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Abstract

We obtain uniform consistency results for kernel-weighted sample covariances in a nonstation-

ary multiple regression framework that allows for both fixed design and random design coefficient

variation. In the fixed design case these nonparametric sample covariances have different uniform

convergence rates depending on direction, a result that differs fundamentally from the random de-

sign and stationary cases. The uniform convergence rates derived are faster than the corresponding

rates in the stationary case and confirm the existence of uniform super-consistency. The modelling

framework and convergence rates allow for endogeneity and thus broaden the practical econometric

import of these results. As a specific application, we establish uniform consistency of nonpara-

metric kernel estimators of the coefficient functions in nonlinear cointegration models with time

varying coefficients and provide sharp convergence rates in that case. For the fixed design models,

in particular, there are two uniform convergence rates that apply in two different directions, both

rates exceeding the usual rate in the stationary case.

Key words and phrases : Cointegration; Functional coefficients; Kernel degeneracy; Nonparametric
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1 Introduction

Uniform consistency results with convergence rates for nonparametric kernel estimators have

been extensively studied in the existing literature. These results are important in many

kernel-based applications such as semiparametric estimation with first-stage kernel smooth-

ing, kernel-based specification testing, and cross-validation bandwidth selection. Existing

studies mainly focus on obtaining uniform consistency results for independent and iden-

tically distributed (i.i.d.) data or time series that satisfy certain stationarity and mixing

conditions. Early statistical studies include Mack and Silverman (1982), Roussas (1990),

Liebscher (1996), Masry (1996) and Bosq (1998). Later developments and econometric ap-

plications can be found in Hansen (2008), Kristensen (2009) and Li et al (2012).

Recent years have witnessed a growing literature on nonparametric kernel smoothing in

a nonstationary framework. This work is of practical importance because the stationarity

condition is restrictive and unrealistic in many empirical applications as discussed in the

literature. Among others, see Phillips and Park (1998), Karlsen and Tjøstheim (2001),

Karlsen et al (2007), Cai et al (2009), Wang and Phillips (2009a, 2009b), Xiao (2009), Chen

et al (2010), Chen, Gao and Li (2012), and Gao and Phillips (2013a, 2013b). Most recently,

there has been interest in obtaining uniform consistency results for nonparametric kernel

smoothing under nonstationarity (notably, Chan and Wang, 2012; Wang and Wang, 2013;

Gao et al., 2013; Duffy, 2013). This work confirms that uniform convergence rates of kernel-

based estimates in nonstationary cases are slower than those in the stationary case. Just as

in pointwise convergence, the slower convergence rate is explained by the random wandering

character of nonstationary time series (such as those arising in unit root or null recurrent

Markov frameworks) so that the amount of time spent by the series in the vicinity of any

particular point is of smaller order than the stationary case, thereby reducing the effective

sample size in estimation.

This paper develops uniform consistency results for potentially multivariate kernel-weighted

sample covariances of the following form

Qn(z) =
n∑

t=1

K

(
Zt − z

h

)
Xtet, (1.1)

where K(·) is a kernel function, h ≡ hn is a bandwidth which tends to zero as n tends to in-

finity, Xt is a nonstationary I(1) process with dimension d ≥ 1, and et is stationary. Detailed

properties of Xt and et are provided in Section 2. Quantities such as the weighted sample

covariance (1.1) play a central role in kernel regression and are fundamental in determining
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the limit theory of such regressions. Interest typically focuses on two cases: (i) Zt =
t
n
, cor-

responding to a fixed design structure; and (ii) i.i.d. Zt, corresponding to a random design

framework.

For case (ii) we show that the uniform convergence rate of (1.1) is OP (n
√
h log n), which

exceeds the OP (
√
nh log n) rate that holds when both Xt and et are stationary. This result

can be used to derive a uniform convergence rate for nonparametric kernel-based estimation

of the functional coefficients in nonlinear cointegration models where super-consistency ex-

ists. Case (i) is much more complicated because kernel weighting produces degeneracy in the

signal matrix and this degeneracy introduces a major challenge in developing the asymptotic

estimation theory (c.f., Phillips et al, 2013). The reason for this “kernel degeneracy” in the

limit of the weighted signal matrix is that kernel regression concentrates attention on some

time coordinate (say z0), thereby fixing attention on a particular coordinate of the limit

process of the regressor, say X�nz0�, where the floor function �·� denotes integer part. In

the multivariate case with d > 1, this focus on a single time coordinate produces a limit

signal matrix (corresponding to the limit of the outer product 1
n
X�nz0�X

′
�nz0�) that is of defi-

cient rank one. Moreover, the zero eigenspace of this limit matrix depends on the (random

vector) value of the limit process at that time coordinate. To address such kernel degenera-

cies Phillips et al (2013) transform coordinates to separate the zero and non-zero (random)

eigenspaces and provide the convergence rates and limit distribution theory in each of these

directions. The present paper extends that analysis to derive uniform consistency with sharp

convergence rates in the two directions. Although the uniform convergence rates differ in

the two directions, both rates exceed the OP (
√
nh log n) rate that applies in the stationary

case.

We apply these results to derive the uniform consistency of nonparametric kernel esti-

mates in nonlinear cointegration models with varying coefficients, and confirm the super-

consistency rates. Our approach allows for endogeneity between the regressor Xt and the

error et, which enhances the practical relevance of the results in cointegration analysis: case

(i) with the fixed design framework Zt =
t
n
relates particularly to cointegration models with

time-varying coefficients (Park and Hahn, 1999; Phillips et al, 2013); and case (ii) with ran-

dom design Zt relates to cointegration models with functional coefficients (Cai et al, 2009;

Xiao, 2009; Gao and Phillips 2013b). In addition, the uniform consistency results with sharp

convergence rates that are obtained here are of some independent interest with other po-

tential applications, such as to semiparametric cointegration models with partially-varying

coefficients.
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The remainder of the paper is organised as follows. Uniform consistency results for the

fixed design case are given in Section 2. Those for the random design case are given in

Section 3. Applications of the main results to nonlinear cointegration models with varying

coefficients are provided in Section 4. Section 5 concludes. Proofs of the main results are

given in the Appendix.

2 Uniform consistency with a fixed design covariate

This section establishes uniform consistency results for Qn(z) defined in (1.1) with Zt =
t
n
.

The random design case is discussed in Section 3. We start with regularity conditions that

characterize the multivariate nonstationary time series Xt and the scalar stationary process

et. Let Xt be a unit root process with generating mechanism Xt = Xt−1 + vt, initial value

X0 = OP (1) and innovations determined by the linear process

vt = Φ(L)εt =
∞∑
j=0

Φjεt−j, (2.1)

where Φ(L) = ∑∞
j=0 ΦjLj, Φj is a sequence of d× d matrices, L is the lag operator and {εt}

is a sequence of i.i.d. innovation vectors with dimension d.

