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Truthful Equilibria in Dynamic Bayesian Games

Johannes Hörner∗, Satoru Takahashi† and Nicolas Vieille‡

December 20, 2013

Abstract

This paper characterizes an equilibrium payoff subset for Markovian games with

private information as discounting vanishes. Monitoring is imperfect, transitions may

depend on actions, types be correlated and values interdependent. The focus is on

equilibria in which players report truthfully. The characterization generalizes that for

repeated games, reducing the analysis to static Bayesian games with transfers. With

correlated types, results from mechanism design apply, yielding a folk theorem. With

independent private values, the restriction to truthful equilibria is without loss, except

for the punishment level; if players withhold their information during punishment-like

phases, a “folk” theorem obtains also.

Keywords: Bayesian games, repeated games, folk theorem.

JEL codes: C72, C73

1 Introduction

This paper studies the asymptotic equilibrium payoff set of repeated Bayesian games. In

doing so, it generalizes methods that were developed for repeated games (Fudenberg and

Levine, 1994; hereafter, FL) and later extended to stochastic games (Hörner, Sugaya, Taka-

hashi and Vieille, 2011, hereafter HSTV).

Serial correlation in the payoff-relevant private information (or type) of a player makes

the analysis of such repeated games difficult. Therefore, asymptotic results in this literature

∗Yale University, 30 Hillhouse Ave., New Haven, CT 06520, USA, johannes.horner@yale.edu.
†National University of Singapore, ecsst@nus.edu.sg.
‡HEC Paris, 78351 Jouy-en-Josas, France, vieille@hec.fr.
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have been obtained by means of increasingly elaborate constructions, starting with Athey

and Bagwell (2008) and culminating with Escobar and Toikka (2013).1 These constructions

are difficult to extend beyond a certain point, however. Instead, our method allows us to

deal with

- moral hazard (imperfect monitoring);

- endogenous serial correlation (actions affecting transitions);

- correlated types (across players) and interdependent values.

Allowing for such features is not merely of theoretical interest. There are many applications

in which some if not all of them are relevant. In insurance markets, for instance, there is

clearly persistent adverse selection (risk types), moral hazard (accidents and claims having

a stochastic component), interdependent values, action-dependent transitions (risk-reducing

behaviors) and, in the case of systemic risk, correlated types. The same holds true in financial

asset management, and in many other applications of such models (taste or endowment

shocks, etc.)

We assume that the state profile –each coordinate of which is private information to a

player– follows a controlled autonomous irreducible Markov chain. (Irreducibility refers to

its behavior under any fixed Markov strategy.) In the stage game, players privately take

actions, and then a public signal realizes, whose distribution may depend both on the state

and action profile, and the next round state profile is drawn. Cheap-talk communication is

allowed, in the form of a public report at the beginning of each round.

The focus is on truthful equilibria, in which players truthfully reveal their type at the

beginning of each round, after every history. In addition, players’ action choices are public:

they only depend on their current type and the public history. Our main result characterizes

a subset of the limit set of equilibrium payoffs as the discount factor δ tends to one. While

concentrating on truth-telling equilibria is with loss of generality given the absence of any

commitment, it nevertheless turns out that this limit set includes the payoff sets obtained

in all the special cases studied by the literature.2

1This is not to say that the recursive formulations of Abreu, Pearce and Stacchetti (1990, hereafter

APS) cannot be adapted to such games. See, for instance, Cole and Kocherlakota (2001), Fernandes and

Phelan (2000), or Doepke and Townsend (2006). These papers develop methods that are extremely useful

for numerical purposes for a given discount rate, but provide little guidance regarding qualitative properties

of the equilibrium payoff set.
2The one exception is the lowest equilibrium payoff in Renault, Solan and Vieille (2013), who also char-

acterize Pareto-inferior “babbling” equilibria.
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To sum up, our contribution is twofold. First, we provide a family of one-shot games with

transfers that reduce the analysis from a dynamic infinite-horizon game to a static game.

Unlike the one-shot game of FL and HSTV (special cases of ours), this one-shot game is

Bayesian. Each player makes a report, then takes an action; the transfer is then determined.

This reduction provides a bridge between dynamic games and Bayesian mechanism design.

As explained below, its payoff function is not entirely standard, raising interesting new issues

for static mechanism design. Nonetheless, well-known results can be adapted for a wide class

of dynamic games. This is our second contribution: under either independent private values,

or correlated types, the analysis of the one-shot game yields an equilibrium payoff set that

is best possible, except for the definition of individual rationality.

Specifically, when types are independent (though still possibly affected by one’s own

action), and payoffs are private, all Pareto-optimal payoffs that are individually rational –in

the sense of dominating the stationary minmax payoff– are limit equilibrium payoffs, provided

monitoring satisfies standard identifiability conditions. Insisting on truthfulness has a cost

in terms of individual rationality: as discussed below, the stationary minmax payoff does

not generally coincide with the lowest minmax payoff in the dynamic game. But this is the

only restriction imposed: leaving aside individual rationality, we show that the payoff set

attained by truthful equilibria is actually equal to the limit set of all Bayes Nash equilibrium

payoffs, whichever message sets one chooses. In other words, in the revelation game in which

players commit to the map from reports to actions, but not to current or future reports,

there is no loss of generality in restricting attention to truthful equilibria. In this sense,

the revelation principle extends when players are patient enough. Beyond generalizing the

results of Athey and Bagwell, as well as Escobar and Toikka, this characterization has some

interesting consequences. For instance, when actions do not affect transitions, the invariant

distribution of the Markov chain is a sufficient statistic for the Markov process, as far as this

equilibrium payoff set is concerned, leaving individual rationality aside.

When types are correlated, then all feasible and individually rational payoffs can be

obtained in the limit (again, under suitable identifiability conditions). The “spanning” con-

dition familiar from mechanism design with correlated types must be stated in terms of pairs

of states: more precisely, player −i’s current and next state must be sufficiently informative

about player i’s current and previous state.

In Section 6.4, we elaborate on individual rationality in the case of independent private

values. The failure of truthful equilibria to attain payoffs as low as the minmax payoff in the

dynamic game should come as no surprise: after all, the same holds for public equilibria in

repeated games with imperfect public monitoring. In this special case, our characterization
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yields the same payoff set as Fudenberg, Levine and Maskin (1994, hereafter FLM). Yet there

is a natural class of monitoring structures for which FLM’s payoff set coincides with the set of

all sequential equilibrium payoffs. Namely, this is the case when public signals have a product

structure. Similarly, we can build on truthful equilibria to obtain an exact characterization

of all Bayes Nash equilibrium payoffs (as δ → 1) when monitoring has a product structure.

This requires considering equilibria that are truthful except during punishment-like phases,

in which meaningful communication is suspended.

Hence, conclusive characterizations are obtained under independent private values as well

as correlated types. This mirrors the state of affairs in static mechanism design. In fact,

our results are obtained by applying familiar techniques to the one-shot game, developed

by Arrow (1979) and d’Aspremont and Gérard-Varet (1979) for the independent case, and

d’Aspremont, Crémer and Gérard-Varet (2003) in the correlated case.

Our approach stands in contrast with the techniques based on review strategies (see Es-

cobar and Toikka for instance) whose adaptation to incomplete information is inspired by

the linking mechanism described in Fang and Norman (2006) and Jackson and Sonnenschein

(2007). Our results imply that, as is already the case for repeated games with public mon-

itoring, transferring continuation payoffs across players is an instrument that is sufficiently

powerful to dispense with explicit statistical tests. Of course, this instrument requires that

deviations in the players’ reports can be statistically distinguished, a property that calls for

assumptions closely related to those called for in static mechanism design. Here as well, we

build on results from static mechanism design (in particular the weak identifiability condi-

tion introduced by Kosenok and Severinov (2008)) to ensure budget-balance in the dynamic

game.

While the characterization turns out to be a natural generalization of the one from

repeated games with public monitoring, it still has several unexpected features, reflecting

difficulties in the proof that are not present either in stochastic games with observable states.

These difficulties shift the emphasis of the program from payoffs to strategies.

To bring these difficulties to light, consider the case of independent types. Together with

the irreducibility of the Markov chain, this implies that the long-run (or asymptotic) payoff

of a player is independent of his current state. To incentivize a player to disclose his private

information, it no longer suffices to adjust his long-run payoff, as it affects the different types

identically. Using solely the current (flow) payoff to elicit truth-telling is just as inadequate,

when actions affect transitions. Player i’s incentives to disclose his information depends on

the impact of his report on the transient component of his long-run payoff; that is, loosely

speaking, on his flow payoffs until the effect of the initial state fades away. This transient
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component is bounded from above, even as δ → 1: unlike in repeated games, future payoffs

do not eclipse flow payoffs, as far as incentives to tell the truth are concerned. Furthermore,

this transient component cannot be summarized by a single number: its value depends on

the player’s initial state, according to the future actions played.

To resolve these difficulties, the proof adopts two time scales. Over the short run, the

policy that players follow (the map from reports to actions) is fixed. The resulting transient

component follows directly, and is treated as a flow payoff. In other words, in the short

run, the flow payoff is computed as if strategies were Markov: the relative value that arises

in (undiscounted) dynamic programming is precisely the right measure for this transient

component. In the long run, play is decidedly non-Markovian. Play switches towards a new

Markov strategy profile that metes out punishments and rewards according to the history of

public signals.

The two time scales interact, however, leading to a characterization that intermingles

both the relative value (treated as an adjustment to the flow payoff) and the changes in the

long-run payoff (treated, as usual, as a transfer).

Games without commitment but with imperfectly persistent private types were intro-

duced in Athey and Bagwell (2008) in the context of Bertrand oligopoly with privately ob-

served cost. Athey and Segal (2013, hereafter AS) allow for transfers and prove an efficiency

result for ergodic Markov games with independent types. Their team balanced mechanism

is closely related to a normalization that is applied to the transfers in one of our proofs in

the case of independent private values.

There is also a literature on undiscounted zero-sum games with such a Markovian struc-

ture, see Renault (2006), which builds on ideas introduced in Aumann and Maschler (1995).

Not surprisingly, the average cost optimality equation plays an important role in this lit-

erature as well. Because of the importance of such games for applications in industrial or-

ganization and macroeconomics (Green, 1987), there is an extensive literature on recursive

formulations for fixed discount factors (Fernandes and Phelan, 1999; Cole and Kocherlakota,

2001; Doepke and Townsend, 2006). In game theory, recent progress has been made in the

case in which the state is observed, see Fudenberg and Yamamoto (2012) and HSTV for

an asymptotic analysis, and Pęski and Wiseman (2013) for the case in which the time lag

between consecutive moves goes to zero. There are some similarities in the techniques used,

although incomplete information introduces significant complications.3

More related are the papers by Escobar and Toikka, already mentioned, Barron (2013)

3Among others, HSTV (as before FLM) rely on the equilibrium payoff set being full-dimensional, an

assumption that fails with independent private values, as explained.
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and Renault, Solan and Vieille. All three papers assume that types are independent across

players. Barron introduces imperfect monitoring in Escobar and Toikka, but restricts atten-

tion to the case of one informed player only. This is also the case in Renault, Solan and

Vieille. This is the only paper that allows for interdependent values, although in the context

of a very particular model, namely, a sender-receiver game with perfect monitoring. None

of these papers allow transitions to depend on actions.

2 The Model

We consider dynamic games with imperfectly persistent incomplete information. The stage

game is as follows. The finite set of players is denoted I. We assume that there are at least

two players. Each player i ∈ I has a finite set Si of (private) states, and a finite set Ai of

actions. The state si ∈ Si is private information to player i. We denote by S := ×i∈IS
i and

A := ×i∈IA
i the sets of state profiles and action profiles respectively.

In each round n ≥ 1, timing is as follows:

1. Each player i ∈ I privately observes his own state sin ∈ Si;

2. Players simultaneously make reports (mi
n)

I
i=1 ∈ ×iM

i, where M i is a finite set. De-

pending on the context, we set M i as either Si or (Si)2×Ai, as explained below. These

reports are publicly observed;

3. The outcome of a public correlation device is observed. For concreteness, it is a draw

from the uniform distribution on [0, 1];4

4. Players independently choose actions ain ∈ Ai. Actions taken are not observed;

5. A public signal yn ∈ Y , a finite set, and the next state profile sn+1 = (sin+1)i∈I are

drawn according to some joint distribution psn,an ∈ Δ(S × Y ).

Throughout, we assume that the transition function p is such that the support of ps̄,ā does

not depend on s̄ and is equal to S × Y (ā) for some Y (ā) ⊆ Y .5 This implies that (i) the

controlled Markov chain (sn) is irreducible under any Markov strategy, (ii) public signals,

whose probability might depend on (s̄, ā), do not allow players to rule out any state profile

4We do not know how to dispense with it. But given that public communication is allowed, such a public

randomization device is innocuous, as it can be replaced by jointly controlled lotteries.
5Throughout the paper, we use s̄, ā, ȳ, etc. when referring to the values of variables s, a, y, etc. in the

“previous” round.
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s. This is consistent with perfect monitoring. Note that actions might affect transitions.6

The irreducibility of the Markov chain is a strong assumption, ruling out among others the

case of perfectly persistent states (see Aumann and Maschler, 1995; Athey and Bagwell,

2008). Unfortunately, it is well known that the asymptotic analysis is very delicate without

such an assumption (see Bewley and Kohlberg, 1976). On the other hand, the full-support

assumption on S and the state-independence of the signal profile are for convenience: de-

tecting deviations only becomes easier when it is dropped, but it is then necessary to specify

out-of-equilibrium beliefs regarding private states.7,8

We also write ps,a(y) for the marginal distribution over signals y given (s, a), ps,a(t) for

the marginal distribution over state profile t = sn+1 in the “next” round, etc., and extend

the domain of these distributions to mixed action profiles α ∈ Δ(A) in the customary way.

The stage game payoff (or reward) of player i is a function ri : S×A → R, whose domain

is extended to mixed action profiles in Δ(A). As is customary, we may interpret this reward

as the expected value (with respect to the signal y) of some function gi : S × Ai × Y → R,

ri(s, a) = E[gi(s, ai, y) | a]. This interpretation is particularly natural in the case of private

values (in which case we may think of gi(si, ai, y) as the observed stage game payoff), but

except in that case, we do not assume that the reward satisfies this factorization property.

Given the sequence of realized rewards (rin) = (ri(sn, an)), player i’s payoff in the dynamic

game is given by
+∞∑
n=1

(1− δ)δn−1rin,

where δ ∈ [0, 1) is common to all players. (Short-run players can be accommodated for, as

will be discussed.)

The dynamic game also specifies an initial distribution p1 ∈ Δ(S), which plays no role in

6Accommodating observable (public) states, as modeled in stochastic games, requires minor adjustments.

One way to model them is to append such states as a component to each player’s private state, perfectly

correlated across players.
7We allow Y (ā) � Y to encompass the important special case of perfect monitoring, but the independence

from the state s̄ ensures that players do not need to abandon their belief that players announced states

truthfully. However, note that this is not quite enough to pin down beliefs about sn+1 when yn /∈ Y (a),

when yn is observed, yet a was supposed to be played; because transitions can depend on the action profile,

beliefs about sn+1 depend on what players think the actual action profile played was. This specification can

be chosen arbitrarily, as it plays no role in the results.
8In fact, our results only require that it be unichain, i.e., that the Markov chain defined by any Markov

strategy has no two disjoint closed sets. This is the standard assumption under which the distributions spec-

ified by the rows of the limiting matrix limn→∞ 1
n

∑n−1
i=0 p(·)i are independent of the initial state; otherwise

the average cost optimality equation that is used to analyze, say, the cooperative solution is no longer valid.
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the analysis, given the irreducibility assumption and the focus on equilibrium payoff vectors

as elements of RI as δ → 1.

A special case of interest is independent private values (hereafter, IPV). This is the case

in which (i) payoffs of a player only depend on his private state, not on the others’, that is, for

all (i, s, a), ri(s, a) = ri(si, a), (ii) conditional on the public signal y, states are independently

distributed. A formal definition is given in Section 6.

But we do not restrict attention to private values, nor to independent types. In the

case of interdependent values, it matters whether players observe their payoffs or not. It is

possible to accommodate privately observed payoffs: simply define a player’s private state as

including his last realized payoff.9 As we shall see, the reports of a player’s opponents in the

next round are taken into account when evaluating the truthfulness of a player’s report, so

that one could build on the results of Mezzetti (2004, 2007) in static mechanism design with

interdependent valuations. Hence, we assume that a player’s private action, private state,

the public signal and report profile is all the information available to him.10

In fact, our main characterization result extends immediately to the case in which moni-

toring is private, rather than public; see Section 5.0.3 for a discussion. As we focus on public

monitoring for the applications that are considered in Sections 6 and 7, we have refrained

from such generality here.

Monetary transfers are not allowed. We view the stage game as capturing all possible

interactions among players, and there is no difficulty in interpreting some actions as monetary

transfers. In this sense, rather than ruling out monetary transfers, what is assumed here is

limited liability.

The game defined above allows for public communication among players. In doing so, we

follow most of the literature on Markovian games with private information, see Athey and

Bagwell (2001, 2008), Escobar and Toikka, Renault, Solan and Vieille, etc.11 As in static

9With this interpretation, pointed out by AS, interdependent values with observable payoffs reduce to

private values ex post, as conditional on a player’s entire information, a player’s payoff does not depend on

the other players’ types. It would then be natural to allow for a second round of messages at the end of each

period.
10However, our notion of equilibrium is sensitive to what goes into a state: by enlarging it, one weakly

increases the equilibrium payoff set. For instance, one could also include in a player’s state his previous

realized action, which following Kandori (2003) is useful even when incomplete information is trivial and the

game is simply a repeated game with public monitoring; such an enlargement is peripheral to our objective

and will not be pursued here.
11This is not to say that introducing a mediator would be uninteresting. Following Myerson (1986), we

could then appeal to a revelation principle, although without commitment from the players this would simply

shift the inferential problem to the recommendation step of the mediator.
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Bayesian mechanism design, communication is required for coordination even in the absence

of strategic motives; communication allows us to characterize what restrictions on payoffs,

if any, are imposed by non-cooperative behavior.

As we insist on sequential rationality, players are assumed to be unable to commit. Hence,

the revelation principle does not apply. As is well known (see Bester and Strausz, 2000, 2001),

it is not possible a priori to restrict attention to direct mechanisms, corresponding to the

choice M i = Si (or M i = Ai × (Si)2, as explained below), let alone to truthful behavior.

Yet this is precisely the types of equilibria that we will focus on. The next section

illustrates some of the issues that this raises.

3 Some Examples

Example 1—A Silent Game. This game follows Renault (2006). This is a zero-sum

two-player game in which player 1 has two private states, s1 and ŝ1, and player 2 has a single

state, omitted. Player 1 has actions A1 = {T,B} and player 2 has actions A2 = {L,R}.

Player 1’s reward is given by Figure 1. Recall that rewards are not observed. States s1

L R

T 1 0

B 0 0

s1

L R

T 0 0

B 0 1

ŝ1

Figure 1: Player 1’s reward in Example 1

and ŝ1 are equally likely in the initial round, and transitions are action-independent, with

p ∈ [1/2, 1) denoting the probability that the state remains unchanged from one round to

the next.

Set M1 := {s1, ŝ1}, so that player 1 can disclose his state if he wishes to. Will he? By

revealing the state, player 2 can secure a payoff of 0 by playing R or L depending on player

1’s report. Yet player 1 can secure a payoff of 1/4 by choosing reports and actions at random.

In fact, this is the (uniform) value of this game for p = 1 (Aumann and Maschler, 1995).

When p < 1, player 1 can actually get more than this by trading off the higher expected

reward from a given action with the information that it gives away. He has no interest in

giving this information away for free through informative reports. Silence is called for.

Just because we may focus on the silent game does not mean that it is easy to solve.
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Its (limit) value for arbitrary p > 2/3 is still unknown.12 Because the optimal strategies

depend on player 2’s belief about player 1’s state, the problem of solving for them is infinite-

dimensional, and all that can be done is to characterize its solution via some functional

equation (see Hörner, Rosenberg, Solan and Vieille, 2010).

Non-existence of truthful equilibria in some games is no surprise. The tension between

truth-telling and lack of commitment also arises in bargaining and contracting, giving rise to

the ratchet effect (see Freixas, Guesnerie and Tirole, 1985). What Example 1 illustrates is

that small message spaces are just as difficult to deal with as larger ones. When players hide

their information, their behavior reflects their private beliefs, which calls for a state space

as large as it gets.

