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Abstract

We consider inference on optimal treatment assignments. Our methods allow for

inference on the treatment assignment rule that would be optimal given knowledge of

the population treatment effect in a general setting. The procedure uses multiple hy-

pothesis testing methods to determine a subset of the population for which assignment

to treatment can be determined to be optimal after conditioning on all available infor-

mation, with a prespecified level of confidence. A monte carlo study confirms that the

inference procedure has good small sample behavior. We apply the method to study

the Mexican conditional cash transfer program Progresa.

1 Introduction

In recent decades, there has been increasing recognition both in academic and public circles

that social experiments or social programs, costly as they are, should be rigorously evaluated

to learn lessons from past experience and to better guide future policy decisions. While a

∗We thank Colin Cameron, Azeem Shaikh and participants at the 2012 California Econometrics Confer-

ence for helpful comments. All remaining errors are our own.
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recent literature has considered the problem of treatment decision rules given experimental or

observational data (see, among others, Manski, 2004; Dehejia, 2005; Hirano and Porter, 2009;

Stoye, 2009; Tetenov, 2012; Bhattacharya and Dupas, 2012), the problem of constructing

confidence statements for the optimal decision rule has received little attention. The goal

of this paper is to formulate and answer the problem of constructing confidence statements

that quantify the statistical precision of a treatment assignment rule. This allows researchers

to quantify how strong the evidence is in favor of treating certain individuals. This type

of analysis is especially useful for policy makers who are interested in designing an efficient

large-scale social program following a social experiment or an initial small-scale trial program.

To understand the importance of quantifying the statistical precision of treatment rec-

ommendations, consider the case where a policy maker wants to design a social program that

gives some selected individuals a treatment intervention (say, school attendance subsidies).

The effect of the treatment on the response outcome (say, attendance) is expected to be

heterogeneous and varies along certain observed variables (say, distance from the nearest

school). A natural goal of the policy maker is to assign treatment only to those individuals

whose treatment effect is expected to be above some prespecified threshold such as zero or

the cost of the treatment. The expected treatment effects of different individuals are un-

known, but, if data from a previous experimental intervention is available, the policy maker

can make an informed guess about who should be treated, say, by selecting only individuals

with values of observed variables linked to estimated conditional average treatment effect

(conditional on individuals’ observed characteristics) exceeding the prespecified threshold.

The literature on statistical treatment rules has formulated the notion of an “informed guess”

and proposed solutions in terms of statistical decision theory. The contribution of this pa-

per is to develop methods that accompany the treatment assignment rule with a confidence

statement describing how strong the evidence is in favor of treating the selected individuals.

Obviously, a large scale experimental intervention with many observations would provide
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more compelling evidence for or against treatment than an otherwise identical experiment

with fewer observations. Quantifying this requires statements about statistical precision of

the treatment decision rule; this is the question that we formulate and answer in this paper.

We formulate the problem of inference on the optimal treatment assignment as one of

reporting a subset of individuals for which treatment can be determined to be optimal con-

ditional on observables while controlling the probability that this set contains any individual

for whom treatment should not be recommended conditional on the available information.

Our procedures recognize the equivalence of this problem with the problem of multiple hy-

pothesis testing. We propose to select the individuals to be treated by testing multiple

hypotheses that the conditional average treatment effect is positive for each individual based

on the value of the conditioning variable, while controlling the probability of false rejection

of any single hypothesis.

The proposed inference procedure for optimal treatment assignment is useful in policy

analysis and social program studies. In this paper we apply the inference method to the

Mexican conditional cash transfer program Progresa. Progresa gives cash to households

in poor villages if their children attend school regularly. The program is often criticized

by the literature for its “leakage of benefit”, or transferring cash to households who would

send children to school anyway. Therefore, it is very important to statistically quantify the

evidence in favor of Progresa treatments. Using data collected from the experimental phase

of Progresa, we demonstrate how the proposed inference procedure can be used to distinguish

households for which the cash transfer increases children school attendance and statistically

quantify the confidence level associated with treating these selected households.

The problem of optimal treatment assignment1 has been considered by Manski (2004),

1The phrase “optimal treatment assignment” is also used in the experimental design literature, where

treatment assignments are designed to minimize the asymptotic variance bound or risk of treatment effect

estimators (see Hahn, Hirano, and Karlan, 2011; Kasy, 2013). In contrast to this literature, which con-
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Dehejia (2005), Hirano and Porter (2009), Stoye (2009), Tetenov (2012), Bhattacharya and

Dupas (2012), and others. In this literature, individuals are assigned to different treatments

by a social planner who maximizes social welfare or minimizes the risk associated with

different treatment assignment rules.

As discussed above, our goal is distinct from and complementary to the goal of this lit-

erature: we seek to formulate and solve the problem of confidence statements for the (pop-

ulation) optimal treatment rule, which can be reported along with a “point estimate” given

by the solution to the statistical decision problem formulated and solved in the literature

described above. We emphasize that our methods are intended as a measure of statistical

precision, not as a statistical treatment assignment rule that should be implemented given

the data at hand (which is the problem formulated by the papers cited above). Rather, we

recommend that results based on our methods be reported so that readers can quantify the

statistical evidence in favor of treating each individual.

While we are not aware of other papers that consider inference on the treatment assign-

ment rule that would be optimal in the population, Bhattacharya and Dupas (2012) derive

confidence intervals for the expected welfare associated with certain statistical treatment

rules. In contrast, we focus on inference on the population optimal treatment rule itself.

