type-i agent. Contract Cfoci induces type i to exert effort only on

his preferred task, task i, and to set ei = β and ej = 0, for any λ ≥ 1. Contract Cfoci uses performance

on task j to provide insurance for the type-i agent (without weakening his incentives on task i), by

exploiting the correlation between the shocks to the two performance measures. Among all contract

pairs that induce each type to focus only on his preferred task, pairs of the form (Cfoc1 , Cfoc2 ) are the

most attractive for the principal.14

In choosing, in the NHI setting, between a contract pair of the form (Cbal1 , Cbal2 ) and one of the form

(Cfoc1 , Cfoc2 ), the principal faces a trade-off between the more balanced efforts induced by the former

and the lower risk cost imposed by the latter. If and only if the efforts on the two tasks are sufficiently

complementary for the principal, the benefits of the balanced efforts elicited by (Cbal1 , Cbal2 ) outweigh

the costs of the extra risk imposed on the agent by this contract pair.

Lemma 1 For any λ ≥ 1, in the no hidden information (NHI) benchmark, there exists a critical value

of the task complementarity parameter δ in the principal’s benefit function, δNHI(λ, rσ2, ρ), increasing

in each of its arguments, such that for δ > δNHI (respectively, δ < δNHI), the principal’s unique optimal

contract pair has the form (Cbal1 , Cbal2 ) (respectively, the form (Cfoc1 , Cfoc2 )).

14Although the values of α and β could in principle be allowed to differ between Cbal
1 and Cbal

2 and, analogously, between
Cfoc

1 and Cfoc
2 , the symmetry of the model with respect to the two types of agent makes it optimal for these values to

be the same within each type of contract pair. Moreover, this symmetry also implies that it is never uniquely optimal
to offer a pair of the form (Cfoc

1 , Cbal
2 ) or (Cbal

1 , Cfoc
2 ).
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3.2 The General Case: Hidden Information

When λ > 1 and the agent is privately informed about his preferences across tasks, the principal can

use menus of contracts as a screening device.

Proposition 1 (i) When λ > 1 and the agent’s type is hidden information, no menu of linear determin-

istic contracts can induce both types of agent to choose strictly positive efforts on both tasks. (ii) For any

λ > 1, if δ > δNHI(λ, rσ2, ρ), the principal is strictly worse off when hidden information is present than

when it is absent. (iii) For δ > δNHI(1, rσ2, ρ), the limit as λ approaches 1 of the principal’s maximized

payoff under hidden information is strictly less than in the no hidden information benchmark.

To prove part (i), we begin by observing that the “equal compensation principle” has the following

implication for a menu of deterministic linear contracts: the only way to induce both types of agent to exert

strictly positive efforts on both tasks is to induce each type to choose a contract that equates the ratio of

the marginal benefits of efforts on the tasks to the ratio of their marginal costs. Therefore, if a menu existed

which could induce both types to choose strictly positive efforts on both tasks, it would have the form

C1 : w1 = α1 + β1x1 + λβ1x2 and C2 : w2 = α2 + β2x2 + λβ2x1

and would induce the type-i agent to choose contract Ci. However, we show that no matter how

(α1, β1, α2, β2) were chosen, at least one type of agent would have an incentive to select the “wrong”

contract from the menu and exert effort only on his preferred task.

Part (iii) of the proposition strengthens the result in part (ii) to show that the principal’s maximized

payoff under hidden information is not only strictly below that in the NHI benchmark but is also bounded

away from it, even as λ approaches 1. Parts (ii) and (iii) follow from part (i), combined with the result

from Lemma 1 that, in the NHI benchmark, for any λ ≥ 1 and for δ > δNHI(λ, rσ2, ρ), the principal

strictly prefers to induce both types of agent to choose strictly positive (in fact, perfectly balanced)

efforts on the two tasks.15

4 Opaque Contracts

4.1 Ex Ante Randomization

A contract with ex ante randomization (EAR) specifies that with probability 1
2 , the agent will be

compensated according tow = α+βx1+kβx2, and with probability 1
2 , he will be compensated according

tow = α+βx2+kβx1, where the key parameters are the incentive intensity β > 0 and the weighting factor

k ∈ (−1, 1). (The lump-sum paymentα has no effect on the agent’s incentives, and will always be set by the

principal to make the participation constraint binding for both types of agent.) Under this incentive scheme,

the principal commits to employ a randomizing device to determine whether the agent’s pay will be more

sensitive to performance on task 1 or task 2. If the agent chooses unequal efforts on the tasks, the principal’s

15It can be shown that there is a critical value of δ above which the optimal deterministic menu induces one type of agent to
choose perfectly balanced efforts and the other type to choose fully focused efforts, and below which the optimal menu induces
both types to choose fully focused efforts. The details of these contracts are, however, not needed for the analysis that follows.
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randomization exposes the agent to extra risk, risk against which he can insure himself by choosing more

balanced efforts. By varying k, the principal can affect how much risk the randomization per se imposes

on the agent and can thereby affect the strength of the agent’s incentives to balance his efforts. If k were

equal to 1, the randomized scheme would collapse to the symmetric deterministic (SD) contract defined

in Section 3.1, which, whenever λ > 1, induces both types of agent to exert effort only on their preferred

task. The smaller is k, the greater is the risk imposed on the agent by the principal’s randomization,

so intuitively the stronger are the agent’s incentives to self-insure by choosing more balanced efforts.

Proposition 2 (i) Under EAR, k < 1
λ is a necessary condition for each agent’s optimal efforts on both

tasks to be strictly positive. When EAR induces interior solutions for efforts,

(ii) each type of agent chooses effort on his less costly task, eEAR, and effort on his more costly task,

eEAR, satisfying

eEAR + λeEAR =
β(1 + k)

λ+ 1
(1)

exp
[
rβ(1− k)(eEAR − eEAR)

]
=

λ− k
1− kλ

; (2)

(iii) the gap in efforts, eEAR − eEAR, is increasing in λ, approaching 0 as λ → 1; decreasing in rβ,

approaching 0 as rβ →∞; and increasing in k, approaching 0 as k → −1+;

(iv) the principal’s payoff under EAR, for given β > 0 and k ∈ (−1, 1λ), is

ΠEAR(β, k) = eEAR+
1

δ
eEAR− β

2(1 + k)2

2(λ+ 1)2
− 1

2
rσ2β2(1+2ρk+k2)− 1

2r
ln

[
(λ+ 1)2 (1− k)2

4(1− kλ)(λ− k)

]
. (3)

To understand part (i), note that if k ≥ 1
λ , then for both types of agent, whichever of the two

compensation schedules is randomly selected, the ratio of the marginal benefit of effort on the preferred

task to that on the less-preferred task is at least as large as the corresponding ratio of the marginal costs

of effort, and strictly larger for one of the schedules. It follows from the “equal compensation principle”,

therefore, that both types of agent would optimally exert effort only on their preferred task.

To understand equation (1), note first that the sum of the marginal monetary returns to effort on the

two tasks is certain to be β(1 + k), since regardless of the outcome of the randomization, one task will

be rewarded at rate β and the other at rate kβ. If optimal efforts for the agents are interior, then adding

the first-order conditions for e and e must yield β(1 + k) = ∂c/∂e+ ∂c/∂e for both types of agent. Since

∂c/∂e+ ∂c/∂e = (1 + λ)(e+ λe), this gives us (1). Throughout, we will refer to the quantity e+ λe

as an agent’s aggregate effort, since it is the quantity which determines his total cost of effort.

To derive equation (2), observe that, by the “equal compensation principle”, if optimal efforts are

interior, then the ratio of the expected marginal-utility-weighted marginal benefits of the two types

of effort must equal the corresponding ratio of their marginal costs. Equating these ratios, and using the

fact that each of the two possible compensation schedules is employed with probability one-half, yields

kE
[
U ′(·)I{x is rewarded more highly than x}

]
+ E

[
U ′(·)I{x is rewarded more highly than x}

]
E
[
U ′(·)I{x is rewarded more highly than x}

]
+ kE

[
U ′(·)I{x is rewarded more highly than x}

] = λ, (4)
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which simplifies to
E
[
U ′(·)I{x is rewarded more highly than x}

]
E
[
U ′(·)I{x is rewarded more highly than x}

] =
λ− k
1− kλ

, (5)

where x (respectively, x) denotes performance on an agent’s less costly (respectively, more costly) task.

The left-hand-side of (5) reduces to

E
[
U ′(·)I{x is rewarded more highly than x}

]
E
[
U ′(·)I{x is rewarded more highly than x}

] = exp [rβ(1− k)(e− e)] ,

thus yielding (2).

The equations above reveal why ex ante randomization can provide both types of agent with incentives

to choose positive efforts on both tasks. Because of the uncertainty about which compensation schedule

will be used, and because of the agent’s risk aversion, the left-hand-side of (4), which equals the ratio of

the expected marginal utility gain from increasing e to that from increasing e, is not a constant; rather,

it is a continuously increasing function of the gap between efforts on the two tasks, e− e.16 In other

words, as the effort allocation contemplated by the agent becomes more focused on his less costly task

(i.e., as e− e increases), the greater is the risk he faces from the random choice of compensation schedule,

and the relatively more attractive it becomes to self-insure by raising effort on his more costly task.

Equation (2) shows how the agent’s optimal degree of self-insurance against the compensation risk

imposed by EAR varies with his preferences and with the parameters of the incentive scheme. The

smaller the cost difference between tasks (the smaller is λ), the less costly it is for the agent to self-insure

by choosing relatively balanced efforts, so the smaller is his optimal effort gap e− e. The more risk-averse

the agent (the larger is r) or the larger the incentive intensity β, the more costly is the risk imposed by

the randomization, so the stronger is his incentive to self-insure and the smaller his optimal effort gap. As

either λ→ 1 or rβ →∞, the optimal gap approaches 0, which corresponds to full self-insurance. Finally,

the smaller is the parameter k, the more different are the two possible compensation schedules and the

more costly is the risk imposed by the randomization, so the smaller is the optimal effort gap. As k → −1+,

the self-insurance motive approaches its strongest level, and the optimal effort gap approaches 0.

Under the symmetric deterministic contract defined in Section 3.1, the agent’s efforts change discontin-

uously as hidden information about the agent’s preferences is introduced, i.e., as λ is increased from 1: At

λ = 1, efforts are perfectly balanced (the allocation preferred by the principal), but for anyλ > 1, efforts are

completely focused on a single task. As a result, the principal’s payoff from a SD contract drops discontinu-

ously as λ is raised from 1. Furthermore, Proposition 1 shows that, even when the principal chooses a deter-

ministic linear menu optimally as a function of λ, his payoff drops discontinuously as λ is increased from 1

(as long as δ > δNHI(1, rσ2, ρ), so that inducing balanced efforts from both types of agent would, if feasible,

actually be strictly optimal). In contrast, under ex ante randomization, for any value of k ∈ (−1, 1), both

the agent’s efforts and the principal’s payoff are continuous in λ at λ = 1, as long as the agent is risk-averse.

Thus EAR is more robust to the introduction of private information on the part of the agent than is the

16In contrast, if the agent were certain which compensation schedule would be used, the left-hand-side of (4) would
reduce to either k or 1

k
.
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best deterministic menu.17 EAR is also more robust to uncertainty about the magnitude of λ than is a de-

terministic menu. If the principal tries to design a deterministic menu to induce one type of agent to choose

balanced efforts but is even slightly wrong about the magnitude ofλ, his payoff will be discontinuously lower

than if he were right. The performance of ex ante randomization does not display this extreme sensitivity.18

We have established Proposition 2 under the assumption that the principal can commit to randomizing

uniformly between the two compensation schedules.19 It is natural to wonder whether the same outcome

would result if, instead, the principal chooses the randomizing probability at the same time as the agent

chooses efforts (we term this “interim randomization”). We can prove that under interim randomization,

the unique Bayes-Nash equilibrium is the same as the outcome described in Proposition 2.20 Thus the

attractive properties of ex ante randomization are not crucially dependent on the principal’s having

the power to commit to the randomizing probability.

The effort-balancing incentives generated by EAR do, however, come at a cost in terms of the risk

imposed on the risk-averse agent. In the principal’s payoff expression (3), the last two terms represent the

total cost of the risk borne by the agent under EAR. The penultimate term is the risk cost that would be

imposed by a deterministic contract of the formw = α+βx1+kβx2 (or equivalently,w = α+βx2+kβx1).

Because, when λ > 1, the agent only partially insures himself against the risk imposed by the principal’s

randomization over compensation schedules, there is an additional component to the cost of risk borne

by the agent, and this is represented by the final term in (3). Thus the total risk cost imposed by EAR

exceeds that imposed by a deterministic contract corresponding to the same values of β and k.

