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Truthful Equilibria in Dynamic Bayesian Games

Johannes Hörner∗, Satoru Takahashi† and Nicolas Vieille‡

January 19, 2015

Abstract

This paper characterizes an equilibrium payoff subset for dynamic Bayesian games

as discounting vanishes. Monitoring is imperfect, transitions may depend on actions,

types may be correlated and values may be interdependent. The focus is on equilibria

in which players report truthfully. The characterization generalizes that for repeated

games, reducing the analysis to static Bayesian games with transfers. With indepen-

dent private values, the restriction to truthful equilibria is without loss, except for the

punishment level; if players withhold their information during punishment-like phases,

a folk theorem obtains.

Keywords: Bayesian games, repeated games, folk theorem.

JEL codes: C72, C73

1 Introduction

This paper studies the asymptotic equilibrium payoff set of dynamic Bayesian games. In

doing so, it generalizes methods that were developed for repeated games (Fudenberg and

Levine, 1994; Fudenberg, Levine and Maskin, 1994, hereafter, FL and FLM) and later

extended to stochastic games (Hörner, Sugaya, Takahashi and Vieille, 2011, hereafter HSTV)

to games with incomplete information.

The contribution of this paper is as follows. First, we define a class of equilibria –truthful

equilibria– in which players report their private information honestly in every period, on

∗Yale, 30 Hillhouse Ave., New Haven, CT 06520, USA, johannes.horner@yale.edu.
†National University of Singapore, ecsst@nus.edu.sg.
‡HEC Paris, 78351 Jouy-en-Josas, France, vieille@hec.fr.
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and off path, and do not condition their play on past private information. This class of

strategies specializes to public strategies (and truthful equilibria to perfect public equilibria)

in the case of complete information. Second, we relate truthful equilibrium payoffs (as the

discount factor tends to one) to a static Bayesian game augmented with transfers. Here

as well, this is a natural generalization of the results for repeated games (Fudenberg and

Levine, 1994, in particular). Third, we prove that the restriction to truthful equilibria is

without loss in some contexts (again, as δ → 1). In particular, we show that this is the case

with independent private values, where truthful equilibria are only restrictive for obedience.

That is, under usual identifiability conditions, truthfulness only limits how low a particular

player’s equilibrium payoff can be.

Relative to existing papers on games with persistent private information, the set of equi-

librium payoffs we obtain is larger,1 and tight under some conditions. Furthermore, the class

of games considered is significantly more general. Our methods apply to games exhibiting:

- moral hazard (imperfect monitoring);

- endogenous serial correlation (actions affecting transitions);

- correlated types (across players) and interdependent values.

These features are all missing from the existing literature (with the exception of interdepen-

dent values, which is exhibited by the cheap-talk game of Renault, Solan and Vieille, 2013,

and imperfect monitoring, in the class considered by Barron, 2013).

Allowing for such features is not merely of theoretical interest. There are many applica-

tions in which some if not all of them are relevant. In insurance markets, for instance, there

is clearly persistent adverse selection (risk types), moral hazard (accidents and claims having

a stochastic component), interdependent values, action-dependent transitions (risk-reducing

behaviors) and, in the case of systemic risk, correlated types. The same holds true in finan-

cial asset management, and in many other applications of such models (taste or endowment

shocks, etc.)

More precisely, we assume that the state profile –each coordinate of which is private

information to a player– follows a controlled autonomous irreducible Markov chain. (Irre-

ducibility refers to its behavior under any fixed Markov strategy.) In the stage game, players

privately take actions, and then a public signal realizes, whose distribution may depend

1The one exception is the lowest equilibrium payoff in Renault, Solan and Vieille (2013), who also char-

acterize Pareto-inferior “babbling” equilibria, in a game that has interdependent values.
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both on the state and action profile, and the next round state profile is drawn. Cheap-talk

communication is allowed, in the form of a public report at the beginning of each round.

As mentioned, our analysis is about truthful equilibria. In a truthful equilibrium, players

truthfully reveal their type at the beginning of each round, after every history. In addition,

players’ action choices are public: they only depend on their current type and the public

history. While concentrating on truth-telling equilibria is with loss of generality given the

absence of any commitment, it nevertheless turns out that this limit set includes the payoff

sets obtained in all the special cases studied by the literature.

In Sections 2–5, we focus on the case of independent private values: payoffs only depend

on a player’s own private information (and the action profile), and this information evolves

independently across players, conditional on the public information and one’s own private

action. We provide a family of one-shot games with transfers that reduce the analysis

from a dynamic infinite-horizon game to a static game. Unlike the one-shot game of FL

and HSTV (special cases of ours), this one-shot game is Bayesian. Each player makes a

report, then takes an action; the transfer is then determined. This reduction provides a

bridge between dynamic games and Bayesian mechanism design. As explained below, its

payoff function is not entirely standard, raising interesting new issues for static mechanism

design. Nonetheless, well-known results can be adapted for a wide class of dynamic games.

Under independent private values (and also under correlated types), the analysis of the one-

shot game yields an equilibrium payoff set that is best possible, except for the definition of

individual rationality.

For such games, we prove a folk theorem: truthful equilibria might be restrictive in

terms of individual rationality (lowest equilibrium payoff for a given player), but they do

not restrict the set of equilibrium payoffs otherwise. Leaving aside individual rationality,

we show that the payoff set attained by truthful equilibria is actually equal to the limit

set of all Bayes Nash equilibrium payoffs, whichever message sets one chooses. In other

words, in the revelation game in which players commit to the map from reports to actions,

but not to current or future reports, there is no loss of generality in restricting attention

to truthful equilibria. In this sense, the revelation principle extends, despite the absence of

commitment, provided players are patient enough. Beyond generalizing the results of Athey

and Bagwell (2001), as well as Escobar and Toikka (2013), this characterization has some

interesting consequences. For instance, when actions do not affect transitions, the invariant

distribution of the Markov chain is a sufficient statistic for the Markov process, as far as this

equilibrium payoff set is concerned, leaving individual rationality aside.

In Section 5, we further concentrate on games in which monitoring has a product struc-
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ture. This is the class of games for which, absent any private information, existing “folk”

theorems are actual characterizations of the set of (limit) sequential equilibrium payoffs.

While insisting on truthfulness might be restrictive in terms of individual rationality (as

mentioned above) we show that, for the case of product structure, a simple twist on such

equilibria (in which players abstain from reporting their private information when punishing

others) provides an exact characterization of all Bayes Nash equilibrium payoffs.

In Section 6, we state a general version of our main theorem, which provides a subset

of limit equilibrium payoffs, whether types are correlated and values are private, or not.

Conclusive characterizations are obtained under independent private values and correlated

types. The paper focuses mostly on private independent values. The case of correlated

types is relegated to the working paper. This mirrors the state of affairs in static mechanism

design. In fact, our results are obtained by applying familiar techniques to the one-shot game,

developed by Arrow (1979) and d’Aspremont and Gérard-Varet (1979) for the independent

case, and d’Aspremont, Crémer and Gérard-Varet (2003) in the correlated case.

Our approach stands in contrast with the techniques based on review strategies (see Esco-

bar and Toikka 2013 for instance) whose adaptation to incomplete information is inspired by

the linking mechanism described in Fang and Norman (2006) and Jackson and Sonnenschein

(2007). Our results imply that, as is already the case for repeated games with public mon-

itoring, transferring continuation payoffs across players is an instrument that is sufficiently

powerful to dispense with explicit statistical tests. Of course, this instrument requires that

deviations in the players’ reports can be statistically distinguished, a property that calls for

assumptions closely related to those called for in static mechanism design. Here as well, we

build on results from static mechanism design (in particular the weak identifiability condi-

tion introduced by Kosenok and Severinov (2008)) to ensure budget balance in the dynamic

game.

While the characterization turns out to be a natural generalization of the one from

repeated games with public monitoring, it still has several unexpected features, reflecting

difficulties in the proof that are not present either in stochastic games with observable states.

These difficulties shift the emphasis of the program from payoffs to strategies.

To bring these difficulties to light, consider precisely independent private values. Together

with the irreducibility of the Markov chain, independence implies that the long-run (or

asymptotic) payoff of a player is independent of his current state. To incentivize a player to

disclose his private information, it does not suffice to adjust his long-run payoff, as such an

adjustment affects all the different types identically (and so cannot give them strict incentives

to use different strategies). On the other hand, we cannot focus on the flow payoff either to
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provide such incentives, as with persistent types, a player’s private information also enters

his continuation payoffs. Hence, player i’s incentives to disclose his information depends on

the impact of his report on the transient component of his long-run payoff; that is, loosely

speaking, on his flow payoffs until the effect of the initial state fades away. This transient

component is bounded from above, even as δ → 1: unlike in repeated games, future payoffs

do not eclipse flow payoffs, as far as incentives to tell the truth regarding one’s type are

concerned. Furthermore, this transient component depends on the player’s initial state,

according to the future actions played. On the other hand, as far as obedience is concerned

(playing the agreed upon action profile, given the public reports), the usual logic applies,

since this action does not depend on the player’s private information: changes in long-run

payoffs according to the realized public signal provide adequate incentives.

Hence, the proof adopts two time scales. Over the short run, the policy that players

follow (the map from reports to actions) is fixed. The resulting transient component follows

directly, and is treated as a flow payoff. In other words, in the short run, the flow payoff

is computed as if strategies were Markov: the relative value that arises in (undiscounted)

dynamic programming is precisely the right measure for this transient component. In the

long run, play is decidedly non-Markovian. Play switches towards a new Markov strategy

profile that metes out punishments and rewards according to the history of public signals.

The two time scales interact, however, leading to a characterization that intermingles

both the relative value (treated as an adjustment to the flow payoff) and the changes in the

long-run payoff (treated, as usual, as a transfer).

Games without commitment but with imperfectly persistent private types were intro-

duced in Athey and Bagwell (2001, 2008) in the context of Bertrand oligopoly with privately

observed cost. Athey and Segal (2013, hereafter AS) allow for transfers and prove an ef-

ficiency result for ergodic Markov games with independent types. Their team balanced

mechanism is closely related to a normalization that is applied to the transfers in one of our

proofs in the case of independent private values.

There is also a literature on undiscounted zero-sum games with such a Markovian struc-

ture, see Renault (2006), which builds on ideas introduced in Aumann and Maschler (1995).

Because of the importance of such games for applications in industrial organization and

macroeconomics, there is an extensive literature on recursive formulations for fixed discount

factors. In game theory, recent progress has been made in the case in which the state is

observed, see Fudenberg and Yamamoto (2011) and HSTV for an asymptotic analysis, and

Pęski and Wiseman (2014) for the case in which the state transition becomes infrequent as

the time lag between consecutive moves goes to zero. There are some similarities in the
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techniques used, although incomplete information introduces significant complications.2

More related are the papers by Athey and Bagwell (2001, 2008), Escobar and Toikka

(2013), Barron (2013) and Renault, Solan and Vieille. All these papers assume that types

are independent across players. Barron introduces imperfect monitoring in Escobar and

Toikka (whose model generalizes most of the results of Athey and Bagwell), but restricts

attention to the case of one informed player only. This is also the case in Renault, Solan and

Vieille. This is the only paper that allows for interdependent values, although in the context

of a very particular model, namely, a sender-receiver game with perfect monitoring. As

mentioned, none of these papers allow transitions to depend on actions. When specialized to

the environments considered by Escobar and Toikka, our result provides a characterization

of the asymptotic equilibrium payoff set in these environments, which in general is larger

than the set that they identify.

Section 2 introduces the model and defines truthful equilibria. Mostly for pedagogical

reasons, we start our analysis of independent private values with the special case in which

monitoring is perfect and actions do not affect transitions (this is the environment of Escobar

and Toikka). In Section 4, we drop these two restrictions but stick with independent private

values. Section 5 indicates how one can obtain a true “folk theorem” by slightly relaxing

the class of equilibria considered (and specializing to an environment in which there is any

hope of achieving such a folk theorem –product monitoring). Section 6 defines the one-shot

Bayesian game in full generality. Readers interested in the application to correlated values

are referred to the working paper.

2 Model and Equilibrium

We consider dynamic games with imperfectly persistent incomplete information.

2.1 Extensive Form

The stage game is as follows. The finite set of players is denoted I. We assume that there

are at least two players. Each player i ∈ I has a finite set Si of (private) states, or types,

2Among others, HSTV (as before FLM) rely on the equilibrium payoff set being full-dimensional, an

assumption that fails with independent private values: When the players’ types follow independent Markov

chains and values are private, the players’ limit equilibrium payoff must be independent of their initial type,

given irreducibility and incentive-compatibility.
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and a finite set Ai of actions. The state si ∈ Si is private information to player i. We denote

by S := ×i∈IS
i and A := ×i∈IA

i the sets of state profiles and action profiles respectively.

In each round n ≥ 1, timing is as follows:

1. Each player i ∈ I privately observes his own state sin ∈ Si;

2. Players simultaneously make reports (mi
n)

I
i=1 ∈ ×iM

i, where M i is a finite set. These

reports are publicly observed;

3. The outcome of a public randomization device (p.r.d.) is observed. For concreteness,

it is a draw from the uniform distribution on [0, 1];3

4. Players independently choose actions ain ∈ Ai. Actions taken are not observed;

5. A public signal yn ∈ Y , a finite set, and the next state profile sn+1 = (sin+1)i∈I are

drawn according to some joint distribution p(·, · | sn, an) ∈ ∆(S × Y ).

The stage-game payoff or reward of player i is a function ri : S ×A→ R, whose domain

is extended to mixed action profiles in ∆(A). As is customary, we may interpret this reward

as the expected value (with respect to the signal y) of some function gi : S × Ai × Y → R,

ri(s, a) = E[gi(s, ai, y) | s, a]. In that case, given (s, ai, y), the realized reward does not

convey additional information about a−i, so that whether this reward is observed or not is

irrelevant (for the updating of beliefs over a−i, conditional on (s, ai, y)) . We do not make this

assumption, but assume instead that realized rewards are not observed. Hence, we assume

that a player’s private action, private state, the public signal and report profile are all the

information available to him.

Given the sequence of realized rewards (rin) = (ri(sn, an)), player i’s payoff in the dynamic

game is given by
+∞
∑

n=1

(1− δ)δn−1rin,

where δ ∈ [0, 1) is common to all players. (Short-run players can be accommodated for, as

will be discussed.)

The dynamic game also specifies an initial distribution π1 ∈ ∆(S), which plays no role in

the analysis, given the irreducibility assumption we will impose and the focus on equilibrium

payoff vectors as elements of RI as δ → 1.

3We do not know how to dispense with it. But given that public communication is allowed, such a public

randomization device is innocuous, as it can be replaced by jointly controlled lotteries.

7



Our focus will be on independent private values (hereafter, IPV). This is defined as the

special case in which (i) transitions satisfy

p(t, y | s, a) = p(y | a)××i∈Ip
i(ti | si, y),

as well as

π1(s) = ×i∈Iπ
i
1(s

i),

for some transitions {pi(· | si, y)}si,y ⊆ ∆(Si), and distributions {p(· | a)}a ⊆ ∆(Y ), πi
1 ∈

∆(Si), all i ∈ I, and (ii) rewards satisfy, for all i ∈ I, s ∈ S, a ∈ A, ri(s, a) = ri(si, a). The

first assumption guarantees that beliefs over state profiles are common knowledge throughout

the game, on and off path. We assume full support : πi
1(s

i) > 0, pi(ti | si, y) > 0 for all ti, si

and y, but allow p(y | a) = 0.

In Section 6, we extend our analysis to types that are not independent, and/or values

that are not private. In the case of interdependent values, it matters whether players observe

their payoffs or not. One can view privately observed payoffs as a special case of private

values: simply define a player’s private state as including his last realized payoff.4 It would

then be natural to allow for a second round of messages at the end of each period –and this

second message could include both the realized payoff and the realized (private) action. In

fact, our main characterization result extends immediately to the case in which monitoring

is private, rather than public; see Section 6 for a discussion.

Monetary transfers are not allowed. We view the stage game as capturing all possible

interactions among players, and there is no difficulty in interpreting some actions as monetary

transfers. In this sense, rather than ruling out monetary transfers, what is assumed here is

limited liability (as captured by the boundedness of the action simplex).

The game defined above allows for public communication among players. In doing so,

we follow most of the literature on dynamic Bayesian games, see Athey and Bagwell (2001,

2008), Escobar and Toikka (2013), Renault, Solan and Vieille (2013), etc.5 As in static

Bayesian mechanism design, communication is required for coordination even in the absence

of strategic motives; communication allows us to characterize what restrictions on payoffs,

if any, are imposed by non-cooperative behavior.

4This interpretation is pointed out by AS. See also Mezzetti (2004) for the “static” (two rounds) counter-

part.
5This is not to say that introducing a mediator would be uninteresting. Following Myerson (1986), we

could then appeal to a revelation principle, although without commitment from the players this would simply

shift the inferential problem to the recommendation step of the mediator.
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Throughout, when a period is fixed and understood, we index variables relative to the

previous period with an upper bar (s̄, ā, etc.). Also, when referring to the following period,

we use either t instead of s (for “t”omorrow’s state), or label the variable with a prime.

2.2 Truthful Equilibria

2.2.1 Definition

We now define the class of Bayes Nash equilibria studied in this paper. This class coincides

with perfect public equilibria (PPE) in repeated games with imperfect public monitoring.

It follows that it is with loss of generality. As for PPE, the definition is motivated by

tractability, with the hope that the resulting payoff characterization proves to be without

loss under fairly weak conditions on the game.

The set of messages available to the players is an ingredient of the solution concept. Here

and until Section 6, we assume that6

M i = Si.

This is a priori restrictive. Because players cannot commit, the revelation principle does

not apply (see Bester and Strausz, 2001), and richer message sets might lead to larger sets

of equilibrium payoffs. Let M := ×i∈IM
i.

Furthermore, we focus on equilibria in which players truthfully reveal their private state

in every period, on and off path. A priori, there is no reason to expect such equilibria to

even exist.

Formal definitions require additional notation. A public history at the start of round n ≥
1 is a sequence hpub,n = (m1, y1, . . . , mn−1, yn−1) ∈ Hpub,n := (M × Y )n−1. Player i’s private

history at the start of round n is a sequence hin = (si1, m1, a
i
1, y1, . . . , s

i
n−1, mn−1, a

i
n−1, yn−1) ∈

H i
n := (Si × M × Ai × Y )n−1. (Here, H i

1 = Hpub,1 := {∅}.) A (behavior) strategy for

player i is a pair of sequences (mi, ai) = (mi
n, a

i
n)n∈N with m

i
n : H i

n × Si → ∆(M i), and

a
i
n : H i

n × Si ×M → ∆(Ai), which specify i’s report and action as a function of his private

information, his current state and the report profile in the current round. Recall however

that a p.r.d. is assumed, although it is omitted from the notation. A strategy profile (m, a)

defines a distribution over finite and infinite histories in the usual way.

Definition 1 (Truthful Equilibrium) A strategy (mi, ai) is truthful if m
i
n(h

i
n, s

i
n) = sin

for all histories hin, n ≥ 1, and a
i(hin, s

i
n, mn) depends on (hpub,n, s

i
n, mn) only.

6For clarity, we maintain the notational distinction.
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The first requirement imposes players to always report their current state truthfully, after all

histories. The second requires actions to depend on public information (and current state)

only.7

Our analysis makes extensive use of the notion of a policy (or Markov strategy). This is

simply a map ρ : S → ∆(A), interpreted as a (possibly correlated) choice of action given the

vector of states (or reports).

2.2.2 Limitations

To appreciate why truthful equilibria are restrictive, consider a two-player game with perfect

monitoring in which player 1 has two equiprobable states s = t, b, which are i.i.d. over time,

while player 2 has only one state.8 Players have two actions, {T,B} and {L,R}. Further,

suppose that player 1’s payoff from T (resp., B) exceeds his payoff from playing B if the

state is t (resp., b), and that his actions are not observed. Hence, in any truthful equilibrium,

player 1 must play T (resp., B) whenever his state is t (resp., b).

This means that we cannot drive player 2’s payoff below what he can get from taking a

best reply to player 1’s action. If his best-reply is strict, then we could achieve a lower equi-

librium payoff by considering a non-truthful equilibrium –player 1 simply does not announce

his state, leaving player 2 guessing what he should do.

It is clear that the argument is more general. Even with i.i.d. states, it is not usually

possible to have a player be indifferent over several actions in more than one particular state

in a truthful equilibrium.9

Hence, asking for truth-telling rules out randomization (in all but at most one state).

Yet randomization is helpful in achieving extremal payoffs in repeated games, for at least

two reasons. First, it might be called upon by minmaxing (as in the example above). At the

very least, truthful equilibrium curbs the ability to punish players. Second, it might help

detection of deviations, when monitoring is imperfect, and the monitoring technology does

not have the product structure: it might well be that, for each pure action of player 2, there

are two actions of player 1 that are indistinguishable (in terms of public signals), yet none

would be statistically indistinguishable if only player 2 were to randomize.

Whether or not such randomization is easy to achieve when players do not reveal their

type is irrelevant: What matters for minmaxing or statistical detection of deviations is that

a player’s action be unpredictable, whether this is because he deliberately randomizes over

7This generalizes the familiar notion of public strategies to Bayesian games.
8For the case of i.i.d. states, FL’s algorithm can be adapted, see Section 8 of FLM.
9In repeated games, players have a unique state, so this problem does not arise.
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actions, or because his type determining his pure action cannot be inferred from his report.

Hence, mixed minmaxing is consistent with a player playing a pure action given his type for

all of them but one, as long as he does not disclose his type.