These two methods achieve different goals. Our methods for inference on the optimal treat-

ment rule can be used to answer questions about how optimal treatment assignment varies

along observed covariates. On the other hand, our methods do not attempt to quantify the

increase in welfare from a given treatment rule, which is the goal of estimates and confidence

intervals for average welfare.

This paper is closely related to Anderson (2008) and to Lee and Shaikh (2013). Those

papers use finite sample randomization tests to construct subsets of a discrete conditioning

siders the design phase of the experiment, we take data from the initial experiment as given and focus on

implications for future policy.
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variable for which treatment can be determined to have some effect on the corresponding

subpopulation. Our problem is formulated differently from theirs. Our goal of finding cor-

rect inference on optimal treatment assignment rule leads us to report only those values of

covariates for which treatment increases the average outcome (rather than, say, increasing

the variance or decreasing the average outcome). This, and our desire to allow for continuous

covariates, leads us to an asymptotic formulation of the corresponding multiple testing prob-

lem. In short, while we both use the idea of multiple hypothesis testing for set construction,

our multiple hypotheses are different, leading to different test statistics and critical values.

The method we use to construct confidence statements on optimal treatment decision

rules is related to the recent literature on set inference, including Chernozhukov, Hong, and

Tamer (2007) and Romano and Shaikh (2010). Indeed, the complement of our treatment

set can be considered a setwise confidence region in the sense of Chernozhukov, Hong, and

Tamer (2007), and our solution in terms of multiple hypothesis testing can be considered

a confidence region for this set that extends the methods of Romano and Shaikh (2010) to

different test statistics. In addition, our paper uses step-down methods for multiple testing

considered by Holm (1979) and Romano and Wolf (2005) and applied to other set inference

problems by Romano and Shaikh (2010). In the case of continuous covariates, we use results

from the literature on uniform confidence bands (see Neumann and Polzehl, 1998; Claeskens,

2003; Chernozhukov, Lee, and Rosen, 2011). In particular, we use results from the latter

paper, which those authors use in a different class of hypothesis testing problems.2

Our proposed inference procedure on optimal treatment assignments is also related to

the test for treatment effect heterogeneity considered by Crump, Hotz, Imbens, and Mitnik

2Chernozhukov, Lee, and Rosen (2011) are interested in testing a single null hypothesis involving many

values of the covariate, while our formulation leads us to the multiple hypothesis testing problem of deter-

mining which values of the covariates lead to rejection; the stepdown improvement gains precision in our

context, but would be irrelevant in their case.
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(2008). In fact, it not only tests the null hypothesis that the treatment effect does not vary

along an observed variable, but also solves the additional problem of determining which

values of the variable cause this null to be rejected. Thus, our paper extends the body of

knowledge on treatment effect heterogeneity by providing a procedure to determine for which

values of the conditioning variable the conditional average treatment effect differs from the

average over the entire population.

Monte Carlo experiments shows that our proposed inference procedure have good size

and power properties in small sample. The method properly controls the probability of

including wrong individuals to the confidence region and successfully selects a large portion

of the true treatment beneficiaries. The step-down method in multiple testing improves the

power of the inference procedure given a sample size, meaning that it helps to include more

individuals into the confidence region while properly controlling its statistical precision. The

size and power properties of the proposed inference procedure is also compared with a “folk

wisdom” method based on pointwise confidence bands of the conditional average treatment

effect. We show that the latter method often generates nonempty treatment sets in cases

where no treatment effect is actually present.

The remainder of the paper is organized as follows. Section 2 formulates the problem

of constructing confidence statements for treatment assignment rules. Section 3 links the

problem of statistical inference to multiple hypothesis testing and proposes the inference

method that derives the treatment assignment rule with statistical precision controlled for.

Section 4 conducts several Monte Carlo experiments that study the small sample behavior

of the proposed inference method. Section 5 applies the method to the Progresa example.

Section 6 concludes.
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2 Setup

To describe the problem in more detail, we introduce some notation. For each individual

i, there is a potential outcome Yi(1) with treatment, a potential outcome Yi(0) with no

treatment, and a vector of variables Xi observed before a treatment is assigned. Let Di ∈

{0, 1} be an indicator for treatment. The goal of a policy maker is to decide which individuals

shall be assigned to the treatment group so as to maximize the expectation of some social

objective function. We take the social objective function, without loss of generality, to be

the realized outcome itself.3

Let t(x) ≡ E(Yi(1) − Yi(0)|Xi = x) be the conditional average treatment effect. Then

the population optimal treatment policy is to treat only those individuals with a covariate

Xi = x such that the conditional average treatment effect t(x) is positive. In other words,

the treatment rule that would be optimal given knowledge of the distribution of potential

outcomes in the population and the covariate Xi of each individual would assign treatment

only to individuals with covariate Xi taking values included in the set

X+ ≡ {x|t(x) > 0}.

While the ideas in this paper are more general, for the sake of concreteness, we formulate

our results in the context of i.i.d. data from an earlier policy intervention with randomized

experimental data or observational data in which an unconfoundedness assumption holds.

Formally, we observe n observations of data {(Xi, Di, Yi)}ni=1 where realized outcome Yi ≡

Yi(Di) and Di ∈ {0, 1} is an indicator for treatment and Xi is a vector of pretreatment

observables that takes on values in a set X̃ . The data are assumed to take the following

3This allows costs to be incorporated by being subtracted from the treatment, and budget constraints

can be incorporated by estimating a shadow cost (see Bhattacharya and Dupas, 2012). The only major

restriction here is that outcomes are considered individually, so peer effects are ruled out.
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unconfoundedness assumption.

Assumption 1.

