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Abstract

Right-tailed unit root tests have proved promising for detecting exuberance in economic and
financial activities. Like left-tailed tests, the limit theory and test performance are sensitive to
the null hypothesis and the model specification used in parameter estimation. This paper aims
to provide some empirical guidelines for the practical implementation of right-tailed unit root
tests, focussing on the sup ADF test of Phillips, Wu and Yu (2011), which implements a right-
tailed ADF test repeatedly on a sequence of forward sample recursions. We analyze and compare
the limit theory of the sup ADF test under different hypotheses and model specifications. The
size and power properties of the test under various scenarios are examined in simulations and
some recommendations for empirical practice are given. Empirical applications to the Nasdaq
and to Australian and New Zealand housing data illustrate these specification issues and reveal
their practical importance in testing.

Keywords: Unit root test; Mildly explosive process; Recursive regression; Size and power.
JEL classification: C15, C22

1 Introduction

In left-tailed unit root testing, results are often sensitive to model formulation. In effect, the

maintained hypothesis or technical lens through which the properties of the data are explored can

influence outcomes in a major way. Formulating a suitable maintained hypothesis is particularly

∗We are grateful to Heather Anderson, Farshid Vahid, Hashem Pesaran, and Tom Smith for helpful discussions.
Phillips acknowledges support from the NSF under Grant No. SES 09-56687. Shi acknowledges the Financial
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Research School of Economics, The Australian National University; Email: shuping.shi@anu.edu.au. Jun Yu, Sim
Kee Boon Institute for Financial Economics, School of Economics and Lee Kong Chian School of Business, Singapore
Management University, Singapore 178903; Email: yujun@smu.edu.sg.
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difficult in the presence of nonstationarity because of the different roles that parameters can play

under the null hypothesis of a unit root and the alternative of stationarity. Many of these issues of

formulation have already been extensively studied in the literature on left-tailed unit root testing.

Suppose, for example, that the null hypothesis is that the data is difference stationary and the

alternative is that the data is stationary. If we run the ADF regression

R1 : yt = δyt−1 +

k∑
i=1

ϕi∆yt−i + εt, εt
iid∼

(
0, σ2

)
, (1)

and test the null δ = 1 against the alternative δ < 1, the formulation (implicitly) assumes that

the mean of yt is zero under the alternative. Under this lens any evidence of a non-zero mean in

the sample is likely to be interpreted as evidence in favor of the null and the test procedure tends

to have poor power. A more suitable lens allows for a non zero mean in yt under the alternative

through the regression

R2 : yt = α+ δyt−1 +

k∑
i=1

ϕi∆yt−i + εt, εt
iid∼

(
0, σ2

)
, (2)

even though α may be zero under the null. Similarly, if the null is difference stationarity and

the alternative trend stationarity, then the regression model (2) will be inappropriate because

an empirical trend may be misinterpreted as evidence of a unit root, leading to the augmented

formulation

R3 : yt = α0 + α1t+ δyt−1 +

k∑
i=1

ϕi∆yt−i + εt, εt
iid∼

(
0, σ2

)
, (3)

where we can test the null δ = 1 against the alternative δ < 1, even if α1 = 0 under the null.

Use of the maintained hypothesis R3 allows for both a unit root with drift (α0 ̸= 0 and α1 = 0)

under the null and trend stationarity (α0 ̸= 0 and α1 ̸= 0) under the alternative. Similar issues,

of course, arise with more complex maintained hypotheses that allow for trend breaks and other

deterministic components. The regression model of a left-tailed unit root test (against stationary

or trend stationary alternatives) needs to nest the alternative hypothesis.1

Right-tailed unit root tests are also of empirical interest, particularly in detecting explosive or

mildly explosive alternatives. For example, to find evidence of financial bubbles, Diba and Grossman

(1988) applied right-tailed unit root tests to the fully sampled data. Phillips, Wu and Yu (2011,

PWY hereafter) suggested sequential implementations of right-tailed unit root tests to recursive

1Similar arguments can be found in Dickey, Bell and Miller (1986) and Davidson and MacKinnon (2004).
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subsamples; see also Phillips and Yu (2011). As in left-tailed unit root testing, the formulation of

the null and alternative hypotheses and the regression model specification are important in right-

tailed tests. Different suggestions appear in the literature and no empirical guidelines have yet been

offered. For example, Diba and Grossman used the regression model (3) whereas PWY employed

model (2). Further, Diba and Grossman did not allow for bubble crashes in the alternative whereas

various collapse mechanisms were considered in Evans (1991) and Phillips and Yu (2009).

The present paper examines appropriate ways of formulating regressions for right-tailed unit

root tests to assess empirical evidence for explosive behavior in the context of PWY test procedures.

Other tests for explosive behavior are possible and many of these have been recently evaluated in

extensive simulations by Homm and Breitung (2011). The simulations in that paper show that,

while ex post analysis of the full sample data favors Chow type unit root tests for the detection of

break points in the transition between unit root and explosive behavior, recursive tests such as those

in PWY perform well in early detection of such transitions and are preferable in this anticipative

role as a monitoring system. Homm and Breitung (2011) also confirm that the PWY tests are

more robust in the detection of multiple bubble episodes than the other tests they considered. The

primary intent of PWY was to develop recursive procedures that could assess whether Greenspan’s

remark on financial exuberance had empirical content at the time he made that statement in

December 1995. It is in this context as an early warning device in market surveillance that the

PWY tests were developed. The specification issues raised here apply equally well to other break

tests for financial exuberance.

The rest of the paper is organized as follows. Section 2 discusses the appropriate choices for the

null and alternative hypotheses and the regression model. Section 3 derives the limit distributions

of the ADF statistic. Section 4 discusses several explosive models, all subject to crashes, for the

alternative hypothesis. The sequential right-tailed ADF test, along with its finite sample and

limit distributions, are explored in Section 5. Section 6 reports size and power properties for the

sequential right-tailed ADF test. Using the proposed model formulations we apply the test to

Nasdaq market data and to the Australian and New Zealand housing markets in Section 7. Section

8 concludes.
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2 Formulating Hypotheses and Regression

The literature on right-tailed unit root testing has employed several different specifications for the

null hypothesis. In PWY the null hypothesis is

H01 : yt = yt−1 + εt, εt
iid∼

(
0, σ2

)
,

so that ∆yt has mean zero and yt has no deterministic trend. On the other hand, Diba and

Grossman (1988) used the null model

H03 : yt = α̃+ yt−1 + εt, with a constant intercept α̃,

so that yt has deterministic trend behavior when α̃ ̸= 0 under this null.

A model that bridges these two null hypothesese involves a weak (local to zero) intercept with

the form

H02 : yt = α̃T−η + yt−1 + εt with η ≥ 0. (4)

Here yt has an array formulation, the mean of ∆yt is α̃T
−η = O(T−η), and yt has a deterministic

trend component of the form α̃ t
T η whose magnitude depends on the sample size and the parameter

η. The null model H02 becomes H01 when η → ∞ and H03 when η → 0.

Similarly, different alternative hypotheses have been used in the literature on the right-tailed

unit root tests. The most obvious ones are the following explosive processes:

HA1 : yt = δyt−1 + εt, δ > 1, (5)

HA2 : yt = α̃+ δyt−1 + εt, δ > 1, (6)

HA3 : yt = α̃+ γt+ δyt−1 + εt, δ > 1. (7)

These three models mirror alternatives considered in left-tailed unit root tests where δ < 1. How-

ever, for left-tailed tests model (5) with δ < 1 is rarely used because it restricts the mean of yt to

zero.