Assumption 1. (i) Let {εt} be i.i.d. d-dimensional random vectors with E[εt] = 0, Λε ≡
E
[
εtε

′
t

]
positive definite, and E

[‖εt‖4+δ0
]
< ∞ for δ0 > 0. The linear process coefficient

matrices in (2.1) satisfy that
∑∞

j=0 j‖Φj‖ < ∞ and Ωε ≡ ΦΛεΦ
′ is positive definite with

Φ =
∑∞

j=0 Φj 
= 0.

(ii) Let {et} be generated by the linear process et =
∑∞

j=0 φjηt−j, where ηt is an i.i.d. sequence

with E[ηt] = 0, σ2
η ≡ E[η2t ] > 0, E

[|ηt|4+δ0
]
< ∞, φ ≡ ∑∞

j=0 φj 
= 0, and
∑∞

j=0 j|φj| < ∞. In

addition, (ηt, ε
′
t) is independent of {(ηs, ε′s) : s ≤ t− 1}, but ηt may be correlated with εt.

Assumption 1(i) ensures that a functional law holds for Xt upon standardization. In

particular, from Phillips and Solo (1992) we have for t = �nx� and 0 < x ≤ 1,

Xt√
n
=

1√
n

t∑
s=1

vs +
1√
n
X0 =

1√
n

�nx�∑
s=1

vs + oP (1) ⇒ Bx(Ωε), (2.2)

where B·(Ωε) is d-dimensional Brownian motion with variance matrix Ωε. In a more spe-

cialized setting, Assumption 1(ii) might be replaced by a martingale difference structure

with E
[
et|Gt−1

]
= 0 a.s., where Gt = σ(et, · · · , e1, εt+1, εt, · · · ), and the uniform consistency
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results developed in this paper still hold. Instead, we allow for a more general linear de-

pendence structure and joint contemporaneous correlation between the innovations ηt and

εt which builds endogeneity into the regression equation. Uniform consistency continues to

hold when et and vt are jointly determined by a multivariate linear process of the form

(et, v
′
t)

′ = Φ∗(L)ε∗t =
∞∑
j=0

Φ∗
jε

∗
t−j,

where Φ∗(L) = ∑∞
j=0 Φ

∗
jLj with Φ∗

j a sequence of d+ 1 dimensional coefficient matrices and

{ε∗t} is a sequence of i.i.d. random vectors of dimension d+ 1.

We next impose some mild conditions on the kernel function K(·) and the bandwidth h.

Assumption 2. (i) The kernel function K(·) is continuous, positive, symmetric and has

compact support [−1, 1] with μ0 = 1, where μj =
∫ 1

−1
ujK(u)du.

(ii) The bandwidth h satisfies h → 0 and nh → ∞ as n tends to infinity.

A recent paper by Phillips et al (2013) shows that for 0 < z ≤ 1,

1

n2h

n∑
t=1

XtX
′
tK

(
t− nz

nh

)
⇒ Wz(Ωε), (2.3)

whereWz(Ωε) = Bz(Ωε)Bz(Ωε)
′ and “⇒” denotes weak convergence. However, the d×d limit

matrix Wz(Ωε) on the right hand side of (2.3) is singular with rank one when d > 1, which

indicates that the weighted signal matrix on the left hand side of (2.3) is asymptotically

singular whenever the dimension of the regressor Xt exceeds unity. This phenomenon of

kernel degeneracy leads to asymptotic singularity in the limit distribution and variance

matrix of the kernel-weighted sample covariance Qn(z) defined in (1.1) when Zt is a fixed

design variable.

To address this kernel degeneracy Phillips et al (2013) develop a coordinate transfor-

mation to isolate the (random) direction of singularity and use the associated coordinate

rotation to obtain the limit distribution theory. We define the quantities γn(z) = �n(z−h)�,

qγn(z) =
bγn(z)[

b′γn(z)bγn(z)
]1/2 =

bγn(z)
‖bγn(z)‖

, and bγn(z) =
1√
n
Xγn(z),

where “‖ · ‖” denotes the Euclidean norm. Let q⊥γn(z) be an orthogonal complement of qγn(z),

define

Dn(z) =
[
qγn(z), q

⊥
γn(z)

]
, with Dn(z)

′Dn(z) = Id, (2.4)
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and introduce the vector

Rn = diag
{
n
√
h, (nh)Id−1

}
, (2.5)

where Ir is the r × r identity. The matrix Dn(z) is random, path dependent, and localized

to the coordinate of concentration at γn(z).

The following result gives the uniform convergence rates for Qn(z) when z ∈ (h, 1− h).

Theorem 2.1. Suppose that Assumptions 1 and 2 are satisfied. Let

n2+δ0h7+δ0

(log n)3+δ0
→ ∞, (2.6)

where δ0 is defined as in Assumption 1(i). Then, we have

sup
h<z<1−h

∥∥R+
nDn(z)

′Qn(z)
∥∥ = OP (

√
log n), (2.7)

where A+ denotes the Moore-Penrose inverse of A.

From the proof of Theorem 2.1 in the Appendix, it is clear that the same uniform con-

vergence rate as given in (2.7) holds if Xt and et are independent. Thus, the existence

of correlation between the Xt and et does not affect the uniform convergence rate of the

kernel-weighted sample covariance. This robustness to endogeneity in the present case arises

because the induced asymptotic bias arising from the non-zero mean of Qn(z) turns out

to be a “second order” bias effect as in the linear parametric case (Phillips and Durlauf,

1986; Phillips and Hansen, 1990). Furthermore, from the definitions of Dn(z) and Rn, it is

apparent that two different convergence rates obtain for the two directions determined by

qγn(z) and q⊥γn(z).

Corollary 2.1. Let the assumptions in Theorem 2.1 hold. Then, we have

sup
h<z<1−h

∣∣q′γn(z)Qn(z)
∣∣ = OP (n

√
h log n) (2.8)

and

sup
h<z<1−h

∥∥(q⊥γn(z))′Qn(z)
∥∥ = OP (nh

√
log n). (2.9)

Although the uniform convergence rates are different in the two directions, both rates

exceeds the usual uniform rate OP

(√
nh log n

)
for kernel estimators that applies in stationary

models. A detailed discussion of this phenomenon in the point-wise kernel regression case

is given in Phillips et al (2013). The above results are used in Section 4 to derive uniform

convergence rates for nonparametric kernel-based estimators of the time-varying coefficients

in nonlinear cointegration models.
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3 Uniform consistency with a random design covariate

This section develops uniform consistency for the sample covariance Qn(z) when Zt is gen-

erated by i.i.d. random variables, and compares this result with those of the fixed design

case studied in the previous section. For the stationary case, it is well known that the same

uniform convergence rates hold for Qn(z) irrespective of whether Zt is a random design or

fixed design variate. In contrast to Section 2, there is no kernel degeneracy in the random

design case and a common uniform convergence rate applies which is the same as that given

in (2.8). The next assumption is used in the derivation of the uniform consistency result in

Theorem 3.1 below.