E(Yi(j)|Di = j,Xi = x) = E(Yi(j)|Xi = x), j = 1, 2.

Assumption 1 is restrictive only if the policy intervention is non-experimental. It is also

called the selection on observables assumption as it requires that the observational data

behave as if the treatment is randomized conditional on the covariate Xi. Assumption 1 is a

standard assumption in the treatment effect literature. Under the assumption, the average

potential outcomes for both the treatment and the control group in the sample give the same

average outcomes as if both outcome variables were observed for all individuals.

If the data we observe is from an initial trial period of the policy intervention with a

random sample from the same population Assumption 1 is enough for us to perform inference

on the positive treatment set X+. However, if the policy maker is deciding on a treatment

policy in a new location, or for a population that differs systematically from the original

sample in some other way, one must make additional assumptions (see Hotz, Imbens, and

Mortimer, 2005). In general, one needs to assume that the conditional average treatment

effect is the same for whatever new population is being considered for treatment in order for

directly apply estimates and confidence regions from the original sample.

We propose to formulate the problem of forming a confidence statement of the true

population optimal treatment rule X+ as one of reporting a treatment set X̂+ for which we

can be reasonably confident that treatment is, on average, beneficial to individuals with any

value of the covariate x that is included in the set and therefore leads to treatment. Given

a prespecified significance level α, we seek a set X̂+ that satisfies

lim inf
n

P (X̂+ ⊆ X+) ≥ 1− α, (1)
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or a treatment group that, with more than probability (1−α), consists only of individuals who

are expected to benefit from the treatment. Therefore, X̂+ is defined as a set that is contained

in the true optimal treatment set X+, rather than a set containing X+. This definition of X̂+

corresponds to the goal of reporting a subpopulation for which there is overwhelming evidence

that the conditional average treatment effect is positive. As discussed in the introduction,

this goal need not be taken as a policy prescription: a researcher may recommend a policy

based on a more liberal criterion while reporting a set satisfying (1) as a set of individuals for

whom evidence for treatment is particularly strong.4 We propose methods to derive the set

X̂+ by noticing that a set that satisfies (1) is also the solution to a multiple hypothesis testing

problem with infinite number of null hypotheses Hx : t(x) ≤ 0 for all x ∈ X̃ . The multiple

hypothesis testing problem controls the familywise error rate (FWER), or the probability of

rejecting a single x for which Hx is true. With this interpretation, X̂+ in fact gives a subset

of the population for which we can reject the null that the conditional average treatment

effect is non-positive given the value of Xi while controlling the probability of assigning

to treatment even a single individual for which the conditional average treatment effect

(conditional on Xi) is negative. The next section describes in detail the proposed inference

method for deriving the set X̂+.

3 Inference Procedures

Let t̂(x) be an estimate of the conditional average treatment effect t(x) and σ̂(x) an estimate

of the standard deviation of t̂(x). For any set X on the support of Xi, let the critical value

4In any case, the role of Yi(0) and Yi(1) can be reversed to apply this framework to obtain a set that

contains X+ with 1− α probability.
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ĉu,α(X ) satisfy

lim inf
n

P

(
sup
x∈X

t̂(x)− t(x)

σ̂(x)
≤ ĉu,α(X )

)
≥ 1− α. (2)

The critical value ĉu,α(X ) can be obtained for different estimators t̂(x) using classical central

limit theorems (if X is discrete), or, for continuously distributed Xi, results on uniform

confidence intervals for conditional means such as those contained in Neumann and Polzehl

(1998), Claeskens (2003) or Chernozhukov, Lee, and Rosen (2011) as we describe later. For

some of the results, we will require that these critical values be nondecreasing in X in the

sense that

Xa ⊆ Xb =⇒ ĉu,α(Xa) ≤ ĉu,α(Xb). (3)

Given the critical value, we can obtain a set X̂ 1
+ that satisfies (1). Let

X̂ 1
+ ≡ {x ∈ X̃ |t̂(x)/σ̂(x) > ĉu,α(X̃ )}.

Clearly X̂ 1
+ satisfies (1), since the event in (2) implies the event in (1). However, we can

make improvement on inference using a step-down procedure (see Holm, 1979; Romano and

Wolf, 2005). That is, we could find some set X̂+ that includes X̂ 1
+ but also satisfies (1). The

procedure is as follows. Let X̂ 1
+ be defined as above. For k > 1, let X̂ k

+ be given by

X̂ k
+ = {x|t̂(x)/σ̂(x) > ĉu,α(X̃ \X̂ k−1

+ )}.

Note that X̂ k−1
+ ⊆ X̂ k

+, so the set of rejected hypotheses expands with each step. Whenever

X̂ k
+ = X̂ k−1

+ , or when the two sets are close enough to some desired level of precision, we stop

and take X̂+ = X̂ k
+ to be our set.
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Theorem 1. Let (2) and (3) hold. Then X̂ k
+ satisfies (1) for each k.

Proof. On the event that X̂+ 6⊆ X+, let ĵ be the first j for which X̂ ĵ
+ 6⊆ X+. Since X̂ ĵ−1

+ ⊆ X+

(where X̂ 0
+ is defined to be the empty set), this means that

sup
x∈X̃\X+

t̂(x)− t(x)

σ̂(x)
≥ sup

x∈X̃\X+

t̂(x)/σ̂(x) > ĉu,α(X̃ \X̂ ĵ−1
+ ) ≥ ĉu,α(X̃ \X+).

Thus, for X = X̃ \X+, we have that, on the event that X̂+ 6⊆ X+, the event in (2) will

not hold. Since the probability of this is asymptotically no greater than α, it follows that

P (X̂+ 6⊆ X+) is asymptotically no greater than α, giving the result.

