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Fictive Learning in Choice under Uncertainty: A

Logistic Regression Model

Donald Brown, Oliver Bunn, and Caterina Calsamiglia

March 21, 2014

Abstract

This paper is an exposition of an experiment on revealed preferences, where

we posite a novel discrete binary choice model. To estimate this model, we

use general estimating equations or . This is a methodology originating

in biostatistics for estimating regression models with correlated data. In this

paper, we focus on the motivation for our approach, the logic and intuition

underlying our analysis and a summary of our findings. The missing technical

details, including proofs, are in the working paper by Bunn, et al (2013).

The experimental data is available from the corresponding author: don-

ald.brown@yale.edu. The recruiting poster and the informed consent form are

included as appendices to the section on Experimental Protocols.

JEL Classification: C23, C35, C91, D03

Keywords: Counterfactual outcomes, Odds ratios, Alternating logistic regression

1 Introduction

We propose and analyze a revealed preference experiment on fictive learning in choice

under uncertainty, where subjects are offered a sequence of binary choices between

risky and ambiguous binary lotteries. Subjects know the relative frequencies of risky

payoffs, but are ignorant of the relative frequencies of ambiguous payoffs. Inspired by

Ellsberg’s well known two-urn paradox (1961), where if the risky and ambiguous urn

have the same payoffs then optimistic subjects choose the ambiguous urn and pes-

simistic subjects choose the risky urn, Bracha and Brown (2012) introduced affective

utilities as representations of a subject’s optimism or pessimism in making binary

choices under uncertainty. We assume that subjects are endowed with random utility

functions, where they evaluate risky lotteries with expected utility and ambiguous

lotteries with affective utility. Subjects chose the risky lottery if its expected utility

exceeds the affective utility of the ambiguous lottery by some random threshold.

Each subject’s sequence of binary choices is divided into three phases: pre-

learning, learning and post-learning. In the learning phase, the payoffs of actual and

counterfactual choices are revealed to subjects. No payoffs are revealed to subjects

in the pre-learning and the post-learning phases. The subjects in our experiment are
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Yale undergraduates, randomly assigned to a control group or a treatment group. In

the treatment group, subjects are exposed to the factual and counterfactual payoffs of

lotteries in the learning phase, allowing subjects to estimate the relative frequencies

of ambiguous payoffs. In the control group, subjects are exposed to noisy factual

and counterfactual payoffs of ambiguous lotteries in the learning phase, where they

cannot estimate the relative frequencies of ambiguous payoffs.

Conditioning current choices under uncertainty on counterfactual payoffs of pre-

vious choices, i.e., fictive learning, is well documented in  studies of gambling

behavior in humans – see Lohrenz et al. (2007) and decision-making under uncer-

tainty in monkeys – see Hayden et al. (2009). Recently Boorman et al. (2011)

identified neural circuits for counterfactual payoffs and fictive learning. A common

practice in experimental studies of decision-making under uncertainty, such as the

 studies in Huettel et al. (2006) and Levy et al. (2009) is to posit a cross-

sectional model for the experimental data. Unfortunately, a cross-sectional analysis

ignores that each subject’s repeated binary responses are correlated. In fact, this is

the generic property of most revealed preference experiments in neuroeconomics.

Recently, Li et al. (2008) proposed the longitudinal analysis of neuroimaging data

with general estimating equations (), due to Liang and Zeger (1986) and Zeger

and Liang (1986). Li et al. argue that the existing statistical methods for analyzing

neuroimaging data are primarily developed for cross-sectional neuroimaging studies

and not for panel neuroimaging data. We find this critique of the current practice

in neuroimaging studies equally compelling as a critique of the current statistical

practice in neuroeconomic studies of revealed preferences for risk and ambiguity. To

this end, we propose a marginal longitudinal model of revealed preferences for risk

and ambiguity, where for each subject the covariates in each trial are the payoffs of

the ambiguous lottery and the payoffs and probabilities of payoffs of the risky lottery.

