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Abstract

The set of outcomes that can arise in Bayes Nash equilibria of an incomplete information game

where players may or may not have access to more private information is characterized and shown to be

equivalent to the set of an incomplete information version of correlated equilibrium, which we call Bayes

correlated equilibrium. We describe a partial order on many player information structures - which we

call individual su¢ ciency - under which more information shrinks the set of Bayes correlated equilibria.

We discuss the relation of the solution concept to alternative de�nitions of correlated equilibrium in

incomplete information games and of the partial order on information structures to others, including

Blackwell�s for the single player case.
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1 Introduction

Fix an incomplete information game. What can we say about what might happen in equilibrium if players

may or may not have access to more information? We show that behavior corresponds to a Bayes Nash

equilibrium for some extra information that the players might observe if and only if it is an incomplete

information version of correlated equilibrium that we dub Bayes correlated equilibrium. Aumann (1974),

(1987) introduced the notion of correlated equilibrium in games with complete information and a number

of de�nitions of correlated equilibrium in games with incomplete information have been suggested, notably

in Forges (1993). Our de�nition is driven by a di¤erent motivation from the earlier literature and is weaker

than the weakest de�nition of incomplete information correlated equilibrium (the Bayesian solution in

Forges (1993)), because it allows play to be correlated with states that are not known by any player.

While this characterization is a straightforward variation and reinterpretation of existing results in

the literature, we believe there are a number of distinct reasons why this characterization is of particular

interest. First, it allows the analyst to identify properties of equilibrium outcomes that are going to

hold independent of features of the information structure that the analyst does not know; in this sense,

properties that hold in all Bayes correlated equilibria of a given incomplete information game constitute

robust predictions. Second, it provides a way to partially identify parameters of the underlying economic

environment independently of knowledge of the information structure. Third, it provides an indirect

method of identifying socially or privately optimal information structures without explicitly working with

a space of all information structures. In Bergemann and Morris (2011b), we illustrate these uses of the

characterization result in a particular class of continuum player, linear best response games, focussing on

normal distributions of types and actions and symmetric information structures and outcomes. While

special, these games and equilibria can be used to model many economic phenomena of interest. In this

paper, we work with general (�nite player, �nite action and �nite state) games, and illustrate these uses

with examples.

We distinguish between the "basic game" from the "information structure" in the de�nition of the

incomplete information game. The basic game refers to the set of actions, the set of payo¤ states, the

utility functions of the players, and the common prior over the payo¤ states. The information structure

refers to the type space of the game, which is generated by a mapping from the payo¤ states to a probability

distribution over types, or signals. The separation between the basic game and the information structure

enables us to ask how changes in the information structure a¤ect the equilibrium set for a �xed basic game.

A second contribution of the paper and the main formal contribution is that (i) we introduce a natural,

statistical, partial order on information structures - called individual su¢ ciency - that captures intuitively

when one information structure contains more information than another; and (ii) we show that the set
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of Bayes correlated equilibria shrinks in all games if and only if the informativeness of the information

structure increases.

A one player version of an information structure is an "experiment" in the sense studied by Blackwell

(1951), (1953). An experiment consists of a set of signals and a mapping from states to probability distri-

butions over signals. Suppose that we are interested in comparing a pair of experiments. A combination

of the two experiments is a new experiment where a pair of signals - one from each experiment - is observed

and the marginal probability over signals from each of the original experiments corresponds to the original

distribution. One experiment is su¢ cient for another if it is possible to construct a combined experiment

such that the signal in the former experiment is a su¢ cient statistic for the signal in the latter experiment.

Our partial order on (many player) information structures is a natural generalization of su¢ ciency. One

information structure is individually su¢ cient for another if there exists a combined information structure

where each player�s signal from the former information structure is a su¢ cient statistic for his beliefs over

both states and others�signals in the combined information structure. This partial order has a couple

of key properties - each generalizing well known properties in the one player case - that suggest that it

is the "right" ordering on (many player) information structures. First, two information structures are

individually su¢ cient for each other if and only if they are "higher order belief equivalent" in the sense

that they correspond to the same probability distribution over beliefs and higher order beliefs about states

(for any given prior on states). Second, one information structure is individually su¢ cient for another if

and only if it is possible to start with the latter information structure and then have the players observe

some extra signal, so that the expanded information structure is higher order belief equivalent to the former

information structure.

Blackwell�s theorem showed that if one experiment was su¢ cient for another, then making decisions

based on the former experiment allows a decision maker to attain a richer set of outcomes. In particular,

although it was not the form in which Blackwell stated his result, economists have focussed on the impli-

cation that one experiment is su¢ cient for another if and only if it allows a decision maker to attain a

higher level of ex ante utility in any decision problem, so that it is "more valuable". Thus we will argue

that Blackwell�s theorem showed the equivalence of a "statistical ordering" on experiments (su¢ ciency)

and a "feasibility ordering" (more valuable than). In this paper, we introduce (in the many player case)

an "incentive ordering" on information structures: we say that an information structure is more incentive

constrained than another if it gives rise to a smaller set of Bayes correlated equilibria. Our main result,

stated in this language, is that one information structure is more incentive constrained than another if

and only if the former is individually su¢ cient for the latter. Thus we show the equivalence between a

statistical ordering and an incentive ordering. In order to understand the relation to Blackwell�s theorem,
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we show that our main result, restricted to the one person case, has a natural interpretation and can be

seen as an extension of Blackwell�s theorem. And we also describe a feasibility ordering on many player

information structures which is equivalent to individual su¢ ciency and more incentive constrained than.

Taken together, our main result and discussion of the relation to Blackwell�s theorem, highlight the dual

role of information. By making more outcomes feasible, more information allows more outcomes to occur.

By adding incentive constraints, more information restricts the set of outcomes that can occur. We show

that the same partial order - individual su¢ ciency, reducing to su¢ ciency in the one player case - captures

both roles of information simultaneously.

Our characterization result also has a one player analogue. Consider a decision maker who has access

to an experiment, but may have access to more information. What can we say about the joint distribution

of actions and states that might result in a given decision problem? We show that they are one person

Bayes correlated equilibria. Such one person Bayes correlated equilibria have already arisen in a variety

of contexts. Kamenica and Gentzkow (2011) consider the problem of cheap talk with commitment. In

order to understand the behavior that a sender/speaker can induce a receiver/decision maker to choose, we

might �rst want to characterize all outcomes that can arise for some committed cheap talk (independent of

the objectives of the speaker). This, in our language, is the set of one person Bayes correlated equilibria.1

Caplin and Martin (2011) study experiments with incomplete perception of a set of physical signals. Since

they do not know how the decision maker perceives, they interpret the subject as if she has observed more

or less information unknown to the experimenter, and thus outcomes are, in our language, one person

Bayes correlated equilibria.

There is a literature studying and comparing alternative de�nitions of correlated equilibrium under in-

complete information, with the papers of Forges (1993), (2006) being particularly important. A standard

assumption in that literature - which we dub "join feasibility" - is that play can only depend on the joint

information of all the players. This restriction makes sense under the maintained assumption that corre-

lated equilibrium is intended to capture the role of correlation of the players�actions but not unexplained

correlation with the state of nature. Our di¤erent motivation leads us to allow such unexplained correla-

tion. Liu (2011) also relaxes the join feasibility assumption, but imposes a belief invariance assumption

(introduced and studied in combination with join feasibility in Forges (2006)), requiring that, from each

player�s point of view, the action recommendation that he receives from the mediator does not change his

beliefs about others�types and the state. Intuitively, the belief invariant Bayes correlated equilibria of

Liu (2011) capture the implications of common knowledge of rationality and a �xed information structure,

1As Kamenica and Gentzkow (2011), there is a close connection with work of Aumann and Maschler (1995), on Nash

equilibria of in�nitely repeated zero sum games with one sided uncertainty and without discounting, as it is as if the informed

play can commit to reveal only certain information about the state.
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while our Bayes correlated equilibria capture the implications of common knowledge of rationality and the

fact that the player have observed at least the signals in the information structure. In particular, the set of

Bayes correlated equilibria for a �xed information structure correspond to the set of belief invariant Bayes

correlated equilibria of that information structure and all more informed ones. Liu (2011) introduces the

notion of an "incomplete information correlating device" and shows that (i) belief invariant Bayes corre-

lated equilibria are invariant to adding a correlation device; and (ii) two information structures are higher

order belief equivalent if and only if they can be mapped into each other via correlating devices. Thus

two information structures are individually su¢ cient for each other if and only if they are equivalent to a

non-redundant type space plus a correlating device.

Two papers - Lehrer, Rosenberg, and Shmaya (2010), (2011) - have examined comparative statics of how

changing the information structure e¤ects the set of predictions that can be made about players�actions,

under Bayes Nash equilibrium and de�nitions of incomplete information correlated equilibrium stronger

than Bayes correlated equilibrium. In the language of our paper, they construct statistical orderings on

information structures and show how these orderings are relevant for - in Lehrer, Rosenberg, and Shmaya

(2010) - feasibility orderings and - in Lehrer, Rosenberg, and Shmaya (2011) - incentive orderings. Our

ordering - individual su¢ ciency - is a more complete variation on the orderings they construct and we

will note how some of our results can be proved by adapting their arguments. Two crucial distinctions

are the following. First, because they work with solution concepts that maintain join feasibility, the

relevant orderings are always re�nements of su¢ ciency, i.e., they require players�joint information in one

information structure to be su¢ cient for their joint information in the other structure, and then impose

additional restrictions. By construction, individual su¢ ciency is a many player analogue of su¢ ciency but

neither implies nor is implied by su¢ ciency of joint information. Second, because they work with solution

concepts that include feasibility restrictions, the results relating information structure orders to incentive

constraints in Lehrer, Rosenberg, and Shmaya (2011) are weaker than ours: they characterize when two

information structures support the same set of equilibria in all games, but not when one information

structure supports a larger or smaller set.

We exposit our results by �rst presenting at length the one player version of the results in Section 2.

As discussed above, we believe that the one player version of our results is of independent interest, relates

together a number of results in the literature in an interesting way, and allows us to present an interesting

extension and interpretation of Blackwell�s theorem. And we can present our results for the one player

case in a way that the many player generalization follows easily.

However, this expository material is not necessary for the remainder of the paper, and it is possible to

go straight to the general many player analysis in Section 3 on page 18. In Section 3, we provide a complete
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analysis of the general case with �nitely many agents. In Section 4, we o¤er a many player generalization of

the su¢ ciency ordering, dubbed individual su¢ ciency, for which we can establish an equivalence between

the incentive based ordering and the statistical ordering. We thus report results on comparing information

structures in many agent environments. In Section 5, we study a class of binary action basic games and

binary signal information structures, and use it to illustrate all our results. In Section 6, we explain how

the solution concept we dub "Bayes correlated equilibrium" relates to the literature, in particular Forges

(1993), (2006). Section 7 concludes and contains a discussion of the relation to the literature on the value

of information.

2 The Special Case: One Player

We �rst preview our results by presenting the one player case. There is a �nite set of states, �, and we

write � for a typical state. A decision problem G consists of (1) a �nite set of actions A; (2) a utility

function u : A��! R; and (3) a strictly positive prior  2 �++ (�). Thus G = (A; u;  ). An experiment
S consists of (1) a �nite set of signals T ; and (2) a signal distribution � : � ! �(T ). Thus S = (T; �).

Two experiments play an important role. The null experiment S has T = ftg and � (tj�) = 1 for all � 2 �.
Thus the null experiment provides no information. The complete experiment S has T = � and

� (tj�) =

8<: 1, if t = �,

0, otherwise,

for all � 2 �. The pair (G;S) is a (one player) game of incomplete information.
Our terminology in this section will be often be non-standard for the one person case as it is chosen

to emphasize the link with the many player case that follows.

2.1 De�ning Bayes Correlated Equilibrium

A decision rule is a mapping

� : T ��! �(A) . (1)

Note that it is allowed to depend on states as well as signals. We will be interested in the implications of

decision rules if signals are not observed. Call a mapping

� : �! �(A) (2)

specifying the probability distribution over actions conditional on states a random choice rule. Random

choice rule � is induced by decision rule � ifX
t2T

� (tj�)� (ajt; �) = � (aj�) (3)
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for all a 2 A and � 2 �.
Now suppose the action was being chosen by a rational decision maker who was aware of information

structure S (i.e., observed a signal t 2 T ), was interested in maximizing expected utility but perhaps knew
more. What restrictions beyond consistency would this impose on the decision rule?

De�nition 1 (Obedience)

Decision rule � is obedient for (G;S) ifX
�2�

 (�)� (tj�)� (ajt; �)u (a; �) �
X
�2�

 (�)� (tj�)� (ajt; �)u
�
a0; �

�
(4)

for all a; a0 2 A and t 2 T .

De�nition 2 (Bayes Correlated Equilibrium)

Decision rule � is a Bayes correlated equilibrium (BCE) of (G;S) if it is obedient for (G;S).

Random choice rule � is a BCE random choice rule for (G;S) if it is induced by a BCE �. We are

interested in the joint distribution of a triple of random variables, (a; t; �). An elementary property of

the conditional probabilities of a triple of random variables was stated as Theorem 7 of Blackwell (1951).

This property, a conditional independence property, will play a central role in our analysis, as it did in

Blackwell�s and other related work. Because this property, and terminology that we will use to describe

it, will appear in a variety of di¤erent contexts in this paper, we will �nd it useful to present it abstractly

next.

2.2 A Statistical Digression: Blackwell Triples

Suppose that we are interested in a triple of variables, (x; y; z) 2 X � Y � Z, and that we are given a

probability distribution on the product space, P 2 �(X � Y � Z). We will abuse notion by using P to

refer to marginal probabilities, writing P (x) for P (fxg � Y � Z) and P (x; y) for P (fxg � fyg � Z); and
conditional probabilities, writing P (xjy; z) for

P (xjy; z) = P (x; y; z)

P (y; z)

if P (y; z) > 0; and

P (xjy) = P (x; y)

P (y)

if P (y) > 0. We will say that the probability of x conditional on y is independent of z (under P ) if

P (xjy; z) = P (xjy)
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for all z 2 Z whenever P (y; z) > 0. Now we have the following statistical fact concerning a triple of

random variables.

Lemma 1 (Conditional Independence)

The following statements are equivalent

1. The probability P (xjy; z) is independent of z.

2. The probability P (zjy; x) is independent of x.

3. P (x; y; z) = P (y)P (xjy)P (zjy) if P (x; y; z) > 0.

Proof. (3) immediately implies (1) and (2). To see that (1) implies (3), observe that if P (y; z) > 0,

P (y; z)P (xjy; z) = P (y)P (zjy)P (xjy; z) , by de�nition

= P (y)P (zjy)P (xjy) , by (1).

A symmetric argument shows that (2) implies (3).

When these statements are true, we will say that the ordered variables (x; y; z) are a Blackwell triple

(under P ). Blackwell (1951) observed that the above relationship can be rephrased as saying that a Markov

chain, namely P (xjy; z) = P (xjy), is also a Markov chain in reverse, namely P (zjy; x) = P (zjy).2

2.3 Foundations of Bayes Correlated Equilibrium

We want to formalize the idea that Bayes correlated equilibria describe all behavior that might arise from

a decision maker with access to experiment S but also perhaps more information. First, we review the

standard approach to analyzing rational behavior where the information structure is fully described by

experiment S.

De�nition 3 (Belief Invariance)

A decision rule � is belief invariant for (G;S) if for all � 2 �; t 2 T such that  (�)� (tj�) > 0, � (ajt; �) is
independent of �.

In other words, if the pair (t; �) has a strictly positive probability:  (�)� (tj�) > 0, then the conditional
probability � (ajt; �) only depends on t and not on � :

� (ajt) , � (ajt; �) . (5)

2For this reason, Torgersen (1991) p. 345, refers to the triple (x; y; z) as a "Markov triple". As the term "Markov triple"

is commonly used to refer to solutions of Markov Diophantine equations, we prefer "Blackwell triple".
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This property re�ects the standard restriction in Bayesian decision making, that a decision maker who

has access only to the experiment S, cannot directly condition his actions on the state �, but rather has

to condition his decision on the signal t. The belief invariance condition is imposed as a restriction only

on strictly positive probability events,  (�)� (tj�) > 0, under the information structure S. But as we

could always extend the restriction to zero probability events,  (�)� (tj�) = 0, without a¤ecting either

the obedience condition, see (4), or the induced random choice rule, see (3), we shall henceforth omit the

positive probability quali�er,  (�)� (tj�) > 0; when discussing belief invariance.
Now supposed that we �x any prior  2 �++ (�) and write � (�jt; a) for implied probability of �

conditional on signal t and action a, so that

� (�jt; a) =
 (�)� (tj�)� (ajt; �)X

e�2�
 
�e��� �tje��� �ajt;e��

whenever �
�
tje��� �ajt;e�� > 0 for some e� 2 �.

Now (t; a; �) are a Blackwell triple as de�ned in Section 2.2 and, by Lemma 1, the conditional in-

dependence lemma, an equivalent statement of the belief invariance property is then that � (�jt; a) is
independent of a. This statement motivates the name: it states that observing the chosen action a does

not reveal any information about the state � beyond that contained in the signal t. This terminology was

introduced in the many player context by Forges (2006).

Thus decision rule � could arise from a decision maker with access only to experiment S if it is belief

invariant. Thus a standard description of optimal behavior in this setting corresponds to requiring belief

invariance and obedience.

De�nition 4 (Bayes Nash Equilibrium)

Decision rule � is a Bayes Nash Equilibrium (BNE) for (G;S) if it is obedient and belief invariant for

(G;S).

Random choice rule � is a BNE random choice rule if it is induced by a BNE decision rule. We label

this a "Bayes Nash equilibrium" as this will be one many player counterpart of this de�nition. However,

we will see that there are multiple ways of extending belief invariance to the many player case, so Bayes

Nash equilibria will not be the only natural counterpart of this de�nition.3

We want to ask what can happen if the decision maker observes more information. To discuss this, we

must introduce language to talk about comparing and combining experiments. If we have two experiments

3 In Section 6, we will see that, in the one player case, the set of BNE random choice rules equals the set of Bayesian

solutions, the set of belief invariant Bayes correlated equilibria and the set of belief invariant Bayesian solutions.
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S = (T; �) and S0 = (T 0; �0), we will say that experiment S� = (T �; ��) is a combination of experiments S

and S0 if

T � = T � T 0,X
t02T 0

��
�
t; t0j�

�
= � (tj�) for each t 2 T and � 2 �, andX

t2T
��
�
t; t0j�

�
= �0

�
t0j�
�
for each t0 2 T 0 and � 2 �.

Note that this de�nition places no restrictions on whether signals t 2 T and t0 2 T 0 are independent or

correlated, conditional on �, under ��. Thus any pair of experiments S and S0 will have many combined

experiments. An experiment S� is said to be an expansion of S if S� is a combination of S and some other

experiment S0.

Now we have the following result motivating our analysis of Bayes correlated equilibria:

Proposition 1 (Epistemic Relationship)

Random choice rule � is a BNE random choice rule for (G;S�) for some expansion S� of S if and only if

� is a BCE random choice rule of (G;S) :

We omit formal proofs in this section as they are special cases of the many player analysis that follows.

2.4 Comparing Experiments

Our de�nition and foundation for Bayes correlated equilibrium clearly suggests that more information must

reduce the set of BCE random choice rules by giving rise to more incentive constraints. Thus it is natural

to ask what is the right "incentive ordering" on experiments in general that captures how more information

reduces the set of possible obedient random choice rules. But what exactly is the right de�nition of "more

information" in this context?

Blackwell (1951), (1953) introduced a famous partial ordering on experiments. His focus was not on

incentive constraints. He showed the equivalence between two orderings on experiments, a "statistical"

ordering - capturing the statistical relationship between experiments - and a "feasibility" ordering - cap-

turing which experiment allowed the decision maker to attain more outcomes. In this Section, we will

describe an incentive ordering and show its equivalence to the statistical and feasibility orderings which

Blackwell showed were equivalent. While these distinctions may seem subtle in the single player case, we

�nd this trichotomy into incentive, feasibility and statistical orderings very helpful in the many player case

and therefore it is useful to develop intuition here.
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An Incentive Ordering of Experiments Writing BCE (G;S) for the set of BCE random choice rules

of (G;S), we want to study the following ordering on experiments:

De�nition 5 (Incentive Constrained)

Experiment S is more incentive constrained than experiment S0 if, for all decision problems G,

BCE (G;S) � BCE
�
G;S0

�
:

A Feasibility Ordering of Experiments A key use of information is in enabling more state dependence

of behavior. Thus we are interested in which random choice rules are feasible in a given experiment.

De�nition 6 (Feasible Random Choice Rule)

A random choice rule � is feasible for (G;S) if it is induced by a decision rule � which is belief invariant

for (G;S).

Our preferred feasibility ordering directly formalizes this idea. Writing F (G;S) for the set of random

choice rules that are feasible for (G;S), we have:

De�nition 7 (More Permissive)

Experiment S is more permissive than experiment S0 if, for all decision problems G,

F (G;S) � F
�
G;S0

�
.

Notice that while we �nd it useful to de�ne feasibility and thus permissiveness in terms of decision

problems, recall that a decision problem G = (A; u;  ) consists of a set of actions, utility function and

prior, and that our de�nition of feasibility, and thus permissiveness, uses only the action set and thus is a

"pure" feasibility ordering that does not refer to utility functions.

Blackwell (1951), (1953) used a di¤erent ordering to capture feasibility: one experiment was "more

informative" than another if, in any decision problem, it allowed the decision maker to achieve a larger set

of mappings from states to state contingent expected utilities. In particular, in our language, any belief

invariant decision rule � induces a random choice rule � which implies that the expectation of u in state

�, denoted by w (�), would be:

w (�) ,
X
a2A

� (aj�)u (a; �) .