Given these observations, the next two sections restrict attention to minmaxing strategies

in pure strategies, and to monitoring structures for which randomization does not affect the

scope for statistical detection. In Section 5, we weaken the solution concept to allow for

mixed minmaxing.

2.3 The Revelation Game

The game described in Section 2.1 involves both a choice of report and action. To clarify

the role of the assumptions that we will introduce, it is useful to consider an auxiliary game

in which players make reports, but do not control actions. That is, we are given a map

ρ = (ρn)n∈N, ρn : (M ×Y )n → ∆(A), and amend the timing above by replacing step 4 with:

4’ Given the public history (m1, y1, . . . , mn, yn), the action profile is drawn according to

ρn(m1, y1, . . . , mn, yn).

The other steps are unchanged. Payoffs are defined as before. The definition of strategies

and of equilibrium is as before, with the obvious restriction to reports. In line with the

previous definition, an equilibrium of the revelation game is truthful if mi
n(h

i
n, s

i
n) = sin for

all i ∈ I, hin ∈ H i
n, n ≥ 1 and states sin ∈ Si.

We will be interested in the set of equilibrium payoffs of the revelation game that can be

achieved for some ρ. Because players only affect actions via messages, the revelation game

dispenses with obedience –in particular, individual rationality. Hence, the set of truthful

equilibrium payoffs of the original game is a subset of the set of truthful equilibrium payoffs

of the revelation game.10

3 Perfect Monitoring, Action-Independent Transitions

This section introduces some of the main ideas within the context of perfect monitoring and

action-independent transitions. This is the case considered by Athey and Bagwell (2008)

and Escobar and Toikka (2013). Proofs for this section are in Appendix A.

10A priori, this is not obvious for the set of all equilibrium payoffs, because in non-truthful equilibria,

actions may depend on states, and not just on reports. Nonetheless, our results below imply that this is the

case.
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We denote by µ ∈ ∆(S×S) the invariant distribution of two consecutive states (sn, sn+1).

Marginals of µ will also be denoted by µ. Our purpose is to describe explicitly the asymptotic

equilibrium payoff set. The feasible (long-run) payoff set is defined as

F := co
{

v ∈ R
I | v = Eµ,ρ[r(s, a)], some policy ρ : S → A

}

.

When defining feasible payoffs, the restriction to deterministic policies rather than arbitrary

strategies is clearly without loss. Given the public randomization device, F is convex.

3.1 A Superset of Bayes Nash Equilibrium Payoffs

This section provides a benchmark to which the set of truthful equilibrium payoffs is com-

pared. Namely, we define a set of payoffs that includes the (limit) set of Bayes Nash equi-

librium payoffs both in the original game and in the revelation game.

Fix some direction λ ∈ Λ, where Λ := {λ ∈ R
I : ‖λ‖ = 1}. What is the highest score

λ · v that can be achieved over all Bayes Nash equilibrium payoff vectors v?

If actions can be dictated, knowing the state profile can only help. But if λi < 0, this

information would be used against i’s interests. Not surprisingly, player i is unlikely to be

forthcoming about this. This suggests distinguishing players in the set I+(λ) := {i : λi > 0}
from the others. Suppose that players in I+(λ) truthfully disclose their private state, while

the remaining players choose a reporting strategy that is independent of their private state.

Define

k̄(λ) := max
ρ

Eµ,ρ [λ · r(s, a)] ,

where the maximum is over all policies ρ : ×i∈I+(λ)S
i → A (with the convention that ρ ∈ A

for I+(λ) = ∅). Note that Eµ,ρ [λ · r(s, a)] is the long-run payoff vector when players report

truthfully and use the policy ρ. Furthermore, let

V ∗ := ∩λ∈Λ

{

v ∈ R
I | λ · v ≤ k̄(λ)

}

.

We call V ∗ the set of incentive-compatible payoffs. Clearly, V ∗ ⊆ F . Note also that V ∗

depends on the transition matrix only via the invariant distribution. It turns out that the

set V ∗ is a superset of the set of all equilibrium payoff vectors.

Let NEδ (resp., NER
δ ) denote the equilibrium payoffs in the original (resp., revelation)

game, given δ ∈ [0, 1).
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Proposition 1 Assume IPV. The limit sets of Bayes Nash equilibrium payoffs are contained

in V ∗:

lim sup
δ→1

NEδ ⊆ V ∗, lim sup
δ→1

NER
δ ⊆ V ∗.

Proof. This Proposition is implied by Proposition 3, whose proof is in Appendix A. Here

we provide a sketch (for lim supδ→1NEδ) in the case in which the initial belief (πi
1)i/∈I+(λ) is

equal to the ergodic distribution (µi)i/∈I+(λ). Fix λ ∈ Λ. Fix also δ < 1. Consider the Bayes

Nash equilibrium σ = (m, a) of the game (with discount factor δ) with payoff vector v that

maximizes λ · v among all equilibria (where vi is the expected payoff of player i given π1).

This equilibrium need not be truthful or in pure strategies. Consider i /∈ I+(λ). Along with

σ−i and π1, player i’s equilibrium strategy σi defines a distribution over histories. Fixing σ−i,

let us consider an alternative strategy σ̃i where player i’s reports are replaced by realizations

of the public randomization device with the same distribution (round by round, conditional

on the realizations so far), and player i’s action is determined by the randomization device as

well, with the same conditional distribution (given the simulated reports) as would specify

if this had been i’s report.11 The new profile (σ−i, σ̃i) need no longer be an equilibrium

of the game. Yet, thanks to the IPV assumption, it gives players −i the same payoff as

σ and, thanks to the equilibrium property, it gives player i a weakly lower payoff. Most

importantly, the strategy profile (σ−i, σ̃i) no longer depends on the history of types of player

i. Clearly, this argument can be applied to all players i /∈ I+(λ) simultaneously, so that λ · v
is lower than the maximum inner product achieved over strategies that only depend on the

history of types in I+(λ). Maximizing this inner product over such strategies is a standard

partially observable Markov decision problem, which admits a solution within the class of

deterministic policies (on the state space ×i∈I+(λ)S
i ××i/∈I+(λ)∆(Si)).

Because transitions do not depend on actions, the belief pn ∈ ×i/∈I+(λ)∆(Si) in round n

about the states of players in I \ I+(λ) remains equal at all times to the ergodic distribution

(µi)i/∈I+(λ). This defines a strategy that is only a function of the states (si)i∈I+(λ) (the solution

of the partially observable Markov decision problem evaluated at the belief (µi)i/∈I+(λ)).

Taking δ → 1 yields that the limit set is included in
{

v ∈ R
I | λ · v ≤ k̄(λ)

}

, and this is

true for all λ ∈ Λ.

11To be slightly more formal: in a given round, the randomization device selects a report for player i

according to the conditional distribution induced by σi, given the public history so far. At the same time,

the device selects an action for player i according to the distribution induced by σi, given the public history,

including reports of players −i and the simulated report for player i. The strategy σ̃i plays the action

recommended by the device.
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Figure 1: Payoffs of Example 1
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Figure 2: Incentive-compatible and feasible payoff sets in Example 1

As should be clear from the proof, Proposition 1 does not rely on M i = Si and holds for

any message space.

The set V ∗ can be a strict subset of F , as the following example illustrates.

Example 1. Each player i = 1, 2 has two states si = si, s̄i. Rewards are given by Figure

1, with c(si) = 2, c(s̄i) = 1. (The interpretation is that a pie of total size 6 is obtained if

at least one agent works; if both do only half the amount of work has to be put in by each

worker. Their cost of working is fluctuating.) From one round to the next, a player’s state

changes with probability p, independently across players. Hence, the invariant distribution

assigns equal weight to all four state profiles. Given that V ∗ only depends on the transition

matrix via the invariant distribution, the specific value of p is irrelevant to compute V ∗ and

F , shown in Figure 2.

A set-theoretic lower bound to V ∗ is also readily obtained. Let Extpo denote the (weak)

14



Pareto frontier of F . We write Extpu for the set of payoff vectors obtained from pure state-

independent action profiles, i.e. the set of vectors v = Eµ,ρ[r(s, a)] for some ρ that takes a

constant value in A. In their environment, Escobar and Toikka show that all individually

rational (as defined below) payoffs in co (Extpu ∪ Extpo) are equilibrium payoffs (whenever

this set has non-empty interior). It follows from our results and theirs that this is a subset

of V ∗. (In fact, the restriction to individually rational payoffs is not needed; it is not hard to

show directly from the definition of V ∗ that co (Extpu ∪ Extpo) ⊆ V ∗.) In Example 1, this

lower bound is tight, but this is not always the case.

3.2 The Average Cost Optimality Equation

Our analysis makes use of the Average Cost Optimality Equation (ACOE) that plays an

important role in dynamic programming. For completeness, we provide here an elementary

statement, which is sufficient for our purpose, and we refer to Puterman (1994) for details

and additional properties.

Let be given an irreducible (or more generally unichain) transition function q over the

finite set S with invariant measure µ, and a payoff function u : S → R.12 Assume that

successive states (sn) follow a Markov chain with transition function q and that a decision-

maker receives the reward u(sn) in round n. The long-run payoff of the decision-maker is

v = Eµ[u(s)]. While this long-run payoff is independent of the initial state, discounted payoffs

are not. Lemma 1 below provides a normalized measure of the differences in discounted

payoffs, for different initial states. Here and in what follows, t stands for the “next” state

profile (“tomorrow” ’s state), given the current state profile s.13

Lemma 1 (ACOE) There is θ : S → R such that

v + θ(s) = u(s) + Et∼q(·|s)θ(t).

As mentioned, the lemma is standard in average cost dynamic programming, but a short

direct proof is provided in the online appendix (appendix E).

12As is well known, the unichain assumption cannot be relaxed.
13Lemma 1 defines the relative values for an exogenous Markov chain, or equivalently for an arbitrary

policy. It is simply an “accounting” identity. The standard ACOE delivers more, as it provides a way of

identifying the optimal policy: given some Markov decision problem (MDP), a policy ρ is optimal if and

only if, for all states s, ρ(s) maximizes the right-hand side of the equations of Lemma 1. Both results will

be invoked interchangeably.
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The map θ is unique, up to an additive constant. It admits an intuitive interpretation in

terms of discounted payoffs. Indeed, the difference θ(s)− θ(s′) is equal to lim
δ→1

γδ(s)− γδ(s
′)

1− δ
,

where γδ(s) is the discounted payoff when starting for s. For this reason, following standard

terminology, call θ the (vector of) relative values.

The map θ provides a “one-shot” measure of the relative value of being in a given state;

with persistent and possibly action-dependent transitions, the relative value is an essential

ingredient in converting the dynamic game into a one-shot game, alongside the invariant

measure µ. The former encapsulates the relevant information regarding future payoffs, while

the latter is essential in aggregating the different one-shot games, parameterized by their

states. Both µ and θ are usually defined as the solutions of a finite system of equations –the

balance equations and the equations stated in Lemma 1. But in the ergodic case that we

are concerned with, explicit formulas exist. (See, for instance, Iosifescu, 1980, p.123, for the

invariant distribution; and Puterman, 1994, Appendix A for the relative values.)

3.3 Characterization

As mentioned, truthful equilibrium reduces to PPE in the case of repeated games with

public monitoring. FL provide an algorithm to describe the limit set of PPE payoffs. Their

characterization of the set of PPE payoff vectors, Eδ, as δ → 1 relies on the notion of a score

defined as follows. Recall that Λ denotes the unit sphere of RI . We refer to λ ∈ Λ (or its

coordinate λi) as weights, although the coordinates need not be nonnegative.

Definition 2 Fix λ ∈ Λ. Let

k(λ) = sup
v,x,α

λ · v,

where the supremum is taken over all v ∈ R
I, x : Y → R

I and α ∈ ×i∈I∆(Ai) such that

(i) α is a Nash equilibrium with payoff v of the game with payoff function r(a) +
∑

y p(y |
a)x(y);

(ii) For all y ∈ Y , it holds that λ · x(y) ≤ 0.

Let H :=
⋂

λ∈Λ{v ∈ R
I | λ · v ≤ k(λ)}. FL prove the following.

Theorem 1 (FL) It holds that Eδ ⊆ H for any δ < 1; moreover, if H has non-empty

interior, then limδ→1Eδ = H.
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This theorem is extended by HSTV (2011) to the case of stochastic games with observable

states. Our purpose is to obtain an algorithm for truthful equilibrium payoffs for the broader

class of games considered here.

Because we insist on truthful equilibria, and because we need to incorporate the dynamic

effects of actions on states, we must consider instead policies ρ : S → ×i∈I∆(Ai) and

transfers, such that reporting truthfully and playing ρ constitutes a stationary equilibrium

of the dynamic two-step game augmented with transfers. While policies depend only on

current states, transfers will depend on the previous state and current public outcome.

In what follows, the set of public outcomes in a given round is Ωpub := S × A (where

the S-components stand for the reports). Let a policy ρ : S → ×i∈I∆(Ai), and a map x :

S×Ωpub → R
I be given. The vector x(s̄, ωpub) is to be interpreted as transfers, contingent on

previous reports s̄, and on the current public outcome ωpub.
14 Assuming states are truthfully

reported and actions chosen according to ρ, the sequence (ωn) of outcomes is a unichain

Markov chain, and so is the sequence of pairs of reports (sn−1, sn). Let θρ,r+x : S × S → R
I

denote the relative values of the players, obtained when applying Lemma 1 to the latter

chain (and to all players).

As FL, we start with an auxiliary one-shot game. We define Γ(ρ, x) to be the one-shot

Bayesian game with communication where:

(i) first, (s̄, s) ∈ S×S is drawn according to µ; each player i is publicly told s̄ and privately

si;

(ii) each player i reports publicly some state mi ∈ Si, then chooses an action ai ∈ Ai.

The payoff vector is r(s, a) + x(s̄, ωpub) + θρ,r+x(m, t), where ωpub := (m, a) and t ∼ p(· | s).
Given λ ∈ Λ, we denote by P0(λ) the optimization program supλ·v, where the supremum

is computed over all payoff vectors v ∈ R
I , policies ρ : S → ×i∈I∆(Ai) and transfers

x : S × Ωpub → R
I such that

(a) truth-telling followed by ρ is a PBE outcome of Γ(ρ, x), with expected payoff v;

(b) λ · x(·) ≤ 0.

Condition (a) implies that for all s̄, s ∈ S, the mixed profile ρ(s) is a Nash equilibrium in the

(complete information) game with payoff function r(s, a) + x(s̄, (s, a)) +Et∼p(·|s)θρ,r+x(t). It

puts no restriction on equilibrium behavior following a lie at the report step.

14Conceptually, it might make sense to condition transfers on previous actions as well. This extension is

not needed when transitions are action-independent.
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The condition that v be the equilibrium payoff in Γ(ρ, x) writes

v = E(s̄,s)∼µ,a∼ρ(s) [r(s, a) + x(s̄, ωpub)] ,

where ωpub = (s, a).

We denote by k0(λ) the value of P0(λ), and let H0 := {v ∈ R
I , λ·v ≤ k0(λ) for all λ ∈ Λ}

be the convex set with support function k0.

Theorem 2 below is the exact analog of FLM and HSTV, yet requires a (rather innocuous)

non-degeneracy assumption.

Two states si and s̃i of player i are equivalent if ri(si, ·) = ri(s̃i, ·) + c for some c ∈ R. In

this section, we maintain the assumption that there is no player with two distinct, equivalent

states.

Let TEδ (TER
δ ) denote the set of truthful equilibrium payoffs in the original (resp.,

revelation) game.

Theorem 2 Assume that H0 has non-empty interior. Then H0 is included in the limit set

of truthful payoffs:

H0 ⊆ lim inf
δ→1

TEδ.

The same result holds true for the revelation game, weakening condition (a) in the defini-

tion of H0(λ) by dropping the requirement that playing ρ be optimal. Let kR0 denote the

corresponding score.

For i ∈ I, define vi := mina−i∈A−i maxρi:Si→Ai Eµ [r
i(si, (a−i, ρi(si)))].

Proposition 2 For every λ 6= −ei, k0(λ) = kR0 (λ) = k̄(λ).

For λ = −ei, k0(−ei) ≥ −vi, and kR0 (−ei) = k̄(−ei).

Set V ∗∗ := {v ∈ V ∗, v ≥ v}. By Proposition 2, V ∗∗ ⊆ H0. Hence Theorem 2 implies the

following.

Corollary 3 (Folk theorem, Special Case) Assume that V ∗ has non-empty interior. Then

lim
δ→1

TER
δ = V ∗.

Assume that V ∗∗ has non-empty interior. Then

lim inf
δ→1

TEδ ⊇ V ∗∗.

This corollary (or Proposition 2) makes clear that the only restriction imposed by truthful-

ness, if any, lies in the lowest equilibrium payoff that can be attained.
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3.4 Proof overview

Theorem 2 is reminiscent of the characterization of PBE payoffs in FLM (see also HSTV),

and the proof in the Appendix follows the logic of existing proofs to the extent possible. Yet,

the combination of private information and of state persistence significantly complicates the

analysis. To motivate and introduce our technical innovations, we transpose below the

recursive proof of FLM, and point out where difficulties arise, and how to cope with them.

Let Z be a compact set with a smooth boundary contained in the interior of H0, and

a discount factor δ < 1 be given. Given a target payoff z ∈ Z, we construct recursively a

truthful PBE candidate with payoff z.

Given a target payoff zn ∈ Z in round n, we set a direction λn ∈ R
I to be (heuristically)

“the” normal vector to Z at zn, and pick a feasible triple (vn, ρn, xn) in P0(λn) such that

λn · zn < λn · vn. The target payoff is publicly updated in round n + 1 to

zn+1 :=
1

δ
zn −

1− δ

δ
vn +

1− δ

δ
xn(mn−1, ωpub,n), (1)

where ωpub,n = (mn, yn) is the public outcome in round n. The equilibrium candidate

σ = (m, a) reports truthfully in round n and selects actions according to ρn.

As in FLM (see also HSTV), the choice of λn and of (vn, ρn, xn) given zn ensure that zn+1 ∈
Z, so that this recursive construction is well-defined. Moreover, the expected continuation

payoff in round n (computed as of round 1) is Eσ[zn]. Fix now a history hn up to round n

along which all reports are truthful, with public part hpub,n. The choice of (ρn, xn) and the

updating formula (1) also ensure that truthful reporting followed by ρn is a truthful PBE

outcome of the Bayesian game15 with payoff (1 − δ)r(sn, an) + δzn+1(hpub,n, ωpub,n) + (1 −
δ)θρn,r+xn

(sn, sn+1), and the induced equilibrium payoff is zn(hpub,n).
16

In the FLM setup of repeated games with public monitoring, and in stochastic games

as well, this is sufficient to imply that σ is a PPE. For dynamic Bayesian games, it is not

quite enough, even in the setup of this section, as it does not rule out profitable deviations

in round n following hn.

Indeed, under this construction, the pair (ρn, xn) is updated in round n + 1, and the

actual continuation relative values need not coincide with θρn,r+xn
. Whether a specific state

reached in round n+1 is “good” relative to some other state depends on ρn+1, hence on λn+1

and therefore on an through yn. That is, even though player i’s action choice has no influence

on the distribution of sin+1, it does affect the relative values of the different states in round

15The prior belief is unambiguously derived from the public history.
16That is, when computed under µ.
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n+ 1. These changes in relative values would cancel in expectation, if states in round n+ 1

were drawn using the invariant measure µ. Yet, player i is computing expectations based

on sin. Hence, (conditional on ωpub,n), player i’s continuation payoff is not exactly equal to

zin+1(hpub,n, ωpub,n) and state persistence thus affects the incentives faced by player i.17

In our construction, the above sketch is amended along the following lines. We first prove

that any feasible triple (v, ρ, x) in P0(λ) can be perturbed into some other triple, for which

truth-telling incentives are strict. In other words, the value of P0(λ) is unchanged when

truth-telling incentives are required to be strict. We then divide the play into a sequence

of phases of random duration. In effect, the p.r.d. chooses in each round with probability

ξ, whether to start a new phase. When a new phase starts, target payoffs and policies are

updated according to formulas derived from the FLM ones.

The switching probability ξ is set to be large compared to (1− δ), so that the expected

contribution of a single phase to the overall payoff is small. Yet, ξ is set to be small, so

that the expected duration of each phase is large.18 The former property ensures that the

recursive procedure is well-defined. The latter one ensures that, in any phase k under the

plan (v(k), ρ(k), x(k)), players perceive future payoffs as a small perturbation of the relative

values θρ(k),r+x(k)
. Given that truth-telling incentives are strict in Γ(ρ(k), x(k)), it thus remains

optimal to report truthfully in the dynamic game.

4 Action-dependent Transitions, Imperfect Monitoring

We now generalize these results to the case in which monitoring is imperfect, and actions

affect transitions. The environment is still of independent private values (IPV), which (cf.

Section 2.1) requires that

p(t, y | s, a) = p(y | a)××i∈Ip
i(ti | si, y),

and π1(s) = ×i∈Iπ
i
1(s

i).19 Proofs for this section are in Appendix B.

17The issue does not arise only when successive states are i.i.d. But then the dynamic game is truly the

repetition of a one-shot Bayesian game, to which the results of FLM apply.

18To be clear, we pick ξ(δ) as a function of δ such that limδ→1 ξ(δ) = 0 and lim
δ→1

ξ(δ)

1− δ
= +∞.

19For expositional simplicity, we assume here that states do not affect the signal distribution. There are

important applications for which states do affect the distribution of signals. Theorem 6 below makes no

restriction in this respect. See also the working paper for the analogs of the theorems developed in Sections

4–5 for the case in which states affect signal distributions.
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4.1 The Superset Revisited

Example 2. There are two players. Incomplete information is one-sided: player 2 might

be in state s = 0, 1. Player 2 has a single action, while player 1 chooses action a = 0, 1.