Two of the frequently used models for discrete repeated measurements of ex-

perimental outcomes are: mixed effects models, used extensively in econometrics to

estimate individual specific parameters, and marginal models, where the regression

coefficients are population parameters of subgroups. For a lucid discussion of the rel-

ative merits and limitations of the two approaches we recommend the lecture notes

of Fitzmaurice published in power point on the internet under the title: Applied

Longitudinal Analysis: Contrasting Marginal and Mixed Effects Models.

General estimating equations or  is a widely used methodology in biostatistics

for estimating the population-specific parameters in a marginal model. The 

approach has a number of appealing properties for estimation of the regression coef-

ficients in marginal models. First, we need only make assumptions on the first two

moments of the distribution of the vector of responses. The  estimates of the

regression coefficients are consistent and asymptotically normal, where the covariance

matrix is consistently estimated using a sandwich estimator, even if the within sub-

ject associations among the repeated measurements have been misspecified. In many

cases,  is almost as efficient as maximum likelihood estimation. We interpret

the parameters in the marginal model as population averages in a given group.

There is an important difference between the application of longitudinal analysis
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to neuroimaging data, where the within-subject association of responses is considered

a nuisance and our application of longitudinal analysis. In our experiment, subjects

make a sequence of binary choices between risky and ambiguous binary lotteries. For

paired binary data, Lipsitz et al. (1991) introduced odds ratios as a measure of the

within-subject association of binary responses. We use alternating logistic regression

(), as proposed by Carey et al. (1993), with constant log odds ratios () as

the within-subject association of responses in each phase of the sequence of binary

choices to estimate the regression equations for both the first and second moments

of the marginal model. In  the within-subject association of responses is not a

nuisance for our model, but an essential part of the longitudinal analysis. It is the

within-subject association of responses as log odds that allows us to test for fictive

learning in the revealed preferences derived from the dependent, clustered responses

of subjects.

We define fictive learning for each group as statistically significant changes in

the responses of subjects before and after exposure to in the learning phase of the

experiment. In each group, we estimate a constant () of the odds of choosing the

risky lottery in a trial in the post-learning phase, conditional on the choice in a trial

in the pre-learning phase. Our null hypotheses is the absence of fictive learning in the

learning phase for each group. For the treatment group, we reject the null hypothesis

that the , is zero, i.e., there is fictive learning in the learning phase. This finding

is significant at the 1% level. The significant fictive learning in the treatment group,

given the sample data in the learning phase is as expected. The surprising finding

in our experiment is that we also reject the null hypothesis that the between

trials in the pre and post learning phases in the control group, is also zero, i.e.,

there is fictive learning in the learning phase for the control group. We expected no

fictive learning for the control group. Again the finding is significant at the 1% level.

A possible but problematic explanation of the choice behavior of the control group

is apophenia: “seeing meaningful patterns in meaningless or random data.” For an

evolutionary rational of this type of behavior, see Shermer’s article “Patternicity:

Finding Meaningful Patterns in Meaningless Noise” in Scientific American

(2008).

Whatever subjects in the two groups “learn” in the treatment phase, we can ask

if the effects of the treatments are significantly different between groups. To compare

the effects of the treatment phase in each group, we use the log-odds-ratio test pro-

posed in chapter 10 of Fleiss et al. (2004). The analysis begins with the calculation of

whatever the subjects in the two groups “learn” from the treatment phase, then we

ask if the effects of the two treatments are significantly different. The null hypothesis

is that the , between trials in the pre and post learning phases, in the treatment

group and the , between trials in the pre and post learning phases, in the control

group are equal. We reject the null at the 1% level. That is, the fictive learning in the

two groups produced significantly different choices in the post learning phase relative

to the choices in the pre-learning phase. See the working paper for details. A more

dramatic illustration of the different effects of fictive learning in the two groups are

the box plots in figure 1. That is, if we plot the amount of time where the ambiguous
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lottery is chosen in each phase of the experiment then the curve is a piece-wise linear

concave function for the treatment group and a piece-wise linear convex function for

the control group.