The surprise, then, is that the literature on Markovian games (Athey and Bagwell, 2001,

2008, Escobar and Toikka; Renault, Solan and Vieille) manages to get positive results at

all: in most games, efficiency requires coordination, and thus disclosure of (some) private

information. As will be clear from Section 6, existence is much easier to obtain in the IPV

environment, the focus of most of these papers. Example 1 involves both interdependent

values and independent types, an ominous combination in mechanism design: with interde-

pendent values, the uninformed player’s payoff depends on the informed player’s type, so

that he cannot resist adjusting his action to the message he receives. This might hurt the

informed player, who cannot be statistically disciplined into truth-telling, given independent

types.

In our dynamic environment as well, positive results will obtain as soon as we impose

private values or relax independent types.

Example 2—A Game that Leaves No Player Indifferent. Player 1 has two private

states, s1 and ŝ1, and player 2 has a single state, omitted. Player 1 has actions A1 = {T,B}

and player 2 has actions A2 = {L,R}. Rewards are given by Figure 2 (values are private).

The two types s1 and ŝ1 are i.i.d. over time and equally likely. Monitoring is perfect. To

minmax player 2, player 1 must randomize uniformly, independently of his type. But clearly

player 1 has a strictly dominant strategy in the repeated game, playing T in state s1 and

B in state ŝ1. Even if player 1’s continuation utility were to be chosen freely, it would not

be possible to get player 1 to randomize in both states: to play B when his type is s1, or T

12It is known for p ∈ [1/2, 2/3] and some specific values. Pęski and Toikka (private communication) have

recently shown that this value is non-increasing in p, and Bressaud and Quas (private communication) have

determined the optimal strategies for values of p up to ∼ .7323.
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L R

T 1, 1 1,−1

B 0,−1 0, 1

s1

L R

T 0, 1 0,−1

B 1,−1 1, 1

ŝ1

Figure 2: A two-player game in which the mixed minmax payoff cannot be achieved.

when his type is ŝ1, he must be compensated by $1 in continuation utility. But then he has

an incentive to report his type incorrectly, to pocket this promised utility while playing his

favorite action.

This example illustrates that fine-tuning continuation payoffs to make a player indifferent

between several actions in several private states simultaneously is generally impossible to

achieve with independent types. This still leaves open the possibility of a player randomizing

for one of his types. This is especially useful when each player has only one type, like in

a standard repeated game, as it then delivers the usual mixed minmax payoff. Indeed, the

characterization below yields a minmax payoff somewhere in between the mixed and the pure

minmax payoff, depending on the particular game considered. This example also shows that

truth-telling is restrictive even with independent private values: in the silent game, player

1’s unique equilibrium strategy minmaxes player 2, as he is left guessing player 1’s action.

Leaving a player in the dark about one’s state can serve as a substitute for mixing at the

action step. To achieve lower equilibrium payoffs, truth-telling must be abandoned, at least

during punishments. As follows from Theorem 4 below, it is indeed possible to drive player

2’s payoff down to his minmax payoff of 0 in equilibrium, as δ → 1.

Example 3—Waiting for Evidence. There are two players. Player 1 has K+1 types,

S1 = {0, 1, . . . , K}, while player 2 has only two types, S2 = {0, 1}. Transitions do not depend

on actions (omitted), and are as follows. If s1n = k > 0, then s2n = 0 and s1n+1 = s1n − 1.

If s1n = 0, then s2n = 1 and s1n+1 is drawn randomly (and uniformly) from S1. In words, s1n
stands for the number of rounds until the next occurrence of s2 = 1. By waiting no more

than K rounds, all reports by player 1 can be verified.

This example makes two closely related points. First, in order for player −i to statistically

discriminate between player i’s states, it is not necessary that his set of signals (here, players

−i’s states) be as rich as player i’s, unlike in static mechanism design with correlated types

(the familiar “spanning condition” of Crémer and McLean, 1988, generically satisfied if only

if |S−i| ≥ |Si|). Two states for one player can be enough to cross-check the reports of
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an opponent with many more states, provided that states in later rounds are informative

enough.

Second, the long-term dependence of the stochastic process implies that one player’s

report should not always be evaluated on the fly. It is better to hold off until more evidence

is collected. Note that this is not the same kind of delay as the one that makes review

strategies effective, taking advantage of the central limit theorem to devise powerful tests

even when signals are independently distributed over time (see Radner, 1986; Fang and

Norman, 2006; Jackson and Sonnenschein, 2007). It is precisely because of the dependence

that waiting is useful here.

This raises an interesting statistical question: does the tail of the sequence of private

states of player −i contain indispensable information in evaluating the truthfulness of player

i’s report in a given round, or is the distribution of this infinite sequence, conditional on

(sin, sn−1), summarized by the distribution of an initial segment of the sequence? This

question appears to be open in general. In the case of transitions that do not depend

on actions, it has been raised by Blackwell and Koopmans (1957) and answered by Gilbert

(1959): it is enough to consider the next 2|Si|+ 1 values of the sequence (s−i
n′ )n′≥n.

13

At the very least, when types are correlated and the Markov chain exhibits time depen-

dence, it is useful to condition player i’s continuation payoff given his report about sin on

−i’s next private state, s−i
n+1. Because this suffices to obtain sufficient conditions analogous

to those invoked in the static case, we will limit ourselves to this conditioning.14

4 Truthful Equilibria

Given M := ×i∈IM
i, a public history at the start of round n ≥ 1 is a sequence hpub,n =

(m1, y1, . . . , mn−1, yn−1) ∈ Hpub,n := (M × Y )n−1. Player i’s private history at the start of

round n is a sequence hi
n = (si1, m1, a

i
1, y1, . . . , s

i
n−1, mn−1, a

i
n−1, yn−1) ∈ H i

n := (Si×M×Ai×

Y )n−1. (Here, H i
1 = Hpub,1 := {∅}.) A (behavior) strategy for player i is a pair of sequences

(mi, ai) = (mi
n, a

i
n)n∈N with m

i
n : H i

n × Si → Δ(M i), and a
i
n : H i

n × Si ×M → Δ(Ai), which

specify i’s report and action as a function of his private information, his current state and

13The reporting strategy defines a hidden Markov chain on pairs of states, reports and signals that induces

a stationary process over reports and signals; Gilbert assumes that the hidden Markov chain is irreducible

and aperiodic, which here need not be (with truthful reporting, the report is equal to the state), but his

result continues to hold when these assumptions are dropped, see for instance Dharmadhikari (1963).
14See Obara (2008) for some of the difficulties encountered in dynamic settings when attempting to extend

results from static mechanism design with correlated types.
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the report profile in the current round.15 A strategy profile (m, a) defines a distribution over

finite and by extension over infinite histories in the usual way, and we consider the sequential

equilibria of this game.

A special class of games are “standard” repeated games with public monitoring, in which

Si is a singleton set for each player i and we can ignore the m-component of players’ strate-

gies. For such games, FL provide a convenient algorithm to describe and study a subset of

equilibrium payoffs –perfect public equilibrium payoffs. A perfect public equilibrium (PPE)

is an equilibrium in which players’ strategies are public; that is, a is adapted to (Hpub,n)n,

so that players ignore any additional private information (their own past actions). Their

characterization of the set of PPE payoff vectors, E(δ), as δ → 1 relies on the notion of a

score defined as follows. Let Λ denote the unit sphere of RI . We refer to λ ∈ Λ (or λi) as

weights, although the coordinates need not be nonnegative.

Definition 1 Fix λ ∈ Λ. Let

k(λ) = sup
v,x,α

λ · v,

where the supremum is taken over all v ∈ R
I, x : Y → R

I and α ∈ ×i∈IΔ(Ai) such that

(i) α is a Nash equilibrium with payoff v of the game with payoff r(a) +
∑

y pa(y)x(y);

(ii) For all y ∈ Y , it holds that λ · x(y) ≤ 0.

Let H :=
⋂

λ∈Λ{v ∈ R
I | λ · v ≤ k(λ)}. FL prove the following.

Theorem 1 (FL) It holds that E(δ) ⊆ H for any δ < 1; moreover, if H has non-empty

interior, then limδ→1E(δ) = H.

Our purpose is to obtain a similar characterization for the broader class of games con-

sidered here. To do so while preserving the recursive nature of the equilibrium payoff set

that will be described compels us to focus on a particular class of equilibria in which players

report truthfully their private state in every round, on and off path, and do not condition

on their earlier private information, but only on the public history and their current state.

The complete information game with transfers x that appears in the definition of the score

must be replaced with a two-step Bayesian game with communication, formally defined in

the next section. Here, we briefly motivate its main ingredients.

FL’s algorithm is remarkable in its parsimony: as its proof makes clear, the past, that

is, the public history leading to a given period, can be summarized by some value of λ.

15Recall however that a public correlation device is assumed, although it is omitted from the notations.
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This parameter can be interpreted as the relative standings of the players, determining who

should be punished and who should be rewarded. Meanwhile, the future is summarized by

the transfer x, converting instantly the realized signal into a continuation payoff.

We must add parameters. Because players’ incentives to reveal their state depend on

their beliefs about the other players’ states, we must keep track of these beliefs, in addition

to the players’ relative standings. This is where the focus on truthful equilibria is powerful:

because the other players’ last report discloses their last type, it subsumes their past reports.

In addition, because their action choices are a function of the public history, this last report

also pins down player i’s belief about their last (mixed) action, which matters for his beliefs.

Finally, because the private state profile follows a Markov process, there is no need for player

i to keep track of his own private history, beyond his last state and realized action.

To summarize, player i’s beliefs can be summarized by some (public) parameters: these

correspond to the last report made by his opponents as well as to the last public signal; and

by his private information, namely, his previous state, his previous choice of action and his

current state. Hence, the Bayesian game will be parametrized by some (mn−1, yn−1) ∈ M×Y ,

which is public, as well as by player i’s private information (sin−1, a
i
n−1, s

i
n) ∈ (Si)2 ×Ai.

This is why the natural choice for the message space is M i = (Si)2 × Ai. It allows

player i to report all his private information. Along the equilibrium path, this involves

repetitions. But it matters when the last report of player i was not truthful regarding his

current state; the one-shot deviation principle does not apply here. Players −i cannot detect

such a deviation, which is “on-schedule,” to borrow Athey and Bagwell (2008)’s terminology.

For truthful reporting off path, the choice of M i makes a difference: with M i = Si, player

i would be asked to tell the truth regarding his “payoff-type,” but possibly to lie about his

“belief-type” (which would be incorrectly believed to be determined by his report of sin−1,

along with his current report). In the IPV case, however, this enlargement is unnecessary,

as past deviations do not affect i’s conditional beliefs. We will then set M i = Si. In what

follows, a type of player i refers to the true element of M i, to be distinguished from his state,

an element of Si.

Hence, we must enlarge the type space, and we must also enlarge the set of parameters

that summarizes the past, to account not only for λ, but also for (mn−1, yn−1). Similarly, we

cannot simply summarize the future by a transfer determined on the fly. This is the point

of Example 3. Because tomorrow’s report s−i
n+1 is informative about player i’s report about

sin, it should be included as an argument of the transfer xi. This is fortunate, as we have

just argued that player i’s type is rich, including both his previous type sin−1 and his current

type sin. Using both s−i
n and s−i

n+1 (as well as yn) as arguments of the transfer allows us to
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augment the set of correlated “signals” proportionately.

Last but not least, we must adjust the payoff function of the Bayesian game. To see why

this must be so, consider the case in which there is only one player, and set λ = 1. Because

the purpose of transfers is to align individual and collective interests, there is no need for

them. The score should then simply be the value of the Markov decision process. But

clearly, if actions affect transitions, then the optimal action is not the one that maximizes

the flow payoff: it must also account for the impact of this action on future states. To take

this into account in the stage game, we must somehow convert the future costs and benefits

from a given action into current terms. This is the essence of dynamic programming: the

continuation values summarizes these costs and benefits. Here, we consider the case of

low discounting, so that the appropriate functional equation is the average cost optimality

equation, formally described in the next section. The relative value is the right measure

to convert these costs into current units. It will be added to the flow payoff, as a basic

ingredient of our Bayesian game.

A strategy (mi, ai) is public and truthful if mi
n(h

i
n, s

i
n) = (sin−1, a

i
n−1, s

i
n) (or sin in the IPV

case) for all histories hi
n, n ≥ 1, and a

i(hi
n, s

i
n, mn) depends on (hpub,n, s

i
n, mn) only (with the

obvious adjustment in the initial round). The solution concept is sequential equilibrium in

public and truthful strategies.

The next section describes the family of Bayesian games formally.

5 The Main Result

In this section, M i := Si×Ai×Si for all i. A profile m of reports is written m = (mp, ma, mc),

where mp (resp. mc) is interpreted as the report profile on previous (resp. current) states,

and ma is the reported (last round) action profile.

We set Ωpub := M × Y , and we refer to the pair (mn, yn) as the public outcome of round

n. This is the additional public information available at the end of round n. We also refer

to (sn, mn, an, yn) as the outcome of round n, and denote by Ω := Ωpub × S × A the set of

possible outcomes in any given round.

5.0.1 The Average Cost Optimality Equation

Our analysis makes use of the so-called Average Cost Optimality Equation (ACOE) that

plays an important role in dynamic programming. For completeness, we provide here an
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elementary statement, which is sufficient for our purpose and we refer to Puterman (1994)

for details and additional properties.

Let be given an irreducible (or more generally unichain) transition function q over the

finite set S with invariant measure μ, and a payoff function u : S → R.16 Assume that

successive states (sn) follow a Markov chain with transition function q and that a decision-

maker receives the reward u(sn) in round n. The long-run payoff of the decision-maker is

v = Eμ[u(s)]. While this long-run payoff is independent of the initial state, discounted payoffs

are not. Lemma 1 below provides a normalized measure of the differences in discounted

payoffs, for different initial states. Here and in what follows, t stands for the “next” state

profile (“tomorrow” ’s state), given the current state profile s.

Lemma 1 There is θ : S → R such that

v + θ(s) = u(s) + Et∼ps(·)θ(t).

The map θ is unique, up to an additive constant. It admits an intuitive interpretation in

terms of discounted payoffs. Indeed, the difference θ(s)− θ(s′) is equal to lim
δ→1

γδ(s)− γδ(s
′)

1− δ
,

where γδ(s) is the discounted payoff when starting for s. For this reason, following standard

terminology, call θ the (vector of) relative values.

The map θ provides a “one-shot” measure of the relative value of being in a given state;

with persistent and possibly action-dependent transitions, the relative value is an essential

ingredient in converting the dynamic game into a one-shot game, alongside the invariant

measure μ. The former encapsulates the relevant information regarding future payoffs, while

the latter is essential in aggregating the different one-shot games, parameterized by their

states. Both μ and θ are usually defined as the solutions of a finite system of equations –the

balance equations and the equations stated in Lemma 1. But in the ergodic case that we

are concerned with, explicit formulas exist. (See, for instance, Iosifescu, 1980, p.123, for the

invariant distribution; and Puterman, 1994, Appendix A for the relative values.)

5.0.2 Admissible Pairs

The characterization of FL for repeated games involves a family of optimization problems,

in which one optimizes over equilibria α of the underlying stage game, with payoff functions

augmented by transfers x, see Definition 1.

16As is well known, the unichain assumption cannot be relaxed.
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Because we insist on truthful equilibria, and because we need to incorporate the dynamic

effects of actions on states, we must consider policies instead, i.e. maps ρ : S → Δ(A) and

transfers, such that reporting truthfully and playing ρ constitutes a stationary equilibrium

of the dynamic two-step game augmented with transfers. While policies depend only on

current states, transfers will depend on the previous and current public outcomes, as well as

on the next reported states.

Let such a policy ρ : S → Δ(A), and transfers x : Ωpub × Ωpub × S → R
I be given.

We will assume that for each i ∈ I, xi(ω̄pub, ωpub, t) is independent of i’s own state ti.17

Assuming states are truthfully reported and actions chosen according to ρ, the sequence

(ωn) of outcomes is a unichain Markov chain, and so is the sequence (ω̃n), where ω̃n =

(ωpub,n−1, mn), with transition function denoted πρ, and with invariant measure μρ.

Let θρ,r+x : Ωpub × M → R
I denote the relative values of the players, obtained when

applying Lemma 1 to the latter chain (and to all players).18

Thanks to the ACOE, the condition that reporting truthfully and playing ρ is a stationary

equilibrium of the dynamic game with stage payoffs r + x can to some extent be rephrased

as saying that, for each ω̄pub ∈ Ωpub, reporting truthfully and playing ρ is an equilibrium in

the one-shot Bayesian game in which states s are drawn according to p (given ω̄pub), players

submit reports m, then choose actions a, and obtain the (random) payoff

r(s, a) + x(ω̄pub, ωpub, t) + θρ,r+x(ωpub, m
′),

where (y, t) are chosen according to ps,a and ωpub = (m, y).19

However, because we insist on off-path truth-telling, we need to consider arbitrary private

histories, and the formal condition is therefore more involved. Fix a player i. Given a triple

(ω̄pub, s̄
i, āi), let Di

ρ,x(ω̄pub, s̄
i, āi) denote the two-step decision problem in which

Step 1 s ∈ S is drawn according to the belief held by player i;20 player i is informed of si,

17This requirement will not be systematically stated, but it is assumed throughout.
18There is here a slight and innocuous abuse of notation: θρ,r+x solves the equations v + θ(ω̄pub,m) =

r(s, ρ(s)) +E[x(ω̄pub, ωpub, t) + θ(ωpub,m
′)], where v = Eμρ

[r(s, a) + x(ω̄pub, ωpub, t)] is the long-run payoff

under ρ.
19Lemma 1 defines the relative values for an exogenous Markov chain, or equivalently for a fixed policy. It

is simply an “accounting” identity. The standard ACOE delivers more: given some Markov decision problem

(MDP), a policy ρ is optimal if and only if, for all states s, ρ(s) maximizes the right-hand side of the equations

of Lemma 1. Both results will be invoked interchangeably.
20Recall that player i assumes that players −i report truthfully and play ρ−i. Hence player i assigns

probability 1 to s̄−i = m̄−i
c , and to previous actions being drawn according to ρ−i(m̄c); hence this belief

assigns to s ∈ S the probability ps̄,ρ(s̄))(s | ȳ). This is the case unless ȳ is inconsistent with ρ−i(m̄c); if this

is the case, use the same updating rule with some other arbitrary ã−i such that ȳ ∈ Y (ã−i, āi).
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then submits a report mi ∈ M i;

Step 2 player i learns current states s−i from the opponents’ reports m−i = (m̄−i
c , ā−i, s−i),

and then chooses an action ai ∈ Ai. The payoff to player i is given by

ri(s, a) + xi(ω̄pub, ωpub, t
−i) + θiρ,r+x(ωpub, m

′), (1)

where a−i is drawn according to ρ−i(s−i, mi
c) and the pair (y, t) is drawn according to

ps,a, and ωpub := (m, y).

We denote by Di
ρ,x the collection of decision problems Di

ρ,x(ω̄pub, s̄
i, āi).

Definition 2 The pair (ρ, x) is admissible if all optimal strategies of player i in Di
ρ,x report

truthfully mi = (s̄i, āi, si) in Step 1 (Truth-telling); then, in Step 2, conditional on all play-

ers reporting truthfully in Step 1, ρi(s) is a (not necessarily unique) optimal mixed action

(Obedience).

Requiring in addition ρ to be pure, and ρi(mc) to be optimal even after a lie would yield

a smaller set of admissible pairs, and hence a weakening of Theorem 2 below. Yet, this

weakened version would suffice to deliver all results derived in Sections 6 and 7.

Some comments are in order. The condition that ρ be played once states (not necessarily

types) have been reported truthfully simply means that, for each ω̄pub and m = (s̄, ā, s) the

action profile ρ(s) is an equilibrium of the complete information one-shot game with payoff

function r(s, a) + x(ω̄pub, ωpub, t) + θρ,r+x(ωpub, m
′).