To understand the effect of varying the parameter k on the principal’s payoff from EAR, it is helpful to

define the variable B ≡ β(1 + k), because as equation (1) shows, aggregate effort e+ λe is proportional

to B. Using this definition and equations (1) and (2), we can re-express the principal’s payoff (3) as

a function of B and k:

ΠEAR(B, k) = eEAR+
eEAR

δ
− B2

2 (λ+ 1)2
− 1

2
rσ2B2 1 + 2ρk + k2

(1 + k)2
− 1

2r
ln

[
(λ+ 1)2 (1− k)2

4(1− kλ)(λ− k)

]
, (6)

where

eEAR +
eEAR

δ
=
δ + 1

δ

B

(λ+ 1)2
− δ − λ

δ

ln
(
λ−k
1−kλ

)
(λ+ 1) rB

(
1−k
1+k

) . (7)

17In Section 7.3 we show that, even outside the exponential-normal framework we have been using, EAR induces more
balanced efforts than a SD contract and is more robust to the introduction of hidden information on the agent’s part.

18Bond and Gomes (2009) also study a multi-task principal-agent setting in which a small change in the agent’s
preferences can result in a large change in the behavior induced by a contract and a consequent large drop in the principal’s
payoff, a situation they term “contract fragility”.

19Given the power to commit to a randomizing probability, it is optimal for the principal to commit to randomize
uniformly. Doing so results in the most balanced profile of effort choices, assessed ex ante, and also avoids leaving any
rent to either type of agent.

20To see that the outcome described in Proposition 2 is an equilibrium under interim randomization, note that given
that the two types of agent are equally likely and given that their effort profiles are mirror images, the principal anticipates
equal expected output on the two tasks, so is willing to randomize uniformly over the two mirror-image compensation
schedules. Given that the principal randomizes uniformly, the optimal behavior for each type of agent is clearly as described
in the proposition. To see that this outcome is the unique equilibrium, observe that if the two types of agent conjectured
that the principal would choose the schedule rewarding task 1 more highly than task 2 with a probability greater than
(less than) 1/2, then their optimal efforts would be such that the principal would strictly prefer to choose the schedule
rewarding task 2 more (less) highly than task 1.
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Holding B fixed and varying k allows us to identify the effect of k on the principal’s payoff from inducing

any given level of aggregate effort. Equations (6) and (7) show that increasing k has three effects. First,

a larger k raises the effort gap e− e and, with B and hence aggregate effort e+ λe held fixed, this larger

gap lowers the principal’s benefit e + e
δ whenever δ > λ, i.e., whenever balanced efforts are socially

efficient. Second, a larger k, because it induces the agent to choose less balanced efforts, raises the cost

of compensating the agent for the risk imposed by the randomization per se. This second effect of k also

reduces the principal’s payoff and is reflected in the final term in (6). Finally, a larger k reduces the cost (per

unit of aggregate effort induced) of the risk imposed on the agent from the shocks to measured performance.

This improved diversification raises ΠEAR(B, k), as reflected in the second-to-last term in (6).

In general, the optimal design of a contract with EAR involves a trade-off between these three different

effects. Weighting the different performance measures more equally in the two possible compensation

schedules is costly in terms of effort balance and thereby in terms of the risk imposed by the randomization,

but is helpful in allowing better diversification of the measurement errors. The next proposition describes

how the optimal value of k varies with several parameters of the contracting environment and with the

level of aggregate effort to be induced.

Proposition 3 For any given level of aggregate effort to be induced, the optimal level of k under EAR

is smaller (the optimal weights on the performance measures should be more unequal)

(i) the larger is δ, given δ > λ (i.e., the stronger the principal’s preference for balanced efforts);

(ii) the smaller is r, holding rσ2 fixed (i.e., the less risk-averse the agent, holding fixed the importance

of risk aversion under deterministic contracts);

(iii) the smaller is σ2(1− ρ) (i.e., the lower the importance of diversification of the risk from the shocks

to measured performance);

(iv) the smaller is B (i.e., the smaller the level of aggregate effort to be induced).

In Section 6, where we identify environments where optimally weighted EAR outperforms the best

deterministic menu, we will build on these results. In Section 7.4, where we study EAR in a setting with

an arbitrary number n of tasks, we show that changes in the number of randomly chosen tasks to reward

have the same qualitative effects on incentives and risk as do changes in the weighting parameter k in

the two-task model, so the comparative statics results for the optimal number of tasks to reward are the

same as those above for the optimal k. For now, though, we turn to a second class of opaque contracts.

4.2 Ex Post Discretion

Under a contract involving ex post discretion (EPD), the principal, after observing x1 and x2, chooses

whether to pay the agent according to w = α+ βx1 + kβx2 or w = α+ βx2 + kβx1, where as with EAR,

the key parameters are β > 0 and k ∈ (−1, 1). Just as under EAR, the agent is uncertain at the time he

chooses his efforts whether his pay will be more sensitive to performance on task 1 or task 2, but with EPD,

unlike with EAR, the agent’s choice of efforts influences which compensation schedule is ultimately used.

With EPD, as with EAR, the closer k is to 1, the more similar are the two possible compensation schedules,

and if k were equal to 1, EPD would involve no discretion at all and would collapse to the SD contract.
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Since the principal will choose, ex post, to pay the smaller of the two possible wages, the agent

anticipates that he will receive the wage w = min{α+ βx1 + kβx2, α+ βx2 + kβx1}. To characterize

the agent’s optimal effort choices, we use Cain’s (1994) derivation of the moment-generating function

for the minimum of bivariate normal random variables.

Proposition 4 (i) Under EPD, k < 1
λ is a necessary condition for each agent’s optimal efforts on both

tasks to be strictly positive. When EPD induces interior solutions for efforts,

(ii) each type of agent chooses effort on his less costly task, eEPD, and effort on his more costly task,

eEPD, satisfying

eEPD + λeEPD =
β(1 + k)

λ+ 1
(8)

exp [rβ(1− k)d]
Φ
(
d
θ + rβθ(1−k)

2

)
Φ
(
−d
θ + rβθ(1−k)

2

) =
λ− k
1− kλ

, (9)

where θ ≡ σ[2(1− ρ)]
1
2 and d ≡ eEPD − eEPD;

(iii) the gap in efforts, eEPD − eEPD, is increasing in λ, approaching 0 as λ → 1; decreasing in rβ,

approaching 0 as rβ → ∞; increasing in σ2(1− ρ), approaching 0 as σ2(1− ρ) → 0; and increasing

in k, approaching 0 as k → −1+;

(iv) the principal’s payoff under EPD, for given β > 0 and k ∈ (−1, 1λ), is

ΠEPD(β, k) = eEPD +
1

δ
eEPD − β2(1 + k)2

2(λ+ 1)2
− 1

2
rσ2β2(1 + 2ρk + k2)

− 1

r
ln {exp [−rβ(1− k)d] Φ(−) + Φ(+)} − β(1− k)dΦ (−d/θ) + βθ(1− k)φ (d/θ) , (10)

where Φ(−) ≡ Φ(−d/θ + rβθ(1− k)/2) and Φ(+) ≡ Φ(d/θ + rβθ(1− k)/2).

(v) For any λ > 1, when EPD and EAR both induce interior solutions for efforts, then eEPD − eEPD <

eEAR − eEAR.

Comparing Propositions 4 and 2 reveals important similarities, as well as important differences,

between the incentives and payoffs generated by EPD and EAR. Part (i) holds in each case for exactly

the same reason. Moreover, aggregate effort, e+ λe, is the same under EPD as under EAR—compare

equations (8) and (1).21 Since both schemes are certain to reward one task at rate β and the other at

rate kβ, the sum of the expected marginal returns to effort on the two tasks is (1 + k)β under both

schemes, and for interior solutions, this sum is equated to the sum of the marginal effort costs on the

two tasks, (λ+ 1)(e+ λe). Just as for EAR, it follows from the “equal compensation principle” that

if optimal efforts are interior, then equation (4), and hence equation (5), must hold. However, for EPD

E
[
U ′(·)I{x is rewarded more highly than x}

]
E
[
U ′(·)I{x is rewarded more highly than x}

] = exp [rβ(1− k)d]
Φ
(
d
θ + rβθ(1−k)

2

)
Φ
(
−d
θ + rβθ(1−k)

2

) ,
21Intuitively, we might expect that the principal’s freedom, under EPD, to choose the compensation schedule that

minimizes his wage bill would result in weaker overall incentives for the agent than under EAR. This intuition is correct in
the sense that the sum of the efforts on the two tasks, e+ e, is lower under EPD than under EAR. Nevertheless, aggregate
effort e+ λe, and hence the costs of effort incurred, are the same under the two schemes.
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which when combined with (5) gives us (9).

Under EAR, the risk-averse agent’s incentive to choose (partially) balanced efforts derives purely

from an insurance motive: a desire to insure himself against the risk generated by the random choice of

compensation schedule. Under EPD, this insurance motive is still present, because at the time the agent

chooses efforts, he is uncertain about which compensation schedule the principal will select. Now, though,

there is an additional incentive for the agent to balance his efforts: the principal’s strategic ex post choice of

which compensation schedule to use means that the more the agent focuses his effort on his preferred task,

the less likely that task is to be the more highly rewarded one, so the lower the relative marginal return to

that task. Formally, the left-hand side of equation (9), which is increasing in (e−e), is strictly greater than

the left-hand side of (2) for all (e−e) > 0, and this implies that for allλ > 1, eEPD−eEPD < eEAR−eEAR.

Under EPD, the agent’s optimal choice of e− e is smaller the smaller is λ (because choosing balanced

efforts is less costly) and the larger is rβ (because the stronger desire to self-insure is the dominant

effect), and as either λ→ 1 or rβ →∞, (e− e)→ 0. These results parallel those for EAR. However,

while σ2 and ρ have no effect on the effort gap under EAR, under EPD the effort gap is smaller the

smaller is σ2 and the larger is ρ. A smaller value of σ2(1− ρ) makes any change in the agent’s choice

of e− e more likely to affect which compensation schedule the principal chooses, so gives the agent a

stronger incentive to balance his efforts. As σ2(1 − ρ) → 0, for example because the shocks become

perfectly correlated, optimal efforts become perfectly balanced.

Under EPD, just as under EAR, reducing the parameter k, and so making the two possible compen-

sation schedules more different, induces the agent to choose more balanced efforts. While the effect

of k on the effort gap (e − e) is more complex under EPD than under EAR, nevertheless the effects

of k that operate under EAR are the dominant ones under EPD.

What is the cost of the risk imposed by ex post discretion on the agent, and how does it compare

to that imposed by ex ante randomization? In the principal’s payoff expression (10), the total cost of

the risk imposed is given by 1
2rσ

2β2(1 + 2ρk + k2) plus the terms on the second line. We can show

that, in fact, EPD with coefficients β and k imposes a lower total risk cost than would either of the

deterministic contracts w = α+ βx1 + kβx2 or w = α+ βx2 + kβx1, which would impose a risk cost
1
2rσ

2β2(1 + 2ρk + k2).22 The intuitive reason for this finding is that the variance of the wage under

EPD, w = min{α+ βx1 + kβx2, α+ βx2 + kβx1}, is lower than the variance of either α+ βx1 + kβx2

or α + βx2 + kβx1. Section 4.1 showed, by contrast, that for any given β and k, EAR imposes a higher

total risk cost than would either of these deterministic contracts.

As we did for EAR, we can use B ≡ β(1 +k) to derive from (10) an expression for the principal’s payoff

under EPD as the weighting factor k varies, holding B and hence aggregate effort fixed. As with EAR,

increasing k has three distinct effects. By inducing less balanced efforts, it reduces the principal’s benefit

e+ e
δ . On the other hand, a larger k improves the diversification of the measurement errors. Finally,

as k and hence e− e rises, the extent of the risk reduction from basing pay on min{x1 + kx2, x2 + kx1}
rather than on xi + kxj can be shown to decrease. Because the quantitative effects of varying k are

more complex under EPD than under EAR, it is difficult to generalize all of Proposition 3, but we can

show that under EPD, just as under EAR, the optimal level of k, for any given level of aggregate effort

22This is proved formally in Step 1 of the proof of Proposition 5.
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induced, will be smaller, the more complementary are the tasks for the principal (i.e., the larger is δ).

4.3 Ex Ante Randomization versus Ex Post Discretion

The preceding paragraphs have argued that, for any (β, k) that induce interior solutions for efforts under

both EAR and EPD, (i) EPD induces a strictly smaller gap in efforts e− e than EAR, while the two

schemes induce the same aggregate effort e+ λe and hence the same total cost of effort, and (ii) EPD

imposes lower risk costs on the agent than EAR. Since whenever δ ≥ λ, balanced efforts are socially

efficient, taken together the findings above yield:

Proposition 5 If, for given β and k ∈ (−1, 1λ), EAR and EPD induce interior solutions for efforts,

and if δ ≥ λ, then EPD generates at least as great a payoff for the principal as EAR.

