
Yale University Yale University 

EliScholar – A Digital Platform for Scholarly Publishing at Yale EliScholar – A Digital Platform for Scholarly Publishing at Yale 

Cowles Foundation Discussion Papers Cowles Foundation 

5-1-2011 

A Practical Asymptotic Variance Estimator for Two-Step A Practical Asymptotic Variance Estimator for Two-Step 

Semiparametric Estimators Semiparametric Estimators 

Daniel Ackerberg 

Xiaohong Chen 

Jinyong Hahn 

Follow this and additional works at: https://elischolar.library.yale.edu/cowles-discussion-paper-series 

 Part of the Economics Commons 

Recommended Citation Recommended Citation 
Ackerberg, Daniel; Chen, Xiaohong; and Hahn, Jinyong, "A Practical Asymptotic Variance Estimator for 
Two-Step Semiparametric Estimators" (2011). Cowles Foundation Discussion Papers. 2147. 
https://elischolar.library.yale.edu/cowles-discussion-paper-series/2147 

This Discussion Paper is brought to you for free and open access by the Cowles Foundation at EliScholar – A 
Digital Platform for Scholarly Publishing at Yale. It has been accepted for inclusion in Cowles Foundation 
Discussion Papers by an authorized administrator of EliScholar – A Digital Platform for Scholarly Publishing at 
Yale. For more information, please contact elischolar@yale.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Yale University

https://core.ac.uk/display/346446538?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://elischolar.library.yale.edu/
https://elischolar.library.yale.edu/cowles-discussion-paper-series
https://elischolar.library.yale.edu/cowles
https://elischolar.library.yale.edu/cowles-discussion-paper-series?utm_source=elischolar.library.yale.edu%2Fcowles-discussion-paper-series%2F2147&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/340?utm_source=elischolar.library.yale.edu%2Fcowles-discussion-paper-series%2F2147&utm_medium=PDF&utm_campaign=PDFCoverPages
https://elischolar.library.yale.edu/cowles-discussion-paper-series/2147?utm_source=elischolar.library.yale.edu%2Fcowles-discussion-paper-series%2F2147&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elischolar@yale.edu


 
 
 

A PRACTICAL ASYMPTOTIC VARIANCE ESTIMATOR 
FOR TWO-STEP SEMIPARAMETRIC ESTIMATORS 

 
 

By 
 

Daniel Ackerberg, Xiaohong Chen, and Jinyong Hahn 
 
 
 

May 2011 
 
 
 
 
 

COWLES FOUNDATION DISCUSSION PAPER NO. 1803 
 
 
 
 
 
 
 
 
 
 
 
 
 

COWLES FOUNDATION FOR RESEARCH IN ECONOMICS 
YALE UNIVERSITY 

Box 208281 
New Haven, Connecticut 06520-8281 

 
 http://cowles.econ.yale.edu/  



A Practical Asymptotic Variance Estimator for

Two-Step Semiparametric Estimators

Daniel Ackerberg

UCLA

Xiaohong Chen

Yale University

Jinyong Hahn�

UCLA

First Version: March 20, 2009; Final Version: July, 2010.
Forthcoming in the Review of Economics and Statistics

Abstract

The goal of this paper is to develop techniques to simplify semiparametric inference.

We do this by deriving a number of numerical equivalence results. These illustrate that

in many cases, one can obtain estimates of semiparametric variances using standard for-

mulas derived in the already-well-known parametric literature. This means that for com-

putational purposes, an empirical researcher can ignore the semiparametric nature of the

problem and do all calculations �as if�it were a parametric situation. We hope that this

simplicity will promote the use of semiparametric procedures.

EconLit Subject Descriptor: C140

1 Introduction

Many recently introduced empirical methodologies utilize two-step semiparametric estimation

approaches. In the �rst step, certain functions are estimated nonparametrically. In the second

step, structural/causal parameters are estimated parametrically, using the nonparametric es-

timates from the �rst stage as inputs. Such estimators have been used both in the treatment

e¤ect literature to estimate average treatment e¤ects (e.g. Hahn (1998), and Hirano, Imbens,

and Ridder (2003)) and in the Labor and IO literatures to estimate rich, often dynamic, struc-

tural models (Hotz and Miller (1993, 1994), Olley and Pakes (1995), Aguirregabiria and Mira

�Thanks to Victor Aguirregabiria, Lanier Benkard, Richard Blundell, Jeremy Fox, Bryan Graham, Phil

Haile, Jim Heckman, Guido Imbens, Pat Kline, Pedro Mira, Whitney Newey, Jim Powell, Geert Ridder, and

Je¤ Wooldridge for helpful comments. All remaining errors are our own.
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(2002, 2007), Jofre-Bonet and Pesendorfer (2003), Bajari, Benkard, and Levin (2007), Pakes,

Ostrovsky, and Berry (2007), Pesendorfer and Schmidt-Dengler (2007), Bajari, Hong, Krainer,

and Nekipelov (2008), and Bajari, Chernozhukov, Hong, and Nekipelov (2010)). These two-step

semiparametric estimators are often have signi�cant computational advantages over one-step

estimators.

These methods often rely crucially on being nonparametric in the �rst step. For example, in

the approach of Hotz and Miller (1993), the �rst step involves estimating reduced form policy

functions that arise from the equilibrium of the underlying structural model. From a practical

perspective, there is a sense in which the nonparametric �rst step estimation is parametric -

since one needs to choose, e.g. the number of terms in a series approximation or the �exibility

of a sieve. But naïve parametric speci�cation of these reduced form policy functions is likely to

contradict the underlying structural model.1 So, researchers have to take seriously the �non-

parametric promise� of increasing the �exibility of the �rst-step speci�cation as the number

of observations increases. This requires one to explicitly consider the problem�s semipara-

metric nature when estimating the variances of the estimated �nite-dimensional (structural)

parameters.

There is a long line of theoretical literature that derives expressions for semiparametric

asymptotic variances of two-step estimators (Newey (1994), Andrews (1994), Newey and Mc-

Fadden (1994), Ai and Chen (2007), Chen, Linton and van Keilegom (2003), Ichimura and

Lee (2010), to name a few). Some of these papers also show how to consistently estimate

the asymptotic variances. While these theoretical results are useful, their implementation is

typically not straightforward in practice. These limitations have often lead applied researchers

to use the bootstrap to estimate asymptotic variances (e.g., Ryan (2006), Ellickson and Misra

(2008), Macieira (2008)), but this can be computationally demanding and may also be di¢ cult

to justify theoretically.2

The purpose of this paper is to show that in a large class of models, one can greatly

simplify the estimation of semiparametric asymptotic variances. The core point of our paper

is a numerical equivalence result. To describe this, consider researcher A, who estimates the

model with a parametric �rst step. Also consider researcher B, who estimates the model semi-

parametrically, using the method of sieves as the nonparametric �rst step. Since sieves are

just �su¢ ciently �exible�parameterized functions, let us assume that researcher B�s sieve is

identical to researcher A�s parameterized function for the �rst step.

Given this choice of sieve, it is clear that researcher A and researcher B will obtain identical

point estimates of the structural parameters. On the other hand, the asymptotic variances of the

2



two estimators will be di¤erent, as researcher A is in a parametric world where the total number

of unknown parameters is constant (and �nite), while researcher B is in a semiparametric world

where the total number of unknown parameters is increasing to in�nity.

