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5 Outline

This Appendix provides proofs of Theorems N1 and N2 of Andrews and Shi (2013a)

�Nonparametric inference based on conditional moment inequalities,�referred to here-

after as ASN. In fact, the results given here cover a much broader class of test statistics

than is considered in ASN.

This Appendix is organized as follows. Section 6 de�nes the class of Cramér-von

Mises (CvM) test statistics that are considered. This class includes the statistics that

are considered in ASN. Section 7 introduces generalized moment selection (GMS) and

plug-in asymptotic (PA) critical values, con�dence sets (CS�s), and tests. Section 8

establishes the correct asymptotic size of GMS and PA CS�s. Theorem N1 of ASN is a

corollary to Theorem AN1, which is given in Section 8. Section 9 establishes that GMS

and PA CS�s contain �xed parameter values outside the identi�ed set with probability

that goes to zero. Equivalently, the tests upon which the CS�s are constructed are shown

to be consistent tests. Theorem N2 of ASN is a corollary to Theorem AN2, which is

given in Section 9. Section 10 shows that GMS and PA tests have nontrivial power

against some, but not all, (nbdz)1=2-local alternatives. Section 11 derives local power

results for the KS and CvM tests that cover the case where the DGP does not depend

on n and the moment inequalities are binding only on a measure-zero set of Xi: It uses

these results to compare the asymptotic power of the KS and CvM tests (in terms of

rates of convergence) with that of the CLR test in a simple moment inequality model.

Section 12 provides proofs of the results given in this Appendix. Section 13 provides

some additional simulation results to those given in that paper.

We let AS1 and AS2 abbreviate Andrews and Shi (2013b) and Andrews and Shi

(2013c), respectively.

6 General Form of the Test Statistic

6.1 Test Statistic

Here we de�ne the general form of the test statistic Tn(�) that is used to construct

a CS. We transform the conditional moment inequalities/equalities given Xi and Zi =

z0 into equivalent conditional moment inequalities/equalities given only Zi = z0 by

choosing appropriate weighting functions of Xi; i.e., Xi-instruments. Then, we construct
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a test statistic based on kernel averages of the instrumented moment conditions over Zi
values that lie in a neighborhood of z0:

The instrumented conditional moment conditions given Zi = z0 are of the form:

EF0(mj (Wi; �0) gj (Xi) jZi = z0) � 0 for j = 1; :::; p and (6.1)

EF0(mj (Wi; �0) gj (Xi) jZi = z0) = 0 for j = p+ 1; :::; k; for g = (g1; :::; gk)0 2 G;

where g = (g1; :::; gk)0 are instruments that depend on the conditioning variables Xi and

G is a collection of instruments. Typically G contains an in�nite number of elements.
The identi�ed set �F0(G) of the model de�ned by (6.1) is

�F0(G) = f� 2 � : (6.1) holds with � in place of �0g: (6.2)

The collection G is chosen so that �F0(G) = �F0 ; where �F0 is the identi�ed set based
on the conditional moment inequalities and equalities de�ned in (2.2) of ASN. Section

6.3 provides conditions for this equality and shows that the instruments de�ned in (3.6)

of ASN satisfy the conditions. Additional sets G are given in AS1 and AS2.
We construct test statistics based on (6.1). The sample moment functions are

mn(�; g) = n�1
nX
i=1

m(Wi; �; g; b) for g 2 G; where

m(Wi; �; g; b) = b�dz=2Kb(Zi)m(Wi; �; g);

Kb(Zi) = K

�
Zi � z0

b

�
;

m(Wi; �; g) =

0BBBB@
m1(Wi; �)g1(Xi)

m2(Wi; �)g2(Xi)
...

mk(Wi; �)gk(Xi)

1CCCCA for g 2 G; (6.3)

b > 0 is a scalar bandwidth parameter for which b! 0 as n!1; and K(x) is a kernel

function. The de�nition of mn(�; g) in (6.3) is the same as the de�nition of mn(�; g) in

AS1 except for the multiplicand b�dz=2Kb(Zi) in m(Wi; �; g; b):

For notational simplicity, we omit the dependence of mn(�; g) (and various other

quantities below) on b:

Note that the normalization b�dz=2 that appears in m(Wi; �; g; b) yields m(Wi; �; g; b)
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to have a variance matrix that is O(1); but not o(1): In fact, under the conditions

given below, V arF (m(Wi; �; g; b)) ! V arF (m(Wi; �; g)jZi = z0)f(z0) as n ! 1 under

(�; F ) 2 F :
If the sample average mn(�; g) is divided by the scalar n�1

Pn
i=1 b

�dz=2Kb(Zi) it be-

comes the Nadaraya-Watson nonparametric kernel estimator of E(m(Wi; �; g)jZi = z0):

We omit this divisor because doing so simpli�es the statistic and has no e¤ect on the

test de�ned below.23

We assume the bandwidth b and kernel function K(x) satisfy:

Assumption B. (a) b = o(n�1=(4+dz)) and (b) nbdz !1 as n!1:

Assumption K. (a)
R
K(z)dz = 1; (b)

R
zK(z)dz = 0dz ; (c) K(z) = 0 8z =2 [�1; 1]dz ;

(d) K(z) � 0 8z 2 Rdz ; and (e) supz2Rdz K(z) <1:

Assumptions B and K are standard assumptions in the nonparametric density and

regression literature. When Assumption B is applied to a nonparametric regression or

density estimator, part (a) implies that the bias of the estimator goes to zero faster than

the variance (and is the weakest condition for which this holds) and part (b) implies that

the estimator is asymptotically normal (because it implies that b goes to zero su¢ ciently

slowly that a Lindeberg condition holds).

The sample variance-covariance matrix of n1=2mn(�; g) is

b�n(�; g) = n�1
nX
i=1

(m(Wi; �; g; b)�mn(�; g)) (m(Wi; �; g; b)�mn(�; g))
0 : (6.4)

The matrix b�n(�; g)may be singular or nearly singular with non-negligible probability for
some g 2 G. This is undesirable because the inverse of b�n(�; g) needs to be consistent
for its population counterpart uniformly over g 2 G for the test statistics considered
below. In consequence, we employ a modi�cation of b�n(�; g); denoted �n(�; g); such
that det(�n(�; g)) is bounded away from zero:

�n(�; g) = b�n(�; g) + " �Diag(b�n(�; 1k)) for g 2 G (6.5)

for some �xed " > 0: In the simulations in Section 4 of ASN, we use " = 5=100: By

design, �n(�; g) is a linear combination of two scale equivariant functions and hence

23This holds because division by n�1
Pn

i=1 b
�dz=2Kb(Zi) rescales the test statistic and critical value

identically and in consequence the rescaling cancels out.
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is scale equivariant.24 This yields a test statistic that is invariant to rescaling of the

moment functions m(Wi; �); which is an important property.

The test statistic Tn(�) is either a Cramér-von-Mises-type (CvM) or Kolmogorov-

Smirnov-type (KS) statistic. The CvM statistic is

Tn(�) =

Z
S(n1=2mn(�; g);�n(�; g))dQ(g); (6.6)

where S is a non-negative function, Q is a weight function (i.e., probability measure) on

G, and the integral is over G: The functions S and Q are discussed in Sections 6.2 and

6.4 below, respectively.

The Kolmogorov-Smirnov-type (KS) statistic is

Tn(�) = sup
g2G

S(n1=2mn(�; g);�n(�; g)): (6.7)

For brevity, the discussion in this Appendix focusses on CvM statistics and all results

stated, except those in Section 11, concern CvM statistics. Similar results hold for KS

statistics. Such results can be established by extending the results given in Section 13.1

of Appendix B of AS2 and proved in Section 15.1 of Appendix D of AS2.

6.2 S Function Assumptions

Let mI = (m1; :::;mp)
0 and mII = (mp+1; :::;mk)

0: Let � be the set of k� k positive-
de�nite diagonal matrices. Let W be the set of k � k positive-de�nite matrices. Let

S = f(m;�) : m 2 Rp[+1] �Rv; � 2 Wg: Let R+ = fx 2 R : x � 0g:
We consider functions S that satisfy the following conditions.

Assumption S1. 8 (m;�) 2 S;
(a) S (Dm;D�D) = S (m;�) 8D 2 �;
(b) S (mI ;mII ;�) is non-increasing in each element of mI ;

(c) S (m;�) � 0;
(d) S is continuous, and

(e) S (m;� + �1) � S (m;�) for all k � k positive semi-de�nite matrices �1:

24That is, multiplying the moment functions m(Wi; �) by a diagonal matrix, D; changes �n(�; g) into
D�n(�; g)D:
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Note that Assumption S1(d) requires S to be continuous in m at all points m in the

extended vector space Rp[+1] �Rv; not only for points in Rp+v:

Assumption S2. S(m;�) is uniformly continuous in the sense that, for all m0 2 Rk

and all pd �0; sup�2Rp+�f0gv jS(m+ �;�)� S(m0 + �;�0)j ! 0 as (m;�)! (m0;�0):
25

The following two assumptions are used only to establish the power properties of

tests.

Assumption S3. S(m;�) > 0 if and only if mj < 0 for some j = 1; :::; p or mj 6= 0 for
some j = p+ 1; :::; k; where m = (m1; :::;mk)

0 and � 2 W :

Assumption S4. For some � > 0; S(am;�) = a�S(m;�) for all scalars a > 0; m 2 Rk;
and � 2 W :

The functions S1; S2; and S3 in (3.9) of ASN satisfy Assumptions S1-S4 by Lemma

1 of AS1.

6.3 X-Instruments

The collection of instruments G needs to satisfy the following condition in order for
the conditional moments fEF (m(Wi; �; g)jZi = z0) : g 2 Gg to incorporate the same
information as the conditional moments fEF (m(Wi; �)jXi = x; Zi = z0) : x 2 Rdxg:
For any � 2 � and any distribution F with EF (jjm(Wi; �)jj jZi = z0) <1; let

XF (�) = fx 2 Rdx : EF (mj (Wi; �) jXi = x; Zi = z0) < 0 for some j � p or

EF (mj (Wi; �) jXi = x; Zi = z0) 6= 0 for some j = p+ 1; :::; kg: (6.8)

Assumption NCI. For any � 2 � and distribution F for which EF (jjm(Wi; �)jj jZi =
z0) <1 and PF (Xi 2 XF (�)jZi = z0) > 0; there exists some g 2 G such that

EF (mj(Wi; �)gj(Xi)jZi = z0) < 0 for some j � p or

EF (mj(Wi; �)gj(Xi)jZi = z0) 6= 0 for some j = p+ 1; :::; k:

Note that NCI abbreviates �nonparametrically conditionally identi�ed.�The following

Lemma indicates the importance of Assumption NCI.

25Assumption S2 is equivalent to the same condition with � vectors whose elements exceed ��1 for
some �1 <1: This is used in the proofs below.
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Lemma AN1. Assumption NCI implies that �F (G) = �F for all F with sup�2�
EF (jjm(Wi; �)jj jZi = z0) <1:

Collections G that satisfy Assumption NCI contain non-negative functions whose
supports are cubes, boxes, or other sets whose supports are arbitrarily small.

The collection G also must satisfy the following �manageability� condition. This
condition regulates the complexity of G: It ensures that fn1=2(mn(�; g)�EFnmn(�; g)) :

g 2 Gg satis�es a functional central limit theorem (FCLT) under drifting sequences of

distributions fFn : n � 1g: The latter is utilized in the proof of the uniform coverage

probability results for the CS�s. The manageability condition is from Pollard (1990) and

is de�ned and explained in Appendix E of AS2.

Assumption NM. (a) 0 � gj(x) � G 8x 2 Rdx ;8j � k;8g 2 G, for some constant
G <1; and

(b) the processes fgj(Xn;i) : g 2 G; i � n; n � 1g are manageable with respect to
the constant function G for j = 1; :::; k; where fXn;i : i � n; n � 1g is a row-wise i.i.d.
triangular array with Xn;i � FX;n and FX;n is the distribution of Xn;i under Fn for some

(�n; Fn) 2 F+ for n � 1:26 ;27

Lemma 3 of AS1 establishes Assumptions NCI and NM for Gc-cube de�ned in (3.6) of
ASN.28

6.4 Weight Function Q

The weight function Q can be any probability measure on G whose support is G: This
support condition is needed to ensure that no functions g 2 G; which might have set-
identifying power, are �ignored�by the test statistic Tn(�):Without such a condition, a

CS based on Tn(�) would not necessarily shrink to the identi�ed set as n!1: Section 9

below introduces the support condition formally and shows that the probability measure

Q considered here satis�es it.

We now give an example of a weight function Q on Gc-cube:
26The set of distributions F+ is de�ned just prior to (3.17) of ASN.
27The asymptotic results given in the paper hold with Assumption NM replaced by any alternative

assumption that is su¢ cient to obtain the requisite empirical process results given in Lemma AN4
below.
28Lemma 3 of AS1 and Lemma B2 of AS2 also establish Assumptions NCI and NM of this Appendix

for the collections Gbox; GB�spline; Gbox;dd; and Gc=d de�ned there. The proof is the same as in AS2 for
Assumptions CI and M with conditioning on Zi = z0 added throughout.
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Weight Function Q for Gc-cube: There is a one-to-one mapping �c-cube : Gc-cube !
AR = f(a; r) : a 2 f1; :::; 2rgdx and r = r0; r0+1; :::g: Let QAR be a probability measure
on AR: One can take Q = ��1c-cubeQAR: A natural choice of measure QAR is uniform

on a 2 f1; :::; 2rgdx conditional on r combined with a distribution for r that has some
probability mass function fw(r) : r = r0; r0 + 1; :::g: This yields the test statistic

Tn(�) =

1X
r=r0

w(r)
X

a2f1;:::;2rgdx
(2r)�dxS(n1=2mn(�; ga;r);�n(�; ga;r)); (6.9)

where ga;r(x) = 1(x 2 Ca;r) � 1k for Ca;r 2 Cc-cube:
The weight function QAR with w(r) = (r2 + 100)�1 is used in the test statistics in

ASN, see (3.7).

6.5 Computation of Sums, Integrals, and Suprema

The test statistic Tn(�) given in (6.9) involves an in�nite sum. A collection G with an
uncountable number of functions g yields a test statistic Tn(�) that is an integral with

respect to Q: This in�nite sum or integral can be approximated by truncation, simula-

tion, or quasi-Monte Carlo (QMC) methods. If G is countable, let fg1; :::; gsng denote
the �rst sn functions g that appear in the in�nite sum that de�nes Tn(�): Alternatively,

let fg1; :::; gsng be sn i.i.d. functions drawn from G according to the distribution Q: Or,
let fg1; :::; gsng be the �rst sn terms in a QMC approximation of the integral with respect
to (wrt) Q: Then, an approximate test statistic obtained by truncation, simulation, or

QMC methods is

T n;sn(�) =
snX
`=1

wQ;n(`)S(n
1=2mn(�; g`);�n(�; g`)); (6.10)

where wQ;n(`) = Q(fg`g) when an in�nite sum is truncated, wQ;n(`) = s�1n when

fg1; :::; gsng are i.i.d. draws from G according to Q; and wQ;n(`) is a suitable weight
when a QMC method is used. For example, in (6.9), the outer sum can be truncated

at r1;n; in which case, sn =
Pr1;n

r=r0
(2r)dx and wQ;n(`) = w(r)(2r)�dx for ` such that g`

corresponds to ga;r for some a: The test statistics in (3.7) of ASN are of this form when

r1;n <1:

It can shown that truncation at sn; simulation based on sn simulation repetitions,

or QMC approximation based on sn terms, where sn ! 1 as n ! 1; is su¢ cient to
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maintain the asymptotic validity of the tests and CS�s as well as the asymptotic power

results under �xed alternatives and most of the results under (certain) (nbdz)�1=2-local

alternatives. For brevity we do so here only for the truncated statistics de�ned in ASN

and for the results stated in Theorems N1 and N2 of ASN, see the discussion following

the proofs of Theorems AN1 and AN4 in Section 12.2.4 and Comment 2 following The-

orem AN2 in Section 9. For other approximate statistics and for power under (certain)

(nbdz)�1=2-local alternatives, the method of proof is analogous to that used in Section

15.1 of Appendix D of AS2 to prove such results stated in Section 13.1 of Appendix B

of AS2 for the tests considered in AS1 and AS2.