5 When Are Deterministic Contracts Optimal?

This section identifies three environments in which both types of opaque incentive scheme are strictly

dominated by a deterministic contract.

Proposition 6 For given (β, k), where k ∈ (−1, 1), both EAR and EPD yield a strictly lower payoff

for the principal than a suitably designed symmetric deterministic (SD) contract, if any of the following

conditions hold:

(i) λ = 1 and ρ < 1;

(ii) EAR and EPD induce the agent to exert effort only on his preferred task;

(iii) δ < λ.

Underlying each part of this proposition is the important result that, for any weighting factor k < 1,

and for any λ, the total risk cost imposed by EAR and EPD in inducing the agent to exert any given level

of aggregate effort e+λe is larger than that imposed by a SD contract. At the same time, whenever λ > 1,

neither a SD contract nor any deterministic menu can induce the agent to exert positive effort on both tasks

(as shown by Proposition 1), whereas EAR and EPD have the potential to induce better-balanced efforts. In

general, therefore, the principal faces a trade-off in choosing between the opaque schemes (EAR and EPD)

and deterministic ones. Opaque schemes are typically better at inducing balanced efforts, while determin-

istic ones have the advantage of imposing a lower risk cost on the agent per unit of aggregate effort induced.

The three conditions identified in Proposition 6 are ones under which this trade-off does not in fact

arise. Under condition (ii), even the opaque schemes induce corner solutions for efforts. Corner solutions

arise, for example, when λ, measuring the agent’s bias towards his preferred task, is sufficiently large.

Corner solutions also arise when, holding rσ2 fixed, r gets sufficiently small (so the self-insurance motive

for balancing efforts becomes sufficiently weak) and σ2 gets sufficiently large (so under EPD, a change

in the agent’s efforts is sufficiently unlikely to affect the ex post choice of compensation schedule). Under

condition (iii), the socially efficient effort allocation involves fully focused efforts; hence, for any fixed

level of aggregate effort and thus any fixed cost of effort incurred, a shift towards more balanced efforts

would actually reduce the principal’s payoff.

17



The most significant of the three results in Proposition 6 is the first one. If λ = 1, then the principal

faces no uncertainty about the agent’s preferences. In this case, the SD contract, EAR, and EPD all induce

perfectly balanced efforts. The proof of part (i) shows that, when λ = 1, the SD contract imposes strictly

lower risk than does either EAR or EPD, as long as ρ < 1. With EAR this result is clear, since even though

the balanced efforts eliminate the risk from the randomization, the fact that k < 1 means that EAR weights

the performance measures unequally, while the SD contract weights them equally and so better diversifies

the risk from the shocks. That EPD, while inducing the same efforts as the SD contract, imposes strictly

more risk is less obvious, but we show that the cost of risk imposed by EPD when λ = 1 is strictly decreasing

in k, so is minimized at k = 1, when β is adjusted to keep efforts unchanged.23 Since the SD contract

corresponds to k = 1, the SD contract therefore strictly dominates EPD. The implication of part (i) of

Proposition 6 is that the agent’s superior knowledge of the environment (here, of his preferences, as reflected

by a value of λ > 1) is necessary for EAR and EPD to have the potential to dominate deterministic menus.

6 When Are Opaque Incentive Schemes Optimal?

We now identify three environments in which opaque schemes, when designed optimally, strictly dominate

the best linear deterministic menu. In each of these environments, both EAR and EPD, with the weighting

parameter k adjusted optimally, induce the agent to choose perfectly balanced efforts, and EAR is as

attractive for the principal as EPD. In all three environments, we show that optimally weighted EAR and

EPD generate a payoff for the principal arbitrarily close to that he could achieve if he knew the agent’s pref-

erences across tasks, so opaque schemes eliminate the efficiency losses from the agent’s hidden information.

6.1 Very Weak Preferences across Tasks for the Agent

Consider first a setting in which the agent has private information about his preferences, but the

magnitude of his preference across tasks is very weak. Formally, we study the case in which λ is strictly

greater than but arbitrarily close to 1, which we term the limiting case as λ→ 1+.

For both EAR and EPD, we saw in Section 4 that the agent’s effort choices and the principal’s payoff

are continuous in λ at λ = 1. This robustness of EAR and EPD to the introduction of hidden information

underlies the superiority of these schemes in the limiting case as λ→ 1+, as we now show.

Propositions 2 and 4 show that as λ→ 1, so the two tasks become equally costly, (e− e)→ 0 for any

k ∈ (−1, 1), under both EAR and EPD. Equations (6) and (7) show how varying k affects the principal’s

payoff from EAR, ΠEAR(B, k), holding fixed at B
1+λ the level of aggregate effort induced. Whereas in

general, as discussed in Section 4.1, increasing k has conflicting effects on ΠEAR(B, k), in the limit as

λ→ 1, the situation is dramatically simpler:

lim
λ→1

ΠEAR(B, k) =
(δ + 1)

δ

B

4
− B2

8
− 1

2
rσ2B2

(
1 + 2ρk + k2

(1 + k)2

)
. (11)

Because, as λ → 1, efforts under EAR become perfectly balanced, the risk cost imposed by the

23The proof shows that as k is increased, the benefit of reducing the variance of (xi + kxj)/(1 + k) outweighs the cost
of increasing the correlation between (x1 + kx2)/(1 + k) and (x2 + kx1)/(1 + k).
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randomization tends to zero. Hence an increase in k has only one effect on ΠEAR(B, k), holding B fixed:

it improves the diversification of the shocks to measured performance, as reflected in the final term of (11).

Thus, as λ→ 1, ΠEAR(B, k) is increasing in k (strictly so for ρ < 1), as long as k induces interior solutions,

which it does as long as k < 1
λ . Therefore, as λ→ 1, ΠEAR(B, k) is maximized, for any B, by setting

k arbitrarily close to, but less than, 1 (k → 1−). With k set in this way, the principal’s payoff approaches

lim
k→1

lim
λ→1

ΠEAR(B, k) =
(δ + 1)

δ

B

4
− B2

8
− 1

4
rσ2B2 (1 + ρ) . (12)

The right-hand side of (12) equals the payoff the principal would achieve, if λ were exactly equal to

1, from a symmetric deterministic (SD) contract with β = B
2 , since such a contract would induce effort

B
4 on each task and generate the same diversification of the shocks as EAR does when k → 1−.24 Thus,

for any B, as λ → 1+, the principal’s payoff under optimally weighted EAR gets arbitrarily close to

that from a SD contract when the agent has no preference between tasks.

Proposition 5 states that EPD yields the principal a payoff at least as large as does EAR whenever both

schemes induce interior effort choices. Part (i) of Proposition 6 shows that when λ = 1, the principal’s

payoff under EPD, for any k < 1 and for any B, is less than his payoff under the SD contract inducing the

same levels of effort. Such a SD contract has β = B
2 and generates a payoff given by the right-hand side of

(12). It therefore follows that as λ→ 1+, optimally designed EPD, like EAR, sets k arbitrarily close to, but

less than, 1 (k → 1−), and for any B yields a payoff arbitrarily close to that from a SD contract at λ = 1.

For the no hidden information benchmark, Section 3.1 shows that the efforts and payoff from the

contract pair (Cbal1 , Cbal2 ) are continuous at λ = 1, where they match the efforts and payoff from the

SD contract. Lemma 1 shows that as λ→ 1, a pair of the form (Cbal1 , Cbal2 ) is strictly optimal for the

principal as long as δ > limλ→1 δ
NHI(λ, rσ2, ρ). On the other hand, Proposition 1 shows that under

hidden information, even as λ → 1+, the principal’s maximized payoff from a deterministic menu is

bounded away from that in the NHI benchmark, because even for λ arbitrarily close to 1, it is impossible

to induce positive efforts on both tasks from both types of agent.

The arguments in the preceding paragraphs together imply:

Proposition 7 Consider the limiting case as λ→ 1+. Under both EAR and EPD, for any given level

of aggregate effort, e+ λe, to be induced:

(i) the gap in efforts, e− e, approaches 0 for any k ∈ (−1, 1);

(ii) the optimal value of k → 1−;

(iii) with k adjusted optimally, the principal’s payoff under both EAR and EPD approaches his payoff

in the no hidden information benchmark from (Cbal1 , Cbal2 ). This limiting payoff equals the principal’s

payoff from the symmetric deterministic (SD) contract at λ = 1.

Therefore, for δ > limλ→1 δ
NHI(λ, rσ2, ρ), EAR and EPD with k and β adjusted optimally strictly

dominate the best deterministic menu under hidden information.

The preceding analysis also has another important implication. Even if λ = 1, the symmetric

deterministic contract leaves the agent indifferent over how any total effort is split between the tasks,

24See equation (24) in the proof of Lemma 1 in the appendix, and set λ = 1.

19



while under EAR and EPD, for any k < 1, the optimal allocation of efforts is unique. Thus when λ = 1,

with the weighting parameter k set arbitrarily close to, but less than, 1, EAR and EPD not only generate

a payoff for the principal arbitrarily close to the theoretical payoff from the SD contract, but they also

ensure that the agent has a strict preference for choosing perfectly balanced efforts.

6.2 Very Large Risk Aversion and Very Small Variance of the Shocks

Consider now the case where the agent’s coefficient of absolute risk aversion, r, gets very large and

the variance of the shocks to measured performance, σ2, gets very small, holding rσ2 fixed at R <∞.

Propositions 2 and 4 show that, in this environment, for any k ∈ (−1, 1λ), (e − e) → 0 under both

EAR and EPD: As the agent becomes infinitely risk-averse, it becomes optimal for him under both

types of opaque scheme to choose perfectly balanced efforts, so providing full self-insurance against the

uncertainty over which compensation schedule will ultimately be used. In contrast, as long as rσ2 remains

unchanged, the efforts induced and the payoff generated by any deterministic menu are unaffected.

Under EAR, in the limit as r →∞ and σ2 = R
r → 0, both e and e approach B

(λ+1)2
(as long as k < 1

λ),

and with perfectly balanced efforts, the risk cost imposed on the agent by the randomization tends to

zero. As a consequence, ΠEAR(B, k), as given by equations (6) and (7), simplifies to

lim
r→∞,σ2=R/r→0

ΠEAR(B, k) =
(δ + 1)

δ

B

(λ+ 1)2
− B2

2(λ+ 1)2
− 1

2
RB2 1 + 2ρk + k2

(1 + k)2
. (13)

Under EPD, the principal’s payoff for given B and k approaches the same value as under EAR as r →∞
and σ2 = R

r → 0:25

lim
r→∞,σ2=R/r→0

ΠEPD(B, k) = lim
r→∞,σ2=R/r→0

ΠEAR(B, k). (14)

Equations (13) and (14) show that, when r gets very large and σ2 = R
r very small, the only effect

on ΠEAR(B, k) and ΠEPD(B, k) of increasing k, over the range k ∈ (−1, 1λ) where the induced gap in

efforts (e− e) is approximately 0, is to improve the diversification of the shocks to measured performance.

Hence, under both EAR and EPD, just as for the case where λ→ 1+, it is optimal to set k arbitrarily

close to, but less than, 1
λ (k → ( 1

λ)−). Doing so generates for the principal a payoff approaching

lim
k→(1/λ)−

lim
r→∞,σ2=R/r→0

ΠEAR(B, k) =
(δ + 1)

δ

B

(λ+ 1)2
− B2

2(λ+ 1)2
− 1

2
RB2λ

2 + 2ρλ+ 1

(λ+ 1)2
. (15)

The right-hand side of (15) is exactly the payoff the principal would obtain, in the NHI benchmark,

from using (Cbal1 , Cbal2 ) with β = B
1+λ , since this pair of contracts would induce from each type of agent

effort B
(λ+1)2

on each task and would impose a risk premium given by the final term.26

Thus as r →∞ and σ2 = R
r → 0, optimally weighted EAR and EPD allow the principal, for any B, to

get arbitrarily close to his payoff in the NHI benchmark. Since, by Proposition 1, the best deterministic

25This can be proved by first substituting B = β(1 + k) into equation (10) and then noting that the terms on the second
line all tend to 0 as r → ∞ and σ2 = R

r
→ 0. The equality in (14) reflects the fact that not only do the efforts under

EPD and EAR approach the same values, but the cost of the risk imposed by the two schemes becomes equal, because
as σ2 → 0, min{x1 + kx2, x2 + kx1} becomes no less variable than either x1 + kx2 or x2 + kx1 alone, and thus the total
cost of risk under EPD is given by the final term in (13).

