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Abstract. This paper provides an evolutionary foundation for our capacity to

attribute preferences to others. This ability is intrinsic to game theory, and is a key

component of “Theory of Mind”, perhaps the capstone of social cognition. We argue

here that this component of theory of mind allows organisms to efficiently modify

their behavior in strategic environments with a persistent element of novelty. Such

environments are represented here by multistage games of perfect information with

randomly chosen outcomes. “Theory of Mind” then yields a sharp, unambiguous

advantage over less sophisticated, behavioral approaches to strategic interaction. In

related experiments, we show the subscale for social skills in standard tests for autism

is a highly significant determinant of the speed of learning in such games.
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1. Introduction

An individual with theory of mind (ToM ) has the ability to conceive of himself, and

of others, as having agency, and so to attribute to himself and others mental states

such as belief, desire, knowledge, and intent. It is generally accepted in psychology that

human beings beyond early infancy possess ToM. More specifically, it is conventional

in game theory to make the crucial assumption, without much apology, that agents

have ToM in the sense of imputing preferences to others.

The present paper considers ToM in greater depth by addressing the question: Why

and how might have such an ability evolved? In what types of environments would ToM

yield a distinct advantage over alternative, less sophisticated, approaches to strategic

interaction? In general terms, the answer we propose is that ToM is an evolutionary

adaptation for dealing with strategic environments that have a persistent element of

novelty.

The argument made here in favor of theory of mind is a substantial generalization

and reformulation of the argument in Robson (2001) concerning the advantage of

having an own utility function in a non-strategic setting. In that paper, an own utility

function permits an optimal response to novelty. Suppose an agent has experienced all

of the possible outcomes, but has not experienced and does not know the probabilities

with which these are combined. This latter element introduces the requisite novelty.

If the agent has the biologically appropriate utility function, she can learn the correct

gamble to take; conversely, if she acts correctly over a sufficiently rich set of gambles,

she must possess, although perhaps only implicitly, the appropriate utility function.

We shift focus here to a dynamic model in which players repeatedly interact with one

another but in which the set of games that they might face becomes larger and larger

with time. We presume individuals have an appropriate own utility function. The

focus is then on the advantage to an agent of conceiving of her opponents as rational

actors—as having preferences, in particular, and understanding that they act optimally

in the light of these. Having a template into which the preferences of an opponent can

be fitted enables a player to deal with a higher rate of innovation than can a behavioral

type of individual that adapts to each game as a distinct set of circumstances. In other

words, the edge to ToM derives from a capacity to extrapolate to novel circumstances

information that was learned about preferences in a specific case.

The distinction between the ToM and behavioral types might usefully be illustrated

with reference to the following observations of vervet monkeys (Cheney and Seyfarth

(1990), p. 213). If two groups are involved in a skirmish, sometimes a member of the

losing side is observed to make a warning cry used by vervets to signal the approach
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of a leopard. All the vervets will then urgently disperse, saving the day for the losing

combatant. The issue is: What is the genesis of this deceptive behavior? One possibil-

ity, corresponding to our theory of mind type, is that the deceptive vervet appreciates

what the effect of such a cry would be on the others, understands that is, that they

are averse to a leopard attack and exploits this aversion deliberately. The other polar

extreme corresponds to our behavioral adaptive learners. Such a type has no model

whatever of the other monkeys’ preferences and beliefs. His alarm cry behavior con-

ditions simply on the circumstance that he is losing a fight. By accident perhaps, he

once made the leopard warning in such a circumstance and it had a favorable outcome.

Subsequent reapplication of this strategy continued to be met with success, reinforcing

the behavior.

Consider the argument in greater detail. We begin by fixing a game tree with

perfect information, with stages i � 1 , ..., I. There are I equally large populations,

one for each of the associated “player roles.” In each period, a large number of random

matches are made, with each match having one player in each role i � 1 , .., I. The

outcomes needed to complete the game are drawn randomly and uniformly in each

period from a finite outcome set. Each player has a preference ordering over the entire

infinite set of possible outcomes. Each player is fully aware of his own ordering but

does not directly know the preference ordering of his opponents.

Occasionally, a new outcome is added to the outcome set, where each new outcome

is drawn independently from a given distribution. The number of outcomes available

grows to infinity at a parametric rate. We use this device of a growing outcome set as

a simple way of deriving the comparative rates at which the various behavioral types

learn.

All players are given the full history of the games played—the outcomes that were

chosen, and the choices that were made by all player roles. The types of players here

differ with respect to the extent and the manner of utilization of this information.

We compare two main categories of types of players—naive and theory-of-mind

(ToM ) types. The ToM types are disposed to learn others’ preferences. They apply

the information provided by the history available in each period to build up a detailed

picture of the preferences of the other roles. The naive types are characterized by

reinforcement learning, and treat each new game as a unfamiliar set of circumstances.

All types are assumed to avail themselves of a dominant choice in the subgame they

start, whenever such a dominant choice is available. This assumption is in the spirit

of focussing on the learning the preferences of others rather than considering the im-

plications of knowing one’s own preferences.

The crucial aspect of the ToM behavior is that, in the long run, once the history

of the game has revealed the preferences of all subsequent players, they map these
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preferences to an action. There is a particular ToM type, the SPE-ToM type, who

maps these preferences to the SPE choice for the subgame. This SPE-ToM type is

shown to evolutionarily dominate the population, in the long run. In the short run,

the ToM types understand enough about the game that they can learn the preferences

of other player roles. For example, it is common knowledge among all ToM types that

all players use dominant actions, if available.

The crucial feature of naive types is simply that they play the same strategy in

response to any new game. Even if the naive types are ultra-fast learners, and use

the SPE strategy the second time a game is played, as is usually literally impossible,

they will still lose the evolutionary race here to the SPE-ToM type. More reasonable

assumptions on the rate of learning for the naive types would only strengthen our

results. This characterization of naive types is in line with “evolutionary game theory,”

which was inspired, in turn, by the psychological theory of reinforcement learning.

Another simplification is that we assume that the ToM types do not avail themselves

of the transitivity of opponents’ preferences. The ToM types build up a description

of others’ preferences only by learning all the pairwise choices. Again, relaxing this

assumption would only strengthen our results.

Theorem 1 is the basic result here—in an intermediate range of growth rates of the

outcome set, the ToM types will learn opponents’ preferences with a probability that

converges to one, while the naive types see a familiar game with a probability that

converges to zero. The greater adaptation of the ToM type simply reflects that there

are vastly more possible games that can be generated from a given number of outcomes

than there are outcome pairs.

In principle, there are various ways the ToM types might exploit this greater knowl-

edge at the expense of the naive types. We have set up the model to favor a simple

and salient possibility, as expressed as the main result in Theorem 2—that the unique

SPE is attained, with the SPE-ToM type ultimately dominant, over all other ToM

types, as well as over all the naive types.

We also report here closely related experiments on Theory of Mind that buttress

the current approach. In these experiments, we fix the outcome set, rather than allow

this to grow over time. Also for simplicity, we consider only two-stage games where

each player role has two moves at each decision node. As is the crucial feature of the

theoretical model, all players in a given role had the same (induced) preferences, and

players knew only their own payoff at each outcome and not that of their opponent.

We randomly and anonymously paired subjects in each of 90 repetitions to observe the

ability of players 1 to learn (and exploit knowledge of) the preferences of players 2.
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Our design alleviates two potential confounds which arise in this setting. First,

such a game might have a dominant strategy for player 1; any such game provides

no opportunity for the experimenter to infer whether player 1 has learned player 2’s

preferences. Second, there are some such two stage games where a simple “highest

mean” rule of thumb adequately guides player 1—choose between your two actions

based on a 50-50 expectation of the resulting payoffs for you. Before player 1 has

observed any of player 2’s choices, this rule of thumb will be indeed be optimal, given

that players’ preferences are uncorrelated. This is because player 2 will randomize 50-

50 from player 1’s perspective. To get greater mileage from the experiments, we thus

divided each experimental session into three treatments designed to gradually eliminate

these confounds by varying the outcome set from which games were drawn. The four

outcomes in the first treatment were chosen in an unconstrained way so dominant

strategies did sometimes arise and the rule of thumb sometimes gave the right choice.

The outcomes in the second treatment were chosen so that dominant strategies could

not arise but the rule of thumb still sometimes worked. The outcomes in the third

treatment, which comprised 2/3 of the session, were chosen so that the rule of thumb

never gave the right answer (and thus there were also no dominant strategies). Thus,

the final 60 periods provide a particularly difficult setting in which the only way to

perform well in the role of player 1 is to learn the preferences of player 2.

At the end of each experimental session, we asked the students to complete two short

multiple-choice surveys measuring autism. One was the Autism-Spectrum Quotient

(AQ) survey; the other was the Broad Autism Phenotype Questionnaire (BAP). Of

particular relevance here is the subscale on each of these two tests that rates social

skills (Social Skills - in the BAP and Aloofness in the AQ).

The results of the experiments were striking. First, we observed statistically and

quantitatively significant learning of player 2 preferences by players 1. This learning

is evident during the third treatment when the rule of thumb cannot work. Second, a

particularly salient finding was that player 1’s with lower scores on the social subscales

(i.e. players who exhibit greater social skills) were highly likely (with p=0.01) to learn

player 2’s choices faster.

These experiments corroborate the present approach on two grounds. In the first

place, the theoretical model apparently captures important features of real world

decision-making. To ascribe preferences to an opponent and to endeavor to learn

these, to one’s own advantage, is a real world ability, and one that is present to a vary-

ing extent in individuals. Secondly, correlations between behavior in the experiment

and survey measures of autism spectrum suggest that preference learning ability in

strategic settings is closely tied to a central aspect of theory of mind, as this term is

used in psychology.
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2. The Theoretical Model

2.1. The Environment.

We begin by defining the underlying games. The extensive game form is a fixed

tree with perfect information and a finite number of stages, I ¥ 2 and actions, A, at

each decision node.1 There is one “player role” for each such stage, i � 1 , ..., I, in the

game. Each player role is represented by an equally large population of agents. These

agents may have different “strategic types”, in a way that is described below, but all

such types have identical payoff functions. To describe the basic elements of the game,

all that matters, then, is how each player role maps outcomes to expected offspring.

Independently in each period, all players are randomly and uniformly matched with

exactly one player for each role in each of the resulting large number of games.2 There

is a fixed overall set of outcomes, each with consequences for the reproductive success

of the I types of agents. Player role i � 1 , . . . , I is then characterized by a function

mapping outcomes to expected numbers of offspring. A fundamental novelty is that,

although each player role knows its own payoff at each outcome, it does not know the

payoff for the other player roles.

For notational simplicity, however, we finesse consideration of explicit outcomes and

payoff functions from outcomes to expected offspring. Given a fixed tree structure

with T terminal nodes, we instead simply identify each outcome with a payoff vector

and each game with a particular set of such payoff vectors assigned to the terminal

nodes.

A1: The set of all games is represented by Q � rm,M sTI , for M ¡ m ¡ 0 . That is,

each outcome is a payoff vector in Z � rm,M sI , with one component for each player

role, and there are T such outcomes comprising each game.