We can write W (G;S) for the set of state-dependent vectors of ex ante expectations that can arise in this

way, so

W (G;S) ,
[

�2F (G;S)

8<:
 X
a2A

� (aj�)u (a; �)
!
�2�

9=; � Rj�j,
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and an element w 2 W (G;S) is a vector, denoted by w = (w (�))�2� 2 Rj�j, where j�j is the cardinality
of the state space � . Each entry in the vector represents the expected utility of the agent in some state

� 2 �. Thus Blackwell�s de�nition written in our language is:

De�nition 8 (More Informative)

Experiment S is more informative than experiment S0 if, for all decision problems G,

W (G;S) �W
�
G;S0

�
.

This de�nition does not take a position on whether high expectations of u or low expectations of u are

a "good thing;" it only uses the utility function to map feasibility into a di¤erent space, namely the space

of expected utility vectors. We observe that the de�nition of "more informative" invokes the action set

and the utility function, but it does not use the prior of the decision problem.

Economists have tended to focus on yet another feasibility ordering (see Marschak and Miyasawa

(1968)). Write w (G;S) for the highest ex ante utility that a decision maker can attain with a belief

invariant decision rule (and thus a feasible random choice rule),

w (G;S) , max
w2W (G;S)

(X
�2�

 (�)w (�)

)
= max

�2F (G;S)

8<: X
a2A;�2�

 (�) � (aj�)u (a; �)

9=; .
De�nition 9 (More Valuable)

Experiment S is more valuable than S0 if, for all decision problems G,

w (G;S) � w
�
G;S0

�
.

This ordering also uses the prior  on states in the de�nition, as well as the action set A and the utility

function u used in Blackwell�s de�nition of "more informative" relation. It is important to note that this

de�nition does not refer to the optimality (or obedience) of the decision rules generating it.

Now we have that these three feasibility orderings are all equivalent:

Proposition 2 The following statements are equivalent

1. Experiment S is more permissive than S0

2. Experiment S is more informative than S0

3. Experiment S is more valuable than S0
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It follows from the de�nitions that (1) implies (2), which in turn implies (3). A separating hyperplane

argument shows that (3) or (2) imply (1). Thus this forms a signi�cant step in the argument for Blackwell�s

Theorem as usually stated. We choose to emphasize the conceptual similarity between the three orderings,

as "more permissive" captures the idea that more outcomes are feasible if there is more information. While

not the focus of this paper, for completeness we will state a many player version of Proposition 2 in the

Appendix 8.1 and provide an elementary proof.

A Statistical Ordering on Experiments We can state Blackwell�s classic statistical ordering on ex-

periments concisely and intuitively using the language of combined experiments:

De�nition 10 (Su¢ cient Experiment)

Experiment S = (T; �) is su¢ cient for experiment S0 = (T 0; �0) if there exists a combination of experiments

S� = (T �; ��) with

Pr
�
t0jt; �

�
=

�� (t0; tj�)X
et02T 0

��
�et0; tj�� (6)

independent of �.

We like this de�nition because it captures the intuitive idea of "su¢ ciency" and is a version of the

de�nition that extends to the many player case in a natural way. A version of this de�nition was used in

Marschak and Miyasawa (1968). Another way of stating it is that (�; t; t0) form a Blackwell triple, so that,

by the conditional independence lemma, an equivalent way of stating (6) is that for some (or, equivalently,

all) strictly positive priors  2 �++ (�),

Pr
�
�jt; t0

�
=

 (�)�� (t0; tj�)X
e�2�

 
�e���� �t0; tje��

is independent of t0. A third - Markov kernel - way of de�ning su¢ ciency is that there exists � : T ! �(T 0)

such that

�0
�
t0j�
�
=
X
t2T

� (tj�)�
�
t0jt
�

for all t0 2 T 0 and � 2 �.
Finally, notice that the belief invariance property can be expressed in the language of su¢ ciency. A

set of actions A and a random choice rule � together de�ne an experiment (A; �). Now random choice rule

� can be induced by a belief invariant decision rule if and only if experiment S is su¢ cient for experiment

(A; �).
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2.5 Equivalence of Three Orderings

Now we can report the equivalence of statistical, incentive and feasibility orderings.

Theorem 1 (Equivalence)

The following statements are equivalent:

1. Experiment S is su¢ cient for experiment S0

2. Experiment S is more incentive constrained than experiment S0

3. Experiment S is more permissive than experiment S0

Blackwell (1951), (1953) showed the equivalence of "is su¢ cient for" to "is more informative than".

Blackwell�s theorem is thus implied by Proposition 2 and Theorem 1. Our main result will be a many

player generalization of Theorem 1 and we will present a formal proof for that more general case. The

proof of the equivalence of "is su¢ cient for" and "is more permissive than" is straightforward. (1) can be

shown to imply (2) by using su¢ ciency to show that the obedience constraints for (G;S0) can always be

expressed as averages of obedience constraints for (G;S), and are thus less restrictive. This is how the

formal argument will work in the many player generalization. There is also a simple argument to show

that (2) implies (3) in the one person case, although this argument does not generalize to the many player

case.4 The simple argument for the one player case goes as follows. If (3) fails, S is not more valuable

than S0. Thus there is a decision problem G with v (G;S0) > v (G;S). Thus there is a BCE random choice

rule � 2 BCE (G;S) which gives ex ante utility v (G;S). But any BCE random choice rule of v (G;S0)

gives ex ante utility at least v (G;S0), and thus � =2 BCE (G;S0). Thus BCE (G;S)  BCE (G;S0) and

so (2) fails. The su¢ ciency ordering is a partial order, with many experiments not comparable. We will

later, in particular in Section 4.4, note some elementary and well known properties of this ordering, as

these properties we will have interesting many player generalizations.

2.6 Leading Example

We will use the following example to illustrate ideas in this section. There are two states � = f�0; �1g.
Let G be given by A = fa0; a1g, a uniform prior on states and a payo¤ function such that the payo¤ is 1

if the action matches the state and 0 otherwise. Thus u : A��! R is given by the following table:

u �0 �1

a0 1 0

a1 0 1

(7)

4We are grateful to Bruno Strulovici for suggesting this argument.
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where the rows correspond to actions and columns correspond to states. Consider a family of information

structures Sq with signal space T = ft0; t1g and where the signal is equal to the state with probability
q 2

�
1
2 ; 1
�
. Thus � : �! �(T ) can be summarized in the following table where rows correspond to signals

and columns correspond to states:

� �0 �1

t0 q 1� q

t1 1� q q

(8)

We can illustrate Bayes correlated equilibrium using this example. A decision rule in the example is a

vector of four numbers (�00; �01; �10; �11) where �ij is the probability of choosing action 0 in state �i when

the signal is tj . The de�ning inequality for obedience, given earlier by (4), generates in the present binary

decision problem with binary signals four inequalities, namely one for every possible pair (a; t) :

(a0; t0) :
1
2q�00 � 1

2 (1� q)�10
(a1; t0) :

1
2 (1� q) (1� �10) � 1

2q (1� �00)
(a0; t1) :

1
2 (1� q)�01 � 1

2q�11

(a1; t1) :
1
2q (1� �11) � 1

2 (1� q) (1� �01)

(9)

A random choice rule in the example is a pair of numbers (�0; �1) where �i is the probability that

action 0 is taken when the state is �i. Now (�0; �1) is a BCE random choice rule if and only if there exist

(�00; �01; �10; �11) satisfying the obedience inequalities (9) with

�0 = q�00 + (1� q)�01
�1 = (1� q)�10 + q�11

(10)

Clearly, the obedience conditions imply that �0 � �1, which we can infer by summing any two inequalities

of (9) for a given signal tj . But if the signal contains any information at all, i.e. q > 1=2, then the

inequality can be strengthened; using the symmetry of the binary signal, we can sum the above inequalities

for (a0; t0) and (a1; t1), or equivalently, (a1; t0) and (a0; t1) to �nd that the set of BCE outcomes with a

given information structure Sq is completely described by:

BCE (q) = f(�0; �1) j�0 � �1 + 2q � 1g .

This set is illustrated in Figure 1 for di¤erent values of q.

Insert Figure 1 here

Next, we can identify the Bayes Nash equilibrium. In our example, for any q > 1
2 , the unique BNE is

to choose action a0 given signal t0 and action a1 given signal t1, and thus the unique BNE random choice

rule has (�0; �1) = (q; 1� q). Note that this is a boundary point of the set of Bayes correlated equilibria.
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We see in Figure 1 that the set of BCE random choice rules shrinks as the informativeness of the

experiments as represented by q improves. It visually suggests that the incentive ordering of the experiments

suggested in De�nition 5 indeed captures the idea that more information reduces the set of obedient random

choice maps.

It might be helpful to state the results of our leading example in an interpretation taken from Kamenica

and Gentzkow (2011). Suppose that states �0 and �1 correspond to the innocence or guilt of a suspect

and that the decision maker is a juror who gets utility 1 from delivering the correct verdict and utility 0

from delivering an incorrect verdict. We noted earlier that a random choice rule (�0; �1) is a BCE random

choice rule under information structure Sq if and only if

�0 � �1 + 2q � 1. (11)

Proposition 1 says that for any such (�0; �1), we can �nd a expansion of Sq such that there is a Bayes

Nash equilibrium inducing (�0; �1). For example, suppose that q = 3
4 , �1 = 0 and �0 = 1

2 . Consider

the expanded experiment under which, in addition to observing S 3
4
, if the juror observed t0 (i.e., a signal

implying that the suspect was innocent with probability 2
3) and if the suspect was in fact innocent (i.e., the

true state was �0), then with conditional probability 2
3 the juror observed an additional announcement that

the suspect was in fact innocent. Under this information structure, it is optimal for him to acquit only if he

observes the additional signal. If he does not receive an additional signal, Bayes rule calculations show that

he attaches probability 1
2 to the suspect being guilty and it is weakly optimal for him to convict. Under

this scenario, the suspect is never acquitted if guilty (i.e., �1 = 0) and acquitted with only probability 1
2 if

innocent.

We presented Proposition 1 as a one player version of an incomplete information generalization of the

characterization of the correlated equilibrium due to Aumann (1987). This result has many uses and many

interpretations, some of which have already been developed and studied.

Suppose (to continue the Kamenica and Gentzkow (2011) interpretation), an unscrupulous district

attorney (DA) was interested in acquitting as rarely as possible; the DA would thus want to minimize the

ex ante probability of acquittal,
1

2
�0 +

1

2
�1. (12)

If the district attorney could pick a Bayes correlated equilibrium, his problem would be to minimize (12)

subject to (11), and thus, if q = 3
4 , he would set �1 = 0 and �0 = 1

2 and achieve an acquittal rate of
1
4 .

Proposition 1 says that if the DA is unable to prevent the juror observing his initial signal under Sq but

is able to control what additional information the juror can observe (and commit to this rule ex ante),

then it is as if the DA can pick a BCE and we described above the additional disclosure rule that supports
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his most preferred outcome as a BNE. Thus the set of BCE characterize the set of outcomes that can

be achieved by "Bayesian persuasion". Kamenica and Gentzkow (2011) focus on the case where there is

no prior information, or, equivalently, the information structure is the null experiment S = (T ; �) where

T = ftg and � (tj�) = 1 for all �. Note that in this case, the obedience condition becomes (omitting

dependence of the decision rule on the null signal)X
�2�

 (�)� (aj�)u (a; �) �
X
�2�

 (�)� (aj�)u
�
a0; �

�
(13)

for all a; a0 2 A. Kamenica and Gentzkow (2011) give both a general characterization of BCE outcomes

(in a more general case with in�nite actions) and a number of applications.5

Caplin and Martin (2011) introduce a theoretical and empirical framework for analyzing imperfect

perception. If we, as outside observers, do not know how decision makers interpret cues provided to them,

it is as if they may have observed additional information but we do not know what it is. In particular,

they test whether "ideal data sets" are consistent with rationality. Ideal data sets are equivalent in our

language to random choice rules for the null experiment S.6 Caplin and Martin (2011) introduce tests of

rationality, i.e., obedience, in this setting

Chwe (2006) studied the implications of incentive constraints without ruling out the possibility of

decision makers having access to additional information, and in this sense studies implications of Bayes

correlated equilibria. In particular, �x two actions, a and a0 and consider two random variables de�ned

on A��, the payo¤ gain to choosing action a over a0:

�a

�
a0; �

�
= u (a; �)� u

�
a0; �

�
;

and an indicator function for choosing action a:

Ia
�
a0; �

�
=

8<: 1, if a0 = a;

0, if a0 6= a:

Chwe (2006) shows (in our language) that if a decision rule � is obedient under the null experiment (i.e.,

satis�es (13)), then there is a non-negative covariance between �a and Ia under the measure on A � �
induced by �.

We suggested three di¤erent orderings of experiments above and indeed we can visually represent them

just we represented the incentive ordering. In present example, the set of feasible random choice rules is

5 Rayo and Segal (2010) analyze a related problem, but one where the decision maker does have prior information. Their

analysis does not quite �t our framework because the person designing the information structure does not have access to the

decision maker�s prior information.
6We are grateful to Jonathan Weinstein for bringing this connection to our attention.
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equal to set of (�0; �1) in the convex hull of

(0; 0) ; (q; 1� q) ; (1� q; q) ; (1; 1) :

The feasible random choice rules simply express the possible mappings � : �! �(A) that can be generated

from belief invariant decision rule. These four points correspond, respectively, to the decision rules, never

acquit, acquit only if innocent, acquit only if guilty and always acquit. In other words, the agent can match

the action ai with the received signal ti, or reverse match action aj to signal ti with i 6= j, this generates

the points (q; 1� q) and (1� q; q). Alternatively, he can choose not respond to the signal and choose a
constant (pure) action, thus generating (0; 0) and (1; 1). Now, given the experiment, the only remaining

degree of freedom is to randomize over these four pure action, thus generating the convex hull. In Figure

2, we plot the set of BCE random choice rules and the set of feasible random choice rules for q = 5
8 .

Insert Figure 2 here.

Observe that these sets intersect at the unique BNE random choice rule. This will be a generic property

in the one player case, but we will see that it does not extend to the many player case. In Figure 3, we see

how the set of feasible random choice rules expand as q increases to 7
8 and the set of BCE random choice

rules shrinks.

Insert Figure 3 here.

Finally, we notice that in Figure 2 and 3 we visually represented the feasibility constraints and the

incentive constraints, thus invoking two of three equivalent criteria of Theorem 1. But in light of the

earlier observation that the belief invariance property can be expressed by the su¢ ciency, and now the

above equivalence result, it follows that the feasible set of the random choice rules is at the same time

representing the (binary) information structures for which Sq is su¢ cient. In particular, the random choice

rule that represents the BNE in either Figure 2 or 3 can be taken to represent the symmetric (and binary)

information structure Sq, interpreting the action as the signal. We can then ask for which binary, but

not necessarily symmetric information structures is Sq su¢ cient. The answer is simply all the binary

information structures S = (T; �) of the form:

� �0 �1

t0 �0 1� �1
t1 1� �0 �1

where (v0; v1) is feasible under Sq. We also see the set of feasible random choice rules is independent of the

prior whereas the set of BCE uses the prior in the computation of the boundary. In particular the slope of
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boundary is determined by the ratio of the probability of the two states, Pr (�0) =Pr (�1), which is 1 under

the uniform prior considered here.

3 The General Case: Many Players

3.1 De�nition of Bayes Correlated Equilibrium

There are I players, 1; 2; :::; I, and we write i for a typical player. There is a �nite set of states, �, and we

write � for a typical state. A basic game G consists of (1) for each player i, a �nite set of actions Ai and a

utility function ui : A��! R; and (2) a full support prior  2 �++ (�), where we write A = A1�� � ��AI .
Thus G =

�
(Ai; ui)

I
i=1 ;  

�
. An information structure S consists of (1) for each player i, a �nite set of

signals (or types) Ti; and (2) a signal distribution � : �! �(T ), where we write T = T1 � � � � � TI . Thus
S =

�
(Ti)

I
i=1 ; �

�
.

Together, the basic game G and the information structure S de�ne a standard incomplete information

game. While we use di¤erent notation, this division of an incomplete information game into the "basic

game" and the "information structure" has been used in the literature (see, for example, Lehrer, Rosenberg,

and Shmaya (2010)).

Two extreme information structures play an important role. The null information structure S has

T i = ftig for all i and � (tj�) = 1 for all � 2 �. Thus the null information structure provides no

information. The complete information structure S has T i = � for all i and

� (tj�) =

8<: 1, if ti = � for all i;

0; otherwise,

for all � 2 �.
A decision rule in the incomplete information game (G;S) is a mapping

� : T ��! �(A) :

One way to mechanically understand the notion of the decision rule in a many player environment is to

view the decision rule as the strategy of a mediator who observes the realization of � 2 � chosen according
to  and the realization of t 2 T according to � (�j�); and then picked an action pro�le a 2 A, and

privately announced to player i the draw of ai. For players to have an incentive to follow the mediator�s

recommendation in this scenario, it would have to be the case that the recommended action ai was always

preferred to any other action a0i conditional on the signal ti that player i had received and his knowledge

of the recommended action ai. This is re�ected in the following incentive compatibility condition.
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De�nition 11 (Obedience)

Decision rule � is obedient for (G;S) if, for each i = 1; :::; I, ti 2 Ti and ai 2 Ai, we haveX
a�i;t�i;�

 (�)� ((ti; t�i) j�)� ((ai; a�i) j (ti; t�i) ; �)ui ((ai; a�i) ; �) (14)

�
X

a�i;t�i;�

 (�)� ((ti; t�i) j�)� ((ai; a�i) j (ti; t�i) ; �)ui
��
a0i; a�i

�
; �
�
;

for all a0i 2 Ai.

De�nition 12 (Bayes Correlated Equilibrium)

A decision rule � is a Bayes correlated equilibrium (BCE) of (G;S) if it is obedient for (G;S).

If there is complete information, i.e., if � is a singleton, and S is the null information structure,

then this de�nition reduces to the Aumann (1987) de�nition of correlated equilibrium. We provide our

motivation for studying this particular generalization next. We postpone until Section 6 a discussion of

how this relates to (and why it is weaker than) other de�nitions in the literature on incomplete information

correlated equilibrium.

3.2 Foundations of Bayes Correlated Equilibrium

In this section, we provide our rationale for being interested in Bayes correlated equilibria. Consider an

analyst who knows that

1. The basic game G describes actions, payo¤ functions depending on states, and a prior distribution

on states.

2. The players observe at least information structure S, but may observe more.

3. The full, common prior, information structure is common certainty among the players.

4. The players�actions follow a Bayes Nash equilibrium.

What can she deduce about the joint distribution of actions, signals from the information structure S

and states? In this section, we will formalize this question and show that all she can deduce is that the

distribution will be a Bayes correlated equilibrium of (G;S).

We �rst review the standard approach to analyzing incomplete information games. A (behavioral)

strategy for player i in the incomplete information game (G;S) is �i : Ti ! �(Ai). The following is the

standard de�nition of Bayes Nash equilibrium in this setting.
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De�nition 13 (Bayes Nash Equilibrium)

A strategy pro�le � is a Bayes Nash equilibrium (BNE) of (G;S) if for each i = 1; 2; :::; I, ti 2 Ti and

ai 2 Ai with �i (aijti) > 0, we have

X
a�i;t�i;�

 (�)� ((ti; t�i) j�)

0@Y
j 6=i

�j (aj jtj)

1Aui ((ai; a�i) ; �) (15)

�
X

a�i;t�i;�

 (�)� ((ti; t�i) j�)

0@Y
j 6=i

�j (aj jtj)

1Aui
��
a0i; a�i

�
; �
�
,

for each a0i 2 Ai.

A Bayes Nash equilibrium � is a pro�le of strategies. To compare solution concepts, we would like to

discuss the decision rule corresponding to a BNE. Decision rule � is said to be induced by strategy pro�le

� if

� (ajt; �) =
 

IY
i=1

�i (aijti)
!
. (16)

for each a 2 A, t 2 T and � 2 �.

De�nition 14 (Bayes Nash Equilibrium Decision Rule)

Decision rule � is BNE decision rule of (G;S) if there exists a Bayesian Nash equilibrium � of (G;S) that

induces �.

We now have the following straightforward but important observation:

Lemma 2 Every Bayes Nash equilibrium decision rule of (G;S) is a Bayes correlated equilibrium of (G;S).

Proof. Let � be induced by BNE strategy pro�le �. To show obedience, observe thatX
a�i;t�i;�

 (�)� ((ti; t�i) j�)� ((ai; a�i) j (ti; t�i) ; �)ui ((ai; a�i) ; �)

=
X

a�i;t�i;�

 (�)� ((ti; t�i) j�)

0@ IY
j=1

�j (aj jtj)

1Aui ((ai; a�i) ; �) , by (16)

= �i (aijti)
X

a�i;t�i;�

 (�)� ((ti; t�i) j�)

0@Y
j 6=i

�j (aj jtj)

1Aui ((ai; a�i) ; �)

� �i (aijti)
X

a�i;t�i;�

 (�)� ((ti; t�i) j�)

0@Y
j 6=i

�j (aj jtj)

1Aui
��
a0i; a�i

�
; �
�
, by (15)
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=
X

a�i;t�i;�

 (�)� ((ti; t�i) j�)

0@ IY
j=1

�j (aj jtj)

1Aui
��
a0i; a�i

�
; �
�

=
X

a�i;t�i;�

 (�)� ((ti; t�i) j�)� ((ai; a�i) j (ti; t�i) ; �)ui
��
a0i; a�i

�
; �
�
, by (16),

which yields the de�nition of an obedient decision rule.

We will be interested in what can be said about actions and states if signals are not observed. We will

call a mapping

� : �! �(A) ;

a random choice rule, and say � is induced by decision rule � if it is the marginal of � on A. Random

choice rule � is a Bayes Nash (correlated) equilibrium random choice rule of (G;S) if it is induced by a

Bayes Nash (correlated) equilibrium decision rule of (G;S).