Assumption 3. Let {(Zt, ηt, ε
′
t)} be a sequence of i.i.d. random vectors with continuous

density function f(·, ·, ·), and let Zt be independent of ηt and have compact support, say

[0, 1].

Much of the existing literature on the limit theory of Qn(·) for the random design case

imposes a martingale difference structure on et, which excludes the possibility of correlation

between Xt and et (c.f., Cai et al, 2009; Li et al, 2013). However, for consistency with the

framework of Section 2, we follow the same structure as Assumption 1 to generate the unit

root process Xt and the stationary process et, thereby allowing for correlation between Xt

and et. Hence, the result below has wider applicability than those currently available in the

literature.

The uniform convergence rate for Qn(z) in the random design case is given as follows.

Theorem 3.1. Suppose that Assumptions 1–3 are satisfied. Let

n2+δ0h4+δ0

(log n)4+δ0
→ ∞, (3.1)

where δ0 is defined in Assumption 1(i). Then, we have

sup
0<z<1

‖Qn(z)‖ = OP (n
√
h log n). (3.2)

This theorem shows that the uniform convergence rate (3.2) is exactly the same as (2.8)

and therefore exceeds the stationary rate OP (
√
nh log n). This rate is also common across

coordinates unlike the different rates that apply in the fixed design model. The result is used

in Section 4 to derive a uniform convergence rate for nonparametric kernel-based estimation

of the functional coefficients in nonlinear cointegration models under super-consistency.
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4 Cointegration models with varying coefficients

In this section we use the results developed earlier to derive corresponding uniform consis-

tency results for nonparametric kernel estimators in a nonlinear cointegration model with

varying coefficients. The model has the form

Yt = X ′
tβ(Zt) + et, t = 1, · · · , n, (4.1)

where Xt and et satisfy Assumption 1, β(·) is a d-dimensional coefficient function, and Zt

is either a fixed design or random design variate. In the fixed design case, model (4.1) is

a cointegration model with time-varying coefficients, which was studied in Park and Hahn

(1999) and Phillips et al (2013). The model can then be regarded as an extension of the

locally stationary models used in Robinson (1989) and Cai (2007) where the regressors are

stationary. In the random design case, model (4.1) is a cointegration model with functional

coefficients of the type studied in Cai et al (2009), Xiao (2009) and Gao and Phillips (2013b).

These studies provide nonstationary extensions of the models considered in Fan and Zhang

(1999) and Cai et al (2000). The existing literature in these cases focuses on the development

of pointwise asymptotic theory for nonparametric estimators of the coefficient function β(·)
(c.f., Cai et al, 2009; Phillips et al, 2013). Uniform consistency results and associated

convergence rates in the nonstationary case have so far not been considered due to the

technical difficulties involved in the presence of nonstationary regressors. This section aims

to fill this gap in the literature.

Under a smoothness condition on β(·) and for some fixed z, we have the local approxi-

mation

β (Zt) = β(z) +O (Zt − z) ≈ β(z)

when Zt is in a small neighborhood of z. The kernel-weighted local level regression estimator

of the coefficient β(z) at z has the following form

β̂n(z) =

[
n∑

t=1

XtX
′
tK

(Zt − z

h

)]+ [ n∑
t=1

XtYtK
(Zt − z

h

)]
. (4.2)

We provide below a uniform consistency result for the estimator β̂n(z) over a range of values

of z. Other kernel-based approaches such as local polynomial regression are also applicable

to estimate the coefficient functions, and similar uniform consistency results as those given

here can be obtained with some modification of the proofs.

To establish the limit theory for β̂n(·), we impose the following commonly used smooth-

ness condition on β(·) (c.f., Wang and Phillips, 2009a; Phillips et al, 2013).
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Assumption 4. The coefficient function β(·) is continuous with β(z+ δ)− β(z)| = O(|δ|α0)

as δ → 0 for some α0 > 1/2 and any z ∈ (0, 1).

We start with the fixed design case where Zt =
t
n
for t = 1, · · · , n. Let Bz,∗(Ωε) be an

independent copy of the d-dimensional Brownian motion Bz(Ωε) which is defined in (2.2),

bz ≡ bγn(z) and qz ≡ qγn(z) and q⊥z = q⊥γn(z) for 0 < z < 1. Define

Δz =

⎡⎣ Δz(1) Δz(2)

Δz(2)
′ Δz(3)

⎤⎦ , (4.3)

with Δz(1) = b′zbz,

Δz(2) = 2
√
2 (b′zbz)

1/2 {∫ 1

−1

B z+1
2

,∗(Ωε)K(z)dz
}
q⊥z ,

and

Δz(3) = 4(q⊥z )
′{∫ 1

−1

B z+1
2

,∗(Ωε)B z+1
2

,∗(Ωε)
′K(z)dz

}
q⊥z .

For fixed 0 < z < 1, Proposition A.1 in Phillips et al (2013) shows that the standardized

denominator matrix of (4.2) converges weakly to the limit

R+
nDn(z)

′
[ n∑

t=1

XtX
′
tK

(t− nz

nh

)]
Dn(z)R

+
n ⇒ Δz,

on which we make the following assumption.

Assumption 5. Δz is non-singular with probability 1 uniformly for h < z < 1− h.

Based on Theorem 2.1 and Corollary 2.1, we obtain the following uniform consistency

results for the kernel estimator β̂n(z).

Theorem 4.1. Suppose that the assumptions in Theorem 2.1 and Assumptions 4 and 5 are

satisfied. Then, we have as n → ∞

sup
h<z<1−h

∣∣q′z[β̂n(z)− β(z)
]∣∣ = OP

(
hα0 +

√
log n

n2h

)
(4.4)

and

sup
h<z<1−h

∥∥(q⊥z )′[β̂n(z)− β(z)
]∥∥ = OP

(
hα0 +

√
log n

nh

)
. (4.5)

The order OP (h
α0) of the asymptotic bias of the nonparametric estimator β̂n(z) in The-

orem 4.1 can be improved to OP (h
2) if the local linear method (c.f., Fan and Gijbels, 1996)
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is used to estimate β(·). Theorem 4.1 gives different uniform convergence rates for β̂n(·)
in the two directions determined by the kernel degeneracy, just as in Corollary 2.1. In the

direction qz, we have the uniform convergence rate OP

(√
logn
n2h

)
, which we call the type I

uniform convergence rate. This rate is faster than the rate OP

(√
logn
nh

)
that applies in the

other direction (c.f. (4.5)) as well as the usual rate OP

(√
logn
nh

)
that applies in the stationary

case. In the direction q⊥z , the uniform convergence rate OP

(√
logn
nh

)
is slower than the type

I uniform convergence rate of (4.4), but is still faster than the stationary rate. The rate

OP

(√
logn
nh

)
is called the type II uniform convergence rate.