Let t � 1 , 2 , . . . , denote successive time periods. At date t, there is available a set

of outcomes Zt � Z, determined in the following way. There is an initial finite set

of outcomes Z1 � Z where each of these outcomes is drawn independently from Z

according to a cumulative distribution function F as follows.3

A2: The cdf over outcomes F has a continuous probability density f that is strictly

positive on Z.

1 The restriction that each node induce the same number of actions, A, can readily be relaxed

by allowing equivalent moves, in which case A can be interpreted as the maximum number of

actions available at any node in the entire tree. Indeed, it is possible to allow the game tree

to be randomly chosen. This would not fundamentally change the nature of our results but

would considerably add to the notation required.
2 Uniform matching is not crucial to our results but chosen in the interest of simplicity.
3 The assumption that the initial set is drawn from F can readily be relaxed.
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There is then a subsequence of time periods ttku
8
k�1

. At date tk, k � 1 , 2 , . . . , a k-th

outcome is added to the existing ones by drawing it independently from Z according

to F .4 In between arrival dates the set of outcomes is fixed, and once an outcome

is introduced it is available thereafter. The available set of outcomes in period t is

then Z1 Y tz1 , . . . , zku , whenever tk ¤ t   tk�1 , where zk P Z denotes the introduced

outcome at arrival date tk.

We parameterize the rate at which the environment becomes increasingly complex in

a fashion that yields a straightforward connection between this rate and the advantages

to theory of mind.

A3: Fix α ¥ 0 . The arrival date sequence ttku satisfies, for each k � 1 , 2 , . . . , tk �

tp|Z1 | � kqαu.5

Consider now a convenient formal description of the set of games available at each

date.

Definition 1: At date t, the empirical cdf based on sampling, with equal probabilities,

from the outcomes that are actually available at date t, is denoted by the random

function Ftpzq where z P rm,M sI . Similarly, the empirical cdf of games at date t is

denoted by Gtpqq, where q P Q � rm,M sIT .6 The set of games available at date t is

denoted by Qt.

We suppose that, at each date t, an extensive form game denoted qt is drawn at

random from Qt—uniformly and independently from the sequence of previously real-

ized games. The players in each match then independently play qt. Players of each

4 This abbreviated way of modeling outcomes introduces the apparent complication that the

same payoff for role i might be associated with multiple possible payoffs for the remaining

players. Knowing your own payoff does not then imply knowing the outcome. This issue could

be addressed by supposing that there is a unique label attached to each payoff vector, and

that each player role observes this label, as well as his payoff. However, given that the cdf F

is continuous, the probability of any role’s payoff arising more than once is zero. Each player

i can then safely assume that a given payoff is associated to a unique outcome and a unique

vector of other roles’ payoffs.

We do not consider how ToM types might update beliefs about opponents’ payoffs in the light

of their own observed payoff. All that we rely on is that, if history establishes another player

role’s preference between two outcomes for sure, then the ToM types learn. All that we rely

on concerning the naive types is that they can only learn from repeated exposure to a given

game.
5 Here t�u denotes the floor function. It seems more plausible, perhaps, that these arrival

dates would be random. This makes the analysis mathematically more complex, but does not

seem to fundamentally change the results. The present assumption is then in the interests of

simplicity.
6 Note that Ft and Gt are random variables measurable with respect to the information

available at date t, in particular the set of available outcomes Zt.
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strategic type within a given player role are constrained to use the same strategy. For

simplicity, indeed, the ToM types are ultimately constrained to use pure strategies.7

The cdf’s Ft and Gt are well-behaved in the limit. This result is elegant and so

warrants inclusion here. First note that the distribution of games implied by the cdf

on outcomes, F is given by G, say, which is the cdf on the payoff space rm,M sIT

generated by T independent choices of outcomes distributed according to F . Clearly,

G also has a continuous pdf g that is strictly positive on rm,M sIT . These cdf’s are

then the limits of the cdf’s Ft and Gt—

Lemma 1: It follows that Ftpzq Ñ F pzq and Gtpqq Ñ Gpqq with probability one, and

uniformly in z P rm,M sI , or in q P rm,M sIT , respectively.

Proof. This follows directly from the Glivenko-Cantelli Theorem. (See Billingsley, p.

275, and Eike, Pollard and Stute, p. 825, for its extension to many dimensions). �

The evolutionary bottom line is then as follows—each I-tuple playing each game

generate children according to the outcome obtained. The current generation then

dies and their offspring become the next generation of players. The offspring of each

type of i player become i players of the same type in the following period. We normalize

the number of children born to each type of i player by dividing this number by the

total number of offspring produced by all players in role i.

We turn now to consideration of the “strategic types” within each player role.

2.2. Strategic Types.

We allow a finite number of different “strategic types” within each role. When

making a choice at date t every player is informed of a publicly observed history

Ht � tZt, pq1 , π1 q, . . . , pqt�1 , πt�1 qu, and the game qt drawn in the current period.

The history records the outcomes available at date t, the randomly drawn games up

to the previous period, and the empirical distributions of choices made by previous

generations.8 In particular, for each player role i decision-node h that is reached by a

positive fraction of players in period τ , πτphq P ∆pAq records the aggregate behavior

of date τ i player roles at h. Let Ht be the set of date t histories, and H � Yt¥1Ht.

7 That is, the ToM types use pure strategies when they know the preferences of all the

subsequent players. This is a harmless simplification, since the ToM type that will prevail

in the long run is a pure strategy in these circumstances. Naive types are assumed to mix

uniformly when the game is new.
8 Although each player observes the previous games in the sense of seeing the outcomes assigned

to each terminal node, as revealed by the payoff she is assigned at that node, it should be

emphasized that she does not observe other roles’ payoffs directly.
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Recall that in each period t, every extensive form in Qt shares the same underlying

game tree. Then, let Σi denote the set of strategies available to the player role i’s of

any given date.

We partition each player role population into groups differing with respect to strate-

gic types. Specifically, for each i � 1 , . . . , I, there is a finite set of functions Ci �

tc :H �Q ÝÑ Σiu . These are the i player strategic types. Each i player is associ-

ated with a c P Ci, which determines his choice of strategy. Moreover, we assume

these types are inheritable. Specifically, an individual in period t with strategic type

c chooses the strategy cpHt, qtq in game qt, his children choose cpHt�1 , qt�1 q in qt�1 ,

his grandchildren choose cpHt�2 , qt�2 q, and so on. Variation in strategic types allows

for different levels of sophistication within each player role. Some of these types are

players who see others as having agency, other types do not see this.

As part of the specification of the map c, we assume that all individuals choose

a strictly dominant action in the subgame they initiate, whenever such an action is

available. For example, the player at the last stage of the game always chooses the

outcome that she strictly prefers. This general assumption is in the spirit of focussing

upon the implications of other players payoffs rather than the implications of one’s

own payoffs. This assumption incorporates an element of sequential rationality, since

such a dominant strategy is conditional upon having reached the node in question,

that is, conditional on the previous history of the game.9

To be more precise, the assumption is—

A4: Consider any i player role, and an i player subgame q. The action a at q is domi-

nant for i if for every action a1 � a, for every outcome z available in the continuation

game after i’s choice of a in q, and every outcome z1 available in the continuation game

after i’s choice of a1 in q, zi ¡ z1i. For each i � 1 , . . . , I, every strategic type in Ci

always chooses any such dominant action. When indifferent between several courses

of action a player mixes evenly between these actions.

We assume there are two main categories of types of players—

Naive players. We adopt a relaxed concept of naivete, which serves to make the

ultimate results stronger. The only additional requirement on the map c is that a naive

player must choose a fixed arbitrary strategy whenever the game is novel. For speci-

ficity, suppose naive players in this situation mix uniformly over all available actions.

9 Given suitable noise, this element of sequential rationality is assured, and this property can

be made a result rather than an assumption. That is, a strategy that did not use a dominant

choice would be driven to extinction under any plausible evolutionary dynamic. We omit this

proof for conciseness.
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(Naive players also choose any strictly dominant action in the remaining subgame,

as in A4.) Although it is highly implausible, we could indeed allow naive players to

play the SPE strategy that is appropriate for the underlying unknown preferences of

subsequent players, in the second repetition of each game. This is highly implausible

since it is not generally possible to deduce the payoffs that rapidly and neither could

convergence to an SPE once preferences are known but other agents make non-SPE

choices be that rapid. Nevertheless, even if the naive players are ultra-fast learners,

the sophisticated ToM players will out-compete them, given only the naive players’

inability to adapt in any way to a new game. To the extent that naive players fail to

be such ultra-fast learners, our results would simply be strengthened.

Consider now a category of Theory of Mind strategic types. Intuitively, these types

conceive of opponents as making choices according to well defined preferences and

beliefs. All of the ToM types need not agree at the outset about what these preference

orderings are, but they all know there are some preferences influencing j players’

choices in every period, and they learn what these preference are.

Theory of Mind Players.

What this means precisely is as follows. The important long run aspect of the

behavior of these ToM types is that, if the history of the game has revealed the

preferences of all subsequent players, perhaps in the way that is described in detail

below, these ToM types map these preferences into an action. In particular, in every

role, there is a positive fraction of a special type of ToM called SPE -ToM which plays

a subgame perfect equilibrium action given these known preferences of subsequent

players. Recall that, as part of the map c, ToM players choose any strictly dominant

action in the remaining subgame, as in A4. In the short run, in order to learn others’

preferences, it is important that all the ToM players know that all other players also

use dominant actions if available, as in A4; further, this is common knowledge among

the ToM players. The presence of some ToM players in every role is also common

knowledge among all the ToM types.

The assumptions here on the ToM types are relatively weak. For example, the

assumption that ToM types have common knowledge that all types choose a dominant

action is in the spirit of focussing here on the implications of the preferences of others,

while presuming full use of one’s own preferences. Further, it is merely for expositional

clarity that we describe the short run learning behavior of the ToM types in terms of

common knowledge. The entire description can be recast in pure “revealed preference”

terms. How this can be done is discussed after the statement of Theorem 1.

We can now describe the strategic environment as follows

E � pI, A, Z, F, α, tMi1uiPIq ,
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where the new variable is Mi1 giving the initial distribution of strategic types in player

role i. Recall that I and A describe the fixed game tree, F is the distribution on

Z � rm,M sI over introduced outcomes, and α governs the rate of introduction of

novel outcomes.

2.3. The Theoretical Results.

There are two main theoretical results. The first shows that the ToM types learn

the preferences of other roles, so these become common knowledge among all ToM

types in all roles. The second shows how the ToMs might exploit this knowledge by

playing the SPE of the game.

Definition 2: The history Ht reveals players in role i strictly prefer z to z1 if for all

E satisfying A4 whenever Ht occurs it becomes common knowledge among ToMs that

zi ¡ z1i.

The notion is well defined. In particular—

Lemma 2: Suppose A4 holds and that there are ToMs in every role i ¡ 1 . Then for

every finite subset X � Z there exists a finite history H PH such that for each j P I,

and z, z1 P X, if zj ¡ z1j, then H reveals players in role j strictly prefer z to z1.