We want to discuss situations where players observe more information than that contained in a single

information structure. To formalize this, we must discuss combinations of information structures. If we

have two information structures S1 =
�
T 1; �1

�
and S2 =

�
T 2; �2

�
, we will say that information structure

S� = (T �; ��) is a combination of experiments S1 and S2 if

T �i = T 1i � T 2i for each i;X
t22T 2

��
�
t1; t2j�

�
= �1

�
t1j�
�
for each t1 2 T 1 and � 2 � and

X
t12T 1

��
�
t1; t2j�

�
= �2

�
t2j�
�
for each t2 2 T 2 and � 2 �.

Note that this de�nition places no restrictions on whether signals t1 2 T 1 and t2 2 T 2 are independent

or correlated, conditional on �, under ��. Thus any pair of information structures S1 and S2 will have

many combined information structures. An experiment S� is said to be an expansion of S1 if S� is a

combination of S1 and some other experiment S2.

Theorem 2 (Epistemic Relationship)

A decision rule � is a Bayes correlated equilibrium of (G;S) if and only if, for some expansion S� of S, it

is a BNE decision rule of (G;S�).

Thus this is an incomplete information analogue of the Aumann (1987) characterization of correlated

equilibrium for complete information games. An alternative interpretation of this result - following

Aumann (1987) - would be to say that BCE captures the implications of common certainty of rationality

(and the common prior assumption) in the game G when player have at least information S, since requiring

BNE in some game with expanded information is equivalent to describing a belief closed subset where the
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game G is being played, players have access to (at least) information S and there is common certainty of

rationality.7 The proof follows a very similar logic to the analogous results of Aumann (1987) for complete

information and that of Forges (1993) for the Bayesian solution (discussed in Section 6).

An interesting question that we do not explore is what we can say about the relation between Bayes

correlated equilibria and the expansions that are needed to support them as Bayes Nash equilibria. Milch-

taich (2012) examines properties of devices needed to implement correlated equilibria, and tools developed

in his paper might be useful for this task.

Proof. Suppose that � is a Bayes correlated equilibrium of (G;S). ThusX
a�i;t�i;�

 (�)� ((ti; t�i) j�)� ((ai; a�i) j (ti; t�i) ; �)ui ((ai; a�i) ; �)

�
X

a�i;t�i;�

 (�)� ((ti; t�i) j�)� ((ai; a�i) j (ti; t�i) ; �)ui
��
a0i; a�i

�
; �
�

for each i, ti 2 Ti, ai 2 Ai and a0i 2 Ai. Let S� =
�
(T �i )

I
i=1 ; �

�
�
be an expansion of S, and, in particular,

a combination of S =
�
(Ti)

I
i=1 ; �

�
and S0 =

�
(T 0i )

I
i=1 ; �

0
�
, where T 0i = Ai for each i and �� satis�es

��
�
(ti; ai)

I
i=1

��� �� = � ( tj �)� (a jt; � ) (17)

for each a 2 A and t 2 T . Now, in the game (G;S�), consider the "truthful" strategy ��j for player j, with

��j
�
a0j jtj ; aj

�
=

8<: 1; if a0j = aj ;

0; if a0j 6= aj ;
(18)

for all tj 2 Tj and aj 2 Aj . Now the interim payo¤ to player i observing signal (ti; ai) and choosing action

a0i in (G;S
�) if he anticipates that each opponent will follow strategy ��j is

X
a�i;t�i;a0�i;�

 (�)��
�
(ti; t�i) ;

�
ai; a

0
�i
��� ��

0@Y
j 6=i

��j
�
aj jtj ; a0j

�1Aui
��
a0i; a�i

�
; �
�

=
X

a�i;t�i;�

 (�)� ((ti; t�i) j�)� ((ai; a�i) j(ti; t�i) ; � )ui
��
a0i; a�i

�
; �
�
,

7Aumann and Dreze (2008) extend Aumann (1987) by asking what interim payo¤ a player might receive consistent with

common knowledge of rationality (and the common prior assumption) in a complete information game. They consider the

"doubled" game where each action has two identical copies (i.e., leading to the same payo¤s). They show that the set of

all payo¤s that a player might receive in a correlated equilibrium in the doubled game conditional on choosing some action

characterizes the set of interim payo¤s consistent with common knowledge of rationality. An exactly analogous result holds

in our setting: the set of interim payo¤s consistent with common knowledge of rationality and observing a particular signal is

equal to the set of interim payo¤s given that signal and some action in a Bayes correlated equilibrium.
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by (17) and (18), and thus Bayes Nash equilibrium optimality conditions for the truth telling strategy

pro�le �� are implied by the obedience conditions on �.

Conversely, suppose that � is a Bayes Nash equilibrium of (G;S�), where S� is a combined experiment

for S and S0. Write � : T ��! �(A) for the decision rule induced by �, so that

� (ajt; �) =
X
t02T 0

��
�
t; t0j�

� IY
j=1

�j
�
aj jtj ; t0j

�
:

Now �i (aij (ti; t0i)) > 0 implies

X
a�i;t�i;t0�i;�

 (�)��
�
(ti; t�i) ;

�
t0i; t

0
�i
�
j�
�0@Y

j 6=i
�j
�
aj jtj ; t0j

�1Aui ((ai; a�i) ; �)

�
X

a�i;t�i;t0�i;�

 (�)��
�
(ti; t�i) ;

�
t0i; t

0
�i
�
j�
�0@Y

j 6=i
�j
�
aj jtj ; t0j

�1Aui
��
a0i; a�i

�
; �
�
,

for each i, ti 2 Ti, t0i 2 T 0i and a0i 2 Ai. Thus

X
t0i

�i
�
aij
�
ti; t

0
i

�� X
a�i;t�i;t0�i;�

 (�)��
�
(ti; t�i) ;

�
t0i; t

0
�i
�
j�
�0@Y

j 6=i
�j
�
aj jtj ; t0j

�1Aui ((ai; a�i) ; �)

�
X
t0i

�i
�
aij
�
ti; t

0
i

�� X
a�i;t�i;t0�i;�

 (�)��
�
(ti; t�i) ;

�
t0i; t

0
�i
�
j�
�0@Y

j 6=i
�j
�
aj jtj ; t0j

�1Aui
��
a0i; a�i

�
; �
�
;

for each i, ti 2 Ti and a0i 2 Ai. But

X
t0i

�i
�
aij
�
ti; t

0
i

�� X
a�i;t�i;t0�i;�

 (�)��
�
(ti; t�i) ;

�
t0i; t

0
�i
�
j�
�0@Y

j 6=i
�j
�
aj jtj ; t0j

�1Aui
��
a0i; a�i

�
; �
�

=
X

a�i;t�i;�

 (�)� ((ti; t�i) j�)� ((ai; a�i) j (ti; t�i) ; �)ui
��
a0i; a�i

�
; �
�
;

and thus BNE equilibrium conditions imply obedience of �.

4 Comparing Information Structures

We now report on our many player generalizations of Blackwell�s theorem.

4.1 Incentive Compatibility Ordering

We write BCE (G;S) for the set of BCE random choice rules of (G;S). Our �rst ordering is:
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De�nition 15 (Incentive Constrained)

Information structure S is more incentive constrained than information structure S0 if, for all basic games

G,

BCE (G;S) � BCE
�
G;S0

�
.

4.2 Feasibility Ordering

To make the comparison with Blackwell�s Theorem, we introduce feasibility orderings on information

structures. One natural generalization of feasibility from the single person case would be to look at random

choice rules that could arise from players choosing actions independently given their signals, i.e., according

to standard incomplete information game strategies. We will focus on an alternative generalization of

feasibility from the single person case that is based on the idea of belief invariance. Recall that a decision

rule is a mapping � : T � � ! �(A). We will abuse notation and write �i : T � � ! �(Ai) for the

induced mapping looking only at player i�s action, so that

�i (aij (ti; t�i) ; �) ,
X

a�i2A�i

� ((ai; a�i) j (ti; t�i) ; �) . (19)

De�nition 16 (Belief Invariant Decision Rule)

Decision rule � is belief invariant for (G;S) if, for each i, �i (aij (ti; t�i) ; �) is independent of (t�i; �).

Thus the condition requires that, from each player i�s perspective, his strategy depends only on his

own signal. However, it allows for there to be correlation among the players�actions. Equivalently, the

decision rule is belief invariant if, for each i, the three variables (ai; ti; (t�i; �)) are a Blackwell triple under

the distribution on Ai � T � � induced by any prior  2 �++ (�), � and �. Thus, via Lemma 1, we

observe that decision rule � is belief invariant if and only if, for any prior on �, the probability of (t�i; �)

conditional on ti and ai is independent of ai. Thus it says that the action a player chooses cannot reveal

more information about the state and others� types than that contained in his type. This statement

and motivation of belief invariance has played a central role in the incomplete information correlated

equilibrium literature (see, e.g., Forges (2006)), as we will discuss in the next Section. Notice that while

it is convenient to identify belief invariance with a basic game G and information structure S, the only

connection is that the actions sets of G and signal sets of S are used in de�ning the space where � lives.

Now we de�ne feasible random choices to be those that could arise from belief invariant decision rules.

De�nition 17 (Feasible Random Choice Rule)

A random choice rule � is feasible for (G;S) if it is induced by a decision rule which is belief invariant for

(G;S).
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We write F (G;S) for the set of feasible random choice rules.

De�nition 18 (Permissive Information Structure)

Information structure S is more permissive than information structure S0 if, for all basic games G,

F (G;S) � F
�
G;S0

�
:

We discuss and show equivalence to the alternative versions of feasibility orderings we discussed in the

single person case, e.g., Blackwell�s "more informative" ordering and economists�"more valuable" ordering

in Appendix 8.1.

4.3 Statistical Ordering

We will use the following many player generalization of su¢ ciency.

De�nition 19 (Individual Su¢ ciency)

Information structure S = (T; �) is individually su¢ cient for information structure S0 = (T 0; �0) if there

exists a combined information structure S� = (T �; ��) such that, for each i,

Pr
�
t0ijti; t�i; �

�
=

X
t0�i

��
�
(ti; t�i) ;

�
t0i; t

0
�i
�
j�
�

X
et0i;t0�i

��
�
(ti; t�i) ;

�et0i; t0�i� j�� (20)

is independent of t�i and �.

De�nition 20 (Mutual Individual Su¢ ciency)

Information structures S and S0 are mutually individually su¢ cient if S is individually su¢ cient for S0

and S0 is individually su¢ cient for S.

Thus S is individually su¢ cient for S0 if there is a combined experiment under which, for each i,

(t0i; ti; (t�i; �)) is a Blackwell triple. Via Lemma 1, an equivalent way of de�ning individual su¢ ciency

is that observing t0i gives no additional information about t�i and � beyond that contained in ti. In

particular, (20) is equivalent to the claim that, for some (or every)  2 �++ (�), for each i,

Pr
�
t�i; �jti; t0i

�
=

X
t0�i

 (�)��
�
(ti; t�i) ;

�
t0i; t

0
�i
�
j�
�

X
et�i;e�;t0�i

 
�e���� ��ti;et�i� ; �t0i; t0�i� je�� (21)
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is independent of t0i. A third, Markov kernel, way of de�ning individual su¢ ciency is to say that S is

individually su¢ cient for S0 if there exists � : T ��! �(T 0) satisfying the marginal property,X
t2T

� (tj�)�
�
t0jt; �

�
= �0

�
t0j�
�

(22)

for each t0 and �, and the independence property, namely thatX
t0�i2T 0�i

�
��
t0i; t

0
�i
�
j (ti; t�i) ; �

�
(23)

is independent of t�i and �.

Notice that (23) is a belief invariance property. Thus a random choice rule � is feasible for (G;S) if and

only if information structure S = (T; �) is individually su¢ cient for the information structure S0 = (A; �).

The Markov kernel version of individual su¢ ciency will be useful both in arguments and in allowing

us to relate individual su¢ ciency to earlier concepts in the literature, especially those of Liu (2011) and

Lehrer, Rosenberg, and Shmaya (2010), (2011). To motivate individual su¢ ciency, we will �rst establish

its relation to alternative orderings and the earlier literature and then report some general properties that

illustrate how it constitutes a natural ordering on information structures. In Section 5, we illustrate

individual su¢ ciency and the properties discussed in this Section using a family of binary signal examples.

Alternative Orderings One can apply the original de�nition of su¢ ciency in the many player context,

comparing the joint information of all players. Thus - focussing on the Markov kernel formulation - say

that information structure S is su¢ cient for S0 if there exists � : T ! �(T 0) such thatX
t2T

� (tj�)�
�
t0jt
�
= �0

�
t0j�
�

(24)

for each t0 2 T and � 2 �. From the de�nition, it is not clear if this ordering on information structures

is more stringent or less stringent than individual su¢ ciency. Intuitively, it is more stringent because it

requires the Markov kernel � to be independent of �, which is not required in the Markov kernel formulation

of individual su¢ ciency; but it is less stringent in that it does not require the belief invariance property

(23). We will later report examples where information structure S is su¢ cient for S0 but not individually

su¢ cient for S0. Conversely, we will report other examples where information structure S is individually

su¢ cient for S0 but not su¢ cient for S0.

Lehrer, Rosenberg, and Shmaya (2010), (2011) introduce a number of strengthenings of su¢ ciency for

purposes that we will discuss below in Section 7.3. In particular, they say that S0 is a non-communicating

garbling of S if there exists � : T ��! �(T 0) satisfying (22) and (23) which is also independent of �. In

order to clarify the relation to individual su¢ ciency, we will say in this case that S is a a non-communicating
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ungarbling of S0. Now equivalently, S is a non-communicating ungarbling of S0 if there exists a combined

experiment for S and S0 such that the distribution of t0 conditional on t and � is independent of � and, for

each player i, the distribution of t0i conditional on ti is independent of t�i and �. Clearly, if S is a non-

communicating ungarbling of S0, then S is su¢ cient for S0 and S is individually su¢ cient for S0. We will

show by example in Section 5 below that the converse is not true: we will describe information structures

S and S0 such that S is su¢ cient for S0, S is individually su¢ cient for S0 but S is not a non-communicating

ungarbling of S0.

Liu (2011) introduced a natural de�nition of a correlation device in a many player context: if you �x an

information structure S and signal sets (T 0i )
I
i=1 that players might observe, Liu (2011) said that a mapping

� : T � � ! �(T 0) was a correlation device if it satis�ed (23). Thus we can re-state our de�nition of

individual su¢ ciency in the language of Liu (2011): information structure S is individually su¢ cient for

information structure S0 if there exists a combined experiment S� such that the implied Markov kernel

� : T ��! �(T 0) is a correlating device.

4.4 Individual Su¢ ciency and Higher Order Beliefs

Let us write S � S0 if information structure S is individually su¢ cient for S0. The individual su¢ ciency

ordering is a partial order, with many information structures not comparable, just as su¢ ciency is a partial

ordering with many experiments not comparable. This partial order has some natural properties, and which

are many player generalizations of well-establish properties for su¢ ciency, which we establish next. First,

we note that the ordering is transitive with a well de�ned maximal and minimal information structure.

Lemma 3 (Some Basic Properties)

1. (Largest and smallest) For all S, S � S � S.

2. (Transitivity) If S � S0 and S0 � S00, then S � S00.

An experiment can be identi�ed with the posterior beliefs that it induces. Thus if we �x an experiment

S = (T; �) and a full support prior  2 �++ (�), and we write � (�jt) for the implied posterior beliefs,
Blackwell (1953) said that an experiment was in standard form if no two signals gave rise to the same

posteriors.

� (�jt) ,
� (tj�) (�)P

�02� �
�
tj�0
�
 
�
�0
�

To facilitate comparison with the many player case, we will label this property "non-redundancy". For

any information structure S = (T; �), we write

� (t�i; �jti) ,
P

t�i2T�i � (ti; t�ij�) (�)P
t�i2T�i

P
�02� �

�
ti; t�ij�0

�
 
�
�0
�
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for player i�s implied conditional beliefs under prior  2 �++ (�). We next establish a relationship

between individual su¢ ciency and higher order beliefs and redundancy.

De�nition 21 (Higher Order Belief Equivalent)

1. Information structure S is non-redundant if, for every i and ti,t0i 2 Ti, there exists t�i 2 T�i and

� 2 � such that � (t�i; �jti) 6= � (t�i; �jt0i) for some (or all)  2 �++ (�).

2. Two information structures S1 =
��
T 1i
�I
i=1

; �1
�
and S2 =

��
T 2i
�I
i=1

; �2
�
are higher order belief

equivalent if there exists a non-redundant information structure S� =
�
(T �i )

I
i=1 ; �

�
�
such that there

exist, for each i = 1; ::; I and k = 1; 2, fki : T
k
i ! T �i such that:

(a) for each k = 1; 2, t� 2 T � and � 2 �:

�k
�n

tk
���fk �tk� = t�

o��� �� = �� (t�j�) ; (25)

(b) for each k = 1; 2 , i = 1; :; I, ti 2 T ki , t�i 2 T ��i and � 2 �

� 

�n
tk�i

���fk�i �tk�i� = t��i

o
; �
��� ti� = ��

�
t��i; �jfki (ti)

�
. (26)

It is easy (but notationally burdensome) to show that two information structures are higher order

belief equivalent if and only if, for any prior over states, they generate the same probability distribution

over beliefs and higher order beliefs (i.e., Mertens-Zamir types). We present a formal statement of this

equivalence in Lemma 10 in Appendix 8.2.

Lemma 4 (Unique Non-Redundant Information Structure)

1. For every information structure S, there is a unique non-redundant information structure bS such

that S and bS are mutually individually su¢ cient and higher order belief equivalent
2. Any two information structures are mutually individually su¢ cient if and only if they are higher

order belief equivalent.

Liu (2011) proved (in Theorem 1) that if two information structures - one of which is non-redundant

- are higher order belief equivalent if and only if there is a unique correlating device - in the sense he

de�ned and we report in Section 4.3 - that maps the non-redundant information structure into the perhaps

redundant one. This implies that the non-redundant information structure is individually su¢ cient for

the perhaps redundant one. Since it is easy to show that the redundant information structure is su¢ cient

for the non-redundant one, we have they are mutually individually su¢ cient. This implies part 1 of
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the Lemma. The second part can be proved by adapting arguments in Lehrer, Rosenberg, and Shmaya

(2011); for completeness, in Appendix 8.2, we give a proof. Finally, we note that there is a tight connection

between the individual su¢ ciency ordering and the more basic notion of "expansion" as a measure of more

information.

Lemma 5

Information structure S is individually su¢ cient for information structure S0 if and only if S is higher

order belief equivalent to an expansion of S0.

4.5 Three Orderings

Now we have:

Theorem 3 The following statements are equivalent:

1. Information structure S is individually su¢ cient for information structure S0.

2. Information structure S is more incentive constrained than information structure S0.

3. Information structure S is more permissive than information structure S0.

The equivalence between (1) and (3) is straightforward and is included (in the Theorem and proof) to

highlight the connection with Blackwell�s Theorem.

A straightforward Corollary of the equivalence of (1) and (2) is:

Corollary 1 Information structures S and S0 are mutually individually su¢ cient if and only if each is

more incentive constrained than the other.

As we will discuss below, this could have been proved by adapting either the arguments of Liu (2011)

or those of Lehrer, Rosenberg, and Shmaya (2011). However, neither result or argument helps prove

our main result, which is the equivalence of (1) and (2). The proof that (1) implies (2) is constructive,

showing that if S is individually su¢ cient for S0 and � is a BCE random choice rule of (G;S), we can use

the BCE decision rule inducing � and the Markov kernel establishing individual su¢ ciency to construct a

BCE of (G;S0) which induces �. The novel argument is that (2) implies (1). We do this by constructing

a particular basic game G, and a BCE random choice rule � of (G;S0) such that � is a BCE random

choice rule of (G;S) only if S is individually su¢ cient for S0. A heuristic version of this argument is to

consider a game where players have an incentive to truthfully report their beliefs and higher order beliefs,

as in Dekel, Fudenberg, and Morris (2007). There is a BCE random choice rule �� of (G;S0) where they
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truthfully report their types. We then show that for there to be a BCE of (G;S) which induces � (and

thus has players report the distribution of beliefs and higher order beliefs corresponding to S), S must be

individually su¢ cient for S0. This argument is only heuristic, since we actually want to construct a �nite

action basic game. Our formal argument uses a large enough �nite approximation to the "higher order

beliefs" game.

Proof. We �rst show that (1) implies (2). Suppose that S is individually su¢ cient for S0. Take any

basic game G and any BCE � of (G;S). We will construct �0 : T 0��! �(A) which is a BCE of (G;S0)

which gives rise to the same stochastic map as �.

Write Vi (ai; a0i; ti) for the expected utility for agent i under distribution � if he is type ti, receives

recommendation ai but chooses action a0i, so that

Vi
�
ai; a

0
i; ti
�
,

X
a�i2A�i;t�i2T�i;�2�

 (�)� ((ti; t�i) j�)� ((ai; a�i) j (ti; t�i) ; �)ui
��
a0i; a�i

�
; �
�
.

Now - by De�nition 11 - for each i = 1; :::; I, ti 2 Ti and ai 2 Ai, we have

Vi (ai; ai; ti) � Vi
�
ai; a

0
i; ti
�

(27)

for each a0i 2 Ai. Since S is individually su¢ cient for S0, there exists a mapping � : T � � ! �(T 0)

satisfying (22) and (23). De�ne �0 : T 0 ��! �(A) by

�0
�
t0j�
�
�0
�
ajt0; �

�
=
X
t2T

� (tj�)� (ajt; �)�
�
t0jt; �

�
. (28)

Symmetrically, write V 0i (ai; a
0
i; t

0
i) for the expected utility for agent i under decision rule �

0 if he is type t0i,

receives recommendation ai but chooses action a0i, so that

V 0i
�
ai; a

0
i; t

0
i

�
,

X
a�i2A�i;t0�i2T 0�i;�2�

 (�)�0
��
t0i; t

0
�i
�
j�
�
�
�
(ai; a�i) j

�
t0i; t

0
�i
�
; �
�
ui
��
a0i; a�i

�
; �
�
.