26See equation (24) in the appendix, and set rσ2 = R.
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menu under hidden information leaves the principal strictly worse off than in the NHI benchmark

whenever δ > δNHI(λ,R, ρ), we have proved:

Proposition 8 Consider the limiting case where r →∞ and σ2 = R
r → 0. Under both EAR and EPD,

for any given level of aggregate effort, e+ λe, to be induced:

(i) the gap in efforts, e− e, approaches 0 for any λ and for any k < 1
λ ;

(ii) the optimal value of k →
(
1
λ

)−
;

(iii) with k adjusted optimally, the principal’s payoff under both EAR and EPD approaches his payoff

in the no hidden information benchmark from (Cbal1 , Cbal2 ).

Therefore, for δ > δNHI(λ,R, ρ), EAR and EPD with k and β adjusted optimally strictly dominate

the best deterministic menu under hidden information.

6.3 Very High Correlation between the Shocks

Under ex post discretion, as the correlation between the shocks to measured performance on the two

tasks approaches 1, the agent’s chosen efforts become perfectly balanced (e− e→ 0), for any k < 1
λ ,

as shown by Proposition 4. This reflects the fact that for any unequal effort choices, as σ2(1− ρ)→ 0,

the agent’s uncertainty about which compensation schedule the principal will choose disappears. As

ρ→ 1, for any (B, k) with k < 1
λ , e and e approach B

(λ+1)2
, and ΠEPD(B, k) approaches

lim
ρ→1

ΠEPD(B, k) =
δ + 1

δ

B

(λ+ 1)2
− B2

2(λ+ 1)2
− 1

2
rσ2B2. (16)

This limiting payoff is independent of k as long as k < 1
λ : As ρ→ 1, any possibility of diversifying the

risk from the shocks, by increasing k, disappears, and hence the risk cost of EPD becomes rσ2B2

2 . Since

(16) is independent of k, any value of k in (−1, 1λ) is optimal under EPD when ρ→ 1. Furthermore, (16)

matches what the principal would obtain, in the NHI benchmark with ρ = 1, from using (Cbal1 , Cbal2 ) to

induce perfectly balanced efforts and setting β = B
1+λ .27 Thus, in this limiting environment as well, EPD

yields the principal as high a payoff as in the absence of hidden information, for any level of aggregate

effort to be induced.

Under EAR, too, as ρ → 1, diversification of the risk from the shocks becomes impossible, so in

equation (6), the cost of risk due to the shocks approaches rσ2B2

2 . However, as Proposition 2 shows, under

EAR, in contrast to EPD, the incentive for balanced efforts is independent of σ2(1− ρ), since the realized

outputs have no effect on the random choice of compensation schedule. Nevertheless, Proposition 2 also

shows that lowering the weighting parameter k, thereby making the two possible compensation schedules

more different, strengthens the agent’s incentives for balancing efforts. In the limit as ρ→ 1, equations

(6) and (7) show that ΠEAR(B, k) is decreasing in k, for any fixed B: Lowering k does not affect the

risk premium due to the shocks but, by reducing the effort gap, raises the principal’s benefit as well

as reducing the risk cost of the exogenous randomization. Hence as ρ→ 1, it is optimal under EAR, for

any level of aggregate effort to be induced, to set k arbitrarily close to, but larger than, −1 (k → −1+),

27See equation (24) in the appendix, and set ρ = 1.
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thus inducing a gap in efforts arbitrarily close to, but larger than, 0 (as shown by (2)). With k set in

this way, the principal achieves under EAR a payoff arbitrarily close to the right-hand side of (16).28

Thus, as ρ→ 1, optimally weighted EAR and EPD both allow the principal to approach his payoff

in the NHI benchmark, for any B. Combining these results with Proposition 1 yields:

Proposition 9 Consider the limiting case of perfect correlation of the shocks: ρ→ 1. For any given

level of aggregate effort, e+ λe, to be induced:

(i) under EPD, the gap in efforts, e − e, approaches 0 for any λ and for any k ∈ (−1, 1λ), and any

k ∈ (−1, 1λ) is optimal;

(ii) under EAR, the gap in efforts, e− e, approaches 0 for any λ as k → −1+, and the optimal value

of k → −1+;

(iii) with k adjusted optimally, the principal’s payoff under EAR and EPD approaches his payoff in the

no hidden information benchmark from (Cbal1 , Cbal2 ).

Therefore, for δ > δNHI(λ, rσ2, 1), EAR and EPD with k and β adjusted optimally strictly dominate

the best deterministic menu under hidden information.

Analogous arguments and conclusions hold in the limiting environment where the variance σ2 of

the shocks to measured performance approaches 0, holding risk aversion r fixed. In this environment,

optimally weighted EAR and EPD allow the principal to get arbitrarily close to the outcome in which

perfectly balanced efforts are induced with the imposition of no risk cost on the agent, so these schemes

allow the principal to achieve a payoff arbitrarily close to what he would achieve in the absence of any

informational asymmetries. For λ > 1, the best deterministic menu under hidden information cannot

achieve balanced efforts, even as σ2 → 0, so the best deterministic menu is dominated in this environment

by optimally designed EAR and EPD, as long as δ > δNHI(λ, 0, ρ) = λ.

6.4 Discussion

We have identified three environments in which our two simple types of opaque incentive schemes, when

designed optimally, strictly dominate the best deterministic menu. Although our propositions focus on

limiting environments, our results identify what characteristics of contracting environments increase the

relative attractiveness of EAR and EPD. The general message is that, if tasks are sufficiently complemen-

tary for the principal (δ sufficiently large), EAR and EPD are superior to deterministic menus in settings

where they can provide the agent with very strong incentives for balanced efforts at low cost in terms of

the risk imposed. EAR and EPD are more likely to generate a favorable incentive/risk tradeoff when i) the

agent’s privately known preference between tasks is weak (λ is small), so even a small amount of uncertainty

about the weights in the compensation schedule provides a strong impetus for effort balance, or ii) the agent

is very risk averse (r is large), so opaque schemes generate a powerful self-insurance motive for effort bal-

ance. These two factors increase the attractiveness of EAR and EPD in qualitatively the same way. These

schemes are also more likely to be preferred when iii) the errors in measuring performance on the tasks have

28As k is lowered, the coefficient β must be raised to keep aggregate effort, which is proportional to B ≡ β(1 + k),
fixed. The value of k must remain slightly larger than −1 to ensure that aggregate effort is strictly positive.
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small variance or large correlation (σ2(1− ρ) is small). In such environments, EPD provides strong incen-

tives for balanced efforts whatever the relative weights on the performance measures, while under EAR, the

cost of manipulating the weights to generate strong incentives for effort balance becomes relatively small.

7 Extensions and Robustness

7.1 Opaque Ex Post Linear Schemes vs. Nonlinear Contracts

In our model, gaming takes the form of the agent choosing effort allocations that are excessively (from

an efficiency standpoint) sensitive to his private information about his costs. We have shown that ex

ante randomization and ex post discretion succeed in mitigating the informed agent’s incentives for

gaming even under the restriction that ex post, the compensation schedule is linear and separable in the

performance measures. The feature shared by EAR and EPD that underlies this finding is their opacity:

they both make the agent uncertain ex ante about the incentive coefficients in the linear payment rule.

The importance of this ex ante uncertainty for limiting the agent’s gaming is highlighted by the contrast

between the incentive effects of EAR/EPD and those of deterministic menus of linear contracts: the

latter are unable to induce both types of agent to choose positive efforts on both tasks, even when the

magnitude of the agent’s privately known preference between tasks is arbitrarily small.

We now briefly contrast our two simple classes of opaque ex post linear schemes with nonlinear,

nonseparable contracts.

The mechanism by which ex ante randomization alleviates incentives for gaming is one that is familiar

and readily comprehensible. The desirability of spreading one’s efforts across tasks in order to reduce the

riskiness of compensation under ex ante randomization is analogous to strategies for diversifying risk in

many commonly encountered settings. For example, Bevan and Hood (2004), in the context of performance

measurement in healthcare, argue for making the relative weights on the measures unpredictable by

invoking the “analogy [...] with the use of unseen examinations, where the unpredictability of what

the questions will be means that it is safest for students to cover the syllabus” (p.598).

Consider, by way of contrast, the following nonlinear deterministic compensation contract:

w(x1, x2) = α− 1

r
ln

{
1

2
exp [−rβ(x1 + kx2)] +

1

2
exp [−rβ(x2 + kx1)]

}
(17)

Faced with such a contract, how might an agent try to figure out what allocation of effort across tasks was

most beneficial? He might be able to work out that the marginal impact on pay of an increase in x1 was de-

creasing in the level of x1 and increasing in the level of x2 (with symmetric results for increases in x2), and

hence he might be able to deduce that such a contract, relative to a symmetric linear and separable one, dis-

courages focused and encourages balanced effort allocations. In fact, for any (α, β, k), this nonlinear, non-

separable deterministic contract provides the same expected utility for an agent, as a function of the effort

choices, as does ex ante randomization. Moreover, because the wage is a deterministic function of (x1, x2),

this contract would, in theory, allow the principal to achieve a higher expected payoff than under EAR. But

such a conclusion rests on the assumption that an agent would choose the same efforts when faced with the

very complicated schedule in (17) as when faced with EAR. We contend that people’s intuitive familiarity
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with the benefits of diversifying risk, coupled with the complexity of (17), make the incentives for balanced

efforts considerably more salient under EAR than under (17). As a result, the incentive effects of ex ante

randomization are likely to be more consistent and more predictable than those of the contract in (17).29

Importantly, in the three environments studied in Section 6, the contract in (17), even if fully

understood by the agent, would perform no better than ex ante randomization, since in each of these

settings, optimally weighted EAR induces full self-insurance and so generates no extra risk costs from

randomization. More generally, since ceteris paribus, EAR is attractive in environments where it

generates very strong incentives for balanced efforts, when EAR is attractive it will generate a payoff

for the principal close to the theoretical payoff from the schedule in (17).

Consider now ex post discretion, under which the choice between two linear compensation schedules is

made strategically by the principal, rather than randomly. Even though EPD achieves the same outcome as

if the principal could commit to the nonlinear, nonseparable schedulew = min{α+βx1+kβx2, α+βx2+

kβx1}, EPD requires less commitment power on the principal’s part. This has two important implications.

First, in conjunction with Propositions 4 and 5, it implies that the beneficial incentive effects of EAR are

robust even if the agent suspects that the principal might deviate to EPD, by waiting to observe outputs

before choosing between the two compensation schedules. Second, in a more general version of our model,

allowing the principal ex post discretion over the choice of compensation schedule might allow him to do

strictly better than he would if forced to commit ex ante to a wage contract. In such a model, the principal

would be ex ante uncertain about the efficient effort profile and ex post better informed, so ex post discretion

would not only provide the incentive benefits we highlight, but would also allow the principal to reward, and

thereby to encourage, the type of performance which in the circumstances turns out to be appropriate.30

7.2 Imperfect Substitutability of Efforts for the Agent

So far we have focused on the case where efforts are perfect substitutes in the agent’s cost function.

Although this assumption does not qualitatively affect the performance of EAR and EPD, it simplifies

the analysis of deterministic schemes. We explain here that our key findings are robust to imperfect

substitutability of efforts. Specifically, it remains true that i) if tasks are sufficiently complementary

for the principal, EAR and EPD are superior to deterministic menus in settings where these opaque

schemes generate very strong incentives for balanced efforts, and ii) in such settings, EAR and EPD

eliminate the efficiency losses from the agent’s hidden information.

Let the two equally likely types of agent have cost functions of the form

c(e, e) =
1

2

(
e2 + 2sλee+ λ2e2

)
, (18)

where the parameter s ∈ [0, 1] measures the degree of substitutability of efforts. Perfect substitutability

29Englmaier, Roider, and Sunde (2012) and Chetty, Looney, and Kroft (2009) provide evidence from field experiments
of the significant impact of changes in salience of incentive schemes and of taxes, respectively. Abeler and Jäger (2013),
in a real-effort experiment, compare the behavior of subjects faced with a complex tax scheme with that of subjects faced
with a simple one, where the two schemes are designed so that the optimal choices, as well as the incentives around the
optimum, are exactly the same. They find that not only are the effort choices of subjects faced with the complex scheme
more dispersed, but also that these subjects change their efforts less in response to changes in the scheme.

30Scott and Triantis (2006) and Prendergast (1999) develop related arguments.
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corresponds to s = 1 and no substitutability to s = 0. To simplify the analysis of deterministic schemes,

we will focus on the case where s ≥ 1
λ , representing a situation of high, but imperfect, substitutability,

and we will let δ → ∞ in the principal’s benefit function, so the efforts on the two tasks are perfect

complements for the principal.

In the no hidden information benchmark, the principal will offer each type of agent a contract of the

form w = α+ βx+ vβx with v ≥ 1, where x (respectively, x) denotes measured performance on the

preferred (respectively, other) task. The weighting parameter v is a choice variable for the principal,

and under the assumptions above, the optimal choice of v, vNHI , can be shown to induce each type

to choose equal efforts on the two tasks: vNHI = λ(λ+s)
1+sλ .