Our results concern the estimated asymptotic variance of the structural parameters. We

show, perhaps surprisingly, that in a large class of models, the estimate of the semiparametric

asymptotic variance using the methods of Newey (1994) or Ai and Chen (2007) is numerically

identical to the estimate of parametric asymptotic variance using standard two-step parametric

results (described in Section 2, see, e.g. Murphy and Topel (1985), or Newey and McFadden

(1994)). In other words, researcher A and researcher B will obtain numerically identical variance

estimates (for the structural parameters). This is true even though they are estimating di¤erent

objects asymptotically � the true asymptotic parametric variance vs. the true asymptotic

semiparametric variance of the �nite dimensional structural parameters of interest. To the

best of our knowledge, Newey (1994, Section 6) was the �rst to recognize this equivalence3

in a simple example involving one in�nite-dimensional parameter, which is estimated by least

squares using a series approximation in the �rst step.4 We go one step further and generalize his

insight to other classes of two step semiparametric estimators, including models with multiple

nonpametric components, models characterized by likelihoods, and models where the second

step moments depend on the �rst step in�nite-dimensional parameter in a more complicated

way. These equivalence results are useful for applied researchers, since they imply that one

can obtain estimates of standard errors for the �nite dimensional structural parameters using

well-known and simple formulas from the parametric literature.5 We hope that this simplicity

will promote the use of asymptotic semiparametric variance estimates and lessen the need for

computationally burdensome bootstrapping.6

We start with a quick review of the standard two-step parametric approach in Section

2. Section 3 presents equivalence results for models where the �rst-stage sieve nonparametric

estimation is based on conditional moment restrictions. Section 4 considers the case where

�rst-stage sieve nonparametric estimation is based on a maximum-likelihood like criterion.

Section 5 considers various extensions of the result, e.g. to situations where the second stage is

overidenti�ed, and gives explicit examples of applications of our approach to the IO and Labor

literatures discussed above. Section 6 concludes.
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2 Review: Standard Errors in Two-Step Parametric M-

Estimators

In this section, we provide a brief review of how to estimate the asymptotic variance of two-step

parametric M-estimators. We assume that a researcher estimates a �nite dimensional parameter

vector � using a �rst-step M-estimator (e.g. OLS, NLLS, MLE, method of moments). This

estimate is then plugged into a second-step M-estimator which is used to estimate another �nite

dimensional parameter vector �. The question is whether and how the estimation error of the

�rst-step M-estimator b� a¤ects the asymptotic variance of the second-step M-estimator b�. To
the best of our knowledge, Pagan (1984), Newey (1984), and Murphy and Topel (1985) were

among the �rst to investigate this issue. These methods of adjusting the asymptotic variance

of b� are now so well-understood that they can even be found in standard textbooks such as
Wooldridge (2002, Chapter 12.4).

Suppose that in the �rst step, a researcher estimates � with the b� that solves
1

n

nX
i=1

'
�
zi; b�� = 0 (1)

In the case where b� solves some optimization problem, such as OLS, NLLS, or MLE, ' is the
�rst order condition of the optimization problem. In the second step, the researcher estimates

� by solving
1

n

nX
i=1

 
�
zi; b�; b�� = 0 (2)

Note that the second step M-estimator b� will in general be di¤erent from the e� that solves
1
n

Pn
i=1  

�
zi; e�; ��� = 0, where �� denotes the true value of � satisfying E[' (zi; ��)] = 0. There-

fore, the asymptotic variance of
p
n
�b� � ��

�
is in general di¤erent from that of

p
n
�e� � ��

�
,

due to the estimation error in b�.
In order to assess the asymptotic variance of

p
n
�b� � ��

�
that correctly re�ects the estima-

tion error of b�, a researcher can consider the two-step estimator as a component of a one-step
M-estimator7

1

n

nX
i=1

g
�
zi; b�; b�� = 0 (3)

where

g (zi; �; �) =

"
' (zi; �)

 (zi; �; �)

#
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Note that (3) is equivalent to 1
n

Pn
i=1 '

�
zi; b�� = 0 and 1

n

Pn
i=1  

�
zi; b�; b�� = 0. Therefore, theb� and b� that solve (3) are numerically identical to b� and b� that solve (1) and (2). Letting

� = (�0; �0)0 and recognizing that b� = �b�0; b�0�0 is an M-estimator, we can then use standard
arguments8 to compute the asymptotic variance of

p
n (b�� ��) i.e. a consistent estimator of

the asymptotic variance of
p
n (b�� ��) is given by 

1

n

nX
i=1

@g (zi; b�)
@�0

!�1 
1

n

nX
i=1

g (zi; b�) g (zi; b�)0! 1
n

nX
i=1

@g0 (zi; b�)
@�

!�1
:

The asymptotic variance of
p
n
�b� � ��

�
is simply the upper left block of the asymptotic vari-

ance matrix of
p
n (b�� ��). This one-step interpretation is a device that facilitates our theoret-

ical discussion. In practice, two-step estimation techniques are often adopted for computational

convenience.

3 Estimator of Asymptotic Variance of Two-Step Semi-

parametric Estimators

We present our �rst main result in this section. We consider semiparametric two-step esti-

mation, where a researcher estimates certain functions with a nonparametric estimator in the

�rst-step. In the second-step, she plugs the nonparametric estimators into a parametric mo-

ment equation to compute an estimator b� of some �nite dimensional parameter vector. We
assume that the �rst-step nonparametric estimation is implemented by the method of sieves,

e.g. a series approximation. Note that the �rst-step requires computation of a �nite dimen-

sional parameter in practice. For example, if the �rst-step involves nonparametric estimation of

a conditional expectation implemented with a series approximation, then the �rst step amounts

to OLS in practice.

Now assume that there are two researchers. Researcher A makes an incorrect assumption

that the �rst-step is in fact parametric, therefore believing that the number of terms in the

series approximation remains constant as the sample size grows to in�nity. Because she believes

the �rst step to be a parametric procedure (and because the second step is truly parametric),

Researcher A would estimate the asymptotic variance of b� using the formula discussed in Section
2.

Researcher B, on the other hand, makes the correct nonparametric assumption that the

number of terms in the series approximation increases to in�nity as an appropriate function
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of the sample size. Therefore, Researcher B would like to compute a consistent estimator of

the asymptotic variance of b� using a formula that correctly re�ects b��s semiparametric nature.
Because the two researchers are considering di¤erent asymptotic sequences, Researcher A�s

asymptotic variance formula (i.e., the theoretical formula expressed in population expectations)

will generally be di¤erent from Researcher B�s. In other words, Researcher A is trying to

estimate a di¤erent theoretical variance object than Researcher B.9 Despite this di¤erence, this

section proves that the estimator of the asymptotic variance that Researcher A implements will

be numerically equivalent to the estimator of the asymptotic variance that Researcher B uses.

We consider two separate cases. In the �rst case, the second stage moment equation depends

on the non-parametric function only through its value evaluated at the particular observation.

In the second case, the second stage moment equation depends on the entire functional form of

the non-parametric function.

3.1 Dependence of Second-Stage on the Non-Parametric Function

Consider a model given by the following moment restrictions

E [y1i � h1� (x1i)jx1i] = 0;
...

E [yLi � hL� (xLi)jxLi] = 0;

E [m (zi; ��; h1� (x1i) ; : : : ; hL� (xLi))] = 0: (4)

The h1 (�) ; : : : ; hL (�) functions are the nonparametric components in the model. � is the �nite-
dimensional component of the model. Note that the conditioning variables x1i; : : : ; xLi are

allowed to di¤er from each other. We also allow the dimensions of x1i; : : : ; xLi to di¤er. Unlike

the second case discussed in this section, the second stage moment equation m depends on the

nonparametric components only through their values h1 (x1i) ; : : : ; hL (xLi).

The practitioner nonparametrically estimates h1� (x1i) ; : : : ; hL� (xLi) with the estimatorsbh1 (x1i) ; : : : ;bhL (xLi), and then estimates �� with the b� that solves
1

n

nX
i=1

m
�
zi; b�;bh1 (x1i) ; : : : ;bhL (xLi)� = 0:

Ai and Chen (2007) show that b� is pn-consistent and asymptotically normal under certain
regularity conditions, and propose a consistent estimator bV of the asymptotic variance. (See

Appendix A for details.) Ai and Chen assume that nonparametric estimation is implemented by
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the �sieve�approach, where each hl(xl) is approximated by a polynomial function pl;1 (xl) �(l);1+

� � �+ pl;Kl;n
(xl) �(l);Kl;n

.