The truth-telling condition is slightly more delicate to interpret. Consider first an out-

come ω̄ ∈ Ω such that s̄i = m̄i
c and āi = ρi(s̄) for all i –no player has lied or deviated in the

previous round, assuming the action to be played was pure. Given such an outcome, all play-

ers share the same belief over next types, given by ps̄,ā(· | ȳ). Consider the Bayesian game

in which (i) s ∈ S is drawn according to the latter distribution, (ii) players make reports m,

then choose actions a, and (iii) get the payoff r(s, a)+x(ω̄pub, ωpub, t)+θρ,r+x(ωpub, m
′). The

admissibility condition for such an outcome ω̄ is equivalent to requiring that truth-telling

followed by ρ is an equilibrium of this Bayesian game, with “strict” incentives at the reporting

step.21

The admissibility requirement in Definition 2 is demanding, however, in that it requires

in addition truth-telling to be optimal for player i at any outcome ω̄ such that (s̄−i, ā−i) =

21Quotation marks are needed, since we have not defined off-path behavior. What we mean is that any

on-path deviation at the reporting step leads to a lower payoff, no matter what action is then taken.
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(m̄−i
c , ρ−i(m̄c)), but s̄i 
= m̄i

c (or āi 
= ρi(m̄c)). Following such outcomes, players do not share

the same belief over the next states. The same issue arises if the action profile ρi(m̄c) is

mixed. Therefore, it is inconvenient to state the admissibility requirement by means of a

simple, subjective Bayesian game –hence the formulation in terms of a decision problem.

In loose terms, truth-telling is the unique best-reply at the reporting step of player i to

truth-telling and ρ−i. Note that we require truth-telling to be optimal (mi = (s̄i, āi, si)) even

if player i did misreport his previous state (m̄i
c 
= s̄i). On the other hand, Definition 2 puts

no restriction on player i’s behavior if he lies in Step 1 (mi 
= (s̄i, āi, si)). The second part

of Definition 2 is equivalent to saying that ρi(s) is one best-reply to ρ−i(s) in the complete

information game with payoff function given by (1) when m = (s̄, ā, s).

The requirement that truth-telling be uniquely optimal reflects an important difference

between our approach to Bayesian games and the traditional approach of APS in repeated

games. In the case of repeated games, continuation play is summarized by the continuation

payoff. Here, the future does not only affect incentives via the long-run continuation payoff,

but also via the relative values. However, we do not know of a simple relationship between

v and θ. Our construction involves “repeated games” strategies that are “approximately”

policies, so that θ can be derived from (ρ, x). This shifts the emphasis from payoffs to

policies, and requires us to implement a specific policy. Truth-telling incentives must be

strict for the approximation involved not to affect them. Fortunately, this requirement is

not demanding, as it will be implied by standard assumptions in the correlated case, and by

some weak assumption (Assumption 1 below) on feasible policies in the IPV case.

We denote by C0 the set of admissible pairs (ρ, x).

5.0.3 The Characterization

For given weights λ ∈ Λ, we denote by P0(λ) the optimization program supλ · v, where the

supremum is taken over all triples (v, ρ, x) such that

- (ρ, x) ∈ C0;

- λ · x(·) ≤ 0;

- v = Eμρ
[r(s, a) + x(ω̄pub, ωpub, t)], where μρ ∈ Δ(Ωpub × Ωpub × S) is the invariant

distribution under truth-telling and ρ, so that v is the long-run payoff induced by

(ρ, x).

The three conditions mirror those of Definition 1 for the case of repeated games. The first

condition (admissibility) and the third condition are the counterparts of the Nash condition
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in Definition 1(i); the second condition is the “budget-balance” requirement imposed by

Definition 1(ii). In what follows, budget-balance refers to this property.

We denote by k0(λ) the value of P0(λ) and set H0 := {v ∈ R
I , λ·v ≤ k0(λ) for all λ ∈ Λ}.

Theorem 2 Assume that H0 has non-empty interior. Then it is included in the limit set of

truthful equilibrium payoffs.

This result is simple enough. For instance, in the case of “standard” repeated games with

public monitoring, Theorem 2 generalizes FLM, yielding the folk theorem with the mixed

minmax under their assumptions.

We note that Theorem 2 is also valid when M i = Si and when the definition of an

admissible pair is modified in an obvious way.

To be clear, there is no reason to expect Theorem 2 to provide a characterization of the

entire limit set of truthful equilibrium payoffs. One might hope to achieve a larger set of

payoffs by employing finer statistical tests (using the serial correlation in states), just as

one can achieve a bigger set of equilibrium payoffs in repeated games than the set of PPE

payoffs, by considering statistical tests (and private strategies). There is an obvious cost in

terms of the simplicity of the characterization. As it turns out, ours is sufficient to obtain all

the equilibrium payoffs known in special cases, and more generally, all individually rational

Bayes Nash equilibrium payoffs (including the Pareto frontier) under independent private

values, as well as a folk theorem under correlated values.22

Two variations to this theorem are worth mentioning. First, Theorem 2 can be adapted

to the case in which some of the players are short-run, whether or not such players have

private information (in which case, assume that it is independent across rounds). As this is

a standard feature of such characterizations (see FL, for instance), we will be brief. Suppose

that players i ∈ LR = {1, . . . , L}, L ≤ I are long-run players, whose preferences are as

before, with discount factor δ < 1. Players j ∈ SR = {L + 1, . . . , I} are short-run players,

each representative of which plays only once. We consider a “Stackelberg” structure, common

in economic applications, in which long-run players make their reports first, thereupon the

short-run players do as well (if they have any private information), and we set M i = Si

for the short-run players. Actions are simultaneous. Let mLR ∈ MLR = ×L
i=1M

i denote

22Besides, an exact characterization would require an analysis in R
S , mapping each type profile into a

payoff for each player. When the players’ types follow independent Markov chains and values are private,

this makes no difference, as the players’ limit equilibrium payoff must be independent of the initial type

profile, given irreducibility and incentive-compatibility. But when types are correlated, it is possible to

assign different (to be clear, long-run) equilibrium payoffs to a given player, as a function of the initial state.
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an arbitrary report by the long-run players. Given a policy ρLR : M → ×i∈LRΔ(Ai) of the

long-run players, mapping reports m = (mLR, sSR) (with sSR = (sL+1, . . . , sI)) into mixed

actions, we let B(mLR, ρLR) denote the best-reply correspondence of the short-run players,

namely, the sequential equilibria of the two-step game (reports and actions) between players

in SR. We then modify the definition of admissible pair (ρ, x) so as to require that the

reports and actions of the short-run players be in B(mLR, ρLR) for all reports mLR by the

long-run players, where ρLR is the restriction of ρ to players in LR. The requirements on

the long-run players are the same as in Definition 2.

Second, signals can be private. That is, we may replace Step 5 in Section 2 by: A profile

yn = (yin) ∈ Y := ×iY
i of private signals and the next state profile sn+1 = (sin+1)i∈I are

drawn according to some joint distribution psn,an ∈ Δ(S × Y ). We then re-define a message

mi as including: player i’s state, action and signal in the last period, and player i’s current

state. Transfers are then assumed to depend on the past, current and next message profile,

with the restriction, as with public monitoring, that player i’s transfer does not depend on

his own future message, only on player −i’s. The definition of admissibility remains the

same, given the re-defined message space, and so does the statement of the theorem.

In a sense, this more general formulation is also more natural, as the current one already

reduces the program to a one-player decision-theoretic problem, in which each player must

report his private information; he might as well report the signal he observed, and the payoff

he received, in case of known-own payoffs. This variation mirrors Kandori and Matsushima

(1998)’s extension of FLM to private monitoring; the issues that they raise regarding the

possibility of a folk theorem in truthful strategies under imperfect information apply here as

well. As we would like to focus on the new ones that incomplete information introduces, our

applications assume public monitoring throughout.

5.1 Proof Overview

Here, we explain the main ideas behind the proof of Theorem 2. For simplicity, we assume

perfect monitoring and action-independent transitions. For notational simplicity also, we

limit ourselves to admissible pairs (ρ, x) such that transfers x : M ×M × A → R
I do not

depend on previous public signals (which do not affect transitions here). This is not without

loss of generality, but going to the general case is mostly a matter of notations.

Our proof is best viewed as an extension of the recursive approach of FLM to the case

of persistent, private information. To serve as a benchmark, assume first that types are

i.i.d. across rounds, with law μ ∈ Δ(S). The game is then truly a repeated game, and the

21



characterization of FLM applies. In that set-up, and according to Definition 2, (ρ, x) is an

admissible pair if for each m̄, reporting truthfully and then playing ρ is an equilibrium in

the Bayesian game with prior distribution μ and payoff function r(s, a) + x(m̄,m, a) (and if

the relevant incentive-compatibility inequalities are strict).

It is useful to provide a quick reminder of the FLM proof, specialized to the present

set-up. Let Z be a smooth compact set in the interior of H0, and a discount factor δ < 1.

Given an initial target payoff vector v ∈ Z, (and m̄ ∈ M), one picks an appropriately chosen

direction λ ∈ Λ, and we choose an admissible pair (ρ, x) such that (ρ, x, v) is feasible in

P0(λ).
23 Players are required to report truthfully their type and to play (on path) according

to ρ, and we update the target to wm̄,m,a := v +
1− δ

δ
x(m̄,m, a) for each (m, a) ∈ M × A.

Provided δ is large enough, the vectors wm̄,m,a belong to Z, and this construction can thus be

iterated, leading to a well-defined strategy profile σ in the repeated game.24 The expected

payoff under σ is v, and the continuation payoff in step 2, conditional on public history

(m, a), is equal to wm̄,m,a, when computed at the ex ante stage, before players learn their

step-2 types. The fact that (ρ, x) is admissible implies that σ yields an equilibrium in the

one-shot game with payoff (1 − δ)r(s, a) + δwm̄,m,a. A one-step deviation principle then

applies, implying that σ is a sequential equilibrium of the repeated game, with payoff v.

Assume now that the type profiles (sn) follow an irreducible Markov chain with invariant

measure μ. The proof outlined above fails as soon as types as auto-correlated. Indeed, the

initial type of player i now provides information over types in step 2. Hence, at the interim

stage in step 1, (using the above notations) the expected continuation payoffs of player i are

no longer given by wm̄,m,a. This is the rationale for including the continuation relative values

into the definition of admissible pairs.

But this raises a difficulty. In any recursive construction such as the one outlined above,

continuation relative values (which help define current play) are defined by continuation

play, which itself is based on current play, leading to an uninspiring circularity. On the other

hand, our definition of an admissible pair (ρ, x) involves the relative values θρ,r+x induced by

an indefinite play of (ρ, x). This difficulty is solved by adjusting the recursive construction

in such a way that players always expect the current admissible pair (ρ, x) to be used in

the foreseeable future. On the technical side, this is achieved by letting players stick to an

admissible pair (ρ, x) during a random number of rounds, with a geometric distribution of

parameter ξ. The target vector is updated only when switching to a new direction (and to

a new admissible pair). The random time at which switching occurs is determined by the

23If v is a boundary point, λ is an outwards pointing normal to Z at v.
24With wm̄,m,a serving as the target payoff vector in the next, second, step.
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correlation device. The parameter ξ is chosen large enough compared to 1− δ, ensuring that

target payoffs always remain within the set Z. Yet, ξ is chosen small enough so that the

continuation relative values be approximately equal to θρ,r+x: in terms of relative values, it

is almost as if (ρ, x) were used forever.

Equilibrium properties are derived from the observation that, by Definition 2, the in-

centive to report truthfully (and then to play ρ) would be strict if the continuation private

values were truly equal to θρ,r+x and thus, still holds when equality holds only approximately.

All the details are provided in the Appendix.

6 Independent Private Values

This section considers the special case of independent private values.

Definition 3 The game has independent private values (IPV) if:

- The stage game payoff function of i depends on his own state only: for every i and

(s, ai, y), gi(s, ai, y) = gi(si, ai, y).

- The prior distribution p1 is a product distribution: for all s,

p1(s) = ×ip
i
1(s

i),

for some distributions pi1 ∈ Δ(Si).

- The transitions of player i’s state are independent of players −i’s private information:

for every i and y, every (si, ai, ti), and pairs (s−i, α−i, t−i), (s̃−i, α̃−i, t̃−i),

psi,s−i,ai,α−i(ti | y, t−i) = psi,s̃−i,ai,α̃−i(ti | y, t̃−i).

The second assumption ensures that the conditional belief of players −i about player i’s

state only depends on the public history (independently of the play of players −i). Along

with the third, it implies that the private states of the players are independently distributed

in any round n, conditional on the public history up to that round. As is customary with

IPV, this definition assumes that the factorization property holds, namely, player i’s stage

game payoff only depends on a−i via y, although none of the proofs uses this property.

As discussed, there is no reason to set M i = Si × Ai × Si here, and so we fix M i = Si

throughout (we nevertheless use the symbol M i instead of Si whenever convenient).
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Our purpose is to describe explicitly the asymptotic equilibrium payoff set in the IPV

case. The feasible (long-run) payoff set is defined as

F := co
{
v ∈ R

I | v = Eμρ
[r(s, a)], some policy ρ : M → A

}
.

When defining feasible payoffs, the restriction to deterministic policies rather than arbitrary

strategies is clearly without loss. Recall also that a public randomization device is assumed,

so that F is convex.

6.1 An Upper Bound on Bayes Nash Equilibrium Payoffs

Not all feasible payoffs can be Bayes Nash equilibrium payoffs, because types are private

and independently distributed. As is well known, incentive compatibility restricts the set of

decision rules that can be implemented in static Bayesian implementation. One can hardly

expect the state of affairs to improve once transfers are further restricted to be continuation

payoffs of a Markovian game. Yet to evaluate the performance of truthful equilibria, we

must provide a benchmark.

To motivate this benchmark, consider first the case in which the marginal distribution

over signals is independent of the states. That is, suppose for now that, for all (s, s̃, a, y),

ps,a(y) = ps̃,a(y),

so that the public signal conveys no information about the state profile, as is the case under

perfect monitoring, for instance. Fix some direction λ ∈ Λ. What is the best Bayes Nash

equilibrium payoff vector, if we aggregate payoffs according to the weights λ? If λi < 0, we

would like player i to reveal his state in order to use this information against his interests. Not

surprisingly, player i is unlikely to be forthcoming about this. This suggests distinguishing

players in the set I(λ) := {i : λi > 0} from the others. Define

k̄(λ) = max
ρ

Eμρ
[λ · r(s, a)] ,

where the maximum is over all policies ρ : ×i∈I(λ)S
i → A (with the convention that ρ ∈ A

for I(λ) = ∅). Furthermore, let

V ∗ := ∩λ∈Λ

{
v ∈ R

I | λ · v ≤ k̄(λ)
}
.

We call V ∗ the set of incentive-compatible payoffs. Clearly, V ∗ ⊆ F . Note also that V ∗

depends on the transition matrix only via the invariant distribution. It turns out that the

set V ∗ is an upper bound on the set of all equilibrium payoff vectors.
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Lemma 2 The limit set of Bayes Nash equilibrium payoffs is contained in V ∗.

Proof. Fix λ ∈ Λ. Fix also δ < 1 (and recall the prior p1 at time 1). Consider the

Bayes Nash equilibrium σ of the game (with discount factor δ) with payoff vector v that

maximizes λ · v among all equilibria (where vi is the expected payoff of player i given p1).

This equilibrium need not be truthful or in pure strategies. Consider i /∈ I(λ). Along with

σ−i and p1, player i’s equilibrium strategy σi defines a distribution over histories. Fixing σ−i,

let us consider an alternative strategy σ̃i where player i’s reports are replaced by realizations

of the public randomization device with the same distribution (round by round, conditional

on the realizations so far), and player i’s action is determined by the randomization device as

well, with the same conditional distribution (given the simulated reports) as σi would specify

if this had been i’s report.25 The new profile (σ−i, σ̃i) need no longer be an equilibrium of

the game. Yet, thanks to the IPV assumption, it gives players −i the same payoff as σ and,

thanks to the equilibrium property, it gives player i a weakly lower payoff. Most importantly,

the strategy profile (σ−i, σ̃i) no longer depends on the history of types of player i. Clearly,

this argument can be applied to all players i /∈ I(λ) simultaneously, so that λ · v is lower

than the maximum inner product achieved over strategies that only depend on the history

of types in I(λ). Maximizing this inner product over such strategies is a standard Markov

decision problem, which admits a solution within the class of deterministic policies. Taking

δ → 1 yields that the limit set is included in
{
v ∈ R

I | λ · v ≤ k̄(λ)
}
, and this is true for all

λ ∈ Λ.

It is worth emphasizing that this result does not rely on the choice of any particular

message space M .26 We define

ρ[λ] ∈ argmax
ρ:×i∈I(λ)Si→A

Eμρ
[λ · r(s, a)] (2)

to be any policy that achieves this maximum, and let Ξ := {ρ[λ] : λ ∈ Λ} denote the set of

such policies.

25To be slightly more formal: in a given round, the randomization device selects a report for player i

according to the conditional distribution induced by σi, given the public history so far. At the same time,

the device selects an action for player i according to the distribution induced by σi, given the public history,

including reports of players −i and the simulated report for player i. The strategy σ̃i plays the action

recommended by the device.
26Incidentally, it appears that the role of V ∗ is new also in the context of static mechanism design with

transfers. There is no known exhaustive description of the decision rules that can be implemented under

IPV, but it is clear that the payoffs in V ∗ (replacing μ with the prior distribution in the definition) can be

achieved using the AGV mechanism on a subset of agents; conversely, no payoff vector yielding a score larger

than k̄(λ) can be achieved, so that V ∗ provides a description of the achievable payoff set in that case as well.
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Figure 3: Payoffs of Example 4

The set V ∗ can be a strict subset of F , as the following example shows.

Example 4. Actions do not affect transitions. Each player i = 1, 2 has two states si =

si, s̄i, with c(si) = 2, c(s̄i) = 1. Rewards are given by Figure 3. (The interpretation is that

a pie of size 3 is obtained if at least one agent works; if both choose to work only half the

amount of work has to be put in by each worker. Their cost of working is fluctuating.)

This game satisfies the IPV assumption. From one round the next, the state changes with

probability p, common but independent across players. Given that actions do not affect

transitions, we can take it equal to p = 1/2 (i.i.d. types) for the sake of computing V ∗

and F , shown in Figure 4. Of course, each player can secure at least 3− 2+1
2

= 3
2

by always

working, so the actual equilibrium payoff set, taking into account the incentives at the action

step, is smaller.27

So far, the distribution of public signals has been assumed to be independent of states.

More information can be extracted from players when they cannot prevent public signals

from revealing part of it, at least statistically. States si and s̃i are indistinguishable, denoted

si ∼ s̃i, if for all s−i and all (a, y), psi,s−i,a(y) = ps̃i,s−i,a(y). Indistinguishability defines a

partition of Si and we denote by [si] the partition cell to which si belongs. If signals depend

on actions, this partition is non-trivial for at least one player. By definition, if [si] 
= [s̃i] there

exists s−i such that psi,s−i,a 
= ps̃i,s−i,a for some a ∈ A. Let Di = {(s−i, a)} ⊂ S−i ×A denote

a selection of such states, along with the discriminating action profile: for all [si] 
= [s̃i], there

exists (s−i, a) ∈ Di such that psi,s−i,a 
= ps̃i,s−i,a.

More generally then, the best Bayes Nash equilibrium payoff in the direction λ ∈ Λ

cannot exceed

k̄(λ) := max
ρ

Eμρ
[λ · r(s, a)] ,

27In this particular example, the distinction between V ∗ and F turns out to be irrelevant once individual

rationality is taken into account. Giving a third action to each player that yields both players a payoff of 0

independently of the state and the action of the opponent remedies this.
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Figure 4: Incentive-compatible and feasible payoff sets in Example 4

where the maximum is now over all policies ρ : S → A such that if si ∼ s̃i and λi ≤ 0 then

ρ(si, ·) = ρ(s̃i, ·). Extending the definition of V ∗ to this more general definition of k̄, Lemma

2 remains valid. We retain the same notation for ρ[λ], the policies that achieve the extreme

points of V ∗, and Ξ, the set of such policies.

Finally, a lower bound to V ∗ is also readily obtained. Let Extpo denote the (weak)

Pareto frontier of F . We write Extpu for the set of payoff vectors obtained from pure state-

independent action profiles, i.e. the set of vectors v = Eμρ
[r(s, a)] for some ρ that takes a

constant value in A. In their environment with action-independent transitions and perfect

monitoring, Escobar and Toikka show that all individually rational (as defined below) payoffs

in co (Extpu ∪ Extpo) are equilibrium payoffs (whenever this set has non-empty interior).

Indeed, the following is easy to show.

Lemma 3 It holds that co (Extpu ∪ Extpo) ⊂ V ∗.