Now, for each i � 1 , . . . , I, let Lit denote the fraction of pairs pz, z1q P Zt�Zt where

Ht reveals i’s favored outcome between tz, z1u.10 To evaluate the performance of the

naive players, let γt be the fraction of games (of those in Qt) that have been played

previously at date t. Let T ¥ 4 be the number of terminal nodes in the fixed game

tree.11 It follows that T is the cut-off point for the naive types. We then have the

following key result that sets the stage for establishing the evolutionary dominance of

the SPE -ToM ’s over all other players—

Theorem 1: Suppose E satisfies assumptions A1-A4. If α   2 , then Lit surely con-

verges to zero, i � 1 , . . . , I. If α   T , then γt surely converges to zero. On the other

hand, if α ¡ T , then γt converges in probability to one. If α ¡ 2 , and additionally A4

holds, then Lit converges in probability to one for each i � 1 , . . . , I.

This is proved in the Appendix. This result says that if α ¡ 2 , and, in particular, if

all types adopt strictly dominant acts, whenever these are available, where the ToMs

have common knowledge that this is true, then all preferences are revealed in the limit

10 Recall that for simplicity, we assume that players mix whenever indifferent and that this

too is common knowledge among the ToM types. This means that such indifference can be

ruled out. However, such indifference has probability 0.
11 If the I player roles have A actions each, then T � AI .
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to the ToM s. This is the crucial result here, since if, at the same time, α   T , all

the naive players see new games essentially always and mix uniformly, in a way that

is generally inappropriate.12

An intuitive description of how the ToM types learn preferences is useful. Consider

a ToM type in a particular player role j ¡ 1 . The argument that this type can obtain

the preferences of subsequent player roles proceeds by backwards induction on these

subsequent roles. Players in the last role choose a preferred action and this is revealed

in the choices that j ¡ 1 sees. A player in role j also knows that all ToM types in

all roles now know this as well. Eventually a complete picture of player 1 ’s preference

can be built up as common knowledge among all the ToM types. As the induction

hypothesis, suppose the preferences of i � 2 , . . . , 1 for i ¤ j have been established

as common knowledge among the ToM types. We need to show that j can similarly

obtain the preferences of i � 1 . Suppose then that a game is drawn in which player

role i � 1 in fact has a dominant action, a, say, after which i � 2 has a dominant

action, after which i � 3 has a dominant action, after which... Furthermore, there is

another action, a1, say, that i� 1 could take, after which again i� 2 has a dominant

action, after which... Player j knows the situation faced by i� 2 , ..., 1 . Since, in fact,

players in role i� 1 have a dominant action, all types take this. Player j can see that

all i � 1 ’s have made the same choice, so that the ToMs there who made this choice

must then prefer the outcome induced by a to the outcome induced by a1. Eventually,

ToM j ¥ i can build up a complete picture of the preferences of the role i� 1 .13

This description of learning shows how the common knowledge assumptions con-

cerning the ToM types can be stripped to their bare revealed preference essentials.

It is unimportant, that is, what the ToM types think, in any literal sense. All that

matters is that it is as if the ToMs in roles i, ..., I add to their knowledge of role i�1 ’s

preferences in the circumstances considered above. Once a ToM type in role i, for

example, has experienced all of role i�1 binary choices being put to the test like this,

given that this is already true for roles i� 2 , ..., 1 , this role i ToM type can map the

preferences for subsequent players to an action.

All that remains then, to complete the argument, is to show that the ToM types

will do better than the naive types by exploiting their knowledge of all other players’

12 Naive players do not always make inappropriate choices, because they adopt dominant

strategies, whenever these are available. They are often not available, of course.
13 The above learning process relies on relatively weak assumptions concerning the sophisti-

cation of the ToM s, as is desirable in this evolutionary context. As a result, it also relies on

improbable events and so seems bound to be undesirably slow. However, this process suffices

to establish that complete learning by the ToMs occurs whenever α ¡ 2 . Further, since it is

mechanically impossible to learn others’ preferences when α   2 , a more sophisticated process

cannot significantly improve the result.
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preferences, while the naive types are overwhelmed by novel games. This will be true

in a variety of circumstances; for simplicity, we focus on assumptions that yield the

generically unique SPE.

We now have the main result—

Theorem 2: Consider an environment, E , satisfying assumptions A1-A4. Suppose

that there are a finite number of types—naive and ToM, one of which is the SPE-ToM.

Suppose further that every alternative to the SPE-ToM, that is a also a ToM type,

differs from the SPE-ToM at every reached decision node in a set of games that arises

with positive probability under the distribution F . If α P p2 , T q, then the proportion

of SPE-ToM in role i, Rit, say, tends to 1 in probability, i � 2 , ..., I.

Note that we focus here on the case that α P p2 , T q.14

3. Experiments on Theory of Mind

3.1. Experimental Design.

We report here the results of experiments that are simplified versions of the theo-

retical model. These test the ability of individuals to learn the preferences of others

through repeated interaction and to use that information strategically to their advan-

tage. The game tree is a two-stage extensive form where each player has two choices

at each decision node.

There are then two player roles, 1 and 2. Player roles differ in their position in the

game tree and their (induced) preferences, but all players of a given role have identical

preferences. In each period, each role 1 participant is randomly and anonymously

matched with a single role 2 participant to play a two-stage extensive form game, as

depicted in figure C1, in appendix C. We employ this matching scheme to at least

diminish the likelihood of supergame effects. In each game, role 1 players always

move first, choosing one of two intermediate nodes (displayed in the figure as blue

circles), and then based on that decision, the role 2 player chooses a terminal node

that determines payoffs for each participant (displayed in the figure as a pair of boxes).

14 If α   2 , the ToM players are also overwhelmed with novelty. The ToMs may still

outperform the naive players, but this depends on the detailed behavior of the ToMs when

facing games in which the payoffs of other players are unknown. In the case that α ¡ T , the

relative performance of the two types depends on the detailed behavior of the naive players.

If the naive players are ultra-fast learners, and play an SPE strategy the second time they

encounter a given game, they might keep up with the ToM s. More realistically, they would

not learn so quickly, and so would lag the ToM s.
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When making their decisions, participants only observe their own payoff at each

outcome and are originally uninformed of the payoff for the other participant. Instead,

they know only that payoff pairs are consistent over time. That is, whenever the payoff

for role 1 is X, the payoff to role 2 will always be the same number Y. In figure C1,

which is shown from the perspective of a role 1 participant, his own payoff at each

terminal node is shown in the orange box, while his counterpart’s payoff is displayed

as a “?”. Similarly, when role 2 players make their decisions, they only observe their

own payoffs and see a “?” for their counterpart (see figure C2).

In each period, the payoffs at each terminal node are drawn without replacement

randomly from a finite set of V payoff pairs. Each pair of payoffs is unique, guaran-

teeing a strict preference ordering over outcomes. This set is fixed in the experiments

in contrast to its growth in the theoretical model. We do not then attempt to study

the theoretical long run in the experiments, but content ourselves with observing the

rate of learning of opponents’ preferences. Allowing for the strategic equivalence of

games in which the two payoff pairs at a given terminal node are presented in reverse

order, there are
�
V
2

��
V�2
2

�
{2 strategically distinct games that can be generated from

V payoff pairs, each of which has a unique subgame perfect equilibrium.

Thus, as in the theoretical model, despite their initial ignorance of their counterpart’s

preferences, role 1 players can learn about these preferences over time, by observing

how role 2 players respond to various choices presented to them in the repetitions of

the game. If role 1 players correctly learn role 2 players’ preferences, they can increase

their own payoff by choosing the SPE action. On the face of it, role 1 players have

then developed a theory of a role 2 player’s mind.

This suggests investigating whether role 1 players choose in a manner that is in-

creasingly consistent with the SPE. Initial pilot sessions revealed two issues with this

strategy: 1) many of the randomly generated games include dominant strategies for

player 1, which are not informative for inferring capacity to learn the preferences of

others, as indeed reflected in the theoretical model, and 2) more subtly, there is a

simple “highest mean” rule of thumb that also often generates SPE play. Consider a

player 1 who is initially uncertain about player 2’s preferences. From the point of view

of player 1, given independence of player 2’s preferences, player 2 is equally likely to

choose each terminal node, given player 1’s choice. The expected payoff maximizing

strategy is to choose the intermediate node at which the average of potential terminal

payoffs is highest. Indeed, our pilot sessions suggested that many participants followed

this strategy, which was relatively successful.

For these reasons, we used a 3x1 within-subjects experimental design that, over the

course of an experimental session, pares down the game set to exclude the games in
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which choice is too simple to be informative. Specifically, each session included games

drawn from 7 payoff pairs (so there are 105 possible games). In seven of our sessions,

payoff possibilities for each participant consisted of integers between 1 and 7, and in

our final two sessions the set was {1,2,3,4,8,9,10}.15 The one exception was our first

session which used only 6 payoff pairs, where payoffs were integers between 1 and 6.16

Each session lasted for 90 periods in which, in the first 15 periods, the game set

included 15 randomly chosen games from the set Q. Starting in the 16th period, we

eliminate all games in which player 1 has a dominant strategy, and the next 15 periods

consist of games randomly drawn from this subset of Q. Finally, starting in the 31st

period, we also eliminate all games in which the optimal strategy under the “highest

mean” rule of thumb corresponds to the SPE of the game, and our final 60 periods

consist of randomly drawn games from this smaller subset. Thus, our final 60 periods

make it harder for player 1 to achieve high payoffs, since the only effective strategy is

to learn the preferences of the role 2 players.

One potential issue with our design is that learning would be disrupted by the

presence of any role 2 player who fails to choose his dominant action. For this reason,

we considered automating the role 2 player. However, on reflection, this design choice

seems untenable. In the instructions, we would need to explain that algorithmic players

2 maximize their payoffs in each stage, which would eliminate all but the mechanics of

the inference problem faced by player 1—in essence the instructions would be providing

the theory of mind.

A second potential concern is that foregone payoffs (due to role 1 player’s choice)

may lead to non-rational behavior by some player 2s. Such behavior involves role 2

players solving a difficult inference problem. A spiteful (or altruistic) player 2, who

wanted to punish (or reward) player 1 on the basis of player 2’s foregone payoffs, first

must infer that player 1 has learned player 2’s preferences and then infer player 1’s own

preferences on the basis of this assumption. Player 2 could then, given his options,

choose the higher or lower of the two payoffs for player 1 as either punishment or

reward. However, players 2 chose their dominant action roughly 90% of the time, which

suggests that these sources of error were not a prominent feature of our experiment.

We related our results directly to theory of mind, as this is measured by two short

survey instruments. At the conclusion of the experiment, participants completed the

15 This variation was employed in our final two sessions and was intended to reduce noise by

more strongly disincentivizing player 2 from choosing a dominated option, but observed player

2 choices in these sessions are comparable to those in other sessions, so we pool the data for

analysis below.
16 We include this session in our data analysis, but our results are qualitatively unchanged if

we exclude it.
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Autism-Spectrum Quotient (AQ) survey designed by Baron-Cohen [1], since autism

spectrum reflects varying degrees of inability to “read” others’ minds. This short survey

has been shown to correlate with clinical diagnoses of autism spectrum disorders, but

it is not used for clinical purposes. Participants also completed the Broad Autism

Phenotype Questionnaire (BAP) due to Hurley [5], which provides a similar measure

of autism spectrum behavior. With this additional data we will be able to evaluate

how each participant’s ability to perform as player 1 in our experiments correlates

with two other well-known ToM metrics. Copies of the questionnaires are available in

Appendices D and E.