When the agent is privately informed about his preferences across tasks and s ≥ 1
λ , then it can be

shown that the conclusions of Proposition 1 continue to hold: for any λ > 1, no menu of deterministic

linear contracts can induce both types of agent to choose positive efforts on both tasks, and as a result, the

principal’s maximized payoff under hidden information is bounded away from that in the NHI benchmark.

Importantly, the incentives provided by ex ante randomization and ex post discretion are not qualita-

tively affected by whether efforts are imperfect or perfect substitutes for the agent. EAR continues to give

the risk-averse agent an incentive to partially self-insure by choosing relatively balanced efforts on the two

tasks, and EPD continues to give even stronger incentives for balance because of the agent’s ability to influ-

ence, through his efforts, which task is more highly rewarded. Interior optimal efforts under EAR satisfy

∂c

∂e
+
∂c

∂e
= β(1 + k) (19)

and

exp [rβ(1− k)(e− e)] =
c2
c1
− k

1− k c2c1
, (20)

where c2
c1
≡ ∂c/∂e

∂c/∂e = sλe+λ2e
e+sλe . Equation (20) is a generalized version of (2) in which the constant λ is

replaced by the function ∂c/∂e
∂c/∂e . Optimal efforts under EPD satisfy (19) and equation (9), except that

the right-hand side of (9) is replaced by the right-hand side of (20).

Consider now the three environments studied in detail in Section 6. As λ→ 1+ or as r →∞, σ2 → 0,

it follows from (20) and its analog for EPD that both EAR and EPD induce perfectly balanced efforts

for any k ∈ (−1, c1c2 ).31 Therefore, in these limiting cases, the only effect of increasing k is to improve the

diversification of the risk from the shocks. Hence it is optimal in both environments, with both EAR and

EPD, to set k as large as possible subject to keeping efforts perfectly balanced, i.e., to take k → ( c1c2 )−.

Since with perfectly balanced efforts, c1c2 = 1+sλ
λ(λ+s) = 1/vNHI , it follows that as λ→ 1+ or as r →∞,

σ2 → 0, the optimal k approaches 1/vNHI . Therefore, just as in the original model, in these two limiting

environments, optimally weighted EAR and EPD generate a payoff for the principal arbitrarily close to

what he achieves in the NHI benchmark. In the setting where ρ→ 1, the weight k has no effect on diversi-

fication, so it is optimal under EAR and EPD to set k to induce perfectly balanced efforts; in this setting,

too, optimally weighted EAR and EPD generate a payoff arbitrarily close to that in the NHI benchmark.

As long as s ≥ 1
λ , we saw above that under hidden information, the principal’s maximized payoff

31If k > c1
c2

, (20) and its analog for EPD show that neither EAR nor EPD can induce interior solutions for efforts.
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is bounded away from that in the NHI benchmark, because no linear deterministic menu can induce both

types of agent to work on both tasks. Since in the environments studied in Section 6, optimally designed

EAR and EPD generate a payoff arbitrarily close to that in the NHI benchmark, it follows that in these

settings, these opaque schemes are superior to linear deterministic menus. Hence, allowing the agent’s

efforts on the tasks to be less than perfect substitutes in his cost function does not alter our main results.

7.3 Beyond the Exponential-Normal Model

Our findings that opaque incentive schemes induce more balanced efforts than symmetric determin-

istic ones and do so in a way more robust to hidden information of the agent apply even outside the

exponential-normal framework. Let the measurement technology remain xi = ei + εi, but now let (ε1, ε2)

have an arbitrary symmetric joint density. Let each type of agent’s utility be U(w− c(e, e)), with U(·) an

arbitrary strictly concave function and c(e, e), as in (18), reflecting imperfect substitutability of efforts.

Under both EAR and EPD, interior optimal effort choices for each type of agent satisfy

∂c

∂e
+
∂c

∂e
= β(1 + k) and

E
[
U ′(·)I{x is more highly rewarded}

]
E
[
U ′(·)I{x is more highly rewarded}

] =
c2
c1
− k

1− k c2c1
.

The second equation, which is a generalized version of (5), shows that just as for the exponential-normal

model, both EAR and EPD give the risk-averse agent an incentive to choose more balanced efforts to

partially self-insure against the risk stemming from the uncertainty about which payment schedule will

ultimately be used. Analogously to the exponential-normal case, EPD also provides the agent with

a second motive for balancing efforts, because his efforts actually influence which compensation schedule

the principal chooses. In this more general setting, however, the strength of the agent’s self-insurance

motive is not generally equal under the two types of opaque schemes, so EPD does not necessarily induce

more balanced efforts than EAR.

Nevertheless, we can show that whenever the symmetric deterministic contract induces interior efforts,

both EAR and EPD do so as well, and effort choices under both EAR and EPD are more balanced

than under the SD contract. Moreover, when efforts are perfect substitutes for the agent (s = 1), as

λ increases from 1, eEAR/eEAR and eEPD/eEPD both increase continuously from 1, whereas eSD/eSD

jumps from 1 to∞. Thus, even outside the exponential-normal framework, the opaque schemes provide

stronger incentives for effort balance and are more robust to hidden information.

7.4 Ex Ante Randomization and the Choice of How Many Tasks to Reward

We have assumed so far that the job performed by the agent has only two distinct dimensions (tasks)

and that noisy measures of performance on both tasks are used in randomized incentive schemes. When,

however, performance on a job has many distinct dimensions, the costs of monitoring the different

dimensions may become significant. The principal can economize on monitoring costs, while still

providing incentives for balanced efforts, by randomizing over compensation schedules each of which

rewards only a subset of the dimensions of performance. We now study some of the trade-offs involved

in the design of randomized incentive schemes in environments with many tasks.
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Let the job performed by the agent consist of n > 2 tasks, for each of which measured performance

xj = ej + εj , where (ε1, . . . , εn) have a symmetric multivariate normal distribution with mean 0, variance

σ2, and pairwise correlation ρ ≥ 0. Suppose there aren equally likely types of agent, with the agent of type i

having cost function ci(e1, . . . , en) = 1
2(λei+

∑
j 6=i ej)

2. Thus each type of agent has a particular dislike for

exactly one of the n tasks, and λmeasures the intensity of this dislike. Let the principal’s payoff be given by

Π = min{e1, . . . , en}+
1

δ

 n∑
j=1

ej −min{e1, . . . , en}

− w,
where δ parameterizes the strength of the principal’s desire for a balanced effort profile. As in the

two-task model, the socially efficient effort profile is perfectly balanced whenever δ > λ.

Consider the following family of incentive schemes with ex ante randomization, parameterized by

κ, the number of tasks rewarded: Each subset of κ out of n tasks is chosen with equal probability, and

each task in the chosen subset is rewarded at rate β; the lump-sum payment is always equal to α. We

will not explicitly model the direct costs of generating the performance measures. Instead we will focus

on the trade-off between the effects on incentives and risk of varying the number of tasks κ included

in each of the possible compensation schedules. Details of the derivations are in Appendix B.

Denote by e each type of agent’s effort on his disliked task and by e his effort on each of the other

tasks. If, for a given κ and β, the agent’s optimal efforts are interior, then aggregate effort (λe+ (n− 1)e)

and the gap in efforts e− e satisfy, respectively,

λe+ (n− 1)e =
κβ

n− 1 + λ
and e− e =

1

rβ
ln

[
λ(n− κ)

(n− 1)− (κ− 1)λ

]
. (21)

Reducing κ, the number of tasks rewarded, makes the risk imposed by the randomization more costly,

so strengthens the agent’s incentive to self-insure. As a result, the agent’s optimal effort profile is more

balanced (e− e is smaller), the smaller is the number of tasks rewarded.

Since aggregate effort is proportional to κβ, define β̃ ≡ κβ. Using (21), we can write the principal’s

payoff as a function of β̃ and κ, when α is set to ensure zero rent for each type of agent:

Π(β̃, κ) = e+
(n− 1)

δ
e− β̃2

2 (n− 1 + λ)2

− 1

2
rσ2β̃2

1 + ρ(κ− 1)

κ
− 1

nr
ln

[
(n− κ)n−κ(n− 1 + λ)n

nnλκ ((n− 1)− (κ− 1)λ)n−κ

]
, (22)

where

e+
n− 1

δ
e =

δ + n− 1

δ

β̃

(n− 1 + λ)2
− (δ − λ)(n− 1)κ

δ(n− 1 + λ)rβ̃
ln

[
λ(n− κ)

(n− 1)− (κ− 1)λ

]
. (23)

Holding β̃ fixed and varying κ isolates the effect of changing the number of tasks rewarded, holding

fixed the level of aggregate effort. Comparison of equations (22)-(23) with equations (6)-(7) reveals

that changes in κ have qualitatively the same three effects on the principal’s payoff in this n-task model

as do variations in the weighting coefficient k in EAR in the original two-task model. Specifically, an

increase in κ, by inducing a larger gap e− e, has two negative effects: i) it lowers the principal’s benefit

e+ n−1
δ e when aggregate effort is held fixed, as long as δ > λ (this corresponds to the fact that (23) is

27



decreasing in κ), and ii) it raises the cost of compensating the agent for the risk imposed by the exogenous

randomization (this corresponds to the fact that the term in square brackets in (22) is increasing in

κ). At the same time, raising κ also improves the diversification of the risk from the shocks to measured

performance (as reflected in the fact that 1+ρ(κ−1)
κ in (22) is decreasing in κ).

Given the qualitative similarity between the role of κ in the n-task model and that of k in the two-task

model, it is relatively straightforward to derive the following comparative statics results for the optimal

number of tasks to reward, given any desired level of aggregate effort. Analogously with Proposition

3, the optimal number of tasks to reward is smaller, i) the stronger is the principal’s preference for

balanced efforts (i.e., the larger is δ); ii) the less risk-averse the agent is, holding rσ2 fixed; iii) the lower

the importance of diversification of the risk from the shocks to measured performance (i.e., the lower

is σ2(1− ρ)); and the smaller the level of aggregate effort to be induced.

7.5 Menus of Incentive Schemes with Ex Ante Randomization

This section examines whether the performance of ex ante randomization can be improved by the use

of menus. Consider the following, incentive-compatible, menu of two incentive schemes each involving

randomization. For k ∈ (−1, 1), Scheme i ∈ {1, 2}, intended for the agent who prefers task i, specifies

that with probability p ∈ (12 , 1), w = α + βxi + kβxj , and with probability 1− p, w = α + βxj + kβxi.

As p→ 1/2, the two schemes become identical, so the menu reduces to EAR.

The value of p has no effect on aggregate effort. However, as p rises, each type of agent faces less

uncertainty about his compensation schedule, hence has weaker incentives to self-insure by balancing

his effort choices, so the induced effort gap e− e rises. In this respect, a larger p mirrors the effect of

a larger weighting parameter k. Nevertheless, there is a crucial difference between p and k. An increase

in k improves the diversification of the risk from the shocks to measured performance. However, because,

regardless of the value of p, the agent is ultimately paid either α + βx1 + kβx2 or α + βx2 + kβx1,

changes in p have no effect on the diversification of this risk.

In consequence, whereas Proposition 3 and Section 6 showed that the weighting factor k is a valuable

instrument in the design of opaque schemes, we have the following negative conclusion for the role of

p: If a symmetric menu of randomized schemes with parameters (β, k, p) induces interior solutions for

efforts, then as long as δ > λ, the principal’s payoff will be increased by lowering p to 1/2, thus replacing

the menu with EAR as analyzed in Section 4.1. Hence combining menus with ex ante randomization

brings no additional benefit for the principal.

8 Conclusion

Gaming of incentive schemes is of serious concern to incentive designers in a wide range of settings in both

the private and public sectors. We have discussed examples from the UK National Health Service, the

US healthcare sector, and US law school rankings, among others. In all of these examples, the incentive

designer cares about the performance of agents along several different dimensions, and deterrence of

gaming is hampered by the agents’ superior knowledge of the environment. These examples are also
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ones where a lack of transparency–deliberate “opacity” about the criteria upon which rewards will be

based and/or how heavily these criteria will be weighted–has been used or advocated to deter gaming.

To elucidate the benefits and costs of opaque incentive schemes, we have analyzed a model in which

the agent is better informed than the principal about his costs of effort on different tasks. The agent

games transparent schemes by choosing effort allocations that are excessively (from an efficiency per-

spective) sensitive to his private information. We studied two simple classes of opaque schemes, ex ante

randomization (EAR) and ex post discretion (EPD), each of which makes the agent uncertain ex ante

about the incentive coefficients in the linear payment rule. We explored how and to what extent each

of these opaque schemes mitigates the agent’s gaming. When the agent has private information about

his costs of effort on different tasks, the principal in general faces a trade-off between the benefits of the

more efficient effort allocations induced by opaque schemes and the costs of the greater risk they impose.