Next consider the random design case where the covariate Zt is i.i.d., as discussed in

Section 3. Define

Λz = fZ(z)

∫
Bz(Ωε)Bz(Ωε)

′dz,

where fZ(·) is the density function of Zt. It is easy to show that

1

n2h

n∑
t=1

XtX
′
tK

(
Zt − z

h

)
⇒ Λz

for 0 < z < 1. Using Theorem 3.1 we derive the uniform convergence rate for β̂n(·) in the

following theorem, which shows that a common type I uniform convergence rate is attained

in all directions in the random design case.

Theorem 4.2. Suppose that the assumptions in Theorem 3.1 and Assumption 4 are satisfied.

Let Λz be non-singular with probability 1 uniformly for z ∈ (0, 1). Then, we have as n → ∞

sup
0<z<1

‖β̂n(z)− β(z)‖ = OP

(
hα0 +

√
log n

n2h

)
. (4.6)

This uniform consistency result gives a new sharp rate of convergence for the nonlinear

cointegration models with functional coefficients and complements the pointwise limit theory

developed by Cai et al (2009), Xiao (2009) and Gao and Phillips (2013b).

5 Conclusions

This paper derives uniform consistency results for nonparametric kernel-weighted sample

covariances and regressions in a nonstationary data framework. This framework has practical

application in varying coefficient regressions with coefficient covariates that follow fixed and

random designs. In the fixed design case, two different uniform convergence rates apply

depending on a certain covariate-sensitive random direction, a result that is quite different
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from the random design case where a common uniform convergence rate applies. Both results

are shown to be robust to endogeneity of the regressors.

A regression application of these results confirms the uniform consistency of nonpara-

metric kernel estimates of the coefficient functions in nonlinear cointegration models with

varying coefficients and gives sharp convergence rates in this regression case. In the fixed

design framework, two types of uniform convergence rates again apply in the covariate sensi-

tive random directions and both rates exceed the rate in the stationary case. In the random

design framework, there is a common uniform convergence rate, which also exceeds that of

the stationary case. These uniform consistency results are relevant in estimating semipara-

metric cointegration models with partially-varying coefficients, long run variance estimation

in such models, kernel-based specification testing of nonlinear cointegration models, and the

theory for the optimal bandwidth selection in the nonparametric kernel-smoothing under

nonstationarity.
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A Proofs of the main results

This appendix provides proofs of the main results in Sections 2–4. To simplify notation, in the

sequel we let qz = qγn(z) and q⊥z = q⊥γn(z), and C is used for a positive constant whose value may

change from line to line.

Proof of Theorem 2.1. For 0 < z < 1, define

Qn(z, 1) =
q′z

n
√
h

n∑
t=1

K
( t− nz

nh

)
Xtet,

Qn(z, 2) =
(q⊥z )′

nh

n∑
t=1

K
( t− nz

nh

)
Xtet.

Note that

Qn(z, 1) =
q′z

n
√
h
Xγn(z)

n∑
t=1

K
( t− nz

nh

)
et +

q′z
n
√
h

n∑
t=1

K
( t− nz

nh

)
(Xt −Xγn(z))et, (A.1)

11



where γn(z) is defined in Section 2, and

Qn(z, 2) =
(q⊥z )′

nh

n∑
t=1

K
( t− nz

nh

)
(Xt −Xγn(z))et, (A.2)

as q⊥z is orthogonal to Xγn(z) by (2.4) in Section 2. By continuous mapping (e.g. Billingsley, 1968),

it is easy to show that

sup
0<z<1

(‖qz‖+ ‖q⊥z ‖
)
= OP (1). (A.3)

Then, by (A.1)–(A.3), it is sufficient to show that

sup
h<z<1−h

∣∣∣ 1√
nh

n∑
t=1

K
( t− nz

nh

)
et

∣∣∣ = OP (
√
log n), (A.4)

and

sup
h<z<1−h

∥∥∥ 1

nh

n∑
t=1

K
( t− nz

nh

)
(Xt −Xγn(z))et

∥∥∥ = OP (
√
log n), (A.5)

which we now prove in turn.

Proof of (A.4). Using the BN decomposition approach of Phillips and Solo (1992), we have

et = et + (ẽt−1 − ẽt), (A.6)

where et =
(∑∞

j=0 φj

)
ηt = φηt and ẽt =

∑∞
j=0 φ̃jηt−j with φ̃j =

∑∞
k=j+1 φk. By (A.6), we can

show that

n∑
t=1

etK
( t− nz

nh

)
=

n∑
t=1

etK
( t− nz

nh

)
+

n∑
t=1

ẽt−1K
( t− nz

nh

)− n∑
t=1

ẽtK
( t− nz

nh

)
=

n∑
t=1

etK
( t− nz

nh

)
+

n∑
t=1

ẽt−1K
( t− 1− nz

nh

)− n∑
t=1

ẽtK
( t− nz

nh

)
+

n∑
t=1

ẽt−1

[
K
( t− nz

nh

)−K
( t− 1− nz

nh

)]
=

n∑
t=1

etK
( t− nz

nh

)
+

n∑
t=1

ẽt−1

[
K
( t− nz

nh

)−K
( t− 1− nz

nh

)]
+

ẽ0K
(−z

h

)− ẽnK
(1− z

h

)
.

By virtue of Assumption 2(i) and (ii),

ẽ0K
(−z

h

)
= ẽnK

(1− z

h

)
= 0 (A.7)

with probability 1 for any h < z < 1− h, which indicates that

n∑
t=1

etK
( t− nz

nh

)
=

n∑
t=1

etK
( t− nz

nh

)
+

n∑
t=1

ẽt−1

[
K
( t− nz

nh

)−K
( t− 1− nz

nh

)]
(A.8)

uniformly for 0 < z < 1.
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Define Zk = {z∣∣(k− 1)nrn + 1 ≤ z < knrn} for k = 1, 2, · · · , Rn, and ZRn+1 = {z∣∣nrnRn + 1 ≤
z ≤ n}, where Rn =

⌊
r−1
n

⌋
, rn = h3/2 log1/2(n). Let zk be the smallest number in the set Zk for

k = 1, · · · , Rn, Rn + 1. By standard arguments, we have

sup
h<z<1−h

∣∣ n∑
t=1

etK
( t− nz

nh

)∣∣∣ ≤ max
1≤k≤R∗

n

sup
z∈Zk

∣∣ n∑
t=1

et
[
K
( t− z

nh

)−K
( t− zk

nh

)]∣∣∣+
max

1≤k≤R∗
n

∣∣∣ n∑
t=1

etK
( t− zk

nh

)∣∣∣,
where R∗

n = Rn + 1. By the Markov inequality, we may show that

max
1≤k≤R∗

n

sup
z∈Zk

∣∣∣ n∑
t=1

et
[
K
( t− z

nh

)−K
( t− zk

nh

)]∣∣∣ = OP

(√nrn
h

)
= OP

(√
nh log n

)
. (A.9)