Now � satis�es the obedience condition (De�nition 11) to be a correlated equilibrium of (G;S0) if for each

i = 1; :::; I, t0i 2 T 0i and ai 2 Ai,
V 0i
�
ai; ai; t

0
i

�
� V 0i

�
ai; a

0
i; t

0
i

�
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for all a0i 2 Ai. But

V 0i
�
ai; a

0
i; t

0
i

�
=

X
a�i2A�i;t0�i2T 0�i;�2�

 (�)�0
��
t0i; t

0
�i
�
j�
�
�
�
(ai; a�i) j

�
t0i; t

0
�i
�
; �
�
ui
��
a0i; a�i

�
; �
�

=
X

a�i2A�i;t0�i2T 0�i;�2�;t2T
 (�)� (tj�)� ((ai; a�i) jt; �)�

�
t0jt; �

�
ui
��
a0i; a�i

�
; �
�

by the de�nition of � 0, see (28)

=
X

a�i2A�i;�2�;t2T
 (�)� (tj�)� ((ai; a�i) jt; �)ui

��
a0i; a�i

�
; �
� X
t0�i2T 0�i

�i
��
t0i; t

0
�i
�
jt; �
�

=
X

a�i2A�i;�2�;t2T
 (�)� (tj�)� ((ai; a�i) jt; �)ui

��
a0i; a�i

�
; �
�
�i
�
t0ijti

�
, by (23)

=
X
ti2Ti

�i
�
t0ijti

�24 X
a�i2A�i;�2�;t�i2T�i

 (�)� ((ti; t�i) j�)� ((ai; a�i) j (ti; t�i) ; �)ui
��
a0i; a�i

�
; �
�35

=
X
ti2Ti

�i
�
t0ijti

�
Vi
�
ai; a

0
i; ti
�
: (29)

Now for each i = 1; :::; I, t0i 2 T 0i and ai 2 Ai,

V 0i
�
ai; ai; t

0
i

�
=

X
ti2Ti

�i
�
t0ijti

�
Vi (ai; ai; ti) , by (29)

�
X
ti2Ti

�i
�
t0ijti

�
Vi
�
ai; a

0
i; ti
�
, by (27) for each ti 2 Ti

= V 0i
�
ai; a

0
i; t

0
i

�
, by (29)

for each a0i 2 Ai. Thus �0 is a BCE of (G;S0). By construction �0 and � induce the random choice rule

� : �! �(A). Since this argument started with an arbitrary BCE random choice rule � of (G;S) and an

arbitrary G, we have BCE (G;S) � BCE (G;S0) for all games G.

We now show that (2) implies (1). Suppose that S is more information constrained than S0. We

will show that if, in addition, S is non-redundant, then S is individually su¢ cient for S0. If S was not

non-redundant, we could let bS be the unique non-redundant information structure which is higher order
belief equivalent to S, as shown in Lemma 4. We would show that bS is individually su¢ cient for S0. By
Lemma 4, S is individually su¢ cient for bS and so, by Lemma 3, S is individually su¢ cient for S0.

Write �i (ti) 2 �(T�i ��) for type ti�s beliefs

�i (t�i; �jti) =
 (�)� ((ti; t�i) j�)P

et�i;e� (�)�
��
ti;et�i� je�� .

Write �i for the range of �i. Thus �i : T�i ! �i. By non-redundancy of S, there is well de�ned inverse

map ��1i : �i ! T�i, so that �i (ti) = �i if and only if �
�1
i (�i) = ti.
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For any � : T ��! �(T 0), write

��i
�
t�i; �jti; t0i

�
=

P
t0�i

 (�)� ((ti; t�i) j�) �
��
t0i; t

0
�i
�
j (ti; t�i) ; �

�
P
et�i;e�

P
t0�i

 (�)�
��
ti;et�i� je�� � ��t0i; t0�i� j �ti;et�i� ;e�� :

Write Z for the set of � : T ��! �(T 0) satisfyingX
t

� (tj�) �
�
t0jt; �

�
= �0

�
t0j�
�

for each t0 and �. Note that Z is a compact set. Now suppose that S is not individual su¢ cient for S0.

Then, for every � 2 Z, by non-redundancy, there exists i, ti and t0i such that

��i
�
�jti; t0i

�
6= �i (�jti) .

Now de�ne

" =
1

2
inf
�2Z

max
i;ti;t0i

��i ��jti; t0i�� �i (�jti) ,
where k�k represents the Euclidean distance vectors in RT�i��. The compactness of the set Z and the

continuity of the �nite collection of mappings ��i (�jti; t0i) with respect to � imply that " > 0.
Now we will construct a basic game G =

�
(Ai; ui)

I
i=1 ;  

�
and an action state distribution �� 2

�(A��) such that �� 2 BCE (G;S) but �� =2 BCE (G;S0). This will complete the proof of the

argument that (2) implies (1).

Recall that �i (the range of �i) is a �nite subset of �(T�i ��). Let �i be any "-grid of �(T�i ��),
i.e., a �nite subset of �(T�i ��) satisfying the property that, for all �i 2 �(T�i ��), there exists �0i 2 �i
with

�i � �0i � ". Now let Ai = �i [ �i. Let

ui (a; �) =

8><>:
2ai

��
��1j (aj)

�
j 6=i

; �

�
�

P
et�i2T�i;e�2�

�
ai

�et�i;e���2 , if aj 2 �j , 8j 6= i;

0, otherwise.

Now suppose player i assigns probability 1 to his opponents choosing a�i 2 ��i and, in particular, for
some �i 2 �(T�i ��), assigns probability �i

��
��1j (aj)

�
j 6=i

; �

�
to his opponents choosing a�i and the

state being �.
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The expected payo¤ to player i with this belief over A�i �� parameterized by �i 2 �(T�i ��) is

X
t�i2T�i;�2�

�i (t�i; �)

0@2ai (t�i; �)� X
et�i2T�i;e�2�

�
ai

�et�i;e���2
1A

= 2
X

t�i2T�i;�2�
�i (t�i; �) ai (t�i; �)�

X
et�i2T�i;e�2�

�
ai

�et�i;e���2
= 2

X
t�i2T�i;�2�

�i (t�i; �) ai (t�i; �)�
X

t�i2T�i;�2�
(ai (t�i; �))

2

=
�
k�ik2 � kai � �ik2

�
:

Thus player i with belief �i has a best response to set ai equal to one of the points in Ai � �(T�i ��)
with the shortest Euclidean distance to b�i.

Now the game (G;S) has - by construction - a "truth-telling" BCE where each type ti always chooses

action �i (ti). This give rise to action state distribution �� where

�� (a; �) =

8<:  (�)� (aj�) , if a 2 T;
0, if a =2 T:

So �� is a BCE action state distribution of (G;S). For �� to be BCE of (G;S0), there must exist � 2 Z
such that � 0 2 �(T � T 0 ��) de�ned by

�
�
t; t0; �

�
=  (�)� (tj�) �

�
t0jt; �

�
is a BCE. But for any � 2 Z, we showed that there exist i, ti and t0i with��i ��jti; t0i�� �i (�jti) � 2".
But this implies a violation of obedience, since by construction of G, there exists an action ai 2 Ai which
is within " of ��i (�jti; t0i) and thus closer to �

�
i (�jti; t0i) than �i (�jti), and so a player with type t0i receiving

action recommendation ti would strictly prefer to deviate to ai.

To show (1) implies (3), observe that if � 2 F (G;S0), then S0 is individually su¢ cient for (A; �). Now
if S is individually su¢ cient for S0 and S0 is individually su¢ cient for (A; �), then by transitivity (see

Lemma 3), S is individually su¢ cient for (A; �). This is equivalent to saying that � is belief invariant for

(G;S).

To show (3) implies (1), consider a basic game G with action set T 0. If S is not individually su¢ cient

for S0, there does not exist � : T � � ! �(T 0) satisfying (22) and (23). But this implies that does

not exist a belief invariant decision rule for (G;S) which induces �0. On the other hand, consider the
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"truth-telling" decision rule �0 : T 0 ��! �(T 0) for (G;S0) with

�0
�et0jt0; �� =

8<: 1, if et0 = t0;

0, otherwise.

This is clearly belief invariant (G;S0) and induces random choice rule �0. So �0 2 F (G;S0) but �0 =2
F (G;S), implying that S is not more permissive that S0.

5 Leading Example: Binary Action Games and Binary Signal Informa-

tion Structures

We will use a family of examples to illustrate our de�nitions and results. Suppose that there are two

players, i 2 fAnn, Bobg, and two states � = f�0; �1g. Consider the basic game where each player has

two actions Ai = fa0; a1g, the prior is uniform on the two states, and each player gets a payo¤ of 1 if both

players set their actions equal to the state, a payo¤ of " if his action is equal to the state but his opponent�s

is not, and 0 otherwise. Thus the payo¤ matrices are given by

� = �0 a0 a1

a0 1; 1 "; 0

a1 0; " 0; 0

� = �1 a0 a1

a0 0; 0 0; "

a1 "; 0 1; 1

; (30)

where the row corresponds to the action of Ann, the column corresponds to the action of Bob, and the

matrix corresponds to the state. We will focus on the case where " = 0 but also discuss the robustness of

our results if we let " vary from 0.

Consider the information structure Sq;r where each player has two signals, Ti = ft0; t1g, each player�s
signal is equal to the true state with probability q 2

�
1
2 ; 1
�
and both players�signals are equal to the true

state with probability r 2 [2q � 1; q]. We will refer to q as the accuracy of the information structure and
to r (somewhat loosely) as the correlation of the signals. Thus the signal structure is described in the

following tables:

� = �0 t0 t1

t0 r q � r

t1 q � r r + 1� 2q

� = �1 t0 t1

t0 r + 1� 2q q � r

t1 q � r r

; (31)

where the row corresponds to Ann�s signal, the column corresponds to Bob�s signal and the matrix corre-

sponds to the state. This class of information structures includes all binary signal information structures

which are symmetric across players and states.
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We will often focus on the information structure with the minimum correlation consistent with accuracy

q, i.e., the information structure Sq;2q�1 with

� = �0 t0 t1

t0 2q � 1 1� q

t1 1� q 0

� = �1 t0 t1

t0 0 1� q

t1 1� q 2q � 1

: (32)

Under this information structure, the players never both receive the "wrong" signal. The set of possible

information structures Sq;r are illustrated in Figure 4 in the (q; r) space. The set of possible information

structures are formed by the intersection of three lines, r = q, r = 2q�1 and q = 1=2, where r = q describes

all information structures where the signal of the agents are perfectly correlated, r = 2q� 1, describes the
minimal correlation for a given accuracy q, as represented by the information structure Sq;2q�1 above in

(32) and q = 1=2 describes the set of all information structure that contain zero information regarding the

state �. The set of information structures with conditionally independent signals of the agents is described

by r = q2 and is in the interior of the set of possible information structures.

Insert Figure 4 here

The set of actions is isomorphic to the set of signals in our examples, so we can represent symmetric

random choice rules using the same notation as for information structures, i.e., there is a random choice

rule with accuracy q and correlation r given by

� = �0 a0 a1

a0 r q � r

a1 q � r r + 1� 2q

� = �1 a0 a1

a0 r + 1� 2q q � r

a1 q � r r

where the row corresponds to Ann�s action, the column corresponds to Bob�s action and the matrix

corresponds to the state. However, while for information structures we assumed q � 1
2 , we will need to

allow for q < 1
2 in random choice rules. Thus the set of symmetric random choice rules is formed by the

intersection of three lines, r = q, r = 2q�1 and r = 0, and thus in Figure 4 the triangle in positive orthant
that remains after removing the vertical line q = 1=2.

We will use this two dimensional class of (symmetric) information structures and two dimensional class

of (symmetric) decision rules to illustrate our results. We �nd it useful to restrict attention to these

classes because they are easy to visualize and we will extensively use pictures to illustrate what is going on.

Calvo-Argengol (2006) showed that - even in complete information games - characterizing and visualizing

all correlated equilibria of all two player two actions games is not easy. We emphasize that we will be
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using this class of examples to illustrate results that apply to general, asymmetric, information structures

and general, asymmetric, decision rules.

We now illustrate the set of Bayes correlated equilibria in the example. The set of symmetric BCE

random choice rules of (G"; Sq;2q�1) if " = 0 and q � 2
3 is the convex hull of the set of four random choice

rules with �
q0; r0

�
= (0; 0) ; (1; 1); (q; 2q � 1) and (2 (1� q) ; 1� q). (33)

This set is illustrated in Figure 5, for two information structures with minimal correlation. The larger

triangle is generated by the information structure: q = 2=3; r = 1=3, whereas the smaller trapezoid is

generated the information structure q = 5=6; r = 2=3. We observe that for q = 2=3, the two random choice

rules, (q; 2q � 1) and (2 (1� q) ; 1 � q), coincide, and hence reducing the set of BCE to a triangle. We

also observe that as the accuracy q of the signals is increasing, the information of each individual agent is

improving and thus the incentive constraints tighten and, in turn, the set of Bayes correlated equilibria is

shrinking.

Insert Figure 5 here

A full analysis of the example is presented in Appendix 8.3. Here we merely sketch why these points

are BCE random choice rules and provide an intuition why they are extremal. First, the random choice

rule (1; 1) is induced by the decision rule where each player always sets his action equal to the state.

This corresponds to the case of complete information, where each player observes the true state and both

players set the action equal to the state. Since this is an equilibrium under complete information, a Nash

equilibrium, it is also a BCE. Similarly, the random choice rule (0; 0) is induced by the decision rule where

the players set their actions equal to each other but di¤erent to the state. This also corresponds to the

case of complete information where each player observes the true state, but where both players follow the

dominated but equilibrium strategies of setting their actions di¤erent from the state. The random choice

rule (q; 2q � 1) is induced by the decision rule where each player sets his action equal to his signal. This
corresponds to the Bayes Nash equilibrium of the game where players observe no additional information.

Finally, consider the random choice rule (2 (1� q) ; 1� q). One can show that it is induced by the decision
rule described by the following table:

� = �0 t0a0 t0a1 t1a0 t1a1

t0a0
1�q
2q�1 0 0 1

t0a1 0 3q�2
2q�1 0 0

t1a0 0 0 0 0

t1a1 1 0 0 1

� = �1 t0a0 t0a1 t1a0 t1a1

t0a0 1 0 0 1

t0a1 0 0 0 0

t1a0 0 0 3q�2
2q�1 0

t1a1 1 0 0 1�q
2q�1

;
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where the matrix determines the state, the row corresponds to the (signal, action) pair of Ann, the column

corresponds to the (signal, action) pair of Bob, and the entries describe the conditional probability of that

action pro�le being played given the state and signal pro�le. Thus, the conditional probabilities in every

2� 2 submatrix which is formed by a vector of state � and signals by Ann and Bob have to sum up to one.

We note that the entries in the pro�le (�0; t1; t1) and (�1; t0; t0) are without consequence as each one of

these pro�les is a zero probability event. This decision rule induces the random choice rule (2 (1� q) ; 1�q)
since the probability that any player chooses the action corresponding to the state is

(2q � 1) 1� q
2q � 1 + (1� q) 1 = 2 (1� q)

and the probability that both players choose the action corresponding equal to the state is

(2q � 1) 1� q
2q � 1 = 1� q.

The four extremal BCE random choice rules were given by (33) can be used to illustrate Theorem 2, which

established the relationship between the Bayes correlated and Bayes Nash equilibria. Both (0; 0) and (1; 1)

correspond to the Nash equilibria of the complete information game, so the expanded information structure

is one where the state becomes common knowledge. Random choice rule (q; 2q � 1) corresponds to the
Bayes Nash equilibrium with no additional private information beyond the uniform prior over the states.

An expansion that generates the BCE random choice (2 (1� q) ; 1 � q) is one where, conditional on both

players observing the same, correct, signal of the state, with probability 3q�22q�1 there is a public announcement

that they have both observed correct signals. Conditional on receiving this public signal, the dominated

Nash equilibrium of the complete information game is played. If the public signal is not observed, then

Ann is sure that Bob is setting his action equal to the state, and she thinks it equally likely that her

signal is correct or incorrect. She is thus indi¤erent between the two actions. Thus (2 (1� q) ; 1� q) is a
BCE where the obedience constraints hold as an equality for both actions. By contrast, in the other three

extremal BCE of (33), the obedience constraints are not binding.

We calculated the BCE for a non-generic game (with " = 0) where there are weakly dominated strategies

in the underlying complete information game. However, small changes in " lead to only small changes in

the sets of BCE. In particular, if " > 0, setting the action equal to the state is a strictly dominant strategy

in the complete information game, and (0; 0) is no longer be a BCE random choice rule. But there is an

extremal BCE random choice rule that is of order " distant from (0; 0). If " < 0, both setting their actions

equal to each other but di¤erent to the state is a strict Nash equilibrium of the complete information game,

and (0; 0) is (just) in the interior of the set of BCE random choice rules.

Next, we illustrate the various statistical orderings that we introduced in Section 4.3 and their rela-

tionship to higher order beliefs.
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Example 1: Individual Su¢ ciency and Redundant Types Consider the following binary informa-

tion structure with signal distribution:

� = �0 t0 t1

t0
1
2 0

t1 0 1
2

� = �1 t0 t1

t0 0 1
2

t1
1
2 0

.

Types here are "redundant" in the sense of Mertens and Zamir (1985): there is common certainty that each

player�s belief over the states is equal to the prior over the states, and thus types t0 and t1 induce exactly the

same beliefs and higher-order beliefs. Examples such as this have been leading examples in the literature,

see Dekel, Fudenberg, and Morris (2007), Ely and Peski (2006), Liu (2011), Lehrer, Rosenberg, and Shmaya

(2011), Forges (2006). Now, importantly in our context, this information structure is mutually individually

su¢ cient with the null information structure. It thus illustrates the fact that individual su¢ ciency does

not depend on redundant types, as established generally in Lemma 4.

Example 2: Individual Su¢ ciency and Higher Order Beliefs The previous example had "redun-

dant" types with the same beliefs and higher order beliefs. The next example reports two information

structures, neither of which is individually su¢ cient for the other, even though from each player�s point

of view, they convey the same information about the state �. Consider the pair of experiments S 2
3
; 1
3
,

described by (34), and S 2
3
; 2
3
, described by (35):

� = �0 t0 t1

t0
1
3

1
3

t1
1
3 0

� = �1 t0 t1

t0 0 1
3

t1
1
3

1
3

(34)

and
� = �0 t0 t1

t0
2
3 0

t1 0 1
3

� = �1 t0 t1

t0
1
3 0

t1 0 2
3

: (35)

Neither is individually su¢ cient for the other. Intuitively, each player is better informed about the other�s

information under the latter information structure, but the join of the individual signals gives rise to more

extreme posteriors under the �rst information structure. It thus illustrates that individually su¢ ciency

accounts both for individual information as well as joint information across the agents.
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Example 3: Individual Su¢ ciency vs. Su¢ ciency Consider the pair of information structures

S 2
3
; 1
3
, described by (34), and S 5

9
; 5
9
, described by (36):

� = �0 t0 t1

t0
5
9 0

t1 0 4
9

� = �1 t0 t1

t0
4
9 0

t1 0 5
9

: (36)

S 2
3
; 1
3
is su¢ cient for S 5

9
; 5
9
but S 2

3
; 1
3
is not individually su¢ cient for S 5

9
; 5
9
. This illustrates that individual

su¢ ciency may be more demanding than su¢ ciency.

Symmetric Binary Information Structures The previous two examples were comparisons of sym-

metric binary information structures. We can give a complete ordering of such information structures that

veri�es these examples:

Lemma 6 (Symmetric Binary Information Structures)

1. Information structure Sq;r is su¢ cient for information structure Sq0;r0 if and only if�
q0; r0

�
2 conv

��
1

2
; 0

�
;

�
1

2
;
1

2

�
; (q; r) ; (q; q)

�
: (37)

2. Information structure Sq;r is individually su¢ cient for information structure Sq0r0 if and only if�
q0; r0

�
2 conv

��
1

2
; 0

�
;

�
1

2
;
1

2

�
; (q; r)

�
: (38)

3. Information structure Sq;r is a non-communicating ungarbling of information structure Sq0;r0 if and

only if �
q0; r0

�
2 conv

��
1

2
; 0

�
;

�
1

2
;
1

2

�
; (q; r)

�
: (39)

Thus, in the space of symmetric binary information structures, individual su¢ ciency and non-communicating

ungarbling induce the same ordering over the information structures, and in turn su¢ ciency generates a

more complete ordering. A necessary and su¢ cient condition for Sq;r to be su¢ cient for Sq0;r0 is that the

accuracy of S is greater than the accuracy of S0, i.e. q � q0. By contrast, for individual su¢ ciency, greater

accuracy is only a necessary condition, but the su¢ ciency part of the condition requires in addition greater

correlation, i.e. r � r0. The amount by which the correlation of S0 can di¤er from the correlation of S

depends on the di¤erence in accuracy between the two information structures. The closer their accuracy,

the closer the correlation of the less accurate experiment must be in order for it to be lower in the partial

order. The sets of information structures that can be ranked relative to a given information structure S

are illustrated in Figure 6 within the (q; r) space for (q; r) = (4=6; 3=6).
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Insert Figure 6 here.

We conclude with two other examples to illustrate the relations between orderings. These examples

still rely only on binary information structures, but are symmetric only across players, but not across

the states. In particular, the examples illustrate that neither of the two orders, su¢ ciency or individual

su¢ ciency, is either weaker or stronger than the other.