A Naïve practitioner�s estimator We now consider how the semiparametric estimatorsb� and bV relate to what one obtains if the estimation problem is approached from a purely

parametric perspective (i.e. Researcher A). First, note that a parametric estimator based on

the parametric speci�cation hl(xl) = pl;1 (xl) �(l);1 + � � � + pl;Kl
(xl) �(l);Kl

= hl
�
xl; �(l)

�
(where

Kl = Kl;n is a function of n although it is perceived to be �xed for our �ctitious Researcher

A) will result in an estimate of � that is numerically equivalent to b�. This means that for the
purpose of computing b�, it is harmless to �pretend�that the hl�s are parametrically speci�ed.
We now show that the same idea holds for the estimated variance.

Our parametric Researcher A perceives b� to be a simple M-estimator solving the moment
equation E [g (zi; ��; ��)] = 0, where

g (zi; �) =

2666664
pK1
1 (x1;i)

�
y1i � h1

�
x1i; �(1)

��
...

pKL
L (xL;i)

�
yLi � hL

�
xLi; �(L)

��
m
�
zi; �; h1

�
x1i; �(1)

�
; : : : ; hL

�
xLi; �(L)

��

3777775 ;

where � = (�0; �0)0, � =
�
�0(1); : : : ; �

0
(L)

�0
, and for l = 1; :::; L, hl

�
xli; �(l)

�
= pKl

l (xl;i)
0�(l) with

pKl
l (xl;i) = (pl;1 (xl;i) ; ::::; pl;Kl

(xl;i))
0. Here both � and � are �nite dimensional parameters

such that dim (g) = dim (�) + dim (�). A consistent estimator of variance matrix of all the

parameters is given by the usual formula 
1

n

nX
i=1

@g (zi; b�)
@�0

!�1 
1

n

nX
i=1

g (zi; b�) g (zi; b�)0! 1
n

nX
i=1

@g (zi; b�)0
@�

!�1
(5)

and like in Section 2 an estimator bVp of the parametric asymptotic variance of b� can be obtained
from the upper left corner of (5).

Numerical equivalence Note that bVp is obtained from a completely di¤erent perspective

than the one underlying bV . In fact, the idea that led to bVp is wrong! However, Appendix C
shows that bVp is numerically identical to bV . While subtle, this has a profound consequence for
semiparametric statistical inference. Researchers wanting (or needing) to do semiparametric

inference need not explicitly consider the semiparametric nature of the problem in estimation.
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After specifying the �exible series approximation, they can proceed as if the problem is com-

pletely parametric for the purpose of inference on �. Obviously, this does not necessarily mean

that the same is true for inference on the nonparametric components of the problem.

3.2 Extension: Dependence of Second-Stage on Full Non-Parametric

Function

Consider a model where

E [yi � h� (xi)jxi] = 0;

E [m (zi; ��; h�)] = 0:

Note the important di¤erence between this model and the previous model. In this model, the

moment equation m (zi; ��; h�) depends not only on h� through its value at xi but through its

values at all support points of xi. Does this change our conclusion? For simplicity of notation,

we will assume that yi is a scalar and h� is a scalar-valued function.

Now assume that a practitioner takes a parametric perspective with h� (�) = p1 (�) �1+ � � �+
pK (�) �K , where K = Kn is a function of n although it is perceived to be �xed for our �ctitious

practitioner. His moment equation is then E [g (zi; ��; ��)] = 0 where

g (zi; �; �) =

"
pK (xi) (yi � h� (xi))

m (zi; �; h�)

#
with

@g (zi; �; �)

@ (�; �)0
=

"
0 �pK (xi) pK (xi)0

@m(zi;�;h�)
@�0 m (zi; �; �)

0

#
;

where m (zi; �)
0 = [m1 (zi; �) ; : : : ;mK (zi; �)], and for k = 1; :::; K;

mk (zi; �) �
@m (zi; �)

@h
[pk] :

Here, the pathwise derivatives are de�ned as

@m (zi; b�)
@h

h
h� bhi = dm

�
zi; b�; (1� �)bh+ �h

�
d�

������
�=0

:

As before, the numerical equivalence goes through. (See Appendix C.) Thus we can conclude

the upper-left (dim (�)� dim (�)) block of the parametric variance estimator 
1

n

nX
i=1

@g (zi; b�)
@ (�; �)0

!�1 
1

n

nX
i=1

g (zi; b�) g (zi; b�)0! 1
n

nX
i=1

@g (zi; b�)0
@ (�; �)

!�1
8



is numerically identical to a valid consistent estimator of the asymptotic semiparametric vari-

ance.

4 Estimator of Asymptotic Variance of Sieve MLE

In this section, we consider consistent estimation of the asymptotic variances of sieve maxi-

mum likelihood estimators (MLE). We assume that an econometric model is characterized by

a probability density with two kinds of parameters: �nite dimensional parameters � and some

unknown functions h(�). We estimate (�; h) by sieve maximum likelihood in which h is ap-

proximated by �nite dimensional �exible parametric families. This implies that the estimator

of (�; h) is in fact identical to the maximizer of a (potentially) misspeci�ed parametric likeli-

hood. As in Section 3, we show that the estimator of the asymptotic variance of the parametric

component can be given a parametric interpretation.

Assume that we observe zi for each individual. We further assume that zi are inde-

pendent and identically distributed.10 The log likelihood of the data fzigni=1 is given by
1
n

Pn
i=1 ` (zi; �; h (�)), where � 2 B is a vector of �nite-dimensional parameter of interest and

h 2 H is a vector of L real-valued unknown functions (i.e., h (�) = (h1 (�) ; : : : ; hL (�)) and each
hl (�) could depend on di¤erent argument xl for l = 1; :::; L). We take h (�) to be the nonparamet-
ric nuisance functions. Denote � = (�; h) 2 B �H. We assume that the true parameter value
�� = (��; h�) 2 B � H uniquely solves the population problem sup(�;h)2B�HE [` (zi; �; h (�))].
The sieve MLE b� of � is a sample counterpart. In Appendix D, we propose a consistent

estimator bVsmle of the asymptotic variance of b�.11
We now discuss the practical implications. Consider a �ctitious practitioner who assumes

that h can be parametrically speci�ed. In terms of estimating (�; h), this �ctitious practitioner�s

estimator would be numerically identical to ours. After all, he will solve the same maximization

problem. Would his standard error for b� be identical to ours?
As in the previous section, the practitioner would write

hl(xl) = pl;1 (xl) �(l);1 + � � �+ pl;Kl
(xl) �(l);Kl

= pKl
l (xl)

0�(l) for �(l) =
�
�(l);1; :::; �(l);Kl

�0
with pKl

l (xl) = (pl;1 (xl) ; ::::; pl;Kl
(xl))

0, where Kl = Kl;n is a function of n although it is

perceived to be �xed for our �ctitious practitioner. Denote � =
�
�0(1); : : : ; �

0
(L)

�0
which is

a K � 1�vector with K = K1 + � � � + KL. The parametric practitioner would estimate

9



(��; ��) = argmax�;� E[` (zi; �; �)] via parametric MLE, and obtain:

p
n
�b� � ��; b� � ��

�0
! N

0@0;
24 E

h
d`(z;��;��)

d�
d`(z;��;��)

d�0

i
E
h
d`(z;��;��)

d�
d`(z;��;��)

d�0

i
E
h
d`(z;��;��)

d�
d`(z;��;��)

d�0

i
E
h
d`(z;��;��)

d�
d`(z;��;��)

d�0

i 35�11A ;

and the asymptotic variance for b�, Vp, is simply the upper-left block of the above variance and
covariance matrix, which can be computed by the partitioned inverse formula.