Explosive processes have a long history. In economics, Hicks (1950) suggested the possibility of

explosive cyclical behavior contained by certain structural floors and ceilings with the cycles arising

from multiplier-accelerator dynamics. In statistics, White (1958) and Anderson (1959) studied the
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asymptotic properties of the least squares (LS) estimator under (5). In recent work, Phillips and

Magdalinos (2007) suggested a mildly explosive process of the type

HA4 : yt = δT yt−1 + εt with δT = 1 + cT−θ, (8)

where c > 0, θ ∈ (0, 1) , T is the sample size and δT is a moving parameter sequence. This model

is called mildly explosive because the autoregressive coefficient δT is in an explosive region of unity

(so that δT → 1+ as T → ∞) that lies beyond the usual ‘local to unity’ interval where δT = 1+ c
T

for which behavior of the process is similar to that of a unit root process. Under HA4, the behavior

of yt resembles that of an explosive time series rather than that of a unit root process.

Model (6) is formulated with a non-zero intercept and produces a dominating deterministic

component that has an empirically unrealistic explosive form (Phillips and Yu, 2009, PY hereafter).

Similar characteristics apply a fortiori in the case of the inclusion of a deterministic trend term

in model (7). These forms are unreasonable for most economic and financial time series and an

empirically more realistic description of explosive behavior is given by models (5) and (8), which

are both formulated without an intercept or a deterministic trend.

The empirical regression of the right-tailed unit root test given in Diba and Grossman (1988)

is R3. This regression has both a constant as well as a deterministic trend. Since the presence of

either of these two terms is empirically unrealistic when δ > 1, regression R3 is not suitable for

right-tailed unit root testing. On the other hand, due to the fact that neither a constant nor a

deterministic trend is included in regression R1, that model does not allow for deterministic-trend-

like behavior when δ = 1. Suppose we run R1 to investigate evidence for mildly explosive behavior

as in (8). Analogous to the effects of a left-tailed unit root test, in a regression of the form R1 any

evidence of non-zero mean in ∆yt may be misjudged as evidence in favor of the alternative - in this

case, mildly explosive behavior. Thus, R1 also seems inappropriate. By contrast, regression R2 is

empirically more realistic and PWY implemented a right-tailed unit root test using this regression

formulation.

In view of the above discussion, we recommend that right-tailed unit root tests may be suitably

formulated with a null hypothesis H02 and an empirical regression R2. Since H02 depends on

η, we discuss the asymptotic distribution of the test statistic and examine the size and the power

properties of the the right-tailed unit root test for different settings of η in H02. Simulation findings

reported below provide further guidelines for the selection of the null and the regression model with

associated test critical values.
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3 Full-sample Right-Tailed Unit Root Tests

Right-tailed unit root tests, like their left-tailed counterparts, have asymptotic distributions that

depend on the specification of the null hypothesis and regression model. As discussed above, one

suitable regression model for right-tailed testing is R2 and an empirically reasonable null is a unit

root process with a drift of the form α̃ t
T η , arising from H02. The right-tailed unit root test discussed

in this section is the ADF test applied to the full sample. Other unit root tests can be studied in

exactly the same manner. Note that the magnitude of the drift is inversely related to parameter η.

Proposition 3.1 If η > 0.5, the asymptotic distribution of the ADF statistic is

ADF
L→

1
2

[
W 2 (1)− 1

]
−W (1)

∫ 1
0 W (s) ds{∫ 1

0 W
2 (s) ds−

[∫ 1
0 W (s) ds

]2}1/2
:= F1 (W ) , (9)

where W is a standard Wiener process and
L→ denotes the convergence in distribution; If η < 0.5,

then the asymptotic ADF distribution is

ADF
L→

[∫ 1

0
sdW (s)−

∫ 1

0
W (s) ds

](∫ 1

0
s2ds

)−1/2

:= F2 (W ) . (10)

The proof of this proposition is nested in that of Proposition 5.1 (Appendix A).

Remark 3.1 The asymptotic ADF distribution when η > 0.5 is identical to that of the PWY

formulation despite the inclusion of an intercept in the null model. The reason the intercept does

not affect the limit distribution is that the implied drift in the process has smaller order than the

stochastic trend.

Remark 3.2 Suppose the null hypothesis is specified as H03. The asymptotic ADF distribution in

this case2 is identical to that of the case when η < 0.5, (10). Here the implied drift has higher order

of magnitude and behaves like a linear deterministic trend.

Remark 3.3 The asymptotic ADF distribution when η = 0.5 is

ADF
L→ (Dσ −AσCσ)

(
Bσ −A2

σ

)−1/2
, (11)

2The asymptotic ADF distribution under this case is well documented in the unit root literature; see Phillips
(1987) and Phillips and Perron (1988)
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with Aσ = 1
2 + σ

∫ 1
0 W (s) ds,Bσ = 1

3 + σ2
∫ 1
0 W (s)2 ds + 2σ

∫ 1
0 W (s) sds, Cσ = W (1) and Dσ =[

W (1)−
∫ 1
0 W (s) ds

]
+ 1

2σ
[
W (1)2 − 1

]
. Importantly, the limit theory depends on the nuisance

parameter σ and hence it is not invariant unless we include a trend in the regression or adjust for

the trend in some other way (as, for example, in Schmidt and Phillips, 1992, and Phillips and Lee,

1996).3

We now examine the finite sample distributions of the ADF statistic obtained by Monte Carlo

simulations. The limit distributions are obtained by numerical simulation using Wiener process

approximations based on partial sums of a standard normal with 5, 000 steps. In both cases 2000

replications are used.

Figure 1 displays the finite sample distributions of the ADF statistic when the sample size

T = 400 and η = {1, 0.8, ..., 0.2, 0}. The dotted lines in the figure are the finite sample distributions

and the bold solid lines are the limit distributions. When η > 0.5 the finite sample distribution

moves towards the asymptotic distribution F1 (W ) as η increases. Nevertheless, the discrepancies

among the finite sample distributions with η = {1, 0.8, 0.6} are negligible. Second, when η < 0.5 the

discrepancies among the finite sample distributions with η = {0.4, 0.2, 0} are marked. Nonetheless,

there is apparent convergence toward the limit distribution F2 (W ) as η decreases. Third, the

finite sample distribution of the ADF statistic with η = 0.5 is significantly different from the

corresponding distributions when η ̸= 0.5.

4 Specifications for Explosive Behavior

Two specifications for the alternative hypothesis, both formulated without an intercept or a deter-

ministic trend, are given by model (5) and model (8) in Section 2. Neither model has structural

breaks. But as argued in Evans (1991, page 924) “bubbles do not appear to be empirically plausible

unless there is a significant chance that they will collapse after reaching high levels.” This argument

is consistent with other models of explosive processes such as the business cycle model of Hicks

(1950), where each cycle has an explosive expansion phase and a subsequent downswing due to

disinvestment proceeding at the rate of deterioration of capital. Thus, more complete specification

of the alternative hypothesis requires the inclusion of a downswing or bubble collapse process. This

section considers such extensions within the context of some simple time series models.

3The asymptotic ADF distributions do not depend on α̃. In what follows, we set α̃ to unity.
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Figure 1: The finite sample distribution of the ADF statistic when T = 400 and η =
{1, 0.8, 0.6, 0.5, 0.4, 0.2, 0}.

4.1 A periodically collapsing explosive process

The DGP proposed by Evans (1991) consists of a market fundamental component P f
t , which follows

a random walk process

P f
t = ũ+ P f

t−1 + σfεt, εt
iid∼ N (0, 1) (12)

and a periodically collapsing explosive bubble component such that

Bt+1 = ρ−1BtεB,t+1, if Bt < b (13)

Bt+1 =
[
ζ + (πρ)−1 θt+1 (Bt − ρζ)

]
εB,t+1, if Bt ≥ b , (14)

where ρ−1 > 1 and εB,t = exp
(
yt − τ2/2

)
with yt

iid∼ N
(
0, τ2

)
. θt follows a Bernoulli process

which takes the value 1 with probability π and 0 with probability 1 − π. ζ is the remaining size

after the bubble collapse. The bubble component has the property that Et (Bt+1) = ρ−1Bt. By

construction, the bubbles collapse completely in a single period when triggered by the Bernoulli

process realization.