Transitions are given by p(sn+1 = a | sn = s, an = a) = 1/3, for all s = 0, 1. That is,

the state is twice as likely to differ from the previous action chosen by player 1 as it is to

coincide with this choice. As for rewards, r2(s, a) = −1 if s = a, = 0 otherwise. Suppose

that the objective is to minimize player 2’s payoff. We note that any constant strategy (i.e.,

a = 0 or a = 1 in all periods) yields a payoff of −1/3, while a strategy that alternates

deterministically between actions has a payoff that tends to −2/3 as δ → 1.

This example demonstrates that constant action choices no longer suffice to minimize or

maximize a player’s payoff, when his state is unknown to others and he fails to reveal it,

even as δ → 1. Plainly, in the example, player 1’s belief about the state of player 2 matters

for the choice of an optimal action, and the chosen action matters for player 1’s next belief.

Hence, if we wish to describe player 1’s choice as a Markov policy, we must augment the state

space to account for player 1’s belief. In the previous example, there is a binary sufficient

statistic for this belief, namely, the last action chosen by player 1. Yet in general, the role of

the belief is not summarized by such a simple statistic. It is necessary to augment the state

space by (at least) an arbitrary summary statistic, which follows a Markov chain as well.

The next result establishes that finite representations suffice, under our assumptions.20

We need to generalize the notion of a policy. Let a finite set K, and a map φ : K×Y → K

be given. Together with φ, any map ρ : S×K → ∆(A) induces a Markov chain (sn, kn, an, yn)

over S × K × A × Y . We refer to such a triple ρext = (ρ,K, φ) as an extended policy. An

extended policy is thus a policy that is possibly contingent on a public, extraneous and

payoff irrelevant variable k whose evolution is dictated by y. The extended policy ρext is

irreducible if the latter chain is irreducible. We then denote by µρext ∈ ∆((S×K ×A×Y )2)

the invariant distribution of successive states, actions and signals. Again, we will still denote

by µρext various marginals of µρext.

Given a direction λ ∈ Λ, let as before I+(λ) = {i ∈ I, λi > 0}. We then set k̄1(λ) :=

supρext Eµρext
[λ · r(s, a)], where the supremum is taken over all pure irreducible extended

policies ρext = (ρ,K, φ) such that ρ : S×K → A depends on s only through its components

si, i ∈ I+(λ).

Let then V ∗
1 := {v ∈ R

I , λ · v ≤ k̄1(λ) for all λ ∈ Λ}, and denote by NEδ(π1) the set of

Nash equilibrium equilibrium payoffs of the game with discount factor δ, as a function of the

20This is closely related to the literature on finite-state controllers in POMDP, see Yu and Bertsekas (2008).
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initial distribution π1.

Proposition 3 Assume IPV. Then lim supδ→1NEδ(π1) ⊆ V ∗
1 , for all π1.

21

4.2 Characterization

Given an irreducible extended policy ρext = (ρ,K, φ), the relevant set of public outcomes

is Ωpub = S × K × Y , where elements of S have to be interpreted as reports. Let a map

xext : Ωpub × Ωpub → R
I be given. The vector x(ω̄pub, ωpub) is interpreted as transfers,

contingent on the public outcomes in the previous and current rounds. Relative values

associated with the pair (ρext, xext) are thus maps θρext,r+xext : Ωpub × S ×K → R
I .

We then define Γ(ρext, xext) to be the one-shot Bayesian game with communication where

(i) (ω̄pub, s, k) ∈ Ωpub × S ×K is first drawn according to µρext, (ii) each player i is publicly

told ω̄pub (from which he deduces k = φ(k̄, ȳ)) and privately told si, publicly reports some

state mi ∈ Si, then chooses an action ai ∈ Ai, and the payoff vector is

r(s, a) + xext(ω̄pub, ωpub) + E(y,t)∼p(·|s,a)θρext,r+xext(ωpub, t),

with ωpub = (m, k, y).

Given λ ∈ Λ, we denote by P1(λ) the optimization program supλ·v, where the supremum

is over payoffs v ∈ R
I , extended policies ρext = (ρ,K, φ) and transfers xext : Ωpub × Ωpub →

R
I , such that

(a) truth-telling followed by ρ is a perfect Bayesian outcome of Γ(ρext, xext) with expected

payoff v;

(b) λ · xext(·) ≤ 0.

We denote by k1(λ) the value of P1(λ), and by kR1 (λ) the corresponding value when the

requirement that obedience (namely, following ρ) be optimal is dropped.

As in the case of action-independent transitions and perfect monitoring, we prove our

characterization result, Theorem 4 below, under a non-degeneracy assumption on payoffs,

which we now introduce.

Given an action profile a ∈ A, let ~a be the policy which plays a in each state profile

s ∈ S. Observe that for i ∈ I and s ∈ S, the relative value θi~a,r(s) is independent of s−i

under IPV.

21A more precise statement holds. For each η > 0, there is δ̄ < 1 such that, for each discount factor δ ≥ δ̄

and each initial distribution π1 ∈ ×i∈I∆(Si), NEδ(π1) is included in the η-neighborhood V ∗
1,η of V ∗

1 .
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A1 For all i ∈ I, si 6= s̃i ∈ Si, there exist action profiles a, b ∈ A, such that

θi~a,r(s
i)− θi~b,r(s

i) 6= θi~a,r(s̃
i)− θi~b,r(s̃

i). (2)

When successive states are i.i.d., A1 is equivalent to the assumption of no-two-equivalent

states made in Section 3.3. However, when A1 is specialized to the case of action-independent

states, it neither implies nor is implied by this assumption.22

In addition, we require the usual identifiability condition. In A2, p refers to the marginal

distribution over signals y ∈ Y only. LetQi(a) := {p(· | âi, a−i) : âi 6= ai} be the distributions

over signals y induced by a unilateral deviation by i at the action step, whether or not

the reported state si corresponds to the true state ŝi or not. For simplicity, we make the

assumption on all action profiles, rather than on the relevant subset.

A2 For all a ∈ A,

1. For all i 6= j, p(· | a) /∈ co {Qi(a) ∪Qj(a)}.
2. For all i 6= j, co (p(· | a) ∪Qi(a)) ∩ co (p(· | a) ∪Qj(a)) = {p(· | a)}.

For i ∈ I, we set vi := mina−i∈A−i maxρi:Si→Ai E(s,a)∼µ(ρi,a−i)
[ri(s, a)] .23 Proposition 4 and

Theorem 4 parallel the results of Section 3.3.

Proposition 4 Assume IPV. Then kR1 (λ) ≥ k̄1(λ) for all λ ∈ Λ. Furthermore, under A2,

k1(−ei) ≥ −vi and k1(λ) = k̄1(λ) for all λ 6= −ei.

Theorem 4 (Folk theorem) Assume that IPV and Assumption A1. If V ∗
1 has nonempty

interior, then, for any π1,

lim
δ→1

TER
δ (π1) = V ∗

1 .

If additionally Assumption A2 hold, and V ∗∗
1 has non-empty interior, then

lim inf
δ→1

TEδ(π1) ⊇ V ∗∗
1 .

This theorem highlights once again that, under IPV, truth-telling is only restrictive as far as

obedience goes: Assumption A2 ensures that deviations can be statistically detected, and

the candidate payoff set must be truncated given individual rationality.

22Yet, all results below still hold when A1 is weakened and it is only required that (2) holds for some

sequences ~a = (an)n and ~b = (bn) in A –at the cost of a slight extension of the notion of relative value,

and of notational complexity. The weakened assumption is strictly weaker than both A1 and the no-two-

equivalent-states assumption.
23This definition of minmax can be strengthened by considering extended policies for players −i. All

results remain valid with this change.
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5 Product Monitoring

This section strengthens the assumption A2 on monitoring and considers a slightly larger

class of equilibria. By doing so, we obtain an exact characterization of the asymptotic (Nash)

equilibrium payoff set.

The reason why previous theorems failed to be characterizations is because of the minmax

payoff. As mentioned, there are many examples in which the state-independent pure-strategy

minmax payoff vi coincides with the “true” minmax payoff

wi := lim
δ→1

min
σ−i

max
σi

E

[

(1− δ)
∑

n≥1
δn−1rin

]

,

where the minimum is over the set of (independent) strategies by players −i. But the two

do not coincide for all examples of economic interest. First, the state-independent pure-

strategy minmax payoff rules out mixed strategies. Yet mixed strategies play a key role in

some applications, e.g. the literature on auditing, corruption, etc. (starting with Becker and

Stigler, 1974). More disturbingly, when vi > wi, it can happen that V ∗∗
1 = ∅. Theorem 4

becomes meaningless, as the corresponding equilibria no longer exist. On the other hand,

the set

W :=
{

v ∈ V ∗
1 | vi ≥ wi for all i

}

is never empty.24

As is also well known, even when attention is restricted to repeated games, there is

no reason to expect the punishment level wi to equal the mixed-strategy minmax payoff

commonly used (that lies in between wi and vi), as wi might only be obtained when players

−i use private strategies (depending on past action choices) that would allow for harder,

coordinated punishments than those assumed in the definition of the mixed-strategy minmax

payoff. Private histories may allow players −i to correlate play unbeknownst to i. One special

case in which they do coincide is when monitoring has a product structure, which rules out

such correlation.25 As this is the class of monitoring structures for which the standard folk

theorem for repeated games is a characterization of (as opposed to a lower bound on) the

equilibrium payoff set, we maintain this assumption throughout this section.

24To see this, note that the state-independent mixed minmax payoff lies (weakly) below the Pareto-frontier:

clearly, the score in direction λe = 1√
I
(1, . . . , 1) of the payoff vector minα−i maxρi:Si→Ai E[ri(si, a)] is less

than k(λe).
25The scope for wi to coincide with the mixed minmax payoff is slightly larger, but not by much. See

Gossner and Hörner (2010) for a characterization.
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Definition 3 Monitoring has product structure if there are finite sets (Y i)Ii=1 such that Y =

×iY
i, and

p(y | a) = ×ip
i(yi | ai),

for all y = (y1, . . . , yI) ∈ Y , all a ∈ A.

As shown by FLM, product structure ensures that identifiability is implied by detectability,

and that no further assumptions are required on the monitoring structure to enforce payoffs

on the Pareto-frontier, hence to obtain a “Nash-threat” theorem. Our goal is to achieve

a characterization of the equilibrium payoff set, so that an assumption on the monitoring

structure remains necessary. We make the following assumption, which could certainly be

refined.

A3 For all i, a,

p(· | a) /∈ coQi(a).

Note that, given product structure, Assumption A3 is an assumption on pi only.

We maintain the non-degeneracy assumption introduced in Section 4.2. In the appendix

C (with additional details in online Appendix F), we prove that W characterizes the (Bayes

Nash, as well as sequential) equilibrium payoff set as δ → 1 in the IPV case. More formally:

Theorem 5 Assume that monitoring has the product structure, and that Assumptions A1

and A3 hold. If W has non-empty interior, the set of (Nash, sequential) equilibrium payoffs

converges to W as δ → 1.

Because minmaxing requires unpredictability, and as explained in Section 2.2, unpre-

dictability might be inconsistent with truthful equilibria, this requires using strategies that

are not truthful, at least during “punishments.”26 Nonetheless, we show that a slight exten-

sion of the set of strategies considered so far, to allow for silent play during punishment-like

phases, suffices.

Unlike in repeated games, imposing product structure does not guarantee that the min-

max strategy is stationary: players −i draw inferences from the public signal yi about player

i’s action, hence about his private state, which can be exploited to adjust their action. Our

construction relies on an extension of Theorem 2, as well as an argument inspired by Gossner

26We use quotation marks as there are no clearly defined punishment phases in recursive constructions

(as in Abreu, Pearce and Stacchetti, 1990, or here), unlike in the standard proof of the folk theorem under

perfect monitoring.
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(1995), based on approachability theory (Blackwell, 1956). Roughly speaking, the argument

is divided in two parts. First, we extend Theorem 2 to allow for “blocks” of T rounds, rather

than single rounds, as the extensive form over which the score is computed. Considering

such a block in which player i, say, is “punished” (that is, a block corresponding to the di-

rection −ei), one must devise transfers x at the end of the block, as a function of the public

history, that makes players −i willing to play the minmax strategy, or at least some strategy

profile achieving approximately the same payoff to player i. The difficulty is that typically

there are no transfers making player i indifferent over a subset of actions for different types

of his simultaneously; yet minmaxing might require precisely as much. To ensure that the

distribution over action profiles during the punishment phase matches the theoretical one

(computed using the realized actions taken by player i), we design a statistical test that

a player j 6= i can pass with high probability (by conforming to the minmax strategy, for

instance), independently of the other players’ strategies; and that he is very likely to fail

if the distribution of his realized signals departs too much from the one that his minmax

strategy would yield.27 When testing player j, it is critical to condition on player i’s realized

signal, so as to incentivize player j to be unpredictable.

6 Dropping the IPV Assumption

The IPV assumption simplifies the analysis considerably. Yet neither the independence

nor the private values assumption are necessary to derive a result in the spirit of Theorem

2. Several complications arise, which reflect both new opportunities and difficulties. With

correlated states, for instance, one might like to use player −i’s reports as statistical evidence

in evaluating the truthfulness of player i’s report, which suggests expanding the domain of

transfers of the one-shot Bayesian game, and making it easier to induce truth-telling. On

the other hand, under common values, player i’s payoff is no longer independent of player

−i’s state, conditional on the marginal distribution of player −i’s action. Hence, fixing

this marginal distribution, player i’s incentives depend on whether player −i reports his

state truthfully, which might make truth-telling harder to sustain. The next two examples

illustrate.

Example 3—A Silent Game. This game follows Renault (2006). This is a zero-sum

two-player game in which player 1 has two private states, s1 and ŝ1, and player 2 has a single

27This is where the IPV assumption and product monitoring are used. It ensures that player j’s minmax

strategy can be taken to be independent of his private information, hence adapted to the public information.
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state, omitted. Player 1 has actions A1 = {T,B} and player 2 has actions A2 = {L,R}.
Player 1’s reward is given by Figure 1. Recall that rewards are not observed. States s1

L R

T 1 0

B 0 0

s1

L R

T 0 0

B 0 1

ŝ1

Figure 3: Player 1’s reward in Example 3

and ŝ1 are equally likely in the initial round, and transitions are action-independent, with

p ∈ [1/2, 1) denoting the probability that the state remains unchanged from one round to

the next.

Pick M1 such that #M1 ≥ 2, so that player 1 can disclose his state if he wishes. Will he?

If player 1 reveals the state, player 2 can secure a payoff of 0 by playing R or L depending on

player 1’s report. Yet player 1 can secure 1/4 by choosing reports and actions at random. In

fact, this is the (uniform) value for p = 1 (Aumann and Maschler, 1995). When p < 1, player

1 can get more than this by trading off the higher expected reward from a given action with

the information that it gives away (for instance, he can play T (B) with probability close

to but above 1/2 when the state is s1 (ŝ1) so as to leave some uncertainty, yet repeat some

benefits). He has no interest in giving this information away for free through informative

reports. Truthful equilibria do not exist: all equilibria are babbling.

Just because we may focus on the silent game does not make it easier. Its (limit) value

for arbitrary p > 2/3 is still unknown.28 Because the optimal strategies depend on player

2’s belief about player 1’s state, the problem of solving for them is infinite-dimensional, and

all that can be done is to characterize its solution via some functional equation (see Hörner,

Rosenberg, Solan and Vieille, 2010).

Non-existence of truthful equilibria in some games is no surprise. The tension between

truth-telling and lack of commitment also arises in bargaining and contracting, giving rise to

the ratchet effect (see Freixas, Guesnerie and Tirole, 1985). What Example 1 illustrates is

that small message spaces are just as difficult to deal with as larger ones. When players hide

their information, their behavior reflects their private beliefs, which calls for a state space

as large as it gets.

28It is known for p ∈ [1/2, 2/3] and some specific values. Pęski and Toikka (2014) have recently shown

that this value is non-increasing in p, and Bressaud and Quas (2014) have determined the optimal strategies

for values of p up to ∼ .7323.
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Example 4—Waiting for Evidence. There are two players. Player 1 has K+1 types,

S1 = {0, 1, . . . , K}; player 2 has only two types, S2 = {0, 1}. Transitions do not depend

on actions (omitted), and are as follows. If s1n = k > 0, then s2n = 0 and s1n+1 = s1n − 1.

If s1n = 0, then s2n = 1 and s1n+1 is drawn randomly (and uniformly) from S1. In words, s1n
stands for the number of rounds until the next occurrence of s2 = 1. By waiting no more

than K rounds, all reports by player 1 can be verified.

This example makes two related points. First, in order for player −i to statistically

discriminate between player i’s states, while simultaneously guaranteeing a given interim

payoff to each player’s type, it is not necessary that his set of signals (here, players −i’s
states) be as rich as player i’s, unlike in static mechanism design with correlated types (the

familiar “spanning condition” of Crémer and McLean (1988), generically satisfied if only

if #S−i ≥ #Si). Two states for one player can be enough to cross-check the reports of

an opponent with many more states, provided that states in later rounds are informative

enough.

Second, the long-term dependence of the stochastic process implies that one player’s

report should not always be evaluated on the fly. It is better to hold off until more evidence

is collected. Note that this is not the same kind of delay as the one that makes review

strategies effective, taking advantage of the central limit theorem to devise powerful tests

even when signals are independently distributed over time (see Radner, 1986; Fang and

Norman, 2006; Jackson and Sonnenschein, 2007). It is precisely because of the dependence

that waiting is useful here.

This raises an interesting statistical question: does the tail of the sequence of private

states of player −i contain indispensable information in evaluating the truthfulness of player

i’s report in a given round, or is the distribution of this infinite sequence, conditional on

(sin, sn−1), summarized by the distribution of an initial segment of the sequence? This

question appears to be open in general. In the case of transitions that do not depend

on actions, it has been raised by Blackwell and Koopmans (1957) and answered by Gilbert

(1959): it is enough to consider the next 2#Si + 1 values of the sequence (s−i
n′ )n′≥n.

29

At the very least, when types are correlated and the Markov chain exhibits time depen-

dence, it is useful to condition player i’s continuation payoff given his report about sin on

−i’s next private state, s−i
n+1. Because this suffices to obtain sufficient conditions analogous

29The reporting strategy defines a hidden Markov chain on pairs of states, reports and signals that induces

a stationary process over reports and signals; Gilbert assumes that the hidden Markov chain is irreducible

and aperiodic, which here need not be (with truthful reporting, the report is equal to the state), but his

result continues to hold when these assumptions are dropped, see for instance Dharmadhikari (1963).
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to those invoked in the static case, we limit ourselves to this conditioning in this section.30

6.1 A General Theorem

We now return to the general model, without restricting attention to either private values or

independent types. In this section, M i := Si×Ai×Si for all i. This has to be interpreted as

player i’s state yesterday, his action yesterday, and his state today. In the spirit of Myerson

(1986), we wish to allow player i to disclose all information that is relevant to his preferences

and beliefs; in this case, with correlated types, his belief about −i’s type profile depends on

the action he has taken, his type yesterday and his current type. Off path, none of these

are known, and a player shouldn’t find it impossible to disclose his beliefs if he happened to

deviate in the previous round.

A profile m of reports is written m = (mp, ma, mc), where mp (resp. mc) is interpreted

as the report profile on previous (resp. current) states, and ma is the reported (last round)

action profile.

We set Ωpub :=M × Y , and we refer to the pair (mn, yn) as the public outcome of round

n. This is the additional public information available at the end of round n. We also refer

to (sn, mn, an, yn) as the outcome of round n, and denote by Ω := Ωpub × S × A the set of

possible outcomes in any given round.

Let a policy ρ : S → ∆(A), and a map (interpreted as transfer) x : Ωpub×Ωpub×S → R
I

be given. We will assume that for each i ∈ I, xi(ω̄pub, ωpub, t) is independent of i’s own state

ti.This requirement will not be systematically stated, but it is assumed throughout. Note

that, compared to IPV, we have added the current state profile t−i as an argument of player

i’s transfer, given that this profile is statistical evidence about player i’s state, as explained

in Example 4.

Assuming states are truthfully reported and actions chosen according to ρ, the sequence

(ωn) of outcomes is a unichain Markov chain, and so is the sequence (ω̃n), where ω̃n =

(ωpub,n−1, mn), with transition function denoted πρ, and with invariant measure µρ.

Let θρ,r+x : Ωpub ×M → R
I denote the relative values of the players, obtained when

applying Lemma 1 to the latter chain (and to all players).31

30See Obara (2008) for some of the difficulties encountered in dynamic settings when attempting to extend

results from static mechanism design with correlated types.
31There is here a slight and innocuous abuse of notation: θρ,r+x solves the equations v + θ(ω̄pub,m) =

r(s, ρ(s)) +E[x(ω̄pub, ωpub, t) + θ(ωpub,m
′)], where v = Eµρ

[r(s, a) + x(ω̄pub, ωpub, t)] is the long-run payoff

under ρ.
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Thanks to the ACOE, the condition that reporting truthfully and playing ρ is a stationary

equilibrium of the dynamic game with stage payoffs r + x can to some extent be rephrased

as saying that, for each ω̄pub ∈ Ωpub, reporting truthfully and playing ρ is an equilibrium in

the one-shot Bayesian game in which states s are drawn according to p (given ω̄pub), players

submit reports m, then choose actions a, and obtain the (random) payoff

r(s, a) + x(ω̄pub, ωpub, t) + θρ,r+x(ωpub, m
′),

where (y, t) are chosen according to p(· | s, a) and ωpub = (m, y), and m′ is the truthful

report tomorrow determined by t. Here, one should interpret ω̄pub as the public information

from yesterday.