Example 4: Individual Su¢ ciency vs. Su¢ ciency Information structure S 2
3
; 1
3
, described earlier by

(34), is individually su¢ cient for the following binary information structure, but not su¢ cient for it:

� = �0 t0 t1

t0
4
9

1
9

t1
1
9

1
3

� = �1 t0 t1

t0 0 4
9

t1
4
9

1
9

: (40)

Example 5: Individual Su¢ ciency and Su¢ ciency vs. Non-Communicating Ungarbling The

�nal example in this subsection illustrates the relationship between non-communicating ungarbling and (in-

dividual) su¢ ciency. It followed directly from the de�nition that if S is a non-communicating ungarbling of

S0, then S is su¢ cient, and also individually su¢ cient, for S0. However, S can be su¢ cient and individually

su¢ cient for S0, yet S is not a non-communicating ungarbling of S0. Information structure S 2
3
; 1
3
is su¢ cient

and individually su¢ cient for the following binary information structure, but not a non-communicating

ungarbling of it:

� = �0 t0 t1

t0
5
18

5
18

t1
5
18

1
6

� = �1 t0 t1

t0 0 4
9

t1
4
9

1
9

: (41)

These �nal two examples are illustrated in Figure 7, where we constrain the binary information structure

to be symmetric with respect to the agents, but allow them to be asymmetric with respect to the state.

Here, we �x the accuracy of S and S0, namely q = 2=3 > q0 = 5=9, but allow the correlation represented by

r0 to di¤er across states, and hence illustrate the set of information structures in the space of r0 = (r00; r
0
1),

while r = (r0; r1) =
�
1
3 ;
1
3

�
. Thus the information structure S0 is

� = �0 t0 t1

t0 r00
5
9 � r

0
0

t1
5
9 � r

0
0 r00 � 1

9

� = �1 t0 t1

t0 r01 � 1
9

5
9 � r

0
1

t1
5
9 � r

0
1 r01

:

The correlation r� is restricted to satisfy 2q � 1 � r� � q by the nonnegativity requirement of the

signals and Figure 7 displays the information structures S0 for which S = S 2
3
; 1
3
is su¢ cient, individually
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su¢ cient, respectively a non-communicating ungarbling. We �nd that the intersection of information

structures S0 for which S is both su¢ cient and individually su¢ cient is strictly larger than the set of non-

communicating garblings. In particular, the information structure S05
9
; 4
9
; 1
9

, described by (40), is depicted

in southeast corner of the square set of information structures for which S is individually su¢ cient; and

the information structure S05
9
; 5
18
; 1
9

, described by (41), is depicted in the southeast corner of the hexagon of

information structures for which S = S 2
3
; 1
3
is su¢ cient. The fact that S = S 2

3
; 1
3
is individually su¢ cient for

S05
9
; 4
9
; 1
9

, but not su¢ cient for S05
9
; 4
9
; 1
9

, may at �rst appear surprising. But it illustrates, the decentralized

assessment of information inherent in individual su¢ ciency. With the decentralized view, the accuracy

q alone determines how informed each individual agent is about the state � (and all the information is

contained in two signals.) However, with su¢ ciency, the joint signal 01 (and symmetrically 10) can also

provide information regarding the state �. And in particular, if r00 is very di¤erent from r01, then the joint

signal will provide information regarding �, whereas each marginal signal 0 or 1, contains no additional

information.

Insert Figure 7 here.

6 Incomplete Information Correlated Equilibrium

Aumann (1974), (1987) introduced a de�nition of correlated equilibrium for complete information games.

A classic paper of Forges (1993) is titled "�ve legitimate de�nitions of correlated equilibrium in games

with incomplete information." Her title and paper make the point - which we agree with - that there are

many natural ways of extending the complete information de�nition to incomplete information settings

and which de�nition makes sense depends on the purpose for which it is to be used. In this section, we

present a way of seeing how our de�nition of "Bayes correlated equilibrium" relates to other de�nitions of

incomplete information correlated equilibrium, highlighting which de�nition is relevant for which purpose.

For a �xed basic game G and information structure S, a Bayes correlated equilibrium is a decision

rule mapping signal pro�les and payo¤ states to probability distributions over action pro�les that satis�es

obedience (14), requiring that a player who knows his signal and the action he is supposed to play has

no incentive to deviate. We treat payo¤ states symmetrically with actions and impose no additional

restrictions on what is feasible. The role of the information structure, then, is only to impose extra

incentive constraints on behavior. Our motive to study this solution concept is Theorem 2: the solution

concept captures rational behavior given that players have access to the signals in the information structure,

but may have additional information.

If a decision rule is belief invariant for (G;S), players have no less but also no more information than
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under information structure S. If we impose belief invariance as well as obedience on a decision rule, we

get a solution concept that was introduced in Liu (2011).

De�nition 22 (Belief Invariant BCE)

A decision rule � is a belief invariant Bayes correlated equilibrium (BIBCE) of (G;S) if it is obedient and

belief invariant for (G;S).

It captures the implications of common knowledge of rationality and that players know exactly the

information contained in S, if the common prior assumption is maintained. As explained in Liu (2011), this

solution concept can be seen as the common prior analogue of the solution concept of interim correlated

equilibrium discussed by Dekel, Fudenberg, and Morris (2007). One can show that the set of Bayes

correlated equilibria of (G;S) will consist of all belief invariant BCE of (G;S0) for all information structures

S0 for which S is individually su¢ cient.

Liu (2011) showed that if two information structures are higher order belief equivalent, then they

have the same set of belief invariant Bayes correlated equilibria. His result implies that two information

structures that are higher order belief equivalent have the same set of belief invariant Bayes correlated

equilibria. This in turn implies that they have the same set of Bayes correlated equilibria, which was

Corollary 1 of Theorem 3.

A random choice rule � is a BIBCE random choice rule if it is induced by a BIBCE decision rule.

Observe that a BIBCE random choice rule must therefore be a BCE random choice rule and a feasible

random choice rule, but not every random choice rule that is a BCE and feasible is a BIBCE random

choice rule. To wit, both the Bayes correlated equilibrium and the belief invariant BCE are de�ned in

terms of a decision rule � rather than a random choice rule �. Thus, while the intersection of feasible and

obedient decision rules � equals the set of belief invariant Bayes correlated equilibria, the intersection of

feasible and BCE random choice rules � is a superset, and as evidenced here, sometimes a strict superset,

of the belief invariant BCE random choice rules. This is illustrated in Figure 8 where we display the BCE,

feasible and BIBCE random choice rules in our leading example with the binary information structure Sq;r

with q = 5=6 and r = 2=3.

Insert Figure 8 here.

Much of the literature on incomplete information correlated equilibrium started from the premise

that an incomplete information de�nition of correlated equilibrium should capture what could happen if

players had access to a correlation device / mediator under the maintained assumption that the correlation

device/mediator did not have access to information that was not available to the players. We can describe

the assumption formally as:
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De�nition 23 (Join Feasible)

Decision rule � is join feasible for (G;S) if � (ajt; �) is independent of �.

This gives another solution concept:

De�nition 24 (Bayesian Solution)

Decision rule � is a Bayesian solution of (G;S) if it is obedient and join feasible.

This assumption was made implicitly in Forges (1993) and other works, because it was assumed that

type or signal pro�les exhausted all uncertainty. On the other hand, Lehrer, Rosenberg, and Shmaya

(2010), (2011) explicitly impose this assumption. The Bayesian solution was named by Forges (1993) and

it is the weakest version of incomplete information correlated equilibrium she studies. It also corresponds

to the set of jointly coherent outcomes in Nau (1992), justi�ed from "no arbitrage" conditions. Forges and

Koessler (2005) provide a justi�cation if players are able to certify their types to the mediator.

In Figure 9, we display the set of Bayesian solutions and compare them to the BCE and BIBCE

random choice rules. In the present binary and symmetric game, it happens that BIBCE � Bayesian

solution � BCE. More generally, the following inclusions hold for all �nite games: BIBCE � BCE and

Bayesian solution � BCE, but there can be BIBCE which do not form a Bayesian solution. Another

special feature of the present binary example is that the Nash equilibria and the Bayes Nash equilibrium

under the common prior are either vertices or located on the edges of the BCE set, more generally both

Nash and Bayes Nash equilibria can (all) be located in the interior of the BCE set.

Insert Figure 9 here.

Imposing both join feasibility and belief invariance, we get a solution concept that has played an

important role in the literature.

De�nition 25 (Belief Invariant Bayesian Solution)

Decision rule � is a belief invariant Bayesian solution of (G;S) if it is obedient, belief invariant and join

feasible.

Forges (2006) introduced this name. We will focus our analysis on these four solution concepts. For

any �xed game, the de�nitions imply some relations between the solution concepts illustrated in Figure 10:

the set of belief invariant Bayes correlated equilibria is a subset of the set of Bayes correlated equilibria;

the set of Bayesian solutions is a subset of the set of Bayes correlated equilibria; the set of belief invariant

Bayesian solutions is equal to the intersection of the set of Bayesian solutions and the belief invariant Bayes

correlated equilibria.
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Insert Figure 10 here.

Another way of understanding the solution concepts discussed in this section is to return to the single

player environment that we discussed in Section 2. In single player games, belief invariant BCE, Bayesian

solutions and belief invariant Bayesian solutions all coincide with what we called the Bayes Nash equilib-

rium, i.e., standard optimal behavior for the decision problem. It is only the notion of Bayes correlated

equilibrium, by imposing neither join feasibility nor belief invariance that allows more information to be

re�ected in the single player�s choice, and thus leads to the larger set of random choice rules.

Forges (1993), (2006) also surveys three stronger solutions concepts for (G;S). We brie�y discuss these

informally, and for completeness give formal de�nitions in our language in Appendix 8.4.

1. One could simply look at the agent normal form of (G;S) and consider the correlated equilibria of this

complete information game. This is equivalent to requiring that the decision rule could be generated

by having a mediator randomize over pure strategies in the incomplete information game, mapping

signals to actions, before observing the state or players� signals, and recommendations follow the

chosen pure strategies. Forges (1993) calls this "agent normal form correlated equilibrium."

2. If the mediator can make recommendations only based on reports from the players, players must have

an incentive to tell the truth. A decision rule is "truth-telling" if players both have an incentive to

truthfully report their types and have an incentive to follow their recommendations. This gives the

well known solution concept of "communication equilibrium."

3. One could also look at the (non-agent) strategic form of (G;S) and consider the correlated equilibria

of this complete information game. This imposes additional incentive constraints, since players now

know what the mediator would have recommended if they had been di¤erent types. Forges (1993)

calls this "strategic form correlated equilibrium."

The relationships between these solution concepts are described in Figure 11 below.

Insert Figure 11 here.

Examples in Forges (1993), (2006) show that the relationships in the Venn diagram are tight.

7 Discussion

7.1 Distributed Certainty

It was important in much of our analysis that we did not assume agents collectively knew all possible payo¤

relevant information. If they did, "join feasibility" would be automatically satis�ed. Formally:



Bayes Correlated Equilibrium February 4, 2013 46

De�nition 26 (Distributed Certainty)

Information structure S satis�es distributed certainty if there exists g : T ! � such that � (tj�) > 0) � =

g (t).

An important setting where this condition will always be satis�ed is private value environments. This

would be modelled in our language by setting � = �1 � � � � ��I , each Ti = �i and let

� (tj�) =

8<: 1; if t = �;

0; if t 6= �:

As an example, in Bergemann, Brooks, and Morris (2012) we study �rst price auctions where bidders know

their own values of a single object. This is a private value environment and thus has distributed certainty.

In our earlier work on robust mechanism design, Bergemann and Morris (2012), we did not assume

private values but did assume "distributed certainty" in much of the work; the epistemic foundations we

reviewed in Bergemann and Morris (2007) were also based on that assumption. Under distributed certainty,

join feasibility is satis�ed by any decision rule and we have:

Lemma 7 If S satis�es distributed certainty then any decision rule � is join feasible and thus, for any

basic game G, any (belief invariant) Bayes correlated equilibrium of (G;S) is a (belief invariant) Bayesian

solution of (G;S).

7.2 Adding Dummy Players

One way to understand our results is to think about basic games and information structures where we add

a "dummy player" who knows the state but is otherwise irrelevant.8 While this is not how we prefer to

present our results, it does allow us to make connections with the prior literature and understand formal

connections in arguments.

Formally, �x a basic game G = ((Ai; ui)
I
i=1;  ). Consider a modi�ed basic game with added dummy

player 0, eG = (( eAi; eui)Ii=0;  ) with eA0 = fa0g, eAi = Ai for i = 1; :::; I and eui((a0; (aj)Ij=1); �) =
ui((aj)

I
j=1; �) for i = 1; :::; I, and the form of eu0 does not matter since the dummy player 0 has a sin-

gleton action set. Fix an information structure S = ((Ti)
I
i=1 ; �). Consider a modi�ed information

structure with dummy player, eS = (( eTi)Ii=0; e�), with eT0 = �, eTi = Ti for i = 1; :::; I and

e� ��t0; (ti)Ii=1� j�� =
8<: �

�
(ti)

I
i=1 j�

�
; if t0 = �;

0; if t0 6= �:

8We are grateful to Atsushi Kajii for suggesting that we pursue this dummy player interpretation of Bayes correlated

equilibrium. The taxonomy of incomplete information correlated equilibrium concepts in Milchtaich (2012) discusses the

possibility of treating nature as a player.
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Finally, given decision rule � : T ��! �(A) for (G;S), call e� : eT ��! �( eA) the corresponding decision
rule for ( eG; eS) if e� ��a0; (ai)Ii=1� ����t0; (ti)Ii=1� ; �� = �

�
(ai)

I
i=1

���(ti)Ii=1 ; �� ;
and note that the value of e�(� ���(t0; (ti)Ii=1); � ) when t0 6= � is not going to be relevant. Now we have:

Lemma 8 Decision rule � : T ��! �(A) is a (belief invariant) Bayes correlated equilibrium of (G;S)

if and only if the corresponding e� : eT � � ! �( eA) is a (belief invariant) Bayesian solution of the game
( eG; eS) with added dummy player.
7.3 Finer Orderings on Information Structures

As we discussed in Section 4.3, Lehrer, Rosenberg, and Shmaya (2010), (2011) introduced an ordering on

information structures - non-communicating ungarbling - which - as we showed in examples in Section 5 -

is stronger than either individual su¢ ciency and su¢ ciency, and in fact is strictly stronger than requiring

both su¢ ciency and individual su¢ ciency simultaneously.

We will �rst describe the results from Lehrer, Rosenberg, and Shmaya (2010), (2011) that are closest

to ours, and identify the exact connections. Then we will report further results that they generate.

Let us focus on their results for the solution concept of belief invariant Bayesian solution, which is the

weakest that they focus on. Lehrer, Rosenberg, and Shmaya (2010) focusses on common interest games

where players have identical utility functions and on the belief invariant Bayesian solution of (G;S) which

gives players the highest common utility. Theorem 4.5 of Lehrer, Rosenberg, and Shmaya (2010) shows

that the maximum utility is higher in (G;S) than in (G;S0) for all common interest games if and only if S

is a non-communicating ungarbling of S0. We noted in the previous subsection that belief invariant Bayes

correlated equilibria are essentially belief invariant Bayesian solutions in the game where a dummy player is

added. It is also easy to show that S is individually su¢ cient for S0 if and only if eS is a non-communicating
ungarbling of eS0, where eS and eS0 are the information structures we get if we add a dummy player to S and
S0 respectively. Thus it is an easy corollary of Theorem 4.5 of Lehrer, Rosenberg, and Shmaya (2010) that

if we focus on the belief invariant Bayes correlated equilibrium of common interest games which maximizes

players�utility, utility is higher in (G;S) than in (G;S0) for all common interest games if and only if S

is individually su¢ cient for S0. Thus the equivalence of feasibility and statistical orderings follows from

arguments in Lehrer, Rosenberg, and Shmaya (2010).

Suppose that we write BIBS(G;S) for the set of belief invariant Bayesian solutions of (G;S). Part

(c) of Theorem 2.8 of Lehrer, Rosenberg, and Shmaya (2011) shows that BIBS(G;S) = BIBS(G;S0) for

all basic games G if and only if S and S0 are non-communicating garblings of each other. Corollary 1 of
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Theorem 3 could have been proved by applying the arguments of Lehrer, Rosenberg, and Shmaya (2011)

to basic games and information structures with added dummy players as in the previous sub-section.

However, Lehrer, Rosenberg, and Shmaya (2011) do not have an analogue to our result that if S is

individually su¢ cient for S0, then BCE(G;S) � BCE(G;S0) for all basic games G, and we need a new

argument to prove it. The analogous claim would be that if S is a non-communicating ungarbling of S0,

then BIBS(G;S) � BIBS(G;S0) for all basic games G. However, this claim is almost certainly false

(even though we haven�t constructed an explicit example). The reason is that the BCE solution concept

imposes only incentive constraints and no feasibility conditions, so information can only reduce the set of

equilibria. However, the BIBS solution concept imposes join feasibility and belief invariance, conditions

that become less demanding the more information there is. Thus the classical con�ict between incentive

and feasibility requirements becomes relevant.

Lehrer, Rosenberg, and Shmaya (2010) and (2011) also propose even stronger orderings on information

structures (independent garbling, coordinated garblings) and show that their results on common interest

games in Lehrer, Rosenberg, and Shmaya (2010) and general games in Lehrer, Rosenberg, and Shmaya

(2011) extend in a natural way to �ner solutions concepts (Bayes Nash equilibrium, agent normal form

correlated equilibrium, respectively)

7.4 The Value of Information in Games Re-Visited

While Lehrer, Rosenberg, and Shmaya (2010), (2011) are the closest works to ours, there is a large literature

on the value of information in games, and we now discuss that work and its relation. Hirshleifer (1971)

noted why information might be damaging in a many player context because it removed options to insure

ex ante. Our result on the incentive constrained ordering can be seen as a formalization of the idea behind

the observation of Hirshleifer (1971): we give a general statement of how information creates more incentive

constraints and thus reduces the set of incentive compatible outcomes.

We have highlighted the dual roles of information which are common to the one player and many player

cases: increasing feasible outcomes and reducing incentive compatible ones. Neyman (1991) emphasized

that within a �xed overall information structure, under Bayes Nash equilibrium, a player was better o¤

with more information. Thus if some of player i�s signals are more informative than others, then player

i is better o¤ in equilibrium conditional on receiving the more informative signals. In this case, more

information makes more outcomes feasible and, because other players do not know if he is more informed

or not, does not increase incentive constraints.

Gossner and Mertens (2001) consider Bayes Nash equilibrium and zero sum games and show that a

su¢ cient condition for a player to have a higher value is that he has more information or his opponent has
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less information. They also showed that two information structures imply the same value in all games if

and only if they are higher order belief equivalent. Peski (2008) shows that the su¢ cient conditions are

also necessary. That is, for a �xed information structure, the set of information structures where a player

will have a higher value in all zero sum games consists of those where he is more informed and his opponent

is less informed. The proof of this result involves an appeal to the separating hyperplane theorem to show

that if the condition on information structures is not satis�ed, it is possible to construct the zero sum basic

game where the player has a lower value. In our main result, we must similarly construct a basic game

showing a failure of the incentive constrained ordering if the statistical relation fails. The arguments are

quite di¤erent, however.

Gossner (2000) considers Bayes Nash equilibrium and general games and characterizes when one in-

formation structure supports more BNE outcomes than another. While the bulk of his work focusses on

complete information games, in Section 6 and Theorem 19 he considers incomplete information games. His

de�nition that one information structure S0 is a faithful interpretation of another S translates in our lan-

guage to the requirement that they are higher order belief equivalent and there is a pro�le of Markov kernels

which are independently mapping each player signals Si into signals in S0i. He shows that S supports more

BNE outcomes than S0 in all games if and only if S0 is a faithful interpretation of S. Thus this ordering

ranks an information structure higher if it gives more "correlation possibilities", but holds �xed beliefs

and higher order beliefs. By contrast, individual su¢ ciency abstracts from "correlation possibilities" and

depends non-trivially on beliefs and higher order beliefs about payo¤s.

7.5 An Upper Bound on Information

We have proposed Bayes correlated equilibrium as a solution concept that captures what can happen in

Bayes Nash equilibrium in an incomplete information game (G;S) if players have access to information

structure S but may also observe additional signals. We can also ask the dual question: suppose players

have access to at most the information structure in S but perhaps less. One can o¤er partial answers to

this question using the framework and results of this paper.

Lemma 9 If random choice rule � is induced by a decision rule � which is a Bayes Nash equilibrium

decision rule of (G;S0) for some S0 such that S is an expansion of S0, then � is feasible for
�
G;S

�
.

Now suppose we �x two information structures S and S such that S is individually su¢ cient for S

(S � S) Suppose that we knew that random choice rule � was induced by a Bayes Nash equilibrium of

(G;S) for some information structure S with S � S � S. We know (by Theorem 2) that � is a BCE

random choice rule for (G;S); and we know from Lemma 9 that � is a feasible random choice rule for
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G;S

�
. Unfortunately, though, the converse is not true, i.e., it is not true that if � is a BCE random

choice rule for (G;S) and � is a feasible random choice rule for
�
G;S

�
, then � is induced by a Bayes Nash

equilibrium of (G;S) for some information structure S with S � S � S. To see why, observe that for this

converse to be true, it would have to be true in the special case where S = S = S�. In this case, we would

be requiring that if � is a BCE and feasible random choice rule for (G;S�), then � is induced by a Bayes

Nash equilibrium of (G;S) for some information structure S which is higher order belief equivalent to S�,

which in turn implies that � is a belief invariant Bayes correlated equilibrium of (G;S�). But we already

saw, in Figure 8, there exist random choice rules � which are BCE and feasible random choice rules but

not belief invariant BCE random choice rules. In other words, there may be an obedient decision rule

that induces � and a belief invariant decision rule that induces �, but there is no decision rule which is

simultaneously obedient and belief invariant which induces �.
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8 Appendix

8.1 Feasibility Orderings

We report a many player generalization of the three feasibility orderings described in Section 2.4 for the

one player case. In Section 4, we de�ned the set of feasible random choice rules F (G;S) for (G;S). For

purposes of this section, all that matters is that F (G;S) is a compact subset of the set of random choice

rules for (G;S).