The market fundamental equation, (12), is equivalent to the combination of a random walk

dividend process and the Lucas asset pricing equation

Dt = µ+Dt−1 + εDt, εDt
iid∼ N

(
0, σ2D

)
(15)

P f
t =

µρ

(1− ρ)2
+

ρ

1− ρ
Dt, (16)
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where µ is the drift of the dividend process and σ2D the variance of the dividend innovations. The

drift (ũ) of the market fundamental process is µρ (1− ρ)−1 and the standard deviation is σf =

σDρ (1− ρ)−1. In Evans (1991), the parameter values for µ and σ2D were matched to the sample

mean and sample variance of the first differences of real S&P500 dividends from 1871 to 1980. The

value for the discount factor ρ is equivalent to a 5% annual interest rate. So the parameter settings

in Evans (1991) correspond to a yearly frequency. In accordance with our empirical application,

we consider a set of the parameters calibrated to monthly data. Correspondingly, the parameters

µ and σ2D are set to be the sample mean and the sample variance of the monthly first differences of

real Nasdaq dividends as described in the application section (normalized to unity at the beginning

of the sample period). These are µ = 0.0020 and σ2D = 0.0034, respectively. The discount factor

equals 0.985. We can then calculate the values of ũ, σf , P
f
0 based on those of µ, σ2D, D0.

The settings of the parameters in the bubble components (13) - (14) are the same as those in

Evans (1991). The asset price Pt is equal to the sum of the market fundamental component and

the bubble component, namely Pt = P f
t + κBt, where κ controls the relative magnitudes of these

two components. The parameter settings are given in Table 1 for yearly and monthly data.

Table 1: Parameter settings

ũ σf P f
0 ρ b B0 π ζ τ κ

Yearly 0.740 7.869 41.195 0.952 1 0.50 0.85 0.50 0.05 20
Monthly 0.131 3.829 94.122 0.985 1 0.50 0.85 0.50 0.05 150

Figure 2a shows a typical realization of this DGP with yearly parameter settings (sample size

T = 100) and Figure 2b gives a corresponding realization for monthly data (T = 200).

4.2 A locally explosive process

Locally explosive behavior can be expressed in terms of an AR process with time-varying coefficients

of the form

yt = ut + ρtyt−1 + σtεt, εt
iid∼ N (0, 1) , (17)

where ut is the intercept, ρt is the autoregressive coefficient and σt is the disturbance standard

deviation.

In PY, it is assumed that ut = 0 and σt = σ for all t = 1, · · · , T . For the bubble expansion

period, the autoregressive coefficient ρt is exceeds unity and has the form ρt = 1+ cT−α with c > 0

and α ∈ (0, 1), but otherwise is equal to unity (ρt = 1). More specifically, PY used the following

9
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Figure 2: Simulated time series based on Evans’ DGP

model formulation with explicit break points at (Te, Tf )

yt = yt−11 (t < Te) + ρT yt−11 (Te ≤ t ≤ Tf )

+

 t∑
k=Tf+1

εk + y∗Tf

1 (t > Tf ) + εt1 (t ≤ Tf ) (18)

where ρT = 1 + cT−α, y∗Tf = yTe + y∗ with y∗ = Op (1), 1 (·) is an indicator function, Te is the

origination date of the bubble and Tf is the termination date. In Model (18) yt only crashes once

at Tf . However, it is easy to generalize Model (18) to allow for more periods of explosive behavior

and subsequent crashes, as discussed in Phillips, Shi and Yu (2011).

4.3 A modified locally explosive process

In Model (18) yt is re-initialized to yTe (with an Op (1) perturbation y
∗) upon the bubble collapse

at Tf . This feature of a one-period crash is shared by the periodically collapsing model of Evans.

Although bubbles frequently collapse rapidly, in most cases it is unrealistic to specify a complete

collapse within a single period. For instance, according to PWY, the dot-com bubble began to

collapse in March 2000 and the termination date was between September 2000 and March 2001.

To accommodate a transitional rather than complete collapse, we may assume that yt switches to a

10



(mildly) stationary transition regime when the bubble starts to burst. The new DGP has the form

yt =


u1 + yt−1 + σ1εt, t ∈ [1, Te) ∪ (Tc, T ]
ϕT yt−1 + σ2εt, t ∈ [Te, Tf ]
γT yt−1 + σ3εt, t ∈ (Tf , Tc]

, (19)

where Tc marks the conclusion of the bubble collapse period, ϕT = 1+ c1T
−α and γT = 1− c2T

−β

with c1, c2 > 0 and α, β ∈ [0, 1). The formulation of the AR coefficients ϕT and γT both involve

mild deviations from unity in the sense of Phillips and Magdalinos (2007), one in the explosive

direction for the bubble expansion, the other in the stationary direction for the bubble collapse.

Equation (19) corresponds with (17) if we set

ut = sntu1,

ρt = snt + sbtϕT + sctγT ,

σt = sntσ1 + sbtσ2 + sctσ3,

where snt = 1 (t ∈ [0, Te) ∪ (Tc, T ]) , sbt = 1 (t ∈ [Te, Tf ]) , sct = 1 (t ∈ (Tf , Tc]), which are the re-

spective regime indicators for market fundamentals, bubble expansion, and bubble collapse episodes.

We illustrate the process (19) by setting the market fundamental regime as in Table 1 (monthly):

y0 = 94.122, u0 = 0.131, σ1 = 3.829. The other parameters relating to the bubble expansion and

collapse regimes are set to be: c1 = c2 = 1, α = 0.6, β = 0.5, σ2 = σ1, σ3 = 2σ1, Te = [0.6T ] ,

Tf = [0.70T ] , Tc = [0.75T ] . (Various additional settings for the parameters α, β, Te, Tf , Tc are

considered in size and power comparisons later in the paper.) The sample size T = 200. With

these settings, the implied autoregressive coefficients are ϕT = 1.042 and γT = 0.929. Figure 3

exhibits a realization of the DGP with these parameter settings. Compared with the PY and

Evans DGPs, the bubble collapse period of this DGP is a gradual one and may be more realistic

for empirical implementation.

5 The Sup ADF Test

Evans (1991) argued that right-tailed unit root tests, when applied to the full sample, have little

power to detect periodically collapsing bubbles and demonstrated this effect in simulations. The low

power of standard unit root tests is due to the fact that periodically collapsing bubble processes

behave rather like an I(1) process or even a stationary linear autoregressive process when the

probability of bubble collapse is non negligible. PY provided a theoretical underpinning of this
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argument by deriving the order of the ADF t-statistic when the data are generated from the locally

explosive process (18).

To overcome the problem identified in Evans, PWY proposed the sup ADF (SADF) statistic

to test for the presence of explosive behavior in a full sample. In particular, the methods rely on

forward recursive regressions coupled with sequential right-sided unit root tests. The sequential

tests assess period by period evidence for unit root behavior against explosive alternatives. Suppose

the right-tailed ADF test is employed in each period, the test statistic proposed by PWY is the

sup value of the corresponding ADF sequence. In this setup, the alternative hypothesis of the test

therefore includes both a periodically collapsing explosive behavior and a locally explosive behavior.

The null hypotheses are exactly the same as that for the right-tailed unit root test in equation (4).

Suppose r is the window size of the regression (proportional to the full sample size) for the

right-tailed unit root test. In the sup ADF test, the window size r expands from r0 to 1 through

recursive calculations. The smallest window size r0 is selected to ensure that there are sufficient

observations to initiate the recursion. The number of observations in the regression is Tr = [Tr] ,

where [·] signifies the integer part of its argument and T is the total number of observations.

The regression model for the sup ADF test is:

R2 : yt = α+ δyt−1 +

k∑
i=1

ϕi∆yt−i + εt, (20)

where t = 1, · · · , Tr and k is the lag order. The corresponding ADF t-statistic is denoted by ADFr.

To test for the existence of bubbles, inferences are based on the sup ADF statistic SADF (r0) =
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supr∈[r0,1]ADFr. This notation highlights the dependence of SADF on the initialization parameter

r0.