Next we provide critical values that satisfy (2) for different estimators t̂(x) depending

whether the covariate Xi is discrete or continuous. The inference procedure described below

for the discrete covariate case parallels results described in Lee and Shaikh (2013) while

the procedure for the continuous covariates case uses results from the literature on uniform

confidence bands and is new to the treatment effect literature.

3.1 Discrete Covariates

Suppose that the support of Xi, X̃ is discrete and takes on a finite number of values. We

write

X̃ = {x1, . . . , x`}. (4)

In this setting, we may estimate the treatment effect t̂(x) with the sample analogue. Let

N0,x =
∑n

i=1 1(Di = 0, Xi = x) be the number of observations for which Xi = x and Di = 0,

and let N1,x =
∑n

i=1 1(Di = 1, Xi = x) be the number of observations for which Xi = x and
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Di = 1. Let

t̂(xj) =
1

N1,xj

∑
1≤i≤n,Di=1,Xi=xj

Yi −
1

N0,xj

∑
1≤i≤n,Di=0,Xi=xj

Yi (5)

We estimate the variance using

σ̂2(xj) =
1

N1,xj

∑
1≤i≤n,Di=1,Xi=xj

Yi − 1

N1,xj

∑
1≤i≤n,Di=1,Xi=xj

Yi

2

/N1,xj

+
1

N0,xj

∑
1≤i≤n,Di=0,Xi=xj

Yi − 1

N0,xj

∑
1≤i≤n,Di=0,Xi=xj

Yi

2

/N0,xj .

Under an i.i.d. sampling scheme, {(t̂(xj) − t(xj))/σ̂(xj)}`j=1 converges in distribution to

an ` dimensional joint normal random variable. Thus, one can choose ĉuα(X ) to be the

1 − α quantile of the maximum of |X | independent normal random variables where |X | is

the number of elements in X . Some simple calculations show that this gives

ĉu,α(X ) = Φ−1
(
(1− α)1/|X |) (6)

where Φ is the cdf of a standard normal variable. For ease of calculation, we can also use

a conservative Bonferroni procedure, which uses Bonferonni’s inequality to bound the dis-

tribution of |X | variables with standard normal distributions regardless of their dependence

structure. The Bonferonni critical value is given by

ĉu,α(X ) = Φ−1 (1− α/|X |) . (7)

The Bonferroni critical values will be robust to correlation across the covariates (although σ̂

would have to be adjusted to take into account serial correlation across the outcomes for a

given x).
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Both of these critical values will be valid as long as we observe i.i.d. data with finite

variance where the probability of observing each treatment group is strictly positive for each

covariate.

Theorem 2. Suppose that the data are iid and P (Di = d,Xi = xj) is strictly positive and

Yi has finite variance conditional on Di = d,Xi = xj for d = 0, 1 and j = 1, . . . , `, and that

the conditional exogeneity assumption 1 holds. Then the critical values defined in (6) and

(7) both satisfy (2) and (3).

3.2 Continuous Covariates

For the case of a continuous conditioning variable, we can use results from the literature on

uniform confidence bands for conditional means to obtain estimates and critical values that

satisfy (2) (see, among others, Neumann and Polzehl, 1998; Claeskens, 2003; Chernozhukov,

Lee, and Rosen, 2011). For convenience, we describe the procedure here for multiplier

bootstrap confidence bands based on local linear estimates, specialized to our case.

Let m1(x) = E(Yi(1)|Xi = x) and m0(x) = E(Yi(0)|Xi = x) be the average of potential

outcomes with and without the treatment intervention given a fixed value of the covariate

Xi. Under Assumption 1,

mj(x) = E(Yi(j)|Xi = x) = E(Yi(j)|Xi = x,Di = j) = E(Yi|Xi = x,Di = j), j = 0, 1.

Let Xi = (Xi1 ... Xid) and x = (x1 ... xd). For a kernel function K and a sequence of

bandwidths h1 → 0, define the local linear estimate m̂1(x) of m1(x) to be the intercept term

a for the coefficients a and {bj}dj=1 that minimize

∑
1≤i≤n,Di=1

[
Yi − a−

d∑
j=1

bj(Xi,j − xj)

]2

K((Xi − x)/h1)

13



Similarly, define m̂0(x) to be the corresponding estimate of m0(x) for the control group with

Di = 0 and h0 the corresponding sequence of bandwidths. Let ε̂i = Yi − Dim̂1(Xi) − (1 −

Di)m̂0(Xi) be the residual for individual i. Then define the standard error s1(x) of estimator

m̂1(x) as

s2
1(x) =

∑
1≤i≤n,Di=1[ε̂iK((Xi − x)/h1)]2[∑

1≤i≤n,Di=1K((Xi − x)/h1)
]2

and similarly define s0(x) for m̂0(x).

Let n1 and n0 denote the sample sizes for the treatment and control group respectively.

Let the estimator for the conditional average treatment effect be t̂(x) = m̂1(x)−m̂0(x) and its

standard error σ̂(x) =
√
s2

1(x) + s2
0(x). To obtain the asymptotic properties of t̂(x), we use

the following smoothness assumptions and assumptions on kernel function and bandwidths,

which specialize the regularity conditions given in Chernozhukov, Lee, and Rosen (2011) to

our case.

Assumption 2. 1. The observations {(Xi, Di, Yi)}ni=1 are iid and P (Di = 1|Xi = x) is

bounded away from zero and one.

2. m0(x) and m1(x) are twice continuously differentiable and X is convex.