Say that G is a common interest basic game if there exists a payo¤ function u� such that ui = u� for all

i. This focus on common interest games here follows the work of Lehrer, Rosenberg, and Shmaya (2010)

for di¤erent solution concepts discussed in Section 7.3. Now we can consider three feasibility orderings for

the many player case that reduce to those discussed for the one player case in Section 2.4.

De�nition 27 (More Permissive)

Information structure S is more permissive than information structure S0 if, for all basic games G,

F (G;S) � F
�
G;S0

�
.

If G is a common interest basic game, write, as before, W (G;S) for the set of state-dependent vectors

of ex ante common ex ante payo¤s

W (G;S) ,
[

�2F (G;S)

8<:
 X
a2A

� (aj�)u� (a; �)
!
�2�

9=; � Rj�j.

De�nition 28 (More Informative )

Information structure S is more informative than information structure S0 if, for all common interest basic

games G,

W (G;S) �W
�
G;S0

�
.

If G is a common interest basic game, write w (G;S) for the highest ex ante utility that (all) players

can attain with a belief invariant decision rule (and thus a feasible random choice rule),

w (G;S) , max
w2W (G;S)

X
�2�

 (�)w (�) = max
�2F (G;S)

X
a2A;�2�

 (�) � (aj�)u� (a; �) .

Note that while we did not impose obedience in the de�nition of w (G;S), observe that it would not

have made any di¤erence if we did. Thus we also have:

w (G;S) = max
�2BIBCE(G;S)

X
a2A;�2�

 (�) � (aj�)u� (a; �) .
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De�nition 29 (More Valuable)

Information structure S is more valuable than information structure S0 if, for all common interest basic

games G,

w (G;S) � w
�
G;S0

�
.

Now we have a many player generalization of Proposition 2:

Proposition 3 The following statements are equivalent

1. Information structure S is more permissive than information structure S0

2. Information structure S is more informative than information structure S0

3. Information structure S is more valuable than information structure S0

Proof. (1)) (2)) (3) follows immediately from de�nitions.

Now suppose that (1) does not hold. Then there exists G =
�
(Ai; ui)

I
i=1 ;  

�
and �� 2 F (G;S0) such

that � 2 F (G;S). Since F (G;S) is compact and convex, by the separating hyperplane theorem, there

exists x� : A��! R such thatX
a2A;�2�

 (�) �� (aj�)x� (a; �) >
X

a2A;�2�
 (�) � (aj�)x� (a; �)

for all � 2 F (G;S). Now let G�
�
(Ai; u

�
i )
I
i=1 ;  

�
be the common interest game with u�i = x� for all i.

Now

w
�
G�; S0

�
�

X
a2A;�2�

 (�) �� (aj�)x� (a; �)

> max
�2F (G;S)

X
a2A;�2�

 (�) � (aj�)x� (a; �)

= w (G�; S)

Thus (3) does not hold. Also  X
a2A

�� (aj�)x� (a; �)
!
�2�

2W
�
G;S0

�
but  X

a2A
�� (aj�)x� (a; �)

!
�2�

=2W (G;S)

so (2) does not hold.
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Note that this proof of the equivalence of the three feasibility orderings does not use any properties of

the sets F (G;S) except that they are convex and compact. A separating argument like this lies at the

heart of proofs of Blackwell�s theorem, see, e.g., the elementary proof of Leshno and Spector (1992) for

classic Blackwell�s theorem and that of Lehrer, Rosenberg, and Shmaya (2010) for common interest games

and di¤erent solution concepts.

8.2 Understanding Individual Su¢ ciency

Proof of Lemma 3. 1. We �rst show S � S where S =
�
T ; �

�
is the complete information structure

and S = (T; �) is an arbitrary information structure. De�ne Markov kernel � : T ��! �(T ) by

�
�
tjt; �

�
, � (tj�) . (42)

Now the marginal property (22) is satis�ed, sinceX
t2T

�
�
tj�
�
�
�
tjt; �

�
= � (tj�)

for each t 2 T and � 2 �; and the independence property (23) is satis�ed sinceX
t�i2T�i

�
�
(ti; t�i) j

�
ti; t�i

�
; �
�
=

X
t�i2T�i

� ((ti; t�i) j�) :

Now we show S � S where S = (T ; �) is the null information structure and S = (T; �) is an arbitrary

information structure. De�ne Markov kernel � : T � � ! �(T ) by � (tjt; �) = 1 and the conditions for
individual su¢ ciency are automatically satis�ed.

2. If S is su¢ cient for S0, then there exists � : T ��! �(T 0) such thatX
t

� (tj�)�
�
t0jt; �

�
= �0

�
t0j�
�

for each t0 and �, and

�i
�
t0ijti

�
�
X
t0�i

�
��
t0i; t

0
�i
�
j (ti; t�i) ; �

�
is independent of t�i and �. If S0 is individually su¢ cient for S00, then there exists �0 : T 0 ��! �(T 00)

such that X
t0

�0
�
t0j�
�
�0
�
t00jt0; �

�
= �00

�
t00j�

�
for each t00 and �, and

�0i
�
t00i jt0i

�
�
X
t00�i

�0
��
t00i ; t

00
�i
�
j
�
t0i; t

0
�i
�
; �
�
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is independent of t0�i and �. De�ne �
� : T ��! �(T 00) by

��
�
t00jt; �

�
=
X
t02T 0

�
�
t0jt; �

�
�
�
t00jt0; �

�
.

Now

��i
�
t00i jti

�
�

X
t00�i

��
��
t00i ; t

00
�i
�
j (ti; t�i) ; �

�
=

X
t00�i

X
t02T 0

�
�
t0jt; �

�
�0
�
t00jt0; �

�
=

X
t02T 0

�
�
t0jt; �

�
�0i
�
t00i jt0i

�
=

X
t0i2T 0i

�i
�
t0ijti

�
�0i
�
t00i jt0i

�
which is independent of t�i and �.

We now present a formal argument that the notion of higher order belief equivalence presented earlier

in De�nition 21 is equivalent to a de�nition in terms of the hierarchical belief types of Mertens and Zamir

(1985).

Fix �. Let X0 = �, and de�ne Xk = Xk�1 �
�
�
�
Xk�1��I�1. An element of

�
�
�
Xk
��1
k=0

, H is

called a hierarchy (of beliefs). For notational simplicity, we will work with a uniform prior on � (other full

support priors will lead to shifts in posteriors over � but no changes in higher order belief equivalence).

Fix an information structure S =
�
(Ti)

I
i=1 ; �

�
. For each i and ti 2 Ti, write b�1i [ti] 2 �(�) = � �X0

�
for

his posterior under a uniform prior on �, so

b�1i [ti] (�) =
X

t�i2T�i

� ((ti; t�i) j�)X
�02�;t�i2T�i

�
�
(ti; t�i) j�0

� .

Write b�2i [ti] 2 ���� (� (�))I�1� = �
�
X1
�
for his belief over � and the �rst order beliefs of other

players, so

b�2i [ti] ��; �1�i� =
X

ft�i2T�ijb�1j (tj)=�1j for each j 6=ig
� ((ti; t�i) j�)

X
�02�;ft�i2T�ijb�1j (tj)=�1j for each j 6=ig

�
�
(ti; t�i) j�0

� .
Proceeding inductively for k � 2, write b�ki (ti) 2 � �Xk�1� for his belief over � and the (k � 1)th order
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beliefs of other players, so

b�ki [ti]��; �k�1�i

�
=

X
ft�i2T�ijb�k�1j (tj)=�

k�1
j for each j 6=ig

� ((ti; t�i) j�)

X
�02�;ft�i2T�ijb�k�1j (tj)=�

k�1
j for each j 6=ig

�
�
(ti; t�i) j�0

� .
Now we can de�ne b�i : Ti ! H by b�i [ti] = �b�1i [ti] ; b�2i [ti] ; ::::�
and b� : T ! HI by b� [t] = (b�i [ti])Ii=1 .
Now we can identify information structure S with a probability distribution � ;S 2 �

�
HI
�
de�ned by

� ;S

�
(�i)

I
i=1

�
=

1

#�

X
ftjb�[t]=(�i)Ii=1 g

� (tj�) :

Lemma 10 (Higher Order Belief Characterization)

The following statements are equivalent:

1. Information structures S1 and S2 are higher order belief equivalent;

2. �S1 = �S2.

Proof. We argue that (1) implies (2) by induction. By (26),

fki (ti) = fki
�
t0i
�
) b�k;1i [ti] = b�k;1i �

t0i
�
.

Now suppose that

fki (ti) = fki
�
t0i
�
) b�k;li [ti] = b�k;li �t0i� .

By (26), we have

fki (ti) = fki
�
t0i
�
) b�k;l+1i [ti] = b�k;l+1i

�
t0i
�
.

But since the premise of the inductive step holds for l = 1, we have that for all l

fki (ti) = fki
�
t0i
�
) b�k;li [ti] = b�k;li �t0i� .

and thus

fki (ti) = fki
�
t0i
�
) b�ki [ti] = b�ki �t0i� .

Now suppose that (2) holds. Let T �i =range
�b�1i � =range�b�2i �. Let fki (ti) = b�ki (ti). By construction,

properties (25) and (26) hold with respect to information structure S� =
�
(T �i )

I
i=1 ; �

�
�
.
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Proof of Lemma 4. Part (1) of the lemma is stated in Theorem 1 in Liu (2011). Now if information

structures S1 =
�
T 1; �1

�
and S2 =

�
T 2; �2

�
are higher order belief equivalent, we can show that S1 is

individually su¢ cient for S2 by letting

�
�
t2jt1; �

�
=

8>><>>:
�2(t2j�)P

fet2jf2(et2)=f2(t2)g�
2(et2j�) , if f2

�
t2
�
= f1

�
t1
�
;

0; otherwise.

One can similarly show that S2 is individually su¢ cient for S1.

Now suppose that S1 and S2 are mutually individually su¢ cient. If either S1 or S2 are redundant, we

can replace them with their (by part (1)) unique non-redundant versions, and they will remain mutually

individually su¢ cient. So it is enough to show that if S1 and S2 are mutually individually su¢ cient and

non-redundant, then they are higher order belief equivalent. Write �1 and �2 for the Markov kernels

establishing that, respectively, S1 is individually su¢ cient for S2 and S2 is individually su¢ cient for S1.

De�ne b� : T 1 ��! �
�
T 1
�
by

b� �et1 ��t1; � � = X
t22T 2

�1
�
t2
��t1; � ��2 �et1 ��t2; � �

for all t1;et1 2 T 1 and � 2 �. It inherits the properties that
� (tj�) =

X
et2T

�
�etj�� b� �t ��et; �� and

b�i �et1i ��t1i � =
X

et1�i2T�i
b� ��et1i ;et1�i� ���t1i ; t1�i� ; � �

is independent of
�
t1�i; �

�
.

De�ne a partition of T 1i by

Pi (ti) =

8>>><>>>:eti 2 T
1
i

���������
there exists

�
tki
�K
k=1

withb�i �etk+1i

��tki � > 0 for each k = 1; :::;K � 1

and
�
t1i ; t

K
i

�
= either

�
ti;eti� or �ti;eti�

9>>>=>>>; .



Bayes Correlated Equilibrium February 4, 2013 57

Now X
bt�i2P�i(t�i)

�
��
ti;bt�i� j�� =

X
et2T

�
�etj�� X

bt�i2P�i(t�i)
b� ��ti;bt�i� ���eti;et�i� ; � �

=
X

eti2Pi(ti)
X

et�i2P�i(t�i)
�
��eti;et�i��� �� X

bt�i2P�i(t�i)
b� ��ti;bt�i� ���eti;et�i� ; � �

=
X

eti2Pi(ti)
X

et�i2P�i(t�i)
�
��eti;et�i��� �� X

bt�i2T�i
b� ��ti;bt�i� ���eti;et�i� ; � �

=
X

eti2Pi(ti)
X

et�i2P�i(t�i)
�
��eti;et�i��� �� b�i �ti ��eti �

=
X

eti2Pi(ti)
b�i �ti ��eti � X

et�i2P�i(t�i)
�
��eti;et�i��� �� :

Thus for any  2 �++ (�),

 (�)
X

bt�i2P�i(t�i)
�
��
ti;bt�i� j�� =  (�)

X
eti2Pi(ti)

b�i �ti ��eti � X
et�i2P�i(t�i)

�
��eti;et�i��� �� :

Writing

�i (ti) =
X

t�i2T�i;�2�
 (�)� ((ti; t�i) j�) ,

we have X
et�i2P�i(t�i)

� 
�et�i; �jti� = 1

�i (ti)

X
eti2Pi(ti)

b�i �ti ��eti ��i �eti� X
et�i2P�i(t�i)

� 
�et�i; �jti� :

This condition states that posteriors over (P�i (t�i) ; �) for ti are a weighted sum of posteriors foreti 2 Pi (ti). This implies that all have the same beliefs. If the information structure is non-redundant,

this implies that each b�i must be the identity function. But this implies that �1 and �2 are identities and
thus S1 and S2 are higher order belief equivalent.

Proof of Lemma 5. Suppose that S is individually su¢ cient for S0. Thus there exists � : T ��!
�(T 0) such that X

t

� (tj�)�
�
t0jt; �

�
= �0

�
t0j�
�

(43)

for each t0 and �, and X
t0�i

�
��
t0i; t

0
�i
�
j (ti; t�i) ; �

�
(44)

is independent of t�i and �. Let S� = (T �; ��) be the combined information structure with T �i = Ti � T 0i

for each i and

��
�
t; t0j�

�
= � (tj�)�

�
t0jt; �

�
(45)
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for each t; t0 and �.

We will �rst show that S is individually su¢ cient for S�. To do so, de�ne �� : T ��! �(T �) by

�� (t�jt; �) = ��
��et; t0� jt; �� =

8<: � (t0jt; �) , if et = t;

0, if et 6= t,
(46)

for each t� =
�et; t0� 2 T �, t and �. Observe thatX

t

� (tj�)�
��et; t0� jt; �� = �

�etj��� �t0jet; �� , by (46)
= ��

�et; t0j�� , by (45).
for each et, t0 and �. Also observe thatX

t��i

��
��
t�i ; t

�
�i
�
j (ti; t�i) ; �

�
=

X
et�i;t0�i

��
���eti; t0i� ; �et�i; t0�i�� j (ti; t�i) ; ��

=

8><>:
P

t0�i2T�i
��
��
t0i; t

0
�i
�
j (ti; t�i) ; �

�
, if et = t;

0, if et 6= t,

is independent of t�i and � by (44).

We will now show that S� is individually su¢ cient for S. To do so, de�ne b� : T � ��! �(T ) by

b� (tjt�; �) = b� �tj �et; t0� ; �� =
8<: 1, if et = t;

0, if et 6= t,
(47)

for each t� =
�et; t0� 2 T �, t and �. Observe thatX

t82T �
�� (t�j�) b� (tjt�; �) =

X
(et;t0)2T �

��
�et; t0j�� b� �tj �et; t0� ; ��

=
X
t02T 0

��
�
t; t0j�

�
, by (47)

=
X
t02T 0

� (tj�)�
�
t0jt; �

�
, by (45)

= � (tj�)

for each t and �. Also observe thatX
t�i

b� �(ti; t�i) j �t�i ; t��i� ; �� =
X
t�i

b� �(ti; t�i) j ��eti; t0i� ; �et�i; t0�i�� ; ��

=

8<: 1, if eti = ti;

0, if eti 6= ti,
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is independent of t�i and �.

We have now shown that if S is individually su¢ cient for S0 then there exists an expansion of S0, S�,

such that S and S� are mutually individually su¢ cient. By Lemma 4, S and S� are higher order belief

equivalent.

Conversely, suppose that S is higher order belief equivalent to an expansion of S0. Let us call that

expansion S� =
��
T 0i � T+i

�I
i=1

; ��
�
. By Lemma 4, S is individually su¢ cient for S�. Thus there exists

�� : T ��! �(T �) such that X
t

� (tj�)�� (t�jt; �) = �� (t�j�) (48)

for each t� and �, and X
t��i

��
��
t�i ; t

�
�i
�
j (ti; t�i) ; �

�
(49)

is independent of t�i and �. De�ne � : T ��! �(T 0) by

�
�
t0jt; �

�
=
X
t+

��
��
t0; t+

�
jt; �
�

(50)

for each t, t0 and �. NowX
t

� (tj�)�
�
t0jt; �

�
=

X
t+

X
t

� (tj�)��
��
t0; t+

�
jt; �
�
, by (50)

=
X
t+

��
��
t0; t+

�
j�
�
, by (50)

= �0
�
t0j�
�
, because S� is an expansion of S0

for each t0 and �. AlsoX
t0�i

�
��
t0i; t

0
�i
�
j (ti; t�i) ; �

�
=

X
t+

X
t0�i

��
��
t0i; t

+
�i
�
;
�
t0i; t

+
�i
�
j (ti; t�i) ; �

�
=

X
t+i

X
t��i

��
��
t0i; t

+
i

�
; t��ij (ti; t�i) ; �

�
which is independent of t�i and � by (49).

8.3 Leading Example: Binary Action, Binary Information Structure

8.3.1 Bayes Correlated Equilibria in the Leading Example

We �rst establish the claim that the set of symmetric BCE random choice rules of (G"; Sq;2q�1) if " = 0

and q � 2
3 is the convex hull of the set of four random choice rules given earlier by (33):�

q0; r0
�
= (0; 0) ; (1; 1); (q; 2q � 1) and (2 (1� q) ; 1� q).
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Now, symmetric random choice rules which are parameterized by (q0; r0) must have

max
�
0; 2q0 � 1

	
� r0 � q0: (51)

Consider the following convenient parameterization of the distribution on A2 � T 2 conditional on �,

generated by the information structure Sq;2q�1 and a symmetric decision rule:

� = 0 00 01 10 11

00 x1 x2 x3 x4

01 x2 x5 x6 x7

10 x3 x6 0 0

11 x4 x7 0 0

� = 1 00 01 10 11

00 0 0 x7 x4

01 0 0 x6 x3

10 x7 x6 x5 x2

11 x4 x3 x2 x1

: (52)

Here, rows correspond to the signal action pair (t; a) of Ann, the columns correspond to the signal action

pair (t; a) of Bob and the matrix corresponds to the state. For this decision rule to induce the random

choice rules parameterized by (q0; r0), we must have:

x1 + 2x3 = r0; (53)

x2 + x4 + x6 = q0 � r0: (54)

For the decision rule to be consistent with information structure Sq;2q�1, we must have:

x1 + 2x2 + x5 = 2q � 1; (55)

x3 + x4 + x6 + x7 = 1� q: (56)

The obedience constraint that a player follows his action recommendation when equal to his signal implies

that

x1 + x3 � x4: (57)

The obedience constraint that a player follows his action recommendation when not equal to his signal

implies that

x2 + x6 � x3: (58)

Adding (57) and (58) gives

x1 + 2x3 � x2 + x4 + x6 (59)
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Now

q0 � r0 = x2 + x4 + x6, by (54) (60)

� x3 + x4, by (57)

� x3 + x4 + x6 + x7

= 1� q, by (56)

But now the set of (q0; r0) satisfying (51) and (60) is the convex hull of

�
q0; r0

�
= (0; 0) ; (1; 1); (q; 2q � 1) and (2 (1� q) ; 1� q).