5.1 The limiting distribution of sup ADF

Proposition 5.1 If η > 0.5, the asymptotic distribution of the sup ADF statistic is

SADF (r0)
L→ sup

r∈[r0,1]


1
2r

[
W (r)2 − r

]
−

∫ r
0 W (s) dsW (r)

r1/2
{
r
∫ r
0 W (s)2 ds−

[∫ r
0 W (s) ds

]2}1/2

 := F3 (W, r0) ; (21)

If η < 0.5, the sup ADF statistic converges to

SADF (r0)
L→ sup

r∈[r0,1]

{[∫ r

0
sdW (s)−

∫ r

0
W (s) ds

](∫ r

0
s2ds

)−1/2
}

:= F4 (W, r0) . (22)

Remark 5.1 The proof of Proposition 5.1 is given in Appendix A. The asymptotic SADF dis-

tributions are obtained by standard methods using continuous maps. The result implies that the

lim sup and the sup lim operations are equivalent, namely

lim
T→∞

sup
r∈[r0,1]

{ADFr} = sup
r∈[r0,1]

{
lim
T→∞

ADFr

}
, (23)

for both cases.

Remark 5.2 The asymptotic ADFr distribution when η < 0.5 is

ADFr
L→

[∫ r

0
sdW (s)−

∫ r

0
W (s) ds

](∫ r

0
s2ds

)−1/2

, (24)

which is distributed as standard normal. Suppose rA, rB ∈ [r0, 1] and rA ̸= rB, the asymptotic

ADFrA distribution and the asymptotic ADFrB distribution are correlated due to the fact that both

of them are functions of a standard Wiener process.

Remark 5.3 The asymptotic distribution of the SADF statistic when η = 0.5 is

SADF (r0)
L→ sup

r∈[r0,1]

[
r−1/2 (rDr,σ −Ar,σCr,σ)

(
rBr,σ −A2

r,σ

)−1/2
]
,

with Ar,σ = 1
2r + σ

∫ r
0 W (s) ds,Br,σ = 1

3r
3 + σ2

∫ r
0 W (s)2 ds + 2σ

∫ r
0 W (s) sds, Cr,σ = W (r) and

Dr,σ =
[
rW (r)−

∫ r
0 W (s) ds

]
+ 1

2σ
[
W (r)2 − r

]
. Similar to the ADF statistic, the limit theory

depends on the nuisance parameters σ.
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Figures 4 (a) and (b) examine the sensitivity of the asymptotic distributions of SADF when

η > 0.5 and η < 0.5 with respect to r0. The distributions are obtained using 2, 000 replications,

approximating the Wiener process by partial sums of standard normal variates with 5, 000 steps.

The smallest window size r0 is set to {0.2, 0.15, 0.10, 0.05} .
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Figure 4: The asymptotic distributions of the SADF statistic with r0 = {0.20, 0.15, 0.10, 0.05}.

Figure 4a displays the asymptotic distributions when η > 0.5 (i.e. F3(W, r0)) while Figure 4b is

for the case η < 0.5 (i.e. F4(W, r0)). Under both cases, the asymptotic distributions of the SADF

statistic move sequentially to the right as r0 decreases.4 In addition, the asymptotic distribution

F3(W, r0) has larger values for the 90%, 95% and 99% quantiles. For example, the 95% critical

values of F3(W, r0) with r0 = {0.2, 0.15, 0.10, 0.05} are respectively 1.39, 1.44, 1.54, 1.58 while those

of F4(W, r0) are respectively 2.79, 2.86, 2.91, 2.96. Obviously, the critical values are sensitive to r0.

5.2 The finite sample distribution of sup ADF

The finite sample distribution of the SADF statistic depends on the sample size T, the value of

the drift in the null hypothesis (depending on T and η) and the smallest window size r0. Figure

5 describes the finite sample distributions of the SADF statistic when T = 400, r0 = 0.1, α̃ = 1,

and η = {1, 0.8, 0.6, 0.5, 0.4, 0.2, 0}. The bold solid lines are the asymptotic distributions and the

dotted lines are the finite sample distributions.

4Intuitively, when r0 is smaller, the feasible range of r (i.e. [r0, 1]) becomes wider and hence the parameter space
of the distribution of limT→∞ ADFr expands. The asymptotic SADF distribution, which applies the sup function to
the aforementioned distribution, then moves sequentially towards the right as r0 decreases.
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We observe a similar pattern as in Figure 1. For a given T and r0, the finite sample distribution

moves towards F3 (W, 0.1) as η increases and shifts towards F4 (W, 0.1) as η decreases. An obvious

separation occurs when η = 0.5. The discrepancy among the finite sample distributions is negligible

with η = {0.6, 0.8, 1}, but becomes considerably larger when η = {0.4, 0.2, 0}. Like the finite sample

ADF distribution described in Figure 1, the finite sample SADF distribution is invariant to η when

η > 0.5 while it varies significantly with η when η is less than 0.5.
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Figure 5: The finite sample distributions of the SADF statistic when T = 400, r0 = 0.1 and
η = {1, 0.8, 0.6, 0.5, 0.4, 0.2, 0}.

6 Size and Power Comparison

The 90%, 95% and 99% quantiles of the asymptotic distributions of the SADF statistic when

η > 0.5 and η < 0.5 (i.e. F3(W, r0) and F4(W, r0)) are presented in Table 2. As before, critical

values are obtained by simulations with 2,000 replications of Wiener processes in terms of partial

sums of standard normal variates with 5, 000 steps.

Table 3 gives sizes for the SADF test based on nominal asymptotic critical values with sample

sizes T = 100, 200 and 400. The nominal size is 5%. The DGP is specified according to the

respective null hypotheses with α̃ = 1, η = 1, 0.8, 0.6, 0.4, 0.2, 0. The number of replications is

2,000. The lag order is determined by BIC with maximum lag length 12. The smallest window size

has 40 observations. Table 3 shows that for all cases of η > 0.5 there are no obvious size distortion
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Table 2: Asymptotic critical values of the SADF statistic (against explosive alternative)

F3(W, r0) F4(W, r0)
90% 95% 99% 90% 95% 99%

r0 = 0.4 0.88 1.20 1.87 2.27 2.62 3.20
r0 = 0.2 1.10 1.39 1.95 2.48 2.79 3.39
r0 = 0.1 1.23 1.54 2.04 2.58 2.92 3.42

Note: asymptotic critical values are obtained using 2,000 replications and partial sums with 5, 000 steps.

Table 3: Sizes of the SADF test (using asymptotic critical values). The data generating process is
specified according to the respective null hypothesis. The nominal size is 5%.

η > 0.5 η < 0.5
η = 1 η = 0.8 η = 0.6 η = 0.4 η = 0.2 η = 0

T = 100 and r0 = 0.4 0.043 0.043 0.046 0.003 0.018 0.045
T = 200 and r0 = 0.2 0.042 0.047 0.050 0.004 0.022 0.049
T = 400 and r0 = 0.1 0.052 0.045 0.043 0.003 0.020 0.042

Note: size calculations are based on 2,000 replications.

when using the asymptotic critical values,5 whereas there are significant size distortions for some

cases with the value of η smaller than 0.5. On the latter point, it is noted that we did not observe

obvious size distortion for the case of η = 0. However, the size distortion becomes progressively

more severe when the value of η increases from 0 to 0.5. For example, the size of the SADF test is

0.042, 0.020 and 0.003 for η = {0, 0.2, 0.4} respectively when the sample size T = 400.6

6.1 Periodically collapsing explosive behavior

To calculate power we specify several alternatives. First, we assume the DGP is Evans (1991)

periodically collapsing explosive process, with both yearly and monthly parameters settings (see

Table 1). The sample sizes considered for those two parameters settings are T = {100, 200} and

T = {100, 200, 400} respectively. For each parameters and sample size setting, we calculate powers

of the sup ADF test under four different specifications in the null hypothesis: η > 0.5,7 η = 0.4,

η = 0.2 and η = 0, all with α̃ = 1. The powers under cases of η > 0.5 and η = 0 are calculated

5There are significant size distortions when using the significance test proposed by Campbell and Perron (1991)
(with the maximum lag length 12) to determine the lag order. For example, the size of the SADF test when η = 1 is
0.115, 0.131 and 0.114 for T = 100, 200, 400 respectively.