We report data from 11 experimental sessions with a total of 86 participants (43

in each role). Each experimental session consisted of 6-10 participants, recruited from

the student body of Simon Fraser University. Participants entered the lab and were

seated at visually isolated computer terminals where they privately read self-paced

instructions. A monitor was available to privately answer any questions about the

instructions. After reading the instructions, if there were no additional questions, the

experiment began. Instructions are available in Appendix B.

Each experimental session took between 90 and 120 minutes. At the conclusion

of each session, participants were paid privately in cash equal to their payoffs from

two (2) randomly chosen periods. We use this protocol to increase the salience of

each individual decision, thereby inducing participants to treat each game as payoff-

relevant. For each chosen period, the payoff from that period was multiplied by 2

or 3 (depending on the session) and converted to CAD. Average salient experimental

earnings were $27.22, with a maximum of $45 and a minimum of $13. In addition

to their earnings from the two randomly chosen periods, participants also received $7

for arriving to the experiment on time. Upon receiving payment, participants were

dismissed.

3.2. Experimental Results.

Since the decision problem is trivial for player 2, our analysis focuses entirely on

decisions by player 1. We focus on the probability with which player 1 chose an action

consistent with the SPE of the game. For a given game tree, and with repeated play

with fixed matching and private information about individual payoffs, it is known that

pairs frequently converge to non-cooperative equilibrium outcomes over time [4,6]. In

such a setting, an individual merely need learn her counterpart’s preferences over two

pairwise comparisons. Our setting is more strategically complex, and hence we are able

to observe heterogeneity in ToM capabilities and exploit this in our data analysis.

First, we describe overall learning trends and we show that learning is correlated
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with both Autism Quotient and Broad Autism Phenotype scores. Finally, we analyze

individual rates of learning and show that learning speed is highly correlated with AQ

and BAP subscales associated with social skills.

3.2.1. Overall Averages.

Figure 1 displays a time series of the probability that player 1 chose an action con-

sistent with knowledge of player 2’s preferences (i.e. consistent with SPE) over the 90

periods of the experiment. After 15 periods, the game set no longer included instances

where player 1 had a dominant strategy. After 30 periods, the game set no longer in-

cluded instances where player 1 would choose correctly by following the “highest mean”

rule of thumb. At period 31, when subjects enter the NoDominant/NoHeuristic treat-

ment, there is a significant downtick in player 1’s performance, but afterwards there is

a notable upward trend in the probability of player 1 choosing optimally.17
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Figure 1: Time Series of Learning Opponent’s Preferences.

Table 1 reports linear probability panel regressions where the dependent variable

takes a value of 1 if player 1 chose an action consistent with the SPE of the game

and 0 otherwise. We include treatment dummies for periods 1-15 and periods 16-

30 to control for the game set. We also include an individual’s AQ score in column

17 Table F1 in Appendix F also reports summary statistics for each experimental session.
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(2) and BAP score in column (3) to investigate the effect of autism spectrum scores

on learning rates. Higher scores on both instruments indicate increasing presence of

autism spectrum behaviors. We include random effects for each subject to control for

repeated measures, and we cluster standard errors at the session level.

(1) (2) (3)

P1 Chose SPNE P1 Chose SPNE P1 Chose SPNE

Autism Quotient -0.009��

(0.004)

Broader Autism Phenotype -0.069�

(0.041)

Period 0.003��� 0.003��� 0.003���

(0.001) (0.001) (0.001)

No Dominant Options 0.132��� 0.132��� 0.132���

(0.027) (0.027) (0.027)

All Treatments 0.276��� 0.276��� 0.276���

(0.043) (0.043) (0.043)

Constant 0.466��� 0.573��� 0.669���

(0.043) (0.071) (0.138)

Observations 3960 3960 3960

Wald Chi-Sq. 41.57 50.27 68.99

Clustered standard errors in parentheses.
��� p   0.01, �� p   0.05, � p   0.1.

Table 1: Regression Analysis of Learning.

The positive and significant estimated coefficient on Period indicates that partici-

pants are increasingly likely to choose optimally over time. Thus, even in this complex

setting, individuals are able to learn the preferences of others. Positive and significant

coefficients on the treatment dummy variables support our decision to screen out the

games with dominant and highest mean rule of thumb strategies. Moreover, negative

and significant estimated coefficients on the AQ and BAP scores provide the first evi-

dence that our games reflect ToM as implicated in autism. A one standard deviation

increase in AQ score is associated with a 4.1 percentage point reduction in the prob-

ability of choosing optimally, on average. Similarly, a one standard deviation increase

in BAP score is associate with a 3.2 percentage point reduction. We summarize these

findings below:
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Finding 1: On average, there is a significant increase in understanding of others’

preferences over time, despite individual variation.

Finding 2: This increase in learning is correlated with the AQ and BAP question-

naires.

3.2.2. Individual Heterogeneity in Learning Rates.

Our finding that the AQ and BAP scores are correlated with average performance

is suggestive, but the most important aspect of ToM in our setting is learning the

preferences of others. The faster player 1 learns the preferences of role 2 players, the

higher his payoff. Hence, we now turn our attention to heterogeneity in individual

learning rates. In particular, we explore the relationship between individuals’ learning

rates in our experiment and their AQ and BAP scores.

To estimate individual learning rates for each player 1 we estimate a linear regression

where the dependent variable takes a value of 1 when the player chose a node consistent

with SPE and 0 otherwise and the independent variable is a period trend and a constant

term. We exclude all games with dominant strategies and all games in which the

“highest mean” rule of thumb yields the SPE choice. The coefficient on the period

trend, β, provides an estimate of each individual’s rate of learning. We them compute

simple correlation coefficients of individual βs and measures of ToM from the AQ

and BAP questionnaires. Recall that on both instruments, a higher score indicates

increased presence of more autism spectrum behaviors. Thus, negative correlations

will indicate that our rate of learning measure provides similar information to the AQ

and BAP surveys, while the absence of correlation or positive correlations will indicate

that ToM in strategic environments differs from ToM in other social contexts.

Table 2 reports these simple correlations between estimated β’s and various mea-

sures of autism spectrum intensity, and we include 90% confidence intervals for the

correlation coefficients. To indicate what portion of the variance in learning rates is

attributable to differences in autism spectrum scores, we also report R2 estimates from

separate OLS regressions where the dependent variable is an individual’s estimated β

and the independent variable is an individual’s score on a particular scale or sub-scale

of the AQ and BAP questionnaires.

From the table, we can see that learning rates are correlated with average AQ and

BAP scores, and this provides additional evidence that our games measure ToM .

However, most striking is the strong correlation between learning rates and the two

subscales that emphasize social skills: AQ Social and BAP Aloof. In particular, these
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Correlation Coef. 10% 90% R-Squared

BAP -0.25* -1 -0.05 0.06

BAP Rigid 0.05 -1 0.25 0.00

BAP Aloof -0.43*** -1 -0.25 0.18

BAP Prag -0.14 -1 0.06 0.02

AQ -0.21* -1 -0.01 0.04

AQ Social -0.47*** -1 -0.30 0.22

AQ Switch -0.09 -1 0.11 0.01

AQ Detail 0.19 -1 0.38 0.04

AQ Commun -0.15 -1 0.05 0.02

AQ Imagin -0.21* -1 -0.01 0.05

N 43

*** p   0.01, ** p   0.05, * p   0.1, one-sided tests.

Table 2: Correlations between Autism Spectrum Measures and

Learning Rates. BAP and AQ are overall scores from each instru-

ment. Other variables are individual scores on subscales of each instrument.

BAP Rigid � Rigidity, BAP Aloof � Aloofness, BAP Prag � Pragmatic

Language Deficit, AQ Social � Social Skills, AQ Switch � Attention Switch-

ing, AQ Detail � Attention to Detail, AQ Commun � Communication Skills,

and AQ Imagin � Imagination.

scales are concerned with the extent to which individuals understand and enjoy social

interaction. One particularly telling item on the AQ Social subscale asks individuals

how strongly they agree with the statement:

“I find it difficult to work out people’s intentions.”

This is precisely the idea of ToM in a strategic setting.

Learning is also correlated with the AQ Imagin subscale which measures “imagina-

tion” by asking respondents to what degree they enjoy/understand fiction and fictional

characters. One question asks about the ability to impute motives to fictional char-

acters, which suggests some overlap with the AQ Social subscale. Most of the other

subscales exhibit negative but insignificant correlation coefficients. Interestingly, the

two subscales that exhibit non-negative coefficients (BAP Rigid and AQ Detail) em-

phasize precision in individual habits and attention to detail. In a strategic setting

such as ours, these traits might be expected to partly counteract the negative effects

of other typical ToM deficits, perhaps accounting for the lack of correlation.

Importantly, our survey data reveal measured ToM in the normal range. Thus,

differences in the strategic aspects of ToM vary significantly across individuals in the
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normal range of social intelligence. Figure 2 displays histograms of AQ and BAP scores

over the range of feasible scores.

Finding 3: Individual learning is highly correlated with the social skills subscales of

the AQ and BAP questionnaires.
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Figure 2: Histograms of AQ and BAP Scores. Each panel includes

the entire range of feasible scores.

4. Conclusions

This paper presents a theoretical model of the evolution of theory of mind. The

model demonstrates the advantages to predicting opponents’ behavior in simple games

of perfect information. A departure from standard game theory is to allow the out-

comes used in the game to be randomly selected from a growing outcome set. We show

how sophisticated individuals who recognize agency in others can build up a picture

of others’ preferences while naive players who react only to the complete game remain

in the dark. We impose plausible conditions under which sophisticated individuals

who choose the SPE action will dominate all other types of individual, sophisticated

or naive, in the long run.

We then perform experiments measuring the ability of individuals to learn the pref-

erences of others in a strategic setting. The experiments implement a simplified version

of the theoretical model, using a two-stage game where each decision node involves two

choices. We find 1) evidence of significant learning over time, and 2) strong correlations

between behavior in these experiments and responses to two well-known survey instru-

ments measuring ToM from psychology, thus justifying the use of the term “theory of

mind” in the present context. We show, in particular, that there is a highly significant

correlation between the social skill subscales on standard short tests for autism and

the rate at which player 1’s learn player 2’s preferences.
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Appendices

A. Proofs of the Theorems

A.1. Proof of Theorem 1.

A1- A4 will be assumed throughout without further mention.

We first establish (in Lemma 3 below) the negative claims of Theorem 1, that is, we

consider first arrival rates of novelty for which either Lit or γt converge to zero. After

this, the positive claim of Theorem 1 will be proved.

Lemma 3: Each of the following is true.

i) Suppose α P r0 , 2 q. Then Lit ÝÑ 0 surely for each role i � 1 , . . . , I.

ii) Recall there are T terminal nodes. If α P r0 , T q, then γt ÝÑ 0 surely.

Proof. Consider any environment in which the underlying game tree has T end-nodes.