Our key contribution has been, in Propositions 7, 8, and 9, to identify environments in which optimally

designed opaque schemes strictly outperform all linear deterministic menus. In each of these environments,

optimally weighted ex ante randomization and ex post discretion induce the agent to choose the socially

efficient, perfectly balanced effort profile, and they generate a payoff for the principal arbitrarily close

to what he could achieve in the absence of hidden information on the agent’s part.

Though our propositions focused on limiting environments to prove analytically that opaque schemes

can strictly dominate all deterministic menus, our results identify what characteristics of contracting

environments increase the relative attractiveness of opaque schemes. Ex ante randomization and ex

post discretion are more likely to be preferred when i) efforts on the tasks are highly complementary for

the principal; ii) the agent’s privately known preference between tasks is weak, so even a small amount of

uncertainty about the weights in the compensation schedule induces a relatively balanced effort profile; and

iii) the agent is very risk averse, so opaque schemes generate a powerful self-insurance motive for balancing

efforts. These three factors increase the attractiveness of EAR and EPD in qualitatively the same way.

These schemes are also more likely to be preferred when iv) the errors in measuring performance on

the tasks have small variance or large correlation. In such environments, EPD provides strong incentives

for balanced efforts whatever the relative weights on the performance measures, while under EAR, the

cost of manipulating the weights to generate strong incentives for effort balance becomes relatively small.

We emphasize that, because of the agent’s hidden information, opaque schemes can dominate de-

terministic ones even when pay can be based upon measured performance on both tasks. When costs

of measurement constrain an incentive designer to base pay on only one performance measure, the

attractiveness of ex ante randomization over which task to measure and reward is clearly significantly

enhanced relative to the best deterministic contract rewarding only one task.

Our results have been derived in a static framework, where gaming of an incentive scheme takes the

form of excessive focusing of effort on tasks that agents privately find less costly. In dynamic settings

where agents’ rewards are based on cumulative performance on each task and agents privately observe

interim performance, the type of gaming that Holmström and Milgrom (1987) examined would also arise.

There is reason to conjecture that this type of gaming might be more severe under ex post discretion

than under ex ante randomization, making the comparison between these schemes more complex. We

leave it to future research to explore this question in more detail.
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Our analysis suggests that even beyond the specific multi-task setting on which we have focused,

opacity of incentive schemes, by making agents more uncertain about the consequences of their actions

for their rewards, could help principals to mitigate the costs of gaming stemming from agents’ exploiting

their better knowledge of the environment. Future research should explore the benefits of opaque

incentive schemes in deterring gaming in other settings, seeking to identify under what conditions these

incentive benefits can outweigh the risk costs of opacity.
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A Omitted Proofs

Proof of Lemma 1. Consider first the pair of contracts (Cbal1 , Cbal2 ). Cbali induces agent i to choose
ei = ej = β

1+λ , yielding each type i a certainty equivalent of

ACEi(C
bal
i ) = E(wi)− ci(e1, e2)− 1

2
rσ2var(wi) = α+ β2 − β2

2
− 1

2
rσ2β2(1 + 2ρλ+ λ2).

The principal will set α to satisfy each type’s participation constraint with equality, and his expected payoff from
each type, as a function of β, will be

Πbal(β) =
β

1 + λ

(
1 +

1

δ

)
− β2

2
− 1

2
rσ2β2(1 + 2ρλ+ λ2). (24)
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With β chosen optimally, the resulting maximized payoff is

Πbal =
(δ + 1)2

2δ2(1 + λ)2 [1 + rσ2(1 + 2ρλ+ λ2)]
.

This payoff is continuous as λ→ 1.
Now consider the pair of contracts (Cfoc1 , Cfoc2 ). Cfoci induces type i to choose ei = β and ej = 0. The principal

will set α to satisfy each type’s participation constraint with equality, and his expected payoff from each type,
as a function of β, will then be

Πfoc(β) =
β

δ
− β2

2
− 1

2
rσ2β2

(
1− ρ2

)
.

With β chosen optimally, the resulting maximized payoff is

Πfoc =
1

2δ2[1 + rσ2(1− ρ2)]
.

Comparison of the expressions for Πbal and Πfoc shows that there is a critical value of δ,

δNHI(λ, rσ2, ρ) ≡ (λ+ 1)

[
1 + rσ2(1 + 2ρλ+ λ2)

1 + rσ2(1− ρ2)

] 1
2

− 1, (25)

above (below) which Πbal > (<) Πfoc. It is straightforward to verify that δNHI is increasing in each of its
arguments.

Proof of Proposition 1. To prove part (i), observe that when faced with a menu of deterministic linear contracts,
an agent either is willing to exert perfectly balanced efforts or strictly prefers fully focused efforts. Therefore, if a
menu existed which could induce both types to choose strictly positive efforts on both tasks, it would have the form

C1 : w1 = α1 + β1x1 + λβ1x2 and C2 : w2 = α2 + β2x2 + λβ2x1,

and would induce agent i to choose Ci. Let ACEi(Cj) denote the certainty equivalent achieved by agent i from
choosing contract Cj . For agent 1 to be willing to choose C1 requires ACE1(C1) ≥ ACE1(C2), and the analogous
self-selection constraint for agent 2 isACE2(C2) ≥ ACE2(C1). Now for all λ > 1, ACE2(C1) > ACE1(C1), since
agent 1’s certainty equivalent from contract C1 equals that which he would obtain from focusing all his effort on task
1 (which is one of his optimal effort allocations), whereas agent 2’s certainty equivalent from C1 equals that which
he would obtain from focusing all his effort on task 2 (which is his unique optimal effort choice), and task 2 is more
highly rewarded than task 1 in contract C1. Similarly, for all λ > 1, ACE1(C2) > ACE2(C2). If ACE1(C1) ≥
ACE2(C2), then ACE2(C1) > ACE1(C1) implies that ACE2(C1) > ACE2(C2), so the self-selection constraint
for agent 2 would be violated. If, instead, ACE1(C1) < ACE2(C2), then ACE1(C2) > ACE2(C2) implies that
ACE1(C1) < ACE1(C2), so the self-selection constraint for agent 1 would be violated. Therefore, there is no
way to choose (α1, β1, α2, β2) so that the menu above induces both types of privately-informed agent to choose
the contract that would make each willing to choose strictly positive efforts on both tasks.

Parts (ii) and (iii) are proved in the text following the statement of the proposition.

Proof of Proposition 2.
Proof of Parts (i) and (ii): For each type of agent, let e (respectively, e) denote effort on his less costly
(respectively, more costly) task, and define x and x analogously. Under ex ante randomization, with probability
1
2 , w = α + βx + kβx, in which case we let EU denote an agent’s expected utility, and with probability 1

2 ,
w = α+ βx+ kβx, in which case we denote expected utility by EU .

Recall that k ∈ (−1, 1). Each agent’s unconditional expected utility under EAR is

1

2
EU+

1

2
EU = −1

2
E exp

{
−r
[
α+ βx+ kβx− 1

2
(e+ λe)2

]}
−1

2
E exp

{
−r
[
α+ βx+ kβx− 1

2
(e+ λe)2

]}
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= −1

2
exp

{
−r
[
α+ βe+ kβe− r

2
σ2β2(1 + 2ρk + k2)− 1

2
(e+ λe)2

]}
− 1

2
exp

{
−r
[
α+ βe+ kβe− r

2
σ2β2(1 + 2ρk + k2)− 1

2
(e+ λe)2

]}
(26)

Hence the first-order conditions for interior solutions for e and e, respectively, are

1

2
[β − (e+ λe)]EU +

1

2
[kβ − (e+ λe)]EU = 0

1

2
[kβ − λ (e+ λe)]EU +

1

2
[β − λ (e+ λe)]EU = 0.

These first-order conditions can be rewritten as

βEU + kβEU = (e+ λe)(EU + EU) (27)

kβEU + βEU = λ(e+ λe)(EU + EU). (28)

Equations (27) and (28) in turn imply

EU + kEU =
k

λ
EU +

1

λ
EU.

If k ∈ [ 1
λ , 1), then the left-hand side of this equation strictly exceeds the right-hand side, so in this case interior

solutions for efforts cannot exist. This proves Part (i).
Adding the first-order conditions (27) and (28) and rearranging yields equation (1). Using (1) to substitute for

aggregate effort (e+ λe) in (27) yields, after a little algebra, (λ− k)EU + (kλ− 1)EU = 0, which simplifies to
equation (2).
Proof of Part (iii): Solving (2) for e − e yields e − e = [ln( λ−k1−kλ )]/[rβ(1 − k)]. For k ∈

(
−1, 1

λ

)
and λ > 1,

therefore, (e− e) is greater than 0, increasing in λ and k, and decreasing in r. (e− e) → 0 as λ→ 1, k → −1+, or
r →∞.
Proof of Part (iv): Using (1) and (2) to substitute into (26), and then simplifying, allows us to express each
type of agent’s expected utility under EAR as

1

2
EU +

1

2
EU = − exp

{
−r

[
α+ β (e+ ke)− β2 (1 + k)

2

2 (λ+ 1)
2 −

1

2
rσ2β2

(
1 + 2ρk + k2

)
− 1

r
ln

(
1 + λ−k

1−kλ
2

)]}
.

Since both types receive the same expected utility, it is optimal for the principal to set α to ensure that their
participation constraints bind. With α set in this way (so that the whole expression in square brackets above
is equal to 0), the principal’s expected payoff, for given (β, k), can be simplified to equation (3) as follows:

ΠEAR(β, k) = e+
1

δ
e− α− 1

2
β(e+ ke)− 1

2
β(e+ ke)

= e+
1

δ
e+

1

2
β(1− k)(e− e)− β2 (1 + k)

2

2 (λ+ 1)
2 −

1

2
rσ2β2

(
1 + 2ρk + k2

)
− 1

r
ln

(
1 + λ−k

1−kλ
2

)

= e+
1

δ
e− β2(1 + k)2

2(λ+ 1)2
− 1

2
rσ2β2(1 + 2ρk + k2)− 1

2r
ln

[
(λ+ 1)

2
(1− k)

2

4(1− kλ)(λ− k)

]
,

where the final line uses (2).

Proof of Proposition 3. Define B ≡ β (1 + k) and note, from (1), that aggregate effort e+ λe is proportional
to B. Using (1), (2), and β = B

1+k to substitute into (3) yields (6) and (7) in the text. To prove the claims

regarding the effect of varying δ, r (with rσ2 fixed), or σ2(1 − ρ) on the optimal level of k, we use (6) and (7)
to examine the sign of the cross-partial derivative of ΠEAR(B, k) with respect to k and the relevant parameter,
holding B and hence aggregate effort fixed.

Part (i): Only the second term on the right-hand side of (7) generates a non-zero value of ∂2Π
∂δ∂k . As long as δ > λ,
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∂2Π
∂δ∂k < 0, so the optimal k decreases as δ increases.
Part (ii): With rσ2 held fixed, only the second term on the right-hand side of (7) and fourth term in (6) vary as

r increases. Examining these terms shows that ∂2Π
∂r∂k > 0, so as r decreases (holding rσ2 fixed), the optimal k

decreases.
Part (iii): ∂Π

∂k depends on σ2 and ρ only via the third term in (6), and ∂Π
∂k is increasing in σ2(1 − ρ), so the

optimal k decreases as σ2(1− ρ) decreases.

Part (iv): ∂2Π
∂B∂k > 0, so as the B to be induced decreases, the optimal k decreases.