3. Xi|Di = d has a conditional density that is bounded from above and below away from

zero on X for d ∈ {0, 1}.

4. Yi is bounded by a nonrandom constant with probability one.

5. (Yi −md(x))|Xi = x,Di = d has a conditional density that is bounded from above and

from below away from zero uniformly over x ∈ X and d ∈ {0, 1}

6. The kernel K has compact support and two continuous derivatives, and satisfies
∫
uK(u) du =

0 and
∫
K(u) du = 1.

14



7. The bandwidth for the untreated group, h0, satisfies the following asymptotic relations

as n → ∞: nhd+2
0 → ∞ and nhd+4

0 → 0 at polynomial rates. In addition, the same

conditions hold for the bandwidth h1 for the treated group.

To approximate the supremum of this distribution over a nondegenerate set, we follow

Neumann and Polzehl (1998) and Chernozhukov, Lee, and Rosen (2011) and approximate

m̂1 and m̂0 by simulating and using the following multiplier processes

m̂∗1(x) ≡
∑

1≤i≤n,Di=1 ηiε̂iK((Xi − x)/h1)∑
1≤i≤n,Di=1K((Xi − x)/h1)

and

m̂∗0(x) ≡
∑

1≤i≤n,Di=0 ηiε̂iK((Xi − x)/h0)∑
1≤i≤n,Di=0K((Xi − x)/h0)

where η1, . . . , ηn are iid standard normal variables drawn independently of the data. To

form critical values ĉu,α(X ), we simulate S replications of n iid standard normal variables

η1, . . . , ηn that are drawn independently across observations and bootstrap replications. For

each bootstrap replication, we form the test statistic

sup
x∈X

t̂∗(x)

σ̂(x)
= sup

x∈X

m̂∗1(x)− m̂∗0(x)

σ̂(x)
. (8)

The critical value ĉu,α(X ) is taken to be the 1 − α quantile of the empirical distribution of

these S simulated replications.

Theorem 3. Under Assumptions 1 and 2, the multiplier bootstrap critical value ĉu,α(X )

defined above satisfies (2) and (3).

Proof. The critical value satisfies (2) by the arguments in Example 7 of Chernozhukov,

Lee, and Rosen (2011) (the conditions in that example hold for the treated and untreated
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observations conditional on a probability one set of sequences of Di; the strong approxi-

mations to m̂0(x) and m̂1(x) and uniform consistency results for s1(x) and s2(x) then give

the corresponding approximation for (m̂1(x) − m̂0(x))/σ̂(x)). Condition (3) is satisfied by

construction.

3.3 Extension: Testing for Treatment Effect Heterogeneity

The inference procedure described above can be easily modified to test for treatment effect

heterogeneity. Here we focus on the continuous covariate case since the testing problem

in the discrete covariate case is well-studied in the multiple comparison literature. Let t

be the (unconditional) average treatment effect. The null hypothesis of treatment effect

heterogeneity is

H0 : t(x) = t ∀x.

Let X+− = {x|t(x) 6= t} and X̂+− be an estimated set that satisfies

lim inf
n

P (X̂+− ⊆ X+−) ≥ 1− α.

The probability that X̂+− includes some value(s) of x such that t(x) = t cannot exceed

the significance level α. Then the decision rule of the test is to reject H0 if the set X̂+− is

nontrivial.

The set X̂+− is in fact more informative than simply testing the null hypothesis of no

treatment effect heterogeneity. It also helps researchers to determine for which values of the

conditioning covariate Xi the conditional average treatment effect differs from its average

over the entire population. The estimation of X̂+− is a simple extension to the estimation of
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X̂+ described in the previous section. Let ĉ|u|,α(X ) be a critical value that satisfies

lim inf
n

P

(
sup
x∈X

∣∣∣∣ t̂(x)− t̂− (t(x)− t)
σ̂(x)

∣∣∣∣ ≤ ĉ|u|,α(X )

)
≥ 1− α,

where t̂ = 1
n

∑n
i=1 t̂(Xi) is a

√
n-consistent estimator of t. Let X̂ 1

+− ≡ {x ∈ X̃ ||(t̂(x) −

t̂)/σ̂(x)| > ĉ|u|,α(X̃ )}. For k > 1, let X̂ k
+− = {x||(t̂(x) − t̂)/σ̂(x)| > ĉ|u|,α(X̃ \X̂ k−1

+− )}. When

X̂ k
+− = X̂ k−1

+− , or when the two sets are close enough to some desired level of precision,

stop and take X̂+− = X̂ k
+−. In practice, ĉ|u|,α(X ) could be set as the 1 − α quantile of

the empirical distribution of the bootstrap test statistic supx∈X |
t̂∗(x)−t∗
σ̂(x)

|, where t̂∗(x) is the

multiplier process defined earlier and t̂∗ = 1
n

∑n
i=1 t̂

∗(Xi).

4 Monte Carlos

In this section we investigate the small sample behavior of our proposed inference procedure

for optimal treatment assignment. We consider three data generating processes (DGPs) for

the conditioning variable Xi, the outcome Yi and the treatment indicator Di.

DGP1: Xi ∼ U(0, 1), ei ∼ N(0, 1/9), vi ∼ N(0, 1), Di = 1(0.1Xi + vi > 0.55), Yi =

10(Xi − 1/2)21(Di = 1) + ei;

DGP2: Xi ∼ U(0, 1), ei ∼ N(0, 1/9), vi ∼ N(0, 1), Di = 1(0.1Xi + vi > 0.55), Yi =

sin(10Xi + 1)1(Di = 1) + ei;

DGP3: Xi ∼ U(0, 1), ei ∼ N(0, 1/9), vi ∼ N(0, 1), Di = 1(0.1Xi + vi > 0.55), Yi =

(Xi − 1/2)2 + ei.