6We observe similar patterns of size distortion when keeping the smallest fractional window size r0 = 0.4 for all
sample sizes. However, when T is large, there is some advantage to using a small value for r0 so that the sup ADF
test does not miss any opportunity to capture an explosive phase.

7This is due to the observation that as long as η is greater than 0.5, the discrepancy among the finite sample
critical values of the SADF statistic is negligible.
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from the 95% quantile of F3(W, r0) and F4(W, r0) respectively (Table 2). The power calculations

for η = 0.4 and η = 0.2 are based on the 95% quantiles of the finite sample distributions (Table 4).

The number of replications is 2,000.

Table 4: The finite sample critical values of the SADF statistic (against explosive alternative)

η = 0.4 η = 0.2
90% 95% 99% 90% 95% 99%

T = 100 and r0 = 0.4 1.26 1.57 2.32 1.84 2.22 3.03
T = 200 and r0 = 0.2 1.44 1.72 2.35 2.11 2.42 3.04
T = 400 and r0 = 0.1 1.57 1.88 2.56 2.26 2.62 3.31

Note: The finite sample critical values are obtained by simulation with 2, 000 replications.

Table 5: Powers of the SADF test under Evans (1991) periodically collapsing explosive behavior

Yearly parameter settings
η > 0.5 η = 0.4 η = 0.2 η = 0

T = 100 and r0 = 0.4 0.44 0.37 0.28 0.24
T = 200 and r0 = 0.2 0.62 0.58 0.49 0.45

Monthly parameter settings
T = 100 and r0 = 0.4 0.59 0.51 0.34 0.26
T = 200 and r0 = 0.2 0.75 0.69 0.55 0.48
T = 400 and r0 = 0.1 0.86 0.81 0.71 0.68

Note: power calculations are based on 2,000 replications.

From Table 5 power of the test evidently increases with sample size. Under the yearly parameter

setting and T = 200, power for η > 0.5, η = 0.4, η = 0.2 and η = 0 is 18%, 21%, 21% and 21%

higher than when T = 100.

Furthermore, power for η > 0.5 is always higher than when η < 0.5. In addition, when η < 0.5,

power decreases as η → 0. From the lower panel of Table 5 (monthly parameters settings), when

T = 400, for instance, the power of the test is 86% when η > 0.5 and then declines from 81% to

68% as η changes from 0.4 to zero.

6.2 Locally explosive behavior

The second alternative DGP is the locally explosive model (19). The parameter settings are the

same as in Section 3.2. As mentioned, this DGP is more realistic than the PY and Evans models

in the sense that explosive behavior does not collapse completely within one period. Instead,

the collapse process is taken to be a (mildly) stationary process. The parameter β controls the

17



contraction rate of the bubble, the duration of which is Tc − Tf . To explore the sensitivity of the

SADF test to these two coefficients, we calculate powers of the test by setting β equal to 0.4, 0.5

and 0.6 and Tc − Tf equal to [0.05T ] , [0.10T ] and [0.15T ]. In general, we find that the power of

the SADF test is invariant to the contraction rate and the contraction duration of the bubble. For

brevity, these results are not tabulated here.

Table 6: Powers of the SADF test for the locally explosive behavior (the rates of bubble expansion
and contraction). Parameters are set as: y0 = 94.122, u0 = 0.131, c1 = c2 = 1, σ1 = σ2 =
3.829, σ3 = 2σ1, β = 0.5, Te = [0.6T ] , Tf = [0.7T ] , Tc = [0.75T ] , T = 200, r0 = 0.2.

η > 0.5 η = 0.4 η = 0.2 η = 0
α = 0.60, ϕT = 1.04 0.57 0.48 0.29 0.21
α = 0.55, ϕT = 1.05 0.65 0.58 0.45 0.41
α = 0.50, ϕT = 1.07 0.77 0.75 0.70 0.69

Note: power calculations are based on 2,000 replications.

Table 7: Powers of the SADF test for the locally explosive behavior (the duration of bubble
expansion and contraction). Parameters are set as: y0 = 94.122, u0 = 0.131, c1 = c2 = 1, σ1 = σ2 =
3.829, σ3 = 2σ1, α = 0.6, β = 0.5, T = 200, r0 = 0.2, Te = [0.6T ] , Tc − Tf = [0.05T ].

η > 0.5 η = 0.4 η = 0.2 η = 0
Tf − Te = [0.10T ] 0.57 0.48 0.29 0.21
Tf − Te = [0.15T ] 0.75 0.69 0.57 0.52
Tf − Te = [0.20T ] 0.89 0.86 0.79 0.78

Note: power calculations are based on 2,000 replications.

The explosive rate of the bubble is determined by the parameter α and the duration of the

bubble expansion Tf − Te. In simulations, we allow α to be 0.60, 0.55 and 0.50 (Table 6) and

Tf − Te to be [0.10T ] , [0.15T ] and [0.20T ] (see Table 7). From Table 6, we can see that, ceteris

paribus, the power of the SADF test increases as α decreases. That is, the frequency of successfully

detecting the existence of exuberant behavior is higher when the expansion rate is faster. For

example, under the specification of η > 0.5, when T = 200 and α takes the values 0.6, 0.55 and

0.5, the power is 57%, 65% and 77% respectively. Moreover, from Table 7 it is clear that, ceteris

paribus, the power of the SADF test is higher when the duration of the bubble expansion is longer.

For instance, when T = 200 the power for η > 0.5 with Tf − Te = [0.10T ] , [0.15T ] , [0.20T ] is 57%,

75% and 89% respectively.

The location of the bubble episode is indicated by Te. Table 8 illustrates the power of the

SADF test with Te = [0.2T ], [0.4T ], [0.6T ]. We observe that given an identical expansion rate
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Table 8: Powers of the SADF test for the locally explosive behavior (the location of the bubble
episode). Parameters are set as: y0 = 41.195, u0 = 0.740, c1 = c2 = 1, σ1 = σ2 = 7.869, σ3 =
2σ1, α = 0.6, β = 0.5, T = 200, r0 = 0.2, Tc − Tf = [0.05T ].

Te = [0.2T ]
η > 0.5 η = 0.4 η = 0.2 η = 0

Tf − Te = [0.10T ] 0.57 0.48 0.25 0.16
Tf − Te = [0.15T ] 0.72 0.63 0.40 0.30
Tf − Te = [0.20T ] 0.87 0.83 0.72 0.69

Te = [0.4T ]
Tf − Te = [0.10T ] 0.57 0.47 0.27 0.19
Tf − Te = [0.15T ] 0.74 0.65 0.48 0.42
Tf − Te = [0.20T ] 0.87 0.84 0.77 0.75

Te = [0.6T ]
Tf − Te = [0.10T ] 0.57 0.48 0.29 0.21
Tf − Te = [0.15T ] 0.75 0.68 0.57 0.52
Tf − Te = [0.20T ] 0.90 0.87 0.82 0.80

Note: power calculations are based on 2,000 replications.

and expansion duration of the bubble, if the bubble episode occurs at a later stage of the sample

period, the frequency of successfully detecting a bubble episode is higher. For instance, when

Tf − Te = [0.15T ], the power of η = 0.4 is 63%, 65% and 68% for Te = [0.2T ] , [0.4T ] , [0.6T ] ,

respectively.

Table 9 illustrates the power of the SADF with different sample sizes. First, as expected, power

rises with the sample size. Powers for η > 0.5 are 51%, 57% and 73% for T = 100, 200, 400. Second,

the specification η > 0.5 always gives higher power than η < 0.5. The last observation applies to

Table 6 - 9.