Figure 1

2 Experimental Protocols

To test for the presence of fictive learning in revealed preferences for risk and ambigu-

ity, we propose an experiment on revealed preferences for choices under uncertainty,

consisting of 36 Yale undergraduates as subjects randomly chosen from the 2011 Yale

Fall term. Each subject makes a sequence of 100 binary choices between risky and

ambiguous lotteries. Risky lotteries are defined as lotteries where the relative fre-

quencies of outcomes are known. Ambiguous lotteries are lotteries where the relative

frequencies of outcomes are unknown.

The experiment is divided into three phases. Subjects face the same sequence of

30 binary choices between risky and ambiguous lotteries in the first and third phase

of the experiment. That is, the trials in phase 1 and phase 3 are clustered matched-

pairs, but the lotteries in phase 1 and 3 for the two groups are independent. To
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test for fictive learning, we reveal to each subject the outcomes of her 40 actual and

counterfactual choices in phase 2 In the treatment group, the relative frequencies

of counterfactual ambiguous outcomes in phase 2 are relatively easy to learn, using

sample averages of the outcomes of the ambiguous lotteries. In the control group,

the relative frequencies of counterfactual ambiguous outcomes in phase 2 are quite

difficult, if not impossible, to learn, since the sample averages do not converge. See

the working paper for a formal proof. The binary choices in phase 2 are the same in

both groups and independent of the binary choices in phases 1 and 3 Subjects are

unaware that they will be exposed to counterfactual outcomes in phase 2 before they

are presented binary choices in phase 3. In particular, subjects do not know if the

relative frequencies of outcomes of ambiguous lotteries in phase 2 is a sample average

of the probabilities of ambiguous outcomes in phase 1 and 3. In fact, they are in the

treatment group, but not in the control group.

No outcomes are revealed to subjects in the first and third phase of the experi-

ments. The lotteries are displayed as pie graphs on each subject’s computer screen.

Probabilities for the risky lotteries are displayed. The probabilities determining the

payoffs of ambiguous lotteries are constant in phase 1 and phase 3 of both exper-

iments, but never revealed to the subjects. We randomly vary the placement and

colors of the lotteries on the computer screen to control for positional bias. We ran-

domly choose one group of 17 students from the 36 students as the treatment group.

At the end of the experiment, a trial is randomly chosen for each subject and the

subject is given the payoff of her choice.

We define fictive learning for each group as statistically significant changes in

the responses of subjects before and after exposure to outcomes in phase 2 of the

experiment. In each group, we estimate a constant log odds ratio () of the odds

of choosing the risky lottery in a trial in phase , conditional on the choice in a trial

in phase . We use  in  with the  option to estimate the

regression equations for both the first and second moments of the marginal model.

We assume the  is constant in phase 1; phase 2; phase 3; between phases 1 and

2; between phases 1 and 3 and between phases 2 and 5. In , the odds ratio for

each pair of trials is

(  = 1;  = 1)(  = 0;  = 0)

(  = 1;  = 0)(  = 0;  = 1)
=

( =1| =1)
( =0| =1)
( =1| =0)
( =0| =0)

where  is the subject index and  and  are the indices of the trials.  = 1 means

subject  choose the risky lottery in trial .

The recruiting poster and informed consent form are attached as appendices.

3 A Marginal Analysis of Fictive Learning

In Ellsberg’s well-known two-color paradox (1961), where the risky and the ambiguous

urn have the same payoffs, optimistic subjects choose the ambiguous urn, where

the relative proportions of the black and white balls are unknown, and pessimistic
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subjects choose the risky urn, where the relative proportions of the black and white

balls are known. Recently, Bracha and Brown (2012) introduced affective utilities

where optimistic subjects are endowed with a convex affective utility function and

pessimistic subjects are endowed with a concave affective utility function. In their

model  is a proxy for risk-aversion and  is a proxy for ambiguity-aversion. The

concavity (convexity) of the utility functions in this class of non-expected utility

functions depends on the ratio of  and  In our model we restrict attention to the

parametric class of linear-quadratic concave (convex) utility functions introduced by

Rockafellar (1987).