Noting that et = φηt, we next prove

max
1≤k≤R∗

n

∣∣∣ n∑
t=1

ηtK
( t− zk

nh

)∣∣∣ = OP

(√
nh log n

)
(A.10)

by the truncation technique and using the Bernstein inequality (e.g., van der Vaart and Wellner,

1996). Let ηt = ηt · I
(|ηt| ≤ √

nh
logn

)
and η̃t = ηt−ηt = ηt · I

(|ηt| > √
nh
logn

)
, where I(·) is an indicator

function. Noting that

P

{
max
1≤t≤n

|ηt| >
√

nh

log n

}
≤ C · n(log n)

(4+δ0)/2

(nh)(4+δ0)/2
= o(1)

as n2+δ0h4+δ0

(logn)4+δ0
→ ∞, we can show that

max
1≤k≤R∗

n

∣∣∣ n∑
t=1

(
η̃t − E[η̃t]

)
K
( t− zk

nh

)∣∣∣ = oP
(√

nh log n
)
. (A.11)

On the other hand, note that {ηt} is a sequence of i.i.d. random variables, and the number

of non-zero summands in
∑n

t=1 ηtK
(
t−zk
nh

)
is of order (nh) as the compact support of the kernel

function is [−1, 1]. Letting c0 be some positive constant and by using the Bernstein inequality, for

sufficiently large M > c0 > 0, we have

P

{
max

1≤k≤R∗
n

∣∣ n∑
t=1

(
ηt − E[ηt]

)
K
( t− zk

nh

)∣∣ > M
√
nh log n

}

≤
R∗

n∑
k=1

P

{∣∣ n∑
t=1

(
ηt − E[ηt]

)
K
( t− zk

nh

)∣∣ > M
√
nh log n

}

≤
R∗

n∑
k=1

exp
{− Mnh log n

c0nh

} ≤ O(r−1
n n−M/c0) = o(1),
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which indicates that

max
1≤k≤R∗

n

∣∣∣ n∑
t=1

(
ηt − E[ηt]

)
K
( t− zk

nh

)∣∣∣ = OP

(√
nh log n

)
. (A.12)

Then, by (A.11) and (A.12), we can prove (A.10), which together with (A.9), leads to

sup
h<z<1−h

∣∣ n∑
t=1

etK
( t− nz

nh

)∣∣∣ = OP (
√
nh log n). (A.13)

Noting that K
(
t−nz
nh

)−K
(
t−1−nz

nh

) ≤ C 1
nh , by a standard derivation, we can also show that

sup
h<z<1−h

∣∣∣ n∑
t=1

ẽt−1

[
K
( t− nz

nh

)−K
( t− 1− nz

nh

)]∣∣∣ = OP (
√
nh log n), (A.14)

which together with (A.7), (A.8) and (A.13), leads to (A.4).

Proof of (A.5). Using the BN decomposition again, we have

Xt −Xγn(z) =

t∑
s=γn(z)+1

vs =

t∑
s=γn(z)+1

vs + ṽγn(z) − ṽt,

where vt = (
∑∞

j=0Φj)εt = Φεt and ṽt =
∑∞

j=0 Φ̃jεt−j with Φ̃j =
∑∞

k=j+1Φk. Hence, to prove

(A.5), we need only prove that

n∑
t=1

( t∑
s=γn(z)+1

vs
)
etK

( t− nz

nh

)
= OP (nh

√
log n), (A.15)

ṽγn(z)

n∑
t=1

etK
( t− nz

nh

)
= OP (nh

√
log n), (A.16)

n∑
t=1

ṽtetK
( t− nz

nh

)
= oP (nh

√
log n), (A.17)

uniformly for h < z < 1− h.

Note that ṽt and et are well defined stationary linear processes, and the numbers of non-zero

summands in both
∑n

t=1 ṽtetK
(
t−nz
nh

)
and

∑n
t=1 etK

(
t−nz
nh

)
are of order (nh). We can thus prove

(A.16) and (A.17) easily by standard aguments. This leaves (A.15).

To prove (A.15) we proceed as follows. Let vt(z) =
∑t

s=γn(z)+1 vs and vt(z) = 0 if t < γn(z)+1.
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Using the BN decomposition (A.6), we have

n∑
t=1

vt(z)etK
( t− nz

nh

)
=

n∑
t=1

vt(z)etK
( t− nz

nh

)
+

n∑
t=1

vt(z)ẽt−1K
( t− nz

nh

)−
n∑

t=1

vt(z)ẽtK
( t− nz

nh

)
=

n∑
t=1

vtetK
( t− nz

nh

)
+

n∑
t=1

vt−1(z)etK
( t− nz

nh

)
+

n∑
t=1

vtẽt−1K
( t− nz

nh

)
+

n∑
t=1

vt−1(z)ẽt−1K
( t− nz

nh

)−
n∑

t=1

vt(z)ẽtK
( t− nz

nh

)
=

n∑
t=1

vtetK
( t− nz

nh

)
+

n∑
t=1

vt−1(z)etK
( t− nz

nh

)
+

n∑
t=1

vt−1(z)ẽt−1

[
K
( t− nz

nh

)−K
( t− 1− nz

nh

)]−
vn(z)ẽnK

(1− z

h

)
+

n∑
t=1

vtẽt−1K
( t− nz

nh

)
.

Similar to the proof of (A.14), we may show that

sup
h<z<1−h

∥∥∥ n∑
t=1

vt−1(z)ẽt−1

[
K
( t− nz

nh

)−K
( t− 1− nz

nh

)]∥∥∥ = oP (nh
√

log n). (A.18)

Following the proof of (A.4), we can also show that

sup
h<z<1−h

∥∥∥ n∑
t=1

vtetK
( t− nz

nh

)∥∥∥ ≤ sup
h<z<1−h

∥∥∥ n∑
t=1

{
vtet − E[vtet]

}
K
( t− nz

nh

)∥∥∥+

sup
h<z<1−h

∥∥∥ n∑
t=1

E[vtet]K
( t− nz

nh

)∥∥∥
= OP (

√
nh log n) +O(nh)

= oP (nh
√
log n). (A.19)

Noting that vt and ẽt are stationary, and the compact support of the kernel function is [−1, 1],

we can prove that

sup
h<z<1−h

∥∥∥vn(z)ẽnK(1− z

h

)∥∥∥ = oP (nh
√

log n), (A.20)

sup
h<z<1−h

∥∥∥ n∑
t=1

vtẽt−1K
( t− nz

nh

)∥∥∥ = oP (nh
√
log n). (A.21)
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By (A.18)–(A.21), to complete the proof of (A.15), we need only prove that

sup
h<z<1−h

∥∥∥ n∑
t=1

vt−1(z)etK
( t− nz

nh

)∥∥∥ = OP (nh
√
log n). (A.22)