In Example 4, this lower bound is tight, but this is not always the case.

6.2 Truth-telling

In this section, we ignore the action step and focus on the incentives of players to report

their type truthfully. That is, we focus on the revelation game.
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The pair (ρ, x) is weakly truthful if it satisfies Definition 2 with two modifications: in

Step 1 of Definition 2, the requirement that truth-telling be uniquely optimal is dropped.

That is, it is only required that truth-telling be an optimal reporting strategy, albeit not

necessarily the unique one. In Step 2, the requirement that ρi be optimal is ignored. That

is, the policy ρ : S → A is fixed.

A direction λ ∈ Λ is coordinate if it is equal to ei or −ei, where ei denotes the i-th

coordinate basis vector in R
I . The direction λ is non-coordinate if λ 
= ±ei, that is, if it has

at least two nonzero coordinates. We first show that we can ignore the constraint λ · x ≤ 0

in all non-coordinate directions.

Proposition 1 Let (ρ, x) be a weakly truthful pair. Fix a non-coordinate direction λ ∈ Λ.

Then there exists x̂ such that (ρ, x̂) is weakly truthful and λ · x̂ = 0.

Proposition 1 implies that (exact) budget-balance comes “for free” in all non-coordinate

directions. It is the undiscounted analogue of a result by AS, and its proof follows similar

steps.

Proposition 1 need not hold in coordinate directions. However, we can also assume that

λ · x(·) = 0 for λ = ±ei when considering the policies ρ[λ] ∈ Ξ: if λ = −ei, ρ[λ] is an action

profile that is independent of the state profile. Hence, incentives for weak truth-telling are

satisfied for x = 0; in the case λ = +ei, ρ[λ] is a policy that depends on i’s report only, yet

it is precisely i’s payoff that is maximized. Here as well, incentives for weak truth-telling are

satisfied for x = 0.

Our next goal is to obtain a characterization of all policies ρ for which there exists x such

that (ρ, x) is weakly truthful.

Along with ρ and truthful reporting by players −i, a reporting strategy by player i, that

is, a map28 mi
ρ : Ωpub×Si → Δ(M i) from the previous public outcome and the current state

into a report, induces a unichain Markov chain over Ωpub×Si×M i, with transition function qρ

and with invariant measure πi
ρ ∈ Δ(Ωpub×Si×M i). We define the set Πi

ρ ⊂ Δ(Ωpub×Si×M i)

as all distributions πi
ρ that satisfy the balance equation

πi
ρ(ωpub, t

i) =
∑

ω̄pub,si

qρ(ωpub, t
i | ω̄pub, s

i, mi)πi
ρ(ω̄pub, s

i, mi), all (ωpub, t
i), (3)

and ∑
si∈[mi]

πi
ρ(ω̄pub, s

i, mi) = μρ(ω̄pub, m
i). (4)

28Note that, under IPV, player i’s private information contained in ω̄ is not relevant for his incentives in

the current round, conditional on ω̄pub, s
i.
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where μρ(ω̄pub, m
i) is the probability assigned to (ω̄pub, m

i) by the invariant distribution μρ

under truth-telling (and ρ). Equation (4) states that πi
ρ cannot be statistically distinguished

from truth-telling. As a consequence, it is not possible to prevent player i from choosing his

favorite element of Πi
ρ, as formalized by the next lemma. To state it, define

riρ(ω̄pub, s
i, mi) := Es−i|ω̄pub

[
ri(si, ρ(s−i, mi))

]
as the expected reward of player i given his report, type and the previous public outcome

ω̄pub.

Lemma 4 Given a policy ρ, there exists x such (ρ, x) is weakly truthful if and only if for all

i, truth-telling maximizes

Eπ

[
riρ(ω̄pub, s

i, mi)
]

(5)

over π ∈ Πi
ρ.

We apply Lemma 4 to the policies that achieve the extreme points of V ∗. Fix λ ∈ Λ and

ρ = ρ[λ] ∈ Ξ. Plainly, truth-telling is optimal for any player i /∈ I(λ), as his reports do not

affect the policy. As for a player i ∈ I(λ), note that if two of his reporting strategies are both

in Πi
ρ[λ], the one that yields a higher expected payoff to him (as defined by (5)) also yields

a higher score: indeed, as long as they are both in Πi
ρ[λ], they are equivalent from the point

of view of the other players. It then follows that the maximum score over weakly truthful

pairs (ρ, x) is equal to the maximum possible one, k̄(λ).

Lemma 5 Fix a direction λ ∈ Λ. Then the maximum score over weakly truthful (ρ, x) such

that λ · x ≤ 0 is given by k̄(λ).

The conclusion of this section is somewhat surprising: at least in terms of payoffs, there is

no possible gain (in terms of incentive-compatibility) from linking decisions (and restricting

attention to truthful strategies) beyond the simple class of policies and transfer functions

that we consider. In other words, ignoring individual rationality and incentives at the action

step, the set of “equilibrium” payoffs that we obtain is equal to the set of incentive-compatible

payoffs V ∗. If players commit to actions, the “revelation principle” holds even if players do

not commit to future reports.

If transitions are action-independent, note that this means also that the persistence of

the Markov chain has no relevance for the set of payoffs that are incentive-compatible. (If

actions affect transitions, even the feasible payoff set changes with persistence, as it affects

the extreme policies.) Note that this does not rely on any full support assumption on the
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transition probabilities, although of course the unichain assumption is used (cf. Example 1

of Renault, Solan and Vieille that shows that this conclusion –that the invariant distribution

is a sufficient statistic for the set of limit incentive-compatible payoffs– does not hold when

values are interdependent).

6.3 Obedience and Individual Rationality

Recall that truth-telling incentives must be strict. This requires some minimal assumption

on preferences. To motivate it, consider the case in which player i’s types are i.i.d. over time.

If the vector ri(si, ·) can be written as cri(s̄i, ·) + d, with s̄i 
= si, for some c, d ∈ R, c > 0,

then it is clearly impossible to provide incentives for player i to strictly prefer revealing that

his private state is si rather than s̄i.29 Similarly, if ri(si, a) is independent of a ∈ A, player i

does not care about the action profile played in that period, and strict incentives cannot be

provided. This is a familiar result in repeated games, see Abreu, Dutta and Smith (1994):

with constant or equivalent utility functions, it is impossible to make truth-telling incentives

strict. It is necessary that, for at least two possibly mixed action profiles α, ᾱ ∈ A, player

i prefers α to ᾱ in state si, and ᾱ to α in state s̄i. Without the i.i.d. assumption, we have

more leeway, as preferences are defined over infinite streams of actions. We directly state

our assumption in terms of payoff asymmetry.

Assumption 1 For all i, si 
= s̄i ∈ Si, there exists (as
i,s̄i)n, (a

s̄i,si)n ∈ AN such that

lim
δ→1

Es1=si

∑
n≥1

δn
(
ri(sn, a

si,s̄i

n )− ri(sn, a
s̄i,si

n )
)
> 0 > lim

δ→1

Es1=s̄i

∑
n≥1

δn
(
ri(sn, a

si,s̄i

n )− ri(sn, a
s̄i,si

n )
)
.

Assumption 1 implies the existence of |Si| lotteries over a set Γi of sequences {(akn)
∞
n=1 : k =

1, . . . , |Si|(|Si| − 1)/2} such that each type of player i has a strictly preferred lottery (as

δ → 1) within that set, with no single lottery being the best one for two different types. (See

Lemma 2 of Abreu, Dutta and Smith, 1994.) For simplicity we have stated Assumption 1 in

terms of action profiles, but we could as well assume that there exist two distributions over

sequences in AN that have the stated property. Let us now turn to monitoring.

Actions might be just as hard to keep track of as states. But there are well known

statistical conditions under which opportunistic behavior can be kept in check when actions

are imperfectly monitored. These conditions are of two kinds. First, unilateral deviations

must be detectable, at least when they are profitable, so that punishments can be meted

29It might make sense to identify si, s̄i if utilities are equivalent, and ask player i to report the equivalence

class. We do not pursue this here.
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out. Second, when such deviations pertain to players that matter for budget balance, they

must be identifiable, so that punishments involve surplus redistribution rather than surplus

destruction. Because the signal distribution might depend on the state profile, the conditions

from repeated games must be slightly amended.

In what follows, ps,a refers to the marginal distribution over signals y ∈ Y only. (Because

types are conditionally independent, the states of players −i in round n + 1 are uninfor-

mative about ai, conditional on y.) Let Qi(s, a) := {pŝi,s−i,âi,a−i : âi 
= ai, ŝi ∈ Si} be the

distributions over signals y induced by a unilateral deviation by i at the action step, whether

or not the reported state si corresponds to the true state ŝi or not. For simplicity, we make

the assumption on all pairs of states and actions, although of course only those that are used

in the construction matter.

Assumption 2 For all (s, a) ∈ S ×A:

1. For all i 
= j, ps,a /∈ co (Qi(s, a) ∪Qj(s, a));

2. For all i 
= j,

co
(
ps,a ∪Qi(s, a)

)
∩ co

(
ps,a ∪Qj(s, a)

)
= {ps,a} .

This assumption states that deviations of players can be detected, as well as identified, even

if player i has “coordinated” his deviation at the reporting and action step.

Note that Assumption 2 reduces to Assumptions A1–A3 of Kandori and Matsushima

(1998) in the case of repeated games (with the caveat that Kandori and Matsushima apply

it to the relevant action profiles only).

Finally, lack of commitment curtails how low payoffs can be. Example 2 makes clear

that insisting on truth-telling restricts the ability to punish players, and that the minimum

equilibrium payoff in truthful strategies can be bounded above the actual minmax payoff.

Nevertheless, it should be clear that this minimum is no more than the state-independent

pure-strategy minmax payoff

vi := min
a−i∈A−i

max
ρi:Si→Ai

Eμ[ρi,a−i][r
i(si, a)].

Clearly, this is not the best punishment level one could hope for, even if it is the one used

in the literature. Nevertheless, as Escobar and Toikka eloquently describe, it coincides with

the actual minmax payoff (defined over all strategies available to players −i, see the next

section) in many interesting economic examples. It does in Example 4 as well, but not in

Example 2. The punishment level −k0(−ei) delivered by the optimization program P(−ei)
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can be strictly lower than this state-independent pure-strategy minmax payoff, but there

seems to be no simple formula for it. Hence, in what follows, we use vi as our benchmark,

and let ρ
i
denote a policy that achieves vi.

We may now state the main result of this section. Denote the set of incentive-compatible,

individually rational payoffs as

V ∗∗ :=
{
v ∈ V ∗ | vi ≥ vi, all i

}
.

Theorem 3 Suppose that V ∗∗ has non-empty interior. Under Assumptions 1–2, the limit

set of equilibrium payoffs includes V ∗∗.

6.4 A Characterization

The previous section has provided lower bounds on the asymptotic equilibrium payoff set.

This section provides an exact characterization under stronger assumptions.

As mentioned, there are many examples in which the state-independent pure-strategy

minmax payoff vi coincides with the “true” minmax payoff

wi := lim
δ→1

min
σ−i

max
σi

E

[
(1− δ)

∑
n≥1

δn−1rin

]
,

where the minimum is over the set of (independent) strategies by players −i. We denote by σi

the limiting strategy profile. (See Neyman 2008 for an analysis of the zero-sum undiscounted

game when actions do not affect transitions.)

But the two do not coincide for all examples of economic interest. First, the state-

independent pure-strategy minmax payoff rules out mixed strategies. Yet mixed strategies

play a key role in some applications, e.g. the literature on tax auditing. More disturbingly,

when vi > wi, it can happen that V ∗∗ = ∅. Theorem 3 becomes meaningless, as the

corresponding equilibria no longer exist. On the other hand, the set

W :=
{
v ∈ V ∗ | vi ≥ wi for all i

}
is never empty.30

As is also well known, even when attention is restricted to repeated games, there is

no reason to expect the punishment level wi to equal the mixed-strategy minmax payoff

commonly used (that lies in between wi and vi), as wi might only be obtained when players

30To see this, note that the state-independent mixed minmax payoff lies below the Pareto-frontier: clearly,

the score in direction λe = 1√
I
(1, . . . , 1) of the payoff vector minα−i maxρi:Si→Ai E[ri(si, a)] is less than k(λe).
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−i use private strategies (depending on past action choices) that would allow for harder,

coordinated punishments than those assumed in the definition of the mixed-strategy minmax

payoff. Private histories may allow players −i to correlate play unbeknownst to i. One special

case in which they do coincide is when monitoring has a product structure, which rules out

such correlation.31 As this is the class of monitoring structures for which the standard folk

theorem for repeated games is a characterization of (as opposed to a lower bound on) the

equilibrium payoff set, we maintain this assumption throughout this section.

Definition 4 Monitoring has product structure if there are finite sets (Y i)Ii=1 such that Y =

×iY
i, and

ps,a(y) = ×ip
i
si,ai(y

i),

for all y = (y1, . . . , yI) ∈ Y , all (s, a).

As shown by FLM, product structure ensures that identifiability is implied by detectability,

and that no further assumptions are required on the monitoring structure to enforce payoffs

on the Pareto-frontier, hence to obtain a “Nash-threat” theorem. Our goal is to achieve

a characterization of the equilibrium payoff set, so that an assumption on the monitoring

structure remains necessary. We make the following assumption, which could certainly be

refined.

Assumption 3 For all i, (s, a),

ps,a /∈ coQi(s, a).

Note that, given product structure, Assumption 3 is an assumption on pi only. We prove

that W characterizes the (Bayes Nash, as well as sequential) equilibrium payoff set as δ → 1

in the IPV case. More formally:

Theorem 4 Assume that monitoring has the product structure, and that Assumptions 1

and 3 hold. If W has non-empty interior, the set of (Nash, sequential) equilibrium payoffs

converges to W as δ → 1.

As is clear from Example 2, this requires using strategies that are not truthful, at least

during “punishments.”32 Nonetheless, we show that a slight extension of the set of strategies

considered so far, to allow for silent play during punishment-like phases, suffices.

31The scope for wi to coincide with the mixed minmax payoff is slightly larger, but not by much. See

Gossner and Hörner (2010) for a characterization.
32We use quotation marks as there are no clearly defined punishment phases in recursive constructions (as

in APS or here), unlike in the standard proof of the folk theorem under perfect monitoring.
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Unlike in repeated games, imposing product structure does not guarantee that the min-

max strategy is stationary: players −i draw inferences from the public signal yi about player

i’s action, hence about his private state, which can be exploited to adjust the next punish-

ment action. Our construction relies on an extension of Theorem 2, as well as an argument

inspired by Gossner (1995), based on approachability theory (Blackwell, 1956). Roughly

speaking, the argument is divided in two parts. First, one must extend Theorem 2 to allow

for “blocks” of T rounds, rather than single rounds, as the extensive form over which the

score is computed. This part is delicate; in particular, the directions −ei –for which such

aggregation is necessary– cannot be treated in isolation, as Λ \ {−ei} would no longer be

compact, a property that is important in the proof of Theorem 2. Second, considering such

a block in which player i, say, is “punished” (that is, a block corresponding to the direction

−ei), one must devise transfers x at the end of the block, as a function of the public history,

that makes players −i willing to play the minmax strategy, or at least some strategy profile

achieving approximately the same payoff to player i. The difficulty, illustrated by Example

2, is that typically there are no transfers making player i indifferent over a subset of actions

for different types of his simultaneously; yet minmaxing might require precisely as much.

To ensure that the distribution over action profiles during the punishment phase matches

the theoretical one (computed using the realized actions taken by player i), we design a

statistical test that a player j 
= i can pass with very high probability (by conforming to the

minmax strategy, for instance), independently of the other players’ strategies; and that he

is very likely to fail if the distribution of his realized signals departs too much from the one

that his minmax strategy would yield.33 When testing player j, it is critical to condition on

player i’s realized signal, so as to incentivize player j to be unpredictable.

7 Correlated Types

We now consider the case of correlated types, as defined by Assumption 5 below. As we

will see, applying Theorem 2 results in an extension of the static insights from Crémer and

McLean (1988) to the dynamic game.

As in the IPV case, we must distinguish truth-telling incentives from constraints imposed

by individual rationality and imperfect monitoring of actions. Here, we start with the latter.

Because V ∗ is no longer an upper bound on the Bayes Nash equilibrium payoff set, we must

33This is where the IPV assumption and product monitoring are used. It ensures that player j’s minmax

strategy can be taken to be independent of his private information, hence adapted to the public information.
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re-define the set of relevant policies Ξ as the set of policies that achieve extreme points

of F .34,35 These are simply the policies achieving the extreme points of the feasible (limit)

payoff set.

As before, in the statement of assumptions on the monitoring structure, ps,a refers to the

marginal distribution over public signals only.

Assumption 2’(a) For all ρ ∈ Ξ, all s, a = ρ(s):

1. For all i 
= j, ps,a /∈ co (Qi(s, a) ∪Qj(s, a));

2. For all i 
= j,

co
(
ps,a ∪Qi(s, a)

)
∩ co

(
ps,a ∪Qj(s, a)

)
= {ps,a} .

Because the private states of players −i are no longer irrelevant when punishing player i

(both because values need not be private, and because their states are informative about i’s

state), we must redefine the minmax payoff of player i as

vi := min
ρ−i:S−i→A−i

max
ρi:S→Ai

Eμρ
[ri(s, a)],

As before, we let ρ
i
denote a policy that achieves this minmax payoff.

Assumption 2’(b) For all i, for all s, a = ρ
i
(s), j 
= i,

ps,a /∈ coQj(s, a).

The purpose of these two assumptions is as in the IPV case: it ensures that transfers that

induce truth-telling taking as given compliance with a fixed policy can always be augmented

in a budget-balanced fashion so as to ensure that this compliance is optimal, whether or not

a player deviates in the report he makes: with such an adjustment, even after an incorrect

report (at least in non-coordinate directions), a player finds it optimal to play as if his report

had been truthful. This is formally stated below.

Lemma 6 Under Assumptions 2’(a)–2’(b), it holds that:

- For all non-coordinate λ, there exists x : Ωpub×Ωpub×S → R
I such that (i) λ·x(·) = 0,

(ii) for all i, if players −i report truthfully and play according to ρ−i[λ], then all best-

replies of i at the action step specify ai = ρi[λ](m) independently of mi.

34If multiple policies achieve the maximum, Assumption 2’(a) has to be understood as asserting the

existence of a selection of policies satisfying the stated requirement.
35To economize on new notation, in what follows we adopt the symbols used in Section 6 to denote the

corresponding –although slightly different– quantities. Hopefully, no confusion will arise.
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- Given λ = +ei, there exists x : Ωpub × Ωpub × S → R
I such that (i) λ · x(·) = 0,

(ii) for all j 
= i, if players −j report truthfully and play according to ρ−j [λ], then all

best-replies of j at the action step specify aj = ρj[λ](m) independently of mj,(iii) if

players −i report truthfully and play according to ρ−i[λ], ρi[λ] is a best-reply for player

i after a truthful report mi. The same conclusions hold for λ = −ei and ρ = ρ
i
.

We now turn to the players’ incentives to report truthfully. For simplicity, we assume

that the states are autocorrelated. More precisely, this is implied by Assumptions 4–5 below,

which cannot hold otherwise. For the case in which states are independently distributed over

time, the counterpart of Theorem 4 follows from a straightforward application of FL. To save

on notation, given Lemma 6, in what follows we drop player i’s previous action āi from his

report.

Throughout, fix some policy ρ : S → A and assume that actions are determined by ρ

(that is, we take actions as given). Fix a player i and m̄, ā, ȳ. Having fixed actions, recall

that a type of player i is a pair ζ i = (s̄i, si). What evidence can be used to statistically test

whether player i is reporting truthfully his type? The states s−i that are announced, first;36

the signal y (as the distribution of signals can depend on si) second; and last, as explained

in Example 3, the next report t−i.

We may use Bayes’ rule to compute the distribution over (s−i, y, t−i), conditional on the

past reports, actions and signal being m̄, ā, ȳ if player i’s past and current state are s̄i and

si. This distribution is denoted

qm̄,ā,ȳ
−i (s−i, y, t−i | ζ i).

Detecting deviations requires that different reports induce different distributions. We must

distinguish between directions λ = −ei and other directions. In directions −ei, budget

balance does not restrict the transfers that can be used to discipline players j 
= i, so that

detection is all that is needed. We assume

Assumption 4 For all i, ρ = ρ
i
, all (m̄, ā, ȳ), for any j 
= i, ζ̂j ∈ (Sj)2, it holds that

qm̄,ā,ȳ
−j (s−j, y, t−j | ζ̂j) 
= co

(
qm̄,ā,ȳ
−j (s−j, y, t−j | ζj) : ζj 
= ζ̂j

)
.