We have shown that the set of BCE random choice rules is a subset of this convex hull. To show it is

equal to this convex hull, it is enough to show that it is possible to �nd decision rules described according

to (52) satisfying (53) - (58) corresponding to each of these four points. These are, for (0; 0):

� = 0 00 01 10 11

00 0 0 0 0

01 0 2q � 1 0 1� q

10 0 0 0 0

11 0 1� q 0 0

� = 1 00 01 10 11

00 0 0 1� q 0

01 0 0 0 0

10 1� q 0 2q � 1 0

11 0 0 0 0

;

for (1; 1):

� = 0 00 01 10 11

00 2q � 1 0 1� q 0

01 0 0 0 0

10 1� q 0 0 0

11 0 0 0 0

� = 1 00 01 10 11

00 0 0 0 0

01 0 0 0 1� q

10 0 0 0 0

11 0 1� q 0 2q � 1

;

for (q; 2q � 1):

� = 0 00 01 10 11

00 2q � 1 0 0 1� q

01 0 0 0 0

10 0 0 0 0

11 1� q 0 0 0

� = 1 00 01 10 11

00 0 0 0 1� q

01 0 0 0 0

10 0 0 0 0

11 1� q 0 0 2q � 1

;
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and for (2 (1� q) ; 1� q):

� = 0 00 01 10 11

00 1� q 0 0 1� q

01 0 3q � 2 0 0

10 0 0 0 0

11 1� q 0 0 0

� = 1 00 01 10 11

00 0 0 0 1� q

01 0 0 0 0

10 0 0 3q � 2 0

11 1� q 0 0 1� q

:

8.3.2 Binary Information Structures and Orderings

Proof of Lemma 6. (1.) We �rst show that if (37) holds, then (q; r) is su¢ cient for (q0; r0). So�
q0; r0

�
= �1

�
1

2
; 0

�
+ �2

�
1

2
;
1

2

�
+ �3 (q; r) + �4 (q; q) :

We de�ne a Markov kernel:

�
�
t0 jt
�
, 1

2
�1It01 6=t02

�
t0
�
+
1

2
�2It01=t02

�
t0
�
+ �3It0=t

�
t; t0
�
+ �4It01=t02;t01=t1

�
t; t0
�
: (61)

Now we write the information structure S0 as, using

�
�
t0 j�

�
=
X
t

�
�
t0 jt
�
� (t j� ) ;

and so r0 = �0 (00 j0) with:

�0 (00 j0) = � (00 j00)� (00 j0) + � (00 j01)� (01 j0) + � (00 j10)� (10 j0) + � (00 j11)� (11 j0)

=
1

2
�2 + �3r + �4 (r + q � r)

=
1

2
�2 + �3r + �4q;

and similarly:

�0 (01 j0) = � (01 j00)� (00 j0) + � (01 j01)� (01 j0) + � (01 j10)� (10 j0) + � (01 j11)� (11 j0)

=
1

2
�1 + �3 (q � r) ;

as well as

�0 (11 j0) = � (11 j00)� (00 j0) + � (11 j01)� (01 j0) + � (11 j10)� (10 j0) + � (11 j11)� (11 j0)

=
1

2
�2 + �4 (q � r + (r + 1� 2q))

=
1

2
�2 + �4 (1� q) ;



Bayes Correlated Equilibrium February 4, 2013 63

and so it follows:

q0 = �0 (00 j0) + �0 (0 j01) = 1

2
�1 +

1

2
�2 + �3q + �4q;

r0 = �0 (00 j0) = 1

2
�2 + �3r + �4q:

More generally, we have

�0 (�j0) t02 = 0 t02 = 1

t01 = 0
1
2�2 + �3r + �4q

1
2�1 + �3 (q � r)

t1 = 1
1
2�1 + �3 (q � r)

1
2�2 + �4 (1� q)

�0 (�j1) t02 = 0 t02 = 1

t01 = 0
1
2�2 + �4 (1� q)

1
2�1 + �3 (q � r)

t01 = 1
1
2�1 + �3 (q � r)

1
2�2 + �3r + �4q

: (62)

We observe that the Markov kernel (61) does not satisfy individual su¢ ciency, in particular, if t1 = t02 =

t2 = 0, then X
t01

�
�
t01; 0 j00

�
=
1

2
�1 +

1

2
�2 + �3 + �4; (63)

but if t1 = 1; t02 = t2 = 0, then: X
t01

�
�
t01; 0 j10

�
=
1

2
�1 +

1

2
�2 + �3;

and hence the sum
P

t01
� (t01; t

0
2 jt1; t2 ) does depend on t1, hence a violation of individual su¢ ciency.

We now show that if S is su¢ cient for S0, then (37) holds. Without loss of generality we can take signal

distribution over three rather than four signals as t = 01 and t = 10 are symmetric. Thus rewriting for the

purpose of this proof

� (�j0) t = 00 t = f10; 01g t = 11

r 2 (q � r) 1 + r � 2q
� (�j1) t = 00 t = f10; 01g t = 11

1 + r � 2q 2 (q � r) r
;

as
� (�j0) t = 0 t = 1 t = 2

x 1� x� y y

� (�j1) t = 0 t = 1 t = 2

y 1� x� y x
; (64)

so that
x = r

y = 1 + r � 2q
()

r = x

q = 1
2x�

1
2y +

1
2

. (65)

Now, for S to be su¢ cient for S0, there has to be a Markov kernel � (t0jt) such that:

�
�
t0j�
�
=
X
t2T

�
�
t0jt
�
� (tj�) (66)

with 2666664
� (t0jt) 0 1 2

0 � (0j0) � (1j0) � (2j0)
1 � (0j1) � (1j1) � (2j1)
2 � (0j2) � (1j2) � (2j2)

3777775 .
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But with the symmetry of (64), it follows from equalities of (66) that we can write the Markov kernel

� (t0jt) as: 2666664
� (t0jt) 0 1 2

0 a� b 1� a b

1 c 1� 2c c

2 b 1� a a� b

3777775 ; (67)

with the nonnegativity restrictions:

0 � b � a � 1, and 0 � c � 1=2: (68a)

In turn, it follows that if S is su¢ cient for the information structure S0, then from (66) and (67), the

conditional probabilities x0; y0 have to satisfy:

x0 = (a� b� c)x+ (b� c) y + c;
y0 = (a� b� c) y + (b� c)x+ c:

(69)

But with the nonnegativity restrictions (68a), an equivalent restriction to (69) is that:

x0 =
�
�2 +

1
2�3
�
x� 1

2�3y +
1
2 (�1 + �3) ;

y0 =
�
�2 +

1
2�3
�
y � 1

2�3x+
1
2 (�1 + �3) ;

(70)

by relabeling

a = �1 + �2 + �3; b =
1

2
�1; c =

1

2
(�1 + �3) ;

and requiring that:

�1; �2; �3 � 0 and �1 + �2 + �3 � 1:

In other words (x0; y0) can be represented as the convex combination of the vertices:�
(0; 0) ;

�
1

2
;
1

2

�
; (x; y) ;

�
x+

1

2
(1� x� y) ; y + 1

2
(1� x� y)

��
,

with weights (1� �1 � �2 � �3) ; �1; �2; �3 respectively. But given (65), this means in terms of the original
variables (q0; r0), that they can be represented as the convex combination of the vertices�

(0; 0) ;

�
1

2
;
1

2

�
; (q; r) ; (q; q)

�
,

with the above weights (1� �1 � �2 � �3) ; �1; �2; �3, hence establishing (37).
(2.) and (3.) We �rst show that if (39) holds, then S is a non-communicating ungarbling of S0. This

in turn implies (from the de�nitions) that S is individually su¢ cient for S0. Suppose that�
q0; r0

�
= �1

�
1

2
; 0

�
+ �2

�
1

2
;
1

2

�
+ �3 (q; r) ;
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for some � 2 �(f1; 2; 3g). Let the Markov kernel be:

�
�
t0jt
�
=
1

2
�1It01 6=t02

�
t0
�
+
1

2
�2It01=t02

�
t0
�
+ �3It0=t

�
t; t0
�
. (71)

It is easy to verify that X
t0j2Tj

�
�
t0i; t

0
j jti; tj

�
;

is independent of tj , and hence that the Markov kernel satis�es the condition of a non-communicating

ungarbling, in particular if t0i = ti, then
P

t0j2Tj
�
�
t0i; t

0
j jti; tj

�
= 1

2�1 +
1
2�2 + �3 and if t0i 6= ti, thenP

t0j2Tj
�
�
t0i; t

0
j jti; tj

�
= 1

2�1+
1
2�2. Now, with given Markov kernel � (t

0jt) we �nd that the signal structure
that can generated from (71) and � (tj�), or

�0
�
t0j�
�
=
X
t2T

�
�
t0jt
�
� (tj�)

is given by, say t0 = 00 and � = 0 :

�0 (00j0) = � (00 j00)� (00 j0) + � (00 j01)� (01 j0) + � (00 j10)� (10 j0) + � (00 j11)� (11 j0)

=
1

2
�2 + �3r;

and similar:

�0 (01j0) = � (01 j00)� (00 j0) + � (01 j01)� (01 j0) + � (01 j10)� (10 j0) + � (01 j11)� (11 j0)

=
1

2
�1 + �3 (q � r) ;

and thus we have

q0 =
1

2
(�1 + �2) + q�3;

r0 =
1

2
�2 + r�3:

More generally, we have

�0 (�j0) 0 1

0 1
2�2 + r�3

1
2�1 + (q � r)�3

1 1
2�1 + (q � r)�3

1
2�2 + (r + 1� 2q)�3

�0 (�j1) 0 1

0 1
2�2 + (r + 1� 2q)�3

1
2�1 + (q � r)�3

1 1
2�1 + (q � r)�3

1
2�2 + r�3

:

(72)

We now show if S is individually su¢ cient for S0, then condition (38) holds. It then follows from the

de�nitions of individual su¢ ciency and non-communicating ungarbling that (39) holds as well. After all,

the set of information structures Sq0;r0 for which Sq;r is individually su¢ cient is a superset of the set of

information structures Sq0;r0 for which Sq;r is a non-communicating ungarbling.
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For individual su¢ ciency, the Markov kernel is allowed to depend on �, or � (t0jt; �) or �� (t0jt) ,
� (t0jt; �). Now by symmetry across states, it will be su¢ cient to establish the argument for � = 0, and so
we require that there exists �0 : f0; 1g2 ! f0; 1g2 such that

�0
�
t0j0
�
= � (00j0)�0

�
t0j00

�
+ � (01j0)�0

�
t0j01

�
+ � (10j0)�0

�
t0j10

�
+ � (11j0)�0

�
t0j11

�
for each t0, and

�0
�
t0i; t

0
j = 0jti; tj

�
+ �0

�
t0i; t

0
j = 1jti; tj

�
= �0i

�
t0ijti

�
is independent of tj . But by symmetry of the information structure, we have

q0 = �0 (00j0) + �0 (01j0)

= � (00j0)�0 (00j00) + � (01j0)�0 (00j01) + � (10j0)�0 (00j10) + � (11j0)�0 (00j11) +

� (00j0)�0 (01j00) + � (01j0)�0 (01j01) + � (10j0)�0 (01j10) + � (11j0)�0 (01j11)

= r�0 (00j00) + (q � r)�0 (00j01) + (q � r)�0 (00j10) + (r + 1� 2q)�0 (00j11) +

r�0 (01j00) + (q � r)�0 (01j01) + (q � r)�0 (01j10) + (r + 1� 2q)�0 (01j11)

= r�0i (0j0) + (q � r) �0i (0j0) + (q � r) �0i (0j1) + (r + 1� 2q) �0i (0j1)

= q�0i (0j0) + (1� q) �0i (0j1) ; (73)

and likewise:

1� q0 = q�0i (1j0) + (1� q) �0i (1j1) : (74)

After observing that �0i (0jti) + �0i (1jti) = 1, we can use (73) and (74) to solve

�0i
�
t0ijti

�
=

8<:
q+q0�1
2q�1 , if ti = t0i;

q�q0
2q�1 , if ti 6= t0i:

Thus we can write �0 (t
0jt) as (where t is represents by a row, and t0 by a column) as:

�0 (t
0jt) 00 01 10 11

00 w q+q0�1
2q�1 � w q+q0�1

2q�1 � w w � 2q0�1
2q�1

01 x q+q0�1
2q�1 � x q�q0

2q�1 � x x

10 y q�q0
2q�1 � y

q+q0�1
2q�1 � y y

11 z � 2q0�1
2q�1

q+q0�1
2q�1 � z q+q0�1

2q�1 � z z

(75)

In the construction of the Markov kernel (75) we use the symmetry in the information structure across

agents, namely that, e.g.

�0 (00j00) + �0 (00j01) = �0 (00j00) + �0 (00j10) .
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Now, non-negativity constraints in the Markov kernel require that:

2q0 � 1
2q � 1 � w � q + q0 � 1

2q � 1

0 � x � q � q0
2q � 1

0 � y � q � q0
2q � 1

2q0 � 1
2q � 1 � z � q + q0 � 1

2q � 1

Clearly this requires that q � q0; in this case

r0 = �0 (00j0)

= � (00j0)�0 (00j00) + � (01j0)�0 (00j01) + � (10j0)�0 (00j10) + � (11j0)�0 (00j11)

= rw + (q � r)x+ (q � r) y + (r + 1� 2q)
�
z � 2q

0 � 1
2q � 1

�
Now at the lower bound:

rw + (q � r)x+ (q � r) y + (r + 1� 2q)
�
z � 2q

0 � 1
2q � 1

�
= r

2q0 � 1
2q � 1 ;

whereas at the upper bound:

r
q + q0 � 1
2q � 1 + (q � r) q � q

0

2q � 1 + (q � r)
q � q0
2q � 1 + (r + 1� 2q)

�
q + q0 � 1
2q � 1 � 2q

0 � 1
2q � 1

�
=
q � q0
2q � 1 +

 
q0 � 1

2

q � 1
2

!
r

and so we have lower and upper bounds for r0: 
q0 � 1

2

q � 1
2

!
r � r0 � q � q0

2q � 1 +
 
q0 � 1

2

q � 1
2

!
r, (76)

which is an equivalent statement of (38), after observing that the convex combination (�1; �2; �3) over the

points
��

1
2 ; 0
�
;
�
1
2 ;
1
2

�
; (q; r)

	
reaches the lower bound for �2 = 0 and the upper bound for �1 = 0.

8.3.3 Examples 4 and 5

We establish a lemma which covers the Examples 4 and 5 of Section 5. Let � = f0; 1g and let S be given
by T1 = T2 = f0; 1g with the conditional probabilities:

� (�j0) 0 1

0 1
3

1
3

1 1
3 0

� (�j1) 0 1

0 0 1
3

1 1
3

1
3

;
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which are symmetric across agents and states. However, we compare S with information structures S0,

which may not be symmetric across states. Thus T 01 = T 02 = f0; 1g and the conditional probabilities are:

�0 (�j0) 0 1

0 r0 q � r0
1 q � r0 r0 + 1� 2q

�0 (�j1) 0 1

0 r1 + 1� 2q q � r1
1 q � r1 r1

From each agent�s point of view, the information structure S corresponds to observing one signal with

(symmetric) accuracy 2
3 , while the second information structure corresponds to observing a signal with

(symmetric) accuracy q. In the information structure S, the players�signals are as correlated as possible

given the accuracy. In the information structure S0, we allow the correlation to depend on the state.

Non-negativity also requires that (r0; r1) 2 [2q � 1; q]2. Thus we have S0 parameterized by�
(q; r0; r1)

����12 � q � 1 and (r0; r1) 2 [2q � 1; q]2
�
:

Lemma 11 (Binary Information Structures)

1. Information structure S 2
3
; 1
3
is su¢ cient for information structure Sq0;r00;r01 if and only if

q0 � 2

3
and

��r01 � r00�� � min�16 ; 43 � 2q0
�
. (77)

2. Information structure S 2
3
; 1
3
is individually su¢ cient for information structure Sq0;r00;r01 if and only if

q0 � 2

3
and 2q0 � 1 � r00; r

0
1 � 1� q0. (78)

3. Information structure S 2
3
; 1
3
is a non-communicating ungarbling of information structure Sq0;r00;r01 if

and only if

q0 � 2

3
; 2q0 � 1 � r00; r

0
1 � 1� q0, and

��r00 � r01�� � 2

3
� q0. (79)

Proof. (1.) There is su¢ ciency if there exists � : f0; 1g2 ! �
�
f0; 1g2

�
such that we can express �0 as

�0 (�j0) 0 1

0 1
3 (� (00j00) + � (00j01) + � (00j10))

1
3 (� (01j00) + � (01j01) + � (01j10))

1 1
3 (� (10j00) + � (10j01) + � (10j10))

1
3 (� (11j00) + � (11j01) + � (11j10))

and
�0 (�j1) 0 1

0 1
3 (� (00j11) + � (00j01) + � (00j10))

1
3 (� (01j11) + � (01j01) + � (01j10))

1 1
3 (� (10j11) + � (10j01) + � (10j10))

1
3 (� (11j11) + � (11j01) + � (11j10))

:
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De�ning b� (t0) , 1
2� (t

0j01) + � (t0j10), we can re-write this as

�0 (�j0) 0 1

0 1
3� (00j00) +

2
3
b� (00) 1

3� (01j00) +
2
3
b� (01)

1 1
3� (10j00) +

2
3
b� (10) 1

3� (11j00) +
2
3
b� (11)

�0 (�j1) 0 1

0 1
3� (00j11) +

2
3
b� (00) 1

3� (01j11) +
2
3
b� (01)

1 1
3� (10j11) +

2
3
b� (10) 1

3� (11j11) +
2
3
b� (11)

Now a necessary condition for su¢ ciency is that there exists b� 2 �(T 0) such that
min

�
�0
�
t0j0
�
; �0
�
t0j0
�	
� 2

3
b� �t0�

for all t0, and thus X
t0

min
�
�0
�
t0j0
�
; �0
�
t0j0
�	
� 2

3
.

Suppose �rst that

r01 � r00 + 2q
0 � 1.

Then X
t0

min
�
�0
�
t0j0
�
; �0
�
t0j0
�	
= r00 + 2

�
q0 � r01

�
+ r00 + 1� 2q0 �

2

3
;

which can be re-written as

r01 � r00 �
1

6
.

On the other hand, if

r00 + 2q
0 � 1 � r01 � r00,

then X
t0

min
�
�0
�
t0j0
�
; �0
�
t0j0
�	
= r01 + 1� 2q0 + 2

�
q0 � r01

�
+ r00 + 1� 2q0 �

2

3
;

which can be written as

r01 � r00 �
4

3
� 2q0:

Thus if r01 � r00, it is a necessary condition that either

r00 + 2q
0 � 1 � r01 � r00 +

1

6

or r01 � min

�
r00 + 2q

0 � 1; 4
3
� 2q0

�
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which implies q0 � 2
3 and

r01 � r00 � min
�
1

6
;
4

3
� 2q0

�
:

The symmetric argument if r00 � r01 gives the conditions for su¢ ciency.

For the converse, suppose that the conditions of (77) are satis�ed. Let

�
�
t0j01

�
= �

�
t0j10

�
= b� �t0� = min f�0 (t0j0) ; �0 (t0j0)gX

et0
min

�e�0 (t0j0) ; �0 �et0j0�	 ;
and let

�
�
t0j00

�
= 3�0

�
t0j0
�
� 2b� �t0� and �

�
t0j11

�
= 3�0

�
t0j1
�
� 2b� �t0� .

By construction, � (t0j00) and � (t0j11) are well de�ned and the conditions for su¢ ciency are satis�ed.
(2.) Individual su¢ ciency requires that there exists �0 : f0; 1g2 ! f0; 1g2 such that

�0
�
t0j0
�
=
1

3
�0
�
t0j00

�
+
1

3
�0
�
t0j01

�
+
1

3
�0
�
t0j10

�
for each t0 and

�0
�
t0i; t

0
j = 0jti; tj

�
+ �0

�
t0i; t

0
j = 1jti; tj

�
= �0i

�
t0ijti

�
is independent of tj . But since, for example,

q0 =
2

3
�0i (0j0) +

1

3
�0i (0j1)

1� q0 =
2

3
�0i (1j0) +

1

3
�0i (1j1)

we have

�0
�
t0i; t

0
j = 0jti; tj

�
+ �0

�
t0i; t

0
j = 1jti; tj

�
= �0i

�
t0ijti

�
=

8<: 3q0 � 1, if t0i = ti;

2� 3q0, if t0i 6= ti:

Thus we can write �0 (t
0jt) as

�0 (t
0jt) 00 01 10 11

00 x 3q0 � 1� x 3q0 � 1� x x+ 3� 6q0

01 y 3q0 � 1� y 2� 3q0 � y y

10 z 2� 3q0 � z 3q0 � 1� z z

Non-negativity constraints require that

6q � 3 � x � 3q � 1

0 � y � 2� 3q

0 � z � 2� 3q
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These conditions imply that q0 � 2
3 and r

0
0 =

1
3 (x+ y + z) satis�es

2q0 � 1 � r0 � 1� q0.

The symmetric argument implies that

2q0 � 1 � r01 � 1� q0.

For the converse, obviously if the conditions in (78) are satis�ed, then we can construct �0 according to

the table above. A similar argument would apply for �1.

(3.) Building on the earlier arguments of (1.) and (2.), we must show that there exists � : f0; 1g2 !
f0; 1g2 such that

�0 (�j0) 0 1

0 1
3 (� (00j00) + � (00j01) + � (00j10))

1
3 (� (01j00) + � (01j01) + � (01j10))

1 1
3 (� (10j00) + � (10j01) + � (10j10))

1
3 (� (11j00) + � (11j01) + � (11j10))

�0 (�j1) 0 1

0 1
3 (� (00j11) + � (00j01) + � (00j10))

1
3 (� (01j11) + � (01j01) + � (01j10))

1 1
3 (� (10j11) + � (10j01) + � (10j10))

1
3 (� (11j11) + � (11j01) + � (11j10))

and also satisfying

�
�
t0i; t

0
j = 0jti; tj

�
+ �

�
t0i; t

0
j = 1jti; tj

�
=

8<: 3q0 � 1, if t0i = ti;

2� 3q0, if t0i 6= ti:

So we can represent � by

� (t0jt) 00 01 10 11

00 x 3q0 � 1� x 3q0 � 1� x x+ 3� 6q0

01 y 3q0 � 1� y 2� 3q0 � y y

10 z 2� 3q0 � z 3q0 � 1� z z

11 w 2� 3q0 � w 2� 3q0 � w w � 3 + 6q0

;

where non-negativity constraints imply that

6q0 � 3 � x � 3q0 � 1;

0 � y � 2� 3q0;

0 � z � 2� 3q0;

0 � z � 2� 3q0:
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We want to characterize the set of (r00; r
0
1) such that we can choose (x; y; z; w) satisfying the above inequal-

ities with

r00 =
1

3
(x+ y + z) and r01 =

1

3
(y + z + w)� 1 + 2q0:

By arguments for individual su¢ ciency, we must have 2q0 � 1 � r00; r
0
1 � 1 � q0. But in addition observe

that

y + z = 3r00 � x;

and therefore

3r00 � 3q0 + 1 � y + z � 3r00 + 3� 6q0:

Now

r01 =
1

3
w +

1

3
(y + z)� 1 + 2q0;

and so
1

3

�
3r00 � 3q0 + 1

�
� 1 + 2q0 � r01 �

1

3

�
2� 3q0 + 3r00 + 3� 6q0

�
� 1 + 2q0;

or

q0 � 2
3
� r01 � r00 �

2

3
� q0:

Conversely, suppose that these conditions are satis�ed. (to be completed)

We can then summarize what the conditions of Lemma 11 imply for the case of q0 = 5
9 . Now, non-

negativity of the conditional probabilities �0 then implies that

1

9
� r00; r

0
1 �

5

9
:

We have that S is su¢ cient for S0 if ��r01 � r00�� � 1

6
:

We have that S is individually su¢ cient for S0 if

1

9
� r00; r

0
1 �

4

9
:

We have that S is a non-communicating ungarbling of S0 if

1

9
� r00; r

0
1 �

4

9

and ��r01 � r00�� � 1

9
:
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8.3.4 Incomplete Information Correlated Equilibrium

In Section 6, we describe the relationship of the a number of prominent solution concepts to each other

and to the notion of Bayes correlated equilibrium. In particular, we illustrate the relationship within our

leading example of the binary and symmetric game and information structure. These results are graphically

represented in Figure 8 and 9. Here we provide the details of the analytical results for the binary and

symmetric game and information structure.