Let Zk, zk, Rn, R
∗
n and rn be defined as above. By standard arguments, we have

sup
h<z<1−h

∥∥∥ n∑
t=1

vt−1(z)etK
( t− nz

nh

)∥∥∥ ≤ max
1≤k≤R∗

n

sup
z∈Zk

∥∥∥ n∑
t=1

vt−1(z)et
[
K
( t− z

nh

)−K
( t− zk

nh

)]∥∥∥
+ max

1≤k≤R∗
n

sup
z∈Zk

∥∥∥ n∑
t=1

[
vt−1(z)− vt−1(zk)

]
etK

( t− zk
nh

)∥∥∥
+ max

1≤k≤R∗
n

∥∥∥ n∑
t=1

vt−1(zk)etK
( t− zk

nh

)∥∥∥,
where vt(z) ≡ vt(z/n) on the right hand side of the inequality and in the sequel. To prove (A.22),

we need to show that

max
1≤k≤R∗

n

sup
z∈Zk

∥∥∥ n∑
t=1

vt−1(z)et
[
K
( t− z

nh

)−K
( t− zk

nh

)]∥∥∥ = OP (nh
√
log n), (A.23)

max
1≤k≤R∗

n

sup
z∈Zk

∥∥∥ n∑
t=1

[
vt−1(z)− xt−1(zk)

]
etK

( t− zk
nh

)∥∥∥ = OP (nh
√
log n), (A.24)

and

max
1≤k≤R∗

n

∥∥∥ n∑
t=1

vt−1(zk)ηtK
( t− zk

nh

)∥∥∥ = OP (nh
√
log n). (A.25)

We provide the proof of (A.25) and the proofs for (A.23) and (A.24) are entirely analogous.

Let wt(zk) = vt−1(zk)ηt, Ft = {(ηs, ε′s) : s ≤ t}, and

wt(zk) = wt(zk) · I
(‖vt−1(zk)‖ ≤ (nh)3/4

(log n)1/4
, |ηt| ≤ (nh)1/4

(log n)1/4
)
, w̃t(zk) = wt(zk)− wt(zk).

Noting that

P

{
max

1≤k≤R∗
n

max
zk−nh≤t≤zk+nh

‖w̃t(zk)‖ > 0
}
≤ C · nR

∗
n(log n)

(4+δ0)/2

(nh)(4+δ0)/2
= o(1),

as n2+δ0h7+δ0

(logn)3+δ0
→ ∞, we can show that

max
1≤k≤R∗

n

∥∥∥ n∑
t=1

(
w̃t(zk)− E[w̃t(zk)|Ft−1]

)
K
( t− zk

nh

)∥∥∥ = oP
(
nh

√
log n

)
. (A.26)
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On the other hand, note that {(wt(zk),Ft) : t ≥ 1} is a sequence of martingale differences.

Then, by the exponential inequality for martingale differences (c.f., de la Pena, 1999) and letting

c1 be some positive constant, we have for sufficiently large M > c1 > 0,

P

{
max

1≤k≤R∗
n

∥∥ n∑
t=1

(
wt(zk)− E[wt(zk)|Ft−1]

)
K
( t− zk

nh

)∥∥ > Mnh
√
log n

}

≤
R∗

n∑
k=1

P

{∥∥ n∑
t=1

(
wt(zk)− E[wt(zk)|Ft−1]

)
K
( t− zk

nh

)∥∥ > Mnh
√
log n

}

≤
R∗

n∑
k=1

exp
{− M(nh)2 log n

c1(nh)2
}

≤ O(r−1
n n−M/c1) = o(1),

which indicates that

max
1≤k≤R∗

n

∥∥∥ n∑
t=1

(
wt(zk)− E[wt(zk)|Ft−1]

)
K
( t− zk

nh

)∥∥∥ = OP

(
nh

√
log n

)
. (A.27)

Then, by (A.26) and (A.27), we can prove (A.25) and this complete the proof of (A.15) and (A.5).

Theorem 2.1 then follows. �

Proof of Theorem 3.1. Note that

Qn(z) =

n∑
t=1

K
(Zt − z

h

)
Xt−1et +

n∑
t=1

K
(Zt − z

h

)
vtet

≡ Qn1(z) +Qn2(z). (A.28)

First consider Qn1(z), which is the leading term of Qn(z). Decompose Qn1(z) as

Qn1(z) =

n∑
t=1

E
[
K
(Zt − z

h

)]
Xt−1et +

n∑
t=1

{
K
(Zt − z

h

)− E
[
K
(Zt − z

h

)]}
Xt−1et

≡ Qn3(z) +Qn4(z). (A.29)

Noting that

E
[
K
(Zt − z

h

)] ∼ hfZ(z)μ0,

uniformly for 0 < z < 1, and
n∑

t=1

Xt−1et = OP (n),

by using the functional limit theorem for the partial sum of the linear process (Phillips and Solo,

1992) and continuous mapping (Billingsley, 1968), we can prove that

sup
0<z<1

∥∥Qn3(z)
∥∥ = OP (nh) = oP (n

√
h log n). (A.30)
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For Qn4(z), it is easy to check that
{
(ut(K, z)Xt−1et,F∗

t )
}
is a sequence of martingale differences,

where

ut(K, z) = K
(Zt − z

h

)− E
[
K
(Zt − z

h

)]
, F∗

t = σ
{
ηt+1, (Zs, ηs, εs) : s ≤ t

}
.

The following proof is similar to the proof of (A.22) with some modifications. We cover the

interval (0, 1) by a finite number of disjoint intervals Sk with centre point sk and radius rn∗ =

h3/2
√
log n/

√
n, and the number of these intervals is Nn = O(r−1

n∗ ). By some standard arguments,

we have

sup
0<z<1

∥∥∥ n∑
t=1

ut(K, z)Xt−1et

∥∥∥ ≤ max
1≤k≤Nn

sup
s∈Sk

∥∥∥ n∑
t=1

Xt−1et
[
ut(K, s)− ut(K, sk)

]∥∥∥
+ max

1≤k≤Nn

∥∥∥ n∑
t=1

ut(K, sk)Xt−1et

∥∥∥.
Noting that

|ut(K, s)− ut(K, sk)| = OP (rn∗h−1),

and max1≤t≤n ‖Xt‖ = OP (
√
n), we can show that

max
1≤k≤Nn

sup
s∈Sk

∥∥∥ n∑
t=1

Xt−1et
[
ut(K, s)− ut(K, sk)

]∥∥∥ = OP (n
3/2rn∗h−1) = OP (n

√
h log n). (A.31)

We next prove that

max
1≤k≤Nn

∥∥∥ n∑
t=1

ut(K, sk)Xt−1et

∥∥∥ = OP (n
√
h log n). (A.32)

As n2+δ0h4+δ0

(logn)4+δ0
→ ∞, there exists a positive function l(n) such that

l(n) → ∞ and
n2+δ0h4+δ0

l(n)(log n)4+δ0
→ ∞. (A.33)

Let Wt(sk) = ut(K, z)Xt−1et, L(n) =
[
l(n)

] 1
4+δ0 , and

W t(sk) = Wt(zk) · I
(
‖Xt−1‖ ≤

√
nL(n), |et| ≤

√
nh

L(n) log n

)
, W̃t(sk) = Wt(sk)−W t(sk).