The unconfoundedness assumption is satisfied in all three DGPs. The conditional average

treatment effect t(x) is the difference between the conditional mean m1(x) = E(Yi|Xi =

x,Di = 1) and m0(x) = E(Yi|Xi = x,Di = 0). In the first DGP t(x) = 10(x− 1/2)2 always

lies above zero except for one tangent point. In the second DGP t(x) = sin(10x + 1) is
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positive in some parts of the Xi support and negative in the other parts. t(x) is uniformly

zero in the third DGP.

For each DGP, datasets are generated with three different sample sizes and repeated 500

times. The conditional mean m0(x) and m1(x) are estimated using local linear estimation

with Epanechnikov kernel and bandwidths chosen by following rule of thumb:

hl = ĥl,ROT × ŝl × n1/5−1/4.75
l l = 0, 1,

where ŝl is the standard deviation of Xi in the subsample with Di = l, and n
1/5−1/4.75
l is

used to ensures under-smoothing, l = 0, 1. ĥl,ROT minimizes the weighted Mean Integrated

Square Error (MISE) of the local linear estimator with studentized Xi values and is given

by Fan and Gijbels (1996):

ĥl,ROT = 1.719

 σ̃2
l

∫
w(x)dx

n−1
l

∑nl
i=1

{
m̃

(2)
l (Xi)

}2

w(Xi)


1/5

n
−1/5
l .

In the formula, m̃
(2)
l is the second-order derivative of the quartic parametric fit of ml(x) with

studentized Xi and σ̃2
l is the sample average of squared residuals from the parametric fit.

w(.) is a weighting function, which is set to 1 in this section. The computation is carried

out using the np package in R (see Hayfield and Racine, 2008). For each of the repeated

simulations of each DGP and sample size, the local linear estimator t̂(x) is evaluated at 500

equally spaced grids on the support of X, or [0, 1]. The supremum of the studentized t̂(x) is

equal to the maximum of the 500 estimates. The critical value is dependent on the sample

distribution and is calculated using the multiplier bootstrap method with S = 500 for each

simulated dataset.

Before reporting the Monte Carlo results for all 500 simulations, we first illustrate the

implementation of our proposed inference procedure using graphs. The left panel of Figure 1
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reports the true CATEs (in black) and the local linear estimates (in blue) of the CATEs based

on one randomly simulated sample of size 500. The right panel reports studentized CATE

estimates (in dark red), the true optimal treatment set X+ (in black) and the proposed

inference region X̂+ (in blue) for the optimal treatment set. The optimal treatment set

contains all x values with positive CATE. The confidence region X̂+ includes all x values

with studentized CATE estimates lying above the smallest step-down critical value (shown

by the lowest blue horizontal line). The step-down critical values are different in each step

until convergence because, as is discussed in the theoretical section, the sets of x values

used to calculate the supremum of the CATE estimates are different. On the graphs, these

different sets are shown by the region covered by the blue horizontal line. The total number

of steps taken in critical value calculation is reported in the subtitle of each graph in the

right panel.

The confidence region X̂+ for the optimal treatment set controls familywise error rates

properly. As a comparison, the right panel of Figure 1 also reports treatment sets (in red)

based on pointwise confidence bands. These sets are constructed as the region where the

studentized CATE estimates lie above 1.645, the 95% quantile of standard normal distribu-

tion.

We see from the graphs that the local linear estimator works reasonably well. As is

expected, the proposed confidence regions are always smaller than the pointwise treatment

sets. That is because the latter actually does not control the error rate correctly. The

figure for DGP3 gives an example where the pointwise treatment set gives very misleading

treatment assignment information regarding a policy treatment that has no effect at all. The

step-down method improves the power of the inference procedure for both DGP1 and DGP2.

As is noted in the figure subtitle, the total number of steps for critical value calculation is

4 for DGP1 and 3 for DGP2. The step-down refinement does not lead to improvement for

DGP3 because the initial confidence region is a null set.
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Although the simulation that makes Figure 1 is specially selected for illustration purposes,

the good performance of the proposed inference procedure holds throughout all simulations.

Columns (3)-(6) and (9)-(12) in Table 1 report the size and power of the proposed treatment

set X̂+ obtained with and without applying the step-down refinement of critical values. The

associated nominal familywise error rate is 0.05 for columns (3)-(6) and 0.1 for columns (9)-

(12). The size measure used is the empirical familywise error rates (EFER), the proportion

of simulation repetitions for which the treatment set X̂ 1
+ (X̂+) is not included in the true set

X+. The power is measured by the average proportion of false hypothesis rejected (FHR),

or the average among 500 repetitions of the ratio between the length of X̂ 1
+ ∩X+ (X̂+ ∩X+)

and the length of the true optimal treatment set X+. The size measure is denoted in the

table as EFER and EFER-SD for the stepdown method. The power measure is denoted

as FHR and FHR-SD for the stepdown method. We see from results reported in these

columns that the proposed confidence region for the optimal treatment set controls familywise

error rates well. In the case of DGP3 where the least favorable condition of the multiple

hypothesis testing holds and the conditional average treatment effect equals to zero uniformly,

the empirical familywise error rates are very close to the nominal familywise error rate.

Comparing results in columns (5)-(6), (11)-(12) to those in columns (3)-(4), (9)-(10), we

also see that the power of our procedure increases when the step-down refinement is used for

critical value calculation. The increment in power is larger when the sample size is smaller.