Table 9: Powers of the SADF test for the locally explosive behavior (the sample size). Parameters
are set as: y0 = 41.195, u0 = 0.740, c1 = c2 = 1, σ1 = σ2 = 7.869, σ3 = 2σ1, α = 0.6, β = 0.5, Te =
[0.6T ], Tf − Te = [0.10T ], Tc − Tf = [0.05T ].

η > 0.5 η = 0.4 η = 0.2 η = 0
T = 100 and r0 = 0.4 0.51 0.40 0.22 0.13
T = 200 and r0 = 0.2 0.57 0.48 0.29 0.21
T = 400 and r0 = 0.1 0.73 0.66 0.49 0.44

Note: power calculations are based on 2,000 replications.
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7 Empirical Applications

7.1 The Nasdaq

The first empirical application applies the sup ADF test to Nasdaq market data over the period

from February 1973 to July 2009 (constituting 438 observations). The Nasdaq composite index

and the Nasdaq dividend yield are obtained from DataStream International. The consumer price

index, which is used to convert stock prices and dividends into real series, is downloaded from the

Federal Reserve Bank of St. Louis.
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Figure 6: NASDAQ stock market sampled from February 1973 to September 2009 (normalized to
100 at the beginning of data series).

Figure 6 shows the time paths of the real Nasdaq index and the real Nasdaq dividend (normalized

to 100 at the beginning of the data series) over the sample period. The real Nasdaq index grows

steadily, manifesting an upward drift, until the early 90s. This is followed by a rapid increase to a

peak that is 944.4 times larger than the starting point of the series. The Nasdaq index, then dropped

quickly to a level of less than 248 times the starting point at April 2003. It recovers gradually until

October 2008, however, followed by another sudden crash. Relative to the Nasdaq index, the

dividend process changes are of a much smaller magnitude, although it is volatile throughout the

sample, and shows some sustained growth since 2004.

Table 10 displays the SADF statistics for the logarithmic real Nasdaq index and the logarithmic

real Nasdaq dividend, along with respective critical values under the specifications η > 0.5, η = 0.4,
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η = 0.2 and η = 0. The lag order is determined by BIC with the maximum lag length 12. The

smallest fractional window r0 is set to be 0.1. Like the simulation experiments, we use asymptotic

critical values for the specifications η > 0.5 and η = 0 and finite sample critical values for the

specifications η = 0.4 and η = 0.2. The finite sample critical values are obtained from simulations

with 2, 000 replications and sample size 438.

Table 10: The sup ADF test of the NASDAQ stock market

SADF statistic
Log Real NASDAQ Index 2.56
Log Real NASDAQ Dividend -1.07

η > 0.5 η = 0.4 η = 0.2 η = 0
90% 1.23 1.60 2.32 2.58
95% 1.54 1.90 2.59 2.92
99% 2.04 2.47 3.14 3.42

Note: Critical values of the sup ADF test under the specification of η = 0.4 and η = 0.2 are obtained by

simulations with 2, 000 replications and sample size 438. The smallest fractional window r0 is set to be 0.1.

For the logarithmic real Nasdaq index, we reject the unit root null hypothesis against the

explosive alternative at the 10% significance level under specifications with η > 0.5, η = 0.4 and

η = 0.2, whereas we fail to reject the null hypothesis at the 10% significance level under the

specification of η = 0 (although the difference between the test statistic and the critical value is

very small). Furthermore, we cannot reject the null hypothesis of unit root at the 10% significance

level for the logarithmic real Nasdaq dividend under all specifications considered.

In other words, with specifications of η > 0.5, η = 0.4 and η = 0.2, we find evidence of explosive

behavior in Nasdaq using the sup ADF test. However, if the null hypothesis is specified as

H03 : yt = 1 + yt−1 + εt, εt
iid∼ N

(
0, σ2

)
(25)

(i.e. the specification corresponding to η = 0), the sup ADF finds no evidence of bubble existence

in the Nasdaq stock market during the sample period. This null hypothesis implies that the long-

term average return of the Nasdaq stock index is 100%, which is obviously unrealistic and can be

excluded on prior grounds.

Hence, the SADF test provides strong evidence for the presence of explosive behavior in the

Nasdaq. The evidence is robust to specification of the null model with the exception of extreme

models such as (25).
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7.2 The Australia and New Zealand Housing Markets

The second appplication is to real estate markets where with data sampled over 1987Q2 to 2011Q1.

The price index of established houses in Australia is taken at a quarterly frequency from the

Australian Bureau of Statistics (ABS).8 The New Zealand house price index (Quotable Value) is

taken from the Reserve Bank of New Zealand (RBNZ). We use Australian household disposable

income as a proxy for fundamentals in the Australia housing market and the series is obtained from

the Reserve Bank of Australia (RBA). For the New Zealand housing market, we use national gross

disposable income (per capita) taken from DataStream International.9

The Australian and New Zealand price-to-income ratios (normalized to unity at the beginning

of the data series) are shown in Figure 7. From Figure 7a, it is clear that the Australian house price-

to-income ratio fluctuates throughout the sample range. A considerable increase occurred over the

period from 2001 to 2003. The peak of this increase was 1.48 times bigger than the starting point

of the series. The house price-to-income ratio for New Zealand (Figure 7b) grows steadily until

early 1997, followed by a mild downturn. The ratio then grows rapidly so that by the third quarter

of 2007 it was 3.2 times bigger than the starting point. The magnitude of this expansion is much

larger than that of the Australian housing market.
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Figure 7: The house price-to-income ratio sampled from 1987Q2 to 2011Q1 (normalized to unity
at the beginning of data series).

8It is a weighted average of 8 capital cities (Sydney, Melbourne, Brisbane, Adelaide, Perth, Hobart, Darwin and
Canberra).

9The quarterly household disposable income data series of New Zealand is discontinued in 2008Q4.
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Table 11: The sup ADF test of the Australia and New Zealand housing markets

SADF statistic
Australia price-to-income ratio 1.23
New Zealand price-to-income ratio 4.62

η > 0.5 η = 0.4 η = 0.2 η = 0
90% 0.88 1.26 1.84 2.27
95% 1.20 1.59 2.19 2.62
99% 1.87 2.33 3.04 3.20

Note: Critical values of the sup ADF test under the specification of η = 0.4 and η = 0.2 are obtained from

simulations with 2, 000 replications and sample size 96. The smallest fractional window r0 is set to be 0.4.

We apply the SADF test to the price-to-income ratios for these two markets. Table 11 presents

the SADF statistics, along with respective critical values under different specifications of the null

hypothesis. The smallest fractional window size r0 equals 0.4. The finite sample critical values for

the cases of η = 0.4 and η = 0.2 are obtained from simulations with 2, 000 replications and sample

size 96.

From Table 11, the SADF statistic for the Australian price-to-income ratio is 1.23. We reject

the null hypothesis when η is specified to be greater than 0.5 and fail to reject the null when it is

smaller than 0.5. These results reveal that the empirical evidence of exuberance in the Australia

housing market is sensitive to model specification.

For the New Zealand housing market, the SADF statistic is 4.62, which is greater than the

1% critical values under all four different null specifications. Hence, application of the SADF test

confirms the existence of exuberance in the New Zealand housing market over the sample period

and the confirmation is universal across specifications.

8 Conclusion

This paper has investigated various formulations of the null and alternative hypotheses in studying

empirical evidence of exuberance in economic and financial time series. The formulations involve

different specifications of the regression models used for the construction of empirical tests of

exuberance, which are shown to impact both the finite sample and the asymptotic distributions of

the tests.

Our findings suggest a model specification that should be reasonable in practical work. The

empirical model does not include a linear deterministic trend in the regression but allows for some
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(small) deterministic drift in the process under the null hypothesis of a unit root. The test relies

on the estimation (or recursive estimation) of the autoregressive coefficient in the model

∆yt = α+ βyt−1 +

k∑
i=1

ϕi∆yt−i + εt.

The null hypothesis allows for an intercept α which is local to zero. In particular, α is a function of

sample size with a power exponent parameter η, so that α = α̃T−η. The limiting distributions of

the ADF statistic and the SADF statistic are derived for cases where η > 0.5, η = 0.5 and η < 0.5.