If types are independent over time, and signals y do not depend on states (as is the case with

perfect monitoring, for instance), this reduces to the requirement that the matrix with entries

36Of course, players −i’s reports are richer, as they are pairs (s̄−i, s−i) themselves. But the information

contained in s̄−i is not useful in testing i’s report, because player i already knows s̄−i, assuming that −i

have reported truthfully their states in the previous round.
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psj(s
−j) have full row rank, a standard condition in mechanism design (see d’Aspremont,

Crémer and Gérard-Varet (2003) and d’Aspremont and Gérard-Varet (1982)’s condition B).

Here, beliefs can also depend on player j’s previous state, s̄j, but fortunately, we can also

use player −j’s future state profile, t−j, to statistically distinguish player j’s types.

As is well known, Assumption 4 ensures that for any minmaxing policy ρ
i
, truth-telling

is Bayesian incentive compatible: there exists transfers xj(ω̄pub, (m, y), t−j) for which truth-

telling is optimal for j 
= i. This also holds for player i, as his report has no consequence on

the actions played by the other players, and he is playing his (dynamic) best-reply.

In non-coordinate directions, statistical detection must be combined with budget balance,

which requires statistical discrimination. As is standard, it is sufficient to consider pairwise

directions (that is, weights λ ∈ Λ for which two entries are non-zero), or, to put it differently,

pairs of players i, j.

Stating the assumption requires some more notation.37 We start with the joint distribu-

tion

qm̄,ā,ȳ(ζ, y, t),

over triples (ζ, y, t), computed using Bayes rule under the assumption that m̄ was truthful.

Next, we must consider the distribution over such triples when player i uses some arbitrary

reporting strategy when announcing his type ζ i = (s̄i, si). Such a strategy is a map from (Si)2

into (Si)2, which can be represented by non-negative numbers ci =
(
ci
ζiζ̂i

)
, with

∑
ζ̂i c

i
ζiζ̂i

= 1

for all ζ i. The interpretation is that ci
ζiζ̂i

is the probability with which ζ̂ i is reported when

player i’s type is ζ i. Truth-telling obtains under a particular reporting strategy, denoted ĉi:

namely, for all ζ i, ciζiζi = 1.

Given the prior distribution qm̄,ā,ȳ, a profile c = (ci)i∈I , defines a new distribution πm̄,ā,ȳ

over (ζ, y, t), according to

πm̄,ā,ȳ(ζ̂ , y, t | c) =
∑
ζ

qm̄,ā,ȳ(ζ, y, t)×j c
j

ζj ζ̂j
.

Under truth-telling, this distribution πm̄,ā,ȳ(· | ĉ) coincides with q. Of interest is the set of

distributions that player i can induce by unilateral deviations in his report. This set is

Ri(m̄, ā, ȳ) :=
{
πm̄,ā,ȳ(· | ci, ĉ−i) : ci 
= ĉi

}
.

Again, the following is the adaptation of the assumption of Kandori and Matsushima (1998)

to the current context.

37Some of the notation follows Kosenok and Severinov (2008).
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Assumption 5 For all ρ ∈ Ξ, all (m̄, ā, ȳ),

1. For all pairs (i, j), i 
= j, πm̄,ā,ȳ(· | ĉ) /∈ co (Ri(m̄, ā, ȳ) ∪ Rj(m̄, ā, ȳ));

2. For all (i, j), i 
= j,

co
(
πm̄,ā,ȳ(· | ĉ) ∪ Ri(m̄, ā, ȳ)

)
∩ co

(
πm̄,ā,ȳ(· | ĉ) ∪ Rj(m̄, ā, ȳ)

)
= {πm̄,ā,ȳ(· | ĉ)} .

Assumption 5 combines two assumptions: any deviation by a player is detectable (πm̄,ā,ȳ(· |

ĉ) /∈ coRi(m̄, ā, ȳ)), and unilateral deviations by two players are distinguishable (this is

Assumption 5.2). This second part is equivalent to the assumption of weak identifiability in

Kosenok and Severinov (2008) for two players (whose Lemma 2 can be directly applied). The

reason it is required for any pair of players (unlike in Kosenok and Severinov) is that we must

obtain budget-balance also for vectors λ ∈ Λ with only two non-zero positive coordinates

(a stronger requirement than with more nonzero positive coordinates, as it restricts the set

of players that can absorb a deficit or a surplus). The full strength of Assumption 5.1 is

required (as in Kandori and Matsushima in their context) because we must also consider

directions λ ∈ Λ with only two non-zero coordinates whose signs are opposite.38

We let

V ∗∗ :=
{
v ∈ F | vi ≥ vi, all i

}
denote the feasible and “individually rational” payoff set. It is then routine to show:

Theorem 5 Assume that V ∗∗ has non-empty interior. Under Assumptions 2’(a)–2’(b),

4–5, the limit set of truthful equilibrium payoffs includes V ∗∗.

As in the static case, Assumptions 4–5 are generically satisfied if |S−i| ≥ |Si| for all

i.39 Recall that, if these assumptions fail, it might be useful to take into account future

observations. Future signals (reports by other players, in particular) are useful in statistically

identifying the current state. Example 3 illustrates how powerful this channel can be.

38See also Hörner, Takahashi and Vieille (2013). One easy way to understand this is in terms of the cone

spanned by the vectors πm̄,ā,ȳ(· | ci, ĉ−i) and pointed at πm̄,ā,ȳ(· | ĉ). The first assumption is equivalent

to any two such cones only intersecting at 0; and the second one states that any cone intersected with the

opposite cone (of another player) also only intersect at 0. When λi > 0 > λj , we can rewrite the constraint

λxi + λjxj = 0 as λixi + (−λj)(−xj) = 0 and the expected transfer of a player as p(· | cj)xj(·) = (−p(· |

cj))(−xj(·)), so the condition for (λi, λj) is equivalent to the condition for (λi,−λj) if one “replaces” the

vectors p(· | cj) with −p(· | cj).
39Generically, for Assumption 4, it suffices that |S−i|2 ≥ |Si|2 for all i, while Assumption 5 calls for

|Si × S−i|2 ≥ |Si|2 + |Sj |2 − 1 for all pairs (i, j), which is satisfied if |Si × Sj |2 ≥ |Si|2 + |Sj |2 − 1, that is,

(|Si|2 − 1)× |Sj|2 ≥ |Si|2 − 1.
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8 Conclusion

This paper has considered a class of equilibria in games with private and imperfectly persis-

tent information. While the structure of equilibria has been assumed to be relatively simple,

to preserve tractability –in particular, we have mostly focused on truthful equilibria– it has

been shown, perhaps surprisingly, that in the case of independent private values this is not

restrictive as far as incentives go: all that transfers depend on are the current and the previ-

ous report. This confirms a rather natural intuition: in terms of equilibrium payoffs at least

(and as far as incentive-compatibility is concerned), there is nothing to gain from aggregat-

ing information beyond transition counts. In the case of correlated values, we have shown

how the standard insights from static mechanism design with correlated values generalize; in

this case as well, the standard “genericity” conditions (in terms of numbers of states) suffice,

provided next round’s reports by a player’s opponent are used.

Open questions remain. As explained, the payoff set identified in Theorem 2 is a subset

of the set of truthful equilibria. As our characterization in the IPV case when monitoring has

a product structure makes clear, this theorem can be extended to yield equilibrium payoff

sets that are larger than the truthful equilibrium payoff set, but without such tweaking, it is

unclear how large the gap is. If possible, an exact characterization of the truthful equilibrium

payoff set (as δ → 1) would be very useful. In particular, this would provide us with a better

understanding of the circumstances under which existence obtains. It is striking that it does

in the two important cases that are well-understood in the static case: independent private

values and correlated types. Given how little is known in static mechanism design when

neither assumption is satisfied, perhaps one should not hope for too much in the dynamic

case. Instead, one might hope to prove directly that such equilibria exist in large classes

of games, such as games with known-own payoffs (private values, without the independence

assumption).

A different but equally important question is what can be said about the dynamic

Bayesian game under alternative assumptions on the communication opportunities. At one

extreme, one might like to know what can be achieved without communication; at the other

extreme, how to extend the analysis to the case in which a mediator is available.
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A Proof of Theorem 2

The proof is inspired by FLM but there are complications arising from incomplete informa-

tion. We let Z be a compact set included in the interior of H0, and pick η > 0 small enough

so that the η-neighborhood Zη := {z ∈ R
I , d(z, Z) ≤ η} is also contained in the interior of

H0. We will prove that Zη is included in the set of sequential equilibrium payoffs, when δ is

close enough to one.

A.1 Preliminaries

Given λ ∈ Λ, and since Zη is contained in the interior of H0, one has maxz∈Zη
λ · z < k(λ).

Thus, one can find a feasible triple (v, ρ, x) in P(λ) such that maxz∈Zη
λ · z < λ · v and

λ · x(·) < 0. Using the compactness of Λ, Lemma 7 below then follows.

Lemma 7 There exists ε0 > 0 and a finite set S0 of triples (v, ρ, x) with v ∈ R
I and

(ρ, x) ∈ C0 such that the following holds. For every direction λ ∈ Λ, there is (v, ρ, x) ∈ S0

feasible in P0(λ) and s.t. maxz∈Zη
λ · z + ε0 < λ · v.

We let κ0 ∈ R be large enough so that ‖r‖ ≤ κ0, ‖x‖ ≤ κ0/2, ‖θρ,r+x‖ ≤ κ0/3 and

‖z − v‖ ≤ κ0/2 for each (v, ρ, x) ∈ S0 and every z ∈ Zη.
40

We quote without proof the following classical result, which relies on the smoothness of

the boundary of Zη (see Lemma 6 in HSTV for a related statement).

Lemma 8 Given ε > 0, there exists ζ̄ > 0 such that the following holds. For every z ∈ Zη

there exists a direction λ ∈ Λ such that if w ∈ R
I satisfies ‖w− z‖ ≤ ζ and λ ·w ≤ λ · z− εζ

for some ζ < ζ̄, then w ∈ Zη.

Let an admissible pair (ρ, x) ∈ C0, a player i ∈ I and (ω̄pub, s̄
i, āi) be given. Given si ∈ Si,

we denote by γi(ω̄pub, (s̄
i, āi, si) → mi) the highest (interim) payoff of player i in the decision

problem Di(ω̄pub, s̄
i, āi), when his state is si and when reporting mi ∈ M i. Since (ρ, x) ∈ C0,

truth-telling is uniquely optimal, so there exists νρ,x > 0 such that

νρ,x + γi(ω̄pub, (s̄
i, āi, si) → mi) < γi(ω̄pub, (s̄

i, āi, si) → (s̄i, āi, si)) (6)

whenever mi 
= (s̄i, āi, si). We set ν := min(v,ρ,x)∈S0
νρ,x > 0.

40The unit sphere is endowed with the L1-norm. All other norms are supremum norms.
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We let ε1 ∈ (0, ε0) be arbitrary, set ε := ε1/2κ0 and then let ζ̄ be given by Lemma 8.

Next, we pick β ∈ (0, 1), and let δ̄ < 1 be large enough so that for all δ ≥ δ̄ (i) (1− δ) ≤ ξδ,

(ii) 2κ0δξ ≤ ε0 − ε1 (iii)
ξ

1− ξ
≤

ν

5κ0
, where ξ = (1− δ)β.

A.2 Strategies

We let the initial state profile be commonly known and equal to s1 ∈ S. The p.r.d. is ignored

in round 1.

We let a payoff vector z∗ ∈ Zη, and a discount factor δ ≥ δ̄ be given. We here define a

strategy profile σ with a payoff equal to z∗ in the δ-discounted game, which we next show to

be a sequential equilibrium (when supplemented with appropriate beliefs).

The play is partitioned into blocks of random duration. The durations of the successive

blocks are i.i.d., and follow a geometric distribution of parameter ξ. The random decision

to start a new block is made by the public randomizing device. Specifically, in each round

n, the device determines whether to start a new block or not, with respective probabilities

ξ and 1− ξ.

With each block k is associated a direction λ[k] ∈ Λ, and the triple (v[k], ρ[k], x[k]) ∈ S0

associated to λ[k] by Lemma 7. The direction λ[k] is determined in the first round τk of

block k, based on the available public history, including reports submitted in round τk.

The exact updating process is reminiscent of that of FLM. It is best described by intro-

ducing two “target” payoffs w[k], z[k] (instead of one in FLM and HSTV), with w[k] ∈ Zη

for all k.41

Given the public history up to round τk+1 = n+ 1, the target w[k + 1] is defined by

w̃n+1 = ξw[k + 1] + (1− ξ)z[k], (7)

where

w̃n+1 :=
1

δ
z[k]−

1− δ

δ
v[k] +

1− δ

δ
x[k](ωpub,n−1, ωpub,n, mc,n+1). (8)

Then, we let λ[k + 1] ∈ Λ be one of the directions associated to w[k + 1] by Lemma 8, pick

41The modified target z[k] will be obtained from w[k] by adding a correcting term. The role of the

correction is to align exactly the incentives in the discounted game with switching blocks with those in the

“limit” optimization program P(λ), by adjusting for the fact that the relative values depend on the policy

being implemented, and on the discount factor. There is no need for such a correction in repeated/stochastic

games.
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(ρ[k + 1], x[k + 1], v[k + 1]) ∈ S0 using Lemma 7, and set

z[k+1] := w[k+1]+(1−δ)

((
1 +

1− δ

δξ

)
θ[k](ωpub,n, mn+1)− θ[k + 1](ωpub,n, mn+1,c)

)
, (9)

where θ[k] := θρ[k],r+x[k] and θ[k + 1] := θρ[k+1],r+x[k+1].

The construction is initialized with w[1] = z∗, θ[0] = 0, and an arbitrary pair (ωpub,0, m1) ∈

Ωpub ×M , where ωpub,0 is consistent with ρ[1], and m1 is consistent with ωpub,0 and s1.
42

In FLM, the target payoff z is updated every round. In HSTV, it is updated every n

rounds with n > 1, to account for changing states. Here instead, the target payoff is updated

at random times. The fact that ξ is much larger than 1 − δ ensures that successive target

payoffs lie in Zη. The fact that ξ vanishes as δ → 1 ensures that the expected duration of a

block increases to +∞ as δ → 1.

That this recursive construction is well-defined follows from Lemma 9 below.

Lemma 9 One has w[k] ∈ Zη, for all k (and following any public history).

Proof. Assume w[k] ∈ Zη,
43 and note that ‖w[k]− z[k]‖ ≤ κ0(1− δ). By (7) and (8),

ξ(w[k + 1]− z[k]) = w̃τk+1
− z[k] =

1− δ

δ
(z[k] − v[k] + x[k]) ,

so that

w[k + 1]− w[k] =
1− δ

δξ
(z[k]− v[k] + x[k]) + (z[k]− w[k]) .

Thus,

‖w[k + 1]− w[k]‖ ≤ 2
(1− δ)

δξ
κ0.

Set ζ := 2
(1− δ)

δξ
κ0. Note that

λ[k] · (w[k + 1]− w[k]) ≤ −ε0 ×
1− δ

δξ
+ (1− δ)κ0 ≤ −εζ

(where the last inequality uses κ0δξ ≤ ε0 − ε1). The result follows from Lemma 8, by the

choice of λ[k] and since ζ < ζ̄.

42Note that w[1] pins down λ[1], (v[1], ρ[1], x[1]) and θ[1].
43Here and elsewhere, we view w[k] as a random variable which is measurable w.r.t. the public information

available at the action step in round τk.
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We denote by Tn = (zn, wn, ρn, xn, vn, θn) the family of all relevant variables in round n.

Thus, wn = w[k], ρn = ρ[k], etc., if τk ≤ n < τk+1. We stress that Tn is known only after the

output of the randomizing device has been observed in round n.

Under σ, a player always reports truthfully at the reporting step (even if a deviation from

σ was observed in the past), and, at the action step, plays according to the mixed action ρn

whenever he reported truthfully his current state.

Fix now a player i, and a private history hi
n ∈ H i

n×Si×M up to the action step in round

n. Assume first that his currently reported state is correct: mi
c,n = sin. Since the belief of

player i assigns probability one to s−i
n = m−i

c,n, his continuation payoff under σ is well-defined,

and only depends on ωpub,n−1, mn and on Tn.
44 We denote it by γi

σ(ωpub,n−1, mn; Tn).

If instead mi
c,n 
= sin, we let σi prescribe any action ai which maximizes the discounted

sum of the current payoff and of expected continuation payoffs, that is, the expectation of

(1− δ)ri(sn, (a
−i
n , ai)) + δγi

σ(ωpub,n, mn+1; Tn+1),

where a−i
n ∼ ρ−i(mi

c,n, s
−i
n ), (yn, sn+1) ∼ psn,a−i

n ,ai, ωpub,n = (mn, yn), mn+1 = (sn, (a
−i
n , ai), sn+1)

and the expectation is taken over yn, mn+1 and Tn+1.

Theorem 2 follows from Q1 and Q2 below.

Q1 For given T = (z, w, ρ, x, v, θ), one has γσ(ω̄pub, m; T ) = z + (1− δ)θ(ω̄pub, m) for every

(ω̄pub, m) ∈ Ωpub ×M .45

In particular, the expected payoff induced by σ is equal to z∗.

Q2 The profile σ is a sequential equilibrium.

A.3 Proof of Q1

The rationale behind the twisted recursive formula (9) is the simple observation below. We

place ourselves right before the p.r.d. is observed in round n + 1.

Lemma 10 For any public history hpub,n+1 including reports mn+1 in round n+1, one has

w̃n+1(hpub,n+1)+
1− δ

δ
θn(ωpub,n, mn+1) = E[zn+1(hpub,n+1)+(1−δ)θn+1(ωpub,n, mn+1)]. (10)

44This is true even if ωpub,n−1 and mn are inconsistent.
45The payoff vector γσ(ωpub,m; T ) is only defined for sets T which can possibly arise along the play, and

the equality in the Proposition thus only holds for those.
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Recall that w̃n+1 is given by (7) and is measurable w.r.t. the public information available

before the random device is observed in round n+ 1. The expectation in (10) is taken with

respect to the random output of the p.r.d., and the equality is an algebraic identity based

on the updating formulas (7) and (8).

Proof. Let hpub,n+1 be given, and let k denote the current block: τk < n + 1 ≤ τk+1.

For clarity, we drop the arguments hpub,n+1, ωpub,n and mn+1 below. With probability 1− ξ,

Tn+1 = Tn and with probability ξ, zn+1 is given by (9). Thus,

E[zn+1 + (1− δ)θn+1] = (1− ξ) (zn + (1− δ)θn)

+ξ

(
w[k + 1] + (1− δ)

[(
1 +

1− δ

δξ

)
θn − θn+1

]
+ (1− δ)θn+1

)

= w̃n+1 + (1− δ)

(
(1− ξ) + ξ

(
1 +

1− δ

δξ

))
θn

= w̃n+1 +
1− δ

δ
θn.

We now place ourselves at the action step in round n.

Lemma 11 Let hi
n be a private history of player i up to the action step in round n such

that mi
c,n = sin. Denote by hpub,n the public part of hi

n. One has

zin(hpub,n) + (1− δ)θin(ωpub,n−1, mn) =

E[(1− δ)ri(sn, an) + δ
(
zin+1(hpub,n+1) + (1− δ)θin+1(ωpub,n, mn+1)

)
].

Here, the expectation is taken over an and hpub,n+1,
46 and is computed given the belief

held by player i at hi
n, assuming all players play σ from hi

n on. More concisely, we write

zin + (1− δ)θin = E
[
(1− δ)rin + δ

(
zin+1 + (1− δ)θin+1

)]
.

Proof. Since (vn, ρn, xn) ∈ S0, and since θn = θρn,r+xn
, one has

vin(hpub,n) + θin(ωpub,n−1, mn) = E
[
ri(sn, an) + xi

n(ωpub,n−1, ωpub,n, s
−i
n+1) + θin(ωpub,n, mn+1)

]
.

(11)

46hpub,n+1 is the public information available at the action step in round n+1, and therefore also includes

the outcome of the p.r.d. in round n+ 1.
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Omitting again all arguments, we rewrite (11) as

vin + (1− δ)θin = E

[
(1− δ)rin + δ

(
vin +

1− δ

δ
xi
n +

1− δ

δ
θin

)]
.