In our empirical section below, we show an example where applying the step-down refinement

method substantially improves the inference of optimal treatment assignment.

For comparison purposes, we also report in Table 1 the size and power properties of

treatment sets obtained from pointwise confidence intervals, or all x values that reject the

pointwise null hypothesis that t(x) is negative. Comparing results in columns (1)-(2) and

(7)-(8) to their uniform counterparts, we see that the pointwise treatment sets, as expected,

fail to control the familywise error rate at all. In the case of DGP3, where the true average
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treatment effect is zero for all x values, more than 39% (57%) of the time the pointwise set

estimator discover some “fake” nonempty positive treatment set when the significance level

5% (10%) is used. The probability of reporting a “fake” treatment set does not decrease

with the increase of sample size.

5 Optimal Treatment Assignment for Progresa

In this section, we demonstrate how the proposed inference procedure for optimal treatment

assignment can be used to study the treatment assignment of real world social programs

using a dataset collected from the Mexican welfare program Progresa (now named Opor-

tunidades). Progresa is a conditional cash transfer program that provides cash transfers

to households in poor rural and semi-urban localities (villages) conditional on the regular

school attendance of their children, family visits to health centers and women’s participation

in health and nutrition workshops. Progresa collected high quality data in its experiment

phase and is widely studied in the literature (c.f. Schultz, 2004 and Attanasio, Meghir, and

Santiago, 2011). Like other conditional cash transfer programs, Progresa is often criticized

by the literature for its “leakage of benefit”, meaning that many cash transfers were given

to households who would have met the conditions of the program regardless of the trans-

fer. Therefore, it is very important to utilize the available data to statistically quantify the

evidence in favor of Progresa treatments. In this section, we apply the proposed inference

procedure for this purpose.

The experimental phase of Progresa was conducted across seven states in 506 poor locali-

ties, which were randomly assigned into treated and controlled groups with probabilities 2/3

and 1/3. The impact of the cash transfer can be evaluated by comparing the average outcome

between the treatment and control localities. After the experimental phase, Progresa has

been continually expanding. In 2012, Progresa had about 5.8 million recipient households
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in more than 187,000 localities. The dataset we use for analysis focuses on the educational

program of Progresa and is originally from Attanasio, Meghir, and Santiago (2011). We look

at boys 10-14 years old. Table 2 reports some summary statistics of the dataset. We see

that although schooling is compulsory in Mexico through high school (preparatoria), it is

common for children not to attend school regularly in rural areas of Mexico during the late

’90s. The attendance rate drops sharply when children reach 12 years old and are ready to

enter secondary school. It has been documented in the literature that the school attendance

rate for children at secondary school age is negatively correlated to households’ distance to

closest secondary school. As a result, we use information on households’ log distance to

secondary school in 1998 and children’s age to estimate the average treatment effect of Pro-

gresa on school attendance. We then quantify the statistical evidence of treating different

individual households.

In the upper panel of Figure 2 we estimate the average school attendance in both treat-

ment and control villages in October 1998. We split the sample using the discrete covariate

age. Then we estimate average school attendance conditional on log distance by local linear

estimation with Epanechnikov kernel and the rule-of-thumb bandwidth described in Sec-

tion 4. We see from the graphs that the school attendance rates drop with both age and

households’ distance to closest secondary school. The graph shows that the leakage of benefit

is more of an issue for households with younger children (for example, households with 10-

year-olds) and households living closer to secondary school (for example, households living

within 2-km distance to closest secondary school).

The lower panel of Figure 2 reports the studentized conditional average treatment effect

estimate as well as the proposed confidence region for optimal treatment set. First, notice

that the shape of the studentized CATE estimates in the bottom panel is different from the

vertical difference between the treatment and control estimates in the upper panel. This is

because a large CATE estimate for households very far away from nearest secondary school
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may be mitigated by its large standard error, since the log distance is still right-skewed in

the dataset and has a small density for really large values. Second, since households living

in the same locality may not be independent, we modify the inference of optimal treatment

assignment described in Section 3 to account for data clustering. Use i = 1, 2, .., N to denote

individuals and j = 1, 2, ..., J localities in Progresa. To account for potential within-locality

dependence, we substitute the multiplier processes used in (8) by m̂∗∗0 (x) and m̂∗∗1 (x) with

m̂∗∗l (x) ≡
∑

1≤i≤n,Di=l ηj ε̂ijK((Xij − x)/hl)∑
1≤i≤n,Di=lK((Xij − x)/hl)

, l = 0, 1,

where η1, . . . , ηJ are i.i.d. standard normal random variables drawn independently of the

data. The critical value is then taken to be the 1− α quantile of the empirical distribution

of the supremum estimator described in (8).5

Our proposed confidence region for optimal treatment set is outlined in blue in the lower

panel of Figure 2. With probability larger than 95%, every child included in the confidence

region is expected to increase regular school attendance as a result of the transfer. From

the figure, we see that there is insufficient evidence in the data for treating the 10-year-

olds. The same holds for 11-14 year olds in households living close to secondary school.

Households who live very far away from a secondary school are sometimes also excluded

from the confidence region due to the lack of statistical precision at the right tail of the log

distance distribution where data is sparse. This problem of lack of inference precision for

underrepresented populations could be solved if these groups were given a higher sampling

5This modified version with multiplier ηj that is fixed within a cluster can be viewed as corresponding

to the wild cluster bootstrap discussed in Cameron, Gelbach, and Miller (2008) in a parametric context,

extended to the local linear nonparametric estimator used here, and with a different multiplier weight (the

terms “wild bootstrap” and “multiplier bootstrap” appear to be used interchangeably in the literature).