If the practitioner uses the outer-product based estimator of the information matrix, then the

asymptotic variance matrix for
�b�; b��0 can be consistently estimated by the following matrix:

24 1
n

Pn
i=1

d`(zi;b�;b�)
d�

d`(zi;b�;b�)
d�0

1
n

Pn
i=1

d`(zi;b�;b�)
d�

d`(zi;b�;b�)
d�0

1
n

Pn
i=1

d`(zi;b�;b�)
d�

d`(zi;b�;b�)
d�0

1
n

Pn
i=1

d`(zi;b�;b�)
d�

d`(zi;b�;b�)
d�0

35�1 ;
and the asymptotic variance for b� can be consistently estimated by the upper-left block bVp of
the above matrix, which can be computed by the partitioned inverse formula.

It turns out that the variance estimator bVp obtained from the pretension that the model is

parametrically speci�ed is exactly identical to the sieve variance estimator bVsmle obtained under
the correct assumption that the model is semiparametrically speci�ed. (See Appendix D.) We

conclude that, as long as outer-product is used for calculation of information, �parametric�

inference for � is numerically identical to semiparametric inference.

5 Extensions and Examples

In the �rst three subsections of this section, we present three simple extensions to cover models

that are commonly seen in applied microeconometrics. In the last two subsections, we discuss

some speci�c examples that are commonly seen in labor and IO applications.

5.1 First Step with Restriction

As another extension, we can consider a model where

E [y1i � h� (x1;i)jx1;i] = 0;
...

E [yLi � h� (xL;i)jxL;i] = 0;

E [m (zi; ��; h� (x1;i) ; : : : ; h� (xL;i))] = 0;

10



where the dimensions of x1i; : : : ; xLi are restricted to be identical, and for simplicity we assume

h� (�) is a scalar-valued function.
We now assume that a practitioner adopts a parametric speci�cation h (x) = pK (x)0 �, where

K = Kn is a function of n although it is perceived to be �xed for our �ctitious practitioner. A

natural estimator would minimize

1

n

nX
i=1

(y1i � h (x1;i))
2 + � � �+ 1

n

nX
i=1

(yLi � h (xL;i))
2 +

 
1

n

nX
i=1

m (zi; �; h (x1;i) ; : : : ; h (xL;i))

!2
The practitioner�s moment condition is then E [g (zi; ��; ��)] = 0, where

g (zi; �; �) =

"
pK (x1;i) (y1i � h (x1i; �)) + � � �+ pK (xL;i) (yLi � h (xLi; �))

m (zi; �; h (x1i; �) ; : : : ; h (xLi; �))

#

where h (xli; �) = pK (xl;i)
0 �. It follows that the practitioner�s estimator of asymptotic variance

is (5).

Again, it turns out that the numerical equivalence continues to hold, and we obtain the

practical conclusion that researchers wanting to do semiparametric inference need not explicitly

consider the semiparametric nature of the problem in estimation. (See Appendix E for a proof.)

5.2 Nonparametric Sieve M-Estimation As First Step

Next consider semiparametric two-step estimation where the �rst-step involves nonparametric

sieve, maximum-likelihood-like, M-estimation in the �rst step. Again, these nonparametric

estimators are plugged into a parametric moment equation to compute an estimator b� of some
�nite dimensional parameter in the second step. Note that the �rst step sieve M-estimation

requires computation of a �nite dimensional parameter in practice.

Suppose that the true structural parameters �� and the unknown functions h� (�) are iden-
ti�ed by the following model:

h� = argmax
h2H

E [` (zi; h (�))] ; E [m (zi; ��; h� (�))] = 0;

where ` (zi; h) is any criterion function and h = (h1; :::; hL) is a vector of L unknown real-

valued functions, each hl(�) potentially depending on di¤erent arguments.12 We propose a sieve
estimator b�, the characterization of the asymptotic variance V of

p
n
�b� � ��

�
, as well as a

consistent estimator bV of V in Appendix F.

As before, we note that the b� is numerically equivalent to the parametric estimator based
on the parametric speci�cation h(�) = p1 (�) �1 + � � � + pK (�) �K , where K = Kn is a function

11



of n although it is perceived to be �xed for our �ctitious practitioner. For the purpose of

computing b�, it is harmless to pretend that h is parametrically speci�ed. As before, it can be
shown that the sieve estimator bV of the asymptotic variance of b� is numerically identical to
the well-known Murphy and Topel�s (1985) formula. (See Appendix F.) We again obtain the

practical conclusion that researchers wanting to do semiparametric inference need not explicitly

consider the semiparametric nature of the problem in estimation.

5.3 Overidenti�ed Second Step

So far, we have implicitly assumed that the second step is exactly identi�ed, i.e., dim (m) =

dim (�). We now discuss the extension to the case where dim (m) > dim (�). For simplicity of

presentation, we will assume that the nonparametric component estimated in the �rst step is

scalar-valued, and is identi�ed from the moment restriction E [y � h0 (x)jx] = 0. In the second
step, we estimate � based on the moment restriction E [m (z; �0; h0)] = 0. Because h0 is not

known, we estimate �0 by making the sample analog 1
n

Pn
i=1m

�
zi; �;bh� as close to zero as

possible. This is usually done by

min
�

 
1

n

nX
i=1

m
�
zi; �;bh�!0 b
�1 1

n

nX
i=1

m
�
zi; �;bh�!

for some appropriate �weight matrix� b
�1, i.e., GMM. If we choose the probability limit 
 ofb
 to be equal to the asymptotic variance matrix of 1
n

Pn
i=1m

�
zi; �0;bh�, then we can easily

infer13 that the asymtotic variance of the resultant estimator is equal to (M 0
�1M)
�1, where

M = E [@m (zi; �0; h0)/ @�
0] can be consistently estimated by cM = 1

n

Pn
i=1 @m

�
zi; e�;bh�. @�0

given any arbitrary consistent estimator e� of �0.
Therefore, for two step estimation, the only thing that matters is consistent estimation of


 because the rest is taken care of by the usual GMM formula. For this purpose, we writeb� = 1
n

Pn
i=1m

�
zi; �0;bh�, and understand 
 to be the asymptotic variance of b�. If �0 were

known, we could estimate 
 using the Murphy-Topel formula applied to the �parameter��0 in

the moment restrictions

E [y � h0 (x)jx] = 0

E [m (zi; �0; h0)� �0] = 0

Thus, to derive a feasible estimator of 
 (and then �0), we propose the following algorithm:

1. Estimate bh as before, i.e., by the sieve method as discussed at the end of Section 3.1.
12



2. Using an arbitrary weight matrix W , minimize the sample moment�
1
n

Pn
i=1m

�
zi; �;bh��0W �

1
n

Pn
i=1m

�
zi; �;bh�� over � to obtain a preliminary estimator

� of �0.

3. Pretend that � = �0. �Estimate�b� by setting the sample moment 1nPn
i=1

�
m
�
zi; �;bh�� b��

equal to zero (this estimation problem is exactly identi�ed (and trivial))

4. Again consider � to be �xed. Apply Murphy-Topel, i.e., the naïve practitioner�s esti-

mator of the asymptotic variance discussed in Section 3.1, to the moment conditions

corresponding to Steps 1 and 3, i.e.

E [y � h0 (x)jx] = 0

E
�
m
�
zi; �; h0

�
� �0

�
= 0

to obtain an estimate of the asymptotic variance matrix of b�. Call this b
.
5. Solve the minimization problem

min
�

 
1

n

nX
i=1

m
�
zi; �;bh�!0 b
�1 1

n

nX
i=1

m
�
zi; �;bh�!

Call the solution b�.
6. Compute 0B@

0@ 1
n

nX
i=1

@m
�
zi; b�;bh�
@�0

1A0 b
�1
0@ 1
n

nX
i=1

@m
�
zi; b�;bh�
@�0

1A
1CA
�1

for a consistent estimator of the asymptotic variance of b�. (Note that Step 6 does not
require applying Murphy-Topel a second time. This is because in this approach, the e¤ect

of the variance in bh on b� is summarized in the b
 obtained from using Murphy-Topel on�bh; b�� in Step 4.)
This algorithm is the procedure of a naïve practitioner, who equates the sieve estimation

of h0 (x) with parametric estimation. Yet at the same time, b
 is a consistent estimator of the
asymptotic variance matrix of 1

n

Pn
i=1m

�
zi; �0;bh�, where bh is interpreted to be nonparametric,

so the algorithm produces a correct semiparametric method of inference. As such, the result in

this section can be understood to be a natural extension of the previous equivalence results.