Adding zin − vin on both sides yields

zin + (1− δ)θin = E

[
(1− δ)rin + δ

(
vin +

1

δ
(zin − vin) +

1− δ

δ
xi
n +

1− δ

δ
θin

)]

= E

[
(1− δ)rin + δ(w̃i

n+1 +
1− δ

δ
θin)

]
= E

[
(1− δ)rin + δ(zin+1 + (1− δ)θin+1)

]
.

where the last equality holds by Lemma 10.

For later use, we note that, by the best-reply property of ρin, the equality (11) still holds

(resp. a weak inequality ≤ holds) if the mixed action ρin(mc,n) is replaced by any action ai

in its support (resp. not in its support). This implies that, when an arbitrary action ain is

substituted to ρin(mc,n) when taking expectations, the conclusion of the lemma still holds

with equality or a weak inequality ≤, depending on whether ai belongs to the support of

ρin(mc,n) or not.

In probabilistic terms, Lemma 11 amounts to

zn + (1− δ)θn = Eσ [(1− δ)rn + δ (zn+1 + (1− δ)θn+1) | Hpub,n] , Pσ − a.s.,

where Hpub,n is the σ-algebra corresponding to the public information available after the

p.r.d. is observed in round n.47

Of course, the continuation payoffs γσ(ωpub,n−1, mn; Tn) also satisfy the recursive equation

γσ(ωpub,n−1, mn; Tn) = Eσ [(1− δ)rn + δγσ(ωpub,n, mn+1; Tn+1) | Hpub,n] .

Since all quantities are bounded, this implies that

γσ(ωpub,n−1, mn; Tn) = zn(hpub,n) + (1− δ)θn(ωpub,n−1, mn), (12)

for every n and every public history hpub,n of positive probability given σ, as desired.

47Since Hpub,n is finite, the statement actually means that the equality holds for every hpub,n of positive

probability under σ.
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A.4 Proof of Q2

Fix a player i. Note first that, by construction, player i has no profitable one-step deviation

at the action step following a lie (mi
c,n 
= sin). Using the remark following the proof of Lemma

11, this is also true following a truthful report.

Let now hi
n ∈ H i

n × Si be an arbitrary private history of player i at the reporting step in

round n. We will prove that truth-telling is optimal. The objective of player i is to pick the

report mi
n that maximizes

E
[
(1− δ)rin + δγi

σ(ωpub,n, mn+1; Tn+1)
]
,

where the expectation is computed given the belief of player i, when facing σ−i, as a function

of mi
n. By Q1, the expectation is also equal to

E
[
(1− δ)rin + δ

(
zin+1 + (1− δ)θin+1(ωpub,n, mn+1)

)]
,

which using Lemma 10 is equal to

E
[
(1− δ)rin + δw̃i

n+1 + (1− δ)θin
]
.

As in the proof of Lemma 11, the latter expectation is also given by

(1−δ)E
[
ri(sn, ρ(s

−i
n , mi

n)) + xi
n(ωpub,n−1, ωpub,n, s

−i
n+1) + θin(ωpub,n, sn+1)

]
+E[zin− (1−δ)vin].

(13)

(Beware that we are taking expectations at the reporting step in round n: Tn is not known

at hi
n, hence the expectation over zin.)

We thus need to prove that the expectation in (13) is maximal when reporting truthfully.

Given an untruthful report mi
n, we will compare the expectation, denoted Elie, when report-

ing mi
n to the expectation Etruth when reporting truthfully. We condition on the outcome of

the public randomizing device. With probability 1− ξ, the current block continues at least

to round n + 1, so that Tn = Tn−1. Since (vn−1, ρn−1, xn−1) ∈ S0 (and since the belief of

player i at hi
n is deduced from ρn−1), the conditional Etruth exceeds the conditional Elie by

at least (1− δ)ν.

With probability ξ, the play switches to a new block in round n. Conditional on switching,

lying may possibly improve both expectations on the right-hand side of (13). Yet, the gain

in (1− δ)E[rin + xi
n + θin] is of at most 2κ0(1− δ), and the gain in E[zin − (1− δ)vin] is, given

(9) and the choice of δ̄, of at most 3κ0(1− δ).48

48Indeed, since xi(·,mc) is independent of mi
c, the report mi

n does not influence w̃n+1.
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Hence,

Etruth − Elie ≥ (1− ξ)× ν(1− δ)− ξ × 5κ0(1− δ),

which is nonnegative since
ξ

1− ξ
≤

ν

5κ0

.

B First Proofs for Independent Private Values

Proof of Lemma 3. Note that the equality λ ·Eμρ
[r(s, a)] ≤ k̄(λ) trivially holds for each

constant policy ρ = a ∈ A and λ ∈ Λ.

Let λ ∈ Λ. Suppose first that λ ≤ 0. Consider the vector v ∈ Extpo that maximizes

λ · v, and the corresponding policy ρ. This policy implements the distribution Eμρ
[ρ(s)] in

Δ(A). Consider the constant policy that uses the public randomization device to replicate

this distribution (independently of the reports). The IPV assumption ensures that all players

are weakly worse off. Hence k̄(λ) ≥ λ · v. Suppose next that λi > 0 for some i ∈ I. Again,

consider the vector v ∈ Extpo that maximizes λ · v. Because v ∈ Extpo, v also maximizes

λ̂ · v over v ∈ Extpo, for some λ̂ ≥ 0, λ̂ ∈ Λ, with λ̂i = 0 whenever λi < 0. Such a vector is

achieved by a policy that only depends on (si)i/∈J , because of private values. Hence again,

k̄(λ) ≥ λ · v.

This implies co (Extpu ∪ Extpo) ⊂ {v ∈ R
i : λ · v ≤ k̄(λ)}, as desired.

B.1 Proof of Proposition 1

Given a policy ρ : S → ×i∈IΔ(Ai), we denote by pρ the transition probability over Ωpub×Si,

induced by ρ and truth-telling. More generally, we use the notation pρ whenever expec-

tations/laws should be computed under the assumption that states are truthfully reported,

actions chosen according to ρ, and transitions determined using p. For instance, pρ(s
−i | ω̄pub)

is the (conditional) law of s−i under ps̄,ρ(s̄), given ȳ. Given the IPV assumption, it is thus

×j 	=ip
j(sj | s̄j, ρj(s̄), ȳ).

Fix a weakly truthful pair (ρ, x), with ρ : S → ×i∈IΔ(Ai) and x : Ωpub × S → R
I . For

i ∈ I, (ω̄pub, s
i) ∈ Ωpub × Si, set

ξi(ω̄pub, s
i) := Es−i∼pρ(·|ω̄pub)[x

i(ω̄pub, s
−i, si)].

Plainly, the pair (ρ, ξ) is weakly truthful as well.

The next lemma is the long-run analog of a key step in the proof of Proposition 2 in AS.

The logic of the proof is identical.

51



Lemma 12 Define x̃ : Ωpub × S → R
I by

x̃i(ω̄pub, s)(= x̃i(ω̄pub, s
i)) = θiρ,ξ(ω̄pub, s

i)−Es̃i∼pρ(·|ω̄pub)[θ
i
ρ,ξ(ω̄pub, s̃

i)]. (14)

Then (ρ, x̃) is weakly truthful.

Proof.

We first argue that θiρ,x̃(·) = x̃i(·) (up to an additive constant, as usual). It suffices to

prove that x̃i solves the system

x̃i(ω̄pub, s
i) = x̃i(ω̄pub, s

i) + E(ωpub,ti)∼pρ(·|ωpub,si)

[
x̃i(ωpub, t

i)
]
, for all (ω̄pub, s

i).

But this follows from the fact that

Epρ(·|s)[x̃
i(ωpub, t

i)] = Ey∼pρ(·|s)

[
Et∼pρ(·|ωpub)x̃

i(ωpub, t
i)
]
= 0.

Next, fix i ∈ I, and (ω̄i, s̄i, āi). Since (ρ, ξ) is weakly truthful, for each si ∈ Si, the expectation

of

ri(si, ρ(s−i, mi)) + ξi(ω̄pub, m
i) + θiρ,r(ωpub, t) + θiρ,ξ(ωpub, t) (15)

is maximized for mi = si.49

To prove that (ρ, x̃) is weakly truthful, we need to prove that the expectation of

ri(si, ρ(s−i, mi)) + x̃i(ω̄pub, m
i) + θiρ,r(ωpub, t) + θiρ,x̃(ωpub, t) (16)

is maximized for mi = si as well. Fix mi ∈ M i. Using θiρ,x̃ = x̃i, and the definition of x̃i, the

expression in (16) is equal to

ri(si, ρ(s−i, mi))+θiρ,ξ(ω̄pub, m
i)+θiρ,r(ωpub, t)+θiρ,ξ(ωpub, t

i)−Eti∼pρ(·|ωpub)θ
i
ρ,ξ(ωpub, t

i), (17)

up to the constant Eti∼pρ(·|ω̄pub)θ
i
ρ,ξ(ω̄pub, t

i), which does not depend on mi.

Next, observe that by definition of θiρ,ξ, one has

θiρ,ξ(ω̄pub, m
i) = ξi(ω̄pub, m

i) + E(ωpub,ti)∼pρ(·|ω̄pub,mi)θ
i
ρ,ξ(ωpub, t

i),

again up to a constant that does not depend on mi.

Thus, the expectations of (16) and (15) differ by a constant, so that the weak truthfulness

of (ρ, x̃) follows from that of (ρ, ξ).

49For concreteness, the expectation is to be computed as follows. First, s−i is drawn according to the belief

of i which, given the IPV assumption, is equal to pρ(· | ω̄pub); next, (y, t) is drawn according to ps,ρ(s−i,mi),

and ωpub = (s−i,mi, y).
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Corollary 6 Let μij ∈ R be arbitrary. For i ∈ I, set

x̄i(ω̄pub, m) = x̃i(ω̄pub, m
i) +

∑
j 	=i

μijx̃
j(ω̄pub, m

j).

Then (ρ, x̄) is weakly truthful.

Proof. It is enough to check that, for any ω̄pub and j 
= i, the expectation of θρ,x̃j (ωpub, s̃
j) =

x̃j(ωpub, s̃
j) does not depend on mi. But this expectation is zero (as in the proof of Propo-

sition 2 in AS).

Proof of Proposition 1. Let (ρ, x) be weakly truthful. Since λ is not a unit vector, there

exists a solution to the system λi +
∑
j 	=i

λjμji = 0 (i ∈ I). Apply Lemma 12 and Corollary 6

with this choice of μij . Then (ρ, x̄) is weakly truthful and λ · x̄(·) = 0.

Proof of Lemma 4. Focus on a player i and fix a pair (ρ, x) with50 ρ : S → A and

x = Ωpub × Ωpub → R
I .

Consider the MDP, deduced from the game, in which player i only chooses in round n

which state mi
n to report, players −i report truthfully, actions are set to an = ρ(s−i

n , mi
n),

and the reward is set to ri(sin, an) + xi(ωpub,n−1, ωpub,n).

This MDP M is best viewed as an MDP in which (i) the state space is Ωpub × Si with

elements (ω̄pub, s
i) (interpreted as the public outcome in the previous round and the current

state of player i), (ii) the action set is M i = Si, (iii) transitions (still denoted p) are deduced

from p and ρ in the obvious way, and (iv) the reward induced by action mi in state (ω̄pub, s
i)

is riρ((ω̄pub, s
i), mi) + xi

ρ((ω̄pub, s
i), mi) where

riρ((ω̄pub, s
i), mi) = Es−i∼p(·|ω̄pub)r

i(si, ρ(s−i, mi)),

and

xi
ρ(ω̄pub, s

i, mi) = Es−i∼p(·|ω̄pub),y∼p
s,ρ(s−i,mi)(·|ω̄pub)x

i(ω̄pub, ωpub),

as in Section 6.2.

Note that the map xi
ρ depends on si only through [si]. Conversely, let xi

ρ((ω̄pub, [s
i]), mi)

be any such map. By definition of the equivalence classes [si], and since all actions are

potentially played, there exists a map xi : Ωpub × Ωpub → R such that

xi((ω̄pub, [s
i]), mi) ≤ E

[
xi(ω̄pub, ωpub)

]
for all (ω̄pub, s

i), mi, and with equality iff [mi] = [si].51

50We will assume that, up to a perturbation of ρ which is implemented by the p.r.d., each action profile

a ∈ A is played with positive probability in each s ∈ S.
51We refer to the literature on scoring rules for details.
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Under our irreducibility assumption, there is an equivalent LP formulation (see Puterman,

Ch. 8.8) of M, in which player i chooses the invariant joint distribution of states and actions.

Namely, agent i chooses π ∈ Π̂i
ρ to maximize

Eπ

[
riρ + xi

ρ

]
, (18)

where Π̂i
ρ ⊂ Δ(Ωpub × Si ×M i) is the set of joint distributions π such that

π(ωpub, t
i,M i) =

∑
(ω̄pub,si),mi

p(ω̄pub,si),mi(ωpub, t
i)π(ω̄pub, s

i, mi), for all (ωpub, t
i) ∈ Ωpub × Si,

(19)

that are induced by some stationary reporting strategy in M. (This is equation (3) from

Section 6.2.)

Thus, (ρ, x) is weakly truthful iff truth-telling is an optimal strategy in M, that is, iff

(18) is maximized by the (truth-telling) distribution π∗((ω̄pub, s
i), mi) := μρ(ω̄pub, s

i)1si=mi .

We use a duality-based approach. Consider the zero-sum game between player i (who

picks π ∈ Π̂i
ρ) and the designer who picks52 xi

ρ : (Ωpub × [Si])×M i → [−M,M ] to minimize

the reward∑
(ω̄pub,si),mi

π(ω̄pub, s
i, mi)riρ(ω̄pub, s

i, mi)+
∑

(ω̄pub,si),mi

(π(ω̄pub, s
i, mi)−μ(ω̄pub, m

i))xi
ρ(ω̄pub, [s

i], mi).

This game has a value in pure strategies, and it is clear that any optimal strategy πi
ρ for i is

such that ∑
si∈[mi]

πi
ρ(ω̄pub, s

i, mi) = μ(ω̄pub, m
i) for all (ω̄pub, m

i).

That is, any optimal strategy of player i lies in Πi
ρ, as defined in Section 6.2.

Note now that Eπ[x
i
ρ] is independent of π ∈ Πi

ρ. Thus, if π∗ does not maximize Eπ[r
i
ρ]

over Πi
ρ, then it cannot possibly maximize Eπ[r

i
ρ + xi

ρ] over Πi
ρ ⊆ Π̂i

ρ.

Conversely, assume that π∗ maximizes Eπ[r
i
ρ] over Πi

ρ, and let xi
ρ be an optimal strategy

of the designer in the game. Thus, π∗ achieves maxΠi
ρ
E
[
riρ + xi

ρ

]
which, by the optimality

of xi
ρ, is equal to maxΠ̂i

ρ
E
[
riρ + xi

ρ

]
. This concludes the proof.

52Pick as M any common upper bound on the Lagrangian coefficients in the optimization program:

max
∑

(ω̄pub,si,mi)

πi
ρ(ω̄pub, s

i,mi)riρ(ω̄pub, s
i,mi)

over πi
ρ ∈ Π̂i(ρ) subject to for all (ω̄pub,m

i),∑
si

πi
ρ(ω̄pub, s

i,mi) = μ(ω̄pub,m
i).
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C Proof of Theorem 3

C.1 A Quick Overview

We slightly rephrase Theorem 3 by writing V ∗∗ = H1 := {v ∈ R
I : λ · v ≤ k1(λ) for all λ},

where k1(−ei) = −v̄i and k1(λ) = k̄(λ) otherwise.

We will work under Assumption 1’ below, similar to Assumption 1, and will comment

on the adjustments to be made under the latter one.

Assumption 1’ There exists a policy ρ∗ : S → Δ(A), transfers x̃∗ : S → R
I such that the

following holds with θ∗ := θρ∗,r+x̃∗
. For each player i ∈ I, any two s̄i 
= s̃i ∈ Si, and

any s−i ∈ S−i, one has

ri(s̄i, ρ∗(s
−i, s̄i)) + x̃∗(s

−i, s̄i) + Ep
s−i,s̄i,ρ∗(s−i,s̄i)

[θ∗(t)]

≥ ri(s̄i, ρ∗(s
−i, s̃i)) + x̃∗(s

−i, s̃i) + Ep
s−i,s̄i,ρ∗(s−i,s̃i)

[θ∗(t)],

with strict inequality for at least one s−i ∈ S−i.

The proof is a variant of the proof of Theorem 2, and we will skip many technical details.

We will construct a sequential equilibrium σ which implements a given payoff. The play is

divided into an infinite sequence of blocks of random length. Odd blocks serve as transition

blocks, and the even blocks are the main ones. The durations of the successive blocks are

independent random variables, which follow geometric distributions, with parameter (1−δ)β∗

and (1− δ)β for odd and even blocks respectively. We will have β > β∗, so that the expected

duration of the main blocks is much larger. As in the proof of Theorem 2, the end of a block

is “decided” by the p.r.d.; so this is revealed only after reports have been submitted in the

current round.

Under σ, players always report their true state, and they play a fixed policy ρ[k] : M → A

while in block k.53 For k odd, ρ[k] is set to ρ∗. For k even, the policy ρ[k] is computed in

the first round, τk, of block k, based on the publicly available information.

The updating formulas at the end of block k rely on “transfers” x[k]. These transfers will

here be obtained as the sum of two components, xo : S × Y → R
I and xt : S × S → R

I ,

which only depend on the policy ρ[k] that is being implemented, and on a direction λ[k] ∈ Λ.

The transfers xo and xt provide respectively the incentives for playing obediently ρ[k] and

for reporting truthfully. For xo, we will rely on Assumption 2 and refer to Kandori and

Matsushima (1998). For xt, we will closely follow AS.

53Even following a lie.
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We first explain how to choose together a policy ρ and transfers x, as a function of the

direction λ.

C.2 The Design of xt

The construction of xt is different for odd and even blocks. For odd blocks, we simply set

xt := x̃∗. For later use, we note that, thanks to Assumption 1’, truth-telling is strictly

optimal for player i in the decision problem with payoff

ri(si, ρ∗(m
i, s−i)) + xi

t(m
i, s−i) + θi∗(t),

as soon as the belief of player i over s−i has full support.

For even blocks, we rely on AS. Because a player may be indifferent between different

reports, transfers cannot be defined independently of the discount factor unlike in the proof of

Theorem 2, and the design of xt takes into account the perturbations on reporting incentives

created by the transitions between blocks.

For given x : Ωpub×S → R
I , β < 1, γ ∈ R

I and (ω̄pub, s) ∈ Ωpub×S, Gβ((ω̄pub, s), x, δ, γ)

is the δ-discounted version of the game in which in round n (i) the game stops with probability

ξ := (1− δ)β with final payoff γ + (1− δ)θ∗(s), (ii) the stage payoff in round n is otherwise

given by r(sn, a) + x(mn−1, mn), (iii) and the initial state in round 1 is s (with ω̄pub being a

“fictitious” round 0 outcome).

Assume first that λ ∈ Λ is a positive, non-coordinate direction and consider the MDP in

which players cooperate to maximize the λ-weighted sum of discounted payoffs in the game

Gβ((ω̄pub, s), 0, δ, γ). The value Vδ,λ(ω̄pub, s) of this MDP does depend on γ and on (ω̄pub, s),

but there is a fixed policy ρλ which is optimal for all δ close to 1.54 For δ large, ρλ maximizes

λ ·Eμρ

[
(1− ξ̃)r(s, a) + ξ̃θ∗(s)

]
with ξ̃ = δξ

1−δ(1−ξ)
, over the set of all policies ρ, and therefore

also Eμρ
[λ · r(s, a)] when taking the limit δ → 1, hence ρλ ∈ Ξ.

We now focus on the constrained version of the game Gβ((ω̄pub, s), x, δ, γ) (still denoted

in the same way) in which players only choose which state to report, and actions following

the report profile m are set to ρλ(m).

Claim 7 There exists xt : Ωpub × S → R
I , with λ · xt(·) = 0, such that truth-telling is a

(sequential) equilibrium of Gβ((ω̄pub, s), xt, δ, γ) (for every (ω̄pub, s).)