However, because we insist on off-path truth-telling, we need to consider arbitrary private

histories, and the formal condition is therefore more involved. Fix a player i. Given a triple

(ω̄pub, s̄
i, āi), let Di

ρ,x(ω̄pub, s̄
i, āi) denote the two-step decision problem in which

Step 1 s ∈ S is drawn according to the belief held by player i;32 player i is informed of si,

then submits a report mi ∈M i;

Step 2 player i learns current states s−i from the opponents’ reports m−i = (m̄−i
c , ā

−i, s−i),

and then chooses an action ai ∈ Ai. The payoff to player i is given by

ri(s, a) + xi(ω̄pub, ωpub, t
−i) + θiρ,r+x(ωpub, m

′), (3)

where a−i is drawn according to ρ−i(s−i, mi
c), the pair (y, t) is drawn according to

p(· | s, a), and ωpub := (m, y).

We denote by Di
ρ,x the collection of decision problems Di

ρ,x(ω̄pub, s̄
i, āi).

Definition 4 The pair (ρ, x) is admissible if all optimal strategies of player i in Di
ρ,x report

truthfully mi = (s̄i, āi, si) in Step 1 (Truth-telling); then, in Step 2, conditional on all play-

ers reporting truthfully in Step 1, ρi(s) is a (not necessarily unique) optimal mixed action

(Obedience).

32Recall that player i assumes that players −i report truthfully and play ρ−i. Hence player i assigns

probability 1 to s̄−i = m̄−i
c , and to previous actions being drawn according to ρ−i(m̄c); hence this belief

assigns to s ∈ S the probability p(s | ȳ, s̄, ρ(s̄))). This is the case unless ȳ is inconsistent with ρ−i(m̄c); if

this is the case, use the same updating rule with some other arbitrary ã−i that is consistent with ȳ.
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Some comments are in order. The condition that ρ be played once states (not necessarily

types) have been reported truthfully simply means that, for each ω̄pub and m = (s̄, ā, s) the

action profile ρ(s) is an equilibrium of the complete information one-shot game with payoff

function r(s, a) + x(ω̄pub, ωpub, t) + θρ,r+x(ωpub, m
′).

The truth-telling condition is slightly more delicate to interpret. Consider first an out-

come ω̄ ∈ Ω such that s̄i = m̄i
c and āi = ρi(s̄) for all i –no player has lied or deviated in the

previous round, assuming the action to be played was pure. Given such an outcome, all play-

ers share the same belief over next types, given by p(· | ȳ, s̄, ā). Consider the Bayesian game

in which (i) s ∈ S is drawn according to the latter distribution, (ii) players make reports m,

then choose actions a, and (iii) get the payoff r(s, a)+x(ω̄pub, ωpub, t)+θρ,r+x(ωpub, m
′). The

admissibility condition for such an outcome ω̄ is equivalent to requiring that truth-telling

followed by ρ is an equilibrium of this Bayesian game, with “strict” incentives at the reporting

step.33

The admissibility requirement in Definition 4 is demanding, however, in that it requires

in addition truth-telling to be optimal for player i at any outcome ω̄ such that (s̄−i, ā−i) =

(m̄−i
c , ρ

−i(m̄c)), but s̄i 6= m̄i
c (or āi 6= ρi(m̄c)). Following such outcomes, players do not share

the same belief over the next states. The same issue arises if the action profile ρi(m̄c) is

mixed. Therefore, it is inconvenient to state the admissibility requirement by means of a

simple, subjective Bayesian game –hence the formulation in terms of a decision problem.

In loose terms, truth-telling is the unique best-reply at the reporting step of player i to

truth-telling and ρ−i. Note that we require truth-telling to be optimal (mi = (s̄i, āi, si)) even

if player i did misreport his previous state (m̄i
c 6= s̄i). On the other hand, Definition 4 puts

no restriction on player i’s behavior if he lies in Step 1 (mi 6= (s̄i, āi, si)). The second part

of Definition 4 is equivalent to saying that ρi(s) is one best-reply to ρ−i(s) in the complete

information game with payoff function given by (3) when m = (s̄, ā, s).

The requirement that truth-telling be uniquely optimal reflects an important difference

between our approach to Bayesian games and the traditional approach of Abreu, Pearce

and Stacchetti (1990) in repeated games. In the case of repeated games, continuation play

is summarized by the continuation payoff. Here, the future does not only affect incentives

via the long-run continuation payoff, but also via the relative values. However, we do not

know of a simple relationship between v and θ. Our construction involves “repeated games”

strategies that are “approximately” policies, so that θ can be derived from (ρ, x). This

shifts the emphasis from payoffs to policies, and requires us to implement a specific policy.

33Quotation marks are needed, since we have not defined off-path behavior. What we mean is that any

on-path deviation at the reporting step leads to a lower payoff, no matter what action is then taken.
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Truth-telling incentives must be strict for the approximation involved not to affect them.34

We denote by C2 the set of admissible pairs (ρ, x).

For given weights λ ∈ Λ, we denote by P2(λ) the optimization program sup λ · v, where

the supremum is taken over all triples (v, ρ, x) such that

- (ρ, x) ∈ C2;

- λ · x(·) ≤ 0;

- v = Eµρ
[r(s, a) + x(ω̄pub, ωpub, t)], where µρ ∈ ∆(Ωpub × Ωpub × S) is the invariant

distribution under truth-telling and ρ, so that v is the long-run payoff induced by

(ρ, x).

The three conditions mirror those of Definition 2 for the case of repeated games. The first

condition (admissibility) and the third condition are the counterparts of the Nash condition

in Definition 2(i); the second condition is the “budget-balance” requirement imposed by

Definition 2(ii). We denote by k2(λ) the value of P2(λ) and set H2 := {v ∈ R
I , λ · v ≤

k2(λ) for all λ ∈ Λ}.

Theorem 6 Assume that H2 has non-empty interior. Then, given π1,

H2 ⊆ lim inf
δ→1

TEδ(π1).

This result (proved in Appendix D) is simple enough. For instance, in the case of “stan-

dard” repeated games with public monitoring, Theorem 6 generalizes FLM, yielding the folk

theorem with the mixed minmax under their assumptions.

To be clear, there is no reason to expect Theorem 6 to provide a characterization of the

entire limit set of truthful equilibrium payoffs. One might hope to achieve a larger set of

payoffs by employing finer statistical tests (using the serial correlation in states, for instance),

just as one can achieve a bigger set of equilibrium payoffs in repeated games than the set

of PPE payoffs, by considering statistical tests (and private strategies). Example 4 makes

plain that using only the current report of −i as evidence for player i’s truthfulness is ad

hoc. Allowing for more signals/reports comes at an obvious cost in terms of the simplicity

of the characterization.

Nonetheless, as we have shown in Sections 3–5, variants of this theorem suffice to establish

“folk theorems” under IPV. Similarly, with correlated types, one can use arguments based

34Fortunately, this requirement is not demanding, as it is implied by standard full-rank conditions in the

correlated case, and by our non-degeneracy condition in the IPV case.
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on Crémer and McLean (1988) and Kosenok and Severinov (2008) to derive a folk theorem

with appropriate full rank assumptions. See the working paper for details. But Example

3 illustrates the difficulties that arise under the ominous combination of independent types

and common values.

Two variations to this theorem are worth mentioning. First, Theorem 6 can be adapted

to the case in which some of the players are short-run, whether or not such players have

private information (in which case, assume that it is independent across rounds). As this is

a standard feature of such characterizations (see FL, for instance), we will be brief. Suppose

that players i ∈ LR = {1, . . . , L}, L ≤ I are long-run players, whose preferences are as

before, with discount factor δ < 1. Players j ∈ SR = {L + 1, . . . , I} are short-run players,

each representative of which plays only once. We consider a “Stackelberg” structure, common

in economic applications, in which long-run players make their reports first, thereupon the

short-run players do as well (if they have any private information), and we set M i = Si

for the short-run players. Actions are simultaneous. Let mLR ∈ MLR = ×L
i=1M

i denote

an arbitrary report by the long-run players. Given a policy ρLR : M → ×i∈LR∆(Ai) of the

long-run players, mapping reports m = (mLR, sSR) (with sSR = (sL+1, . . . , sI)) into mixed

actions, we let B(mLR, ρLR) denote the best-reply correspondence of the short-run players,

namely, the sequential equilibria of the two-step game (reports and actions) between players

in SR. We then modify the definition of admissible pair (ρ, x) so as to require that the

reports and actions of the short-run players be in B(mLR, ρLR) for all reports mLR by the

long-run players, where ρLR is the restriction of ρ to players in LR. The requirements on

the long-run players are the same as in Definition 4.

Second, signals can be private. That is, we may replace Step 2 of the decision problem

Di
ρ,x by: A profile yn = (yin) ∈ Y := ×iY

i of private signals and the next state profile

sn+1 = (sin+1)i∈I are drawn according to some joint distribution psn,an ∈ ∆(S×Y ). We then

re-define a message mi as including: player i’s state, action and signal in the last period, and

player i’s current state. Transfers are then assumed to depend on the past, current and next

message profile, with the restriction, as with public monitoring, that player i’s transfer does

not depend on his own future message, only on player −i’s. The definition of admissibility

is unchanged, given the re-defined message space, and so does the statement of the theorem.

In a sense, this more general formulation is more natural, as the current one already

reduces the program to a one-player decision-theoretic problem, in which each player reports

his private information; he might as well report the signal he observed, and his realized re-

ward, in case of known-own payoffs. This variation mirrors Kandori and Matsushima (1998)’s

extension of FLM to private monitoring; the issues they raise regarding the possibility of a
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folk theorem in truthful strategies under imperfect monitoring apply here as well.

7 Conclusion

This paper has considered a class of equilibria in games with private and imperfectly persis-

tent information. While the structure of equilibria has been assumed to be relatively simple,

to preserve tractability –in particular, we have mostly focused on truthful equilibria– it has

been shown, perhaps surprisingly, that in the case of independent private values this is not

restrictive as far as incentives go: all that transfers depend on are the current and the previ-

ous report. This confirms a rather natural intuition: in terms of equilibrium payoffs at least

(and as far as incentive-compatibility is concerned), there is nothing to gain from aggregat-

ing information beyond transition counts. In the case of correlated values, we have shown

how the standard insights from static mechanism design with correlated values generalize; in

this case as well, the standard “genericity” conditions (in terms of numbers of states) suffice,

provided next round’s reports by a player’s opponent are used.

Open questions remain. As explained, the payoff set identified in Theorem 6 is a subset

of the set of truthful equilibria. As our characterization in the IPV case when monitoring has

a product structure makes clear, this theorem can be extended to yield equilibrium payoff

sets that are larger than the truthful equilibrium payoff set, but without such tweaking, it is

unclear how large the gap is. If possible, an exact characterization of the truthful equilibrium

payoff set (as δ → 1) would be very useful. In particular, this would provide us with a better

understanding of the circumstances under which existence obtains. It is striking that it does

in the two important cases that are well-understood in the static case: independent private

values and correlated types. Given how little is known in static mechanism design when

neither assumption is satisfied, perhaps one should not hope for too much in the dynamic

case. Instead, one might hope to prove directly that such equilibria exist in large classes

of games, such as games with known-own payoffs (private values, without the independence

assumption).

A different but equally important question is what can be said about the dynamic

Bayesian game under alternative assumptions on the communication opportunities. At one

extreme, one might like to know what can be achieved without communication; at the other

extreme, how to extend the analysis to the case in which a mediator is available.
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A Proofs for Section 3

Here and in what follows, we focus on the statements involving truthful equilibria, i.e.,

accounting for the obedience constraints. The corresponding results for the revelation game

are immediate corollaries.

A.1 Proof of Theorem 2

We let Z be a compact convex set included in the interior of H0. Given z ∈ Z, we construct

a truthful PBE σ with payoff z. Under σ, the play is divided into a sequence of phases

of random duration. During any given phase, the players (report truthfully and) follow a

policy ρλ : S → A that depends on a direction λ ∈ Λ. Players are incentivized to report

truthfully and to follow the prescribed policy by means of “transfers,” which are implemented

via adjustments in the continuation payoff, updated at the beginning of each phase.

A.1.1 Preliminaries

We pick η > 0 small enough so that the η-neighborhood Zη := {z ∈ R
I , d(z, Z) ≤ η} is also

included in the interior of H0. Since k0 is lower semi-continuous, there exists ε0 > 0 such

that maxz∈Zη
λ · z + 2ε0 < k0(λ) for all λ ∈ Λ.

We quote without proof a classical result, which relies on the smoothness of Zη (see

Lemma 6 in HSTV for a related statement).
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Lemma 2 Given ε > 0, there exists ζ̄ > 0 such that the following holds. For every z ∈ Zη,

there exists a direction λ ∈ Λ such that any vector w ∈ R
I which satisfies ‖w − z‖ ≤ ζ and

λ · w ≤ λ · z − εζ for some ζ < ζ̄, belongs to Zη.

The equilibrium construction relies on Lemma 3 below.

Lemma 3 There is a finite set S of triples (v, ρ, x) such that the following holds. For every

direction λ ∈ Λ, there is an element (v, ρ, x) of S such that (i) (v, ρ, x) is feasible in P0(λ)

with strict truth-telling incentives and (ii) maxz∈Zη
λ · z + ε0 < λ · v.

Proof. For each player i ∈ I, and any two states si, s̃i ∈ Si, there exist a, b ∈ A such that

ri(si, a)− ri(si, b) > ri(s̃i, a) − ri(s̃i, b). This implies the existence of a family of correlated

distributions ρi(s
i) ∈ ∆(A) (si ∈ Si), and of a map xi : Si → R such that

ri(si, ρi(s̃
i)) + xi(s̃i) < ri(si, ρi(s

i)) + xi(si),

for every si 6= s̃i (see Lemma 2 in Abreu, Dutta and Smith (1994)).

We next define ρ∗ : S → ∆(A) as ρ∗(s) :=
1

|I|
∑

i∈I

ρi(s
i) and xt : S → R

I as xit(s) :=

1

|I|x
i(si). We then define xob : Ωpub → R

I as xiob(s, a) = 0 if ai = ρi∗(s) and set xiob(s, a)

to be a large negative constant otherwise, and set x∗ := xt + xob.
35 Since transitions are

action-independent, for each i and s ∈ S, the expectation of the sum

ri(si, (ãi, ρ−i
∗ (s̃i, s−i))) + xi∗((s̃

i, s−i), (ãi, ρ−i
∗ (mi, s−i))) + θiρ∗,r+x∗

(t)

of current payoffs, transfers xi∗ and continuation relative values θiρ∗,r+x∗
has a strict maximum

for s̃i = si and ãi = ρi∗(s).

Let a direction λ ∈ Λ be given, and subtract a constant to x∗(·) in order that λ ·x∗(·) < 0.

The long-run payoff associated with (ρ∗, x∗) is v∗ := Eµ,ρ∗(s) [r(s, a) + x∗(s, a)]. The triple

(v∗, ρ∗, x∗) is then feasible in P0(λ
′) for all λ′ close enough to λ, with strict truth-telling

incentives.

Let now (v, ρ, x) be a feasible triple in P0(λ) such that λ ·x(·) < 0 and λ · v > k0(λ)− ε0.

For ε > 0, we denote by (ρε, xε) the pair obtained when letting the p.r.d. choose between

(ρ, x) and (ρ∗, x∗) with probabilities 1− ε and ε respectively. The long-run payoff associated

to the pair (ρε, xε) is vε := (1− ε)v + εv∗.

35Plainly, this is meaningful provided we view the p.r.d. as picking a pure action profile according to ρ∗(s).
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Observe that, since transitions are action-independent, one has θρε,r+xε
(s̄, s) = (1 −

ε)θρ,r+x(s̄, s) + εθρ∗,r+x∗
(s) for all (s̄, s). Using once again the assumption that transitions

are action-independent, this is easily seen to imply that the triple (vε, ρε, xε) is feasible in

P0(λ̃) for all λ̃ close to λ, with strict truth-telling incentives.

In addition λ · vε > k0(λ)− ε0 > supz∈Zη
λ · z + ε0 for ε small enough. The result follows,

since Λ is compact and the left-most and right-most expressions are continuous in λ.

We let κ be a common bound on v, x, and θρ,r+x for (v, ρ, x) ∈ S, and on z ∈ Z and r.

We pick an arbitrary ε1 ∈ (0, ε0), and set ε := ε1/4κ. We let then ζ̄ be obtained via Lemma

2 given ε.

We assume that δ̄ < 1 is high enough so that the conditions (i–iv) are met for all δ ≥ δ̄:

(i) ξ :=
√
1− δ <

1

3
, (ii)

1− δ

δξ
< 1, (iii) ζ := 4κ

1− δ

δξ
< ζ̄ and (iv) 6κξ < ε0 − ε1.

A.1.2 Strategies

For simplicity, we assume that the initial state s1, together with a fictitious state s0 for round

0, is drawn according to µ. Let z ∈ Z be the desired equilibrium payoff. The play is divided

into a sequence of phases. The durations of the successive phases form a sequence of i.i.d.

random variables. The initial round τ(k) of phase k, k ≥ 1, is set as follows: τ(1) = 0; in each

round n, the p.r.d. decides with probability ξ whether to start a new phase.36

In round τ(k+1), a target payoff z(k+1) ∈ R
I , a direction λ(k+1) ∈ Λ, and a triple

(v(k+1), ρ(k+1), x(k+1)) ∈ S are updated based on past public play, together with an auxil-

iary target w(k+1) ∈ R
I .

We first update w(k+1) according to

ξw(k+1) + (1− ξ)z(k) =
1

δ
z(k) −

1− δ

δ
v(k) +

1− δ

δ
x(k)(mτ(k+1)−2, ωpub,τ(k+1)−1). (4)

Next, we apply Lemma 2 with z = w(k+1) to get λ(k+1) and we next apply Lemma 3 with

λ(k+1) to get (v(k+1), ρ(k+1), x(k+1)) ∈ S. Finally, we update z(k+1) to

z(k+1) := w(k+1) + (1− δ)

((

1 +
1− δ

δξ

)

θ(k)(mτ(k+1)−1, mτ(k+1)
)− θ(k+1)(mτ(k+1)−1, mτ(k+1)

)

)

,

(5)

where θ(k) is a short-hand notation for θρ(k),r+x(k)
.

36Thus, the duration ∆k := τ(k+1) − τ(k) of phase k is such that ∆k − 1 follows a geometric distribution

with parameter 1− ξ.
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Updating thus takes place after the outcome of the p.r.d. is observed in round τ(k+1). The

left-hand side in (4) accounts for the random duration of the phases. The auxiliary variable

w(k+1) and the extra term in (5) (when compared to FLM) serve to adjust continuation

relative values along the play, as will be apparent.

The construction is initialized with w(1) = z, which is used to define λ(1), and (v(1), ρ(1), x(1))

and z(1) using (5) (with θ(0) := 0). That this recursive construction is well-defined follows

from Lemma 4 below.

Lemma 4 For all k (and all public histories), one has w(k) ∈ Zη.

Proof. Observe that ‖w(k) − z(k)‖ ≤ 3κ(1− δ) by (5) and ‖w(k+1) − z(k)‖ ≤ 3κ
1− δ

δξ
by

(4) whenever w(k) and z(k) are defined, so that

‖w(k+1) − w(k)‖ ≤ 3κ(1− δ)

(

1 +
1

δξ

)

≤ ζ.

Observe also that

w(k+1) − w(k) = w(k+1) − z(k) + z(k) − w(k) (6)

=
1− δ

δξ

{

z(k) − v(k) + x(k)(mτ(k+1)−2, ωpub,τ(k+1)−1)
}

+ z(k) − w(k) (7)

=
1− δ

δξ

(

w(k) − v(k) + x(k)(mτ(k+1)−2, ωpub,τ(k+1)−1)
)

+

(

1 +
1− δ

δξ

)

(

z(k) − w(k)

)

(8)

so that

λ(k) · (w(k+1) − w(k)) ≤ −1− δ

δξ
ε0 + 6κ(1− δ)

≤ −1− δ

δξ
ε1 +

1− δ

δξ
(ε1 − ε0 + 6κδξ)

≤ −εζ.

Hence w(k+1) ∈ Zη as soon as w(k) ∈ Zη.

Given a round n ∈ [τ(k); τ(k+1)−1] in phase k, we let zn := z(k) stand for the target payoff

in round n, and set (vn, ρn, xn, θn) := (v(k), ρ(k), x(k), θ(k)). Note that zn is measurable w.r.t.

the public history available in round n, including the outcome of the p.r.d.

Under σ, each player i reports truthfully mi
n = sin at the report step. At the action

step, player i plays ρin(mn) if he reported truthfully mi
n = sin. In the (off-path) event

mi
n 6= sin, player i plays a best-reply to ρ−i(mn) in the complete information game with

payoff r(sn, a) + xn(mn−1, (mn, a)) + Ep(·|sin,m
−i
n )θn(mn, sn+1) (where s−i

n = m−i
n ).
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A.1.3 Equilibrium Properties

Given a round n, we denote by γn the expected continuation payoff under σ, conditional on

the public history at round n (up to and including the outcome of the p.r.d.).37

Lemma 5 One has γn = zn + (1− δ)θn.

Proof. Given a public history hpub,n (including the outcome of the p.r.d. in round n),

γn satisfies the recursive equation

γn(hpub,n) = (1− δ)r(sn, ρn(sn)) + δE [γn+1 | hpub,n] ,

where the expectation is computed over sn+1 ∼ p(· | sn) and over the outcome of the p.r.d.

in round n+ 1.