The KS form of the test statistic requires the computation of a supremum over g 2 G:
For computational ease, this can be replaced by a supremum over g 2 Gn; where Gn " G
as n!1; in the test statistic and in the de�nition of the critical value (de�ned below).

The same asymptotic results for KS tests hold with Gn in place of G (although some
asymptotic local power results require Gn " G at a su¢ ciently fast rate). For results of
this sort for the tests considered in AS1 and AS2, see Section 13.1 of Appendix B of

AS2 and Section 15.1 of Appendix D of AS2.

7 GMS and Plug-in Asymptotic Con�dence Sets

7.1 GMS Critical Values

In this section, we de�ne GMS critical values and CS�s.

It is shown in Theorem AN4 in Section 12.2.2 that when � is in the identi�ed set

the �uniform asymptotic distribution�of Tn(�) is the distribution of T (hn); where hn =

(h1;n; h2); h1;n(�) is a function from G to Rp[+1] � f0gv that depends on the slackness of
the moment inequalities and on n; where R[+1] = R [ f+1g; and h2(�; �) is a k � k-

matrix-valued covariance kernel on G � G: For h = (h1; h2); de�ne

T (h) =

Z
S(�h2(g) + h1(g); h2(g; g) + "Ik)dQ(g); (7.1)

where

f�h2(g) : g 2 Gg (7.2)

is a mean zero Rk-valued Gaussian process with covariance kernel h2(�; �) on G � G; h1(�)
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is a function from G to Rp[+1] � f0gv; and " is as in the de�nition of �n(�; g) in (6.5).29

The de�nition of T (h) in (7.1) applies to CvM test statistics. For the KS test statistic,

one replaces
R
::: dQ(g) by supg2G ::: .

We are interested in tests of nominal level � and CS�s of nominal level 1� �: Let

c0(h; 1� �) (= c0(h1; h2; 1� �)) (7.3)

denote the 1�� quantile of T (h): If hn = (h1;n; h2) was known, we would use c0(hn; 1��)
as the critical value for the test statistic Tn(�): However, hn is not known and h1;n

cannot be consistently estimated. In consequence, we replace h2 in c0(h1;n; h2; 1 � �)

by a uniformly consistent estimator bh2;n(�) (= bh2;n(�; �; �)) of the covariance kernel h2
and we replace h1;n by a data-dependent GMS function 'n(�) (= 'n(�; �)) on G that is
constructed to be less than or equal to h1;n(g) for all g 2 G with probability that goes
to one as n!1: Because S(m;�) is non-increasing in mI by Assumption S1(b), where

m = (m0
I ;m

0
II)

0; the latter property yields a test whose asymptotic level is less than or

equal to the nominal level �: (It is arbitrarily close to � for certain (�; F ) 2 F :) The
quantities bh2;n(�) and 'n(�) are de�ned below.
The nominal 1� � GMS critical value is de�ned to be

c('n(�);
bh2;n(�); 1� �) = c0('n(�);

bh2;n(�); 1� �+ �) + �; (7.4)

where � > 0 is an arbitrarily small positive constant, e.g., 10�6: A nominal 1� � GMS

CS is given by

CSn = f� 2 � : Tn(�) � cn;1��(�)g: (7.5)

with the critical value cn;1��(�) equal to c('n(�);bh2;n(�); 1� �):30

Next, we de�ne the asymptotic covariance kernel, fh2;F (�; g; g�) : g; g� 2 Gg; of
29The sample paths of �h2(�) are concentrated on the set Uk� (G) of bounded uniformly �-continuous

Rk-valued functions on G; where � is de�ned in Appendix A of AS2.
30The constant � is an in�nitesimal uniformity factor (IUF) that is employed to circumvent problems

that arise due to the presence of the in�nite-dimensional nuisance parameter h1;n that a¤ects the
distribution of the test statistic in both small and large samples. The IUF obviates the need for
complicated and di¢ cult-to-verify uniform continuity and strict monotonicity conditions on the large
sample distribution functions of the test statistic.
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n1=2mn(�; g) after normalization via a diagonal matrix D
�1=2
F (�; z0): De�ne31

h2;F (�; g; g
�) = D

�1=2
F (�; z0)�F (�; g; g

�; z0)D
�1=2
F (�; z0); where

�F (�; g; g
�; z) = EF (m(Wi; �; g)m(Wi; �; g

�)0jZi = z)f(z) and (7.6)

DF (�; z) = Diag(�F (�; 1k; 1k; z)) (= Diag(EF (m(Wi; �)m(Wi; �)
0jZi = z)f(z))):

Correspondingly, the sample covariance kernel bh2;n(�) (= bh2;n(�; �; �)); which is an
estimator of h2;F (�; g; g�); is de�ned by:

bh2;n(�; g; g�) = bD�1=2
n (�)b�n(�; g; g�) bD�1=2

n (�); where

b�n(�; g; g�) = n�1
nX
i=1

(m(Wi; �; g; b)�mn(�; g)) (m(Wi; �; g
�; b)�mn(�; g

�))0 and

bDn(�) = Diag(b�n(�; 1k; 1k)): (7.7)

Note that b�n(�; g); de�ned in (6.4), equals b�n(�; g; g) and b�n(�; 1k; 1k) is the sample
variance-covariance matrix of fm(Wi; �) : n � 1g:
The quantity 'n(�) is de�ned in Section 7.4 below.

7.2 GMS Critical Values for Approximate Test Statistics

When the test statistic is approximated via a truncated sum, simulated integral, or

QMC quantity, as discussed in Section 6.5, the statistic T (h) in Section 7.1 is replaced

by

T sn(h) =
snX
`=1

wQ;n(`)S(�h2(g`) + h1(g`); h2(g`; g`) + "Ik); (7.8)

where fg` : ` = 1; :::; sng are the same functions fg1; :::; gsng that appear in the approxi-
mate statistic T n;sn(�):We call the critical value obtained using T sn(h) an approximate

GMS (A-GMS) critical value.

Let c0;sn(h; 1 � �) denote the 1 � � quantile of T sn(h) for �xed fg1; :::; gsng: The
31Note that DF (�; z) = Diag(�2F;1(�; z); :::; �

2
F;k(�; z)); where �

2
F;j(�; z) = EF (m

2
j(Wi; �)jZi = z)f(z):

Also note that the means, EFm(Wi; �; g); EFm(Wi; �; g
�); and EFm(Wi; �); are not subtracted o¤ in

the de�nitions of �F (�; g; g�; z) and DF (�; z): The reason is that the population means of the sample-
size n quantities based on m(Wi; �; g; b) are smaller than the second moments by an order of magnitude
and, hence, are asymptotically negligible. See Lemmas AN6 and AN7 below.
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A-GMS critical value is de�ned to be

csn('n(�);
bh2;n(�); 1� �) = c0;sn('n(�);

bh2;n(�); 1� �+ �) + �: (7.9)

This critical value is a quantile that can be computed by simulation as follows. Let

fT sn;� (h) : � = 1; :::; � repsg be � reps i.i.d. random variables each with the same distri-

bution as T sn(h) and each with the same functions fg1; :::; gsng; where h = (h1; h2) is

evaluated at ('n(�);bh2;n(�)): Then, the A-GMS critical value, csn('n(�);bh2;n(�); 1� �);
is the 1��+� sample quantile of fT sn;� ('n(�);bh2;n(�)) : � = 1; :::; � repsg plus � for very
small � > 0 and large � reps:

7.3 Bootstrap GMS Critical Values

Bootstrap versions of the GMS critical value in (7.4) and the A-GMS critical value

in (7.9) can be employed. The bootstrap GMS critical value is

c�('n(�);bh�2;n(�); 1� �) = c�0('n(�);
bh�2;n(�); 1� �+ �) + �; (7.10)

where c�0(h; 1 � �) is the 1 � � quantile of T �(h) and T �(h) is de�ned as in (7.1) but

with f�h2(g) : g 2 Gg and bh2;n(�) replaced by the bootstrap empirical process f��n(g) :
g 2 Gg and the bootstrap covariance kernel bh�2;n(�); respectively. By de�nition, ��n(g) =
n�1=2

Pn
i=1(m(W

�
i ; �; g; b)�mn(�; g)); where fW �

i : i � ng is an i.i.d. bootstrap sample
drawn from the empirical distribution of fWi : i � ng: Also, bh�2;n(�; g; g�); b��n(�; g; g�);
and bD�

n(�) are de�ned as in (7.7) with W
�
i in place of Wi: Note that bh�2;n(�; g; g�) only

enters c('n(�);bh�2;n(�); 1� �) via functions (g; g�) such that g = g�:

When the test statistic, T n;sn(�); is a truncated sum, simulated integral, or a QMC

quantity, a bootstrap A-GMS critical value can be employed. It is de�ned analogously

to the bootstrap GMS critical value but with T �(h) replaced by T �sn(h); where T
�
sn(h)

has the same de�nition as T �(h) except that a truncated sum, simulated integral, or

QMC quantity appears in place of the integral with respect to Q; as in Section 7.2. The

same functions fg1; :::; gsng are used in all bootstrap critical value calculations as in the
test statistic T n;sn(�):
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7.4 De�nition of 'n(�)

Next, we de�ne 'n(�): As discussed above, 'n(�) is constructed such that 'n(�; g) �
h1;n(g) 8g 2 G with probability that goes to one as n ! 1 uniformly over (�; F ) 2 F :
Let

�n(�; g) = ��1n n1=2D
�1=2
n (�; g)mn(�; g); where Dn(�; g) = Diag(�n(�; g)); (7.11)

�n(�; g) is de�ned in (6.5), and f�n : n � 1g is a sequence of constants that diverges to
in�nity as n!1: The jth element of �n(�; g); denoted �n;j(�; g); measures the slackness

of the moment inequality EFmj(Wi; �; g) � 0 for j = 1; :::; p:
De�ne 'n(�; g) = ('n;1(�; g); :::; 'n;p(�; g); 0; :::; 0)

0 2 Rk via, for j � p;

'n;j(�; g) = h2;n;j(�; g)
1=2Bn1(�n;j(�; g) > 1);

h2;n(�; g) = bD�1=2
n (�)�n(�; g) bD�1=2

n (�); and h2;n;j(�; g) = [h2;n(�; g)]jj: (7.12)

We assume:

Assumption GMS1. (a) 'n(�; g) satis�es (7.12), where fBn : n � 1g is a non-
decreasing sequence of positive constants, and

(b) for some � > 1; �n � �Bn !1 as n!1:

The constants fBn : n � 1g in Assumption GMS1 need not diverge to in�nity for
the GMS CS to have asymptotic size greater than or equal to 1 � �: However, for the

GMS CS not to be asymptotically conservative, Bn must diverge to1; see Assumption

GMS2(b) below. In ASN, we use �n = (0:3 ln(n))1=2 and Bn = (0:4 ln(n)= ln ln(n))1=2;

which satisfy Assumption GMS1.

The multiplicand h2;n;j(�; g)1=2 in (7.12) is an �"-adjusted�standard deviation esti-

mator for the jth normalized sample moment based on g: It provides a suitable scaling

for 'n(�; g):

The following assumption is not needed for GMS CS�s to have uniform asymptotic

coverage probability greater than or equal to 1 � �: It is used, however, to show that

GMS CS�s are not asymptotically conservative. For (�; F ) 2 F and j = 1; :::; k; de�ne

h1;1;F (�) = fh1;1;F (�; g) : g 2 Gg to have jth element equal to 1 if EFmF;j(�;Xi; z0)

�gj(Xi) > 0 and j � p and 0 otherwise, where mF;j(�; x; z) denotes the jth element of

mF (�; x; z): Let h1;F (�) = (h1;1;F (�); h2;F (�)); where h2;F (�) = fh2;F (�; g; g�) : (g; g�) 2
G � Gg:
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Assumption GMS2. (a) For some (�c; Fc)2F ; the distribution function of T(h1;Fc(�c))
is continuous and strictly increasing at its 1 � � quantile plus �; viz., c0(h1;Fc(�c); 1 �
�) + �; for all � > 0 su¢ ciently small and � = 0;

(b) Bn !1 as n!1; and

(c) (nbdz)1=2=�n !1 as n!1:

Assumption GMS2(a) is not restrictive. For example, it holds for typical choices of S

and Q; such as S1 and S3 and Q as in ASN, for any (�c; Fc) for which Q(fg 2 G :

h1;1;Fc(�c; g) = 0g) > 0: This is established in Lemma B3 in Section 13.3 of AS2.

Assumption GMS2(c) is satis�ed by typical choices of �n; such as �n = (0:3 lnn)1=2;

because the bandwidth b should always be taken such that bdz � cn�1+� for some

c; � > 0:

7.5 �Plug-in Asymptotic�Con�dence Sets

Next, for comparative purposes, we de�ne plug-in asymptotic (PA) critical values.

Subsampling critical values also can be considered, see Appendix B of AS2 for details.

We strongly recommend GMS critical values over PA and subsampling critical values

for the same reasons as given in AS1 plus the fact that the �nite-sample simulations in

Section 4 show better performance by GMS critical values than PA and subsampling

critical values.

PA critical values are obtained from the asymptotic null distribution that arises when

all conditional moment inequalities hold as equalities a.s. The PA critical value is

c(0G;bh2;n(�); 1� �) = c0(0G;bh2;n(�); 1� �+ �) + �; (7.13)

where 0G denotes the Rk-valued function on G that is identically (0; :::; 0)0 2 Rk; andbh2;n(�) is de�ned in (7.7). The nominal 1� � PA CS is given by (7.5) with the critical

value cn;1��(�) equal to c(0G;bh2;n (�) ; 1� �):

Bootstrap PA, A-PA, and bootstrap A-PA critical values are de�ned analogously to

their GMS counterparts in Sections 7.2 and 7.3.
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8 Asymptotic Size

In this section, we show that GMS and PA CS�s have correct uniform asymptotic

coverage probabilities, i.e., correct asymptotic size.

For simplicity, let h2;F (�) abbreviate the asymptotic covariance kernel fh2;F (�; g; g�) :
g; g� 2 Gg de�ned in (7.6). De�ne

H2 = fh2;F (�) : (�; F ) 2 Fg: (8.1)

On the space of k� k-matrix-valued covariance kernels on G � G; which is a superset of
H2; we use the uniform metric d de�ned by

d(h
(1)
2 ; h

(2)
2 ) = sup

g;g�2G
jjh(1)2 (g; g�)� h

(2)
2 (g; g

�)jj: (8.2)

The following Theorem gives uniform asymptotic coverage probability results for

GMS and PA CS�s.

Theorem AN1. Suppose Assumptions B, K, NM, S1, and S2 hold and Assumption
GMS1 also holds when considering GMS CS�s. Then, for every compact subset H2;cpt of

H2; GMS and PA con�dence sets CSn satisfy

(a) lim inf
n!1

inf
(�;F )2F :

h2;F (�)2H2;cpt

PF (� 2 CSn) � 1� � and

(b) if Assumption GMS2 also holds and h2;Fc(�c) 2 H2;cpt (for (�c; Fc) 2 F as in

Assumption GMS2), then the GMS con�dence set satis�es

lim
�!0

lim inf
n!1

inf
(�;F )2F :

h2;F (�)2H2;cpt

PF (� 2 CSn) = 1� �;

where � is as in the de�nition of c(h; 1� �):

Comments. 1. Theorem AN1(a) shows that GMS and PA CS�s have correct uniform

asymptotic size over compact sets of covariance kernels. Theorem AN1(b) shows that

GMS CS�s are at most in�nitesimally conservative asymptotically (i.e., their asymptotic

size is in�nitessimally close to their nominal size). The uniformity results hold whether

the moment conditions involve �weak�or �strong�instrumental variables Xi:

2. As in AS1, an analogue of Theorem AN1(b) holds for PA CS�s if Assumption

GMS2(a) holds and EFc(mj(Wi; �c)jXi; Zi = z0) = 0 a.s. for j � p (i.e., if the conditional
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moment inequalities hold as equalities a.s.) under some (�c; Fc) 2 F . However, the latter
condition is restrictive� it fails in many applications.