Clearly Lit ¤ t � T {|Zt|
2 everywhere, since the maximal number of binary preference

orderings that can be revealed for any player at any date is bounded above by T . Simi-

larly, since only one game is played in a period, γt ¤ t{|Zt|
T surely. Since |Zt| � |Z1 |�k

whenever tp|Z1 | � kqαu ¤ t   tp|Z1 | � k � 1 qαu, it follows that t   p|Zt| � 1 qα . Hence,

Lit   T � r|Zt| � 1 sα{|Zt|
2 and γt   r|Zt| � 1 sα{|Zt|

T . (1)

Surely |Zt| ÝÑ 8. The lemma follows immediately since obviously whenever α   2 ,

for instance, (1) implies Lit ÝÑ 0 surely. �

In to prove the positive claims of Theorem 1 (that Lit converges to one when α ¡ 2 )

we proceed by induction using the following three results. First a required notation—

Definition 3: Let the random variable Kit denote the number of pairs pz, z1q such

that i’s preferred outcome in tzi, z
1
iu has been revealed.

Lemma 4: Consider the 1 player role. Suppose α ¡ 2 . Then, for each ξ P p0 , 1 s there

is a sequence of random variables tθ1tpξqu such that

EpK1t�1 |Htq �K1t ¥ rξ � p1 � L1t � θ1tpξqqs
AI�i

for all t ¥ 1 , where each tθ1tpξqu is non-increasing between arrival dates, and converges

in probability to a function θ1 pξq, which converges to zero as ξ approaches zero.
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Lemma 5: Consider a fitness type i P I. Suppose α ¡ 2 . Suppose further that for

each ξ P p0 , 1 s there is a sequence of random variables tθitpξqu such that

EpKit�1 |Htq �Kit ¥ rξ � p1 � Lit � θitpξqqs
AI�i

for all t ¥ 1 , where each tθitpξqu is non-increasing between arrival dates, and converges

in probability to a function θipξq, which converges to zero as ξ approaches zero. Then

tLitu converges to one in probability.

Lemmas 4 and 5 together imply that, if α ¡ 2 , then, for player role 1, L1t converges

to one in probability. Theorem 1 then follows by induction from the next claim.

Lemma 6: Consider a fitness type i ¡ 1 . Suppose α ¡ 2 . Suppose further that Ljt

converges to one in probability for each j ¤ i� 1 . Then, for each ξ P p0 , 1 s there is a

sequence of random variables tθitpξqu, non-increasing between arrival dates, such that

EpKit�1 |Htq �Kit ¥ rξ � p1 � Lit � θitpξqqs
AI�i

for all t ¥ 1 , where each tθitpξqu converges in probability to a function θipξq, which

converges to zero as ξ approaches zero.

That is, if Ljt converges to one in probability for each j   i ¤ I. Then, in the limit,

the probability of revealing new information about i preferences is small only if the

fraction of extant knowledge about i preferences, Lit, is close to one.18

A.1.1. Proof of Lemma 6.

The proof of Lemma 4, which is a special case of Lemma 6 except for its focus on

the 1 player role in particular, goes through with slight modifications to the notation

developed here for the i ¡ 1 players. Thus, Lemma 6 will be proved directly but not

Lemma 4. For the remainder of this section fix a player role i ¡ 1 .

We focus on dominance-solvable i player subgames. Rather than keep track of all

of these, fix two end-nodes of the i player extensive form and consider subgames in

which particular outcomes are available at these nodes. In particular, enumerate the

terminal nodes of the i subtree as follows. Fix distinct actions a1 , a2 P A. Name

18 Indeed, the probability of revealing new information about i is clearly small whenever

1 � Lit is small. The converse is not as obviously true. Lemma 6, however, provides an

appropriate bound. It decomposes EpKit�1 |Htq�Kit into a factor of 1 �Lit, which accounts

for information yet to be revealed about i preferences, and a residual θitpξq. The residual arises

for two reasons—from i-type subgames in which i player choice does not reveal information

because it is unclear what i players believe about the remaining players’ choices, and because of

outcomes that are avoided by the remaining opponents, making it difficult to reveal information

about i’s preferences over those outcomes.
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“one” an end-node reachable after i chooses a1 , and label “two” one of the end-nodes

reachable after i chooses a2 . Enumerate the remaining end-nodes “3 ” through “Ai”

in some fixed way.

Definition 4: Let Qipz, z
1q be the set of i player subgames with outcome z appended

to “one”, and z1 appended to “two” that satisfy additionally the following. For each

game in Qipz, z
1q the i � 1 player subgames following i’s choice of a1 and a2 are

dominance-solvable (uniquely) resulting in z, and z1, respectively, and moreover one of

the actions a1 , a2 is uniquely dominant for the i players themselves. 19

Definition 5: Let Qit denote all the i player subgames possible in period t,20 and

denote by Q�

it � Qit the subgames for which all 1 , . . . , i � 1 player preferences have

been revealed along Ht.

Definition 6: Let the random variable Nit denote pairs of outcomes pz, z1q available

in period t for which i’s favored among z and z1 has not been revealed along Ht.

Suppose a subgame q P Qipz, z
1qXQ�

it is reached, with zi ¡ z1i. By A4 every i player

there will choose a1 , and moreover, every ToM observer will know that every i player

chose a1 . By the definition of Qipz, z
1q XQ�

it, the backward induction outcomes of the

subgames following a1 and a2 are common knowledge among ToM players. Every ToM

can then infer that zi ¡ z1i, since if it were the case that zi ¤ z1i, a positive fraction of

the ToMs in role i would have chosen some a � a1 rather than a1 .

It follows then that if pz, z1q P Nit and the i players in period t reach a subgame in

Qipz, z
1qXQ�

it, their choice there reveals new information about their preferences. The

fraction of i subgames, among those in Qit, where i choice reveals new information

about i preferences is then bounded below by
°
Nit

|Qipz, z
1q XQ�

it|{|Qit|.

The set of games at date t is just the T -times product of Zt, and each game is drawn

uniformly from this set. The empirical distribution over games realized at date t can

then be replicated by drawing AI�i i-player subgames uniformly and independently

from Qit. There are AI�i i player decision nodes. Therefore,

EpKit�1 �Kit |Htq ¥

�
� ¸
pz,z1qPNit

|Qipz, z
1q XQ�

it|

|Qit|

�

AI�i

. (2)

Consider now some additional required notation.

19 In proving Lemma 4, since there is no subsequent player after the 1 fitness type, define

Q�

1 pz, z
1q as the 1 player subgames with z available at a1 and z1 at a2 , where player 1’s are

not indifferent between z and z1.
20Qit can be identified with the Ai times product of Zt.
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Definition 7: Let Z, and Zt denote the rAi � 2 s-times product of Z, and Zt, re-

spectively. Bold letters x, z, etc., denote elements of Z. Define Zpz, z1q � Z

as follows. The tuple of outcomes x � px1 , . . . , xrq P Zpz, z1q if and only if the

subgame with z at node “one”, z1 at node “two”, x1 at “three”, ..., xr at node

Ai, is in Qipz, z
1q. Define then the functions Etpz, z

1q � |Zipz, z
1q X Zt|{|Zt|, and

Epz, z1q �
³
xPZipz,z1q

fpx1 q � � � fpxrq dx.

Since each i player subgame has Ai endnodes, |Qit| � |Zt|
2 � |Zt|. Thus, for any finite

subset X � Z � Z,

¸
pz,z1qPX

|Qipz, z
1q XQ�

it|

|Qit|
¥

¸
pz,z1qPX

|Qipz, z
1q XQit|

|Qit|
�
|Qit zQ

�

it|

|Qit|

�
¸

pz,z1qPX

|Qipz, z
1q XQit|

|Zt|2 |Zt|
�
|Qit zQ

�

it|

|Qit|

¥
1

|Zt|2

¸
pz,z1qPX

Epz, z1q � sup
pz,z1qPZ�Z

 
Epz, z1q � Etpz, z

1q
(
�
|Qit zQ

�

it|

|Qit|
.

(3)

Write Spξq � tpz, z1q P Z � Z : Epz, z1q   ξu , and let

φt � sup
pz,z1qPZ�Z

 
Epz, z1q � Etpz, z

1q
(
�
|Qit zQ

�

it|

|Qit|
.

Equations (2) and (3) yield

EpKit�1 �Kit |Htq ¥

�
� 1

|Zt|2

¸
pz,z1qPNit zSpξq

Epz, z1q � φt

�
�
AI�i

¥

�
ξ

|Zt|2
pNit � |Spξq X tZt � Ztu |q � φt

�AI�i

�

�
ξ �

�
1 � Lit �

|Spξq X tZt � Ztu |

|Zt|2



� φt

�AI�i
.

(4)

The terms Epz, z1q, Etpz, z
1q and |Qit| are constant in between arrival dates; |Q�

it| is

non-decreasing. We thus define the random variable θitpξq from the claim,

θitpξq �
|Spξq X tZt � Ztu |

|Zt|2
�

1

ξ
� φt.

Lemma 1 implies |Spξq X tZt � Ztu |{|Zt|
2 converges to

³
Spξq fpzqfpz

1qdzdz1, which

tends to zero as ξ approaches zero (recall A2). Furthermore, if Ljt ÝÑ 1 in probability,

then |Qit zQ
�

it|{|Qit| ÝÑ 0 in probability. With that in mind set θipξq from the claim

to
³
Spξq fpzqfpz

1qdzdz1. The claim is then established by the following result.
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Claim 1: Etpz, z
1q almost surely converges uniformly to Epz, z1q. That is

sup
pz,z1qPZ�Z

|Etpz, z
1q � Epz, z1q| ÝÑ 0

almost surely.

Proof. We rely on the result from Potscher and Prucha [7]—

Suppose Et almost surely converges pointwise to E on Z�Z. If E is continuous,

and if the sequence Et is almost surely asymptotically uniformly equicontinuous

on Z � Z, then Et almost surely converges uniformly to E on Z � Z.

The required asymptotically uniform equicontinuity condition is:

lim sup
tÝÑ8

sup
pz,z1qPZ�Z

sup
px,x1qPBpz,z1,ηq

|Etpz, z
1q � Etpx, x

1q| ÝÑ 0 a.s. as η ÝÑ 0 , (5)

where we useBpz, z1, ηq to denote the open ball tpz, z1q P Z � Z : ρppz, z1q, px, x1qq   ηu .

By Lemma 1 Etpz, z
1q almost surely converges pointwise to Epz, z1q. A2 gives Epz, z1q

continuous. We complete the proof by verifying (5).

Define the set Zpz, z1, ηq � Zt such that x P Zpz, z1, ηq if and only if for every

coordinate x of x, both miniPI |xi � zi| ¥ η, and miniPI |xi � z1i| ¥ η. Then, for each

pz, z1q P Z � Z, and each px, x1q P Bpz, z1, ηq,

|Etpz, z
1q � Etpx, x

1q| ¤
|Zt zZpz, z

1, ηq|

|Zt|
� Utpz, z

1, ηq.

Lemma 1 implies Utpz, z
1, ηq almost surely converges uniformly to

Upz, z1, ηq �

»
xPZ zZpz,z1,ηq

fpx1 q � � � fpxrq dx.

Hence,

lim sup
tÝÑ8

sup
pz,z1qPZ�Z

sup
px,x1qPBpz,z1,ηq

|Etpz, z
1q � Etpx, x

1q|

¤ lim
tÝÑ8

sup
pz,zqPZ�Z

Utpz, z
1, ηq ÝÑ sup

pz,z1qPZ�Z
Upz, z1, ηq a.s.

(6)

A2 ensures the limit converges to zero as η ÝÑ 0 . �
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A.1.2. Proof of Lemma 5.