This is the technical section of the working paper and we limit our exposition to

a discussion of the results and refer the reader to the working paper for technical

details, such as proofs. We denote risky lotteries as  and ambiguous lotteries as  ,

where

 ≡ (1 2;1 2) and  ≡ (1 2)
Subjects evaluate risky lotteries, , using expected utility:

(()) ≡ 1
(1) + 2

(2)

where the Bernoulli utility function.




() ≡  +


2
2 and  is the proxy for risk-aversion.

If




(1) = 1 +


2
21 and 


(2) = 2 +



2
22

then


(()) = (11 + 22) +



2
[1

2
1 + 2

2
2]

Subjects evaluate ambiguous lotteries,  , using affective utility:


( ) ≡ (1 + 2)+

[− ]

2
[21 + 22]

In the parametric specification of 
( ), the affective utility of the ambiguous

lottery  ,  is the proxy for risk-aversion and  is the proxy for ambiguity-aversion

In each binary choice between a risky and an ambiguous lottery, we assume that

subjects choose the lottery that maximizes random utility, where the parametric

nonrandom components of the random utility of a risky and an ambiguous lottery

are 
(()) and 

( ). These are linear-quadratic multivariate functions.

The important technical aspect of the linear-quadratic formulation is that for any pair

of risky and ambiguous lotteries, the difference in the expected utility of the risky

lottery and the affective utility of the ambiguous lottery is linear in the parameters.

The binary discrete choice model is a generalized linear model where the link function

is a cdf. In this paper, the link function is the logistic cdf. The argument of the link

function is the difference of the parametric nonrandom components of the random

utility of a risky and an ambiguous lottery. If the nonrandom component of the
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random utility function is linear in the parameters, then the log-likelihood is strictly

concave in the parameters defining the nonrandom components of the random utility

function.

Φ( ) the argument of the logistic cdf, is the difference of the expected

utility of the risky lottery  = (1 2;1 2) and the affective utility of the ambigu-

ous lottery  = (1 2). Hence the choice probability for , ( ) is

implicitly defined by the logistic cdf

Λ[Φ] ≡ expΦ

1 + expΦ

where

Φ( ) ≡ log ( )

1− ( )
= [

(())− 
(( ))]

is the log-odds of choosing 

[
(())− 

(( ))]

= (11 + 22) +


2
[1

2
1 + 2

2
2]−

½
(1 + 2) +

[− ]

2
[21 + 22]

¾

( ) =
exp[

()− 
(( ))]

(1 + exp[
()− (( ))])

( ) is the explicit probability of choosing the risky lottery  in the

pair-wise comparison between the risky lottery  and the ambiguous lottery  . In

each experiment, let  = 1 if the risky lottery is chosen by subject  in trial  and

0 otherwise, then the density of  is

[( )]
 [1− ( )]

1−

We estimate the regression parameters for each phase of the experiment:

 ≡ (1 2 3;1 2 3;123;123) ∈ 12

in the marginal model, using generalized estimating equations (). Our pri-

mary reference is the monograph on applied longitudinal analysis by Fitzmaurice et

al. (2011). See the working paper for details.