3. Theorem N1 of ASN for the case r1;n =1 is proved by verifying the conditions of

Theorem AN1 (that is, by showing that Assumptions B, K, NM, S1, S2, and GMS1 hold

for b; K; and S de�ned as in ASN).32 Assumption B holds by the de�nition of b following

(3.2) of ASN. Assumption K holds for the Epanechnikov kernel K(x) = 0:75maxf1 �
x2; 0g employed in (3.2) of ASN. The functions S1; S2; and S3 in (3.9) of ASN satisfy
Assumptions S1-S4 by Lemma 1 of AS1. Lemma 3 of AS1 establishes Assumptions NCI

and NM for Gc-cube de�ned in (3.6) of ASN. Assumption GMS1 holds immediately for �n
and Bn de�ned in (3.10) and (3.11) of ASN, respectively. Assumptions GMS2(b) and

(c) hold by the de�nitions of b; �n; and Bn of ASN. Assumption GMS2(a) holds for the

functions S1 and S3 by Lemma B3 given in Section 13.3 in Appendix B of AS2. For the

function S2; part (b) of Theorem N1 is stated to hold in Comment 2 following Theorem

N1 only if Assumption GMS2(a) is assumed to hold. (That is, we do not have a proof

that this Assumption GMS2(a) necessarily holds with the function S2: But, it seems

that it should hold in most models.)

4. Theorem N1 of ASN holds for r1;n such that r1;n < 1 and r1;n ! 1 as n ! 1
by minor alterations to the proofs of Theorems AN1 and AN4 (where Theorem AN4

given in Section 12.2 is used in the proof of Theorem AN1), for details see Section 12.2.4

following the proofs of Theorems AN1 and AN4.

9 Power Against Fixed Alternatives

We now show that the power of GMS and PA tests converges to one as n ! 1 for

all �xed alternatives (for which the moment functions have 4+ � moments �nite). Thus,

both tests are consistent tests. This implies that for any �xed distribution F0 and any

parameter value �� not in the identi�ed set �F0 ; the GMS and PA CS�s do not include

�� with probability approaching one. In this sense, GMS and PA CS�s based on Tn(�)

fully exploit the conditional moment inequalities and equalities. CS�s based on a �nite

number of unconditional moment inequalities and equalities do not have this property.

32The quantity r1;n is the test statistic truncation value that appears in (3.7) of ANS. It satis�es
either r1;n =1 for all n � 1 or r1;n <1 and r1;n !1 as n!1:
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The null hypothesis is

H0 : EF0(mj(Wi; ��)jXi; Zi = z0) � 0 a.s. [FX;0] for j = 1; :::; p and
EF0(mj(Wi; ��)jXi; Zi = z0) = 0 a.s. [FX;0] for j = p+ 1; :::; k; (9.1)

where �� denotes the null parameter value and F0 denotes the �xed true distribution of

the data. The alternative hypothesis is H1 : H0 does not hold. The following assumption

speci�es the properties of �xed alternatives (FA).

Let F+ denote all (�; F ) that satisfy Assumptions PS1-PS3 that de�ne F except

Assumptions PS1(c) and PS1(d) (which impose the conditional moment inequalities

and equalities). As de�ned, F � F+: Note that F+ includes (�; F ) pairs for which � lies
outside of the identi�ed set �F as well as all values in the identi�ed set.

Assumption NFA. The value �� 2 � and the true distribution F0 satisfy: (a) PF0(Xi 2
XF0(��)jZi = z0) > 0; where XF0(��) is de�ned in (6.8), and (b) (��; F0) 2 F+:

Assumption NFA(a) states that violations of the conditional moment inequalities or

equalities occur for the null parameter �� for Xi values in some set with positive condi-

tional probability given Zi = z0 under F0: Thus, under Assumption NFA(a), the moment

conditions speci�ed in (9.1) do not hold.

For g 2 G; de�ne

m�
j(g) = EF0(mj(Wi; ��)gj(Xi)jZi = z0)f(z0)=�F0;j(��; z0) and

�(g) = maxf�m�
1(g); :::;�m�

p(g); jm�
p+1(g)j; :::; jm�

k(g)jg: (9.2)

Under Assumptions NFA(a) and NCI, �(g0) > 0 for some g0 2 G:
For a test based on Tn(�) to have power against all �xed alternatives, the weight-

ing function Q cannot �ignore�any elements g 2 G; because such elements may have
identifying power for the identi�ed set. This requirement is captured in the following

assumption.

Let FX;0 denote the distribution of Xi under F0: De�ne the pseudo-metric �X on G
by

�X(g; g
�) = (EFX;0jjg(Xi)� g�(Xi)jj2)1=2 for g; g� 2 G: (9.3)

Let B�X (g; �) denote an open �X-ball in G centered at g with radius �:

Assumption Q. The support of Q under the pseudo-metric �X is G: That is, for all
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� > 0; Q(B�X (g; �)) > 0 for all g 2 G:

Assumption Q holds for QAR and Gc-cube de�ned above and in ASN because Gc-cube is
countable and QAR has a probability mass function that is positive at each element in

Gc-cube: Appendix B of AS2 veri�es Assumption Q for four other choices of Q and G:
The following Theorem shows that GMS and PA tests are consistent against all �xed

alternatives.

Theorem AN2. Suppose Assumptions B, K, NFA, NCI, Q, S1, S3, and S4 hold and
Assumption NM holds with F0 in place of Fn in Assumption NM(b). Then,

(a) limn!1 PF0(Tn(��) > c('n(��);
bh2;n(��); 1� �)) = 1 and

(b) limn!1 PF0(Tn(��) > c(0G;bh2;n(��); 1� �)) = 1:

Comments. 1. Theorem N2 of ASN for the case r1;n =1 is proved by verifying that

the conditions of Theorem AN2 (except Assumption NFA) hold for b; K; S; and Gc-cube
de�ned as in ASN. By Comment 3 to Theorem AN1, Assumptions B, K, S1, S3, and S4

hold. Assumption NCI holds for Gc-cube as de�ned in (3.6) of ASN by Lemma 3 of AS1.
As noted above, Assumption Q holds for Gc-cube and QAR: Assumption NM holds for

Gc-cube with F0 in place of Fn in part (b) because Cc-cube is a Vapnik-Cervonenkis class
of sets. (For more details, see Lemma 3 of AS1 for the veri�cation of Assumption NM

under Fn:)

2. Theorem N2 of ASN holds for r1;n such that r1;n < 1 and r1;n ! 1 as n ! 1
by making some alterations to the proof of Theorem AN2. The alterations required are

the same as those described for A-CvM tests in the proof of Theorem B2 in Appendix

D of AS2.33

10 Power Against (nbdz)�1=2-Local Alternatives

In this section, we show that GMS and PA tests have power against certain, but not

all, (nbdz)�1=2-local alternatives.

We show that a GMS test has asymptotic power that is greater than or equal to

that of a PA test (based on the same test statistic) under all alternatives with strict

inequality in certain scenarios.
33The proof of Theorem B2 describes alterations to the proof of Theorem 3 of AS1, which is given

in Appendix C of AS2, to accommodate A-CvM tests based on truncation, simulation, or quasi-Monte
Carlo computation and KS tests. Theorem 3 of AS1 establishes that the tests in AS1 have asymptotic
power equal to one for �xed alternative distributions.
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For given �n;� 2 � for n � 1; we consider tests of

H0 : EFn(mj(Wi; �n;�)jZi = z0) � 0 for j = 1; :::; p;
EFn(mj(Wi; �n;�)jZi = z0) = 0 for j = p+ 1; :::; k; (10.1)

and (�n;�; Fn) 2 F ; where Fn denotes the true distribution of the data. The null values
�n;� are allowed to drift with n or be �xed for all n: Drifting �n;� values are of interest

because they allow one to consider the case of a �xed identi�ed set, say �0; and to derive

the asymptotic probability that parameter values �n;� that are not in the identi�ed set,

but drift toward it at rate n�1=2; are excluded from a GMS or PA CS. In this scenario,

the sequence of true distributions are ones that yield �0 to be the identi�ed set, i.e.,

Fn 2 F0 = fF : �F = �0g:
The true parameters and distributions are denoted (�n; Fn):We consider the Kolmog-

orov-Smirnov metric on the space of distributions F:

Let fn(z) denote the density of Zi wrt �Leb under Fn:

The (nbdz)�1=2-local alternatives are de�ned as follows.

Assumption NLA1. The true parameters and distributions f(�n; Fn) 2 F : n � 1g
and the null parameters f�n;� : n � 1g satisfy:
(a) �n;� = �n + �(nbdz)�1=2(1 + o(1)) for some � 2 Rd� ; �n;� 2 �; �n;� ! �0; and

Fn ! F0 for some (�0; F0) 2 F ,
(b) (nbdz)1=2EFn(mj(Wi; �n; g)jZi = z0)fn(z0)=�Fn;j(�n; z0)! h1;j(g) for some h1;j(g)

2 R+;1 for j = 1; :::; p and all g 2 G;
(c) d(h2;Fn(�n); h2;F0(�0)) ! 0 and d(h2;Fn(�n;�); h2;F0(�0)) ! 0 as n ! 1 (where d

is de�ned in (8.2)), and

(d) (�n; Fn) 2 F+ for all n � 1.

Assumption NLA2. The k � d matrix �F (�; g) = (@=@�0)[D�1=2
F (�; z0)EF (m(Wi; �; g)

jZi = z0)f(z0)] exists and is continuous in (�; F ) for all (�; F ) in a neighborhood of

(�0; F0) for all g 2 G:

For notational simplicity, we let h2 abbreviate h2;F0(�0) throughout this section.

Assumption NLA1(a) states that the true values f�n : n � 1g are (nbdz)�1=2-local to
the null values f�n;� : n � 1g: Assumption NLA1(b) speci�es the asymptotic behavior
of the (normalized) moment inequality functions when evaluated at the true values

f�n : n � 1g: Under the true values, these (normalized) moment inequality functions are
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non-negative. Assumption NLA1(c) speci�es the asymptotic behavior of the covariance

kernels fh2;Fn(�n; �; �) : n � 1g and fh2;Fn(�n;�; �; �) : n � 1g: Assumption NLA2 is a
smoothness condition on the normalized expected conditional moment functions given

Zi = z0: Given the smoothing properties of the expectation operator, this condition is

not restrictive.

Under Assumptions NLA1 and NLA2, we show that the moment inequality functions

evaluated at the null values f�n;� : n � 1g satisfy:

lim
n!1

n1=2D
�1=2
Fn

(�n;�; b)EFnm(Wi; �n;�; g; b) = h1(g) + �0(g)� 2 Rk; where

h1(g) = (h1;1(g); :::; h1;p(g); 0; :::; 0)
0 2 Rk; �0(g) = �F0(�0; g); and

DF (�; b) = Diag(V arF (b
�dz=2Kb(Zi)m(Wi; �))): (10.2)

If h1;j(g) = 1; then by de�nition h1;j(g) + y = 1 for any y 2 R: We have h1(g) +

�0(g)� 2 Rp[+1] � Rv: Let �0;j(g) denote the jth row of �0(g) written as a column

d�-vector for j = 1; :::; k:

The null hypothesis, de�ned in (10.1), does not hold (at least for n large) when the

following assumption holds.

Assumption LA3. For some g 2 G; h1;j(g) + �0;j(g)0� < 0 for some j = 1; :::; p or

�0;j(g)
0� 6= 0 for some j = p+ 1; :::; k:

Under the following assumption, if � = ��0 for some � > 0 and some �0 2 Rd� ; then

the power of GMS and PA tests against the perturbation � is arbitrarily close to one

for � arbitrarily large:

Assumption LA3 0. Q(fg 2 G : h1;j(g) < 1 and �0;j(g)0�0 < 0 for some j = 1; :::; p

or �0;j(g)0�0 6= 0 for some j = p+ 1; :::; kg) > 0:

Assumption LA3 0 requires that either (i) the moment equalities detect violations of the

null hypothesis for a set of g functions with positive Q measure or (ii) the moment

inequalities are not too far from being binding, i.e., h1;j(g) < 1; and the perturbation

�0 occurs in a direction that yields moment inequality violations for a set of g functions

with positive Q measure.

Assumption LA3 is employed with the KS test. It is weaker than Assumption LA3 0;

which is employed for the CvM test. If Assumption LA3 holds with � = ��0 (and

some other assumptions), then the power of KS-GMS and KS-PA tests against the

perturbation � is arbitrarily close to one for � arbitrarily large. For brevity, we do
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not prove this here. The proof is analogous to the proof of such results for the KS

tests considered in AS1 and AS2, see Section 13.1 of Appendix B and Section 15.1 of

Appendix D of AS2.

Assumptions LA3 and LA3 0 can fail to hold even when the null hypothesis is violated.

This typically happens if the true parameter/true distribution is �xed, i.e., (�n; Fn) =

(�0; F0) 2 F for all n in Assumption NLA1(a), the null hypothesis parameter �n;� drifts

with n as in Assumption NLA1(a), and PF0(Xi 2 XzerojZi = z0) = 0; where Xzero =
fx 2 Rdx : EF0(m(Wi; �0)jXi = x; Zi = z0) = 0g: In such cases, typically h1;j(g) = 1
8g 2 G (because the conditional moment inequalities are non-binding with probability
one), Assumptions LA3 and LA3 0 fail, and Theorem AN3 below shows that GMS and

PA tests have trivial asymptotic power against these (nbdz)�1=2-local alternatives. See

Section 11 for local power results that apply when Assumption LA3 or LA3 0 fail to hold.

The asymptotic distribution of Tn(�n;�) under (nbdz)�1=2-local alternatives is shown

to be Jh;�: By de�nition, Jh;� is the distribution of

T (h1 +�0�; h2) =

Z
S(�h2(g) + h1(g) + �0(g)�; h2(g) + "Ik)dQ(g); (10.3)

where h = (h1; h2); �0 denotes �0(�); and �h2(�) is a mean zero Gaussian process with
covariance kernel h2 = h2;F0(�0): For notational simplicity, the dependence of Jh;� on �0
is suppressed.

Next, we introduce two assumptions, viz., Assumptions NLA4 and LA5, that are

used only for GMS tests in the context of local alternatives. The asymptotic analogues

of �n(�; g) and its diagonal matrix are

�F (�; g; z0) = �F (�; g; g; z0) + "�F (�; 1k; 1k; z0) and DF (�; g; z0) = Diag(�F (�; g; z0));

(10.4)

where �F (�; g; g; z0) is de�ned in (7.6).

Assumption NLA4. ��1n (nb
dz)1=2D

�1=2
Fn (�n; g; z0)EFn(m(Wi; �n; g)jZi = z0)f(z0) !

�1(g); where �1(g) = (�1;1(g); :::; �1;k(g))
0; for some �1;j(g) 2 R+;1 for j = 1; :::; p;

�1;j(g) = 0 for j = p+ 1; :::; k; and all g 2 G:

In Assumption NLA4 the functions are evaluated at the true value �n; not at the null

value �n;�; and (�n; Fn) 2 F : In consequence, the moment functions in Assumption NLA4
satisfy the moment inequalities and �1;j(g) � 0 for all j = 1; :::; p and g 2 G: Note that
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0 � �1;j(g) � h1;j(g) for all j = 1; :::; p and all g 2 G (by Assumption NLA1(b) and
�n !1:)

Let c0('(�1); h2; 1� �) denote the 1� � quantile of

T ('(�1); h2) =

Z
S(�h2(g) + '(�1(g)); h2(g) + "Ik)dQ(g); where

'(�1(g)) = ('(�1;1(g)); :::; '(�1;p(g)); 0; :::; 0)
0 2 Rk and

'(x) = 0 if x � 1 and '(x) =1 if x > 1: (10.5)

Let '(�1) denote '(�1(�)): The probability limit of the GMS critical value c('n(�);bh2;n(�);
1� �) is shown below to be c('(�1); h2; 1� �) = c0('(�1); h2; 1� �+ �) + �:

Assumption LA5. (a) Q(G') = 1; where G' = fg 2 G : �1;j(g) 6= 1 for j = 1; :::; pg;
and

(b) the distribution function (df) of T ('(�1); h2) is continuous and strictly increasing

at x = c('(�1); h2; 1� �); where h2 = h2;F0(�0):

The value 1 that appears in G' in Assumption LA5(a) is the discontinuity point of ':
Assumption LA5(a) implies that the (nbdz)�1=2-local power formulae given below do not

apply to certain �discontinuity vectors��1(�); but this is not particularly restrictive.34

Assumption LA5(b) typically holds because of the absolute continuity of the Gaussian

random variables �h2(g) that enter T ('(�1); h2):
35

The following assumption is used only for PA tests.