Fix a preference type i P I and assume the hypotheses of the lemma. In the remain-

der we suppress the i subscripts whenever it is possible to do so without confusion.

The proof is given in two parts. The first shows that Lt converges in probability

to a random variable L. The second establishes that L equals one a.e. In order to

establish the convergence of Lt we show that when α ¡ 2 these processes belongs to a

class of generalized sub-martingales with the sub-martingale convergence property. In

particular, we use the following definition and result in this connection [(Egghe, 1984),

Definition VIII.1.3 and Theorem VIII.1.22].

w-submil Convergence: The adapted process pLt, Htq is a weak sub-martingale

in the limit (w-submil) if almost surely, for each η ¡ 0 , there is a n such that

τ ¥ t ¥ n implies P tEpLτ |Htq � Lt ¥ �ηu ¡ 1 � η. If Lt is an integrable w-submil,

then there exists a random variable L such that Lt ÝÑ L in probability.

Part 1: Lt converges in probability to a random variable L. In view of the w-submil

convergence result we show that tLtu is a w-submil under the hypotheses of Lemma 5.

As first step we prove that the arrival date subsequence tLtku is a w-submil. Toward

that end, consider consecutive arrival dates t�, τ�, with τ� ¡ t�. By the definition of Lt,

Lτ� � Lt� �
1

|Zτ� |2

τ��1¸
t�t�

rKt�1 �Kts �
|Zτ� |

2 � |Zt� |
2

|Zτ� |2
� Lt� . (7)

Then, by the hypotheses of the result being proved, for each ξ P p0 , 1 s,

τ��1¸
t�t�

EpKt�1 �Kt |Ht�q

¥
τ��1¸
t�t�

�
ξ � E

�
1 � Lt � θitpξq

���Ht�

	�AI�i

¡ rτ� � t�s �
�
ξ � E

�
1 � Lτ��1 � θit�pξq

���Ht�

	�AI�i
(8)

The third line uses the fact that Lt is non-decreasing between arrival dates, that θitpξq

is non-increasing between arrival dates (see the definition of θitpξq in the statement of

Claim 5).

Combining equations (7) and (8), and using the fact that Lτ� ¥ Lτ��1 �|Zt� |
2{|Zτ� |

2

surely, yields—after some algebra—
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EpLτ� |Ht�q � Lt�   0 ùñ

EpLτ� |Ht�q ¡
|Zt|

2

|Zτ� |2

�
1 � θit�pξq �

1

ξ
�

�
|Zτ� |

2 � |Zt� |
2

τ� � t�

� 1
AI�i

�
� At�pξq.

(9)

The left-hand-side of (9) surely converges to 1 � θitpξq for each ξ P p0 , 1 s. To see

this note that |Zt� |
2{|Zτ� |

2 ÝÑ surely converges to one, and observe that if t� is the

arrival date of the k-th new outcome then

|Zτ� |
2 � |Zt� |

2

τ� � t�
�

p|Z1 | � k � 1 q2 � p|Z1 | � kq2

tp|Z1 | � k � 1 qαu� tp|Z1 | � kqαu
,

which surely converges to zero when α ¡ 2 .

In the remainder hatted variables will be used to denote variables sampled at arrival

dates, e.g., L̂k � Ltk .

We use (9) to prove the following. For each η ¡ 0 there exists an M such that for

all arrival dates tm, tn, such that n ¡ m ¥M ,

P tEpL̂n | Ĥmq � L̂m ¥ �ηu ¡ 1 � η. (10)

To that end suppose for some m and n, that n ¡ m, EpL̂n | Ĥmq   L̂m. Since

EpL̂n | Ĥmq � L̂m �
n�1̧

k�m

EpEpL̂k�1 | Ĥkq � L̂k | Ĥmq,

there is at least one k, with m ¤ k   n�1 , such that EpL̂k�1 | Ĥmq   EpL̂k | Ĥmq. Let r

be the largest integer in tm, , . . . , n� 1 u for which this is the case, i.e., EpL̂k�1 | Ĥmq ¥

EpL̂k | Ĥmq, for each k � r � 1 , . . . , n� 1 . According to (9)

EpL̂r�1 | Ĥmq ¡ EpAtrpξq | Ĥmq.

Hence,

EpL̂n | Ĥmq � L̂m ¡ EpAtrpξq | Ĥmq � L̂m ¥ EpAtrpξq | Ĥmq � 1 .

Now, recall that Atpξq converges surely to 1 � θitpξq which, by the hypothesis of the

claim, converges in probability to 1 � θipξq. We can then choose an arrival M large

enough so that

P tEpAtk
pξq | Ĥmq � 1 ¡ �2 � θipξqu ¡ 1 � 2 � θipξq

for all k and m with k ¡ m ¥M, and thus for k ¡ m ¥M ,

P tEpL̂n | Ĥmq � L̂m ¡ �2 � θipξqu ¡ 1 � 2 � θipξq.
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By assumption θipξq converges to zero as ξ approaches zero. Hence (10) can be

obtained by choosing ξ so that θipξq   η{2 and thus tL̂ku is a w-submil.

Having established that tL̂ku is a w-submil, it remains to show that tLtu is also a

w-submil. Consider any dates t and τ where t   τ. Then

Lτ � Lt ¥ Lτ� � Lt�
|Zt� |

2

|Zτ� |2

everywhere, when t� is the first arrival date after t and τ� is the greatest arrival date

less than or equal to τ. Since tL̂ku is a w-submil and each |Lt| bounded above by 1,

the w-submil convergence result implies Lτ� �Lt� ÝÑ 0 in probability. Furthermore,

|Zt|
2{|Zt�1 |

2 ÝÑ 1 . Hence the right-hand side of the last indented expression con-

verges to zero in probability establishing that tLtu is a w-submil.

Part 2: Lt converges to one in probability. Let L denote the limit, in probability,

of Lt. By the hypotheses of Lemma 5,

EpLtq �
τ�1̧

t�0

E pKt�1 �Ktq {|Zτ |
2

¥ ξA
I�i

�
τ

|Zτ |2
�

�
1

τ

τ�1̧

t�1

�E p1 � Lit � θitpξqq
AI�i

�
.

(11)

It is straightforward to show that

lim
τÝÑ8

1

τ
�
τ�1̧

t�1

E p1 � Lit � θitpξqq
AI�i � E p1 � L� θipξqq

AI�i .

Then, since τ{|Zτ |
2 ÝÑ 8 whenever α ¡ 2 ,21 (11) implies, since Lt is everywhere

bounded by one,

E p1 � L� θipξqq ¤ 0 ,

for all ξ P p0 , 1 s. By assumption θipξq tends to zero as ξ approaches zero, implying

Ep1 � Lq � 0 , and thus L � 1 a.e.

A.2. Proof of Theorem 2.

Recall A2 describing the cdf F on the payoff space rm,M sI and the implied cdf for

games given by G, on the payoff space rm,M sIT .

Definition 8: Let µ denote the measure on games induced by F . In particular, for

each measurable S � Q, µpSq �
³
qPS dGpqq. Let µt denote the corresponding empirical

measure. That is, µtpSq � |S XQt|{|Qt|.

21 Recall that |Zt| � |Z1 | � k whenever tp|Z1 | � kqαu ¤ t   tp|Z1 | � k � 1 qαu therefore

t{|Zt|
2 ¥ |Zt|

α{|Zt|
2 .
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We establish the result of Theorem 2 by showing that the ratio of the population of

any alternative type to that of the SPE-ToM type tends to zero in probability.22 If

the alternative type is a ToM type that differs from SPE-ToM only a set of µ measure

zero, it should simply be identified with SPE-ToM. It also follows that µpS̄q ¡ 0 where

S̄ is the set of games for which player role i has no dominant choice at any node.23

However, the set of games for which player role i has a dominant choice at some but not

all nodes also has positive µ measure. For simplicity, we then rule out the possibility

that the alternative ToM type differs from SPE-ToM with positive probability only

on this set and agrees with it with probability one on S̄.

We recall a key hypothesis of Theorem 2—

A5: For each i ¡ 1 , every alternative i ToM type differs from the SPE-ToM at every

i decision node in a set of games S with positive µ measure.

That is, in the limit, the alternative type will differ from the SPE-ToM on a set of

games that occur with positive probability. What about the naive alternative types?

Any such naive type differs from the SPE-ToM type on S̄ given that the game is

new. That the game is new will be assured with probability that tends to one, so we

effectively assign S � S̄ in this conditional sense.

For the remainder fix a player role i   1 and fix one alternative type to the SPE-ToM

in role i.

Definition 9: Let the random variable Rit be the fraction of the population in player

role i that is SPE-ToM.

The proof of Theorem 2 is by induction on i. It follows from A4 that R1 t � 1 is

satisfied vacuously. The result is then established by proving that if Rjt ÝÑ 1 , in

probability, j � 1 , ..., i� 1 , then Rit converges in probability to one. Assume then in

what follows that Rjt ÝÑ 1 , in probability, j � 1 , ..., i� 1 .

Consider some prerequisites.

Definition 10: The random variable Itpδq P t0 , 1 u is such that Itpδq � 1 if and only

if the game drawn at date t belongs to the set Qδ, where Qδ is the set of games where

the minimum absolute payoff difference for any pair of outcomes, for any player is

greater than δ ¥ 0 .

22 Recall there is a finite number of types.
23 This follows since any game with a dominant choice at some node for i can be mapped to a

game for which this is not true by swapping an outcome in the dominant set of outcomes with

an outcome that is not in this set.
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Definition 11: Define the random variable Dt P t0 , 1 u such that it satisfies the

following. If the alternative is a naive type, then Dt � 1 if and only if the game

drawn at date t is new, and is such that the game has no dominant strategy at any i

decision node. If the alternative is a ToM type, then Dt � 1 if and only if at date t

the alternative type behaves differently from the SPE-ToM at every i role information

set.

The restrictions that define Qδ are measurable, so Qδ itself is measurable. It is an

immediate consequence of Lemma 1 that P tItpδq � 1 |Htu almost surely converges

to µpQδq. Similarly, Lemma 1 implies if the alternative type is a ToM type, then

P tDt � 1 |Htu almost surely converges to µpSq.

Definition 12: The random variable Jtpεq P t0 , 1 u is such that Jtpεq � 1 if and only

if 1) all 1 , . . . , i � 1 player preferences in the game drawn at t have been revealed to

the ToM types; and 2) at each role i� 1 decision node that can be reached by role i,

the fraction of resulting play that reaches an SPE outcome in that subgame is at least

1 � ε.

As a key ingredient in the proof consider the following result.

Claim 2: For each sufficiently small δ ¡ 0 and ε ¡ 0 the following results hold given

that Jtpεq � 1 throughout. i) If the alternative type is a ToM type, given Itpδq � 1

and Dt � 1 as well, then the ratio of the expected payoff of the alternative type to

that of the SPE-ToM is at most 1 � ε
1�ε

M
m � δ

M . ii) If the alternative type is naive,

given Itpδq � 1 and Dt � 1 as well, then the ratio of the expected payoff of the

alternative type to that of the SPE-ToM is at most 1 � ε
1�ε

M
m �

�
1 � 1

A

�
δ
M . iii)

Whenever Itp0 q � 1 , the ratio of the expected payoff of the alternative type—ToM or

naive—to that of the SPE-ToM is at most 1 � ε
1�ε

M
m .