Proof of Proposition 4. The proof parallels the steps of the proof of Proposition 2.
Proof of Parts (i) and (ii): Define e, e, x, and x as in the proof of Proposition 2. Under ex post discretion,
since each type of agent anticipates that he will receive the wage w = α+ βmin{x+ kx, x+ kx}, each type’s
expected utility is

− E exp

{
−r
[
α+ βmin{x+ kx, x+ kx} − 1

2
(e+ λe)2

]}
= − exp

{
−r
[
α− 1

2
(e+ λe)2

]}
E {exp [−rβmin {x+ kx, x+ kx}]} . (29)

The random variables (x+ kx) and (x+ kx) have a bivariate normal distribution, with means e+ ke and e+ ke,
respectively. Their common variance and correlation coefficient are, respectively,

(
σk
)2 ≡ var (x1 + kx2) = σ2

(
1 + 2ρk + k2

)
and ρk ≡ corr (x1 + kx2, x2 + kx1) =

ρ+ 2k + ρk2

1 + 2ρk + k2
. (30)

Denote by Φ(·) and φ(·) the c.d.f. and p.d.f., respectively, of a standard normal random variable. Define

θ ≡ σ [2 (1− ρ)]
1
2 and θk ≡ σk

[
2
(
1− ρk

)] 1
2 = θ(1− k). (31)

Cain (1994) derived the moment-generating function, m(t), for the minimum of bivariate normal random variables.
Using his formula and the definitions of Φ(−) and Φ(+) in the statement of Proposition 4, we have

m (−rβ) ≡ E {exp [−rβmin {x+ kx, x+ kx}]}

+ exp

[
−rβ (e+ ke) +

1

2
r2β2

(
σk
)2]

Φ

(
(e− e) (1− k) + rβ

(
σk
)2 (

1− ρk
)

θk

)

= exp

[
−rβ (e+ ke) +

1

2
r2β2

(
σk
)2]

Φ

(
−(e− e)

θ
+
rβθ(1− k)

2

)
+ exp

[
−rβ (e+ ke) +

1

2
r2β2

(
σk
)2]

Φ

(
(e− e)
θ

+
rβθ(1− k)

2

)
= exp

[
−rβ (e+ ke) +

1

2
r2β2

(
σk
)2]

Φ(−) + exp

[
−rβ (e+ ke) +

1

2
r2β2

(
σk
)2]

Φ(+). (32)

Using (32) in (29), we can derive and simplify the first-order conditions for interior optimal values of e and
e, respectively:

(e+ λe)m(−rβ) = β exp

[
−rβ (e+ ke) +

1

2
r2β2

(
σk
)2]

Φ(−) + kβ exp

[
−rβ (e+ ke) +

1

2
r2β2

(
σk
)2]

Φ(+)

(33)

λ(e+λe)m(−rβ) = kβ exp

[
−rβ (e+ ke) +

1

2
r2β2

(
σk
)2]

Φ(−) +β exp

[
−rβ (e+ ke) +

1

2
r2β2

(
σk
)2]

Φ(+).

(34)
Equations (33) and (34) imply

exp[−rβ (e+ ke)]Φ(−) + k exp[−rβ (e+ ke)]Φ(+) =
k

λ
exp[−rβ (e+ ke)]Φ(−) +

1

λ
exp[−rβ (e+ ke)]Φ(+).
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If k ∈ [ 1
λ , 1), then the left-hand side of this equation strictly exceeds the right-hand side, so in this case interior

solutions for efforts cannot exist. This proves Part (i).
Adding the first-order conditions (33) and (34) and rearranging yields equation (8). Using (8) to substitute for

aggregate effort (e+ λe) in (33) yields, after simplification, equation (9).
Proof of Part (iii): Define d ≡ e− e and rewrite (9) in terms of d as

exp [rβ (1− k) d]
Φ
(
d
θ + rβθ(1−k)

2

)
Φ
(
−dθ + rβθ(1−k)

2

) =
λ− k
1− kλ

. (35)

The left-hand side of (35) is increasing in d and equals 1 at d = 0. The right-hand side is increasing in λ and
→ 1 as λ→ 1, so d is increasing in λ and d→ 0 as λ→ 1. Differentiating (35) implicitly w.r.t. k yields

∂

∂k

(
λ− k
1− kλ

)
= exp [rβ (1− k) d]

Φ (+)

Φ (−)

[
−rβd+ rβ(1− k)

∂d

∂k

]
+

exp [rβ (1− k) d]

(Φ (−))
2

[
φ(+)Φ(−)

(
1

θ

∂d

∂k
− rβθ

2

)
− φ(−)Φ(+)

(
−1

θ

∂d

∂k
− rβθ

2

)]
,

where φ(+) and φ(−) are defined analogously to Φ(+) and Φ(−). From this, we can conclude that

∂d

∂k

sgn
= (Φ (−))

2 ∂

∂k

(
λ− k
1− kλ

)
+ rβ exp (rβ (1− k) d)

[
dΦ (+) Φ (−) +

θ

2
(φ (+) Φ (−)− φ (−) Φ (+))

]
.

Hence to show that ∂d
∂k ≥ 0, it is sufficient to show that the term in square brackets on the right-hand side above

is positive, since ∂
∂k

(
λ−k
1−kλ

)
≥ 0. Now define

y ≡ d

θ
and t ≡ rβθ(1− k)

2
. (36)

With these definitions, the term in square brackets above has the sign of

2d

θ
+
φ(+)

Φ(+)
− φ(−)

Φ(−)
= y + t+

φ(y + t)

Φ(y + t)
−
(
−y + t+

φ(−y + t)

Φ(−y + t)

)
= j(y + t)− j(−y + t), (37)

where j(z) ≡ z + φ(z)
Φ(z) . Since y ≥ 0 and j(·) is increasing, j(y + t)− j(−y + t) ≥ 0. Hence d is increasing in k. As

k → −1+, the right-hand side of (35) approaches 1 , so d approaches 0.
Differentiating (35) implicitly with respect to r and rearranging shows that ∂d

∂r has the opposite sign to the

expressions in (37), so d is decreasing in r. As r →∞, the ratio Φ(+)
Φ(−) on the left-hand side of (35) approaches 1, so

for the left-hand side as a whole to remain finite requires d→ 0. Hence as r →∞, d→ 0.

To prove that d is increasing in σ2(1− ρ) = θ2

2 , differentiate (35) implicitly with respect to θ. This yields

∂d

∂θ

sgn
=

d

θ2
[φ(+)Φ(−) + φ(−)Φ(+)]− rβ(1− k)

2
[φ(+)Φ(−)− φ(−)Φ(+)].

Since φ(·)
Φ(·) is decreasing, φ(+)Φ(−)− φ(−)Φ(+) < 0, so d is increasing in θ and hence in σ2(1− ρ). As σ2(1− ρ)

and hence θ goes to 0, d→ 0, since otherwise the left-hand side of (35) becomes infinite.
Proof of Part (iv): Using (8), (9), and (32) to substitute into (29) allows us to express each type of agent’s
expected utility under EPD as

− exp

{
−r
[
α− β2(1 + k)2

2(λ+ 1)2
− 1

2
rβ2(σk)2

]}
(exp[−rβ(e+ ke)]Φ(−) + exp[−rβ(e+ ke)]Φ(+))

= − exp

{
−r
[
α− β2(1 + k)2

2(λ+ 1)2
− 1

2
rβ2(σk)2

]}
(exp[−rβ(e+ ke)] {exp[−rβ(1− k)d]Φ(−) + Φ(+)}) .
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Hence each type of agent’s certainty equivalent is

α+ β(e+ ke)− β2(1 + k)2

2(λ+ 1)2
− 1

2
rβ2(σk)2 − 1

r
ln [exp{−rβ(1− k)d}Φ(−) + Φ(+)] .

Using Cain’s formula for the expectation of the minimum of bivariate normal random variables, as well as the
definitions of d, θk, and θ, the principal’s payoff under EPD can be expressed as

e+
1

δ
e− α− βEmin{x1 + kx2, x2 + kx1}

= e+
1

δ
e− α− β

[
(e+ ke)Φ

(
−(1− k)d

θk

)
+ (e+ ke)Φ

(
(1− k)d

θk

)
− θkφ

(
(1− k)d

θk

)]
= e+

1

δ
e− α− β

[
(e+ ke)Φ

(
−d
θ

)
+ (e+ ke)Φ

(
d

θ

)
− θ(1− k)φ

(
d

θ

)]
.

The principal will set α so each agent’s certainty equivalent is 0, yielding a payoff for the principal of:

ΠEPD(β, k) = e+
1

δ
e− β2(1 + k)2

2(λ+ 1)2
− 1

2
rσ2β2(1 + 2ρk + k2)

− 1

r
ln [exp{−rβ(1− k)d}Φ(−) + Φ(+)]− β(1− k)dΦ

(
−d
θ

)
+ βθ(1− k)φ

(
d

θ

)
,

which is the payoff expression given in (10).
Proof of Part (v): The left-hand sides of (2) and (9) are both increasing in d ≡ (e− e), and since Φ(+) > Φ(−)
whenever d > 0, the left-hand side of (9) is strictly greater than the left-hand side of (2) for all d > 0. Since λ > 1
implies that dEAR > 0 and dEPR > 0, it follows that for all λ > 1, dEPD < dEAR.

Proof of Proposition 5. Equations (3) and (10) give the principal’s payoff from interior effort choices by the
agents under EAR and EPD, respectively, for given (β, k). The proof proceeds in three steps:
Step 1:

ΠEPD(β, k)−
[
eEPD +

1

δ
eEPD − β2(1 + k)2

2(λ+ 1)2
− 1

2
r(σ)2β2

(
1 + 2ρk + k2

)]
≥ 0, (38)

(38) says that for any (β, k), EPD imposes lower risk costs than would the deterministic contractw = α+βx1+kβx2.
To prove (38), we use (10) to express the left-hand side as

1

r

{
−rβd(1− k)Φ

(
−d
θ

)
+ rβθ(1− k)φ

(
d

θ

)
− ln

[
exp{−rβ(1− k)d}Φ

(
−d
θ

+
rβθ(1− k)

2

)
+ Φ

(
d

θ
+
rβθ(1− k)

2

)]}
. (39)

The terms in curly brackets in (39) can be rewritten as

h(y, t) ≡ −2tyΦ(−y) + 2tφ(−y)− ln [exp{−2ty}Φ(−y + t) + Φ(y + t)] , (40)

where we have used the definitions of y and t in (36) and the fact that φ(y) = φ(−y). We now show that h(y, t) ≥ 0
for all y ≥ 0, t ≥ 0. First observe that h(0, t) = 2tφ(0)− ln[2Φ(t)] and h(0, 0) = 0. Also,

∂h(0, t)

∂t
= 2φ(0)− φ(t)

Φ(t)
,

and since ∂h(0,t)
∂t = 0 at t = 0 and φ(t)

Φ(t) is decreasing in t, it follows that h(0, t) ≥ 0 for all t ≥ 0. Furthermore,

as y → ∞, h(y, t) → 0 for all t ≥ 0. Thus, to show that for all y ≥ 0 and t ≥ 0, h(y, t) ≥ 0, it is sufficient to
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show that ∂h(y,t)
∂y ≤ 0. Now

∂h(y, t)

∂y

sgn
= −Φ(−y) +

Φ(−y + t)

exp{2ty}Φ(y + t) + Φ(−y + t)
. (41)

Define q(y, t) to equal the right-hand side of (41). q(y, 0) = 0, so showing that q(y, t) is decreasing in t for all

t ≥ 0 will imply that ∂h(y,t)
∂y ≤ 0.

∂q(y, t)

∂t

sgn
= = −y + t+

φ(−y + t)

Φ(−y + t)
−
(
y + t+

φ(y + t)

Φ(y + t)

)
≤ 0,

since j(z) = z + φ(z)
Φ(z) is increasing (see (37)). Hence for all y ≥ 0, t ≥ 0, ∂h(y,t)

∂y ≤ 0, and so h(y, t) ≥ 0.

Step 2: When δ ≥ λ,

eEPD +
1

δ
eEPD − β2(1 + k)2

2(λ+ 1)2
− 1

2
r(σk)2β2 ≥ eEAR +

1

δ
eEAR − β2(1 + k)2

2(λ+ 1)2
− 1

2
r(σk)2β2

This step follows from the facts that aggregate effort e+ λe is equal under EPD and EAR (as shown by (1) and
(8)) and that the gap in efforts, e− e, is smaller under EPD than EAR.
Step 3:[

eEAR +
1

δ
eEAR − β2(1 + k)2

2(λ+ 1)2
− 1

2
r(σk)2β2

]
−ΠEAR(β, k) =

1

2r
ln

[
(λ+ 1)

2
(1− k)

2

4(1− kλ)(λ− k)

]
≥ 0.

This step follows from (3), λ ≥ 1, and the fact that k < 1
λ is a necessary condition for EAR and EPD to induce

interior solutions for efforts.

Proof of Proposition 6.
Proof of Part (i): For λ = 1, both EAR and EPD induce interior solutions for efforts for all β > 0 and
k ∈ (−1, 1). Therefore, from Proposition 5, we know that EPD is more profitable than EAR for any given (β, k),
so it suffices to show that, for any given (β, k), EPD can be strictly dominated in terms of payoffs by a suitably
designed symmetric deterministic (SD) scheme.

For λ = 1, aggregate effort under EPD is eEPD + λeEPD = β(1+k)
2 , and eEPD = eEPD = β(1+k)

4 . Hence, for
λ = 1, equation (10) simplifies to

ΠEPD(β, k) =
δ + 1

δ

β(1 + k)

4
− 1

8
β2(1 + k)2 − 1

2
r(σk)2β2 − 1

r

{
ln

[
2Φ

(
rβθ(1− k)

2

)]
− rβθ(1− k)φ(0)

}
.