Assumption LA6. The df of T (0G; h2) is continuous and strictly increasing at x =
c(0G; h2; 1� �); where h2 = h2;F0(�0):

The probability limit of the PA critical value is shown to be c(0G; h2; 1 � �) =

c0(0G; h2; 1��+ �) + �; where c0(0G; h2; 1��) denotes the 1�� quantile of J(0G ;h2);0d� :

Theorem AN3. Under Assumptions B, K, NM, S1, S2, and NLA1-NLA2,
34Assumption LA5(a) is not particularly restrictive because in cases where it fails, one can obtain

lower and upper bounds on the local asymptotic power of GMS tests by replacing c('(�1); h2; 1��) by
c('(�1�); h2; 1��) and c('(�1+); h2; 1��); respectively, in Theorem AN3(a). By de�nition, '(�1�) =
'(�1(�)�) and '(�1(g)�) is the limit from the left of '(x) at x = �1(g): Likewise '(�1+) = '(�1(�)+)
and '(�1(g)+) is the limit from the right of '(x) at x = �1(g):
35If Assumption LA5(b) fails, one can obtain lower and upper bounds on the local asymptotic power

of GMS tests by replacing Jh;�(c('(�1); h2; 1 � �)) by Jh;�(c('(�1); h2; 1 � �)+) and Jh;�(c('(�1);
h2; 1� �)�); respectively, in Theorem AN3(a), where the latter are the limits from the left and right,
respectively, of Jh;�(x) at x = c('(�1); h2; 1� �):
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(a) limn!1 PFn(Tn(�n;�) > c('n(�n;�);bh2;n(�n;�); 1��)) = 1�Jh;�(c('(�1); h2; 1��))
provided Assumptions GMS1, NLA4, and LA5 also hold,

(b) limn!1 PFn(Tn(�n;�) > c(0G;bh2;n(�n;�); 1��)) = 1�Jh;�(c(0G; h2; 1��)) provided
Assumption LA6 also holds, and

(c) lim�!1[1� Jh;��0(c('(�1); h2; 1� �))] = lim�!1[1� Jh;��0(c(0G; h2; 1� �))] = 1
provided Assumptions LA3 0, S3, and S4 hold.

Comments. 1. Theorems AN3(a) and AN3(b) provide the (nbdz)�1=2-local alternative
power functions of the GMS and PA tests, respectively. Theorem AN3(c) shows that the

asymptotic power of GMS and PA tests is arbitrarily close to one if the (nbdz)�1=2-local

alternative parameter � = ��0 is su¢ ciently large in the sense that its scale � is large.

2. We have c('(�1); h2; 1��) � c(0G; h2; 1��) (because '(�1(g)) � 0 for all g 2 G
and S(m;�) is non-increasing in mI by Assumption S1(b), where m = (m0

I ;m
0
II)

0):

Hence, the asymptotic local power of a GMS test is greater than or equal to that of a PA

test. Strict inequality holds whenever �1(�) is such that Q(fg 2 G : '(�1(g)) > 0g) > 0:
The latter typically occurs whenever the conditional moment inequalityEFn(mj(Wi; �n;�)

jXi; Zi = z0) for some j = 1; :::; p is bounded away from zero as n ! 1 with positive

Xi probability.

3. The results of Theorem AN3 hold under the null hypothesis as well as under the

alternative. The results under the null quantify the degree of asymptotic non-similarity

of the GMS and PA tests.

4. Suppose the assumptions of TheoremAN3 hold and each distribution Fn generates
the same identi�ed set, call it �0 = �Fn 8n � 1: Then, Theorem AN3(a) implies that the
asymptotic probability that a GMS CS includes, �n;�; which lies within O((nbdz)�1=2) of

the identi�ed set, is Jh;�(c('(�1); h2; 1��)): If � = ��0 and Assumptions LA3 0, S3, and

S4 also hold, then �n;� is not in �0 (at least for � large) and the asymptotic probability

that a GMS or PA CS includes �n;� is arbitrarily close to zero for � arbitrarily large by

Theorem AN3(c). Analogous results hold for PA CS�s.

11 Asymptotic Local Power and Comparisons

with the CLR Test

In this Section, we derive local power results for the KS and CvM tests that cover

the case where the DGP does not depend on n and the moment inequalities are binding
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only on a measure-zero set of Xi: The results of this section only yield the rates of

convergence (of the null hypothesis parameter values to the true parameter value) for

which the tests have non-trivial asymptotic power. In contrast, the results of Section 10

yield asymptotic distributions from which actual power approximations can be obtained.

Next, we compare the asymptotic power of the KS and CvM tests (in terms of rates

of convergence) with that of the CLR test in a simple moment inequality model. We

�nd that the KS and CvM tests have higher power than the CLR test for more �at

conditional moment functions and lower power for more curved conditional moment

functions.

11.1 Power Against an-Local Alternatives

Here we study the asymptotic local power of the KS and CvM tests under condi-

tions that allow for a �xed true DGP�s with non-�at conditional moment functions, as

well as DGP�s that depend on n: The results are stated under high-level assumptions

(speci�cally, Assumptions NLA7 and NLA70 below). These assumptions are veri�ed for

a simple moment inequality model in Section 11.2 below.

For a sequence of positive constants fan : n � 1g such that an ! 0; de�ne a sequence

of an-local alternatives suitable for the KS test as follows.

Assumption NLA7. The true parameters and distributions f(�n; Fn) 2 F : n � 1g
and the null parameters f�n;� : n � 1g satisfy (�n;�; Fn) 2 F+, and
(a) �n;� = �n + an; �n ! �0, and Fn ! F0 for some (�0; F0) 2 F ,
(b) d(h2;Fn(�n;�); h2;F0(�0))! 0; and

(c) for some sequence fgn 2 G : n � 1g; we have limn!1(nb
dz)1=2D

�1=2
Fn

(�n;�; z0)

�EFnmFn(�n;�; Xi; z0)gn(Xi) ! h1 2 [�1;1]k; where h1;j = �1 for some j � p or

jh1;jj =1 for some j > p and h1;j denotes the jth element of h1:

In Assumption NLA7, F+ is de�ned in the paragraph following (3.16). In Assumption
NLA7(b), d is the uniform metric de�ned in (8.2).

The following assumption de�nes the sequence of an-local alternatives suitable for

the CvM test.

Assumption NLA70. The true parameters and distributions f(�n; Fn) 2 F : n � 1g
and the null parameters f�n;� : n � 1g satisfy (�n;�; Fn) 2 F+; Assumptions NLA7(a)
and NLA7(b) hold and
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(c) for some sequence fGn � G : n � 1g; Q(Gn)
1=�(nbdz)1=2ming2Gn

�Fn(�n;�; g)!1; where �Fn(�n;�; g) is de�ned as �(g) is de�ned in (9.2) with F0 and ��
replaced by Fn and �n;� respectively, and � is the degree of homogeneity in Assumption

S4.

The following theorem shows that the KS and CvM tests have power that approaches

one under the sequences de�ned in Assumptions NLA7 and NLA70; respectively.

Theorem AN4. Suppose Assumptions B, K, NM, and S1-S4 hold. In addition, suppose
Assumption NLA7 holds when the KS statistic (de�ned in (6.6)) is used and Assumption

NLA70 holds when the CvM statistic (de�ned in (6.7)) is used. Then,

(a) limn!1 PrFn (Tn(�n;�) > B) = 1 for any constant B > 0;

(b) limn!1 PrFn

�
Tn(�n;�) > c(0G;bh2;n(�n;�); 1� �)

�
= 1; and

(c) limn!1 PrFn

�
Tn(�n;�) > c('n(�n;�);bh2;n(�n;�); 1� �)

�
= 1:

Comments. 1. Theorem AN4(a) shows that the test statistic Tn(�n;�) diverges to

in�nity in probability under the sequence of local alternatives. Theorem AN4(b) and

AN4(c) show that the tests employing the PA and GMS critical values, respectively,

reject the null hypothesis with probability that goes to one as n!1:

2. The proof of Theorem AN4 is given in Section 12.3 below.

11.2 A Non-�at Bound Example

Now we verify Assumptions NLA7 and NLA70 for a simple moment inequality ex-

ample. To maximize clarity, we consider a �xed true parameter: (�n; Fn) = (�0; F0) for

all n:

Example. We consider the following moment inequality model with k = p = 1 and

dx = dz = 1:

EF0(Yi � �0jXi = x; Zi = z0) � 0; a.s. [FX;0]; (11.6)

where z0 = 0: The identi�ed set for �0 is (�1; ��]; where �� = minxEF0(YijXi = x; Zi = 0):

We consider the �xed distribution F0 under which Xi; Zi �Unif([�1=2; 1=2]); Xi and

Zi are independent, EF0(YijXi = x; Zi = 0) is uniquely minimized at x = 0; E(YijXi =

x; Zi = z0) = cjxj� for some c; � > 0 and x in a neighborhood of 0; and infxVar(YijXi =

x; Zi = 0) > 0: For this F0; �� = 0; mF0(�; x; z0) = cjxj� � �; and inf�DF0(�; z0) > 0: We

consider the true parameter �0 = �� � 0:
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To be consistent with the rest of the paper, we consider an S function with � = 2;

G = Gc�cube; and Q as de�ned in Section 6.4 with w(r) = (r2 + 100)�1:

For this example, the following Theorem, combined with Theorem AN4, characterizes

the sequences of null parameters that the KS and CvM tests reject with probability

approaching one as n!1:

Theorem AN5. (a) Assumption NLA7 is satis�ed for the example in (11.6) with null
hypothesis parameter values �n;� = �0 + an if

an(nb)
�=(2�+2) !1: (11.7)

(b) Assumption NLA70 is satis�ed for the example in (11.6) with null hypothesis para-

meter values �n;� = �0 + an if

an(nb)
�=(2�+5) !1: (11.8)

Proof of Theorem AN5. We verify only part (c) of Assumptions NLA7 and NLA70

because parts (a) and (b) of these assumptions are straightforward to verify.

To verify Assumption NLA7(c), let r�n be the smallest integer such that (2r
�
n)
�1 �

(�n;�=c)
1=�: For n large enough, we have (2r�n)

�1 > (�n;�=c)
1=�=2 (because otherwise

(2(r�n � 1))�1 � (�n;�=c)1=�): Let gn(x) = 1(x 2 (0; (2r�n)�1]): Then, gn 2 Gc�cube and

EF0mF0(�n;�; Xi; z0)gn(Xi) =

Z (2r�n)
�1

0

(c � x� � �n;�)dx

�
Z (�n;�=c)1=�=2

0

(c � x� � �n;�)dx = �
2�(� + 1)� 1
2�+1(� + 1)

c�1=��1+1=�n;� ; (11.9)

where the �rst inequality holds because c � x� � �n;� < 0 on the integral range and

the second equality holds by direct calculation. Given (11.7) and (11.9), additional

elementary algebra shows that Assumption NLA7(c) holds.

To verify Assumption NLA70(c), consider Gn = fgng with gn de�ned as in the KS
case above. Then,

Q(Gn) = (2r
�
n)
�1 � ((r�n)2 + 100)�1

� 2�1(�n;�=c)
1=� � ((�n;�=c)�2=� + 100)�1

= 2�1(�n;�=c)
3=�(1 + o(1)): (11.10)
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Thus, Q(Gn)1=2(nb)1=2�F0(�n;�; gn) � �C � (1 + o(1))(nb)1=2�(2�+5)=(2�)n;� for some constant
�C > 0 (because �F0(�n;�; gn) = EF0mF0(�n;�; Xi; z0)gn(Xi) � 2�(�+1)�1

2�+1(�+1)
c�1=��1+1=�n;� in the

present case). This, (11.8), and some additional elementary algebra show Assumption

NLA70(c) holds. �

11.3 Power Comparisons with the CLR Test

In this subsection, we continue the example above and compare the local power

properties of the KS and CvM tests to that of the CLR test.

The CLR test is based on nonparametric estimation of E(Y jX = x;X = z0): Suppose

that the uniform convergence rate of the nonparametric estimator of this conditional

expectation is n; where n ! 1: Then, by Theorems 1-3 of CLR, the CLR test has

power approaching one as n!1 if �n;�� �0 converges to zero slower than �1n ; that is,

n(�n;� � �0)!1: (11.11)

The relative power properties of KS, CvM, and CLR tests is obtained by comparing

(11.7), (11.8) and (11.11). Speci�cally, the KS tests have better asymptotic local power

than the CLR test if (nb)��=(2�+2)n ! 0: The opposite is true if �1n (nb)
�=(2�+2) ! 0:

The CvM test has better asymptotic local power than the CLR test if (nb)��=(2�+5)n !
0: The opposite is true if �1n (nb)

�=(2�+5) ! 0:

The conditions above translate into thresholds for �; above which the KS and CvM

tests have better asymptotic local power than the CLR test, and below which the oppo-

site is true. For the KS test versus the CLR test, the � threshold implied by the above

conditions is

�� =
2 log n

log nb� 2 log n
; (11.12)

which solves (nb)��
�=(2��+2)n = 1: For the CvM test versus the CLR test, the � thresh-

old is

�� =
5 log n

log nb� 2 log n
: (11.13)

By design, � controls the �atness of the curve E(YijXi = x; Zi = z0) at its bottom,

with a larger � yielding a �atter curve. The above analysis shows that the KS and

CvM tests have higher asymptotic local power than the CLR test for �atter (but not

necessarily completely �at) bound curves, while the CLR test has higher power for more
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curved bound curves.

Next, we calculate the threshold for � for the b chosen in this paper and the n implied

by the recommended tuning parameters in CLR. In this paper, we choose b � n�2=7 and

thus nb � n5=7; where cn � dn means cn = O(dn) and dn = O(cn): In CLR, for the

local linear version of their test, the recommended bandwidth is h � n�1=6n1=10n�1=7 =

n�44=210: This implies a pointwise convergence rate for the local linear bound estimator of

n1=2h � n1=2n�44=210 = n61=210: The uniform convergence rate should be slightly slower,

giving n = o(n61=210). Thus, the � threshold for the KS test versus the CLR test is

61=210

5=14� 61=210 =
61

14
:
= 4:4: (11.14)

The � threshold for the CvM test versus the CLR test is

5� 61=210
5=7� 2� 61=210 =

305

28
:
= 10:9: (11.15)

Finally, we note that the analysis in this section only compares the asymptotic local

power of the tests under a �xed true (�0; F0): It does not necessarily have a direct

implication for the relative power of the tests for any given �nite sample size n when the

bound curve is not completely �at. In fact, the Monte Carlo experiments in this paper

and in AS1 show that the CvM tests have higher �nite-sample power than the CLR

test for bound curves that are not as �at as cjxj10: Such �nite-sample behavior can be
explained by the asymptotic local power results under drifting sequences of true DGP�s

given in Section 10. We believe these provide better �nite-sample approximations than

the results of this section.