From the definition of W̃t(sk), it is easy to see that if the two events
{
‖Xt−1‖ ≤ √

nL(n), t =

1, · · · , n
}

and
{
|et| ≤

√
nh

L(n) logn , t = 1, · · · , n
}

hold simultaneously,
∥∥∥∑n

t=1 W̃t(sk)
∥∥∥ = 0 for any

1 ≤ k ≤ Nn. In other words, if
∥∥∥∑n

t=1 W̃t(sk)
∥∥∥ > 0, we must have either

{
‖Xt−1‖ >

√
nL(n)

}
for
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at least one 1 ≤ t ≤ n, or
{
|et| >

√
nh

L(n) logn

}
for at least one 1 ≤ t = 1 ≤ n. Hence, we have for

any ε > 0,

P

{
max

1≤k≤Nn

∥∥∥ n∑
t=1

W̃t(sk)
∥∥∥ > εn

√
h log n

}
≤ P

{
max
1≤t≤n

‖Xt−1‖ >
√
nL(n)

}
+ P

{
max
1≤t≤n

|et| >
√

nh

L(n) log n

}
= o(1) +O

(n[L(n) log n](4+δ0)/2

(nh)(4+δ0)/2

)
= o(1), (A.34)

by (A.33), and we can show that

max
1≤k≤Nn

∥∥∥ n∑
t=1

W̃t(sk)
∥∥∥ = oP

(
n
√
h log n

)
. (A.35)

On the other hand, by the exponential inequality for martingale differences and letting c2 be

some positive constant, we have for sufficiently large M > c2 > 0,

P

{
max

1≤k≤Nn

∥∥ n∑
t=1

W t(sk)
∥∥ > Mn

√
h log n

}
≤

Nn∑
k=1

exp
{− Mnh2 log n

c2nh2
}

≤ O(r−1
n∗ n

−M/c2) = o(1),

which indicates that

max
1≤k≤Nn

∥∥∥ n∑
t=1

W t(sk)
∥∥∥ = OP

(
n
√
h log n

)
. (A.36)

In view of (A.35) and (A.36), we can complete the proof of (A.32), which together with (A.31),

indicates that

sup
0<z<1

‖Qn4(z)‖ = OP

(
n
√
h log n

)
. (A.37)

Then, by (A.30) and (A.37), we can show that

sup
0<z<1

‖Qn1(z)‖ = OP

(
n
√
h log n

)
. (A.38)

We next considerQn2(z), which is relatively simpler. Let vt =
∑∞

j=0Φjεt−j = εt+
∑∞

j=1Φjεt−j ≡
εt + v̂t and et =

∑∞
j=0 φjηt−j = ηt +

∑∞
j=1 φjηt−j ≡ ηt + êt. Note that

Qn2(z) =

n∑
t=1

K
(Zt − z

h

)
εtηt +

n∑
t=1

K
(Zt − z

h

)
v̂tηt +

n∑
t=1

K
(Zt − z

h

)
εtêt +

n∑
t=1

K
(Zt − z

h

)
v̂têt

≡
8∑

k=5

Qnk(z). (A.39)
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Applying the decompositions:

Qn7(z) =

n∑
t=1

E
[
K
(Zt − z

h

)
εt
]
êt +

n∑
t=1

{
K
(Zt − z

h

)
εt − E

[
K
(Zt − z

h

)
εt
]}
êt

Qn8(z) =

n∑
t=1

E
[
K
(Zt − z

h

)]
v̂têt +

n∑
t=1

{
K
(Zt − z

h

)− E
[
K
(Zt − z

h

)]}
v̂têt,

and following the proof of (A.37), we may show that

sup
0<z<1

‖Qn7(z)‖ = oP (n
√

h log n), (A.40)

sup
0<z<1

‖Qn8(z)‖ = oP (n
√

h log n). (A.41)

Meanwhile, following the proof of the uniform consistency results in the stationary case (i.i.d.

or stationary martingale differences), we can also prove that

sup
0<z<1

‖Qn5(z)‖ = oP (n
√
h log n), (A.42)

sup
0<z<1

‖Qn6(z)‖ = oP (n
√
h log n). (A.43)

In view of (A.40)–(A.43), we can show that

sup
0<z<1

‖Qn2(z)‖ = oP (n
√

h log n). (A.44)

Then, the proof of Theorem 3.1 can be completed by (A.28), (A.38) and (A.44). �

Proof of Theorem 4.1. Note that

β̂n(z)− β(z) =
[ n∑
t=1

XtX
′
tK

( t− nz

nh

)]+{ n∑
t=1

XtX
′
t

[
β
( t
n

)− β(z)
]
K
( t− nz

nh

)}
+

[ n∑
t=1

XtX
′
tK

( t− nz

nh

)]+[ n∑
t=1

XtetK
( t− nz

nh

)]
≡ Πn1(z) + Πn2(z). (A.45)

By Lemma B.4 in Phillips et al (2013) and Assumption 5, we may show that the matrix

R+
nDn(z)

′
[ n∑
t=1

XtX
′
tK

( t− nz

nh

)]
Dn(z)R

+
n

is not-singular with probability 1 uniformly for z ∈ (h, 1−h). Then, by Theorem 2.1, we can prove

sup
h<z<1−h

‖RnDn(z)
′Πn2(z)‖ = OP (

√
log n). (A.46)
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By Taylor expansion of β(·) and Assumption 4, we can show that

β
( t
n

)− β(z) = O(hα0),
∣∣ t
n
− z

∣∣ ≤ h. (A.47)

By (A.47) and standard arguments it readily follows that

sup
h<z<1−h

‖Πn1(z)‖ = OP (h
α0). (A.48)

The proof of Theorem 4.1 can be completed in view of (A.45), (A.46), and (A.48) in conjunction

with the definitions of Rn and Dn(z). �

Proof of Theorem 4.2. The proof is similar to the proof of Theorem 4.1 above. As in (A.45),

we have

β̂n(z)− β(z) =
[ n∑
t=1

XtX
′
tK

(Zt − z

h

)]+{ n∑
t=1

XtX
′
t

[
β
(
Zt

)− β(z)
]
K
(Zt − z

h

)}
+

[ n∑
t=1

XtX
′
tK

(Zt − z

h

)]+[ n∑
t=1

XtetK
(Zt − z

h

)]
≡ Πn3(z) + Πn4(z). (A.49)

Following the proof of Proposition A.1 in Li et al (2013), we can show that the random denom-

inator 1
n2h

∑n
t=1XtX

′
tK

(
t−nz
nh

)
is non-singular with probability 1 uniformly for z ∈ (0, 1). Then, by

Theorem 3.1, we can prove

sup
0<z<1

‖Πn4(z)‖ = OP (

√
log n

n2h
). (A.50)

On the other hand, by Taylor expansion of β(·) and Assumption 4, it follows easily that

sup
0<z<1

‖Πn3(z)‖ = OP (h
α0). (A.51)

The proof of Theorem 4.2 is completed by using (A.49)–(A.51). �

References

Billingsley, P. (1968). Convergence of Probability Measure. Wiley, New York.