Proof. Fix a date t. Assume Itp0 q � 1 , since this is required in each of the three

claims. Let zphq then be the unique SPE payoff in the continuation game defined by

the i role information set h, at date t. Let mphq be the measure of players that reach

the i role information set h at date t.

Consider i). Since Jtpεq � 1 , at most a fraction ε of any i player cognitive type is

matched with remaining players that do not behave as in the unique pure SPE. When

matched with these non-SPE remaining players, the alternative type’s expected payoff

is at most M . Since Dt � 1 , by assumption, the alternative type chooses differently

from the SPE-ToM at every i information set. The ratio of the expected payoff of the

alternative type to that of the SPE-ToM is then at most�
p1 � εq

¸
h

mphq pzphq � δq � ε �M

�O
p1 � εq

¸
h

mphqzphq .
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Since zphq P rm,M s, i) follows. The proof of ii) relies on a similar argument, the factor

1 � 1 {A arising from naive mixed choice. To establish iii) observe that an alternative

type cannot do better than the SPE-ToM when matched with remaining players that

act as in the unique SPE—i.e., set δ in the expression above to zero. �

Consider the realized one period growth rate of the alternative ToM type relative

to that of the SPE-ToM at date t. (We omit the detailed argument for a naive al-

ternative since it is nearly identical.) In view of Claim 2, this rate is bounded above by

ItpδqJtpεqDt � ln

�
1 �

ε

1 � ε

M

m
�

δ

M




� Itp0 qp1 � ItpδqqJtpεq � ln

�
1 �

ε

1 � ε

M

m




� p1 � Itp0 q � 1 � Jtpεqq � lnM{m.

(12)

To see that the indicator functions here exhaust all possible cases, note first that

the first two terms of the expression apply for every case in which Jtpεq � 1 , and

Itp0 q � 1 , in the light of Claim 2. Then observe that the last term covers cases when

either Jtpεq � 0 or Itp0 q � 0 . The lnM{m factor arising in the cases not covered by

Claim 2 yields an upper bound given that the maximum ratio of expected offspring

for any two types is M{m   8.

By Claim 2, (12) holds for each sufficiently small δ ¡ 0 , and ε ¡ 0 . For the

reminder, fix these numbers so that ε
1�ε

M
m � δ

M   0 .

For any indicator functions A,B, and C, ABC ¥ A � B � C � 2 . Moreover,

Itp0 qJtpεq ¤ 1 . Thus, the quantity expressed in (12) is bounded above by

∆tpδ, εq � pDt � Jtpεq � 1 q � ln

�
1 �

ε

1 � ε

M

m
�

δ

M




� p1 � Itpδqq � ln

��
1 �

ε

1 � ε

M

m

�N�
1 �

ε

1 � ε

M

m
�

δ

M

� 


� p1 � Itp0 q � 1 � Jtpεqq � lnM{m.

(13)

The ratio of the population of the alternative type to that of the SPE-ToM at date

τ is then bounded above by the random variable r0 � rτ , where ln rτ ¤
°τ
t�1 ∆tpδ, εq.

The result is established by showing that
°τ
t�1 ∆tpδ, εq{τ converges in probability to

a negative constant for suitably chosen δ ¡ 0 and ε ¡ 0 satisfying ε
1�ε

M
m � δ

M   0 .

We rely on the following claims.

Claim 3: Suppose α ¡ 2 . IfRjt ÝÑ 1 in probability, j � 1 , ..., i�1 , then 1
τ

°τ
t�1 Jtpεq

converges in probability to one, for each ε ¡ 0 .
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Proof. Fix ε P p0 , 1 s. If α ¡ 2 , then Theorem 1 applies. Under the hypothe-

ses of the claim Jtpεq ÝÑ 1 in probability. Thus EpJtpεqq tends to one. Then

Ep1τ
°τ
t�1 Jtpεqq ÝÑ 1 . Since Jtpεq ¤ 1 everywhere it follows that 1

τ

°τ
t�1 Jtpεq con-

verges to one in probability. �

Claim 4: i) 1
τ

°τ
t�1 Itpδq almost surely converges to µpQδq. ii) Suppose α   T and

that the alternative is a naive type. Let µ� be the measure of games where i has no

dominant action at any node. Then 1
τ

°τ
t�1 Dt converges in probability to µ�. iii)

Assume A5. If the alternative is a ToM, then 1
τ

°τ
t�1 Dt almost surely converges to

µpSq ¡ 0 , where S is as described in A5.

Proof. Consider i). Lemma 1 implies EpItpδq|H8q converges to µpQδq for almost

every complete history H8. Hence, 1
τ

°τ
t�1 EpItpδq|H8q ÝÑ µpQδq almost surely in

H8. The random variables pItpδq|H8q are independent, and the sequence satisfies

Kolmogorov’s criterion. The strong law of large numbers implies 1
τ

°τ
t�1 rpItpδq|H8q�

EpItpδq|H8qs ÝÑ 0 , for almost every H8. Hence 1
τ

°τ
t�1 pItpδq|H8q ÝÑ µpQδq, for

almost every H8, so that 1
τ

°τ
t�1 Itpδq ÝÑ µpQδq. This completes the proof of i). A

similar proof establishes iii).

Consider now ii). Assume the alternative is a naive type. Define the random vari-

able At such that At � 1 if the game drawn at date t is new, and let At � 0 otherwise.

Let Bt equal one if the game realized at t has no dominant strategy for role i at any

i information set; let Bt be one otherwise. For any indicator functions A and B,

A�B � 1 ¤ AB ¤ B. Hence, surely

1

τ

τ̧

t�1

pAt � 1 q �
1

τ

τ̧

t�1

Bt ¤
1

τ

τ̧

t�1

Dt ¤
1

τ

τ̧

t�1

Bt. (14)

EpAtq is just Ep1�γtq, where γt is the fraction of games played previously among those

available at date t. Whenever α   T , γt surely converges to zero (Theorem 1). Clearly

then, Ep1τ
°τ
t�1 Atq ÝÑ 1 , whenever α   T . Since At is surely bounded above by one,

it follows that 1
τ

°τ
t�1 At ÝÑ 1 , in probability, whenever α   T . In light of (14) it then

suffices to show that 1
τ

°τ
t�1 Bt tends to µ�. To see this is in fact the case note first that

Lemma 1 implies that EpBt|H8q converges to µ� for almost every complete historyH8.

Then note that the random variables pBt|H8q are independent, for each H8, and that

the sequence satisfies Kolmogorov’s criterion. Thus, 1
τ

°τ
t�1 rpBt|H8q�EpBt|H8qs ÝÑ

0 , so that 1
τ

°τ
t�1 pBt|H8q ÝÑ µ�, so 1

τ

°τ
t�1 Bt ÝÑ µ�, almost surely. �

Claims 3 and 4 (using also (13) and the fact that µpQδq converges to one as δ tends

to zero) then give that
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1

τ

τ̧

t�1

∆tpδ, εq ÝÑ µpSq � ln

�
1 �

ε

1 � ε

M

m
�

δ

M




� p1 � µpQδqq � ln

��
1 �

ε

1 � ε

M

m

�N�
1 �

ε

1 � ε

M

m
�

δ

M

� 

,

(15)

in probability.

We can choose ε ¡ 0 and δ ¡ 0 so that ε
1�ε

M
m � δ

M   0 , and simultaneously the

limiting value in (15) is negative. That is, choose a δ such that µpSq � lnp1 � δ
M q �

p1 � µpQδqq � lnp1 {r1 � δ
M sq   0 , and then choose a sufficiently small but positive ε.

This completes the proof of Theorem 2 since for such ε and δ, we have shown ln rτ
τ is

bounded above, in the limit, in probability, by a negative constant. Hence rτ ÝÑ 0 ,

in probability.
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B. Instructions

Page 1

In this experiment you will participate in a series of two person decision problems. The experiment

will last for a number of rounds. Each round you will be randomly paired with another individual.

The joint decisions made by you and the other person will determine how much money you will earn

in that round.

Your earnings will be paid to you in cash at the end of the experiment. We will not tell anyone

else your earnings. We ask that you do not discuss your earnings with anyone else.

If you have a question at any time, please raise your hand.

Page 2

You will see a diagram similar to one on your screen at the beginning of the experiment. You and

another person will participate in a decision problem shown in the diagram.

One of you will be Person 1 (orange). The other person will be Person 2 (blue). In the upper left

corner, you will see whether you are Person 1 or Person 2.

You will be either a Person 1 or a Person 2 for the entire experiment.

Page 3

Notice the four pairs of squares with numbers in them; each pair consists of two earnings boxes.

The earnings boxes show the different earnings you and the other person will make, denoted in

Experimental Dollars. There are two numbers, Person 1 will earn what is in the orange box, and

Person 2 will earn what is in the blue box if that decision is reached.

In this experiment, you can only see the earnings in your own box. That is, if you are Person

1 you will only see the earnings in the orange boxes, and if you are Person 2 you will only see the

earnings in the blue boxes. Both boxes will be visible, but the number in the other persons box will

be replaced with a “?”.

However, for each amount that you earn, the amount the other person earns is fixed. In other

words, for each amount that Person 1 sees, there is a corresponding, unique amount that will always

be shown to Person 2.

For example, suppose Person 1 sees an earnings box containing “12” in round 1. In the same pair,

suppose Person 2 sees “7”. Then, at any later round, anytime Person 1 sees “12”, Person 2 will see

“7”.
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Together, you and the other person will choose a path through the diagram to an earnings box.

We will describe how you make choices next.

Page 4

A node, displayed as a circle and identified by a letter, is a point at which a person makes a

decision. Notice that the nodes are color coded to indicate whether Person 1 or Person 2 will be

making that decision. You will always have two options.

If you are you Person 1 you will always choose either “Right” or “Down”, which will select a node

at which Person 2 will make a decision.

If you are Person 2 you will also choose either “Right” or “Down” which will select a pair of

earnings boxes for you and Person 1.

Once a pair of earnings boxes is chosen, the round ends, and each of you will be able to review the

decisions made in that round.

Page 5

In each round all pairs will choose a path through the same set of nodes and earnings boxes. This

is important because at the end of each round, in addition to your own outcome, you will be able to

see how many pairs ended up at each other possible outcome.

While you review your own results from a round, a miniature figure showing all possible paths

through nodes and to earnings boxes will be displayed on the right hand side of the screen.

The figure will show how many pairs chose a path to each set of earnings boxes.

The Payoff History table will update to display your payoff from the current period.

Page 6

We have provided you with a pencil and a piece of paper on which you may write down any

information you deem relevant for your decisions. At the end of the experiment, please return the

paper and pencil to the experimenter.

At the end of the experiment, we will randomly choose 2 rounds for payment, and your earnings

from those rounds will be summed and converted to $CAD at a rate of 1 Experimental Dollar = $2.

Important points:

You will be either a Person 1 or a Person 2 for the entire experiment.
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Each round you will be randomly paired with another person for that round.

Person 1 always makes the first decision in a round.

Person 1’s payoff is in the orange earnings box and Person 2’s in the blue earnings box.

Each person will only be able to see the numbers in their own earnings box.

Earnings always come in unique pairs so that for each amount observed by Person 1, the

number observed by Person 2 will be fixed.