Feasible Random Choice Rule We recall that we parametrized the symmetric information structure

Sq;r with binary signals by (q; r) and for the purpose of the analysis of the present example we restrict

attention to the information structure with the minimal positive correlation given accuracy q, and hence

r = 2q � 1, or Sq;2q�1. We describe the symmetric random choice rule in the binary game by (q0; r0). We

now consider the feasible random choice rules given the information structure Sq;r. It follows directly from

the de�nition of a feasible random choice rule, De�nition 17, and the binary signal that the set of feasible

random choice rules is given by:

F (G0; Sq;r) = conv

��
1

2
; 0

�
;

�
1

2
;
1

2

�
; (q; 2q � 1) ; (1� q; 0)

�
; (80)

where
�
1
2 ; 0
�
represents uniformly randomized choices over (0; 1) and (1; 0) and

�
1
2 ;
1
2

�
represents uniformly

randomized choices over (0; 0) and (1; 1). The remaining feasible random choices represent the case when

each agent either always follows the signal, a = t, namely (q; 2q � 1), or never follows the signal, a 6= t,

namely (1� q; 0).

Belief Invariant Bayes Correlated Equilibrium With q � 2
3 , the set of belief invariant Bayes corre-

lated equilibria is the convex hull of

��
2� q
3

;
1

3

�
;

�
1

2
;
1

2

�
; (q; 1� 2q)

�
: (81)

We continue to use parametrization (52). We recall that a decision rule is de�ned by:

� : �� T1 � T2 ! �(A1 �A2) ;

and a belief invariant decision rule, see De�nition (16) required that:

�i (ai jti; t�i; � ) =
X

a�i2A�i

� (ai; a�i jti; t�i; � )

is independent of t�i and �. So, in the binary game it is su¢ cient to consider ai = 0 and ti = 0, then we

have:
x1 + x2

x1 + 2x2 + x5
=

x3 + x4
x3 + x4 + x6 + x7

=
x4 + x7

x3 + x4 + x6 + x7
: (82)
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In other words if we write � for the probability that a player chooses action a if he observes signal t = a,

then:

q0 = q�+ (1� q) (1� �), � =
q0 + q � 1
2q � 1 .

where we note that, by symmetry assumptions, this must be the same for all players and signals. This

gives us the following conditions for belief invariance:

x1 + x2 =

�
q0 + q � 1
2q � 1

�
(x1 + 2x2 + x5) ; (83)

x3 + x4 =

�
q0 + q � 1
2q � 1

�
(x3 + x4 + x6 + x7) ;

x4 + x7 =

�
q0 + q � 1
2q � 1

�
(x3 + x4 + x6 + x7) :

Now, we �nd that

x1 + x2 =

�
q0 + q � 1
2q � 1

�
(x1 + 2x2 + x5) , by (83)

=

�
q0 + q � 1
2q � 1

�
(2q � 1) ; by (55)

= q0 + q � 1;

and thus

x2 = q0 + q � 1� x1

Also

x3 + x6 =

�
1� q0 + q � 1

2q � 1

�
(x3 + x4 + x6 + x7) , by (83)

=

�
q � q0
2q � 1

�
(1� q) , by (56)

and thus

x6 =

�
q � q0
2q � 1

�
(1� q)� x3.

From (58), we have the requirement that

x2 + x6 � x3 � 0:

Using the above expressions for x2 and x6, we have

q0 + q � 1� x1 +
�
q � q0
2q � 1

�
(1� q)� x3 � x3 � 0:
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or

q0 + q � 1 +
�
q � q0
2q � 1

�
(1� q) � x1 + 2x3 = r0:

But this condition states that (q0; r0) is above the straight line connecting (1� q; 1� q),
�
2�q
3 ; 13

�
and

(q; 2q � 1). But we also have

x3 + x4 =

�
q0 + q � 1
2q � 1

�
(x3 + x4 + x6 + x7) , by (83)

=

�
q0 + q � 1
2q � 1

�
(1� q) , (56).

Combining with earlier inequalities we have:

x3 � min
��

q � q0
2q � 1

�
(1� q) ;

�
q0 + q � 1
2q � 1

�
(1� q)

�
=

8<:
�
q�q0
2q�1

�
(1� q) , if q0 � 1

2 ;�
q0+q�1
2q�1

�
(1� q) , if q0 � 1

2 ;
:

and

x1 � q0 + q � 1;

and thus

r0 = x1 + 2x3 �

8<: q0 + q � 1 + 2
�
q�q0
2q�1

�
(1� q) , if q0 � 1

2 ;

q0 + q � 1 + 2
�
q0+q�1
2q�1

�
(1� q) , if q0 � 1

2 :

But this condition states that (q0; r0) is below, �rst, the straight line �rst connecting (1� q; 0) to
�
2�q
3 ; 13

�
to
�
1
2 ;
1
2

�
and then connecting

�
1
2 ;
1
2

�
and (q; 2q � 1). These lower and upper bounds establish the necessity

of the above conditions.

To establish su¢ ciency, it is enough to construct BIBCE corresponding to the extreme points as follows.

For
�
2�q
3 ; 13

�
, the BIBCE is:

� = 0 00 01 10 11

00 1
3 (2q � 1) 0 1

3 (1� q) 0

01 0 2
3 (2q � 1)

1
3 (1� q)

1
3 (1� q)

10 1
3 (1� q)

1
3 (1� q) 0 0

11 0 1
3 (1� q) 0 0

For
�
1
2 ;
1
2

�
, the BIBCE is

� = 0 00 01 10 11

00 q � 1
2 0 1

2 (1� q) 0

01 0 q � 1
2 0 1

2 (1� q)

10 1
2 (1� q) 0 0 0

11 0 1
2 (1� q) 0 0
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For (q; 2q � 1), the BIBCE is the BNE with

� = 0 00 01 10 11

00 2q � 1 0 0 1� q

01 0 0 0 0

10 0 0 0 0

11 1� q 0 0 0

Bayesian Solutions The set of Bayesian solutions (if q � 2
3) will be the convex hull of��

1� q; 1
2
(1� q)

�
; (1� q; 1� q) ; (q; q) ; (q; 2q � 1) ; (2 (1� q) ; (1� q))

�
(84)

Now, join feasibility, under our prior symmetric assumptions and the special structure of the experiment,

r = 2q � 1, means that the only potentially binding constraint is that:

x3 = x7.

This in turn implies that

2x3 + x4 + x6 = x3 + x4 + x6 + x7 = 1� q;

and thus

2x3 + x4 + x6 � 1� q:

Also since

x1 + 2x2 + x5 = 2q � 1;

we have

x1 + x2 � 2q � 1;

and so

q0 = x1 + 2x3 + x2 + x4 + x6

� 2q � 1 + 1� q

= q:

Conversely, obedience requires that

2x3 � x4 + x6:

Combined with

2x3 + x4 + x6 = 1� q;
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we have

2x3 �
1

2
(1� q) ;

and thus

q0 � 1� q:

These two bounds on q0 (1� q � q0 � q) together with the BCE restrictions imply that it is necessary for

a Bayesian solution to be in the convex hull described above.

For su¢ ciency, we show that each extreme points corresponds to a Bayesian solution. For
�
1� q; 12 (1� q)

�
,

we have
� = 0 00 01 10 11

00 0 0 1
4 (1� q)

1
4 (1� q)

01 0 2q � 1 1
4 (1� q)

1
4 (1� q)

10 1
4 (1� q)

1
4 (1� q) 0 0

11 1
4 (1� q)

1
4 (1� q) 0 0

:

For (1� q; 1� q), we have

� = 0 00 01 10 11

00 0 0 1
2 (1� q) 0

01 0 2q � 1 0 1
2 (1� q)

10 1
2 (1� q) 0 0 0

11 0 1
2 (1� q) 0 0

:

For (q; q), we have

� = 0 00 01 10 11

00 2q � 1 0 1
2 (1� q) 0

01 0 0 0 1
2 (1� q)

10 1
2 (1� q) 0 0 0

11 0 1
2 (1� q) 0 0

:

For (q; 2q � 1), we have

� = 0 00 01 10 11

00 2q � 1 0 0 1� q

01 0 0 0 0

10 0 0 0 0

11 1� q 0 0 0

:
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For (2(1� q) ; 1� q), we have
� = 0 00 01 10 11

00 1� q 0 0 1� q

01 0 3q � 2 0 0

10 0 0 0 0

11 1� q 0 0 0

:

Belief Invariant Bayesian Solutions It is easy to verify that the extreme points of the set of belief

invariant Bayes correlated equilibria satisfy join feasibility. This means that the set of belief invariant

Bayesian solutions equals the set of belief invariant BCE in the current example.

8.4 More De�nitions of Incomplete Information Correlated Equilibrium

We brie�y discuss how further de�nitions of incomplete information correlated equilibrium reviewed by

Forges (1993), (2006) appear in our framework. A recent paper of Milchtaich (2012) gives an even richer

taxonomy of possible de�nitions of incomplete information correlated equilibrium.

Fix (G;S), write Bi for the �nite set of pure strategies bi : Ti ! Ai, b for a pro�le of pure strategies

and B = B1 � ::: � BI . The following is a feasibility restriction which says that a mediator could have

generated the decision by picking a pro�le of pure strategies without knowing the state or players�types,

and then making action recommendations according to the pure strategies after somehow learning the

players�types:

De�nition 30 Decision rule � is agent normal form feasible for (G;S) if there exists q 2 �(B) such that

� (ajt; �) =
X

fb2Bjbi(ti)=ai;8ig
q (b)

One can show that agent normal form feasibility implies belief invariance.9 This restriction is added to

give the second stronger solution concept:

De�nition 31 Decision rule � is an agent normal form correlated equilibrium of (G;S) if it is join feasible,

agent normal form feasible (and thus belief invariant) and obedient.

This is the solution concept discussed in Section 4.2 of Forges (1993) and Section 2.3 of Forges (2006). It

corresponds to applying the complete information de�nition of correlated equilibrium to the agent normal

9Forges (2006) cites an example due to Lehrer, Rosenberg and Shmaya showing that belief invariance does not imply agent

normal form feasibility as incorrectly claimed in Forges (1993).
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form of the reduced incomplete information game. It was also studied by Samuelson and Zhang (1989)

and Cotter (1994). The solution concept only makes sense on the understanding that the players receive

a recommendation for each type but do not learn what recommendation they would have received if they

had been di¤erent types. If they did learn the whole strategy that the mediator choose for them in the

strategic form game, then an extra incentive compatibility condition would be required:

De�nition 32 Decision rule � is strategic form incentive compatible for (G;S) if there exists q 2 �(V )
such that

� (ajt; �) =
X

fb2Bjbi(ti)=ai for each ig
q (b) (85)

for each a 2 A, t 2 T and � 2 �; and, for each i = 1; :::; I, ti 2 Ti, ai 2 Ai and bi 2 Bi such that

bi (ti) = ai, we have

X
a�i2A�i;t�i2T�i;�2�

 (�)� (tj�)

0@ X
fb�i2B�ijb�i(t�i)=a�ig

q (bi; b�i)

1Aui ((ai; a�i) ; �) (86)

�
X

a�i2A�i;t�i2T�i;�2�
 (�)� (tj�)

0@ X
fb�i2B�ijb�i(t�i)=a�ig

q (bi; b�i)

1Aui
��
a0i; a�i

�
; �
�

Note that this condition implies both agent normal form feasibility and obedience. This restriction

gives the third stronger solution concept:

De�nition 33 Decision rule � is a strategic form correlated equilibrium of (G;S) if it is join feasible and

strategic form incentive compatible (and thus agent normal form feasible, belief invariant and obedient).

This is the solution concept discussed in Section 4.1 of Forges (1993) and Section 2.2 of Forges (2006).

This solution concept was studied by Cotter (1991).

Thus far we have simply been adding restrictions, so that the solution concept have become stronger

as we go from Bayesian solution, to belief invariant Bayesian solution, to agent normal form correlated

equilibrium, to strategic form correlated equilibrium. For the Bayesian solution, an omniscient mediator

who observes players� types for free is assumed. For agent normal form and strategic form correlated

equilibrium, the players�types cannot play a role in the selection of recommendations to the players. An

intermediate assumption is that the players can report their types to the mediator, but will do so truthfully

only if it is incentive compatible to do so.
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De�nition 34 Decision rule � is truth telling for (G;S) if, for each i = 1; :::; I and ti 2 Ti, we haveX
a2A;t�i2T�i;�2�

 (�)� ((ti; t�i) j�)� ((ai; a�i) j (ti; t�i) ; �)ui ((ai; a�i) ; �) (87)

�
X

a2A;t�i2T�i;�2�
 (�)� ((ti; t�i) j�)�

�
(ai; a�i) j

�
t0i; t�i

�
; �
�
ui ((�i (ai) ; a�i) ; �) ;

for all t0i 2 Ti and �i : Ai ! Ai.

Note that this condition implies obedience (De�nition 14). One can show that this condition is implied

by strategic form incentive compatibility. Now we have the �fth solution concept:

De�nition 35 Decision rule � is a communication equilibrium of (G;S) if it is join feasible and truth-

telling (and thus obedient).

This is the solution concept discussed in Section 4.3 of Forges (1993) and Section 2.4 of Forges (2006),

and developed earlier in the work of Myerson (1982) and Forges (1986).

Finally, we discuss the "universal Bayesian approach" in Section 6 of Forges (1993). She considers a

prior "information scheme" (in our language, prior on � and information structure) is not taken as given.

Thus her "universal Bayesian solution" is de�ned for (Ai; ui)
I
i=1. Expressing her ideas in the language of

random choice rules, she studies the following solution concept.

De�nition 36 A prior  2 �(�) and a random choice rule � : � ! �(A) for a universal Bayesian

solution of (Ai; ui)
I
i=1 if they satisfy obedience for the the null information structure, i.e., for each i = 1; :::; I

and ai 2 Ai, we have X
a�i;�

 (�) � ((ai; a�i) j�)ui ((ai; a�i) ; �) (88)

�
X
a�i;�

 (�) � ((ai; a�i) j�)ui
��
a0i; a�i

�
; �
�
;

for all a0i 2 Ai.

Thus Bayes correlated equilibria of (G;S) correspond to universal Bayesian solutions of G.



Bayes Correlated Equilibrium February 4, 2013 82

References

Aumann, R. (1974): �Subjectivity and Correlation in Randomized Strategies,�Journal of Mathematical

Economics, 1, 67�96.

Aumann, R. (1987): �Correlated Equilibrium as an Expression of Bayesian Rationality,�Econometrica,

55, 1�18.

Aumann, R., and J. Dreze (2008): �Rational Expectations in Games,�American Economic Review, 98,

72�86.

Aumann, R., and M. Maschler (1995): Repeated Games with Incomplete Information. MIT.

Bergemann, D., B. Brooks, and S. Morris (2012): �Extremal Information Structures in First Price

Auctions,�Discussion paper, Yale University and Princeton University.

Bergemann, D., and S. Morris (2007): �Belief Free Incomplete Information Games,�Discussion Paper

1629, Cowles Foundation for Research in Economics, Yale University.

(2011a): �Correlated Equilibrium in Games of Incomplete Information,�Discussion paper, Cowles

Foundation for Research in Economics, Yale University and Princeton University.

(2011b): �Robust Predictions in Games of Incomplete Information,�Discussion paper, Cowles

Foundation for Research in Economics, Yale University.

(2012): Robust Mechanism Design. World Scienti�c Publishing, Singapore.

Blackwell, D. (1951): �Comparison of Experiments,� in Proc. Second Berkeley Symp. Math. Statist.

Probab., pp. 93�102. University of California Press, Berkeley.

(1953): �Equivalent Comparison of Experiments,� Annals of Mathematics and Statistics, 24,

265�272.

Calvo-Argengol, A. (2006): �The Set of Correlated Equilibria of 2x2 Games,�Discussion paper, Uni-

versitat Autònoma de Barcelona.

Caplin, A., and D. Martin (2011): �A Testable Theory of Imperfect Perception,�New York University.

Chwe, M. (2006): �Incentive Compatibility Implies Signed Covariance,�Discussion paper, UCLA.

Cotter, K. (1991): �Correlated Equilibrium in Games with Type Dependent Strategies,� Journal of

Economic Theory, 54, 48�68.



Bayes Correlated Equilibrium February 4, 2013 83

(1994): �Type Correlated Equilibrium with Payo¤ Uncertainty,�Economic Theory, 4, 617�627.

Dekel, E., D. Fudenberg, and S. Morris (2007): �Interim Correlated Rationalizability,�Theoretical

Economics, 2, 15�40.

Ely, J. C., and M. Peski (2006): �Hierarchies of Belief and Interim Rationalizability,� Theoretical

Economics, 1, 19�65.

Forges, F. (1986): �Correlated Equilibria in Games with Incomplete Information: A Model with Veri�able

Types,�International Journal of Game Theory, 15, 65�82.

(1993): �Five Legitimate De�nitions of Correlated Equilibrium in Games with Incomplete Infor-

mation,�Theory and Decision, 35, 277�310.

(2006): �Correlated Equilibrium in Games with Incomplete Information Revisited,�Theory and

Decision, 61, 329�344.

Forges, F., and F. Koessler (2005): �Communication Equilibria with Partially Veri�able Types,�

Journal of Mathematical Economics, 41, 793�811.

Gossner, O. (2000): �Comparison of Information Structures,�Games and Economic Behavior, 30, 44�63.

Gossner, O., and J. Mertens (2001): �The Value of Information in Zero-Sum Games,� Universite

Paris-Nanterre and CORE, University Catholique de Louvain.

Hirshleifer, J. (1971): �The Private and Social Value of Information and the Reward to Inventive

Activity,�American Economic Review, 61, 561�574.

Kamenica, E., and M. Gentzkow (2011): �Bayesian Persuasion,�American Economic Review, 101,

2590�2615.

Lehrer, E., D. Rosenberg, and E. Shmaya (2010): �Signaling and Mediation in Games with Common

Interest,�Games and Economic Behavior, 68, 670�682.

(2011): �Garbling of Signals and Outcome Equivalence,�Discussion paper, Tel Aviv University,

University of Paris and Northwestern University.

Leshno, M., and Y. Spector (1992): �An Elementary Proof of Blackwell�s Theorem,�Mathematical

Social Sciences, 25, 95�98.

Liu, Q. (2011): �Correlation and Common Priors in Games with Incomplete Information,� Discussion

paper, Columbia University.



Bayes Correlated Equilibrium February 4, 2013 84

Marschak, J., and K. Miyasawa (1968): �Economic Comparability of Information Systems,� Interna-

tional Economic Review, 9, 137�174.

Mertens, J., and S. Zamir (1985): �Formalization of Bayesian Analysis for Games with Incomplete

Information,�International Journal of Game Theory, 14, 1�29.

Milchtaich, I. (2012): �Implementability of Correlated and Communication Equilibrium Outcomes in

Incomplete Information Games. Part I: De�nitions and Results,�Discussion paper, Bar Ilan University.

Myerson, R. (1982): �Optimal Coordination Mechanism in Generalized Principal-Agent Problems,�

Journal of Mathematical Economics, 10, 67�81.

Nau, R. (1992): �Joint Coherence in Games of Incomplete Information,�Management Science, 38, 374�

387.

Neyman, A. (1991): �The Positive Value of Information,�Games and Economic Behavior, 3, 350�355.

Peski, M. (2008): �Comparison of Information Structures in Zero-Sum Games,�Games and Economic

Behavior, 62, 732�735.

Rayo, L., and I. Segal (2010): �Optimal Information Disclosure,� Journal of Political Economy, 118,

949�987.

Samuelson, L., and J. Zhang (1989): �Correlated Equilibria and Mediated Equilibria in Games with

Incomplete Information,�Discussion paper, Pennsylvania State University.

Torgersen, E. (1991): Comparison of Statistical Experiments. Cambridge University Press, Cambridge.



Bayes Correlated Equilibrium February 4, 2013 1

Illustrations

Figure 1: Single Agent BCE random choice

rule and varying accuracy qone bce

Figure 2: Single Agent BCE, BNE and feasible

random choice rules for accuracy q = 5=8.q5/8
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Figure 3: Single Agent BCE, BNE and feasible

random choice rules for accuracy q = 7=8.q7/8

Figure 4: Binary Symmetric Information

Structures with accuracy q and correlation r.pi
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Figure 5: BCE random choice rules for

(q; r) = (2=3; 1=3) and (q; r) = (5=6; 2=3).ai

Figure 6: The set of binary symmetric

information structures for which Sq;r with

(q; r) = (4=6; 3=6) is individually su¢ cient

(IS) and su¢ cient su¢ cient (S [ IS).sis
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Figure 7: The set of asymmetric information

structures Sq0;r00;r01 with q0 = 5=9 for which Sq;r
with (q; r) = (2=3; 1=3) is su¢ cient (S),

individually su¢ cient (IS) and a

non-communicating ungarbling (NCG).sit
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Figure 8: The set of BCE, BIBCE and

feasible random choice rules under Sq;r with

(q; r) = (5=6; 2=3).aj

Figure 9: The set of BCE, BIBCE and Bayes

solution random choice rules under Sq;r with

(q; r) = (5=6; 2=3).ak
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Figure 10: The Solution Conceptsvenn1

Figure 11: More Solution Conceptsvenn2
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