Bosq, D. (1998). Nonparametric Statistics for Stochastic Processes: Estimation and Prediction (2nd ed.).

Lecture Notes in Statistics 110. Springer–Verlag.

21



Cai, Z. (2007). Trending time-varying coefficient time series models with serially correlated errors. Journal

of Econometrics, 136, 163–188.

Cai, Z., Fan, J. and Li, R. (2000). Efficient estimation and inferences for varying–coefficient models.

Journal of American Statistical Association 95, 888–902.

Cai, Z., Li, Q. and Park, J. (2009). Functional-coefficient models for nonstationary time series data. Journal

of Econometrics 148, 101–113.

Chan, N. and Wang, Q. (2012). Uniform convergence for Nadaraya-Watson estimators with non-stationary

data. Working paper, School of Mathematics and Statistics, University of Sydney.

Chen, J., Gao, J. and Li, D. (2012). Estimation in semiparametric regression with nonstationary regressors.

Bernoulli 18, 678–702.

Chen, J., Li, D. and Zhang, L. (2010). Robust estimation in a nonlinear cointegration model. Journal of

Multivariate Analysis 101, 706–717.

Duffy, J. (2013). Uniform convergence rates, on a maximal domain, for structural nonparametric cointe-

grating regression. Unpublished paper, Yale University

Fan, J., and Gijbels, I. (1996). Local Polynomial Modelling and Its Applications. Chapman and Hall.

Fan, J. and Zhang, W. (1999). Statistical estimation in varying coefficient models. Annals of Statistics 27,

1491–1518.

Gao, J., Kanaya, S., Li, D. and Tjøstheim, D. (2013). Uniform consistency for nonparametric estimators

in null recurrent time series. Forthcoming in Econometric Theory.

Gao, J. and Phillips, C. B. P. (2013a). Semiparametric estimation in triangular system equations with

nonstationarity. Journal of Econometrics 176, 59–79.

Gao, J. and Phillips, C. B. P. (2013b). Functional coefficient nonstationary regression. Cowles Foundation

Discussion Paper 1911. Cowles Foundation for Research in Economics, Yale University.

Hansen, B. E. (2008). Uniform convergence rates for kernel estimation with dependent data. Econometric

Theory 24, 726–748.

Karlsen, H. A. and Tjøstheim, D. (2001). Nonparametric estimation in null recurrent time series. Annals

of Statistics 29, 372–416.

22



Karlsen, H. A., Myklebust, T. and Tj¿stheim, D. (2007). Nonparametric estimation in a nonlinear cointe-

gration type model. Annals of Statistics 35, 252–299.

Kristensen, D. (2009). Uniform convergence rates of kernel estimators with heterogenous dependent data.

Econometric Theory 25, 1433–1445.

Li, D., Lu, Z. and Linton, O. (2012). Local linear fitting under near epoch dependence: uniform consistency

with convergence rate. Econometric Theory 28, 935–958.

Li, K., Li, D., Liang, Z. and Hsiao, C. (2013). Estimation of semi-varying coefficient models with non-

stationary regressors. Working paper, Department of Econometrics and Business Statistics, Monash

University.

Liebscher, E. (1996). Strong convergence of sums of α-mixing random variables with applications to density

estimation. Stochastic Processes and Their Applications 65, 69–80.

Mack, Y. P. and Silverman, B. W. (1982). Weak and strong uniform consistency of kernel regression

estimates. Zeitschrift fur Wahrscheinlichskeittheorie und verwandte Gebiete 61, 405-415.

Masry, E. (1996). Multivariate local polynomial regression for time series: uniform strong consistency and

rates. Journal of Time Series Analysis 17, 571–599.

Park, J. Y. and Hahn, S. B. (1999). Cointegrating regressions with time varying coefficients. Econometric

Theory, 15, 664–703.

de la Pena, V. H. (1999). A general class of exponential inequalities for martingales and ratios. Annals of

Probability 27, 537–564.

Phillips, P. C. B. and Durlauf, S. N. (1986). Multiple time series regression with integrated processes.

Review of Economic Studies, 53, 473-496.

Phillips, P. C. B. and Hansen, B. E. (1990). Statistical inference in instrumental variables regression with

I(1) processes. Review of Economic Studies, 57, 99-125.

Phillips, P. C. B., Li, D. and Gao, J. (2013). Estimating smooth structural change in cointegration mdoels.

Cowles Foundation Discussion Paper 1910.

Phillips, P. C. B. and Park J. (1998). Nonstationary density estimation and kernel autoregression. Cowles

Foundation Discussion Paper 1181.

Phillips, P. C. B. and Solo, V. (1992). Asymptotics for linear processes. Annals of Statistics 20, 971–1001.

23



Robinson, P. M. (1989). Nonparametric estimation of time-varying parameters. Statistical Analysis and

Forecasting of Economic Structural Change (ed. by P. Hackl). Springer, Berlin, pp. 164–253.

Roussas, G. G. (1990). Nonparametric regression estimation under mixing conditions. Stochastic Processes

and Their Applications 36, 107–116.

van der Vaart, A. W. and Wellner, J. (1996). Weak Convergence and Empirical Processes with Applications

to Statistics. Springer.

Wang, Q. and Phillips, P. C. B. (2009a). Asymptotic theory for local time density estimation and non-

parametric cointegrating regression. Econometric Theory 25, 710-738.

Wang, Q. and Phillips, P. C. B. (2009b). Structural nonparametric cointegrating regression. Econometrica

77, 1901-1948.

Wang, Q. and Wang, Y. (2013). Nonparametric cointegrating regression with NNH errors. Econometric

Theory 29, 1–27.

Xiao, Z. (2009). Functional-coefficient cointegrating regression. Journal of Econometrics 152, 81-92.

24


	Uniform Consistency of Nonstationary Kernel-Weighted Sample Covariances for Nonparametric Regression
	Recommended Citation

	Microsoft Word - cd1929.doc