13



5.4 Example: Estimation of Average Treatment E¤ects

There is a large body of literature on estimation of average treatment e¤ects. We discuss two

estimators that �t into our framework. Consider the e¤ect of a treatment on some outcome

variable of interest. Let di denote the dummy variable such that di = 1 when treatment is

given to the ith individual, and di = 0 otherwise. Let y0i and y1i denote the potential outcomes

when di = 0 and di = 1, respectively. We can then say that the treatment causes the outcome

variable of the ith individual to increase by y1i�y0i. Thus, y1i�y0i can be called the treatment
e¤ect for the ith individual. See, e.g., Rubin (1974). Individual treatment e¤ect cannot be

observed, though, because the econometrician only observes di and yi � diy1i+(1� di) y0i. On

the other hand, the average treatment e¤ect � � E [y1i � y0i] can be identi�ed and consistently

estimated when di is assigned independent of (y0i; y1i). Extending this idea, Hahn (1998) and

Hirano, Imbens, and Ridder (2003) proposed estimators of the average treatment e¤ect when

the treatment di is assigned independent of (y0i; y1i) given the observed covariates xi.

Hahn�s (1998) estimator is

b� = 1

n

nX
i=1

 bh1 (xi)bp (xi) � bh2 (xi)
1� bp (xi)

!

and Hirano, Imbens, and Ridder�s (2003) estimator is

e� = 1

n

nX
i=1

�
diyibp (xi) � (1� di) yi

1� bp (xi)
�
;

where bh1 (xi), bh2 (xi), and bp (xi) are nonparametric estimators of E [diyijxi], E [ (1� di) yijxi],
and E [dijxi]. We can easily recognize that they �t into our framework discussed in Section 3.
Hirano, Imbens, and Ridder (2003) also consider an estimator where the propensity score

p (xi) = E [dijxi] is estimated by nonparametric maximum likelihood estimation with a Logit

speci�cation. This alternative estimator �ts into our framework in Section 5.2. We note that

our result there can in principle accommodate the case where the propensity score is speci�ed

as a Probit model, which has some minor theoretical signi�cance because the proof in Hirano,

Imbens and Ridder (2003) can address only a Logit speci�cation.14

Note that implementation of Murphy-Topel would require writing down moments. As for

14



Hahn�s (1998) estimator, the moments are

E [diyi � h1 (xi)jxi] = 0

E [ (1� di) yi � h2 (xi)jxi] = 0

E [di � p (xi)jxi] = 0

E

�
h1 (xi)

p (xi)
� h2 (xi)

1� p (xi)
� �

�
= 0

and as for Hirano, Imbens, and Ridder�s (2003) estimator, they are

E [di � p (xi)jxi] = 0

E

�
diyi
p (xi)

� (1� di) yi
1� p (xi)

� �

�
= 0

Replacing h1 (xi), h2 (xi), and p (xi) by parametric models, and applying Murphy-Topel, we

can obtain the asymptotic variance consistently.

5.5 Example: 2-Step Estimation of Dynamic Models

There is a large recent literature on two-step semiparametric estimation of single agent dynamic

programming problems and dynamic games, including Hotz and Miller (1993, 1994), Aguirre-

gabiria and Mira (2002, 2007), Jofre-Bonet and Pesendorfer (2003), Bajari, Benkard, and Levin

(2007), Pakes, Ostrovsky, and Berry (2007), Pesendorfer and Schmidt-Dengler (2008), and Ba-

jari, Chernozhukov, Hong, and Nekipelov (2010). The basic idea behind these estimators is that

�reduced form�policy functions describing optimal agent behavior can be non-parametrically

estimated in a �rst stage.15 These estimated policy functions can then be used as an input into

in a second stage objective function that can be used to estimate a �nite dimensional structural

parameter. Calculating this second stage objective function typically does not require solving

agent(s)�dynamic programming problems, hence reducing computational burden relative to

one step estimation. In the following we give a simple example.to illustrate how our results

might be applied in some of these contexts.

Suppose a single agent makes a binary discrete choice at 2 f0; 1g in each period t. The state
xt 2 RJ evolves according to distribution Fx (xt+1jxt; at; �F ). Single period utility is given by
U(xt; at; �U) + �at;t, where �at;t are i.i.d. Type 1 Extreme Value utility shocks associated with

each choice. �F and �U are �nite vectors of structural parameters.

The Bellman equation for this problem is

V (xt; �t; �) = max
at2f0;1g

�
U (xt; at; �U) + �at;t + �

Z Z
V (xt+1; �t+1; �)F� (d�t+1)Fx (dxt+1jxt; at; �F )

�
15



Following Rust (1987), de�ne the alternative-speci�c value function

V (xt; at; �) = U (xt; at; �U) + �

Z Z
V (xt+1; �t+1; �)F� (d�t+1)Fx (dxt+1jxt; at; �F )

= U(xt; at; �U) + �

Z Z
max

at+12f0;1g

�
V (xt+1; at+1; �) + �at;t

	
F� (d�t+1)Fx (dxt+1jxt; at; �F )

= U (xt; at; �U) + �

Z h
0:5772 + ln

�
eV (xt+1;0;�) + eV (xt+1;1;�)

�i
Fx (dxt+1jxt; at; �F )

(6)

and assume a renewal model in which U (xt; 0; �U) and Fx (xt+1jxt; 0; �F ) do not depend on xt
(i.e. action at = 0 �renews�the model). This allows us to normalize V (xt; 0; �) = 0 at all xt.

The Hotz-Miller (1993) inversion implies that

V (xt; 1; �)� V (xt; 0; �) = V (xt; 1; �) = ln

�
Pr (at = 1jxt; �)

1� Pr (at = 1jxt; �)

�
(7)

Now, consider (6) evaluated at at = 1, i.e.

V (xt; 1; �) = U (xt; 1; �U) + �

Z h
0:5772 + ln

�
eV (xt+1;0;�) + eV (xt+1;1;�)

�i
Fx (dxt+1jxt; 1; �F )

Substituting in (7) on both sides, using the normalization V (xt; 0; �) = 0, and rearranging

results in:

Pr (at = 1jxt; �) =
exp

�
U (xt; 1; �U) + �

Z h
0:5772 + ln

�
1 + Pr(at+1=1jxt+1;�)

1�Pr(at+1=1jxt+1;�)

�i
Fx (dxt+1jxt; 1; �F )

�
1 + exp

�
U (xt; 1; �U) + �

Z h
0:5772 + ln

�
1 + Pr(at+1=1jxt+1;�)

1�Pr(at+1=1jxt+1;�)

�i
Fx (dxt+1jxt; 1; �F )

� :
(8)

Equation (8) implies that

E

2664at � exp

�
U (xt; 1; �U) + �

Z h
0:5772 + ln

�
1 + Pr(a=1jz)

1�Pr(a=1jz)

�i
Fx (dzjxt; 1; �F )

�
1 + exp

�
U (xt; 1; �U) + �

Z h
0:5772 + ln

�
1 + Pr(a=1jz)

1�Pr(a=1jz)

�i
Fx (dzjxt; 1; �F )

�
�������� xt
3775 = 0;

which can be used as a basis of second step estimation for the structural parameters �U in

U(xt; 1; �U) (and the discount factor � if desired),16 as long as we have a �rst stage nonpara-

metric estimator of Pr (a = 1j z) and parametric estimator of �F .
Note that this moment condition depends on the non-parametric function Pr (a = 1jx) at

all values of x, not only at the realized value of the conditioning variable xt. Thus, this �ts into

the model of Section 3.2. Since x is a continuous variable, Pr (a = 1jx) can be estimated non-
parametrically either with a linear series approximation, or, following our results in Section 5.2,
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in other (su¢ ciently �exible) ways, e.g. a sieve Logit or sieve Probit. So in sum, one can obtain

semi-parametric standard errors of the structural parameters in U (xt; 1; �U) by simply treating

the chosen sieves as parametric functions and applying the well-known parametric methodology

of Section 2.