(42)

Consider now a SD scheme with coefficient βSD chosen to induce the same level of aggregate effort as under

EPD for the given values of β and k: βSD = β(1+k)
2 . Since λ = 1, eSD = eSD = β(1+k)

4 , so SD also induces
exactly the same effort levels on each task as EPD. The principal’s payoff under the SD scheme is

ΠSD(βSD) =
δ + 1

δ

βSD

2
−1

2

(
βSD

)2−rσ2
(
βSD

)2
(1+ρ) =

δ + 1

δ

β(1 + k)

4
−1

8
β2(1+k)2−1

4
rσ2β2(1+k)2(1+ρ).

(43)
Using (42) and (43) and the definition of (σk)2 in (30), we have

ΠSD(βSD)−ΠEPD(β, k) =
rβ2

2

[
(σk)2 − σ2(1 + k)2)(1 + ρ)

2

]
+

1

r

{
ln

[
2Φ

(
rβθ(1− k)

2

)]
− rβθ(1− k)φ(0)

}
=

1

4
rσ2β2(1− ρ)(1− k)2 +

1

r

{
ln

[
2Φ

(
rβθ(1− k)

2

)]
− rβθ(1− k)φ(0)

}
. (44)
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(44) has the sign of g(t) ≡ t2

2 + ln [2Φ(t)]− 2tφ(0), where t is defined in (36). We have g(0) = 0. Also,

g′(t) = −
√

2

π
+
tΦ(t) + φ(t)

Φ(t)
and g′(0) = 0 ; g′′(t) =

[Φ(t)]
2 − tφ(t)Φ(t)− [φ(t)]2

[Φ(t)]2
and g′′(0)

sgn
=

1

4
− 1

2π
> 0

Finally, the derivative of the numerator of g′′(t) can be shown to be strictly positive for all t > 0. Therefore, for all
t > 0, g′′(t) > 0, g′(t) > 0, and hence g(t) > 0. Since ρ < 1 implies t > 0, we have thus shown that, with λ = 1
and ρ < 1, ΠSD(βSD)−ΠEPD(β, k) > 0. (If ρ = 1, then t = 0, hence ΠSD(βSD)−ΠEPD(β, k) = 0.)
Proof of Part (ii): Since Proposition 5 assumes that both EAR and EPD induce interior solutions for efforts,
we analyze EAR and EPD separately to prove Part (ii).

We first show that if EPD induces a corner solution for efforts for given (β, k), then it can be strictly dominated in
terms of payoffs by a suitably designed SD scheme. When EPD induces a corner solution for efforts (so eEPD = 0),
the first-order condition (33) for eEPD reduces to (contrast this with (9)):

exp
{
rβ(1− k)ēEPD

} Φ
(
eEPD

θ + rβθ(1−k)
2

)
Φ
(
−eEPD

θ + rβθ(1−k)
2

) =
β − ēEPD

ēEPD − kβ
. (45)

Since the left-hand side of (45) is strictly greater than 1 for k < 1, (45) implies that ēEPD < β(1+k)
2 . When

EPD induces A to choose the corner solution
(
ēEPD, 0

)
,

ΠEPD(β, k) =
ēEPD

δ
− 1

2

(
ēEPD

)2 − 1

2
rβ2(σk)2

− 1

r
ln
[
Φ(+) + exp

{
−rβ(1− k)ēEPD

}
Φ(−)

]
− β(1− k)ēEPDΦ

(
−ēEPD

θ

)
+ βθ(1− k)φ

(
ēEPD

θ

)
.

Consider now a SD scheme with incentive coefficient βSD chosen to induce the same effort pair
(
ēEPD, 0

)
as

under EPD for the given values of β and k: βSD = ēEPD. The principal’s payoff under this SD scheme is

ΠSD
(
βSD

)
=
ēEPD

δ
− 1

2

(
ēEPD

)2 − (1 + ρ) rσ2
(
ēEPD

)2
.

Therefore, ΠSD
(
βSD

)
−ΠEPD (β, k) has the sign of

r2σ2

4
[2β2(1 + 2ρk + k2)− 4 (1 + ρ)

(
ēEPD

)2
]

+ ln
[
Φ(+) + exp

{
−rβ(1− k)ēEPD

}
Φ(−)

]
+ rβ(1− k)ēEPDΦ

(
−ēEPD

θ

)
+ rβθ(1− k)φ

(
ēEPD

θ

)
. (46)

Since (45) implies that ēEPD < β(1+k)
2 , the expression on the first line of (46) is strictly greater than

r2β2σ2

4

[
2(1 + 2ρk + k2)− (1 + ρ) (1 + k)

2
]
. (47)

Using (47), the definitions of y and t in (36), and the second and third lines of (46), we conclude that

ΠSD
(
βSD

)
−ΠEPD (β, k) >

t2

2
− h(y, t),
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where h(y, t) is defined in (40). We showed there that h(y, t) is decreasing in y, for all y ≥ 0, t ≥ 0, hence

t2

2
− h(y, t) ≥ t2

2
− h(0, t) =

t2

2
+ ln [2Φ(t)]− 2tφ(0) = g(t),

where g(t) was defined and shown in the proof of Part (i) to be strictly positive for all t > 0. Therefore,
ΠSD

(
βSD

)
−ΠEPD (β, k) > 0.

An analogous argument shows that if EAR induces a corner solution for efforts for given (β, k), then it can be
strictly dominated in terms of payoffs by a suitably designed SD scheme. This argument starts from the first-order
condition for ēEAR when the optimal value of eEAR = 0 (compare (2)):

exp
{
rβēEAR(1− k)

}
=

β − ēEAR

ēEAR − kβ
.

Proof of Part (iii): The proof of Part (ii) dealt with the case where EAR and EPD induce corner solutions for
efforts. From Propositions 5 and 4, we know EPD is more profitable than EAR for any given (β, k) when both
schemes induce interior solutions and that EPD induces interior solutions whenever EAR does. Hence, it suffices
to show, when δ < λ, that for any (β, k) such that EPD induces interior solutions, EPD can be strictly dominated
in terms of payoffs by a suitably designed symmetric deterministic (SD) scheme.

From the proof of Proposition 5 (Step 1), we know that we can write

ΠEPD(β, k) = e+
ē

δ
− 1

2
(ē+ λe)

2 − 1

2
rβ2(σk)2 +

1

r
h(y, t)

≤ e+
ē

δ
− 1

2
(ē+ λe)

2 − 1

2
rβ2(σk)2 +

1

r
h(0, t)

= e+
ē

δ
− 1

2
(ē+ λe)

2 − 1

2
rβ2(σk)2 +

1

r
[− ln(2Φ(t)) + 2tφ(0)]

<
ē+ λe

δ
− 1

2
(ē+ λe)

2 − 1

2
rβ2(σk)2 +

1

r
[− ln (2Φ (t)) + 2tφ (0)]

=
β(1 + k)

δ (1 + λ)
− 1

2

β2(1 + k)2

(1 + λ)
2 − 1

2
rβ2(σk)2 +

1

r
[− ln (2Φ (t)) + 2tφ (0)] , (48)

where the weak inequality follows from the fact that h(y, t) is decreasing in y, the strict inequality from the fact
that, by assumption, δ < λ, and the final equality uses (8).

Consider now a SD scheme with incentive coefficient βSD chosen to induce the same aggregate effort as under

EPD for the given values of β and k: βSD = β(1+k)
1+λ . Since λ > δ ≥ 1, the SD scheme induces e = βSD, e = 0,

and the principal’s payoff under this SD scheme is

ΠSD(βSD) =
β(1 + k)

δ (1 + λ)
− 1

2

β2(1 + k)2

(1 + λ)
2 − rσ2β2(1 + k)2 (1 + ρ)

(1 + λ)2
. (49)

Hence from (48) and (49) we can conclude that

ΠSD(βSD)−ΠEPD(β, k) >
1

r

[(
rβσk

)2
2

− (rβσ)2(1 + k)2 (1 + ρ)

(1 + λ)2
+ ln (2Φ (t))− 2tφ (0)

]

≥ 1

r

[(
rβσk

)2
2

− (rβσ)2(1 + k)2 (1 + ρ)

4
+ ln (2Φ (t))− 2tφ (0)

]

=
1

r

[
(rβσ)2

4
(1− ρ)(1− k)2 + ln (2Φ (t))− 2tφ (0)

]
=

1

r

[
t2

2
+ ln (2Φ (t))− 2tφ (0)

]
=

1

r
[g(t)] ≥ 0 ∀t ≥ 0,
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where the strict inequality is a consequence of the inequalities in (48), the weak inequality follows since λ ≥ 1,
the first equality uses (30), the second equality uses (36), and the final line uses the definition of g(t) and its
nonnegativity, from the proof of Part (i).
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B Online Appendix: Not for Publication

B.1 Ex Ante Randomization and the Choice of How Many Tasks to Reward

In Section 7.4 we discussed the trade-offs involved in the design of randomized incentive schemes in environments
with many tasks. In this section we provide the derivations for our results.

Consider an EAR scheme in which each subset of κ out of n tasks is chosen with equal probability, and each task
in the chosen subset is rewarded at rate β. Since this scheme is symmetric with respect to all n tasks and since each
type of agent’s preferences are symmetric with respect to each of his n− 1 “non-dislike” tasks, each agent’s optimal
effort profile can be described by e, his effort on his disliked task, and by e, his effort on each of the other tasks. If
the task that an agent dislikes is included (respectively, not included) in the chosen subset, denote his (conditional)
expected utility by EU (respectively, EU). For any given task, the number of subsets that include it is

(
n−1
κ−1

)
,

while the number that do not is
(
n
κ

)
−
(
n−1
κ−1

)
=
(
n−1
κ

)
. Hence each type of agent’s unconditional expected utility is(

n−1
κ

)(
n
k

) EU +

(
n−1
κ−1

)(
n
k

) EU.

We focus on the case where optimal efforts are interior.
The aggregate effort exerted by an agent is λe + (n− 1) e, which we define as A. To find the optimal level

of A, we equate the sum over all tasks of the expected marginal monetary returns to effort to the sum over all
tasks of the marginal cost of effort. (Formally this corresponds to adding the first-order conditions for effort on
each of the n tasks.) This yields κβ = (n− 1 + λ)A, so the optimal level of A = κβ

n−1+λ . To derive the optimal
value of e− e, we need the first-order condition for e, which is(

n−1
κ−1

)
[β − λA]EU +

(
n−1
κ

)
[−λA]EU = 0, (50)

since the net marginal monetary return to e is β − λA if the subset of rewarded tasks includes the agent’s disliked
one and is −λA otherwise. Substituting for the optimal value of A in (50) and rearranging yields

e− e =
1

rβ
ln

[
λ (n− κ)

n− 1− (κ− 1)λ

]
.

A necessary condition for interior solutions is k − 1 ≤ n−1
λ . Each type of agent’s unconditional expected utility

is given by

EU = −
(
n−1
κ−1

)(
n
κ

) exp

{
−r

[
α+ β ((κ− 1) e+ e)− 1

2

κ2β2

(n− 1 + λ)
2 −

1

2
rσ2β2κ (1 + ρ(κ− 1))

]}

−
(
n−1
κ

)(
n
κ

) exp

{
−r

[
α+ βκe− 1

2

κ2β2

(n− 1 + λ)
2 −

1

2
rσ2β2κ (1 + ρ(κ− 1))

]}
.

The principal will optimally set α to ensure that the participation constraint binds for each type of agent. With
α set in this way, and using the expressions for each type of agent’s optimal choices of A and e− e, the principal’s
expected payoff as a function of β and κ can be simplified to

Π(β, κ) =

(
e+

(n− 1)

δ
e

)
− κ2β2

2 (n− 1 + λ)
2

− 1

2
rσ2β2κ (1 + ρ(κ− 1))− 1

nr
ln

[
(n− κ)n−κ(n− 1 + λ)n

nnλκ ((n− 1)− (κ− 1)λ)
n−κ

]
, (51)

where

e+
(n− 1)

δ
e =

(
δ + n− 1

δ

)
κβ

(n− 1 + λ)2
− (δ − λ)(n− 1)

δ(n− 1 + λ)rβ
ln

[
λ(n− κ)

(n− 1)− (κ− 1)λ

]
. (52)

Using β̃ = κβ to substitute for β in the above payoff expression yields expressions (22) and (23) in the text.
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Verifying the claims in the final paragraph of Section 7.4 regarding the effect of varying δ, r (with rσ2 fixed), or
σ2(1− ρ), on the optimal value of κ requires signing the cross-partial derivative of Π(β̃, κ) in (22) with respect to

κ and the relevant parameter, holding β̃ fixed. We can show that ∂2Π
∂δ∂κ < 0 , ∂2Π

∂r∂κ > 0, and ∂2Π
∂(σ2(1−ρ))∂κ > 0, from

which the claims follow. The final claim follows from the fact that ∂2Π
∂β̃∂κ

> 0.
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