We prove that the sequence (zn + (1− δ)θn)n obeys the same recursion, that is,

zn + (1− δ)θn = (1− δ)r(sn, ρn(sn)) + δE [zn+1 + (1− δ)θn+1 | hpub,n] . (9)

The claim will follow (since both sequences are bounded, a contraction argument applies).

Let h̄pub,n+1 = (hpub,n, an, sn+1) be an arbitrary public extension of hpub,n up to round

n + 1, ending prior to the outcome of the p.r.d. in round n + 1. At h̄pub,n+1, the p.r.d.

chooses with probability ξ whether zn+1 is equal to z(k+1) or to z(k). (Abusing notations),

the expectation E
[

zn+1 + (1− δ)θn+1 | h̄pub,n+1

]

over the outcome of the p.r.d. is therefore

(1− ξ)
(

z(k) + (1− δ)θ(k)(sn, sn+1)
)

+ ξ
(

z(k+1) + (1− δ)θ(k+1)(sn, sn+1)
)

(10)

= (1− ξ)
(

z(k) + (1− δ)θ(k)(sn, sn+1)
)

+ ξ

(

w(k+1) + (1− δ)

(

1 +
1− δ

δξ

)

θ(k)(sn, sn+1)

)

=
1− δ

δ
θ(k)(sn, sn+1) +

(

1

δ
z(k) −

1− δ

δ
v(k) +

1− δ

δ
x(k)(sn−1, ωpub,n)

)

,

while the first equality holds by virtue of (5) and the second one by (4).

Taking expectations over h̄pub,n+1 conditional on hpub,n, the RHS in (9) is

(1− δ)r(sn, ρn(sn)) + δE [zn+1 + (1− δ)θn+1 | hpub,n] (11)

= z(k) + (1− δ)
{

Eρn(sn),p(·|sn)

[

r(sn, an) + x(k)(sn−1, ωpub,n) + θ(k)(sn, sn+1)
]

− v(k)
}

= z(k) + (1− δ)θ(k)(sn−1, sn) = zn + (1− δ)θn,

as desired – where the last equality uses the ACOE.

37That is, denote by Hpub,n the (round n, public information) algebra on plays, by Pσ the probability

distribution over plays induced by σ, and by Eσ the expectation operator under Pσ. Then γn := (1 −

δ)Eσ

[

+∞
∑

u=0

δurn+u | Hpub,n

]

–in particular, γn is computed under the “assumption” that mn = sn.
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Corollary 7 σ is a truthful PBE with expected payoff z.

Proof. We check that player i has no profitable one-round deviation. Let be given a

private history hin of player i up to round n, including the realization of sin, and denote by

hpub,n the public part of hin. We compute the expected continuation payoff of player i when

first reporting mi
n, next choosing an action contingent on reports according to some map

βi : S → Ai, and finally switching back to σi.

Fix the realizations s−i
n = m−i

n of the other players’ types, and proceed as in the proof

of the previous claim. The equalities in (10) are algebraic identities, and still hold when

substituting mi
n to sin. The equality (11) also remains valid, with the appropriate changes.

Specifically, the expected continuation payoff of player i is given by

zin − vin + (1− δ)
{

E(βi(mn),ρ
−i
n (mn))

(

ri(sin, an) + xin(mn−1, ωpub,n)
)

+ Ep(·|sn)θ
i
n(mn, sn+1)

}

.

(12)

We thus need to check that the expectation (over s−i
n ) in (12) is maximized when reporting

truthfully.38 Conditional on the p.r.d. choosing not to switch to a new block in round n,

the expected continuation payoff of player i given hin, is equal (up to the constant term

zin − vin) to the interim expected payoff of i in the game Γ(ρn, xn) when reporting mi
n and

playing βi (given (mi
n−1, s

−i
n−1) and sin, and multiplied by 1 − δ). From the strict optimality

of truth-telling in the game Γ(ρn, xn), it follows that any incorrect report mi
n 6= sin leads to

a loss of the order of 1− δ (compared to truth-telling).

Conditional on the p.r.d. choosing to switch to a new block, lying may improve the

expectation of (12) by an amount of the order of at most 1 − δ. Since the probability of

switching is only ξ, truth-telling is optimal (for δ close to 1).

A.2 Proof of Proposition 2

We here prove Proposition 2. In this section, and in later sections as well, we find it conve-

nient to use the notion of a truthful pair. Given here ρ : S → ×i∈I∆(Ai) and x : Ωpub → R
I ,

the pair (ρ, x) is truthful if it is optimal for each i ∈ I to report truthfully in Γ(ρ, x), assum-

ing players −i do so, and ρ is played at the action step. The pair (ρ, x) is (strictly) ex post

truthful if it is (strictly) ex post optimal to report truthfully in Γ(ρ, x). That is, for each i

38Following a truthful report mi
n = sin, the optimality of ρn in Γ(ρn, xn) ensures that obedience is optimal

in round n.
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and s ∈ S, the expectation (over t) of

ri(si, ρ(s̃i, s−i)) + xi((s̃i, s−i), ρ(s̃i, s−i)) + θiρ,r+x(t)

has a (strict) maximum for s̃i = si.

Let first the direction λ be equal to −ei, for some i ∈ I. Let ā−i ∈ A−i and ρ̄i : Si → Ai

achieve the minmax in the definition of vi, and define ρ̄−i : Si → A−i as ρ̄−i(si) = ā−i. Let

xρ̄ : A→ R
I be transfers such that (i) xiρ̄(·) = 0 and, for j 6= i, (ii) xjρ̄(a) = 0 if a−i = ā−i and

xjρ̄(a) is a large negative number otherwise. Then (vi, ρ̄, xρ̄) is feasible in P0(−ei). Therefore

k0(−ei) ≥ −vi, as desired.

We now fix λ ∈ Λ, with λ 6= −ei, and prove that k0(λ) ≥ k̄(λ). Recall that I+ := I+(λ) =

{i ∈ I, λi > 0}, and consider the MDP with state space S+ := ×i∈I+S
i and stage reward

rλ(s+, a) :=
∑

i∈I+

λiri(si, a) +
∑

i/∈I+

λiri(µi, a).

The (long-run) value of this MDP is equal to k̄(λ) and we let θλ : S+ → R denote the

associated relative value so that

k̄(λ) + θλ(s+) = max
a∈A

{rλ(s+, a)}+ Ep(·|s+)θλ(t+) for all s+ ∈ S+. (13)

Pure optimal policies ρ : S+ → A are characterized by the property that ρ(s+) achieves

the maximum in (13) for each s+ ∈ S+.

We let ρλ : S+ → A be an arbitrary optimal policy. We construct transfers x : S×Ωpub →
R

I such that (k̄(λ), ρλ, x) is feasible in P0(λ), thereby showing k0(λ) ≥ k̄(λ).39

The transfers x are obtained as the sum of transfers xt : S × S → R
I , which are con-

tingent on successive reports and provide truth-telling incentives, and of transfers inducing

obedience. The transfers xt are defined in two steps. We first define transfers x1 of the VCG

type, contingent on current reports, and rely next on AS to balance the transfers.

Claim 8 There exists x1 : S → R
I such that (ρλ, x1) is (ex post) truthful.

Proof. For i /∈ I+, it suffices to set xi1 = 0 as the reports by i are ignored. Fix now

i ∈ I+(λ). For s ∈ S, define xi1(s) by the equation

λixi1(s) := rλ(s+, ρλ(s+))− λiri(si, ρλ(s+)).

39In this section, we only deal with the policy ρλ, and will drop the reference to ρλ when writing relative

values.
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Observe that λiθir+x1
: S+ → R satisfies (13) as well. Hence, λiθir+x1

= θλ up to an additive

constant.

Since ρλ(s+) achieves the maximum in (13), it follows that (ρλ, x1) is truthful.

Note that x1 = 0 if λ = ei for some i, so that λ · x1(·) = 0. We set xt = x1 in that case.

From now on, we assume that λ is not a coordinate vector and adapt arguments from AS.

For i ∈ I, define first xi2 : S×Si → R by xi2(s̄, s
i) := Es−i∼p(·|s̄−i) [x

i
1(s)]. Plainly, (ρλ, x2)

is truthful as well. The relative values θix2
: S × Si → R solve

γ + θix2
(s̄, si) = xi2(s̄, s

i) + Es−i∼p(·|s̄−i),ti∼p(·|si)θ
i
x2
(s, ti) (14)

where γ = E(s̄,si)∼µ [x
i
2(s̄, s

i)].

Define next xi3 : S × Si → R as

xi3(s̄, s
i) := θix2

(s̄, si)− Es̃i∼p(·|s̄i)θ
i
x2
(s̄, s̃i).

Claim 9 The pair (ρλ, x3) is truthful.

Proof. One has Esi∼p(·|s̄i) [x
i
3(s̄, s

i)] = 0 for each s̄, hence the equality

xi3(s̄, s
i) = xi3(s̄, s

i) + Es−i∼p(·|s̄−i),ti∼p(·|si)

[

xi3(s, t
i)
]

holds. That is, xi3 = θix3
.

Fix s̄ ∈ S, si ∈ Si and mi ∈ Si. For given s−i ∈ S−i, ti ∈ Si, and setting m := (s−i, mi),

the expression

ri(si, ρλ(m)) + xi3(s̄, m
i) + θir+x3

(m, ti) (15)

is equal to

ri(si, ρλ(m)) + θix2
(s̄, mi) + θir(m, t

i) + θix3
(m, ti)

(up to the additive term Es̃i∼p(·|s̄i)θx2(s̄, s̃
i) which is independent of mi). Thanks to the

equality x3 = θx3 , the former expression is in turn equal to

ri(si, ρλ(m)) + θix2
(s̄, mi) + θir(m, t

i) + θix2
(m, ti)− Et̃i∼p(·|mi)

[

θix2
(m, t̃i)

]

. (16)

In view of (14), the expectation of (16) (and therefore of (15)) when s−i ∼ p(· | s̄−i) and

ti ∼ p(· | si), is equal to the expectation of

ri(si, ρλ(m)) + xi2(s̄, m
i) + θir+x2

(m, ti).

Since (ρλ, x2) is truthful, so is (ρλ, x3).
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Claim 10 Let µij ∈ R be arbitrary. For i ∈ I, set

xi4(s̄, s) := xi3(s̄, s
i) +

∑

j 6=i

µijx
j
3(s̄, s

j).

Then (ρλ, x4) is truthful.

Proof. Fix i ∈ I, s̄ ∈ S, si ∈ Si. For given s−i = m−i and t ∈ S, the sum

ri(si, ρλ(m)) + xi4(s̄, m) + θir+x4
(m, t) (17)

is equal, thanks to θjx3
= xj3, to

ri(si, ρλ(m)) + xi3(s̄, m
i) + θir+x3

(m, t) +
∑

j 6=i

µij

(

xj3(s̄, m
j) + xj3(m, t

j)
)

.

In this latter expression, and for fixed j 6= i, xj3(s̄, m
j) is independent ofmi and Etj∼p(·|sj)

[

xj3(m, t
j)
]

=

0. Since (ρλ, x3) is truthful, so is (ρλ, x4).

Since λ is not a coordinate vector, the system λi +
∑

j 6=i

λjµji = 0 (i ∈ I) has a solution

(µij). With this choice, λ · x4(·) = 0 and we set xt(·) := x4(·).
We finally add transfers inducing obedience. Since λ is not a coordinate direction, there

exists xρλ : S ×A→ R
I such that (i) λ · xρλ(·) = 0, (ii) xρλ(s, ρλ(s)) = 0 for each s ∈ S and

(iii) xi(s, ai, ρ−i
λ (s)) is a large negative constant for each s ∈ S, i ∈ I, and ai 6= ρiλ(s).

The triple (k̄(λ), ρλ, xt + xρλ) is feasible in P0(λ).

To conclude, we provide a short proof of the reverse inequality k0(λ) ≤ k̄(λ) for all

λ ∈ Λ (which is not needed for deriving Corollary 3). The proof uses the same idea as the

proof of Proposition 1. Let (v, ρ, x) be feasible in P0(λ). We modify ρ and x by letting

the p.r.d. pick a fictitious report s̃j ∼ µj for all j /∈ I+ and let actions and transfers be

determined by ρ and x, using these fictitious reports and the actual reports of players i ∈ I+.

Denote by ρ̃ : S+ → ×i∈I∆(Ai) the modified policy and by x̃ the modified transfers. Since

(v, ρ, x) is feasible and thanks to the private values assumption, all players j /∈ I+ are weakly

worse off in Γ(ρ̃, x̃) while players i ∈ I+ are unaffected. Since λ · x̃(·) ≤ 0, this implies

λ · v ≤ Eµ,ρ̃[λ · r(s, a)] ≤ k̄(λ).
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B Proofs for Section 4

B.1 Proof of Proposition 3

We here prove Proposition 3. Fix a direction λ ∈ Λ and a discount factor δ < 1. We set

I+ := I+(λ), I− = I \ I+, and ∆− := ×i∈I−∆(Si). We introduce the MDP Mλ in which

players jointly maximize the λ-weighted sum of discounted payoffs, and ignore the states of

players i ∈ I−. Formally, the state space of Mλ is S+ ×∆− with elements denoted (s+, π−),

and the action set is A. The transitions given (s+, π−) and conditional on y, are deduced

from p. With obvious notations, the stage reward is

rλ((s+, π−), a) :=
∑

i∈I+

λiri(si, a) +
∑

i∈I−

λiri(πi, a).

We denote by vδ(s+, π−) the value of the δ-discounted version of Mλ, starting from (s+, π−).

Following the same argument as in Proposition 1, for every initial distribution π =

(π+, π−) ∈ ×i∈I∆(Si) and every Nash equilibrium of the game with payoff vector v ∈ R
I ,

one has λ · v ≤ λ · Es+∼π+ [vδ(s+, π−)]. Hence the result will follow from the equality

lim
δ→1

vδ(s+, π−) = k̄1(λ), for all (s+, π−). (18)

We will prove (18) by approximating Mλ with MDPs with a finite state space and using

results from the theory of such MDPs. We introduce some piece of notation, to be used later

as well. Given a finite subset Ki of ∆(Si), a map φi : Ki × Y → Ki and η > 0, the pair

(Ki, φi) is an η-approximation of ∆(Si) if

‖φi(ki, y)− pi(· | ki, y)‖∞ < η, (19)

for every ki ∈ Ki and y ∈ Y . Intuitively, (19) entails that the exact posterior on the next

state given a prior ki on the current state si and a signal y, is η-close to φi(ki, y). That is,

the map φi is a good approximation of the evolution of beliefs over states.40

Given a family (Ki, φi) of η-approximations of ∆(Si), i ∈ I−, the pair (K, φ) defined as

K = ×i∈I−K
i and φ(k, y) = (φi(ki, y))i is said to be an η-approximation of ∆−.

We will without further notice assume that all η-approximations below satisfy the fol-

lowing communication property : for any two k, k̃ ∈ K, there exists an integer N ∈ N, action

profiles a1, . . . , aN , and signals y1, . . . , yN , such that (i) p(yn | an) > 0 for each n, and (ii)

40Note though that this interpretation is valid only if y is uninformative about si. Note also that we do

not require that Ki be a “large” subset of ∆(Si).
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the sequence (kn) defined by k1 = k and kn+1 = φ(kn, yn) is such that kN+1 = k̃.41 Given an

η-approximation (K, φ) of ∆−, we define Mφ to be the MDP with finite state space S+×K,

action set A, and transitions deduced from p(· | a) ∈ ∆(Y ) and φ. Finally, the stage reward

function is (the restriction of) rλ. Thus, Mφ differs from Mλ only through the transition

function, and we think of Mφ as a finite state approximation of Mλ. The MDP Mφ is

communicating.42

Let ε > 0 be arbitrary and let r̄ be an upper bound on ‖r‖. Since the transition

function p(· | s, a) is aperiodic and irreducible, there exists a constant c ∈ (0, 1) such

that for each (as)s∈S, and any two distributions π and π̃ in ×i∈I∆(Si), one has ‖
∑

s∈S

p(· |

s, as) (πs − π̃s) ‖∞ ≤ c‖π− π̃‖∞. Pick η < ε(1− c)/r̄, and an η-approximation (K, φ) of ∆−.

In both MDPs Mλ and Mφ, strategies map past public signals (yn) and past (and

current) states (s+,n) of players in I+ into an action profile. We prove in Lemma 6 below

that any strategy induces approximately the same payoff in Mλ and in Mφ. Given a strategy

σ, we denote by γδ(·, σ) and γδ,φ(·, σ) the payoff induced in Mλ and Mφ respectively, as a

function of the initial state.

Lemma 6 For every discount factor δ < 1, any s+ ∈ S+, π− ∈ ∆− and k ∈ K, one has

|γδ((s+, π−), σ)− γδ,φ((s+, k), σ)| ≤ ε+
r̄(1− δ)

1− δc
.

Proof. Fix σ and an arbitrary play h∞ = (s+,n, yn, an)n. Given a player i ∈ I− and a

round n ∈ N, let πi
n ∈ ∆(Si) and kin be the i-th component of the state in Mλ and Mφ

along h∞.
43 Along h∞, the payoff difference in Mλ and Mφ is

∣

∣

∣

∣

∣

(1− δ)
∞
∑

n=1

(rλ(s+,n, π−,n, an)− rλ(s+,n, kn, an))

∣

∣

∣

∣

∣

≤ r̄(1− δ)
∞
∑

n=1

δn−1‖π−,n − kn‖∞.

The two sequences obey the recursions πi
n = pi(· | πi

n−1, yn−1) and kin = φi(kin−1, yn−1)

so that, by the triangle inequality, one has ‖πi
n − kin‖∞ ≤ c‖πi

n−1 − kin−1‖∞ + η. Routine

computations then lead to ‖πi
n − kin‖∞ ≤ η

1− c
+ cn−1, hence the payoff difference along h∞

does not exceed
r̄η

1− c
+
r̄(1− δ)

1− δc
.

41The existence of communicating η-approximations is easy to establish. Not all η-approximations are

communicating.
42Using the full-support assumption and the communicating property of (K,φ).
43That is, πi

n is the conditional distribution of sin given past signals, while kin is obtained by repeated

applications of φi.

48



Let vδ,φ be the value of the δ-discounted version of Mφ. Since Mφ has a finite state

state, by Blackwell (1962), there is a (pure) policy ρ∗ : S+ ×K → A that is optimal for all

δ close enough to one. That is, γδ,φ(ρ∗) = vδ,φ for δ large enough, hence vφ := limδ→1 vδ,φ

exists. Since Mφ is communicating, the limit value vφ is independent of the initial state.

Claim 11 For all (s+, π−), one has | limδ→1 vδ(s+, π−)− vφ| ≤ ε.

Proof. By Lemma 6, one has both

| lim sup
δ→1

vδ − vφ| ≤ ε and | lim inf
δ→1

vδ − vφ| ≤ ε.

Since ε is arbitrary, this implies the convergence of vδ as δ → 1, with | limδ vδ − vφ| ≤ ε.

Claim 12 vφ ≤ k̄1(λ) + ε.

Proof. Plainly, the policy ρ∗ may also be either viewed as a strategy in Mλ, or as a policy

in the initial game with state space S, independent of the states of players i ∈ I−. Under

both “interpretations,” the payoff induced by ρ∗ is of course equal to γδ(·, ρ∗). According to

the first interpretation, Lemma 6 applies for each δ, and lim sup
δ→1

‖γδ(·, ρ∗) − γδ,φ(·, ρ∗)‖∞ ≤
ε. According to the second interpretation, ρ∗ induces a Markov chain over S × K. Let

E = S × KE be an arbitrary ergodic set44 for this Markov chain, with invariant measure

µE ∈ ∆(S ×KE × A). Given an initial state (s̄, k̄) ∈ E, one has limδ→1 γδ,φ((s̄, k̄), ρ∗) = vφ

(by the choice of ρ∗), while limδ→1 γδ((s̄, k̄), ρ∗) = EµE
[λ · r(s, a)]. Combining these results,

one gets

vφ ≤ EµE
[λ · r(s, a)] + ε. (20)

To conclude, define φE : KE × Y → KE by φE(k, y) = φ(k, y) whenever φ(k, y) ∈ KE ,

and let φE(k, y) ∈ KE be arbitrary otherwise. The extended policy (ρ,KE , φE) is irreducible,

with invariant measure µE. Hence EµE
[λ · r(s, a)] ≤ k̄1(λ).

Combining the last two claims, limδ→1 vδ(s+, π−) ≤ k̄1(λ) + 2ε. Since ε > 0 is arbitrary,

it follows that limδ→1 vδ(s+, π−) ≤ k̄1(λ).

The reverse inequality k̄1(λ) ≤ limδ→1 vδ is straightforward. Indeed, let ρext = (ρ,K, φ)

be an arbitrary irreducible extended policy, where ρ : S × K → ∆(A) is independent of

(sj)j /∈I+. The policy ρ induces a strategy in Mλ, hence γδ(·, ρ) ≤ vδ(·). Letting δ → 1, one

obtains Eµρext
[λ · r(s, a)] ≤ limδ→1 vδ.

44That all ergodic sets are product sets follows from the full support assumption.
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B.2 Proof of Proposition 4 and Theorem 4

B.2.1 An overview

To unify notations, we set k̃1(−ei) = −vi for i ∈ I, and k̃1(λ) = k̄1(λ) otherwise, so that

V ∗∗
1 = {z ∈ R

I , λ · z ≤ k̃1(λ) for all λ}. We observe that k̄1(·) is lower semi-continuous, and

that k̄1(−ei) ≥ −vi. Thus, k̃1(·) is lower semi-continuous as well.