6 Concluding Remarks

In this paper, we established the numerical equivalence between two estimators of asymptotic

variance for two-step semiparametric estimators when the �rst-step nonparametric estimation is

implemented by the method of sieves. Because the method of sieves is equivalent to a parametric

model in a given �nite sample, it is useful to examine the properties of the �parametric�

estimator of the asymptotic variance. We show that this �parametric�estimator is numerically

equivalent to a consistent sieve estimator of the semiparametric asymptotic variance. This

numerical equivalence is signi�cant because it means that practitioners can simply implement

the well-known parametric formulas of Newey (1984) or Murphy and Topel (1985) without the

need to understand and apply results in the semiparametric literature.

We derived the numerical equivalence for two classes of semiparametric two-step estimators:

the �rst class involves �rst-stage sieve nonparametric estimation based on conditional moment

restrictions;17 the second class involves �rst-stage sieve nonparametric estimation based on a

maximum-likelihood like criterion.18 One could extend the numerical equivalence results to

more general semiparametric models, including the misspeci�ed semiparametric models consid-

ered in Ai and Chen (2007) and Ichimura and Lee (2010). Nevertheless, we believe that the

numerical equivalence results in our current paper already cover a very wide range of practical

applications of two-step semiparametric estimation.

Lastly, note that our result is predicated on the assumption that the asymptotic variance

of the semiparametric estimator is �nite. Practitioners should be careful not to implement

the procedure for models where the asymptotic variance is in�nite, which happens if the �nite

dimensional parameter is unidenti�ed or if the semiparametric information bound is zero, as

was discussed in Chamberlain (1985) or Hahn (1994). In practice, the latter may be more

important because two-step semiparametric estimation tends to be employed only when the

�nite dimensional parameter of interest is identi�ed. It is not clear whether it would be easy

to establish such an information bound in complicated structural models.
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Appendix

A Some Details for Section 3

Model in Section 3.1 We show that the two-step estimator considered in Section 3.1 is nu-

merically identical to Ai and Chen�s (2007) modi�ed SMD estimator as long as bh1 (x1i) ; : : : ;bhL (xLi)
are approximated using the method of sieves.19 The modi�ed SMD estimator solves the mini-

mization problem

1

n

nX
i=1

(y1i � h1 (x1i))
2 + � � �+ 1

n

nX
i=1

(yLi � hL (xLi))
2 +

 1n
nX
i=1

m (zi; �; h1 (x1i) ; : : : ; hL (xLi))


2

over (�; h1; : : : ; hL) 2 B � H1;n � � � � � HL;n, where kak denotes a vector norm such that

kak = a0a. Assuming that B is a compact subset of Rd, and for l = 1; : : : ; L; the sieve spaces
Hl;n are given by:

Hl;n =
�
hl : hl(xl) = pl;1 (xl) �(l);1 + � � �+ pl;Kl;n

(xl) �(l);Kl;n
= hl

�
xl; �(l)

�	
; (9)

we can see that the modi�ed SMD is numerically equivalent to the following multi-step estima-

tor:

b�(l) = argmin
�(l);1;:::;�(l);Kl;n

1

n

nX
i=1

�
yli �

�
pl;1 (xl) �(l);1 + � � �+ pl;Kl;n

(xl) �(l);Kl;n

��2
; l = 1; : : : ; L;

0 =
1

n

nX
i=1

m
�
zi; b�; h1 �x1i; b�(L)� ; : : : ; hL �xLi; b�(L)�� :

Ai and Chen (2007) show that b� is pn-consistent and asymptotically normal under certain
regularity conditions. They also provide a consistent estimator of the semiparametric asymp-

totic variance (V ) of
p
n
�b� � ��

�
, which we now describe. For simplicity of notation, we will

write

r (zi; ��) =

2664
y1i � h1� (x1i)

...

yLi � hL� (xLi)

3775 (10)

where �� = (��; h�), and h is an abbreviation of (h1; : : : ; hL). We adopt a similar convention

for bh. Denote b� = (b�;bh). Assuming the sieve space Hn = H1;n � � � � �HL;n with Hl;n given by

(9) for l = 1; :::; L, Ai and Chen�s estimator bV of the asymptotic variance of b� can be computed
using the following algorithm:
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1. Compute bw� = ( bw�1; :::; bw�d) that solves for j = 1; :::; d;
bw�j = argmin

w2Hn

1

n

nX
i=1

8<:
�
@r(zi;b�)
@�j

�
PL

l=1
@r(zi;b�)
@hl

wj;l (xl;i)
�0 �

@r(zi;b�)
@�j

�
PL

l=1
@r(zi;b�)
@hl

wj;l (xl;i)
�

+
 1nPn

i=1

�
@m(zi;b�)
@�j

�
PL

l=1
@m(zi;b�)
@hl

wj;l (xl;i)
�2

9=; :

2. Compute

� (zi; b�) = " r (zi; b�)
m (zi; b�)

#
;

b�bw� (zi) =

266664
PL

l=1

 
@r(zi;b�)
@�1

�
PL

l=1
@r(zi;b�)
@hl

bw�1;l (xl;i)
!

� � �
PL

l=1

 
@r(zi;b�)
@�d

�
PL

l=1
@r(zi;b�)
@hl

bw�d;l (xl;i)
!

1
n

Pn
i=1

 
@m(zi;b�)
@�1

�
PL

l=1
@m(zi;b�)
@hl

bw�1;l (xl;i)
!

� � � 1
n

Pn
i=1

 
@m(zi;b�)
@�d

�
PL

l=1
@m(zi;b�)
@hl

bw�d;l (xl;i)
!
377775

and b
 = 1

n

nX
i=1

�b�bw� (zi)
�0
� (zi; b�) � (zi; b�)0 b�bw� (zi)

3. Compute

bV =  1
n

nX
i=1

�b�bw� (zi)
�0 b�bw� (zi)

!�1 b
 1
n

nX
i=1

�b�bw� (zi)
�0 b�bw� (zi)

!�1
:

Model in Section 3.2 This model still �ts into the framework of Ai and Chen (2007).

According to their asymptotic variance formula for their modi�ed SMD estimator b�, to consider
this model we simply have to replace the term @m(zi;b�)

@h
wj (xi) in Section 3 by

@m(zi;b�)
@h

[wj (�)]. Let
the sieve space be Hn = fh : h(�) = �1p1 (�) + � � �+ �KnpKn (�)g. Ai and Chen�s sieve estimatorbV of the asymptotic variance of b� can then be computed by the following algorithm:
1. Compute bw� = ( bw�1; :::; bw�d) for j = 1; :::; d as

bw�j = argmin
w2Hn

1

n

nX
i=1

8<:(�wj (xi))2 +
 
1

n

nX
i=1

�
@m (zi; b�)

@�j
� @m (zi; b�)

@h
[wj]

�!29=; :

2. Compute

� (zi; b�) =
24 yi � bh (xi)
m
�
zi; b�;bh�

35 ;
b�bw� (zi) =

24 � bw�1(xi) � � � � bw�d(xi)
1
n

Pn
i=1

�
@m(zi;b�)
@�1

� @m(zi;b�)
@h

[ bw�1]� � � � 1
n

Pn
i=1

�
@m(zi;b�)
@�d

� @m(zi;b�)
@h

[ bw�d]�
35
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and b
 = 1

n

nX
i=1

�b�bw� (zi)
�0
� (zi; b�) � (zi; b�)0 b�bw� (zi) :

3. Compute

bV =  1
n

nX
i=1

�b�bw� (zi)
�0 b�bw� (zi)

!�1 b
 1
n

nX
i=1

�b�bw� (zi)
�0 b�bw� (zi)

!�1
:

B A Useful Lemma

Our proofs of numerical equivalence are based on the following auxiliary result:

Lemma 1 Suppose that A and B are (d1 + d2)�d1 and (d1 + d2)�d2 matrices such that [A;B]
is nonsingular. Also suppose that F is a (d1 + d2) � (d1 + d2) symmetric positive semide�nite

matrix. Then the upper-left d1 � d1 block of the matrix

[A;B]�1 F

"
A0

B0

#�1
;

where A and B are (d1 + d2) � d1 and (d1 + d2) � d2 matrix and , can be computed by the

following algorithm:

Step 1: For the jth column of A, solve

min
c
(Aj � Bc)0��1 (Aj � Bc)

for some symmetric positive de�nite matrix �. Let c�j denote the solution, and let c
� =�

c�1; : : : ; c
�
d1

�
.