54The original proof of Blackwell (1962) does not directly apply (because transitions depend here on δ),

yet it adapts immediately.
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Proof. The result follows by specializing AS (as before, a key step in the proof of

Proposition 2) to our setup. Define first VCG transfers x̄ : S → R
I as

λix̄i(s) :=
∑
j 	=i

λjrj(sj, ρλ(s)).

Thus, truth-telling is an equilibrium of Gβ((ω̄pub, s), x̄, δ, γ), but the “budget-balance” re-

quirement is not met.

For s ∈ S, let T i(s) := Es,ρλ

(
τ−1∑
n=1

δn−1xi(sn)

)
denote the expected transfer to i until the

round τ at which the game ends.

Next, for j ∈ I, s̃j ∈ Sj and ω̄pub ∈ Ωpub, we define

ΔT j(ω̄pub, s̃
j) = Es−j∼pρλ(·|ω̄pub)T

j(s̃j , s−j)− Es∼pρλ(·|ω̄pub)T
j(s).

Thanks to the irreducibility assumption, ΔT j is bounded, uniformly over δ < 1.

We finally define the transfers xt : Ωpub × S → R
I by the formula

λixi(ω̄pub, s) = λiΔT i(ω̄pub, s
i)−

1

I − 1

∑
j 	=i

λjΔT j(ω̄pub, s
j),

so that λ · xt(·) = 0 holds by construction.

By the same argument as in AS, truth-telling is an equilibrium of Gβ((ω̄pub, s), xt, δ, γ).

To be more specific, denote by γδ(ω̄pub, s) the payoff induced by ρλ in Gβ((ω̄pub, s), δ, xt, γ).

For each δ < 1, i ∈ I, ω̄pub ∈ Ωpub and si ∈ Si, the truthful report mi = si maximizes the

expectation of

(1− δ)
(
ri(si, ρλ(s

−i, mi)) + xi
t(s̄, (s

−i, mi)) + δγi
δ((s

−i, mi), t
)
.

At this point, we have thus assigned to each positive, non-coordinate direction λ a fixed

policy ρλ ∈ Ξ which maximizes Eμρ
[λ · r(s, ρ(s))], and δ-dependent transfers xt for which

the conclusion of Claim 7 holds. When λ ∈ Λ is a non-coordinate, but not necessarily

positive direction, this construction and the conclusions are still valid, provided one restricts

attention to the policies ρ : ×i∈I(λ)S
i → A.

For λ = +ei, we let again ρ+ei : S
i → A be a (fixed) policy that maximizes the payoff

of player i in Gβ((ωpub, s), 0, δ, γ) (for all δ close to 1). Again, the policy ρ+ei maximizes

Eμρ
[ri(s, ρ(s))], and the conclusions of Claim 7 trivially hold with xt(·) = 0.
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Finally, assume λ = −ei, and pick constant pure policies ρ−i = a−i ∈ A−i and a pol-

icy ρi : Si → Ai that minmaxes player i in Gβ((ω̄pub, s), 0, δ, γ) that is, which achieves

mina−i∈A−i maxρi:Si→Ai E

[
(1− ξ̃)r(s, a) + ξ̃θ∗(s)

]
. Again, one can pick these policies inde-

pendently of δ, provided δ is close enough to 1, and Eμρ
[ri(si, ρ(si))] = v̄i. The conclusions

of Claim 7 trivially hold with xt(·) = 0.

Transfers xt are independent of the final payoff γ, which we now set equal to

γ := Eμρλ

[
(1− ξ̃)r(s, ρλ(s)) + ξ̃θ∗(s)

]
.

Observe that limδ→1 λ·γ = k1(λ),
55 and γ satisfies the fixed-point property γ = Eμρλ

[γδ(ω̄pub, s)],

where γδ(ω̄pub, s) is the expected payoff (under truth-telling and policy ρλ) in the game

Gβ((ω̄pub, s), x, δ, γ).

Finally, we define the δ-relative values θδ : Ωpub × S → R
I by means of the equality

γδ(ω̄pub, s) = γδ + (1− δ)θδ(ω̄pub, s).

By the irreducibility property, θδ is uniformly bounded for δ < 1.

We also define θ̃δ by the equality θδ(ω̄pub, s) = (1 − ξ)θ̃δ(ω̄pub, s) + ξθ∗(s), with the

interpretation that θδ stands for the “ex ante” relative value, before the p.r.d. is observed,

and θ̃δ is the “ex post” relative value, once the p.r.d. has chosen not to stop the game Gβ in

the current round. Therefore, the continuation/final payoff is equal to γ + (1− δ)θδ(ω̄pub, s)

prior to the p.r.d. and is next equal to γ+(1− δ)θ̃δ(ω̄pub, s) or to γ+(1− δ)θ∗(s), depending

on the outcome of the p.r.d.

C.3 The Design of xo

The same construction of xo will apply to even and odd blocks.56 Let a policy ρ : S → A,

and a non-coordinate direction λ ∈ Λ be given.57

By Lemma 1 of Kandori and Matshushima (1998), Assumption 2 ensures that for any

pair {i, j} such that λi, λj 
= 0, and any d > 0, there exist x̂h
i,j : S × Y → R, h = i, j, such

that

λix̂i
i,j(·) + λj x̂j

i,j(·) = 0, (20)

55Note that γ depends on δ through ξ̃.
56Except that we do not have to require transfers to be balanced for the latter.
57We will apply the following with ρ = ρ∗ or ρ = ρλ.
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and the following holds. For all s, a = ρ(s), and for all âh 
= ah, all ŝh,

E[x̂h
i,j(s, y) | s, a]− E[x̂h

i,j(s, y) | a
−h, âh, s−h, ŝh] > d.

By subtracting the constant E[x̂i
i,j(s, y) | s, a] from all values x̂i

i,j(s, y) (which does not

affect (20), since (20) must also hold in expectations), we may assume that, for our fixed

choice of a, one has E[x̂h
i,j(s, y) | s, a] = 0, for h = i, j and s ∈ S.

We then set x̂ =
∑

i 	=j x̂i,j . Given this normalization, we have that

E[x̂i(s, y) | a−i, âi, s−i, ŝi] < −d,

for any choice (ŝi, âi) such that ai 
= âi.

Intuitively, the transfer x̂i ensures that, when chosen for high enough d, it never pays

to deviate in action, even in combination with a lie, rather than reporting the true state

and playing the action profile a that is agreed upon, holding the action profile to be played

constant across reports ŝi, given s−i. Deviations in reports might also change the action

profile played, but the difference in the payoff from such a change is bounded, while d is

arbitrary.

Formally, consider the MDP in which player i faces truth-telling and ρ−i, chooses a

report mi ∈ M i = Si and an action ai ∈ Ai, and he gets the reward ri(s, ai, ρ−i(s−i, mi)) +

x̂i(s−i, mi, y). Then we may pick d > 0 such that every stationary optimal policy specifies

ρ̂i(s−i, mi) = ρi(s−i, mi). Equivalently, it is uniquely optimal in the decision problems Di
ρ,x̂

to obey ρi at the action step (even after an incorrect report). Note that the incentives for

obedience are strict, so that they still hold when θρ,r+x̂ is slightly perturbed. Note also that

because of our normalization of x̂i, the private values in this MDP are still equal to θiρ,r+x̂ if

player i sets mi = si.

The argument is similar for the case of coordinate directions. For λ = +ei, we will use

a policy ρ : Si → A which maximizes Eμρ
[ri(s, ρ(s))]. For λ = −ei, we will use a policy

ρ which achieves the minmax in the definition of v̄i. In both cases, we set xi
o = 0 and we

use Assumption 2 and follow Kandori and Matsushima (1998, Cases 1 and 2, Theorem 1) to

design xj
o, j 
= i.

To summarize the previous and current sections, we have established, for fixed λ ∈ Λ and

δ < 1, the existence of a policy ρλ ∈ Ξ, of transfers x(ω̄pub, m, y) = xt(ω̄pub, m) + xo(m, y),

and of θδ such that the properties below hold for all δ < 1 large enough:

E1 λ · x(·) = 0;
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E2 limδ→1 λ · γ = k1(λ), where γ := Eμρλ
[(1− ξ̃)r(s, ρλ(s)) + ξ̃θ∗(s)];

E3 For each ω̄pub ∈ Ωpub, i ∈ I and si ∈ Si, truth-telling and ρiλ(m) maximize the expecta-

tion of

(1− ξ)
(
ri(s, a) + xi(ω̄pub, ωpub) + δθiδ(ωpub, t)

)
+ ξθi∗(s),

which is then equal (conditional on s−i) to θiδ(ω̄pub, s);
58

E4 θδ and x are uniformly bounded, over δ < 1.

The conditions E1–E3 are somewhat similar to saying that (ρλ, x, γ) is feasible in a

discounted analogue of the program P(λ) which would be twisted to reflect the probability

ξ of switching. Note that truth-telling incentives are not strict.

We have also constructed x∗ : M → Y → R
I such that (ρ∗, x∗) is an admissible pair,

such that incentives to play ρ∗(m) at the action step are strict, even following a lie.59

C.4 The Equilibrium Construction

C.4.1 The Parameters

The construction involves various parameters. Pick first the exponents 0 < β∗ < β < 1.

Given Z, pick η > 0 such that Zη is contained in the interior of H1, and ε0 > 0 such that

maxZη
λ · z < k1(λ)− 2ε0 for all directions λ ∈ Λ.

Next, we use a compactness argument similar to that of Lemma 7. Given λ ∈ Λ, subtract
ε0
3
λ from the map x that was associated to λ and ρλ in Sections C.2 and C.3, and rewrite

E1 and E2 as λ · x(·) < 0 and limδ→1 λ · γ > k1(λ)−
ε0
2
. This ensures that ρλ, the maps x

and θδ may be chosen to be locally independent of λ. Since Λ is compact, this ensures that

the transfers x may then be picked from a finite set of maps X as λ varies through Λ.θδ and

x ∈ X , valid for all δ < 1.

As in the proof of Theorem 2, we fix κ1 large enough, let ε1 ∈ (0, ε0), set ε := ε1/2κ1,

and then let ζ̄ be given by Lemma 8 applied with ε. Given these values, we finally let δ̄ be

close enough to one, so that a finite number of inequalities hold for all δ ≥ δ̄. Since most

58Here, the expectation is taken over s−i, a, y, t, under the assumption that (i) s−i is drawn according

to the belief held by player i (knowing that players −i used ρλ in the previous round) and (ii) players −i

report truthfully and play ρ−i.
59In fact, it is even optimal to report truthfully ex post. This property is not used here, but will be used

in the proof of Theorem 4.
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computations will be omitted, we omit the exact conditions on κ1 and δ̄ under which the

computations below are valid.60

C.4.2 The Updating Process

The description accounts for the difference between odd and even blocks. Consider block

k + 1, starting in round n + 1 := τk+1. If k + 1 is even, we define first w[k + 1] through the

equality

w̃n+1 = ξ∗w[k + 1] + (1− ξ∗)z[k], (21)

where ξ∗ = (1− δ)β∗ , and

w̃n+1 =
1

δ
z[k] −

1− δ

δ
v∗ +

1− δ

δ
x∗(ωpub,n). (22)

Given w[k+1], pick λ[k+1] ∈ Λ so that the conclusion of Lemma 8 holds. Set ρ[k+1] = ρλ,

x[k + 1] = x and θ[k + 1] = θδ. Next,

z[k + 1] := w[k + 1] + (1− δ)

(
1 +

1− δ

δξ∗

)
θ∗(mn+1)− (1− δ)θ[k + 1](ω̄pub,n, mn+1). (23)

If k + 1 is odd, we define w[k + 1] by

w̃n+1 = ξw[k + 1] + (1− ξ)z[k], (24)

with ξ = (1− δ)β and

w̃n+1 =
1

δ
z[k]−

1− δ

δ
v[k] +

1− δ

δ
x[k](ωpub,n, mn+1). (25)

Next, we set z[k + 1] := w[k + 1].

The process is initialized as follows. Given a target payoff z̄ ∈ Z, we set z[1] := z̄ − (1−

δ)Eπ[θ∗(s)] and w[1] := z̄.

C.4.3 The Strategies

Under σ, players report truthfully their current state in every round, and play ρ(mn) =

ρ∗(mn) or ρ(mn) = ρ[k](mn) if n belongs respectively to an odd or an even block.

The continuation payoff of player i at the action step in round n, following a truth-

ful report mi
n = sin thus only depends on ωpub,n−1, on sn and on the current value Tn

60The computations are similar to those in Theorem 2, but not identical, hence the relevant conditions on

κ1 and δ̄ are not the same.
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of the auxiliary family (zn, wn, ρn, xn, vn) (see the proof of Theorem 2), and will be de-

noted γi(ωpub,n−1, sn; Tn). Using (omitted) arguments similar to Lemmas 10 and 11, one has

γ(ωpub,n−1, sn; Tn) = zn + (1 − δ)θ∗(sn) or γ(ωpub,n−1, sn; Tn) = zn + (1 − δ)θ̃δ(mn−1, sn), if

round n belongs to an odd or an even block respectively.

That σ is well-defined follows from the next lemma.

Lemma 13 One has w[k] ∈ Zη for k even.

Proof. The proof goes by induction. Note first that ‖w[k]− z[k]‖ ≤ (1− δ)κ1 for all k,

and assume that w[k] ∈ Zη for some even k.61 With the obvious adjustments to the proof of

Lemma 9, one has

‖w[k + 2]− w[k]‖ ≤ ‖w[k + 2]− w[k + 1]‖+ ‖w[k + 1]− z[k]‖ + ‖z[k]− w[k]‖

≤
1− δ

δξ∗
κ1 + 2

1− δ

δξ
κ1 + (1− δ)κ1 ≤ 3

1− δ

δξ
κ1.

Set ζ = 3
1− δ

δξ
κ1, and note that

λ[k] · (w[k + 2]− w[k]) ≤ −ε0 ×
1− δ

δξ
+ ‖w[k + 2]− w[k + 1]‖+ ‖z[k]− w[k]‖

≤ −ε0 ×
1− δ

δξ
κ1 +

1− δ

δξ∗
κ1 + (1− δ)κ1 ≤ −εζ.

The result follows as in Lemma 9.

C.4.4 Equilibrium Properties

We will argue briefly that player i has no profitable one-step deviation. We first place

ourselves at the action step in round n, with τk ≤ n < τk+1. At that step, his overall

continuation payoff (assuming no deviation from round n+1 on, and taking expectations at

round n+ 1) is given by

(1− δ)rin + δ
(
zin+1 + (1− δ)θin+1(ωpub,n, sn+1)

)
.

Assume first that k is odd. Algebraic manipulations (akin to Lemmas 10 and 11) show

that, for a fixed action ain ∈ Ai, the expected continuation payoff is (up to a term independent

of ain) equal to

(1− δ)E
[
ri(sin, ρ

−i
∗ (mn), a

i
n) + xi

o(mn, yn) + θi∗(sn+1)
]
,

61One has w[2] ∈ Zη since w[1] ∈ Z and δ is close to one.
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where the expectation is taken over yn and sn+1. Whether mi
n = sin or not, the design of xo

ensures that the expectation is maximal for ρi(mn).

Assume next that k is even. By similar manipulations, the expected continuation payoff

is62 (again up to a term which does not depend on ain) equal to

(1− δ)E
[
ri(sin, ρ

−i
λn
(mn), a

i
n) + xi

o(mn, yn) + δθiδ(ωpub,n, sn+1)
]
.

Since δθδ is arbitrarily close to θρλn ,r+xt+x0 , the design of xo again ensures that the expectation

is uniquely maximized for ρiλn
, provided δ is large enough.

We now place ourselves at the reporting step of round n, with τk < n ≤ τk+1. If k is odd,

the truth-telling property follows using the same argument as in Theorem 2.63 Assume now

k even. The expected continuation payoff is, up to a term which does not depend on mi
n,

(at most, with equality if mi
n = sin) equal64 to the expectation of

(1− ξ)
(
ri(sn, ρλn−1(s

−i
n , mi

n)) + xi(ωpub,n−1, ωpub,n) + δθiδ(ωpub,n, sn+1

)
+ ξθi∗(sn)

which, by E3, is maximized for mi
n = sin. This implies the result.

We now comment on the difference between Assumption 1 and 1’. Instead of playing

a fixed ρ∗, which simplified the description, the play in odd blocks is now replaced by the

following. In the first period of an odd block, a player is selected at random (using the p.r.d.);

if player i is selected and reported si ∈ Si, we use the p.r.d. to determine which one of the

sequences (akn) ∈ Γi is played, according to the distribution that makes truthful reporting

strictly optimal. (This requires the discount factor to be above a certain threshold.) Yet

this sequence is only played for a random duration: a random time τ is determined using

the p.r.d., at which a new player is selected at random (this could be player i again); this

random time follows a geometric distribution with parameter (1−δ)β∗∗ with β∗∗ much smaller

than β∗, the random duration of the odd block; β∗∗ and the minimum discount factor are

chosen so that strict incentives to report truthfully follow from Assumption 1. Note that,

given IPV, conditional on not being selected, the report of player i is irrelevant. On the

other hand, conditional on being selected, it is strictly optimal to report truthfully, given

Assumption 1. This (random) strategy profile defines a relative value function θ∗, to be used

in the definition of xt and xo in even blocks.

62We stress again that xo and θδ are the transfer and relative rent associated to ρλn
in Sections C.2 and

C.3.
63In fact, truth-telling is even ex post optimal in any such round.
64Indeed, if the p.r.d. switches to a new block, the continuation “relative value” is at most θ∗(sn), with

equality if mi
n = sin.
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D Proof of Theorem 4

The proof of Theorem 4 consists in adding a layer of complexity to the proof of Theorem 3 to

deal with negative, unit directions. We will extensively refer to the latter to avoid duplica-

tions. We will work under the assumption that the distribution of signals is independent of

the current states. The proof for the general case is more cumbersome, but does not involve

additional insights.

D.1 Alternative Scores

We first define modified scores k2(λ) and the corresponding set H2. We next observe that

the IPV assumption, together with Assumption 1’, ensures H2 = W .

Fix an arbitrary s∗ ∈ S. We define a class of finite-horizon games, parameterized by final

payoffs. Given a horizon T ∈ N, final transfers x : ΩT
pub → R

I , and θ : Ωpub × S → R
I , we

define G(T, x, θ) as the T -round repetition of the underlying stage game with communication,

starting from the commonly known state profile s∗. The game G(T, x, θ) ends with the draw

of sT+1 in round T + 1.

Payoffs in G(T, x, θ) are given by

1

T

(
T∑

n=1

r(sn, an) + x(hpub,T+1) + θ(ωpub,T , sT+1)

)
,

where hpub,T+1 is the public history in the T rounds. Information and play is as in the infinite

horizon game.

Denote by C a uniform bound on θρ,r, when ρ ranges through the set of all policies. For

λ ∈ Λ and T ∈ N, we define the maximization problem P̃T (λ) : k̃T (λ) := sup λ · v, where the

supremum is taken over all (σ, x, θ), such that

- σ is a sequential equilibrium of G(T, x, θ) with payoff v.

- λ · x(·) ≤ 0 and λ · θ(·) ≤ C.

Set k2(λ) = lim supT k̃T (λ), and H2 := {v ∈ R
I : λ · v ≤ k2(λ) for all λ ∈ Λ}.

Proposition 2 One has H2 = W .

Proposition 2 follows from Lemmas 14 and 15 below.65

65Only the inclusion H2 ⊇ W is relevant for the proof.
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Lemma 14 For λ 
= −ei, one has k2(λ) = k̄(λ).

Proof. Fix λ ∈ Λ with λ 
= −ei for all i ∈ I. Let a weakly truthful pair (ρ, x) be given

with λ · x(·) = 0, set v := Eμρ
[r(s, a) + x(ω̄pub, ωpub)], and θ := θρ,r+x. Given an integer

T ∈ N, define xT : ΩT
pub → R

I as

xT (hpub,T ) =

T∑
n=1

x(ωpub,n−1, ωpub,n),

where ωpub,0 ∈ Ωpub is arbitrary and ωpub,1 = (s∗, y1). Let σT be the strategy profile in

G(T, xT , θ) defined as : (i) each player i reports truthfully mi
n = sin in all rounds, irrespective

of past play, (ii) in each round n, player i plays ρi(mn) if mi
n = sin, and any action ai which

maximizes the expectation of

ri(sin, ρ
−i(mn), a

i) + xi(ωpub,n−1, ωpub,n) + θi(ωpub,n, sn+1)

otherwise. Denote by γ̃T (σT ) the expected payoff of σT in G(T, x, θ).