12 Proofs

12.1 Proof of Lemma AN1

Proof of Lemma AN1. We have: � =2 �F (G) implies that EF (mj(Wi; �)gj(Xi)jZi =
z0) < 0 for some j � p or EF (mj(Wi; �)gj(Xi)jZi = z0) 6= 0 for some j = p+ 1; :::; k: By

the law of iterated expectations and gj(x) � 0 for all x 2 Rdx and j � p; this implies

that PF (Xi 2 XF (�)jZi = z0) > 0 and, hence, � =2 �F :
On the other hand, � =2 �F implies that PF (Xi 2 XF (�)jZi = z0) > 0 and the latter
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implies that � =2 �F (G) by Assumption NCI. �

12.2 Proof of Theorem AN1

In this section, we prove Theorem AN1. We start by introducing some notation.

Next, we establish Theorem AN4, which is used in the proof of Theorem AN1. To

prove Theorem AN4 we use Lemmas AN2-AN4. The proofs of the latter use Lemmas

AN5-AN7.

12.2.1 Notation

First, we de�ne sample-size n population analogues of the asymptotic covariance

kernels that are de�ned in (7.6). We make their dependence on b = bn explicit. Let36

h2;F (�; g; g
�; b) = D

�1=2
F (�; b)�F (�; g; g

�; b)D
�1=2
F (�; b)

= CovF

�
D
�1=2
F (�; b)m(Wi; �; g; b); D

�1=2
F (�; b)m(Wi; �; g

�; b)
�
;

�F (�; g; g
�; b) = CovF (m(Wi; �; g; b);m(Wi; �; g

�; b)); and (12.1)

DF (�; b) = Diag(�F (�; 1k; 1k; b)) (= Diag(V arF (b
�dz=2Kb(Zi)m(Wi; �)))):

Let h2;F (�; b) abbreviate the sample-size n covariance kernel fh2;F (�; g; g�; b) : g; g� 2 Gg
of n1=2mn(�; g); which depends on n through b:

Next, de�ne

h1;n;F (�; g; b) = n1=2D
�1=2
F (�; b)EFm(Wi; �; g; b);

hy1;n;F (�; g; b) = (nb
dz)1=2D

�1=2
F (�; b)EF (mF (�;Xi; z0)� g(Xi));

hyn;F (�; g; g
�; b) = (hy1;n;F (�; g; b); h2;F (�; g; g

�; b));bh2;n;F (�; g; g�; b) = D
�1=2
F (�; b)b�n(�; g; g�)D�1=2

F (�; b);

h2;n;F (�; g; b) = bh2;n;F (�; g; g; b) + "bh2;n;F (�; 1k; 1k; b)
= D

�1=2
F (�; b)�n(�; g)D

�1=2
F (�; b); and (12.2)

�n;F (�; g; b) = n�1=2
nX
i=1

D
�1=2
F (�; b)[m(Wi; �; g; b)� EFm(Wi; �; g; b)];

36For simplicity, there is some abuse of notation in the de�nitions in (12.1) because h2;F (�; g; g�; b)
has a di¤erent de�nition than h2;F (�; g; g�; z0) in (7.6), but the only di¤erence in the notation is b versus
z0: The same is true for �F (�; g; g�; b) and DF (�; b) versus �F (�; g; g�; z0) and DF (�; z0):
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where mF (�; x; z); m(Wi; �; g; b); �n(�; g); and b�n(�; g; g�) are de�ned in (2.15) of ASN,
(6.3), (6.5), and (7.7), respectively, and A � B denotes the direct (i.e., element by ele-

ment) product of two matrices or vectors, A and B; with the same dimensions. Below we

write Tn(�) as a function of the quantities in (12.2). As de�ned, (i) h1;n;F (�; g; b) is the k-

vector of normalized means of the moment functions D�1=2
F (�; b)m(Wi; �; g; b) for g 2 G;

which measure the slackness of the population moment conditions under (�; F ); (ii)

hy1;n;F (�; g; b) is an approximation to h1;n;F (�; g; b) that has the very useful feature that it

is non-negative when (�; F ) 2 F becausemF (�;Xi; z0) � 0 a.s. by (2.15) of ASN and As-
sumptions PS1(c) and (d) stated in ASN, (ii) hyn;F (�; g; g

�; b) contains the approximation

to the normalized means of D�1=2
F (�; b)m(Wi; �; g; b) and the covariances of D

�1=2
F (�; b)

m(Wi; �; g; b) and D
�1=2
F (�; b)m(Wi; �; g

�; b); (iii) bh2;n;F (�; g; g�; b) and h2;n;F (�; g; b) are
hybrid quantities� part population, part sample� based on b�n(�; g; g�) and �n(�; g);
respectively, and (iv) �n;F (�; g; b) is the sample average of D

�1=2
F (�; b)m(Wi; �; g; b) nor-

malized to have mean zero and variance that is O(1) but not o(1): Note that �n;F (�; �; b)
is an empirical process indexed by g 2 G with covariance kernel given by h2;F (�; g; g�; b):
The normalized sample moments n1=2mn(�; g) can be written as

n1=2mn(�; g) = D
1=2
F (�; b)(�n;F (�; g; b) + h1;n;F (�; g; b)): (12.3)

The test statistic Tn(�); de�ned in (6.6), can be written as

Tn(�) =

Z
S(�n;F (�; g; b) + h1;n;F (�; g; b); h2;n;F (�; g; b))dQ(g): (12.4)

Note the close resemblance between Tn(�) and T (h) (de�ned in (7.1)).

Let H1 denote the set of all functions from G to Rp[+1] � f0gv:
For notational simplicity, for any function of the form rF (�; g; b) for g 2 G; let

rF (�; b) denote the function rF (�; �; b) on G: Correspondingly, for any function of the
form rF (�; g; g

�; b) for g; g� 2 G; let rF (�; b) denote the function rF (�; �; �; b) on G2:

12.2.2 Theorem AN4

The following Theorem provides a uniform asymptotic distributional result for the

test statistic Tn(�): It is an analogue of Theorem 1 of AS1. It used in the proof of

Theorem AN1.

Theorem AN4. Suppose Assumptions B, K, NM, S1, and S2 hold. Then, for every
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compact subset H2;cpt of H2; all constants xhyn;F (�;b) 2 R that may depend on (�; F ) and
n through hyn;F (�; b); and all � > 0; we have

(a) lim sup
n!1

sup
(�;F )2F :

h2;F (�)2H2;cpt

h
PF (Tn(�) > xhyn;F (�;b)

)� P (T (hyn;F (�; b)) + � > xhyn;F (�;b)
)
i
� 0;

(b) lim inf
n!1

inf
(�;F )2F :

h2;F (�)2H2;cpt

h
PF (Tn(�) > xhyn;F (�;b)

)� P (T (hyn;F (�; b))� � > xhyn;F (�;b)
)
i
� 0;

where T (h) =
Z
S(�h2(g) + h1(g); h2(g) + "Ik)dQ(g); �h2(�) is the Gaussian process

de�ned in (7.2), and hyn;F (�; b) = hyn;F (�; �; �; b) is de�ned in (12.2).

Comments. 1. Theorem AN4 gives a uniform asymptotic approximation to the dis-

tribution function of Tn(�): Uniformity holds without any restrictions on the true nor-

malized mean (i.e., moment inequality slackness) functions fh1;n;Fn(�n; b) : n � 1g: In
particular, Theorem AN4 does not require fh1;n;Fn(�n; b) : n � 1g to converge as n!1
or to belong to a compact set. The Theorem does not require that Tn(�) has a unique

asymptotic distribution under any sequence f(�n; Fn) 2 F : n � 1g:
2. The supremum and in�mum in Theorem AN4 are over compact sets of asymptotic

covariance kernelsH2;cpt; rather than the parameter spacesH2 of covariance kernels. This

is not particularly problematic because the potential asymptotic size problems that arise

in moment inequality models are due to the pointwise discontinuity of the asymptotic

distribution of the test statistic as a function of the means of the moment inequality

functions, not as a function of the covariances between di¤erent moment inequalities.

12.2.3 Lemmas AN2-AN4

The proof of Theorem AN4 uses the following three Lemmas. The �rst Lemma is a

key result that establishes that the �nite-sample covariance kernel h2;F (�; b) converges to

the asymptotic covariance kernel h2;F (�) in the sup norm d uniformly over (�; F ) 2 F+:
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Lemma AN2. Suppose Assumptions B, K, and NM hold. Then,

(a) sup
(�;F )2F+

sup
g;g�2G

k�F (�; g; g�; b)� �F (�; g; g�; z0)k ! 0;

(b) sup
(�;F )2F+

D�1
F (�; z0)DF (�; b)� Ik

! 0; and

(c) sup
(�;F )2F+

d(h2;F (�; b); h2;F (�))! 0:

Comment. Lemma AN2 is a key ingredient in the proof of Lemma AN4, which in turn
is used in the proofs of Theorems AN4 and AN1. See Comment 3 to Lemma AN4 for a

description of how Lemma AN2 is employed.

The next Lemma shows that the bias due to taking averages over values z (6= z0)

for which the conditional moment inequalities in (2.1) of ASN do not hold is negligible

asymptotically.

Lemma AN3. Suppose Assumptions B, K, and NM hold. Then,

lim sup
n!1

sup
(�;F )2F

sup
g2G

jjh1;n;F (�; g; b)� hy1;n;F (�; g; b)jj ! 0:

Comment. For Lemma AN3 to hold, a key feature of the de�nition of hy1;n;F (�; g; b);

given in (12.2), is that the normalization is by D�1=2
F (�; b) (not D�1=2

F (�; z0)); which is

the same normalization as in h1;n;F (�; g; b):

The next Lemma is analogous to Lemma A1 of AS2. It is used in the proofs of

Theorems AN4 and AN1-AN3. It establishes a functional CLT and uniform LLN for

certain independent non-identically distributed empirical processes as well as uniform

convergence of the estimator of the covariance kernel.

LetH2;+ = fh2;F (�) : (�; F ) 2 F+g: By de�nition, H2;+ is a set of k�k-matrix-valued
covariance kernels on G � G that includes H2:

De�nition SubSeq(h2). For h2 2 H2;+; SubSeq(h2) is the set of subsequences f(�an ;
Fan) 2 F+ : n � 1g; where fan : n � 1g is some subsequence of fng; for which

(i) lim
n!1

sup
g;g�2G

jjh2;Fan (�an ; g; g
�)� h2(g; g

�)jj = 0

and (ii) fWi : i � 1g are i.i.d. under Fan :
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Note that the de�nition of SubSeq(h2) here di¤ers from the de�nition of SubSeq(h2)

in AS2 because (i) the summands of the sample averages arem(Wi; �; g; b) = b�dz=2Kb(Zi)

m(Wi; �; g); rather than m(Wi; �; g); and fm(Wi; �; g; b)m(Wi; �; g
�; b)0 : n � 1g is not

uniformly integrable, which complicates the proof of Lemma AN4(b) below, (ii) SubSeq

(h2) requires (�an ; Fan) 2 F+; and (iii) SubSeq(h2) does not impose any conditions
related to Assumption NM. The latter are imposed separately in the results below.

The sample paths of the Gaussian process �h2(�); which is de�ned in (7.2) and appears
in the following Lemma, are bounded and uniformly �-continuous a.s. The pseudo-metric

� on G is a pseudo-metric commonly used in the empirical process literature:

�2(g; g�) = tr (h2(g; g)� h2(g; g
�)� h2(g

�; g) + h2(g
�; g�)) : (12.5)

For h2(�; �) = h2;F (�; �; �); where (�; F ) 2 F ; this metric can be written equivalently as

�2(g; g�) = EF jjD�1=2
F (�)[em(Wi; �; g)� em(Wi; �; g

�)]jj2; whereem(Wi; �; g) = m(Wi; �; g)� EFm(Wi; �; g): (12.6)

Lemma AN4. Suppose Assumptions B and NM hold. For any subsequence f(�an ; Fan) :
n � 1g 2 SubSeq(h2) with h2 2 H2;+;

(a) �an;Fan (�an ; �; ban)) �h2 (�) as n!1 (as processes indexed by g 2 G), and
(b) supg;g�2G jjbh2;an;Fan (�an ; g; g�; ban)� h2(g; g

�)jj !p 0 as n!1:

Comments. 1. To obtain uniform asymptotic coverage probability results for CS�s,

Lemma AN4 is applied with (�an ; Fan) 2 F for all n � 1 and h2 2 H2: To obtain power

results under �xed and local alternatives, Lemma AN4 is applied with (�an ; Fan) 2 F+nF
for all n � 1 and h2 2 H2;+:

2. Assumption PS3(d) stated in ASN only needs to hold with an exponent 2 + �

for some � > 0; rather than 4; for Lemma AN4(a) to hold. For Lemma AN4(b), which

gives consistency of the estimator of the covariance kernel, the exponent 4 is needed to

control the variance of the covariance estimator.

3. The proof of Lemma AN4(a) is an extension of the proof of Lemma A1 of

AS2 (which is given in Appendix E of AS2). The proof of Lemma AN4(b) is di¤erent

from that of Lemma A1 of AS2 because the summands m(Wi; �; g; b) are not uniformly

integrable, so a standard uniform law of large numbers cannot be employed. Rather, an

empirical process maximal inequality is utilized.
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4. To prove Theorem AN4, we adjust the proof of Theorem 1 of AS1. The

proof of Theorem 1 of AS1 uses a subsequence argument to reduce a uniform result

over (�; F ) 2 F for which h2;F (�) 2 H2;cpt as n ! 1 to a result for a subsequence

f(�an ; Fan) 2 F : n � 1g for which the covariance kernels fh2;Fan (�an ; g; g�) : n � 1g
satisfy d(h2;Fan (�an); h2;0)! 0 for some limit h2;0 2 H2:

In AS1 and AS2, the covariance kernel h2;F (�) of �n(�; �) is a normalized sum of

terms m(Wi; �; g) and does not depend on n: Hence, the sample-size n and the asymp-

totic covariance kernels are the same. In contrast, in this paper, the covariance kernel

h2;F (�; b) of �n;F (�; �; b) is a normalized sum of terms m(Wi; �; g; b) and it depends on n

through b: Here, the subsequence of covariance kernels fh2;Fan (�an ; g; g�) : n � 1g (that
arises from the subsequence argument in AS2) is a subsequence of asymptotic kernels.

We use Lemma AN2(c) to show that if d(h2;Fan (�an); h2;0)! 0; then the sample-size an
covariance kernel h2;Fan (�an ; ban) satis�es d(h2;Fan (�an ; ban); h2;0) ! 0 as n ! 1: This

holds because

d(h2;Fan (�an ; ban); h2;0)

� d(h2;Fan (�an ; ban); h2;Fan (�an)) + d(h2;Fan (�an); h2;0)

� sup
(�;F )2F

d(h2;F (�; ban); h2;F (�)) + d(h2;Fan (�an); h2;0)

! 0; (12.7)

where the �rst inequality holds by the triangle inequality and the convergence holds

by Lemma AN2(c). The convergence result in (12.7) is the condition that is needed

to obtain the weak convergence of the empirical process �an;Fan (�an ; �; ban) in Lemma
AN4(a).

12.2.4 Proofs of Theorems AN4 and AN1

Proof of Theorem AN4. We alter the proof of Theorem 1 of AS1 to prove Theorem

AN4. The statements of Theorem 1 of AS1 and Theorem AN4 di¤er because hn;F (�)

appears in the former result, whereas hyn;F (�; b) appears in the latter. The proof of

Theorem 1 of AS1 is given in AS2. Throughout this proof, xhan ;Fan (�an ) is replaced by

xhyan ;Fan (�an ;ban )
: By Lemma AN3, for the sequence f(�an ; Fan) : n � 1g that appears in
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the proof in AS2, we have

sup
g2G

jjh1;an;Fan (�an ; g; ban)� hy1;an;Fan (�an ; g; ban)jj ! 0: (12.8)

We de�ne eTan as in (12.5) of AS2, but change the de�nition of eTan;0 to
eTan;0 = Z S

�
~�0(g) + hy1;an;Fan (�an ; g; ban); h

"
2;0(g)

�
dQ(g): (12.9)

By construction, eTan;0 has the same distribution as T (hyan;Fan (�an ; ban)) for all n � 1:

With this change in the de�nition of eTan;0; we need to show that (12.7) of AS2 holds.
The rest of the proof of Theorem 1 given in AS2 goes through without any changes.