In a given round, all pairs will choose a path through the same set of nodes and earnings boxes.

After each round you will be able to see how many pairs ended up at each outcome.

We will choose 2 randomly selected periods for payment at the end of the experiment.

Any questions?
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C. Screenshots

Figure C1: Screenshot for Player 1. This figure shows the screen as

player 1 sees it prior to submitting his choice of action. The yellow highlighted

node indicates that player 1 has provisionally chosen the corresponding action,

but the decision is not final until the submit button is clicked. While waiting

for player 1 to choose, player 2 sees the same screen except that she is unable

to make a decision, provisional choices by player 1 are not observable, and

the “Submit” button is invisible.
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Figure C2: Screenshot for Player 2. This figure shows the screen as

player 2 sees it after player 1 has chosen an action. Here, player 1 chose to

move down, so the upper right portion of the game tree is no longer visible.

While player 2 is making a decision, player 1 sees an identical screen except

that he is unable to make a decision and the “Submit” button is invisible.
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Figure C3: Screenshot of Post-Decision Review. This figure shows

the final screen subjects see in each period after both player 1 and player 2

have made their decisions. The smaller game tree in the upper right portion

of the figure displays information about how many pairs ended up at each

outcome. For the purposes of the screenshot, the software was run with only

one pair, but in a typical experiment, subjects learned about the decisions of

4 pairs (3 other than their own).
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D. Autism-Spectrum Quotient Questionnaire

1. I prefer to do things with others rather than on my own. [1] [2] [3] [4]

2. I prefer to do things the same way over and over again. [1] [2] [3] [4]

3. If I try to imagine something, I find it very easy to create a picture in my mind. [1] [2] [3] [4]

4. I frequently get so absorbed in one thing that I lose sight of other things. [1] [2] [3] [4]

5. I often notice small sounds when others do not. [1] [2] [3] [4]

6. I usually notice car number plates of similar strings of information. [1] [2] [3] [4]

7. Other people frequently tell me that what I’ve said is impolite, even though I think it is polite. [1] [2] [3] [4]

8. When I’m reading a story, I can easily imagine what the characters might look like. [1] [2] [3] [4]

9. I am fascinated by dates. [1] [2] [3] [4]

10. In a social group, I can easily keep track of several different people’s conversations. [1] [2] [3] [4]

11. I find social situations easy. [1] [2] [3] [4]

12. I tend to notice details that others do not. [1] [2] [3] [4]

13. I would rather go to a library than a party. [1] [2] [3] [4]

14. I find making up stories easy. [1] [2] [3] [4]

15. I find myself drawn more strongly to people than to things. [1] [2] [3] [4]

16. I tend to have very strong interests, which I get upset about if I can’t pursue. [1] [2] [3] [4]

17. I enjoy social chit-chat. [1] [2] [3] [4]

18. When I talk, it isn’t always easy for others to get a word in edgeways. [1] [2] [3] [4]

19. I am fascinated by numbers. [1] [2] [3] [4]

20. When I’m reading a story I find it difficult to work out the characters’ intentions. [1] [2] [3] [4]

21. I don’t particularly enjoy reading fiction. [1] [2] [3] [4]

22. I find it hard to make new friends. [1] [2] [3] [4]

23. I notice patterns in things all the time. [1] [2] [3] [4]

24. I would rather go to the theatre than a museum. [1] [2] [3] [4]

25. It does not upset me if my daily routine is disturbed. [1] [2] [3] [4]

26. I frequently find that I don’t know how to keep a conversation going. [1] [2] [3] [4]

27. I find it easy to “read between the lines” when someone is talking to me. [1] [2] [3] [4]

28. I usually concentrate more on the whole picture, rather than the small details. [1] [2] [3] [4]

29. I am not very good at remembering phone numbers. [1] [2] [3] [4]

30. I don’t usually notice small changes in a situation, or a person’s appearance. [1] [2] [3] [4]

31. I know how to tell if someone listening to me is getting bored. [1] [2] [3] [4]

32. I find it easy to do more than one thing at once. [1] [2] [3] [4]

33. When I talk on the phone, I’m not sure when it’s my turn to speak. [1] [2] [3] [4]

34. I enjoy doing things spontaneously. [1] [2] [3] [4]

35. I am often the last to understand the point of a joke. [1] [2] [3] [4]

36. I find it easy to work out what someone else is thinking or feeling just by looking at their face. [1] [2] [3] [4]

37. If there is an interruption, I can switch back to what I was doing very quickly. [1] [2] [3] [4]

38. I am good at social chit-chat. [1] [2] [3] [4]

39. People often tell me that I keep going on and on about the same thing. [1] [2] [3] [4]

40. When I was young, I used to enjoy playing games involving pretending with other children. [1] [2] [3] [4]

41. I like to collect information about categories of things (e.g. types of car, types of bird, [1] [2] [3] [4]

types of train, types of plant, etc.

42. I find it difficult to imagine what it would be like to be someone else. [1] [2] [3] [4]

43. I like to plan any activities I participate in carefully. [1] [2] [3] [4]

44. I enjoy social occasions. [1] [2] [3] [4]

45. I find it difficult to work out people’s intentions. [1] [2] [3] [4]

46. New situations make me anxious. [1] [2] [3] [4]

47. I enjoy meeting new people. [1] [2] [3] [4]

48. I am a good diplomat. [1] [2] [3] [4]

49. I am not very good at remembering people’s date of birth. [1] [2] [3] [4]

50. I find it very easy to play games with children that involve pretending. [1] [2] [3] [4]

1 � definitely agree, 2 � slightly agree, 3 � slightly disagree, 4 � definitely disagree
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E. Broad Autism Phenotype Questionnaire

1  I like being around other people. 1 2 3 4 5 6

2  I find it hard to get my words out smoothly. 1 2 3 4 5 6

3  I am comfortable with unexpected changes in plans. 1 2 3 4 5 6

4  It’s hard for me to avoid getting sidetracked in conversation. 1 2 3 4 5 6

5  I would rather talk to people to get information than to socialize. 1 2 3 4 5 6

6 People have to talk me into trying something new. 1 2 3 4 5 6

7 I am “in-tune” with the other person during conversation.* 1 2 3 4 5 6

8 I have to warm myself up to the idea of visiting an unfamiliar place. 1 2 3 4 5 6

9 I enjoy being in social situations. 1 2 3 4 5 6

10 My voice has a flat or monotone sound to it. 1 2 3 4 5 6

11 I feel disconnected or “out of sync” in conversations with others.* 1 2 3 4 5 6

12 People find it easy to approach me.* 1 2 3 4 5 6

13 I feel a strong need for sameness from day to day. 1 2 3 4 5 6

14 People ask me to repeat things I’ve said because they don’t understand. 1 2 3 4 5 6

15 I am flexible about how things should be done. 1 2 3 4 5 6

16 I look forward to situations where I can meet new people. 1 2 3 4 5 6

17 I have been told that I talk too much about certain topics. 1 2 3 4 5 6

18 When I make conversation it is just to be polite.* 1 2 3 4 5 6

19 I look forward to trying new things. 1 2 3 4 5 6

20 I speak too loudly or softly. 1 2 3 4 5 6

21 I can tell when someone is not interested in what I am saying.* 1 2 3 4 5 6

22 I have a hard time dealing with changes in my routine. 1 2 3 4 5 6

23 I am good at making small talk.* 1 2 3 4 5 6

24 I act very set in my ways. 1 2 3 4 5 6

25 I feel like I am really connecting with other people. 1 2 3 4 5 6

26 People get frustrated by my unwillingness to bend. 1 2 3 4 5 6

27 Conversation bores me.* 1 2 3 4 5 6

28 I am warm and friendly in my interactions with others.* 1 2 3 4 5 6

29 I leave long pauses in conversation. 1 2 3 4 5 6

30 I alter my daily routine by trying something different. 1 2 3 4 5 6

31 I prefer to be alone rather than with others. 1 2 3 4 5 6

32 I lose track of my original point when talking to people. 1 2 3 4 5 6

33 I like to closely follow a routine while working. 1 2 3 4 5 6

34 I can tell when it is time to change topics in conversation.* 1 2 3 4 5 6

35 I keep doing things the way I know, even if another way might be better. 1 2 3 4 5 6

36 I enjoy chatting with people. 1 2 3 4 5 6

You are about to fill out a series of statements related to personality and lifestyle. For each question, circle 
that answer that best describes how often that statement applies to you. Many of these questions ask 
about your interactions with other people. Please think about the way you are with most people, rather 
than special relationships you may have with spouses or significant others, children, siblings, and parents. 
Everyone changes over time, which can make it hard to fill out questions about personality. Think about 
the way you have been the majority of your adult life, rather than the way you were as a teenager, or times 
you may have felt different than normal. You must answer each question, and give only one answer per 
question. If you are confused, please give it your best guess.

1—very rarely

2—rarely

3—occasionally 

4—somewhat often  

5—often 

6—very often

BAPQ

*Casual interaction with acquaintances, rather than special relationships such as with close friends and family members
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F. Additional Tables and Figures

6-10-1 7-8-1 7-8-2 7-10-1 7-10-2 7-8-3 7-6-1 7-8-4 7-10-3 7-8-5

Pairs SPE 0.84 0.68 0.54 0.62 0.61 0.63 0.44 0.51 0.46 0.68

P1 SPE 0.87 0.72 0.59 0.64 0.71 0.67 0.54 0.61 0.54 0.70

P1 Heur 0.52 0.36 0.40 0.42 0.38 0.42 0.45 0.34 0.55 0.43

P1 SPE | heur � SPE 0.79 0.64 0.52 0.55 0.58 0.55 0.36 0.49 0.37 0.64

P1 SPE | heur � SPE 0.89 0.81 0.60 0.86 0.74 0.88 0.71 0.58 0.75 0.78

P1 SPE | No Heur 0.88 0.71 0.69 0.65 0.72 0.70 0.49 0.56 0.57 0.74

P2 Dom 0.95 0.94 0.90 0.98 0.86 0.94 0.84 0.85 0.82 0.97

P2 SPE | P1 SPE 0.96 0.94 0.91 0.98 0.87 0.94 0.83 0.84 0.86 0.96

Table F1: Observed Probability of Outcomes by Session.

Each entry is a probability that we observed a particular outcome in a particular session. Pairs

SPE refers to the probability that a pair ended at the SPE. P1 SPE is the probability that player

1’s choice was consistent with the SPE. P1 Heur is the probability that Player 1 chose in a manner

consistent with the “highest mean” rule of thumb (heuristic). P1 SPE | heur � SPE is the probability

that player one followed the SPE when it did not correspond to the “highest mean” rule of thumb. P1

SPE | heur � SPE is the probability that player one followed the SPE when it did correspond to the

“highest mean” rule of thumb. P1 SPE | No Heur is the probability that player 1 followed the SPE

when the rule of thumb was inapplicable (i.e. equal means). P2 Dom is the probability that player

2 chose the dominant strategy. P2 SPE | P1 SPE is the conditional probability of player 2 choosing

the dominant strategy given that player 1 followed the SPE. Sessions are labeled in the format # of

Payoffs – # of Subjects – Session ID so that 7-10-2 corresponds to the 2nd session with 7 payoff pairs

and 10 subjects.
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