We will prove the following strengthening of Proposition 4.

Lemma 7 For every λ ∈ Λ and ε > 0, there exists a triple (v, ρext, x), which is feasible in

P1(λ), with strict truth-telling incentives, and such that λ · v > k̃1(λ)− ε.

Lemma 7 readily implies k1(λ) ≥ k̃1(λ). The following subsections are devoted to the

proof of Lemma 7.

In the meantime, we deduce Theorem 4 from Lemma 7. We let Z be a compact set

included in the interior of V ∗∗
1 . Since Z is compact, there exists η > 0 such that the η-

neighborhood Zη of Z is also included in the interior of V ∗∗
1 . Thus, for all λ ∈ Λ, there is

ε > 0 such that maxz∈Zη
λ · z + ε < k̃1(λ). Hence, by compactness of Λ and since k̃1 is lower

semi-continuous, there is ε0 > 0 such that

∀λ ∈ Λ,max
Zη

λ · z + 2ε0 < k̃1(λ). (21)

Lemma 8 There exists a finite set S of triples (v, ρext, x) such that the following holds. For

every direction λ ∈ Λ, there is an element (v, ρext, x) of S such that

1. (v, ρext, x) is feasible in P1(λ) with strict truth-telling incentives.

2. maxz∈Zη
λ · z + ε0 < λ · v.

Proof. Given λ ∈ Λ, apply Lemma 7 with ε = ε0. Plainly, by adding a small constant

to x, we may assume that in addition λ · x(·) < 0 for fixed λ, hence (v, ρext, x) is feasible in

P1(λ
′) for all λ′ close enough to λ. By (21), the inequality λ · v > k̃1(λ)− ε0 implies

λ · v > sup
z∈Zη

λ · z + ε0.

Since both sides of the inequality are continuous in λ and since Λ is compact, Lemma 8, and

therefore Theorem 4, follows from Lemma 7.

Lemma 8 is the exact analog of Lemma 3 (in the proof of Theorem 2). Inspection of

the proof of Theorem 2 then shows that Lemma 2 is still valid here and that all subsequent
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arguments based on Lemmas 2 and 3 remain valid (that is, both the construction of strategies

in Section 3 and the results from Section A.1.3 readily extend to the present, more general

setup).45 Thus, Theorem 4 follows.

B.2.2 Step 1: There is a strictly truthful pair (ρext,0, x0)

We start to prove Lemma 8. In this first step, we construct a specific ex post, strictly truthful

(pure) pair (ρext,0, x0). It will later be used as a perturbation, and will thus play a role analog

to that of the pair (ρ∗, x∗) in Section 3.

By A1 and as in Section 3, there exists for each i ∈ I a family µi(si) ∈ ∆(A) of

distributions, and transfers τ i : Si → R such that, for each si, the map s̃i 7→ τ i(s̃i) +

Ea∼µ(s̃i)

[

θi~a,r(s
i)
]

has a strict maximum at s̃i = si. We assume w.l.o.g. that µi(si) has full

support.

For s ∈ S, define then µ(s) :=
1

|I|
∑

i∈I

µi(si) and T i(s) :=
1

|I|τ
i(si) so that, for each i ∈ I

and s ∈ S, the map

s̃i 7→ T i(s̃i, s−i) + Ea∼µ(s̃i,s−i)

[

θi~a,r(s
i)
]

has a strict maximum at s̃i = si.

Let η0 > 0 to be fixed later, and set K0 = A. Under the extended policy ρext,0 =

(ρ0, K0, φ0), players repeat the same action profile a ∈ K0 until the p.r.d. picks at a random

time a (possibly) different new action profile according to a distribution which is contingent

on the states reported in that round.

Formally, given the recommendation a0 in the previous round, and reports m in the

current round, the p.r.d. picks a recommended action profile a′0 ∈ A, which is equal to a0

with probability 1 − η0, and drawn according to µ(m) otherwise. We set ρ0(m, a0) = a′0,

φ0(m, a0, y) = a′0, and x0(m, a0) = −γ ~a′0
+ η0T (m).46,47

Thus, (ρ0, K0, φ0) is irreducible. Denote by µη0 the invariant measure and by γη0 ∈ R
I and

θη0 : S ×K0 → R
I the long-run payoff and relative values respectively (including transfers).

45The only, quite minor modification is as follows. Elements of S are now triples (ρext, x, v), where

ρext = (ρ,K, φ) is an extended policy, and the auxiliary set K changes with ρ. At the beginning of the k-th

block, once the extended policy (ρ(k),K(k), φ(k)) has been selected as a function of past public play, an initial

state in K(k) still needs to be specified. This choice is irrelevant for the proofs.
46Consistent with our usage, the dependence of ρ0, x0 and φ0 on the outcome of the p.r.d. does not appear

explicitly.
47Recall that γ~a is the long-run payoff induced by the constant policy ~a. That is, γ~a = Es∼µ~a

[r(s, a)] =

r(µ~a, a).
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Lemma 9 Both limη0→0 µη0 and limη0→0 θη0 exist. In addition, limη0→0 θη0(s, k0) − θ ~k0,r
(s)

only depends on k0.

Proof. The distribution µη0 is the unique solution to a linear system with coefficients

affine in η0. Therefore, η0 7→ µη0 is a rational function and, being bounded, has a limit as

η0 → 0. We refer to the online appendix for the proof relative to θη0 . The proof uses similar

arguments, but the proof that η0 7→ θη0 is bounded is more delicate.

Lemma 10 For η0 small enough, the pair (ρext,0, x0) is ex post strictly truthful.

Proof. We must show that in the one-shot Bayesian game Γ(ρext,0, x0) and given a state

profile (s, a) ∈ S×K0, each player i finds it strictly optimal to report si (assuming obedience

to ρext,0). Fix (s, a) ∈ S ×K0. The actual payoff of player i when reporting s̃i ∈ Si is

ri(si, a′) + xi0((s̃
i, s−i), a′) + θiη0(t, a

′),

where a′ ∈ A is the recommendation of the p.r.d. and t ∼ p(· | s, a′).
Taking expectations over a′ and t, and since x0(s̃

i, s−i, a′) = η0T (s̃
i, s−i) − γ~a′ , the ex-

pected payoff when reporting s̃i is

(1− η0)
{

ri(si, a)− γ~a + Et∼p(·|s,a)

[

θiη0(t, a)
]}

+ η0
{

Ea′∼µ(s̃i,s−i)

[

ri(si, a′) + T i(s̃i, s−i)− γ~a′ + Et∼p(·|s,a′)θ
i
η0
(t, a′)

]}

.

The first term is independent of s̃i. As for the second, observe that, for fixed a′, the term

between brackets converges as η0 → 0 to

ri(si, a′) + T i(s̃i, s−i)− γ~a′ + Et∼p(·|s,a′)θ
i
~a′,r

(ti),

(up to an additive constant), which is equal to T i(s̃i, s−i) + θi~a′,r(s
i). By the choice of µ and

T , the expectation of the latter term under a′ ∼ µ(s̃i, s−i) has a strict maximum for s̃i = si.

Therefore, it is ex post strictly optimal for player i to report truthfully.

B.2.3 Step 2: λ is not a coordinate direction

We here deal with the more difficult case where λ is not a coordinate direction. We rely on

Proposition 5 below deals with the following setup. Let be given an irreducible MDP with

state space Ω, action set B, transition function q(· | ω, b), reward r : Ω × B → R (all sets

being finite). Assume that successive states are observed by a first agent, who makes a report
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to a second one, who in turn chooses an action, the reward of both agents being r. Plainly,

if the second agent follows a stationary optimal policy, it is weakly optimal for the first

one to be truthful. According to Proposition 5, there are arbitrarily small report-contingent

transfers and an optimal policy in the perturbed MDP, see P1, such that truth-telling is

strictly optimal whenever the report affects the action (distribution) being played, see P2.

Proposition 5 For each ε > 0, there exists x : Ω×B → R and ρ : Ω → int∆(B) such that

the following holds, with θ := θρ,r+x:

P1 ‖x(·)‖ < ε and ρ is an optimal policy in the MDP with reward r + x.

P2 For every ω, ω̃ ∈ Ω,

r(ω, ρ(ω)) + x(ω, ρ(ω)) + Eq(·|ω,ρ(ω))θ(ω
′) ≥ r(ω, ρ(ω̃)) + x(ω̃, ρ(ω̃)) + Eq(·|ω,ρ(ω̃))θ(ω

′),

and a strict inequality holds whenever ρ(ω̃) 6= ρ(ω).

Proposition 5 is immediate when transitions are action-independent. In that case indeed,

and for ω ∈ Ω, set B(ω) := argmaxBr(ω, ·), let ρ(ω) be the uniform distribution over B(ω)

and set x(ω) := η|B(ω)|. For small η > 0, the pair (ρ, x) satisfies P1 and P2. The proof is

significantly more involved under action-dependent transitions. It is in the online appendix.

We now proceed in three (sub-)steps. We first rely on Proposition 5 to prove in Lemma

11 the existence of an extended policy ρext,1 and of transfers x1 such that the long-run payoff

under ρext,1 is close to k̄1(λ) and such that truth-telling incentives are ex post strict unless

reports do not affect the action being played. By perturbing the latter extended policy with

the policy ρext,0 defined in Step 1, we next prove in Lemma 12 the existence of an ex post

strictly truthful pair (ρext, x) such that the long-run payoff under ρext –excluding transfers–

is close to k̄1(λ). We conclude using AS and the action-identifiability assumption A2.

Lemma 11 For all ε > 0, there exists an irreducible extended policy ρext,1 = (ρ1, K1, φ1)

where ρ1 : S+ ×K1 → ∆(A) and transfers x1 : S+ ×K1 → R
I, s.t.

C1 Eµρext,1
[λ · r(s, a)] > k̄1(λ)− ε;

C2 For all (s, k) ∈ S ×K, all i ∈ I+ and s̃i 6= si such that ρ(s+, k) 6= ρ(s̃i, s−i
+ , k), player i

ex post strictly prefers reporting si over s̃i in Γ(ρext,1, x1) (given (s, k)).
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Proof. Proposition 5 holds for finite MDPs, hence we will have to rely on finite state

approximations of the MDP Mλ. We use the notations from Section B.1. Let ε > 0 be

given. We let (K1, φ1) be an η-approximation of ∆− such that the limit value vφ of the MDP

Mφ induced by (K1, φ1) is close to k̄1(λ): |vφ − k̄1(λ)| <
ε

3
. In addition, we assume that

η > 0 is small enough48 so that, for each irreducible ρ : S+ ×K1 → ∆(A), one has

∣

∣E(s+,k,a)∼µρ
[rλ(s+, k, a)]− E(s,a)∼µρ

[λ · r(s, a)]
∣

∣ <
ε

3
, (22)

where µρ ∈ ∆(S ×K1 ×A) is the invariant distribution induced by ρ. Inequality (22) reads

as follows: the two expectations are the long-run payoffs induced by ρ in the MDPs Mφ and

Mλ respectively. Consequently, the long-run λ-weighted payoff induced by any such policy

ρ is close to the payoff induced in Mφ.

With this choice of (K1, φ1), we apply Proposition 5 to the MDP Mφ with ε/3, and get

ρ1 : S+ ×K1 → int ∆(A) and x̄ : S+ ×K1 × A → R. Abusing notations, we will also view

ρ1 and x̄ as maps defined on S ×K1 and S ×K1 × A, independent of si for i ∈ I−.

To repeat, the pair (ρext,1, x̄) is such that for all ω, ω̃ ∈ S+ × K1, and denoting q the

transition function in Mφ, one has

rλ(ω, ρ1(ω)) + x̄(ω, ρ1(ω)) + Eq(·|ω,ρ1(ω))θρ1,rλ+x̄(ω
′)

> rλ(ω, ρ1(ω̃)) + x̄(ω̃, ρ1(ω̃)) + Eq(·|ω,ρ1(ω̃))θρ1,rλ+x̄(ω
′)

whenever ρ1(ω) 6= ρ1(ω̃) and

Eµρ1
[rλ(ω, ρ1(ω))] ≥ vφ −

ε

3
≥ k̄1(λ)−

2ε

3
.

Together with (22), this proves C1.

Next, we follow Claim 9 and introduce transfers of the VCG type. For i ∈ I+, we define

xi1 : S+ ×K1 → R by

λiri(ω, ρ1(ω)) + λixi1(ω) := rλ(ω, ρ1(ω)) + x̄(ω, ρ1(ω))

so that, as in Claim 9, one has λiθiρ1,r+x1
= θρ1,rλ+x̄. Therefore, ρ1 inherits the following

truth-telling property in the one-shot game Γ(ρext,1, x1): at each state (s+, k) ∈ S+×K1 and

for each i ∈ I+, player i strictly prefers reporting si over s̃i whenever ρ1(s+, k) 6= ρ1(s̃
i, s−i

+ , k).

For i ∈ I−, set xi1 = 0. Since ρ1 is independent of si ∈ Si, the latter property also holds

for all i ∈ I−. Thus, C2 holds.

48It suffices to take η < (1− c)ε/3r̄, see Section B.1.
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Lemma 12 For all ε > 0, there exists an irreducible extended policy ρext = (ρ,K, φ) such

that

C’1 λ · Eµρext
[λ · r(s, a)] ≥ k̄1(λ)− ε.

C’2 The pair (ρext, x) is ex post strictly truthful.

Proof. We construct (ρ,K, φ) as a perturbation of (ρ1, K1, φ1) using (ρ0, K0, φ0) so that

the play alternates between long phases in S × K1 and long but much shorter, phases in

S ×K0.

Let η1 > 0 be small, to be fixed later. We define the extended policy ρext = (ρ,K, φ) as

follows. We set K = K0 ∪K1. In each round, given the current public auxiliary state k ∈ K

and reports s ∈ S, the p.r.d. updates the public state to k′ ∈ K as follows. If k ∈ K1, k
′

is set to k with probability 1 − η21, and k′ ∼ µ(s) otherwise. If k ∈ K0, k
′ is set to a fixed

k̄1 ∈ K1 with probability η21, and otherwise determined as under ρext,0 (i.e., set to k with

probability 1− η0, and otherwise drawn according to µ(s)).

We then define ρ : S ×K → ∆(A) as ρ(s, k) = ρ0(s, k
′) if k′ ∈ K0 and ρ(s, k) = ρ1(s, k

′)

if k′ ∈ K1. We also set φ(k, y) = φ1(k
′, y) if k′ ∈ K1 and φ(k, y) = k′ if k′ ∈ K0.

49

Transfers x : S×K → R
I are defined as x(s, k) = x1(s, k

′) if k′ ∈ K1, x(s, k) = x0(s, k
′) =

η0T (s)− γ~k′ if both k, k′ ∈ K0 and x(s, k) = T (s)− γ~k′ if k ∈ K1 and k′ ∈ K0.

The irreducibility of (ρ,K, φ) follows from that of both (ρ0, K0, φ0) and (ρ1, K1, φ1). We

denote by µη1 := µρext the invariant measure as a function of η1, and by θη1 := θρext,r+x :

S × K → R
I the relative values. As in Section B.2.2, µ := limη1→0 µη1 is well-defined. In

addition, note that the limit transition function is the one induced by ρext,0 and ρext,1 on

S × K0 and S × K1 respectively. Since transitions from K0 to K1 (resp., from K1 to K0)

occur with probability η1 (resp., η21), one has µη1(S ×K1) =
1

1 + η1
. As a consequence,

lim
η1→0

Eµη1
[λ · r(s, a)] = Eµρext,1

[λ · r(s, a)] > k̄1(λ)− ε,

hence C’1 hold for η1 small enough.

We turn to C’2. As in Section B.2.2 (see supplementary material online), θ := limη1→0 θη1
is also well-defined, and for s ∈ S, the differences θ(s, k0)− θ0(s, k0) and θ(s, k1)− θ1(s, k1)

are independent of k0 ∈ K0 and k1 ∈ K1 respectively (where θn = θρn,r+xn
for n = 0, 1).

Fix (s, k) ∈ S ×K, i ∈ I and s̃i ∈ Si. If k ∈ K0 the strict incentive to report si follows

from the strict truthfulness of (ρext,0, x0), for η1 small enough.

49Note that φ therefore also depends here on the reports of the players.
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Assume now that k ∈ K1. If ρ(si, s−i, k) 6= ρ(s̃i, s−i, k) for some s−i ∈ S−i, player i

strictly prefers reporting si over s̃i in Γ(ρext,1, x1).
50 And therefore in Γ(ρext, x) as well, for

η1 small enough. Assume finally that ρ(si, s−i, k) = ρ(s̃i, s−i, k) for all s−i ∈ S−i. Then the

expected payoff of player i in Γ(ρext, x), conditional on the p.r.d. picking k′ = k is the same

under both reports si and s̃i. On the other hand, conditional on the p.r.d. picking some

a′ ∈ K0, the expected payoff of player i converges as η1 → 0 to

Ea′∼µ(·,s−i)

[

ri(si, a′) + T i(·, s−i)− γ~a′ + Et∼p(·|s,a′)θ
i
0(t, a

′)
]

= Ea′
∑

µ(·,s−i)

[

θi0(s, a
′) + T i(·, s−i)

]

which, by the choice of η0, has a strict maximum for si. The strict truthfulness of (ρext, x)

follows, provided η1 is small enough.

We now conclude the proof of Lemma 7. Inspection of the proofs of Claims 8, 9 and

10 shows that the successive modifications of the transfers preserve strict inequalities and

do not rely on transitions being action-independent. That is, the same sequence of claims

leads here to the existence of x4 : Ωpub × S ×K → R
I (with Ωpub = S ×K × Y ) such that

λ · x4(·) = 0 and all truth-telling incentives in Γ(ρext, x4) are strict.

We finally add a component to transfers, so as to ensure obedience. This is standard.

By A2, and since λ is not a coordinate direction, there exists for each a ∈ A transfers

xa : Y → R
I such that λ · xa(·) = 0, Ey∼p(·|a)xa(y) = 0 and Ey∼p(·|ãi,a−i)x

i
a(y) is a large

negative constant for each i ∈ I and ãi 6= ai. We then view the policy ρ : S ×K → ∆(A)

as being implemented by means of the p.r.d. that picks a recommended action profile a ∈ A

based on the reports, leading to transfers xa(·). We abbreviate this to xρ : S×K ×Y → R
I

and finally set x := x4 + xρ. Since λ · xρ(·) = 0, the expected weighted payoff induced by

ρext in Γ(ρext, x) is

Eµρext
[λ · r(s, a)] ≥ k̄1(λ)− ε,

and the triple (Eµρext
[r(s, a)] , ρext, x) is feasible in P1(λ).

B.2.4 Step 3: λ is a coordinate direction

We continue with the case λ = +ei. The proof involves a variation upon the ideas of Section

B.2.3 but is much simpler. We denote by Mi the MDP faced by the players when jointly

maximizing the payoff of player i. The MDP Mi has Si as state space, A as action set, and

the reward and transitions are ri and p. Plainly, the limit value of Mi is k̄1(e
i).

50Whatever the choice of ω̄pub by nature in Γ(ρext,1, x1). Indeed, player i is ex post indifferent between si

and s̃i when ρ(s) = ρ(s̃i, s−i) and strictly prefers si over s̃i if ρ(s) = ρ(s̃i, s−i). The claim thus follows since

the belief of player i over S−i has full support.
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We let an arbitrary ε > 0 be given, and let x̄ : Si × A → R and ρ1 : Si → ∆(A) be

obtained by applying Proposition 5 to Mi. We will obtain strict truth-telling incentives by

means of a perturbation argument. Before doing so, we first modify x̄ to get strict obedience

incentives.

We view ρ1 : S → ∆(A) as a map defined over S (independent of s−i). By A2, for j 6= i

and for each a ∈ A, there exists xa : Y → R
I that induce strict obedience to a:

rj(sj , ãj, a−j)+Ep(·|ãj ,a−j)x
j
a(y)+Ep(·|sj,ãj ,a−j)θ

j
ρ1,r+x̄(t) < rj(sj, a)+Ep(·|a)x

j
a(y)+Ep(·|sj,a)θ

j
ρ1,r+x̄(t)

(23)

for each s ∈ S and ãj 6= aj .

For j = i, we ask for more. For any si ∈ Si and since ρ1 is optimal in the MDP with

payoff ri + x̄, any action a ∈ A in the support of ρ1(s
i) maximizes

ri(si, a) + x̄(si, a) + Eti∼p(·|si,a)θ
i
ρ1,r+x̄(t

i).

Since ‖x̄‖ < ε, the components xia can be chosen so that the following holds:

B1 : (23) is modified and strengthened to

ri(si, ãi, a−i) + x̄(s̃i, a) + Ey∼p(·|ãi,a−i)x
i
a(y) + Et∼p(·|s,ãi,a−i)θ

i
ρ1,r+x̄(t)

< ri(si, a) + x̄(si, a) + Ey∼p(·|a)x
i
a(y) + Eti∼p(·|sj ,a)θ

i
ρ1,r+x̄(t

i),

for every s̃i ∈ Si and ãi 6= ai.

B2 ‖xia‖ < kε for some constant k that only depends on the primitives of the model and

not on ε.

B3 xia(·) ≤ 0 and Ey∼p(·a)x
i
a(y) is independent of a ∈ A.

The substantive properties are B1 and B2. Once they hold, B3 follows by subtracting a

small constant from xia.