Step2: Compute�
(A� Bc�)0��1 (A� Bc�)

��1 �
(A� Bc�)0��1F��1 (A� Bc�)

� �
(A� Bc�)0��1 (A� Bc�)

��1
Proof. The �rst step is a least squares problem, and the solution is given by

c�j =
�
B0��1B

��1 B0��1Aj
Now note that [A� Bc�;B] is such that B0��1 (A� Bc�) = 0 by construction, which implies

that"
A0

B0

#
��1 [A� Bc�;B] =

"
A0��1 (A� Bc�) A0��1B
B0��1 (A� Bc�) B0��1B

#
=

"
(A� Bc�)0��1 (A� Bc�) (c�)0 B0��1B

0 B0��1B

#
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and  "
A0

B0

#
��1 [A� Bc�;B]

!�1

=

" �
(A� Bc�)0��1 (A� Bc�)

��1 �
�
(A� Bc�)0��1 (A� Bc�)

��1
(c�)0

0 (B0��1B)�1

#
(11)

Now, we have

[A;B]�1 F

"
A0

B0

#�1

=
�
��1 [A;B]

��1 �
��1F��1

� " A0
B0

#
��1

!�1

=

 "
(A� Bc�)0

B0

#
��1 [A;B]

!�1 "
(A� Bc�)0

B0

#
��1F��1 [A� Bc�;B]

! "
A0

B0

#
��1 [A� Bc�;B]

!�1
(12)

Using (11), it can be shown that the upper left block of (12) is equal to�
(A� Bc�)0��1 (A� Bc�)

��1 �
(A� Bc�)0��1F��1 (A� Bc�)

� �
(A� Bc�)0��1 (A� Bc�)

��1
;

which proves the validity of the algorithm.

C Proof of Numerical Equivalence Result in Section 3

We now prove the �rst main numerical equivalence result stated in Section 3.1. We assume that

the practitioner adopts the parametric speci�cation hl
�
xl;i; �(l)

�
= pKl

l (xl;i)
0 �(l), for l = 1:; ; ; :L,

and hence, bhl (xl;i) = pKl
l (xl;i)

0 b�(l), where Kl = Kl;n is a function of n although it is perceived

to be �xed from the practitioner�s view. The practitioner�s estimator of asymptotic variance is

(5) with

@g
�
zi; b�; b��

@ (�0; �0)
=

2666664
0 �pK1

1 (x1;i)
�
pK1
1 (x1;i)

�0
. . .

0 �pKL
L (xL;i)

�
pKL
L (xL;i)

�0
@m(zi;b�)
@�0

@m(zi;b�)
@h1

pK1
1 (x1;i)

0 � � � @m(zi;b�)
@hL

pKL
L (xL;i)

0

3777775
=

"
0 �PiP 0i
q0i Q0i

#
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and

g
�
zi; b�; b�� =

26666664
pK1
1 (x1;i)

�
y1i � h1

�
x1i; b�(1)��

...

pKL
L (xL;i)

�
yLi � hL

�
xLi; b�(L)��

m
�
zi; b�; h1 �x1i; b�(1)� ; : : : ; hL �xLi; b�(L)��

37777775
=

"
Pi 0

0 Id

#"
yi � hi

mi

#
where

Pi =

2664
pK1
1 (x1;i) 0

. . .

0 pKL
L (xL;i)

3775
q0i =

@m (zi; b�)
@�0

Q0i =
h
@m(zi;b�)
@h1

pK1
1 (x1;i)

0 � � � @m(zi;b�)
@hL

pKL
L (xL;i)

0
i

yi � hi =

26664
y1i � h1

�
x1i; b�(1)�
...

yLi � hL

�
xLi; b�(L)�

37775
mi = m

�
zi; b�; h1 �x1i; b�(1)� ; : : : ; hL �xLi; b�(L)�� :

We now apply Lemma 1 to characterize the upper-left block of the estimated variance matrix.

For this purpose, we let

A =
1

n

nX
i=1

"
0

q0i

#
=

"
0

q0

#

B =
1

n

nX
i=1

"
�PiP 0i
Q0i

#
=

"
� 1
n

Pn
i=1 PiP

0
i

Q
0

#

F =
1

n

nX
i=1

g
�
zi; b�; b�� g �zi; b�; b��0

and

��1 =

" �
1
n

Pn
i=1 PiP

0
i

��1
0

0 Id

#
In the minimization problem of the �rst step, we see that the objective function is

(Aj � Bc)0��1 (Aj � Bc) = c0

 
1

n

nX
i=1

PiP
0
i

!
c+ q0jqj � 2qjQ

0
c+ c0QQ

0
c (13)
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Therefore, we can see that c�j =
��

1
n

Pn
i=1 PiP

0
i

�
+QQ

0
��1

Qqj or

c� =

  
1

n

nX
i=1

PiP
0
i

!
+QQ

0
!�1

Qq0

Also, we have

(A� Bc�)0��1 (A� Bbc�) = (c�)0 1
n

nX
i=1

PiP
0
i

!
c� +

�
q �Q

0
c�
�0 �

q �Q
0
c�
�
� b�p

and

(A� Bc�)0��1g (zi; �; �)

=
h
(c�)0

�
1
n

Pn
i=1 PiP

0
i

�
q0 � (c�)0Q

i " � 1
n

Pn
i=1 PiP

0
i

��1
0

0 Id

#"
Pi 0

0 Id

#"
yi � hi

mi

#

=
h
(c�)0 Pi q0 � (c�)0Q

i " yi � hi

mi

#
=
h
(c�)0 Pi (yi � hi) q0mi � (c�)0Qmi

i
and

(A� Bc�)0��1F��1 (A� Bc�)

=
1

n

nX
i=1

��bA� bBbc��0 Fgi���bA� bBbc��0 Fgi�0
= (bc�)0 1

n

nX
i=1

Pi (yi � hi)
0 (yi � hi)P

0
i

!bc� + �q �Q
0bc��0 1

n

nX
i=1

mim
0
i

!�
q �Q

0bc��
� b
p

The practitioner�s estimator bVp for the asymptotic variance of b� is then equal tobVp = b��1p b
p �b��1p �0
Now, we note that Ai and Chen�s �rst step minimization problem solves for c�j that minimizes

1

n

nX
i=1

(P 0i c)
0
(P 0i c) +

 
1

n

nX
i=1

(qij �Q0ic)

!2
= c0

 
1

n

nX
i=1

PiP
0
i

!
c+ q0jqj � 2qjQ

0
c+ c0QQ

0
c (14)

We can see that the same bc� as above solves the practitioner�s problem (13). Ai and Chen�s

estimator then requires calculating

b�bw� (zi) =

"
P 0ibc�

q �Q
0bc�
#
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1

n

nX
i=1

�b�bw� (zi)
�0 b�bw� (zi) = (bc�)0 1

n

nX
i=1

PiP
0
i

!bc� + �q �Q
0bc��0 �q �Q

0bc��
and

b
 = 1

n

nX
i=1

�b�bw� (zi)
�0
� (zi; b�) � (zi; b�)0 b�bw� (zi)

= (bc�)0 1
n

nX
i=1

Pi (yi � hi)
0 (yi � hi)P

0
i

!bc� + �q �Q
0bc��0 1

n

nX
i=1

mim
0
i

!�
q �Q

0bc��
Note that

1

n

nX
i=1

�b�bw� (zi)
�0 b�bw� (zi) = b�p

b
 = b
p
It follows that the practitioner�s estimator of the asymptotic variance is numerically equal to

Ai and Chen�s.