The asymptotic critical values are obtained by simulation.

The size and power properties have been examined and compared. When asymptotic critical

values are used, the SADF test does not show obvious size distortion under the cases where η > 0.5

and η = 0. There is significant size distortion when 0 < η < 0.5 and the level of distortion increases

with the value of η.

Power is assessed using the Evans (1991) periodically collapsing explosive process (with both

yearly and monthly parameter settings) and the locally explosive process proposed in this paper

(with monthly parameters setting). The conclusion drawn from these two DGPs is the same.

The results indicate that the preferred procedure for practical implementation is to estimate the

regression model of equation (2) and specify the null hypothesis to be an asymptotically negligible

intercept (i.e. η > 0.5) in the right-tailed unit root test. The empirical application of these methods

to Nasdaq market data and to the Australian and New Zealand housing markets demonstrates the

importance of hypothesis and model specification in the right-tailed unit root test, revealing some

sensitivity in the outcomes of the test to these modeling decisions.
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A Appendix

Before proving Proposition 5.1, we list in the following Lemma some standard results that are useful

in the proof.

Lemma A.1 Let ut = ψ (L) εt = Σ∞
j=0ψjεt−j , where Σ∞

j=0j |ψj | < ∞ and {εt} is an i.i.d sequence

with mean zero, variance σ2 and finite fourth moment. DefineMT (r) = 1/T
∑[Tr]

s=1 us with r ∈ [r0, 1]

and ξt =
∑t

s=1 us. We have:

(1)
∑t

s=1 us = ψ (1)
∑t

s=1 εs + ηt − η0, where ηt =
∑∞

j=0 αjεt−j, η0 =
∑∞

j=0 αjε−j and αj =

−
∑∞

i=1 ψj+i, which is absolutely summable.

(2) 1
T

∑[Tr]
t=1 ε

2
t

p→ σ2r.

(3)T−1/2
∑[Tr]

t=1 εt
L→ σW (r) .

(4)T−1
∑[Tr]

t=1

∑t−1
s=1 εsεt

L→ 1
2σ

2
[
W (r)2 − r

]
.

(5)T−3/2
∑[Tr]

t=1 εtt
L→ σ

[
rW (r)−

∫ r
0 W (s) ds

]
.

(6)T−1
∑[Tr]

t=1 (ηt−1 − η0) εt
p→ 0.

(7)T−1/2
(
η[Tr] − η0

) p→ 0.

(8)
√
TMT (r)

L→ ψ (1)σW (r) .

(9) T−1
∑[Tr]

t=1 ξt−1εt
L→ 1

2ψ (1)σ2
[
W (r)2 − r

]
.

(10) T−3/2
∑[Tr]

t=1 ξt−1
L→ ψ (1)σ

∫ r
0 W (s) ds.

(11) T−5/2
∑[Tr]

t=1 ξt−1t
p→ ψ (1)σ

∫ r
0 W (s) sds.

(12) T−2
∑[Tr]

t=1 ξ
2
t−1

L→ σ2ψ (1)2
∫ r
0 W (s)2 ds.

(13) T−3/2
∑[Tr]

t=1 ξt−1ut−j
p→ 0,∀j ≥ 0.

All of these results can be found or easily derived from Phillips (1987), Phillips and Perron

(1988), and Phillips and Solo (1991).
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Lemma A.2 Define yt = αT t +
∑t

s=1 us, αT = ψ (1)T−η and ut = ψ (L) εt = Σ∞
j=0ψjεt−j , where

Σ∞
j=0j |ψj | <∞ and {εt} is an i.i.d sequence with mean zero, variance σ2 and finite fourth moment.

Then, if η > 1/2, we have

(a1) T−1

[Tr]∑
t=1

yt−1εt
L→ 1

2
σ2ψ (1)

[
W (r)2 − r

]
,

(b1) T−3/2

[Tr]∑
t=1

yt−1
L→ ψ (1)σ

∫ r

0
W (s) ds,

(c1) T−2

[Tr]∑
t=1

y2t−1
L→ σ2ψ (1)2

∫ r

0
W (s)2 ds,

(d1) T−3/2

[Tr]∑
t=1

yt−1ut−j
p→ 0, , j = 0, 1, · · · ;

if η = 1/2, we have

(a2) T−1

[Tr]∑
t=1

yt−1εt
L→ ψ (1)σ

{[
rW (r)−

∫ r

0
W (s) ds

]
+

1

2
σ
[
W (r)2 − r

]}
,

(b2) T−3/2

[Tr]∑
t=1

yt−1
L→ ψ (1)

[
1

2
r + σ

∫ r

0
W (s) ds

]
,

(c2) T−2

[Tr]∑
t=1

y2t−1
L→ ψ (1)2

[
1

3
r3 + σ2

∫ r

0
W (s)2 ds+ 2σ

∫ r

0
W (s) sds

]
,

(d2) T−3/2

[Tr]∑
t=1

yt−1ut−j
p→ 0, , j = 0, 1, · · · ;

and if η < 1/2, we have

(a3) T−3/2

[Tr]∑
t=1

yt−1εt
L→ αTσ

[
rW (r)−

∫ r

0
W (s) ds

]
.

(b3) T−2

[Tr]∑
t=1

yt−1
p→ αT

2
r2.

(c3) T−3

[Tr]∑
t=1

y2t−1
p→
α2
T

3
r3.

(d3) T−2

[Tr]∑
t=1

yt−1ut−j
p→ 0,∀j ≥ 0.

The proof of Lemma A.2 is straightforward and is therefore omitted here for brevity. (It may

be obtained from the authors upon request.)
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We now derive the asymptotic distributions of SADF.

Proof of Proposition 5.1. The regression model is

∆yt = α+ βyt−1 +

p−1∑
k=1

ϕk∆yt−k + εt.

Under the null hypothesis that α = T−η and β = 0, we have yt = αT t+
∑t

s=1 us, where αT = ψ (1)α

and ut = ψ (L) εt with ψ (L) =
(
1− ϕ1L− ϕ2L

2 − · · · − ϕp−1L
p−1

)−1
.

The deviation of the OLS estimate θ̂r from the true value θ is given by

θ̂r − θ =

[Tr]∑
t=1

XtX
′
t

−1 [Tr]∑
t=1

Xtεt

 , (26)

where Xt = [αT + ut−1 αT + ut−2 . . . αT + ut−p+1 1 yt−1]
′ and θ = [ϕ1 ϕ2 . . . ϕp−1 α β]′. We

know that the probability limit of
∑[Tr]

t=1 XtX
′
t is block diagonal from (d1), (d2) and (d3) of Lemma

A.2. Therefore, we only need to obtain the last 2× 2 components of
∑[Tr]

t=1 XtX
′
t and the last 2× 1

component of
∑[Tr]

t=1 Xtεt, which are[
Σ1 Σyt−1

Σyt−1 Σy2t−1

]
and

[
Σεt

Σyt−1εt

]
,

respectively, where Σ denotes summation over t = 1, 2, · · · , [Tr] . Pre-multiplying equation (26) by

a scaling matrix ΥT , results in

ΥT

[
α̂r − α

β̂r − β

]
=

Υ−1
T

[Tr]∑
t=1

XtX
′
t


(−2)×(−2)

Υ−1
T


−1Υ−1

T

[Tr]∑
t=1

Xtεt


(−2)×1

 .