We change the proof of (12.7) by replacing ~�an(g)(!) by

~�an(g)(!) + hy1;an;Fan (�an ; g; ban)� h1;an;Fan (�an ; g; ban) (12.10)

in (12.10), (12.12), and (12.13) of AS2. The quantity in (12.10) converges to ~�0(g)(!)

for all ! 2 e
 using (12.8) above. Given the (12.10) replacement, (12.11) of AS2 holds
with h1;an;Fan (�an ; g; ban) replaced by h

y
1;an;Fan

(�an ; g; ban) in the �rst summand on the

lhs. In addition, h1;an;Fan (�an ; g; ban) is replaced by h
y
1;an;Fan

(�an ; g; ban) in the second

summand on the lhs of (12.11) due to the new de�nition of eTan;0 given in (12.9). With the
above changes, the �rst line of (12.14) of AS2 holds with ~�an(g)(!)+h1;an;Fan (�an ; g; ban)

replaced by ~�an(g)(!) + hy1;an;Fan (�an ; g; ban): In consequence, the second inequality of

(12.14) of AS2 holds because hy1;an;Fan (�an ; g; ban) � 0 (since mF (�;Xi; z0) � 0 a.s. by

(2.15) of ASN and Assumption PS1(c) and (d) of ASN). The remainder of the proof of

(12.7) of AS2 goes through without any changes. �

Proof of Theorem AN1. We adjust the proof of Theorem 2(a) in AS1 to prove part

(a) of Theorem AN1. The proof of Theorem 2(a) of AS1 is given by the combination of

Lemmas A2-A5 stated in Appendix A of AS2. Hence, we need to establish analogues of

these Lemmas that hold in the context of this paper.

In the analogue of Lemma A2, the quantity c0(hn;F (�); 1��) is replaced by c0(hyn;F (�;
b); 1��) because the latter is the 1�� quantile of the distribution of T (hyn;F (�; b)); which
depends on hyn;F (�; b); not hn;F (�): Given this change, the proof of Lemma A2 of AS2

goes through making use of Theorem AN4 in place of Theorem 1 of AS1. Note that the

quantity xhn;F (�) that appears in Theorem 1 of AS1 and in the proof of Lemma A2 of AS2
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is changed to xhyn;F (�;b) in TheoremAN4 because we take xhyn;F (�;b) = c0(h
y
n;F (�; b); 1��)+�

in the proof of the analogue of Lemma A2.

In the statement of the analogue of Lemma A3 of AS2, c(h1;n;F (�);bh2;n(�); 1 � �)

is replaced by c(hy1;n;F (�; b);
bh2;n(�); 1 � �): To prove the analogue of Lemma A3 of

AS2, we use the property of the sequence f(�an ; Fan) : n � 1g constructed there (that
d(h2;an;Fan (�an); h2;0) ! 0) and Lemma AN2(c) to show that f(�an ; Fan) : n � 1g 2
SubSeq(h2;0): In the rest of the proof, we make the following changes: h1;an;Fan (�an) is re-

placed by hy1;an;Fan (�an ; ban) in (12.16) and (12.17), but not in (12.22), and h1;an;Fan ;j(�an ;

g; ban) is replaced by h
y
1;an;Fan ;j

(�an ; g; ban) in the �rst three lines of (12.23), and in the sec-

ond appearance of h1;an;Fan ;j(�an ; g; ban) in the fourth, �fth, and seventh lines of (12.23).

In addition, the empirical process and other �nite-sample quantities depend on ban in the

proof. The second equality of (12.23) holds because hy1;an;Fan ;j(�an ; g; ban) � 0 (because
mF (�;Xi; z0) � 0 a.s. by (2.15) of ASN and Assumptions PS1(c) and (d) of ASN). The
equality in (12.23) holds by the argument given plus the result of Lemma AN3, which

implies that hy1;an;Fan ;j(�an ; g; ban) = h1;an;Fan ;j(�an ; g; ban) + o(1) uniformly over g 2 G:
In the statement of the analogue of Lemma A4 of AS2, h1;n;F (�) is replaced by

hy1;n;F (�; b) twice. In the proof of the analogue of Lemma A4 of AS2, we use Lemma

AN2(c) to show that the sequence f(�an ; Fan) : n � 1g constructed there is in SubSeq(h2;0)
(as in the proof of the analogue of Lemma A3). The rest of the proof of the analogue

of Lemma A4 goes through with the only changes being that h1;an;Fan (�an ; g) is replaced

by hy1;an;Fan (�an ; g; ban) throughout and h2;Fan (�an ; g) depends on ban :

The proof of the analogue of Lemma A5 of AS2 goes through without any changes.

Given that the analogues of Lemmas A1-A5 of AS2 hold, the proof of Theorem

AN1(a) is complete.

Next, we prove part (b) of Theorem AN1. To do so, we adjust the proof of Theorem

2(b) of AS1, which is given in Appendix C of AS2. The proof of Theorem 2(b) in AS2

goes through as is with the following two changes. First, Lemma AN4 is used in place

of Lemma A1 of AS2. Second, (14.16) of AS2 is replaced by the following:

��1n h1;n;Fc(�c; g) = ��1n hy1;n;Fc(�c; g) + o(��1n )

= (nbdz)1=2��1n D
�1=2
F (�; b)EF (mF (�;Xi; z0)� g(Xi)) + o(�

�1
n )

! h1;1;Fc(�c; g); (12.11)

where the �rst equality holds by Lemma AN3, the second equality holds by the de�nition
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of hy1;n;Fc(�c; g) in (12.2), and the convergence holds because (i) the diagonal elements

of the diagonal matrix D�1=2
F (�; b) are bounded away from zero by Lemma AN2(b) and

Assumption PS3(a) of ASN, (ii) (nbdz)1=2��1n ! 1 by Assumption GMS2(c), (iii) by

the de�nition of h1;1;Fc(�c; g) (given just before Assumption GMS2 in Section 7.4),

the jth element of h1;1;Fc(�c; g) equals 0 if EFmF;j(�;Xi; z0)gj(Xi) = 0 and equals 1 if

EFmF;j(�;Xi; z0)gj(Xi) > 0; and (iv) ��1n ! 0 by Assumption GMS1(b). This completes

the proof of Theorem AN1(b). �

Theorem N1 of ASN holds for r1;n such that r1;n < 1 and r1;n ! 1 as n ! 1 by

minor alterations to the proofs of Theorems AN1 and AN4 (where Theorem AN4 given

in Section 12.2 is used in the proof of Theorem AN1).37 The alterations to the proof of

Theorem AN4 (given above) involve changing the de�nition of eTan;0 in (12.9) so that its
integrand (which is just a summand in the present case because G is countable, Q is a

measure on G; and the integral reduces to a sum for the test statistic in (3.7) of ASN) is
non-zero only for r � r1;n: The de�nition of eTan needs to be changed likewise. With these
changes the bounded convergence theorem argument, as in the proof of Theorem 1 of

AS1 given in Appendix A of AS2, goes through.38 Lemmas AN2-AN4, which are used in

the proof of Theorem AN4, do not require any changes. The proof of Theorem AN1(a)

is based on analogues of Lemmas A2-A4 in Appendix A of AS2 (as well as Theorem

AN4). Again one only needs to truncate the integrals (which reduce to sums because G
is countable) to terms with r � r1;n wherever the integrals appear in the proofs. The

proof of Theorem AN1(b) is based on the proof of Theorem 2(b) given in Appendix C

of AS2. In this case as well, one only needs to truncate the integrals (which reduce to

sums because G is countable) to terms with r � r1;n wherever the integrals appear in the

proofs� speci�cally, in (14.11), (14.14), (14.20), and (14.23). The bounded convergence

theorem argument given in the proof of Theorem 2(b) to obtain (14.20) and (14.23) goes

through with these changes.39

37Note that the truncated test statistic in ANS is of the form in (6.10) of Section 6.5.
38The alterations needed here are simpler than those in the proof of Thm. B1 in Appendix B of AS2,

which considers approximate CvM tests, because ANS deals only with CvM tests based on a countable
set Gc-cube and in consequence the bounded convergence argument goes through.
39Note that Comment 2 to Theorem B1 in Appendix B of AS2 which says �Theorem 2(b) is not given

here because the proof of Theorem 2(b) does not go through with KS or A-CvM test statistics�only
applies to simulated and quasi-Monte Carlo A-CvM test statistics. With truncated sums, as in ASN,
the proof does go through.
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12.2.5 Lemmas AN5-AN7 and Proofs of Lemmas AN2-AN4

The proof of Lemma AN2 uses the following three Lemmas.

Let A � B denote the direct (i.e., element-by-element) product of two matrices A

and B with the same dimensions.

Lemma AN5. Suppose Assumption NM holds. Then, for all g; g� 2 G and (�; F ) 2 F+;

�F (�; g; g
�; z0) = EF�F (�;Xi; z0)� (g(Xi)g

�(Xi)
0);

where �F (�; x; z) and �F (�; g; g�; z) are de�ned in (2.15) of ASN and (7.6), respectively.

Lemma AN6. Suppose Assumptions B, K, and NM hold. Then,

sup
(�;F )2F+

sup
g2G

jjb�dz=2EFKb(Zi)m(Wi; �; g)jj = O(bdz=2) = o(1):

Lemma AN7. Suppose Assumptions B, K, and NM hold. Then,

sup
(�;F )2F+

sup
g;g�2G

jjb�dzEFK2
b (Zi)m(Wi; �; g)m(Wi; �; g

�)0

�EF�F (�;Xi; z0)� (g(Xi)g
�(Xi)

0)jj ! 0:

Proof of Lemma AN2. Using the de�nitions in (7.6) and (12.1), part (a) is established
as follows. We have

�F (�; g; g
�; b) = CovF (b

�dz=2Kb(Zi)m(Wi; �; g); b
�dz=2Kb(Zi)m(Wi; �; g

�))

= b�dzEFK
2
b (Zi)m(Wi; �; g)m(Wi; �; g

�)0

�b�dz=2EFKb(Zi)m(Wi; �; g) � b�dz=2EFKb(Zi)m(Wi; �; g
�)0

= EF [�F (�;Xi; z0)� (g(Xi)g
�(Xi)

0)] + o(1)

= �F (�; g; g
�; z0) + o(1); (12.12)

where the o(1) term holds uniformly over g; g� 2 G and (�; F ) 2 F+; the third equality
holds by Lemmas AN6 and AN7, and the fourth equality holds by Lemma AN5.

Part (b) follows from part (a) by taking g = g� = 1k because DF (�; b) = Diag(�F (�;
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1k; 1k; b)); DF (�; z0) = Diag(�F (�; 1k; 1k; z0)); and sup(�;F )2F+
D�1

F (�; z0)
 < 1 by

Assumption PS3(a) of ASN.

Part (c) follows from parts (a) and (b) because

h2;F (�; g; g
�; b) =

h
D
�1=2
F (�; b)D

1=2
F (�; z0)

i h
D
�1=2
F (�; z0)�F (�; g; g

�; b)D
�1=2
F (�; z0)

i
�
h
D
1=2
F (�; z0)D

�1=2
F (�; b)

i
;

h2;F (�; g; g
�; z0) = D

�1=2
F (�; z0)�F (�; g; g

�; z0)D
�1=2
F (�; z0); (12.13)

and sup(�;F )2F+

D�1=2
F (�; z0)

 <1: �

Proof of Lemma AN3. For notational simplicity, suppose mF (�; x; z) (de�ned in

(2.15) of ASN to equal EF (m(Wi; �)jXi = x; Zi = z)f(zjx)) is a scalar. This is without
loss of generality (wlog) because we could argue element by element. By a two-term

Taylor expansion of mF (�; x; z0 + bz�) around z� = 0; we have

sup
(�;F )2F+

����Z K (z�) [mF (�; x; z0 + bz�)�mF (�; x; z0)]dz
�
����

= sup
(�;F )2F+

����b Z z�0K (z�) dz�
@

@z
mF (�; x; z0) +

b2

2

Z
K(z�)z�0

@2

@z@z0
mF (�; x; ez)z�dz�����

� b2 sup
z2[�1;1]dz

jK(z)j � sup
(�;F )2F

sup
z2Z0

 @2

@z@z0
mF (�; x; z)

 � ����Z
[�1;1]dz

z�0z�dz�
����

= b2Lm(x)C (12.14)

for some C < 1; where the Taylor expansion is valid by Assumption PS3(b) of ASN,ez is some intermediate point that is in Z0 for b su¢ ciently small, the inequality uses
Assumption K(c), the last equality uses Assumptions K(d) and K(e), and Lm(x) is

de�ned in Assumption PS3(b) of ASN.
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Using (12.14), we have: for all (�; F ) 2 F and g 2 G;

jEFm(Wi; �; g; b)� bdz=2EFmF (�;Xi; z0)g(Xi)j
= jb�dz=2EFKb(Zi)m(Wi; �)g(Xi)� bdz=2EFmF (�;Xi; z0)g(Xi)j

=

����Z �Z b�dz=2K

�
z � z0
b

�
mF (�; x; z)dz � bdz=2mF (�; x; z0)

�
g(x)f(x)d�X(x)

����
= bdz=2

����Z �Z [K (z�)mF (�; x; z0 + bz�)�K (z�)mF (�; x; z0)] dz
�
�
g(x)f(x)d�X(x)

����
� bdz=2

Z
b2Lm(x)CGf(x)d�X(x)

� b2+dz=2CGC2; (12.15)

where CGC2 <1; the �rst equality holds by the de�nition of m(Wi; �; g; b); the second

equality uses iterated expectations with conditioning on (Xi; Zi) and the de�nition of

mF (�; x; z); the third equality holds by change of variables with z� = (z�z0)=b; the �rst
inequality holds by (12.14) and Assumption NM(a), and the second inequality holds by

Assumption PS3(b) of ASN.

By Assumption B(a), n1=2O(b2+dz=2) = o(1): This and (12.15) give

sup
(�;F )2F

sup
g2G

jn1=2EFm(Wi; �; g; b)� (nbdz)1=2EFmF (�;Xi; z0)g(Xi)j = o(1): (12.16)

Equations (12.14)-(12.16) also hold with D�1=2
F (�; b) multiplying each quantity inside

the absolute values (using Lemma AN2(b) and Assumption PS3(a) of ASN). Equation

(12.16) (with the multiplicand D
�1=2
F (�; b) added inside the absolute values) and the

de�nitions of h1;n;F (�; g; b) and h
y
1;n;F (�; g; b) give

sup
(�;F )2F

sup
g2G

jh1;n;F (�; g; b)� hy1;n;F (�; g; b)j

= sup
(�;F )2F

sup
g2G

jn1=2D�1=2
F (�; b)EFm(Wi; �; g; b)

�(nbdz)1=2D�1=2
F (�; b)EFmF (�;Xi; z0)g(Xi)j

= o(1): (12.17)

This completes the proof of Lemma AN3. �

Proof of Lemma AN4. The proof of part (a) follows the same argument as used to
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prove Lemma A1(a) of AS2 using Lemmas E1-E3 in Appendix E of AS2. Lemmas E1

and E2 hold without change.

The results of Lemma E3 of AS2 hold for SubSeq(h2) as de�ned here with h2 2
H2;+ and with m(Wn;i(!); �n; g) and D

�1=2
Fn

(�n) replaced by m(Wn;i(!); �n; g; b) and

D
�1=2
Fn

(�n; b); respectively, in (16.4) of AS2. Lemma E3 of AS2 is proved by verifying

conditions (i)-(v) of Theorem 10.6 of Pollard (1990). The proof in the present context

requires some adjustments.

In the veri�cation of (i), m(Wn;i(!); �n; g) and �Fn;j(�n) are replaced by m(Wn;i

(!); �n; g; b) and the (j; j) element of D
1=2
Fn
(�n; b) in (16.35)-(16.36) of AS2.