7



Table 1. Analysis of GEE Parameter Estimates: Treatment Group

Standard 95% confidence

Estimates error limits  Pr  ||
1 21074 03118 14863 27186 676  00001

2 14113 02397 09416 18810 589  00001

3 17255 02616 12127 22383 659  00001

1 −00955 00172 −01292 −00617 −554  00001

2 −00507 00125 −00752 −00261 −404  00001

3 −00697 00150 −00992 −00402 −464  00001

1 08134 01418 05355 10914 574  00001

2 06000 01217 03615 08385 493  00001

3 06250 01303 03695 08804 480  00001

1 −00206 00072 −00347 −00065 −287  00041

2 −00103 00068 −00236 00030 −151  01300

3 −00090 00071 −00229 00048 −128  02016

Table 2. Analysis of GEE Parameter Estimates: Control Group

Standard 95% confidence

Estimates error limits  Pr  ||
1 16809 03058 10815 22803 550  00001

2 14511 02580 09454 19568 562  00001

3 14122 03367 07513 20711 419  00001

1 −00661 00156 −00966 −00355 −424  00001

2 −00525 00147 −00813 −00238 −358  00003

3 −00526 00172 −00863 −00189 −306  00022

1 07642 01503 04697 10587 509  00001

2 06261 01408 03501 09022 445  00001

3 00587 01821 02117 09256 312  00018

1 −00195 00080 −00351 −00039 −244  00145

2 −00134 00083 −00296 00028 −162  01055

3 −00094 00099 −00287 00100 −095  03442

In the working paper, we show that the estimated parameter values are consistent

with the concavity and monotonicity of the Bernoulli utilities of wealth and consistent

with the convexity and monotonicity of the affective utility for each group. That is,

both the treatment group and the control group are (on average) risk-averse, but

both groups are (on average) optimistic.

The odds ratio in  is

(  = 1;  = 1)(  = 0;  = 0)

(  = 1;  = 0)(  = 0;  = 1)
=

( =1| =1)
( =0| =1)
( =1| =0)
( =0| =0)∙

(  = 1;  = 1)(  = 0;  = 0)

(  = 1;  = 0)(  = 0;  = 1)

¸−1
=

( =1| =0)
( =0| =0)
( =1| =1)
( =0| =1)
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where  is the subject index and  and  are the indices of the trials.  = 1 means

the subject choose the risky lottery in trial . We assume the  is constant in

phase 1; phase 2; phase 3; between phases 1 and 2; between phases 1 and 3 and

between phases 2 and 5. In the following tables for the treatment and control groups,

the estimated constant  are denoted Alpha  for  = 1 2  5. We test the null

hypothesis 0: the log odds ratio is equal to zero, against the alternative hypothesis

: the log odds ratio is unequal to zero. Here are the estimates for the log-odds

ratios.

Table 3. Analysis of GEE Parameter Estimates: LOR for the Treatment Group

Standard 95% confidence

Estimates error limits  Pr  ||
1 (Phase 1) −00096 00468 −01013 00822 −020 08381

2 (Phase 2) 01124 00641 −00132 02380 175 00796

3 (Phase 3) 00334 00379 −01077 00408 −088 03778

4 (Phase 1 & 2) 00208 00376 −00529 00944 055 05803

5 (Phase 1 & 3) 01057 00389 00293 01820 271 00067

6 (Phase 2 & 3) 00112 00454 −00778 01003 025 08046

Table 4. Analysis of GEE Parameter Estimates: LOR for the Control Group

Standard 95% confidence

Estimates error limits  Pr  ||
1 (Phase 1) 01217 00744 −00242 02675 164 01020

2 (Phase 2) −00463 00222 −00898 −00027 −208 00374

3 (Phase 3) 01349 00832 −00282 02980 162 01050

4 (Phase 1 & 2) −00061 00304 −00656 00535 −020 08420

5 (Phase 1 & 3) 02051 00779 00525 03577 263 00084

6 (Phase 2 & 3) −00239 00303 −00833 00356 −079 04315

Alpha 2 and Alpha 5 are the only significant statistics in each group. The 

in phase 2 of the control group

(  = 1 |   = 0)
(  = 0 |   = 0) 

(  = 1 |   = 1)
(  = 0 |   = 1)

and the  in phase 2 of the treatment group is

(  = 1 |   = 1)
(  = 0 |   = 1) 

(  = 1 |   = 0)
(  = 0 |   = 0) 

For Alpha 5, the  between phase 1 and phase 3 in each experiment is

(  = 1 |   = 1)
(  = 0 |   = 1) 

(  = 1 |   = 0)
(  = 0 |   = 0) 
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If you want to try your luck, don’t go to Foxwoods. Join us 
in  a  75minute  research  experiment  on  decisionmaking 
under uncertainty, i.e. gambling. 
 