We view ρ1 : S → ∆(A) as being implemented by means of the p.r.d. picking a rec-

ommendation a ∼ ρ1(s), and transfers being then given by xi1(s, y) := x̄(si, a) + xia(y) and

xj1(s, y) = xja(y) for j 6= i. The properties of xa and of x̄ ensure that the pair (ρ1, x1) is

strictly obedient and satisfy the same truth-telling incentives as the pair (ρ1, x̄). Observe

that xi1(s, y) ≤ (k + 1)ε. Since ρ1 is optimal in the MDP with reward r + x̄, one has

Eµρext,1

[

ri(si, a) + xi1(s, y)
]

≥ k̄1(e
i)− (k + 1)ε.
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We now recall the strictly truthful pair (ρext,0, x0) from Step 1 in Section B.2.2. Once

again, we supplement x0 with transfers inducing obedience. For a ∈ A, we let xa : Y → R
I

be such that (i) Ep(·|a)xa(y) = 0, and (ii) Ep(·|ãj ,a−j)x
j
a(y) is a large negative constant for each

j ∈ J and ãj 6= aj . We next subtract the same constant to all maps xia(·) (a ∈ A) to get

xia(·) ≤ 0. (With an abuse of notation), transfers x0 = S×K0×Y → R
I are now defined by

x0(s, k0, y) = x0(s, k0)+xa(y) where a ∈ A is selected by the p.r.d. as specified in (K0, φ0).
51

With this updated definition of x0, the pair (ρext,0, x0) is both strictly truthful and strictly

obedient.

We now perturb. For η1 > 0, we define the irreducible extended policy ρext = (ρ,K, φ)

from ρ1 and ρext,0 and transfers x : S × K × Y → R
I from x0 and x1, exactly as ρext

and x were obtained in Step 2 from ρext,1 and ρext,0. As in Step 2, it follows that for

η1 > 0 small, the pair (ρext, x) is both strictly truthful and obedient –hence the triple

(Eµρext
[r(s, a) + x(s, k, y)] , ρext, x) is feasible in P(ei). Finally, since transitions from ρ1

to ρext,0 (resp., from ρext,0 to ρ1) occur with probability η21 (resp., η1) in each round, the

expectation Eµρext

[

ri(s, a) + xi(s, k, y)
]

is arbitrarily close to Eµρext,1

[

ri(s, a) + xi1(s, a)
]

for

η1 > 0 small enough. The result follows.

The case λ = −ei is analogous. Let ā−i ∈ A−i achieve the min in the definition of vi.

Let next M̃i be the MDP faced by player i when maximizing his own payoffs against the

constant policy ā−i. Hence M̃i has Si as state space, Ai as action set, and the rewards and

transitions in M̃i are deduced from ri and p given ā−i. We then repeat the proof of the case

λ = +ei.52

C Proof of Theorem 5

The overall pattern of the proof is that of the proofs of Theorems 2 and 4. We let a compact

set Z be given, included in the interior of W . Given z ∈ Z, we construct a sequential

equilibrium σ with payoff z. Under σ, the play is divided in a sequence of phases. In each

phase, a direction λ ∈ Λ is selected as a function of public past play. If λ is not close to

some negative coordinate direction −ei, the players follow as before some extended policy

51Recall from Section B.2.2 that the p.r.d. sets a ∈ A to be equal to k0 with probability 1 − η0 and

otherwise draws a ∼ µ(s).
52With obvious changes. Transfers xi to player i are now required to be non-negative.
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and the phase is of random duration. If instead λ is close to −ei for some i ∈ I, players

play an equilibrium in an auxiliary “zero-sum” game (between i and −i) with fixed duration

T :=
1√
1− δ

, final transfers and no communication (i.e., reports are babbling).53 These

“zero-sum” games are defined and studied in Section F.1 below.

One new issue however arises. The equilibrium behavior in such a punishment phase

depends on the continuation relative values at the end of the phase, which are themselves

defined recursively from past public play –raising a potential circularity issue. To deal with

it, we will insert a shorter transition phase at the end of each punishment phase, so as to

ensure that the continuation values following punishment phases are predetermined. Given

this change, we find it conceptually and technically more straightforward to insert such a

transition phase between any two phases. Modulo this change, the proof will follow along

earlier lines.

D Proof of Theorem 6

In Sections A.1 and B.2, the independence and private values assumptions are only used to

obtain triples (v, ρ, x) and (v, ρext, x) with strict truth-telling incentives, see Lemmas 3 and

7. Since all truth-telling incentives are required to be strict in the optimization program P2,

the analog of the latter two lemmas readily holds here, and the result follows as in Section

A.1.

53The exponent − 1
2 is somewhat arbitrary. What matters is that T ≪ 1

1−δ
so that δT → 1 as δ → 1.
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Supplementary Material: Truthful Equilibria in Dynamic

Bayesian Games,

Johannes Hörner, Satoru Takahashi, Nicolas Vieille

This supplement contains additional material on Markov Decision Problems and details on

the proof of Theorem 5.

E Markov Decision Problems

E.1 The ACOE

For the reader’s convenience, we provide a statement and a self-contained proof of the Average

Cost Optimality Equation for MDPs. The material in this section is standard.

We let an irreducible MDP M with finite primitives be given. The state space is S,

the action set is A, the reward function is r : S × A → R, and the transition function is

p(· | s, a).54 We let Σ denote the set of strategies in M.

For δ < 1 and N ∈ N, we let

vδ(s) := max
σ∈Σ

Es,σ

[

(1− δ)

∞
∑

n=1

δn−1r(sn, an)

]

and

vN (s) := max
σ∈Σ

Es,σ

[

1

N

N
∑

n=1

r(sn, an)

]

denote the values of the discounted and finite horizon versions of M, as a function of the

initial state s.

Proposition 6 (ACOE) There is a unique v ∈ R and a unique (up to an additive constant)

map θ : S → R such that

v + θ(s) = max
a∈A

{

r(s, a) + Ep(·|s,a)θ(·)
}

, for all s ∈ S. (24)

In addition, v = limδ→1 vδ(s) = limN→+∞ vN (s) for all s ∈ S.

54We are thus assuming that the sets S and A are finite and that for each policy ρ : S → ∆(A), the

induced Markov chain (sn) is irreducible.
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Proof. We first prove the existence of a solution to (24). For δ < 1 the dynamic

programming principle writes

vδ(s) = max
a∈A

{

(1− δ)r(s, a) + δEp(·|s,a)vδ(·)
}

, for all s ∈ S. (25)

Let a∗(s) achieves the maximum in (25), so that vδ(s) = (1−δ)r(s, a∗(s))+δEp(·|s,a∗s)vδ(·) for

each s. This implies that δ 7→ vδ(s) is a bounded and rational function on [0, 1). In particular,

both v(s) := limδ→1 vδ(s) and θ(s) := lim
δ→1

vδ(s)− v(s)

1− δ
exist. Irreducibility readily implies

that v(s) is independent of s.

Equation (25) then rewrites as

v + (vδ(s)− v) = max
a∈A

{

(1− δ)r(s, a) + δEp(·|s,a) [vδ(t)− v] + δv
}

.

Equation (24) follows when dividing by 1− δ and letting δ → 1.

We next prove uniqueness, and start with v. Let (v, θ) be a solution to (24), so that

θ(s) = max
a∈A

{

r(s, a) + Ep(·|s,a)θ(·)
}

− v. (26)

Substituting (26) into the right-hand side of (24) yields first

2v + θ(s) = max
σ

Es,σ [r(s1, a1) + r(s2, a2) + θ(s3)] ,

and, by induction,

v +
θ(s)

N
= max

σ
Es,σ

[

1

N

N
∑

n=1

r(sn, an) +
θ(sN+1)

N

]

for each N . This implies that limN→∞ vN(s) exists and is equal to v.

We conclude with the uniqueness of θ. Let (v, θ) and (v, ψ) be two solutions to (24).

This implies

θ(s)− ψ(s) ≤ max
a∈A

Ep(·|s,a) (θ(·)− ψ(·))

for each s. By irreducibility, it follows that θ(·)− ψ(·) is constant.

E.2 Perturbed Markov Chains and Relative Values

We discuss here two statements on the asymptotic properties of relative values of perturbed

Markov chains, as the perturbation parameter converges to zero. These statements readily

imply those used in the main body of the paper.
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E.2.1 Result 1

The setup is as follows. Let be given (disjoint) sets Sl, with 1 ≤ l ≤ L. Let also be given, for

each l, an irreducible transition function pl on Sl, with invariant measure νl, and a “payoff”

rl : Sl → R with Eνl [rl(s)] = 0. Let θl : Sl → R denote the associated relative value.

In addition, let p be an irreducible transition function on S := S1 ∪ · · · ∪ SL, and let

r : S → R be the function that coincides with rl on Sl. For ε > 0, we define a transition

function pε on S as pε(t | s) := (1−ε)pl(t | s)+ εp(t | s) for s ∈ Sl and t ∈ S. Let µε ∈ ∆(S)
be the invariant measure of pε, γε := Eµε

[r(s)] the long-run payoff, and θε : S → R the

relative value. To fix ideas, we normalize θε by imposing the condition Eµε
[θε(·)] = 0.

Proposition 7 The map ε 7→ θε is bounded. In addition,

lim
ε→0

(θε(s
′)− θε(s)) = θl(s

′)− θl(s) for every s, s′ ∈ Sl.

Proof. We view each transition pε(· | s) as the succession of two random choices. First,

it is randomly decided, with probability ε, whether to use p or pl to draw the next state,

which is next drawn accordingly. We denote by τ the random time of first “switch” (first

round where p is used).

Given any two states s, s′ ∈ S we denote by (sn) and (s′n) two Markov chains with

transition functions pε starting from s and s′ respectively, which are coupled in that (i) the

successive switches occur in the same rounds for the two chains, and (ii) sn = s′n after the

first coincidence time ω := inf{n : sn = s′n}; yet all other random choices are independent.

Claim 13 The following holds:

• There exists c1 > 0 such that E

[

τ−1
∑

n=1

(r(sn)− r(s′n))

]

≤ c1 for all s, s′ ∈ S and ε > 0.

• There exists c2 > 0 such that P(ω ≤ τ) ≥ c2 for every l, s, s′ ∈ Sl and 0 < ε ≤ 1
2
.

Proof of the claim. Let s ∈ S be given, say s ∈ Sl. One has, with obvious notations

Eε

(

τ−1
∑

n=1

r(sn)

)

= El

(

τ−1
∑

n=1

r(sn)

)

.

By the ACOE, the latter is equal to θl(s)−El [θl(sτ )] and is therefore bounded as a function

of ε.
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The second statement follows from the irreducibility of pl.
55

Next, we denote by (τk) the successive switches – so that τ1 = τ . Given s, s′ ∈ S,

denote by φ the smallest index k such that sτk+1 and s′τk+1 belong to the same component

Sl. Because p is irreducible, there exists c3 > 0 such that P(φ ≤ L) ≥ c3. Note that

θε(s) = E

[

τL+1
∑

n=1

(r(sn)− γε) + θε(sτL+1+1)

]

and a similar equality holds for θε(s
′), hence

θε(s
′)− θε(s) = E

[

τL+1
∑

n=1

(r(sn)− r(s′n))

]

+ E

[

θε(s
′
τL+1+1)− θε(sτL+1+1)

]

≤ Lc1 + max
t,t′∈S

(θε(t
′)− θε(t))×P(ω > τL+1)

≤ Lc1 + (1− c2c3) max
t,t′∈S

(θε(t
′)− θε(t)) ,

using the previous claim. It follows that maxs,s′∈S |θε(s′)− θε(s)| ≤
Lc1
c2c3

. Together with the

equality Eµε
θε(·) = 0, this implies the first statement.

For ε > 0, θε is the unique solution to the linear system (s ∈ Sl, l ≤ L)

γε + θε(s) = r(s) + (1− ε)Epl(·|s)θε(t) + εEp(·|s)θε(t),

together with the normalization equation.56 Therefore, θε(s) is a bounded and rational

function of s. Thus, θ(s) := limε→0 θε(s) exists and satisfies the limit system obtained when

setting ε = 0. That is, for fixed l and for each s ∈ Sl, one has

θ(s) = r(s) + Ep(l(·|s)θ(t).

All solutions of the latter system are equal to θl up to an additive constant, hence the result.

E.2.2 Result 2

The setup here is a variant of the previous one. We let be given two (disjoint) sets S1 and S2,

an irreducible transition function pl on Sl with invariant measure νl, a function rl : Sl → R

55
P(ω ≤ τ) is continuous as a function of ε, converges to 1 as ε → 0, and is less than one, except for ε = 1.

56Since µε is the unique solution of a linear system with coefficients linear in ε, ε 7→ µε is a rational

function, hence ε 7→ γε is a rational function as well.
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(l = 1, 2) and θl the relative value. In addition, let f : S := S1 ∪ S2 → S be such that

f(S1) ⊆ S2 and f(S2) ⊆ S1 and let r : S → R be the map whose restriction to Sl is rl.

For ε = (ε1, ε2) ∈ (0, 1)2, we define a transition function pε over S by pε(t | s) =

(1 − εl)pl(t | s) + εlf(s) for s ∈ Sl. Thus, transitions from S1 to S2 (resp., from S2 to S1)

occur with probability ε1 (resp., ε2) in each round. Let θε : S → R denote the relative value.

Proposition 8 One has limε→0 (θε(s
′)− θε(s)) = θl(s

′)− θl(s) whenever s, s′ ∈ Sl.

Note however that θε is unbounded as a function of ε as soon as Eν1r1(·) 6= Eν2r2(·).
Proof. We first prove that ε 7→ θε(s

′)− θε(s) is bounded whenever s, s′ ∈ Sl. We use the

same notations as in the proof of Proposition 7, and let (sn) and (s′n) be two Markov chains

starting from s and s′, with t.f. pε, and coupled as before. The constants c1 and c2 are as

before. Whenever s, s′ ∈ Sl (and for εl bounded away from one), one has P(ω ≤ τ) ≥ c2,

hence

|θε(s′)− θε(s)| ≤ c1 + (1− c2) max
t,t′∈S3−l

|θε(t′)− θε(t)| .

It follows that maxl=1,2maxs,s′∈Sl
|θε(s′)− θε(s)| ≤

c1
c2

.

The limit claim follows as in the proof of Proposition 7.

E.3 Proof of Proposition 5

We let an irreducible MDP M0 be given, with primitives (Ω, B, q, r). We denote by v ∈ R

and θ : Ω → R the limit value and relative values of M0. For ω ∈ Ω, we let

B0(ω) := argmaxb∈B

{

r(ω, b) + Eω′∼q(·|ω,b)θ(ω
′)
}

be the set of actions that are optimal at ω ∈ Ω.

Thus, for ω ∈ Ω and b /∈ B0(ω), one has r(ω, b) + Eq(·|ω,b)θ(ω
′) < v + θ(ω), and we let

c0 > 0 be strictly smaller than the difference between the two sides, for each ω and b /∈ B0(ω).

In the absence of transfers, assume that the second agent uses a distribution ρ(ω) ∈
∆(B0(ω)) with full support, as a function of the report ω of the first agent. At state ω,

it is strictly better to report truthfully ω rather than ω̃ unless B(ω̃) ⊆ B(ω). The main

issue below will be to get rid of such indifference cases, and to prevent the first agent from

reporting a state ω̃ with B(ω̃) ⊂ B(ω). The basic insight in the proof is to reward the first

agent for reporting a state with many optimal actions.

We will construct a finite sequence M1, . . . ,Mn of perturbed MDPs. For all MDPs in

the sequence, the state space is Ω and the action set is B.
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We explain the construction of M1 before proceeding to the general case. Throughout,

we fix an increasing function φ : {1, . . . , |B|} → R such that φ(|B|) < 1
|B|

(so that φ(m) < 1
m

for m ≤ |B|). We then pick α > 0 such that (i) α <
1

|B|−φ(|B|) and (ii) α < φ(m+1)−φ(m)

for all 1 ≤ m < |B|.
Given ε1 > 0, the reward r1 and transition function q1 of M1 are defined as

r1(ω, b) := (1− ε1)r(ω, b) + ε1 (r(ω, β0(ω)) + c0φ(|B0(ω)|)) ,

and

q1(· | ω, b) := (1− ε1)q(· | ω, b) + ε1q(· | ω, β0(ω)),

where β0(ω) is the uniform distribution over B0(ω). We denote by vε1 and θε1 the limit value

and relative values of M1, and we let

B1(ω) := argmaxb∈B

{

r1(ω, b) + Eω′∼q1(·|ω,b)θ(ω
′)
}

be the set of optimal actions at ω in M1. Both vε1 and θε1 are continuous w.r.t. ε1, with

limε1→0 vε1 = v and limε1→0 θε1 = θ. Hence B1(ω) is upper hemi-continuous as a function of

ε1, so that B1(ω) ⊆ B0(ω) for all ε1 > 0 small enough, and ω ∈ Ω. We stop with the MDP

M1 if there is a sequence ε1 → 0 such that B1(·) = B0(·) along the sequence. We otherwise

repeat the perturbation process with M1.

More generally, let (εk)k∈N be a sequence of positive real numbers with
∑

k εk < 1. For

k ∈ N, we set ~εk := (ε1, . . . , εk). For any such sequence (εk), we define inductively a sequence

Mk(~εk) of MDPs with state space Ω and action set B, and with limit value denoted v~εk and

θ~εk . The reward rk and transition function qk of Mk(~εk) are defined as

rk(ω, b) :=

(

1−
k
∑

i=1

εi

)

r(ω, b) +

k
∑

i=1

εi (r(ω, βi−1(ω)) + ci−1φ(|Bi−1(ω)|)) ,

and

qk(· | ω, b) =
(

1−
k
∑

i=1

εi

)

q(· | ω, b) +
k
∑

i=1

εiq(· | ω, βi−1(ω)),

where βi(ω), Bi(ω) and ci are defined inductively as follows.

For each i,

Bi(ω) := argmaxb{ri(ω, b) + Eω′∼qi(·|ω,b)θ~εi(ω
′)}
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is the set of actions optimal at ω in Mi(~εi), βi(ω) ∈ ∆(B) is the uniform distribution over

Bi(ω) and ci > 0 is any number such that

ci + ri(ω, b) + Eω′∼qi(·|ω,b)θ~εi(ω
′) < v~εi + θ~εi(ω)

for each ω ∈ Ω and b /∈ Bi(ω). This definition entails no circularity. Indeed, B0, β0 and c0

are associated with M0 and, for k ≥ 1, the definition of rk and qk, and therefore of v~εk , θ~εk ,

Bk, βk and ck, only involves v~εi and θ~εi for i < k.

Note also that, for given ~εk−1, v~εk and θ~εk are continuous as functions of εk, and Bk(ω) is

therefore upper hemi continuous. It follows that, for every ~εk−1, one has Bk(ω) ⊆ Bk−1(ω)

provided εk > 0 is small enough. In addition, limεk→0 v~εk = v~εk−1
and limεk→0 θ~εk = θ~εk−1

.

In the sequel, we let a sequence (εk) be given such that for each k, εk is “very close to

zero” given ~εk−1. By this, we will mean that (i) |v~εk−v~εk−1
| and ‖θ~εk−θ~εk−1

‖ are smaller than

some positive numbers which only involve ~εk−1 (and which will appear in the computations

below), and (ii) Bk(ω) ⊂ Bk−1(ω) for every ω ∈ Ω.

We let n ∈ N be such that Bn(·) = Bn−1(·), and we define ρ : Ω → ∆(B) as

ρ(ω) :=

(

1−
n
∑

k=1

εk

)

βn(ω) +
n
∑

k=1

εkβk−1(ω).

Observe that supp ρ(ω) = B0(ω) for each ω. We next define xeq : Ω×B → R as follows:

• for b ∈ B0(ω), xeq(ω, b) is defined by the equation

xeq(ω, b) + r(ω, b) + Eω′∼q(·|ω,b)θ~εn(ω
′) = r(ω, ρ(ω) + Eω′∼q(·ω,ρ(ω)θ~εn(ω

′).

Observe that xeq(ω, ρ(ω)) = Eb∼ρ(ω)xeq(ω, b) = 0 for each ω.

• For b /∈ B0(ω), we set xeq(ω, b) = xeq(ω, b̄), where b̄ ∈ Bn(ω). Note that xeq(ω, b) is

independent of the choice of b̄. Indeed, the actions of Bn(ω) are those that maximize

rn(ω, ·) + Eqn(·|ω,·)θ~εn(ω
′), or equivalently, that maximize r(ω, ·) + Eq(·|ω,·)θ~εn(ω

′).

Finally, we define x : Ω×B → R as

x(ω, b) := xeq(ω, b) +
n
∑

k=1

εkck−1φ(|Bk−1(ω)|).

We now prove that the pair (ρ, x) satisfies the desired properties.
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Claim 14 ρ is an optimal policy in the MDP with stage payoff r(ω, b) + x(ω, b).

Proof. Recall that v~εn and θ~εn are the limit value and relative values of the MDP

Mn(~εn), and that Bn(ω) is the set of actions optimal at ω. Therefore, for each ω and by the

ACOE, one has

v~εn + θ~εn(ω) = rn(ω, βn(ω)) + Eqn(·|ω,βn(ω)θ~εn(ω
′).

Given the definition of rn, qn and ρ(ω), the right-hand side is also equal to

r(ω, ρ(ω)) + x(ω, ρ(ω)) + Eq(·|ω,ρ(ω)θ~εn(ω
′).

Next, it follows from the definition of xeq that

r(ω, b) + x(ω, b) + Eq(·|ω,bθ~εn(ω
′)

is independent of b ∈ supp ρ(ω) = B0(ω).