In the veri�cation of (ii), DFn(�n) and �Fn(�n; g; g
�) are replaced by DFn(�n; b) and

�Fn(�n; g; g
�; b) in (16.37) of AS2. Then, condition (i) of SubSeq(h2) plus Lemma AN2(c)

deliver the desired convergence. Lemma AN2(c) is required in the proof in the current

case, but not in AS2, because the �nite-sample covariance kernel of the empirical process

depends on b in the present case.

In the veri�cation of (iii), one can ignore the ��1Fn;j(�n) and G(Xi) multiplicands in

(16.38) of AS2 because Lemma AN2(b) and Assumption PS3(a) of ASN imply that

��1Fn;j(�n) is uniformly bounded over (�; F ) 2 F+ and n � 1 and Assumption NM(a)

implies that G(Xi) = G <1: Then, Lemma AN2(a) gives the desired result.

Condition (iv) is the Lindeberg condition. In the veri�cation of (iv), one can ignore

the ��1Fn;j(�n) and G(Xi) multiplicands in (16.39) of AS2 for the same reasons as above.

The required condition reduces to: for all � > 0; some � > 0; and all j � k;

An =
nX
i=1

EFnm
2
n;j(Wi; �n; b)1(jmn;j(Wi; �n; b)j > �)! 0; where

mn;j(Wi; �; b) = n�1=2b�dz=2Kb(Zi)mj(Wi; �): (12.18)
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We have

An � nEFnjmn;j(Wi; �n; b)j2+�=��

= n��=2b��dz=2
�
b�dzEFnK

2+�
b (Zi)jmj(Wi; �n)j2+�=��

�
= (nbdz)��=2

�
b�dz

Z
K2+�

�
z � z0
b

�
EFn(jmj(Wi; �n)j2+�jZi = z)fn(z)dz=�

�

�
= (nbdz)��=2

�Z
K2+�(z�)EFn(jmj(Wi; �n)j2+�jZi = z0 + bz�)fn(z0 + bz�)dz�=��

�
� (nbdz)��=2

�
C�5

Z
K2+�(z�)dz�=��

�
! 0 (12.19)

for some constant C�5 <1; where the �rst inequality holds using identical distributions,

the �rst equality holds by algebra, the second equality holds by iterated expectations,

the third equality holds by change of variables with z� = (z�z0)=b; the second inequality
holds for b su¢ ciently small that z0 + bz� 2 Z0 by Assumption PS3(e) of ASN, and the
convergence holds by Assumptions B(b), K(c), and K(e).

In the veri�cation of (v), DFn(�n) and m(Wi; �n; g) are replaced by DFn(�n; b) and

m(Wi; �n; g; b) in (16.40) of Section 16.6 in Appendix E of AS2 and the convergence

holds by condition (i) of SubSeq(h2) plus Lemma AN2(c). This completes the changes

needed in the proof of Lemma E3 of AS2.

Given that the results of Lemma E3 of AS2 hold for SubSeq(h2) as de�ned here, the

proof of Lemma A1(a) in AS2 establishes Lemma AN4(a) with only minor changes. In

particular, DFn(�n) is replaced by DFn(�n; b) in (16.8) of AS2 and the second and last

equalities in (16.8) of AS2 hold by (16.40) of AS2 with the changes described in the

previous paragraph. This completes the proof of part (a) of Lemma AN4.

Now, we prove part (b) of the Lemma. The multiplicand D�1=2
F (�; b); which appears

in bh2;n;F (�; g; g�; b); equals D�1=2
F (�; z0) + o(1) uniformly over (�; F ) 2 F by Lemma

AN2(b) and sup(�;F )2F jjD
�1=2
F (�; z0)jj < 1 by Assumption PS3(a) of ASN. Hence, one

can ignore the D�1=2
F (�; b) multiplicand when verifying part (b) of the Lemma. Doing

so transforms bh2;n;F (�; g; g�; b) into b�n(�; g; g�):
Part of the proof of part (b) is similar to the proof of Lemma A1(b) of AS2. As in

AS2, for notational simplicity, we establish results for the sequence fng; rather than the
subsequence fan : n � 1g: Two terms appear in the rhs of (16.16) of AS2. The second
term can be shown to be op(1): The argument is as follows. The second term (ignoring
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the D�1=2
F (�; b) multiplicand) is the following quantity multiplied by its transpose:

n�1
nX
i=1

m(Wi; �; g; b) = n�1
nX
i=1

b�dz=2Kb(Zi)mj(Wi; �n)g(Xi): (12.20)

This quantity has mean that is op(1) by Lemma AN6. The di¤erence between this quan-

tity and its mean is op(1) by Lemma E2 of AS2. The conditions of Lemma E2 are veri�ed

by the argument given in (16.18)-(16.22) of AS2 with (16.21), which veri�es an L1+�-

boundedness condition, replaced by L2-boundedness of b�dz=2Kb(Zi)mj(Wi; �n)g(Xi);

which holds by Lemma AN7.

The �rst term appearing in (16.16) of AS2 (ignoring the D�1=2
F (�; b) multiplicand) is

Qn(g; g
�) = n�1

nX
i=1

m(Wi; �; g; b)m(Wi; �; g
�; b)0: (12.21)

To complete the proof of part (b), we need to show that the supremum over (g; g�) 2 G2

of Qn(g; g�) minus its expectation is op(1) under f(�n; Fn) : n � 1g: This cannot be done
using the uniform law of large numbers given in Lemma E2 of AS2, as is done in the proof

of Lemma A1(b) in AS2, because the summands do not satisfy an L1+�-boundedness

condition when m(Wi; �; g) is replaced by m(Wi; �; g; b):

In fact, the summands of Qn(g; g�) do not even satisfy a uniform integrability con-

dition, as the following calculations show. For simplicity, suppose m(Wi; �) is a scalar

and is independent of Zi: Let mn;i(b) and mn;i denote m(Wi; �n; g; b) and m(Wi; �n; g);

respectively. We have: for L <1;

EFnm
2
n;i(b)1(m

2
n;i(b) > L)

= EFnb
�dzK2

b (Zi)m
2
n;i1(b

�dzK2
b (Zi)m

2
n;i > L)

= EFn � EFn(b�dzK2
b (Zi)m

2
n;i1(b

�dzK2
b (Zi)m

2
n;i > L)jZi)

=

Z
b�dzK2

�
z � z0
b

�
EFn

�
m2
n;i1

�
b�dzK2

�
z � z0
b

�
m2
n;i > L

�
jZi = z

�
fn(z)dz

=

Z
K2 (z�)EFn(m

2
n;i1(K

2(z�)m2
n;i > Lbdz)jZi = z0 + bz�)fn(z0 + bz�)dz�; (12.22)

where the second equality holds by iterated expectations and the fourth equality holds

42



by change of variables with z� = (z � z0)=b: The lim supn!1 of the rhs in (12.22) is not
small for L large because bdz ! 0: Hence, uniform integrability fails.

Instead, we show that

sup
g;g�2G

jQn(g; g�)� EFnQn(g; g
�)j !p 0 (12.23)

under f(�n; Fn) : n � 1g by using the maximal inequality (7.10) of Pollard (1990, p. 38)
for manageable processes, which is applicable by Assumption NM(b) and Lemma E1 of

AS2. For notational simplicity, suppose m(Wi; �; g; b) is a scalar. (This is wlog because

we can argue element by element.) The maximal inequality says that

EFn sup
g;g�2G

jQn(g; g�)� EFnQn(g; g
�)j � n�1CEFnjjF �n jj � n�1C(EFnjjF �n jj2)1=2; (12.24)

where C is some �nite constant and F �n (using Pollard�s notation) is an n-vector of

envelope functions that satis�es F �n = (F
�
n;1; :::; F

�
n;n)

0; jjF �n jj2 =
Pn

i=1 F
�2
n;i; and

F �n;i = b�dzK2
b (Zi)jjm(Wi; �n)jj2G2 � sup

g;g�2G
jjm(Wi; �n; g; b)m(Wi; �n; g

�; b)jj: (12.25)

We have

n�1(EFnjjF �n jj2)1=2

= n�1=2(EFnF
�2
n;1)

1=2

= n�1=2G2(EFnb
�2dzK4

b (Zi)jjm(Wi; �n)jj4)1=2

= (nbdz)�1=2G2
�Z

b�dzK4

�
z � z0
b

�
EFn(jjm(Wi; �n)jj4jZi = z)fn(z)dz

�1=2
= (nbdz)�1=2G2

�Z
K4(z�)EFn(jjm(Wi; �n)jj4jZi = z0 + bz�)fn(z0 + bz�)dz�

�1=2

� (nbdz)�1=2G2

 Z
K4(z�)dz� sup

(�;F )2F+
sup
z2Z0

EF (jjm(Wi; �)jj4jZi = z)f(z)

!1=2
! 0; (12.26)

where the �rst equality holds by identical distributions for i = 1; :::; n under Fn; the

second equality holds using Assumption NM(a), the third equality holds by iterated
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expectations, the fourth equality holds by change of variables with z� = (z � z0)=b;

the inequality holds for b su¢ ciently small using Assumption K(c), and the convergence

holds by Assumptions B(b) and K(c)-(e) and Assumption PS3(e) of ASN. This completes

the proof of part (b) of the Lemma. �

12.2.6 Proofs of Lemmas AN5-AN7

Proof of Lemma AN5. Using Assumptions PS2(a)-(d) of ASN (which hold for

(�; F ) 2 F+), we have

�F (�; g; g
�; z) = EF (m(Wi; �; g)m(Wi; �; g

�)0jZi = z)f(z)

=

Z Z
m(y; x; z; �; g)m(y; x; z; �; g�)0f(y; xjz)d�Y (y)d�X(x)f(z)

=

Z Z
m(y; x; z; �; g)m(y; x; z; �; g�)0f(y; x; z)d�Y (y)d�X(x): (12.27)

In addition, we have

EF [�F (�;Xi; z)� (g(Xi)g
�(Xi)

0)]

=

Z
[�F (�; x; z)� (g(x)g�(x)0)]f(x)d�X(x)

=

Z �Z
m(y; x; z; �)m(y; x; z; �)0f(yjx; z)d�Y (y)f(zjx)� (g(x)g�(x)0)

�
f(x)d�X(x)

=

Z Z
m(y; x; z; �; g)m(y; x; z; �; g�)0f(y; x; z)d�Y (y)d�X(x); (12.28)

where the last equality uses m(w; �; g) = m(w; �)� g(x) for w = (y; x; z)0: �

Proof of Lemma AN6. De�ne

mF (�; g; z) = EF (m(Wi; �; g)jZi = z)f(z): (12.29)
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We have

sup
(�;F )2F+

sup
g2G

jjb�dz=2EFKb(Zi)m(Wi; �; g)jj

= sup
(�;F )2F+

sup
g2G

jjb�dz=2
Z
Kb(z)mF (�; g; z)dzjj

� b�dz=2
Z
K

�
z � z0
b

�
sup

(�;F )2F+
sup
g2G

jjmF (�; g; z)jjdz

= bdz=2
Z
K (z�) sup

(�;F )2F+
sup
g2G

jjmF (�; g; z0 + bz�)jjdz�

� bdz=2 sup
(�;F )2F+

sup
z2Z0

sup
g2G

jjmF (�; g; z)jj

! 0; (12.30)

where the �rst equality holds by iterated expectations conditioning on Zi using Assump-

tion PS2(a) of ASN, the second equality holds by change of variables with z� = (z�z0)=b;
the second inequality holds using Assumption K(a), and the convergence holds by As-

sumption B(a) and the result:

sup
(�;F )2F+;z2Z0;g2G

jjmF (�; g; z)jj <1: (12.31)

Equation (12.31) is established as follows. We have

mF (�; g; z) = EF [EF (m(Wi; �; g)jXi; Zi = z)]f(z)

=

Z
EF (m(Wi; �)jXi = x; Zi = z)g(x)f(xjz)d�X(x)f(z)

=

Z
mF (�; x; z)g(x)f(x; z)d�X(x); (12.32)

where the second equality uses Assumption PS2(e) of ASN. Hence, we obtain

sup
(�;F )2F+

sup
z2Z0

sup
g2G

jjmF (�; g; z)jj

� G sup
(�;F )2F+

sup
z2Z0

Z
jjmF (�; x; z)jjf(x; z)d�X(x) <1; (12.33)

where the �rst inequality holds by Assumption NM(a) and the second inequality holds

by Assumption PS3(c). �
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Proof of Lemma AN7. For notational simplicity, we suppose m(Wi; �; g) is a scalar.

(This is wlog because we could argue element by element.) For all g; g� 2 G; we have

Jb(g; g
�)

= sup
(�;F )2F+

jb�dzEFK2
b (Zi)m(Wi; �; g)m(Wi; �; g

�)� EF [�F (�;Xi; z0)� (g(Xi)g
�(Xi))]j

= sup
(�;F )2F+

jb�dzEFK2
b (Zi)m

2(Wi; �)g(Xi)g
�(Xi)� EF�F (�;Xi; z0)g(Xi)g

�(Xi)j

= sup
(�;F )2F+

����Z �Z b�dzK2

�
z � z0
b

�
�F (�; x; z)dz � �F (�; x; z0)

�
g(x)g�(x)f(x)d�X(x)

����
= sup

(�;F )2F+

����Z �Z �K2 (z�) �F (�; x; z0 + bz�)�K2 (z�) �F (�; x; z0)
�
dz�
�

�g(x)g�(x)f(x)d�X(x)
�� ; (12.34)

where the �rst equality de�nes Jb(g; g�); the second equality holds by the de�nition of

m(Wi; �; g); the third equality uses iterated expectations with conditioning on (Xi; Zi)

and Assumptions PS2(b) and (c) of ASN, and the fourth equality holds by change of

variables with z� = (z � z0)=b:

Using (12.34), we have

sup
g;g�2G

Jb(g; g
�) � G sup

(�;F )2F+

Z �Z
K2 (z�)L�(x)bjjz�jjdz�

�
f(x)d�X(x)

� bGC sup
(�;F )2F+

Z
L�(x)f(x)d�X(x)

! 0; (12.35)

where the �rst inequality holds by Assumption PS3(d) of ASN and Assumption NM(a),

the second inequality holds for some C < 1 by Assumptions K(c) and K(e), and the

convergence holds by Assumptions B(a) and PS3(d) of ASN. �

12.3 Proofs of Theorems AN2-AN4

Proof of Theorem AN2. Theorem AN2 is analogous to Theorem 3 of AS1. The proof
of Theorem 3 of AS1 that is given in Section 14.2 in Appendix C of AS2 goes through

with a few changes in the present context. First, EF0(�) is replaced by EF0(�jZi = z0) in

m�(g) and elsewhere. Second, n1=2�(g0) is replaced throughout by (nbdz)1=2�(g0): Third,
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Assumption NFA(a) is used in place of Assumption FA(a) to obtain the inequality in

(14.28) of AS2. Fourth, the proof uses Lemma AN4, which employs Assumptions NFA(b)

and NFA(c), in place of Lemma A1 of AS2.

Fifth, the second equality of (14.33) of AS2 does not hold. It relies on n�1=2h1;n;F0(��; g)

= m�(g); which in the present context is replaced by (nbdz)�1=2h1;n;F0(��; g; b) = m�(g);

which does not hold. However, we have

(nbdz)�1=2h1;n;F0(��; g; b) = D
�1=2
F0

(��; b)b
�dz=2EF0m(Wi; ��; g; b)

= D
�1=2
F0

(��; z0)EF0m(��; Xi; z0)g(Xi) +O(b2)

= D
�1=2
F0

(��; z0)EF0(m(Wi; ��; g)jZi = z0)f(z0) +O(b2)

= m�(g) + o(1); (12.36)

where the second equality holds by Lemma AN2(b) and (12.15) (which holds for (��; F0) 2
F+); the third equality holds by the same argument as in the proof of Lemma AN5
withm(y; x; z; �; g)m(y; x; z; �; g�)0 replaced bym(y; x; z; �; g) throughout, and the fourth

equality holds by the de�nition of m�(g) and Assumption B(a).