Our games are rigged in your favor: You will receive $8 for participating. In addition, 
you have a chance to win between $2 and $15 during the experiment. 
 
You can participate in the experiment at one of the following five times: 

1. Tuesday, October 25, at 3pm, 
2. Tuesday, October 25, at 4.30pm, 
3. Tuesday, October 25, at 7pm, 
4. Wednesday, October 26, at 2pm, 
5. Wednesday, October 26, at 7pm. 

 
In order to be eligible for participation, you must: 
 

 be at least 19 years old, 
 be enrolled at Yale in the fall term 2011,  
 NOT  be  taking  a  course  from  Professor  Donald  Brown  or  Professor  Laurie 

Santos in the fall term 2011. 
 
If  you meet  the  above  requirements  and would  like  to  participate,  please  contact 
Donald Brown at donald.brown@yale.edu or Oliver Bunn at  oliver.bunn@yale.edu 
and specify your preference with regard to the time of the experiment (choices 1‐5 
above).  
 
The principal investigator for this study is Professor Donald Brown, HSC #1104008396. 
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Decision Making Under Uncertainty 
 

Experimental Study Performed at Yale University 
 

Principal Investigator: Professor Donald J. Brown 
 

IRB Protocol Number: 1104008396 
 
 
 
 

Research Informed Consent Form 
 
 

This is a research experiment on decision‐making under uncertainty. Although this 

study  will  not  benefit  you  personally,  we  hope  that  our  results  will  add  to  the 

knowledge about sequential decision‐making under risk and ambiguity. 

  

This  is  a  75‐minute  experiment  where  you  will  be  asked  to  make  100  pair‐wise 

choices between lotteries with two outcomes. In some lotteries you will be told the 

probabilities  of  the  outcomes  and  for  other  lotteries  you  will  not  be  told  the 

probabilities of the outcomes. The experiment is divided into 3 blocks. At the end of 

each block, you can take a break at your own discretion.  

 

You may leave the experiment at anytime and we will pay you $8. At the end of the 

experiment  you will  you will  earn  additional  dollars  from your  choices.  That  is,  if 

you complete the experiment, then we will randomly select one of your 100 choices 

and you will also receive the payoff of that choice. The payoffs range from $2 to $15. 

 

All of your responses will be confidential. Your responses will be numbered and any 

information linking your number with your name will be destroyed at the end of the 

experiment, after you are paid. This anonymous data will be available upon request 

to other social scientists.   
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To participate in this experiment you must be at least 19 years old. The risks of this 

study include fatigue or mild stress. These risks are no greater than those found in 

taking a 75 minute midterm exam. 

 

If  you  have  any  questions  about  this  study,  you  may  contact  the  investigator, 

Professor  Donald  Brown  at  donald.brown@yale.edu.  If  you  would  like  to  talk  to 

someone  other  than  the  researchers  to  discuss  problems  or  concerns,  to  discuss 

situations  in  the  event  that  a member  of  the  research  team  is  not  available,  or  to 

discuss your  rights as a  research participant,  you may  contact  the Yale University 

Human  Subjects  Committee,  Box  208010,  New  Haven,  CT  06520‐8010,  203‐785‐

4688, human.subjects@yale.edu. 

 

If you wish to participate in this study, please sign the consent form. 

 

 

 

____________________________________________    ________________________________ 

Signature of Study Participant                    Date of the Study 
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