If η > 1/2, based on (3) of Lemma A.1 and (a1) of Lemma A.2, the scaling matrix should be

ΥT = diag
(
T 1/2, T

)
. Consider the matrix Υ−1

T

[∑[Tr]
t=1 XtX

′
t

]
(−2)×(−2)

Υ−1
T ,

[
T 1/2 0
0 T

]−1 [
Σ1 Σyt−1

Σyt−1 Σy2t−1

] [
T 1/2 0
0 T

]
L→

[
r ψ (1)σ

∫ r
0 W (s) ds

ψ (1)σ
∫ r
0 W (s) ds σ2ψ (1)2

∫ r
0 W (s)2 ds

]
,

and the matrix Υ−1
T

[∑[Tr]
t=1 Xtεt

]
(−2)×1

,

[
T 1/2 0
0 T

]−1 [
Σεt

Σyt−1εt

]
=

[
T−1/2Σεt
T−1Σyt−1εt

]
L→

[
σW (r)

1
2σ

2ψ (1)
[
W (r)2 − r

] ]
.

Under the null hypothesis that α = T−η with η > 1/2 and β = 0,
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[
T 1/2 (α̂r − α)

T β̂r

]
L→

[
r A0,r

A0,r B0,r

]−1 [
C0,r

D0,r

]
=

1

−B0,rr +A2
0,r

[
−B0,rC0,r +A0,rD0,r

A0,rC0,r − rD0,r

]
with

A0,r = ψ (1)σ

∫ r

0
W (s) ds,B0,r = σ2ψ (1)2

∫ r

0
W (s)2 ds,

C0,r = σW (r) , D0,r =
1

2
σ2ψ (1)

[
W (r)2 − r

]
.

Therefore, we have

T β̂r
L→ A0,rC0,r − rD0,r

−B0,rr +A2
0,r

.

To calculate the t-statistic of β̂r, we need to find the standard error of β̂r. We know that

var

([
α̂r

β̂r

])
= σ2

[
Σ1 Σyt−1

Σyt−1 Σy2t−1

]−1

so the variances of T β̂r can be calculated as follows:

var

([
T 1/2 (α̂r − α)

T β̂r

])
= σ2

{[
T 1/2 0
0 T

]−1 [
Σ1 Σyt−1

Σyt−1 Σy2t−1

] [
T 1/2 0
0 T

]−1
}−1

L→ σ2

−B0,rr +A2
0,r

[
−B0,r A0,r

A0,r −r

]
.

Hence, the t-statistic of β̂r is

ADFr =
T β̂r

se
(
T β̂r

) L→
1
2r

[
W (r)2 − r

]
−

∫ r
0 W (s) dsW (r)

r1/2
{∫ r

0 W (s)2 dsr −
[∫ r

0 W (s) ds
]2}1/2

.

By the CMT, we have

SADF (r0)
L→ sup

r∈[r0,1]


1
2r

[
W (r)2 − r

]
−

∫ r
0 W (s) dsW (r)

r1/2
{∫ r

0 W (s)2 dsr −
[∫ r

0 W (s) ds
]2}1/2

 .

If η = 1/2, based on (3) of Lemma A.1 and (a2) of Lemma A.2, the scaling matrix should be

ΥT = diag
(√

T , T
)
. Consider the matrix Υ−1

T

[∑[Tr]
t=1 XtX

′
t

]
(−2)×(−2)

Υ−1
T ,

[ √
T 0
0 T

]−1 [
Σ1 Σyt−1

Σyt−1 Σy2t−1

] [ √
T 0
0 T

]−1

L→
[
1 0
0 ψ (1)

] [
r 1

2r + σ
∫ r
0 W (s) ds

1
2r + σ

∫ r
0 W (s) ds 1

3r
3 + σ2

∫ r
0 W (s)2 ds+ 2σ

∫ r
0 W (s) sds

] [
1 0
0 ψ (1)

]
,
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and the matrix Υ−1
T

[∑[Tr]
t=1 Xtεt

]
(−2)×1

,

[ √
T 0
0 T

]−1 [
Σεt

Σyt−1εt

]
L→

[
σ 0
0 σψr (1)

][
W (r)[

rW (r)−
∫ r
0 W (s) ds

]
+ 1

2σ
[
W (r)2 − r

] ]
.

Under the null hypothesis that α = T−η and β = 0,[ √
T (α̂r − α)

T β̂r

]
L→

[
σ 0

0 σψ (1)−1

] [
r Ar,σ

Ar,σ Br,σ

]−1 [
Cr,σ

Dr,σ

]
where

Ar,σ =
1

2
r + σ

∫ r

0
W (s) ds,

Br,σ =
1

3
r3 + σ2

∫ r

0
W (s)2 ds+ 2σ

∫ r

0
W (s) sds

Cr,σ =W (r) , Dr,σ =

[
rW (r)−

∫ r

0
W (s) ds

]
+

1

2
σ
[
W (r)2 − r

]
.

We can see that β̂r converges at rate T to the following distribution

T β̂r
L→

[
0 σψ (1)−1

] [ r Ar,σ

Ar,σ Br,σ

]−1 [
Cr,σ

Dr,σ

]
=

σ

ψ (1)

rDr,σ −Ar,σCr,σ

Br,σr −A2
r,σ

.

We know that

var

([ √
T (α̂r − α)

T β̂r

])
= σ2

{[ √
T 0
0 T

]−1 [
Σ1 Σyt−1

Σyt−1 Σy2t−1

] [ √
T 0
0 T

]−1
}−1

L→ σ2
[
1 0
0 ψ (1)

]−1 [
r Ar,σ

Ar,σ Br,σ

]−1 [
1 0
0 ψ (1)

]−1

.

Hence, the t-statistic of β̂r is:

ADFr =
T β̂r

se
(
T β̂r

) L→ rDr,σ −Ar,σCr,σ

r1/2
(
Br,σr −A2

r,σ

)1/2 .
By CMT, we have

SADF (r0)
L→ sup

r∈[r0,1]

{
rDr,σ −Ar,σCr,σ

r1/2
(
Br,σr −A2

r,σ

)1/2
}
.

If η < 1/2, based on (3) of Lemma A.1 and (a) of Lemma A.2, the scaling matrix should be

ΥT = diag
(
T 1/2, T

3
2

)
. Consider the matrix Υ−1

T

[∑[Tr]
t=1 XtX

′
t

]
(−2)×(−2)

Υ−1
T ,

[
T 1/2 0

0 T 3/2

]−1 [
Σ1 Σyt−1

Σyt−1 Σy2t−1

] [
T 1/2 0

0 T 3/2

]
L→

[
r 1

2αT r
2

1
2αT r

2 1
3α

2
T r

3

]
, (27)
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and the matrix Υ−1
T

[∑[Tr]
t=1 Xtεt

]
(−2)×1

,

[
T 1/2 0

0 T 3/2

]−1 [
Σεt

Σyt−1εt

]
L→

[
σW (r)

αTσ
[
rW (r)−

∫ r
0 W (s) ds

] ]
.

Under the null hypothesis that α = T−η and β = 0,[
T 1/2 (α̂r − α)

T 3/2β̂r

]
L→

[
2r−2σ

[
−rW (r) + 3

∫ r
0 W (s) ds

]
6r−3αTσ

[
rW (r)− 2

∫ r
0 W (s) ds

] ]
.

We can see that

T β̂r
L→ 6r−3αTσ

[
rW (r)− 2

∫ r

0
W (s) ds

]
.

The variances of T β̂r can be calculated as follows:

var

([
T 1/2 (α̂r − α)

T 3/2β̂r

])
= σ2

{[
T 1/2 0

0 T 3/2

]−1 [
Σ1 Σyt−1

Σyt−1 Σy2t−1

] [
T 1/2 0

0 T 3/2

]−1
}−1

p→ σ2
[

r 1
2αT r

2

1
2αT r

2 1
3α

2
T r

3

]−1

= σ2
[

4r−1 −6r−2α−1
T

−6r−2α−1
T 12r−3α−2

T

]
Hence, the t-statistic of β̂r is

ADFr =
T 3/2β̂r

se
(
T 3/2β̂r

) L→
∫ r
0 sdW (s)−

∫ r
0 W (s) ds(∫ r

0 s
2ds

)1/2 .

By CMT, we have

SADF (r0)
L→ sup

r∈[r0,1]

{∫ r
0 sdW (s)−

∫ r
0 W (s) ds(∫ r

0 s
2ds

)1/2
}
.
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