We conjecture that, as with other settings with nonparametric smoothing, accounting for dependence is not

technically necessary under conventional asymptotics, but will lead to substantial finite sample improvement.
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weights in the experimental phase of a social program.

Strictly speaking, both the true (unknown) optimal treatment set and its confidence

region plotted in Figure 2 are two-dimensional. The confidence region is the joint of the blue

intervals in all five bottom graphs. Therefore the step-down refined critical values are the

same in each of the five graphs. If, instead, policy makers would like to control the error

rate of treatment assignment separately for children of different age cohorts, the confidence

region would be single-dimensional and the step-down critical values would vary by age

group. In Figure 3 we report such single-dimensional confidence regions. We notice that the

blue intervals in each graphs of Figure 3 are wider than their counterparts in Figure 2. Also,

interestingly, the step-down refinement for critical value calculation improves the inference

significantly for the group of 12-year-olds.

6 Conclusion

This paper formulates the problem of forming a confidence region for treatment rules that

would be optimal given full knowledge of the distribution of outcomes in the population. We

have proposed a solution to this problem by pointing out a relationship between our notion

of a confidence region for this problem and a multiple hypothesis testing problem. The

resulting confidence regions provide a useful complement to the statistical treatment rules

proposed in the literature based on other formulations of treatment as a statistical decision

rule. Just as one typically reports confidence intervals in addition to point estimates in

other settings, we recommend that the confidence regions proposed here be reported along

with the statistical treatment rule resulting from a more liberal formulation of the treatment

problem. In this way, readers can assess for which subgroups there is a preponderence of

empirical evidence in favor of treatment.
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Table 1: Size and Power Properties of Treatment Sets

PW, α = 0.05 Uniform, α = 0.05 PW, α = 0.1 Uniform, α = 0.1
EFER FHR EFER FHR EFER-

SD
FHR-
SD

EFER FHR EFER FHR EFER-
SD

FHR-
SD

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

DGP1: t(x) ≥ 0 for all x ∈ X̃
N=250 0∗ 0.9763 0∗ 0.9150 0∗ 0.9688 0∗ 0.9863 0∗ 0.9431 0∗ 0.9824
N=500 0∗ 0.9798 0∗ 0.9289 0∗ 0.9747 0∗ 0.9899 0∗ 0.9520 0∗ 0.9876
N=1000 0∗ 0.9854 0∗ 0.9391 0∗ 0.9824 0∗ 0.9921 0∗ 0.9590 0∗ 0.9904

DGP2: t(x) ≥ 0 only for some x ∈ X̃
N=250 0.1120 0.8974 0.0000 0.6630 0.0000 0.7417 0.2280 0.9180 0.0000 0.7159 0.0080 0.7859
N=500 0.1180 0.9330 0.0000 0.7681 0.0000 0.8174 0.2400 0.9423 0.0000 0.8042 0.0080 0.8500
N=1000 0.1140 0.9547 0.0000 0.8418 0.0000 0.8740 0.1900 0.9637 0.0000 0.8662 0.0040 0.8966

DGP3: t(x) = 0 for all x ∈ X̃
N=250 0.3960 /# 0.0740 /# 0.0740 /# 0.5720 /# 0.1400 /# 0.1400 /#

N=500 0.4400 /# 0.0620 /# 0.0620 /# 0.6100 /# 0.1200 /# 0.1200 /#

N=1000 0.4640 /# 0.0520 /# 0.0520 /# 0.6800 /# 0.1000 /# 0.1000 /#

Note: ∗, EFER is equal to 0 by construction for DGP 1 since the set where the null hypothesis is false is the support
of X.
#, the proportion of false hypotheses rejected is not defined in DGP 3 since the set where the null hypothesis is false
has by construction measure zero.

Table 2: Summary Statistics

Age Sample Size Attendance Rate Years of Education
Control Treatment Control Treatment Control Treatment

10 644 1121 0.95 (0.21) 0.96 (0.20) 3.12 (1.04) 3.26 (0.97)
11 652 1096 0.94 (0.24) 0.95 (0.21) 3.98 (1.20) 4.04 (1.23)
12 700 1192 0.83 (0.37) 0.89 (0.31) 4.83 (1.41) 4.84 (1.43)
13 658 1024 0.78 (0.42) 0.83 (0.38) 5.44 (1.56) 5.58 (1.57)
14 673 1065 0.61 (0.49) 0.73 (0.44) 6.07 (1.71) 6.22 (1.73)

Note: Standard deviations are reported in the parentheses.
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Figure 1: CATE Estimates, Critical Values, and Treatment Sets
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Figure 2: 2-Dimensional Confidence Region of the Optimal Treatment Set
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Note: N-CATE denotes the conditional average treatment effect estimates normalized by standard
errors; SD-CV are critical values following the step-down procedure; PW-CV is the pointwise
critical value 1.645 for 5% one-sided tests; CR is the proposed confidence region for optimal
treatment set; PW-Set is the treatment set calculated from the pointwise testing problem.
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Figure 3: 1-Dimensional Confidence Region of Optimal Treatment Sets
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Note: N-CATE denotes the conditional average treatment effect estimates normalized by standard
errors; SD-CV are critical values following the step-down procedure; PW-CV is the pointwise
critical value 1.645 for 5% one-sided tests; CR is the proposed confidence region for optimal
treatment set; PW-Set is the treatment set calculated from the pointwise testing problem.
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