Using (12.36), the second equality of (14.33) of AS2 holds with m�(g)=�(g0) replaced

by m�(g)=�(g0) + o(1):

These are the only changes needed to the proof of Theorem 3 of AS1. �

Proof of Theorem AN3. Theorem AN3 is analogous to Theorem 4 of AS1. First, we
give an analogue of (14.37) in the proof of Theorem 4 of AS1 given in Section 14.3 of

Appendix C in AS2. We have

h1;n;Fn(�n;�; g; b)

= n1=2D
�1=2
Fn

(�n;�; b)EFnm(Wi; �n;�; g; b)

= (nbdz)1=2(Ik + o(1))D
�1=2
Fn

(�n;�; z0)EFnm(�n;�; Xi; z0)g(Xi) + o(1) (12.37)

= (nbdz)1=2(Ik + o(1))D
�1=2
Fn

(�n;�; z0)EFn(m(Wi; �n;�; g)jZi = z0)fn(z0) + o(1);

where the �rst equality holds by (12.2), the second equality holds by Lemma AN2(b)

and (12.15) because n1=2b2+dz=2 ! 0 if b = o(n�1=(4+dz)); and the third equality holds by

the same argument as in the proof of Lemma AN5 above.
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Next, by element-by-element mean-value expansions about �n; we have

D
�1=2
Fn

(�n;�; z0)EFn(m(Wi; �n;�; g)jZi = z0)fn(z0)

= D
�1=2
Fn

(�n; z0)EFn(m(Wi; �n; g)jZi = z0)fn(z0)

+�Fn(�n;g; g)(�n;� � �n); (12.38)

using Assumption NLA2, where �n;g may di¤er across rows of �Fn(�n;g; g); �n;g lies

between �n;� and �n; and �n;g ! �0:

Combining (12.37) and (12.38) gives the analogue of (14.37) of AS2:

h1;n;Fn(�n;�; g; b)

= (nbdz)1=2(Ik + o(1))D
�1=2
Fn

(�n; z0)EFn(m(Wi; �n; g)jZi = z0)fn(z0)

+(Ik + o(1))�Fn(�n;g; g)(nb
dz)1=2(�n;� � �n)

! h1(g) + �0(g)�; (12.39)

where h1(g) and �0(g) are de�ned in (10.2) and the convergence uses Assumptions

NLA1(a), NLA1(b), and NLA2.

Now, the proof of Theorem AN3 is similar to the proof of Theorem 4 of AS1 given

in AS2 with the following changes:

(i) f(�n;�; Fn) 2 F : n � 1g 2 SubSeq(h2); where h2 = h2;F0(�0) 2 H2;+ by Assump-

tions NLA1(a) and NLA1(c)-(e),

(ii) part (i) and Assumptions B and MN imply that the results of Lemma AN4 hold

under f(�n;�; Fn) 2 F : n � 1g and these results are used in place of Lemma A1 of AS2,
(iii) equation (14.38) of AS2 is replaced by

��1n D
�1=2
Fn (�n;�; g; b)D

1=2
Fn
(�n;�; b)h1;n;Fn(�n;�; g; b)

= (Ik + o(1))��1n (nb
dz)1=2D

�1=2
Fn (�n; g; z0)EFn(m(Wi; �n; g)jZi = z0)fn(z0)

+��1n D
�1=2
F0

(�0; g; z0)D
1=2
F0
(�0; z0)(Ik + o(1))�Fn(�n;g; g)(nb

dz)1=2(�n;� � �n)]

= �1(g) + o(1); (12.40)

where the �rst equality holds by the equality in (12.39) and Lemma AN2(b) and the

second equality holds because (a) the �rst term on the rhs of the �rst equality is �1(g)+

o(1) by Assumption NLA4 and (b) the second term on the rhs of the �rst equality is

o(1) by the convergence of the second term in (12.39) plus ��1n ! 0; and
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(iv) in the veri�cation of (14.23) in part (ix) of the proof of Theorem 4 of AS1 given

in Section 14.3 of Appendix C in AS2, (12.39) is used in place of (14.37) of AS2. This

completes the proof. �

Proof of Theorem AN4. First we establish part (a) of the Theorem for the KS

statistic. For the KS statistic de�ned in (6.7), we have

Tn(�n;�) � S(n1=2mn(�n;�; gn);�n(�n;�; gn))

= S
�
�n;Fn(�n;�; gn; b) + h1;n;Fn(�n;�; gn; b); h2;n;Fn(�n;�; gn; b)

�
� S(�n;Fn(�n;�; gn; b) + h1;n;Fn(�n;�; gn; b); C � Ik) w.p.a.1. (12.41)

for some constant C su¢ ciently large, where gn is as in Assumption NLA7(c) and

�w.p.a.1.�abbreviates �with probability that approaches one as n ! 1:�The second

inequality holds w.p.a.1 using Assumption S1(e) because kh2;n;Fn(�n;�; gn; b)�(h2;Fn(�n;�;
gn; gn)+"Ik)k !p 0 (by (12.2) and Lemma AN2(c)) and C �Ik�(h2;Fn(�n;�; gn; gn)+"Ik)
is positive de�nite w.p.a.1 (as required in Assumption S1(e)) because the largest eigen-

value of h2;Fn(�n;�; gn; gn) is bounded (because it is a correlation matrix divided by a

diagonal matrix with diagonal elements that are bounded away from zero).

By Lemmas AN2(c) and AN4(a) and Assumption NLA7(b),

�n;Fn(�n;�; gn; b) = Op(1): (12.42)

Also observe that

h1;n;Fn(�n;�; gn; b)

= n1=2(Ik + o(1))D
�1=2
Fn

(�n;�; z0)EFnm(Wi; �n;�; gn; b)

= (Ik + o(1))D
�1=2
Fn

(�n;�; z0)(nb
dz)1=2EFnmFn(�n;�; Xi; z0)gn(Xi) + o(1)

! h1; (12.43)

where the �rst equality holds by Lemma AN2(b), the second equality holds by (12.16)

(with F in (12.16) and (12.15) replaced by F+; which does not invalidate either), and
the convergence holds by Assumption NLA7(c).

Equations (12.41)-(12.43) along with Assumptions S3 and S4 imply part (a) for the

KS statistic.

Now we establish part (a) of the Theorem for the CvM statistic. For the CvM
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statistic de�ned in (6.6), by similar arguments as those for (12.41), we have

Tn(�n;�) �
Z
Gn

S(�n;Fn(�n;�; g; b) + h1;n;Fn(�n;�; g; b); C � Ik)dQ(g): (12.44)

By Lemmas AN2(c) and AN4(a) and Assumption NLA7(b), supg2Gn
k�n;Fn(�n;�; g; b)k = Op(1): Then, for any � > 0; there exists C� 2 (0;1) large enough
such that

lim inf
n!1

Pr Fn

�
sup
g2Gn

k�n;Fn(�n;�; g; b)k � C�

�
> 1� �: (12.45)

Thus, for any � > 0;

1� �

� lim inf
n!1

Pr Fn

�
Tn(�n;�) � Q(Gn) inf

k�k�C�
inf
g2Gn

S (� + h1;n;Fn(�n;�; g; b); C � Ik)
�

= lim inf
n!1

Pr Fn (Tn(�n;�) � Q(Gn)S(�n + h1;n;Fn(�n;�; gn; b); C � Ik) + o(1)) ;

(12.46)

where the equality holds for some �n 2 [�C�; C�]k and gn 2 Gn that approximately

achieves the in�ma. Next, we have

Q(Gn)S(�n + h1;n;Fn(�n;�; gn; b); C � Ik)

= Q(Gn)(nb
dz)�=2��Fn(�n;�; gn)S

�
�n + h1;n;Fn(�n;�; gn; b)

(nbdz)1=2�Fn(�n;�; gn)
; C � Ik

�
! 1; (12.47)

where the equality holds by Assumption S4 and the convergence holds because Q(Gn)

� (nbdz)�=2��Fn(�n;�; gn) ! 1 (by Assumption NLA70(c)) and the quantity

S
�
�n+h1;n;Fn (�n;�;gn;b)

(nbdz )1=2�Fn (�n;�;gn)
; C � Ik

�
is bounded away from zero. The latter holds using As-

sumption S3 and the fact that at least one element of the vector �n+h1;n;Fn (�n;�;gn;b)

(nbdz )1=2�Fn (�n;�;gn)
is

bounded away from the corresponding elements of the vectors in the set [0;1]p � 0v

(which holds by �n=(nbdz)1=2�Fn(�n;�; gn) ! 0; the �rst three lines of (12.43), and the

de�nition of �F (�; g)):

Combining (12.46) and (12.47), for any � > 0 and any B <1; we have lim infn!1
PrFn(Tn(�n;�) > B) � 1� �: This completes the proof of part (a) for the CvM statistic.

Part (b) is implied by part (a) and c(0G;bh2;n(�n;�); 1 � �) = Op(1) (which holds by
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an argument that is analogous to that used to prove (14.34) of AS2).

Part (c) is implied by part (b) and c('n(�n;�);bh2;n(�n;�); 1 � �)) � c(0G;bh2;n(�n;�);
1� �): �

13 Additional Simulation Results

In this section, we provide some additional simulation results. Tables A1 and A2

report the robustness results for the CvM/Max and KS/Max test statistics in the kinked

and the peaked bound cases, respectively, for the quantile selection model. As in Tables

I-III, the results in Tables A1 and A2 are for the lower endpoints of the identi�ed

intervals. Tables A3 and A4 report the robustness results for the CvM and KS test

statistics in the kinked and tilted bound cases, respectively, for the conditional treatment

e¤ect model.

Both Tables A1 and A2 show that there is little sensitivity to r1; "; the GMS tuning

parameters, and the kernel bandwidth in terms of coverage probabilities. There is some

sensitivity in terms of the FCP�s. The FCP decreases (gets better) with the sample size

for the KS/MAX-GMS/Asy pair and is stable for the CvM/Max-GMS/Asy pair. The

FCP is smaller (better) with (�n; Bn) halved and bigger with (�n; Bn) doubled.

There is quite a bit sensitivity to the kernel bandwidth. With both the kinked

and the peaked bound, doubling the bandwidth reduces the FCP�s for tests with the

KS/Max statistics. The same is true with the kinked bound and the CvM/Max statistic.

However, with the peaked bound, both doubling and halving the bandwidth increases

the FCP�s.

Tables A1 and A2 show that 0:50 CI�s cover the true value with probability noticeably

higher than 0:50: This indicates that the lower boundary point of the 0:50 CI as an

estimator for the lower end point of the identi�ed set is not median unbiased, but does

not have an inward bias which has been a concern in the literature.
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Table A1. Nonparametric Quantile Selection Model with Kinked Bound: Variations on the

Base Case

(a) Coverage Probabilities (b) False Cov Probs (CPcor)

Statistic: CvM/Max KS/Max CvM/Max KS/Max

Case Crit Val: GMS/Asy GMS/Asy GMS/Asy GMS/Asy

Base Case: (n = 250; r1 = 3; .989 .987 .49 .57

" = 0:05; b = b0n�2=7)

n = 100 .988 .991 .48 .59

n = 500 .989 .991 .45 .54

r1 = 2 .988 .987 .50 .53

r1 = 4 .990 .989 .48 .60

(�n; Bn) = 1=2(�n;bc; Bn;bc) .991 .987 .49 .55

(�n; Bn) = 2(�n;bc; Bn;bc) .993 .991 .56 .61

" = 1=100 .989 .987 .47 .57

b = 0:5b0n�2=7 .986 .987 .69 .77

b = 2b0n�2=7 .997 .995 .35 .45

� = :5 .771 .739 .05 .06

� = :5 & n = 500 .787 .753 .05 .06
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Table A2. Nonparametric Quantile Selection Model with Peaked Bound: Variations on the

Base Case

(a) Coverage Probabilities (b) False Cov Probs (CPcor)

Statistic: CvM/Max KS/Max CvM/Max KS/Max

Case Crit Val: GMS/Asy GMS/Asy GMS/Asy GMS/Asy

Base Case: (n = 250; r1 = 3; .991 .991 .49 .53

" = 0:05; b = b0n�2=7)

n = 100 .989 .990 .56 .65

n = 500 .994 .995 .50 .45

r1 = 2 .990 .990 .51 .50

r1 = 4 .992 .991 .48 .58

(�n; Bn) = 1=2(�n;bc; Bn;bc) .992 .990 .47 .52

(�n; Bn) = 2(�n;bc; Bn;bc) .994 .994 .54 .56

" = 1=100 .991 .991 .47 .53

b = 0:5b0n�2=7 .988 .989 .62 .70

b = 2b0n�2=7 .997 .996 .53 .47

� = :5 .803 .761 .04 .05

� = :5 & n = 500 .836 .795 .04 .04

Tables A3 and A4 show the sensitivity results for the nonparametric conditional

treatment e¤ect model with kinked bound and tilted bound, respectively.

Table A3 shows that, with the kinked bound, the test has NRP�s smaller than 0:05 for

all the test con�gurations and sample sizes that we experimented with. This is expected

because with the kinked bound, the conditional moment inequality is only binding at

a measure-zero set of the instrumental variable and Assumption GMS2 is not likely to

hold. The ARP�s are relatively stable as we vary r1, decrease " or decrease (�n; Bn).

Doubling (�n; Bn) makes the ARP�s smaller (worse). Both doubling and halving the

kernel bandwidth reduces ARP�s noticeably.
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Table A3. Nonparametric Conditional Treatment E¤ect Model with Kinked Bound:

Variations on the Base Case

(a) Null Rejection (b) Rej Probs under H1

Probabilities (NRP-corrected)

Statistic: CvM KS CvM KS

Case Crit Val: GMS/Asy GMS/Asy GMS/Asy GMS/Asy

Base Case: (n = 250; r1 = 3; .000 .000 .52 .49

" = 0:05; b = b0n�2=7)

n = 100 .000 .000 .65 .55

n = 500 .000 .000 .33 .40

r1 = 2 .000 .000 .52 .53

r1 = 4 .000 .000 .51 .45

(�n; Bn) = 1=2(�n;bc; Bn;bc) .000 .000 .52 .52

(�n; Bn) = 2(�n;bc; Bn;bc) .000 .000 .44 .42

" = 1=100 .000 .000 .52 .44

b = 0:5b0n�2=7 .000 .000 .38 .30

b = 2b0n�2=7 .000 .000 .34 .43

Table A4 shows a new aspect of the sensitivity analysis. The NRP for the CvM test

in the base case is somewhat bigger than 0:05: Halving the bandwidth reduces NRP�s

to below 0:05: while doubling the bandwidth increases the NRP�s to disastrous level.

This is expected because with the tilted bound the unconditional moment formed using

the kernel functions has negative expectation for any �xed bandwidth. The negative

expectation converges to zero as the bandwidth converges to zero. Thus, letting b

converge to zero is central to the theoretical validity of our method. Using a large b

deviates from the asymptotic theory.

The ARP�s in Table A4 are reasonably stable across di¤erent con�gurations and

sample sizes, except that they are somewhat sensitive to the kernel bandwidth.
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Table A4. Nonparametric Conditional Treatment E¤ect Model with Tilted Bound:

Variations on the Base Case

(a) Null Rejection (b) Rej Probs under H1

Probabilities (NRP-corrected)

Statistic: CvM KS CvM KS

Case Crit Val: GMS/Asy GMS/Asy GMS/Asy GMS/Asy

Base Case: (n = 250; r1 = 3; .072 .047 .53 .36

" = 0:05; b = b0n�2=7)

n = 100 .085 .042 .49 .34

n = 500 .072 .050 .53 .40

r1 = 2 .074 .059 .52 .38

r1 = 4 .069 .036 .53 .32

(�n; Bn) = 1=2(�n;bc; Bn;bc) .081 .054 .50 .35

(�n; Bn) = 2(�n;bc; Bn;bc) .066 .045 .53 .36

" = 1=100 .071 .040 .52 .31

b = 0:5b0n�2=7 .044 .023 .29 .14

b = 2b0n�2=7 .467 .313 .69 .57
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