On the other hand, for b /∈ B0(ω) and b̄ ∈ Bn(ω), one has rn(ω, b) + Eqn(·|ω,b)θ~εn(ω
′) <

rn(ω, b̄) + Eqn(·|ω,b̄)θ~εn(ω
′), which implies r(ω, b) + Eq(·|ω,b)θ~εn(ω

′) < r(ω, b̄) + Eq(·|ω,b̄)θ~εn(ω
′),

which yields in turn

r(ω, b) + x(ω, b) + Eq(·|ω,b)θ~εn(ω
′) < r(ω, b̄) + x(ω, b̄) + Eq(·|ω,b̄)θ~εn(ω

′).

Together, these observations yield

v~εn + θ~εn = max
b∈B

{

r(ω, b) + x(ω, b) + Eq(·|ω,b)θ~εn(ω
′)
}

,

with the maximum being achieved by ρ(ω). This proves the claim.

Claim 15 For every ω, ω̃ ∈ Ω, one has

r(ω, ρ(ω))+x(ω, ρ(ω))+Eq(·|ω,ρ(ω))θ~εn(ω
′) ≥ r(ω, ρ(ω̃))+x(ω̃, ρ(ω̃))+Eq(·|ω,ρ(ω̃))θ~εn(ω

′), (27)

with a strict inequality if ρ(ω) 6= ρ(ω′).

Proof. Fix ω, ω̃ ∈ Ω. Note that ρ(ω) = ρ(ω̃) if and only if Bk(ω) = Bk(ω̃) for k =

0, . . . , n. Assume first that ρ(ω) = ρ(ω̃). Then, using xeq(ω, ρ(ω)) = 0, one has

x(ω, ρ(ω) =

n
∑

k=1

εkck−1φ(|Bk−1(ω)|)

=

n
∑

k=1

εkck−1φ(|Bk−1(ω̃)|) = x(ω̃, ρ(ω̃)).
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Thus, (27) holds with equality.

Assume next that ρ(ω) 6= ρ(ω̃), and denote by k̄ the smallest k such that Bk(ω) 6= Bk(ω̃).

Since Bn = Bn−1, one has k̄ < n. We prove that (27) holds with a strict inequality by

looking at the decomposition of ρ as a weighted sum of the uniform distributions βk.

• For k < k̄, one has βk(ω) = βk(ω̃), hence

r(ω, βk(ω))+ckφ(|Bk(ω)|)+Eq(·|ω,βk(ω))θ~εn(ω
′) = r(ω, βk(ω̃))+ckφ(|Bk(ω̃)|)+Eq(·|ω,βk(ω̃))θ~εn(ω

′).

• For k̄ < k < n, we will rely on the assumption that εk is quite small compared to

εk̄. Plainly, one has, for some constant C which only depends on the primitives of the

MDP

r(ω, βk(ω)) + ckφ(|Bk(ω)|) + Eq(·|ω,βk(ω))θ~εn(ω
′)

≥ r(ω, βk(ω̃)) + ckφ(|Bk(ω̃)|) + Eq(·|ω,βk(ω̃))θ~εn(ω
′)− C.

Hence, when multiplied by εk̄+1, the difference between the two sides of the latter

inequality is very small compared to εk̄+1, and in particular less that αεk̄+1ck̄.

• For k = n, and since Bn(ω) are the actions optimal at ω in Mn(~εn), one has as noted

previously,

r(ω, βn(ω)) + Eq(·|ω,βn(ω))θ~εn(ω
′) ≥ r(ω, βn(ω̃)) + Eq(·|ω,βn(ω̃))θ~εn(ω

′).

We are left with k̄ = k, and distinguish two cases. Assume first that b /∈ Bk̄(ω) for some

b ∈ Bk̄(ω̃). In that case,

r(ω, βk̄(ω)) + Eq(·|ω,βk̄(ω))
θ~εk̄(ω

′) > r(ω, βk̄(ω̃)) + Eq(·|ω,βk̄(ω̃))
θ~εk̄(ω

′) + ck̄ ×
|Bk̄(ω̃) \Bk̄(ω)|

|Bk̄(ω̃)|

(because all actions in Bk̄(ω̃) \ Bk̄(ω) are played with probability 1
|Bk̄(ω̃)|

and each leads to

a loss of at least ck̄). Since εk̄+1, . . . , εn are small (given εk̄), the latter inequality still holds

when θ~εn is substituted to ~εk̄. This implies

r(ω, βk̄(ω)) + ck̄φ(|Bk̄(ω)|) + Eq(·|ω,βk̄(ω))
θ~εn(ω

′)

> r(ω, βk̄(ω̃)) + ck̄φ(|Bk̄(ω̃)|) + Eq(·|ω,βk̄(ω̃))
θ~εn(ω

′) + ck̄

(

1

|Bk̄(ω̃)|
+ φ(|Bk̄(ω)|)− φ(|Bk̄(ω̃)|)

)

> r(ω, βk̄(ω̃)) + ck̄φ(|Bk̄(ω̃)|) + Eq(·|ω,βk̄(ω̃))
θ~εn(ω

′) + ck̄α,

using property (i) of α.
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Assume now that Bk̄(ω̃) is a strict subset of Bk̄(ω), so that

r(ω, βk̄(ω)) + Eq(·|ω,βk̄(ω))
θ~εk(ω

′) = r(ω, βk̄(ω̃)) + Eq(·|ω,βk̄(ω̃))
θ~εk(ω

′),

because βk(ω) is optimal in Mk(~εk). This implies

r(ω, βk̄(ω))+ck̄φ(|Bk̄(ω)|)+Eq(·|ω,βk̄(ω))
θ~εk(ω

′) > r(ω, βk̄(ω̃))+ck̄φ(|Bk̄(ω̃)|)+Eq(·|ω,βk̄(ω̃))
θ~εk(ω

′)+αck̄,

using property (ii) of α.

Since θ~εn is very close to θ~εk , the latter inequality still holds true when θ~εn is substituted

to θ~εk̄ . The desired inequality follows by summing over all k = 1, . . . , n.

F Proof of Theorem 5

Most computations in Section F.2 will be omitted. Transition phases will rely on the strictly

truthful pair (ρext,0, x0) constructed in Section B.2.2, with K0 = A and ρ0 : S × K0 → A.

We supplement the transfers x0 of Section B.2.2 with transfers x̄0 : K0 × Y → R
I which

induce obedience to ρ0, and still denote by x0 : S ×K0 × Y → R
I the total transfers. We

abbreviate the relative values θρ0,r+x0 to θ0, and we let r̄ ≥ 1 be a uniform bound on r and

θ0.

F.1 Auxiliary Zero-Sum Games

Throughout this section, we fix a player i ∈ I, and will introduce games between i and −i.
W.l.o.g., all strategies of player i are here “babbling.”

F.1.1 Preliminaries

For k ∈ N and j 6= i, we let Aj
k ⊂ ∆(Aj) be a finite, 1

k
-dense subset of ∆(Aj). That is, for

each αj ∈ ∆(Aj), there exists αj
k ∈ Aj

k such that ‖αj − αj
k‖L1 < 1

k
. We let Σj

k be the set

of repeated game strategies of player j with the property that the mixed action of j in each

round n belongs to Aj
k and only depends on the past public signals yi1, . . . , y

i
n−1 relative to

player i. We set Σ−i
k := ×j 6=iΣ

i
k, and let

wi
k := lim

δ→1
min

σ−i∈Σ−i
k

max
σi

γiδ(s
i, σi, σ−i)

69



be the long-run minmax payoff when players −i are constrained to strategies in Σ−i
k .57

Thanks to the irreducibility assumption, there exists c > 0 such that the following holds: for

each k ∈ N, j 6= i and each strategy σj, there exists σj
k ∈ Σj

k such that

γjδ(s, σ
−j, σj

k) < γjδ(s, σ) +
c

k
,

for every δ < 1 and σ−j .58 Hence, limk→+∞wi
k = wi.

Since strategies of player −i ignore (yjn) (j 6= i), we may restrict ourselves to strategies

of player i which are independent as well of the public signals (yjn), j 6= i, relative to other

players.

Let an arbitrary state s̄i ∈ Si be given, and k ∈ N be fixed. Given an horizon T ∈ N, we

let Gi
k(s̄

i, T ) be the zero-sum game with T rounds between i and −i with no communication,

initial state s̄i, payoff
1

T

T
∑

n=1

ri(sin, an) and where players −i are restricted to Σ−i
k . Denote by

wi
k(T ) := min

σ−i∈Σ−i
k

max
σi

Es̄i,σ

[

1

T

T
∑

n=1

ri(sin, an)

]

(28)

the minmax of Gi(s̄i, T ). Using irreducibility, one has limT→+∞wi
k(T ) = wi

k for each s̄i.

Given k and T , we fix a strategy profile σ−i
k ∈ Σ−i

k that achieves the minimum in (28).

For α−i
k ∈ A−i

k , let T (α−i
k ) be the (random) set of rounds in which σ−i

k prescribes α−i
k , and

let fα−i
k

∈ ∆(Y ) denote the empirical distribution of the public signals received in T (α−i
k ).

Intuitively, if some player j 6= i is playing according to σj
k, the signals (yjn) received in

T (α−i
k ) are i.i.d., and drawn from pj(· | αj

k). Hence, whenever |T (α−i
k )| is large and with high

probability, fα−i
k

should be close to the distribution gj
α−i
k

∈ ∆(Y ) defined as

gj
α−i
k

(y) = fα−i
k
(y−j)pj(yj | αj

k).

This motivates the definition of

Dj :=
∑

α−i
k

∈A−i
k

|T (α−i
k )|
T

‖fα−i
k

− gj
α−i
k

‖L1 .

Claim 16 below formalizes this intuition. In words, and provided that T is large enough,

player j can ensure that Dj < ε with high probability by playing σj
k,T .

57It is independent of si.
58This assertion also relies on the product monitoring assumption. Under this assumption, public com-

munication and public signals yjn relative to j 6= i cannot be used by players −i as a means to privately

correlate their actions against −i.
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Claim 16 Given ε > 0, there exists T0 ≥ 0 such that

Pσj
k,T

,σ−j (D
j > ε) < ε,

for all T ≥ T0, j 6= i and σ−j.

Claim 16 follows from Gossner (1995), who uses Blackwell’s theory of approachability.

It will be combined with the claim below, which asserts that player i is effectively punished

when all players j 6= i pass the test Dj < ε with high probability.

Claim 17 Let ε > 0 and T be given, and let σ be a strategy profile such that Pσ(D
j > ε) < ε

for each j 6= i. Then

Es̄i,σ

[

1

T

N
∑

n=1

ri(sin, an)

]

< wi
k,T + r̄(I + 2)ε.

Proof. On the event D−i := ∩j 6=i{Dj ≤ ε} one has
∑

A−i
k

|T (α−i
k )|
T

‖fα−i
k

− gj
α−i
k

‖L1 ≤ ε, for

each j 6= i, which implies, by repeated substitution,

∑

A−i
k

|T (α−i
k )|
T

(

∑

y

|fα−i
k
(y)− fα−i

k
(yi)×j 6=i p

j(yj | αj
k)|
)

< Iε.

We fix now an arbitrary private history (sin, a
i
n, yn) of player i, and compare the realized payoff

1

T

n
∑

n=1

gi(sin, a
i
n, yn) to its “expectation,” assuming (yjn) are drawn using σj

k,T . Formally,

1

T

n
∑

n=1

gi(sin, a
i
n, yn) =

1

T

∑

A−i
k

∑

T (α−i
k

)



gi(sin, a
i
n, yn)−

∑

ỹ−i∈Y −i

gi(sin, a
i
n, ỹ

−i, yin)× p−i(ỹ−i | α−i
k )





+
1

T

∑

A−i
k

∑

T (α−i
k

)

∑

ỹ−i

gi(sin, a
i
n, ỹ

−i, yin)× p−i(ỹ−i | α−i
k ).

The expectation of the second term is independent of σ−i and is equal to Es̄i,σi,σ−i
k,T

[

1

T

T
∑

n=1

ri(sin, an)

]

≤

wi
k(T ). Since the first term is bounded by 2r̄, and by r̄Iε on the event D−i, the result follows.

71



F.1.2 Auxiliary Games

From now on and given δ < 1, we set T :=
1√
1− δ

. Given δ < 1, transfers x : S×Y T → R
I ,

and a state profile s ∈ S, we let G(s, δ, x) denote the game of T rounds (ending after the

draw of sT+1), with initial state profile s, no communication, and with payoff

1− δ

1− δT

{

T
∑

n=1

δn−1r(sn, an) + δTx(s, ~y) + δT θ0(sT+1, ā0)

}

,

where ~y := (y1, . . . , yT ) is the sequence of public signals received along the play, and ā0 ∈ A

is fixed.

The following result will serve as the building block of the equilibrium construction of

punishment phases.

Lemma 13 Given ε > 0, there exists κ∗ ∈ R and δ∗ < 1 such that for all δ > δ∗, there exist

x : S × Y T → R
I and γ ∈ R

I with the following properties:

(a) For all s ∈ S, γ is a sequential equilibrium payoff of G(s, δ, x);

(b) γi < wi + ε;

(c) xi ≥ 0 and ‖x‖ ≤ κ∗T .

Proof. Let ε > 0 be given and pick ε′ < ε
2r̄(I+5)

. Choose k ∈ N such that |wi
k −wi| < ε′,

choose C >
4r̄

ε′
, and apply Claim 16 with ε′ to get T0. We will show that the result holds

with κ∗ := 2C and δ∗ < 1 large enough so that (i) T ≥ T0, (ii) |wi
k − wi

k(T )| < ε′ (for each

s̄i), (iii)
1− δ

1− δT
C < 1 and both inequalities displayed below hold for each δ > δ∗:

−δT r̄ −
T
∑

n=1

δn−1r̄ + δTCT (1− ε′) >
T
∑

n=1

δn−1r̄ + δTC(1− 2ε′) + δT r̄, (29)

and for each sequence (u1, . . . , uT ),

∣

∣

∣

∣

∣

1− δ

1− δT

T
∑

n=1

δn−1un −
1

T

T
∑

n=1

un

∣

∣

∣

∣

∣

< ε′max(u1, . . . , uT ).

Let δ > δ∗ be arbitrary, and define x∗ : Y T → R
I by xi∗(·) = 0 and xj∗(~y) = −CT if

Dj > ε′ and xj∗(~y) = 0 otherwise, so that ‖x∗(·)‖ ≤ 1
2
κ∗T and xi∗(·) ≥ 0.
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Given s ∈ S, let σs be any sequential equilibrium of G(s, δ, x∗), with payoff γs(σs) ∈ R
I .

By the choice of C and δ∗, one has Ps,σ(D
j > ε′) < 2ε′ for every j 6= i.59 Therefore, by

Claim 17, one has

Es,σ

[

1

T

T
∑

n=1

ri(sin, an)

]

< wi
k + ε′ + 2r̄(I + 2)ε′,

which implies

γis(σs) < wi + 2r̄(I + 4)ε′.

Since Ps(D
j > ε′) < 2ε′ for each j 6= i, it follows from the specification of x∗ and δ∗ that

‖γs(σs)‖ ≤ 14r̄. Set then x̄j(s) := maxs′∈S γ
j
s′(σs′)− γjs(σs) for each s ∈ S and j ∈ I, and

x(s, ~y) := x∗(~y) + x̄(s).

Plainly, σs is still a sequential equilibrium of G(s, δ, x) for each s, and the payoff vector

induced by σs is now independent of s. Moreover, since 0 ≤ x̄(·) ≤ 14r̄, and by the choice of

ε′, both (b) and (c) hold as well.

We denote by Gi
ε the compact set of all accumulation points of such equilibrium payoffs

γ ∈ R
I , as δ → 1. Before we move on to the equilibrium construction, two remarks are

in order. Note first that property (c) can be strengthened to xi(·) ≥ ε′′, where ε′′ < ε is

arbitrary. (Indeed, for given 0 < ε′′ < ε, it suffices to first apply the current version of

Lemma 13 with ε− ε′′, and then add ε′′ to xi).

Because of irreducibility, there is a constant c (which only depends on the primitives of

the game) such that, for j ∈ I, s ∈ S and tj ∈ Sj, the highest payoff achievable by j against

σ−j
s in the two games G(tj , s−j, δ, x(s, ·)) and G(s, δ, x(s, ·)) differ by at most (1− δ)c. Since

the latter payoff is equal to γj, the former does not exceed γj + (1− δ)c. Since γj is also the

payoff induced by σtj ,s−j in the game G(tj , s−j, δ, x(tj , s−j, ·)), this implies that the benefit

to player j of pretending that his initial state is sj when it is tj is bounded by (1− δ)c.

F.2 Equilibrium Construction

We only provide a sketch. We start as in Section B.2. To unify notations, we set k̂1(λ) =

k̄1(λ) for λ 6= −ei and k̂1(−ei) = −wi for i ∈ I. Since k̂1(·) is lower semi-continuous on Λ,

there exists ε0 > 0 such that

∀λ ∈ Λ, max
Zη

λ · z + 2ε0 < k̂1(λ).

59Indeed, by (29), any strategy σ̃j such that Pσ̃j ,σ−j (Dj > ε′) < ε′ is strictly preferred to any strategy σ̃j

such that Pσ̃j ,σ−j (Dj > ε′) > 2ε′. And σj
k,T satisfies the former condition by Claim 16.
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For each player i, we apply Lemma 13 with 0 < ε′0 < ε0 (so that xi(·) ≥ ε′0) and get κ∗ and

δ∗. We next pick ε′′0 <
ε′0
κ∗

. With these choices, for fixed i and δ > δ∗, the payoff vector γ and

the transfers x satisfy γi < wi+ ε0, ‖x‖ < κ∗T , and λ ·x∗(·) ≤ 0 whenever ‖λ− (−ei)‖ < ε′′0.

Parameters are chosen as follows. We first pick the parameter 0 < β < 1
2

of the length

of transition phases, next choose κ to be large enough. Next, as before, pick ε > 0 small

enough. Finally, we choose δ̄ < 1 high enough. Computations are highly similar to those in

Sections A.1.2 and A.1.3. They are therefore omitted, and we do not list conditions to be

satisfied by κ, ε and δ̄.

We let z ∈ Z be given, and let π1 ∈ ×i∆(Si) be the distribution of the initial state.

The play is divided in a sequence of phases, with odd phases being transition phases. Slight

adjustments in the strategies are needed (as compared with Section A.1.2), and we detail

the updating from one transition phase to the following transition phase. The transition

phase k starts with with a target payoff z(k) which is deduced from past public play. We set

(ρ(k), x(k)) = (ρext,0, x0), v(k) := Eµρext,0
[r(s, a) + x0(s, k0, y)], and θ(k) := θ0. In each round,

the p.r.d. chooses with probability ξ∗ := (1− δ)β whether to start a new phase. In the first

round n = τ(k+1) of the following phase k + 1, we first define the auxiliary target w(k+1)

according to

ξ∗w(k+1) + (1− ξ∗)z(k) =
1

δ
z(k) −

1− δ

δ
v(k) +

1− δ

δ
x(k)(ωpub,n−1),

next apply Lemma 1 with z := w(k) to get λ(k+1).

If ‖λ(k+1) − (−ei)‖ ≥ ε′′0 for all i, we apply Lemma 2 to get (v(k+1), ρ(k+1), x(k+1)) ∈ S,

and finally update z(k+1) as

z(k+1) = w(k+1) + (1− δ)

((

1 +
1− δ

δξ

)

θ(k)(mn−1, mn)− θ(k+1)(ωpub,n−1, mn)

)

.

Then in each round, the p.r.d. chooses with probability ξ whether to start a new phase. In

round τ(k+2) the auxiliary target will be updated to w(k+2) according to (4) and z(k+2) in the

following transition phase is defined by (5).

If instead ‖λ(k+1) − (−ei)‖ < ε′′0 for some i, we apply Lemma 13 with player i, and get

x : S × Y T → R
I and γ. We set v(k+1) = γ, and x(k+1) = x. In that case the duration of

phase k + 1 is T . In round τ(k+2) := τ(k+1) + T , we set

z(k+2) =
1

δT
z(k+1) −

1− δT

δT
v(k+1) + (1− δ)x(k+1)(mτ(k+1)

, yτ(k+1)
, . . . , yτ(k+1)+T−1).

That this recursive construction is well-defined follows as in Lemma 5.
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Under σ, players report truthfully and play ρ(k) in any phase k that is not a punishment

phase. If ‖λ(k) − (−ei)‖ < ε′′0, we let σ(k) be a sequential equilibrium in G(mτ(k) , δ, x(k)) with

payoff v(k). Under σ, player j plays σj
(k) if his report in round τ(k) is truthful, and otherwise

plays a (sequentially) best reply to σ−j
(k) in the game G(sjτ(k), m

−j
τ(k)
, δ, x(k)).

As in Section A.1.3, one can establish that the continuation payoff under σ is equal to

z(k) at the beginning of a punishment phase, and z(k) + (1 − δ)θ(k) in any round that does

not belong to a punishment phase.

That a player cannot profitably deviate at the action step follows from the definition of

σ in a punishment phase, and as in Theorem 2 otherwise. That a player cannot profitably

deviate at the reporting step of a non-transition phase is clear during punishment phases

since reports are ignored, and otherwise follows as before.

Consider finally the reporting step in a round n belonging to a transition phase. In the

specific case where n is the first round following a punishment phase, reports are ignored,

and the action being played is ā0, hence truthful reporting is trivially optimal. Otherwise,

the belief of player j over S−j has full support, and the optimality of truth-telling follows

along earlier lines, using that (i) (ρext,0, x0) is strictly truthful, and that (ii) the (ex post)

marginal benefit of having misreported, conditional on the p.r.d. choosing to start a new

phase, is at most of the order of (1− δ) –see the remark at the end of Section F.1.2.
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