Since (ρ, x) is weakly truthful, it is easily checked that σT
66 is a sequential equilibrium in

G(T, x, θ), hence λ · γ̃T (σT ) ≤ k̃T (λ). On the other hand, by the irreducibility assumption,

one has limT→+∞ γ̃T (σT ) = Eμρ
[r(s, a) + x(ω̄pub, ωpub)] = v, so that λ · v ≤ k2(λ). Using

Lemma 5, this shows that k̄(λ) ≤ k2(λ), as desired.

We next prove that k2(λ) ≤ k̄(λ). Fix ε > 0. Given T ∈ N, pick a feasible triple (σ, x, θ)

in P̃T (λ) which achieves k2(λ) up to ε. Mimicking the argument in Lemma 2, there is a profile

σ̃T which only depends on the states of players in I(λ) and such that λ · γ̃T (σT ) ≤ λ · γ̃T (σ̃T ).

Since λ ∈ Λ, λ · θ(·) ≤ C and λ · x(·) ≤ 0, one has

λ · γ̃T (σ̃T ) ≤ λ · γT (σT ) +
C

T
, (26)

where γT (σT ) is the payoff induced in the T -round game G(T, 0, 0) with no final payoffs. De-

note by vT (λ) := supσ λ · γT (σ) the value of the λ-weighted T -round game, where the supre-

mum is taken over σ : ×i∈I(λ)S
i → A. By the irreducibility assumption, limT→+∞ vT (λ) =

k̄(λ). Let now T → +∞ in (26) to get k2(λ)− ε ≤ k̄(λ). The result follows.

Lemma 15 For λ = −ei, k2(λ) = −wi
i.

66When supplemented with appropriate beliefs.
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Proof. In all games G(T, x, θ) considered for this lemma, the reports will be “babbling,”

that is, a player sends the same report independently of his type in any given period. We

set θ = 0. Given k ∈ N, let Aj
k := {αj ∈ Δ(Aj) : kαj(ajl ) ∈ N for all ajl ∈ Aj}. The set Aj

k

consists of those mixed action profiles that assign rational probabilities with denominator

k. For any αj ∈ Δ(Aj), there exists αj
k ∈ Aj

k such that d(αj
k, α

j) ≤ |Aj|/k; similarly, for all

α−i ∈ ×j 	=iΔ(Aj), d(α−i
k , α−i) ≤ |A−i|/k, for some α−i

k ∈ A−i
k := ×j 	=iA

j
k.

67 We write Σj
k for

the strategies of j with values in Aj
k, and we let

σk = arg min
σ−i∈Σ−i

k

max
σi

lim sup
T

1

T
Eσ

[
T∑

n=1

gi(sin, a
i
n, yn)

]

be minmax strategies when players −i are constrained to strategies in Σ−i
k . Given the product

structure, these strategies may be taken measurable with respect to the history of signals of

player i, and we write hi
pub,n ∈ H i

pub,n = (Y i)n−1 for such public histories. We write wi(k)

for the limiting expected payoff of player i under σk. Using the irreducibility assumption, it

follows from standard arguments that limk→+∞wi(k) = wi
i.

68

Given T ∈ N, we also write wi(k, T ) for the highest expected payoff of player i over the

first T rounds, when facing σ−i
k . Given a realized public history hi

pub,T+1 ∈ H i
pub,T+1 and

α−i
k ∈ A−i

k , we let

T (α−i
k ) = {n = 1, . . . , T : σ−i

k (hi
pub,n) = α−i

k }

denote the rounds at which σ−i
k prescribes α−i

k ,69 and f [α−i
k ] ∈ Δ(Y ) be the empirical dis-

tribution of signals observed in those stages. For j 
= i and yj ∈ Y j , we also denote by

f [α−i
k ](yj) the empirical frequency of yj over the stages in T (α−i

k ). We now let

Dj(hpub,T+1) =
∑

α−i
k

∈A−i
k

|T (α−i
k )|

T

∑
y

∣∣f [α−i
k ](y)− f [α−i

k ](y−j)P[yj | αj
k]
∣∣ ,

and, given φ > 0, we define the test :

τ jφ(hpub,T+1) =

⎧⎨
⎩1 if Dj(hpub,T+1) < φ,

0 otherwise.

We can finally state one claim that directly parallels one of Gossner (1995).

67Throughout the lemma, we use the Euclidean distance.
68And that min and max are indeed achieved, so that σk is well-defined.
69Here, hi

pub,n refers to an initial segment of hi
pub,T+1.
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Claim 8 Given ε > 0 and φ > 0, there exists T0 such that, if T ≥ T0,

Pσj
k
,σ−j

[
τ jφ(hT ) = 0

]
< ε.

for all j 
= i and all strategy profiles σ−j.

In words, if player j uses σj
k, he is very likely to pass the test τ jφ no matter players −j’s

strategy profile. The proof of Claim 8 relies on approachability theory, see Gossner (1995)

for details.

Given ε > 0, we let φ <
2ε

r̄(I − 1)
, and let T0 be given by Claim 8 applied with ε/2r̄ and

φ.70 Given T ≥ T0, we pick M > 0 such that

−T r̄ − εM > T r̄ − 2εM,

or equivalently, M > T
r̄

ε
. That is, M is a punishment sufficiently large (for failing the test)

that getting the worst reward for T rounds followed by a probability of failing the test of up

to ε exceeds the payoff from the highest reward for T rounds followed by a probability of

failing the test of at least 2ε.

We next set xi(·) = 0 and, for j 
= i,

xj(hpub,T+1) =

⎧⎨
⎩−M if τ jφ(hpub,T+1) = 0,

0 otherwise.
(27)

The second claim states that, if all players j 
= i pass the test with high probability,

player i is effectively punished.

Claim 9 For every sequential equilibrium σ of G(T, x, θ), one has

1

T
Es∗,σ

[
T∑

n=1

gi(sin, a
i
n, yn)

]
≤ wi(k, T ) + 2ε.

Proof. By the condition on M , one has Pσ

[
τ jφ(hT ) = 0

]
< 2ε1 in all equilibria of G(T, x, θ).

Take any strategy profile in G(T, x, θ) such that Pσ

[
τ jφ(hT ) = 0

]
<

ε

2r̄
for all j 
= i. On the

event ∩j 	=i{τ
j
φ(hT ) = 1}, one has for all j 
= i,

∑
y

∑
α−i
k

|T (α−i
k )|

T

∣∣f [α−i
k ](y)− f [α−i

k ](y−j)P[yj | αj
k]
∣∣ < φ,

70Here, r̄ is a uniform bound on all payoffs in the game.
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which implies, by repeated substitution,

∑
y

∑
α−i
k

|T (α−i
k )|

T

∣∣f [α−i
k ](y)− f [α−i

k ](yi)×j 	=i P[yj | αj
k]
∣∣ < (I − 1)φ. (28)

We have that

1

T

T∑
n=1

gi(sin, a
i
n, yn) ≤

1

T

∑
α−i
k

∣∣∣∣∣∣
∑

n∈T (α−i
k

)

⎛
⎝gi(sin, a

i
n, yn)−

∑
ỹ−i

gi(sin, a
i
n, (ỹ

−i, yin))P[ỹ−i | α−i
k ]

⎞
⎠
∣∣∣∣∣∣

+
1

T

∑
α−i
k

∑
n∈T (α−i

k
)

∑
ỹ−i

gi(sin, a
i
n, (ỹ

−i, yin))P[ỹ−i | α−i
k ].

By (28), the first sum is bounded by ε/2 on the event ∩j 	=i{τ
j
φ(hT ) = 1}, and by r̄ on its

complement, which is of probability at most
ε

2r̄
. The expectation of the second sum under

an arbitrary profile σ does not depend on σ−i and is equal to the payoff induced by (σi, σ−i
k ).

This implies the result.

Claim 9 implies k̃T (−ei) ≥ −wi(k, T ) − ε for all large T . Letting first T → +∞, then

k → +∞, we get k2(−ei) ≥ −wi
i − ε, hence k2(λ) ≥ −wi

i since ε is arbitrary. The reverse

inequality is obvious.

D.2 The Strategies

Given z ∈ Z, and an initial distribution of states p ∈ Δ(S), we will construct a sequential

equilibrium σ with payoff z for δ close enough to one.

As in Theorem 3, the play is divided into an infinite sequence of blocks, with odd blocks

serving as transition blocks. Even blocks are now either “regular,” or devoted to the punish-

ment of a single player. The behavior in odd and in regular even blocks is identical to that

in Theorem 3. In contrast, the duration of an punishment even block is fixed and set equal

to (1− δ)−β rounds.

The nature of an even block k is dictated by the direction λ[k] ∈ Λ. If λ[k] is close to

−ei for some i, block k is devoted to the punishment of player i. It is otherwise regular.

D.2.1 Punishment Blocks

The equilibrium behavior in punishment blocks relies on an elaborate version of Lemma 15,

which we now introduce. Given T ∈ N, x : M × Y T → R
I , δ < 1 and m ∈ M , we denote by
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G(m, δ, x, T ) a discounted T -round version of G(T, x, θ∗) without communication and initial

state m ∈ M . That is, in each round n = 1, . . . , T , players observe their private states (sin)

choose actions (ain), and (yn, sn+1) ∈ Y × S is drawn according to psn,an.

The payoff vector is

1− δ

1− δT+1

{
T∑

n=1

δn−1r(sn, an) + δTx(m, �y) + δT θ∗(sT+1)

}
, (29)

where �y = (y1, . . . , yT ) is the sequence of public signals received along the play.

Lemma 16 For every ε2 > 0, there is a constant κ ∈ R and δ̄ < 1 such that, for every

player i ∈ I and every discount factor δ ≥ δ̄, the following holds.

With T = (1− δ)−1/2, there exists x[i] : M × ΩT
pub → R

I and γ[i] ∈ R
I such that:

(a) ‖x[i]‖ ≤ κT and xi[i](·) ≥ 0.

(b) |γi[i]− wi
i| <

ε2
2
.

(c) γ[i] is a sequential equilibrium payoff of G(m, δ, x[i], T ) for every m ∈ S.

Plainly, x and γ can then be chosen such that |γi[i]− wi
i| < ε2 and xi[i](·) > ε2

2
.

Proof. Fix ε2 > 0, i ∈ I and m ∈ M . We set ε := ε2/18, κ = r̄/ε and prove that the

conclusion holds for 2κ.

The choice of κ guarantees that, for each T , −T r̄ + κT (1− ε̃) > T r̄ + κT (1− 2ε̃).

Pick δ1 < 1 such that the same holds for each δ ∈ (δ1, 1), when payoffs are discounted

with δ and T = (1− δ)−1/2:

−
T∑

n=1

δn−1r̄ + δTκT (1− ε̃) >

T∑
n=1

δn−1r̄ + δTκT (1− 2ε̃).

Pick now k ∈ N such that |wi
i − wi(k)| < ε, then T̄ such that |wi(k)− wi(k, T )| < ε for

all T ≥ T̄ .71

We follow closely Lemma 15. We take φ and T0 as specified after Claim 8. We let δ2 < 1

be such that T = (1− δ)−1/2max(T̄ , T0) for all δ ≥ δ2 and δ3 < 1 such that the normalized

δ-discounted sum of payoffs in the first T = (1 − δ)−1/2 stages differs from the arithmetic

mean by at most ε, for all δ ≥ δ3.

71Recall the definition of wi(k, T ) from Lemma 15. Note however that the definition has to be amended,

to reflect the fact that the initial state profile is m and no longer s∗. We still use the same notation.
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Let δ ≥ max(δ1, δ2, δ3) be arbitrary. Define as before xi[i](·) = 0, and, for j 
= i, xj [i] as

in (27) with M = κT . Pick an arbitrary equilibrium σ[i,m] of G(m, δ, x[i], T ). It follows,

as in Claim 9, that the (discounted) payoff w̃i
m of player i under σ[i,m] does not exceed

wi(k, T ) + 2ε ≤ wi
i + 4ε.

Observe also that w̃i
m ≥ wi

i−ε provided δ is close enough to one. Hence ‖w̃i
m−w̃i

m′‖ < 5ε.

For all j ∈ I, define xj
m[i] by adding to xj [i] the quantity maxm′

(
w̃j

m′ [i]− w̃j
m[i]
)

properly

normalized. The added constant does not affect incentives, but ensures that the new equi-

librium payoff vector, γ[i], is independent of m ∈ S.

Given this redefinition of x, we have that |γi[i]−wi| < 9ε = ε2/2 and xi[i] ≥ 0 as desired.

D.2.2 The Parameters

As in Theorem 4, given Z, pick first η > 0 such that Zη is contained in the interior of H2,

and ε0 > 0 such that maxZη
λ · z < k2(λ)− 2ε0 for all directions λ ∈ Λ. Let κR be obtained

when applying Lemma 16 with ε := ε0.

Pick εR < ε0/κR, and set Λ̃ := Λ \ ∪iB(−ei, εR). Replicating with the compact set Λ̃

the same compactness argument as in Section C.4.1, we may assume wlog that the transfers

x are picked from a finite set of maps X as λ varies through Λ̃.θδ and x ∈ X , valid for all

δ < 1. Pick next β∗ ∈ (0, 1/2).

As in the proof of Theorems 2 and 3, we fix κ2 large enough, let ε1 ∈ (0, ε0), set ε :=

ε1/2κ1, and then let ζ̄ be given by Lemma 8 applied with ε. Given these values, we finally

let δ̄ be close enough to one, so that a finite number of inequalities hold for all δ ≥ δ̄. Again,

we omit the exact conditions on κ2 and δ̄ under which the computations below are valid.

D.2.3 The Updating Process

We follow Section C.4.2. Consider a block k + 1, starting in round n+ 1 := τk+1. If k + 1 is

even, we define first w[k + 1] and w̃n+1 by (21) and (22), and we pick λ[k + 1] ∈ Λ so that

the conclusion of Lemma 8 holds.

If λ[k+1] ∈ Λ̃, so that block k+1 is regular, we define (ρ[k+1], x[k+1], v[k+1], θ[k+1])

as in Section C.2, and let z[k + 1] be defined by (23).

If instead λ[k + 1] ∈ B(−ei, ε3) for some i ∈ I, we set

z[k + 1] := w[k + 1] + (1− δ)

(
1 +

1− δ

δξ∗

)
θ∗(mn).
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Assume now that k+1 is odd. If block k was regular, we define w[k+1] and w̃n+1 by means

of (24) and (25), and set z[k + 1] := w[k + 1].

If instead λ[k] ∈ B(−ei, ε3) for some i ∈ I, we set

w[k + 1] = z[k + 1] :=
1

δT
z[k]−

1− δT

δT
γ[i] + (1− δ)x[i](mτk , yτk , . . . , yτk+1−1).

The process is initialized as in Theorem 4.

D.2.4 The Strategies

Fix a player i. Let block k be an i∗-punishment block. If the report of i in round τk was

truthful (mi
τk

= siτk) player i plays σi[mτk , i∗] up to round τk+1 = τk + T . If instead player

i lied about his state in the initial round, τk, of the punishment phase, player i plays a

sequential rational strategy against σ−i[mτk , i∗] in the game G(siτk , m
−i
τk
, δ, x[i∗], T ).

In any block which is not a punishment block, the strategy of player i is defined as in

the proof of Theorem 4.

That σ is well-defined follows from the next lemma.

Lemma 17 One has w[k] ∈ Zη for k even.

Proof. We proceed as in Lemma 13. Assume that w[k] ∈ Zη for some even k. It suffices

to deal with the case where block k is a i∗-punishment block, for some i∗ ∈ I. From the

updating formula, it follows that

‖w[k + 1]− z[k]‖ ≤
1− δT

δT
κ2 + (1− δ)κ2T,

so that

‖w[k + 2]− w[k]‖ ≤ ‖w[k + 2]− w[k + 1]‖+ ‖z[k]− w[k]‖+ ‖w[k + 1]− z[k]‖

≤
1− δ

δξ∗
κ2 +

1− δT

δT
κ2 + (1− δ)κ2T + (1− δ)κ2.

Denote by ζ the right-hand side.

On the other hand,

λ[k] · (w[k + 2]− w[k]) ≤
1− δ

δξ∗
κ2 + (1− δ)κ2 + λ[k] · (w[k + 1]− z[k]).

Since λ[k] · (z[k] − γ[i]) ≤ −2ε0 × 1−δT

δT
and λ[k] · x[i] ≤ 0, it follows from elementary

computations and the choice of δ̄ that

λ[k] · (w[k + 2]− w[k]) ≤ −ε1ξ,

hence w[k + 2] ∈ Zη.
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D.2.5 The Equilibrium Property

Fix a player i ∈ I. As in Theorem 3, the construction of the strategy profile σ ensures

that the continuation payoff of player i at the action step of a given round n is given by

γi(ωpub,n−1, sn; Tn) = zn+(1− δ)θ∗(sn) or zn +(1− δ)θ̃δ(ωpub,n−1, sn) whenever mi
n = sin and

round n is not part of a punishment block. In addition, the continuation payoff in the first

stage of a i∗-punishment block is γi[i∗], again if mi
n = sin.

For use below, we make the following observation. Fix m ∈ M , i ∈ I, si ∈ Si, and consider

the variant G̃i(m, δ, x[i∗], T ) of G(m, δ, x[i∗], T ) in which the initial state of i is si instead of

mi.72 Thanks to the irreducibility property, the highest payoff of i in G̃i(m, δ, x[i∗], T ) when

facing σ−i[i∗, m] differs from the payoff γi[i∗] induced by σ[i∗, m] in G(m, δ, x[i∗], T ) (and

therefore from the payoff induced by σ[i∗, (m
−i, si)] in G((m−i, si), δ, x[i∗], T )) by at most

(1− δ)κ̄, where κ̄ is a constant that only depends on κ2 and on the primitives of the game.

Thus, misreporting at the beginning of a punishment block does not benefit much.

That player i cannot profitably deviate at the action step of a given round n follows

as in Theorem 3, unless n is part of a punishment block, in which case it follows from the

sequential rationality of σ in that block.

That player i cannot profitably deviate by lying in a regular block also follows as in

Theorem 3. On the other hand, players babble in punishment blocks.

We now place ourselves at the reporting step of a round n in a transition block. There

are two cases: either n is the first stage of the transition block, following a i∗-punishment

block; or it is not. In the former case, the belief of i is derived from the public history and

the strategies σ[i∗]; in the latter, it is derived using ρ∗. In both cases, the belief of i over

s−i
n has full support, and the optimality of truth-telling follows along the lines of Theorem 3,

using (i) the ex post optimality of truth-telling under ρ∗ and (ii) the fact that misreporting

in the first round of a punishment block has only a minor impact (of the order of (1 − δ),

see above) on the continuation payoff of player i.

E Proofs for the Correlated Case

Proof of Lemma 6. Assumptions 2’(a)–2’(b) are the counterparts of Assumption 2

(specialized to the action profiles that are played), so that the result follows exactly as in

the proof of Theorem 3.

72But final transfers are still given by x[i∗](m,y).
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Proof of Theorem 5. Given Lemma 6, we may focus on the reporting step, and then

augment the resulting transfers with those ensuring that players do not want to deviate at

the action step (on and off-path for all λ 
= ±ei, and for j 
= i in case λ = ±ei; on path only

if λ = ±ei and j = i).

At the reporting step, we must distinguish as usual between coordinate and non-coordinate

directions. It suffices to consider non-coordinate directions with only two non-zero coordi-

nates λi, λj. Fix ρ ∈ Ξ throughout. Because of detectability (πm̄,ā,ȳ(· | ĉ) /∈ coRi(m̄, ā, ȳ),

implied by Assumption 5.1), there exists transfers xi that ensure that truthful reporting by

player i is strictly optimal. Because of weak identifiability (invoking 5.2 if sgn(λi) = sgn(λj)

and 5.1 otherwise), we can apply Lemma 2 of Kosenok and Severinov (2008) –which relies

on the results of d’Aspremont, Crémer and Gérard-Varet– and conclude that these transfers

can be chosen so that λ · x(·) = 0.

For direction λ = ±ei (considering an arbitrary ρ ∈ Ξ if λ = ei, and ρ = ρi if λ = −ei),

we set xi = 0 and use Assumption 4 to conclude that there exists transfers xj , j 
= i, so that

player j has incentives to tell the truth. Given that λj = 0 for all j 
= i, we have λ ·x(·) = 0.
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