As for the proof of the result in Section 3.2, all we need to do is to note that the same

argument goes through writing

@g
�
zi; b�; b��

@ (�0; �0)
=

24 0 �pK (xi) pK (xi)0
@m(zi;b�;bh�)

@�0 m
�
zi; b�; b��0

35 = " 0 �PiP 0i
q0i Q0i

#
;

and

g
�
zi; b�; b�� =

24 pK (xi)
�
yi � bh� (xi)�

m
�
zi; b�;bh��

35 = " Pi 0

0 Id

#"
yi � hi

mi

#

with Pi = pK (xi), q0i =
@m(zi;b�;bh�)

@�0 , Q0i = m
�
zi; b�; b��0, yi � hi = yi � bh� (xi), and mi =

m
�
zi; b�;bh��.

D Estimator of Asymptotic Variance of Sieve MLE

The log likelihood of the data fzigni=1 is given by 1
n

Pn
i=1 ` (zi; �; h (�)), where � 2 B is a

vector of �nite-dimensional parameter of interest and h 2 H is a vector of L real-valued

unknown functions (i.e., h (�) = (h1 (�) ; : : : ; hL (�)) and each hl (�) could depend on di¤erent
argument xl for l = 1; :::; L). We take h (�) to be the nonparametric nuisance functions. Denote
� = (�; h) 2 B �H. We assume that the true parameter value �� = (��; h�) 2 B �H uniquely

24



solves the population problem sup(�;h)2B�HE [` (zi; �; h (�))]. The sieve MLE is a sample coun-
terpart, except that the function parameter space H = H1 � � � � � HL is replaced by a sieve

parameter space Hn = H1;n� � � � �HL;n. In other words, the sieve MLE
�b�;bh� is the solution

to max(�;h)2B�Hn

1
n

Pn
i=1 ` (zi; �; h (�)). Shen�s result (1997) implies that b� is pn-consistent,

asymptotically normal and semiparametrically e¢ cient (under regularity conditions).

In the rest of this section, we will recall the asymptotic variance of the sieve MLE b�, present
the estimator bVsmle of the asymptotic variance of b�, and then argue that bVsmle is consistent.
Below is an argument leading to the characterization of the asymptotic variance. We follow

Chen and Shen�s (1998) notation. For any � = (�; h) 2 A = B �H, let � (��; �) 2 A is a path
in � connecting �� and � such that � (��; 0) = �� and � (��; 1) = �. Let

`0�� [z; �� ��] = lim
�!0

` (z; � (��; �))� ` (z; ��)

�
=
d` (z; ��)

d�0
(� � ��) +

d` (z; ��)

dh
[h� h�] ;

where when h() = (h1; :::; hL) we have

d` (z; ��)

dh
[h� h�] =

LX
l=1

d` (z; ��)

dhl
[hl � h�l] :

For any �; � 2 A, denote `0�� [z; �� �] = `0�� [z; �� ��]� `0�� [z; �� ��], and de�ne the metric

k�k as

k�� �k =
r
E
h�
`0�� [z; �� �]

�2i
which de�nes the Hilbert space on the closure of the linear span of A � f��g with the inner
product

hv; vi = E
�
`0�� [z; v] � `

0
�� [z; v]

�
:

For each component �j of �, let w�j denote the solution to

w�j = arg inf
w2H

E

"�
d` (z; ��)

d�j
� d` (z; ��)

dh
[w]

�2#
for j = 1; :::; d:

Denote

�(z; ��) =

2664
d`(z;��)
d�1

� d`(z;��)
dh

[w�1]
...

d`(z;��)
d�d

� d`(z;��)
dh

[w�d]

3775 ;
and

I � E
�
�(zi; ��)� (zi; ��)

0� :
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Consider the smooth functional f (�) = �0� for some � 2 Rd with � 6= 0. Also let w� =

(w�1; : : : ; w
�
d) and v

� =
�
v��; v

�
h

�
with

v�� =
�
E
�
�(z; ��)� (z; ��)

0���1 � = (I)�1 �; v�h = �w� � v��:

We then have
�
v��; v

�
h

�
; �� ��

�
= E

��
d` (z; ��)

d�0
v�� +

d` (z; ��)

dh
[v�h]

��
d` (z; ��)

d�0
(� � ��) +

d` (z; ��)

dh
[h� h�]

��
= E

��
�(z; ��)

0 v��
��
�(z; ��)

0 (� � ��) +
d` (z; ��)

dh
[w� � (� � ��)] +

d` (z; ��)

dh
[h� h�]

��
=
�
v��
�0
E
�
�(z; ��)� (z; ��)

0� (� � ��)

= �0 (� � ��) = f (�)� f (��)

By Chen and Shen (1998, Theorem 2), we obtain that

p
n�0
�b� � ��

�
=

1p
n

nX
i=1

`0�� [zi; v
�] + op (1)

where

`0�� [zi; v
�] = � (zi; ��)

0 v�� = �(zi; ��)
0 �E ��(zi; ��)� (zi; ��)0���1 �:

In other words, we have

p
n
�b� � ��

�
! N

�
0; I�1

�
; with I = E

�
�(zi; ��)� (zi; ��)

0� ;
which provides an intuitive reason why the sieve estimator bVsmle given in (15) below is a plausible
estimator of I�1.
We now present the estimator bVsmle of the asymptotic variance of b�:
1. Compute a consistent estimator bw�j of w�j , j = 1; :::; d :

bw�j = argmin
w2Hn

nX
i=1

�
d` (zi; b�)
d�j

� d` (zi; b�)
dh

[w]

�2
:

2. Compute

b�(z) =
2664

d`(z;b�)
d�1

� d`(z;b�)
dh

[ bw�1]
...

d`(z;b�)
d�d

� d`(z;b�)
dh

[ bw�d]
3775 :
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3. Compute

bVsmle =  1
n

nX
i=1

b�(zi) b�(zi)0!�1 : (15)

Below, we provide a proof for the consistency of (15). In the following we let k�ks de-
note a metric (e.g., the supreme norm or the mean squared metric) on A = � � H. Denote
N0 = f� 2 A : k�� ��ks = o (1)g and Wn = fw 2 Hn : kwks � const: <1g. Also denote
gj (z; �; w) =

d`(z;�)
d�j

� d`(z;�)
dh

[w].

We impose the following assumptions:

Assumption A.1 (1) jjv�jj2 = �0I�1� < 1; (2) There is a v�n =
�
v��;�w�

nv
�
�

�
with w�

n =

(w�n1; : : : ; w
�
nd), w

�
nj 2 Hn for all j = 1; :::; d; such that jjv�n � v�jj = o(1).

Assumption A.2 For all j = 1; :::; d, (1) E
�
sup�2N0;w2Wn

jgj (z; �; w)j2
�
� const: < 1; (2)

there is a �nite constant � > 0 such that jgj (z; �; w)� gj (z; ��; w)j � U (z; w)�k�� ��k�s for
some E

�
supw2Wn

jU(z; w)j2
�
� const: <1.

Lemma 2 Let b� = �b�;bh� be the sieve MLE such that kb�� �0ks = oP (1). Suppose that fzig
is i.i.d. and assumptions A.1-A.2 hold. If Kn !1, Kn=n! 0, then: bVsmle = I�1 + oP (1).

Proof. Assumption A.2 implies that for all j = 1; :::; d,
��

d`(z;�)
d�j

� d`(z;�)
dh

[w]
�2
: � 2 N0; w 2 Wn

�
is a Glivenko-Cantelli class. Thus, uniformly over w 2 Hn,

1

n

nX
i=1

�
d` (zi; b�)
d�j

� d` (zi; b�)
dh

[w]

�2
� E

�
d` (zi; ��)

d�j
� d` (zi; ��)

dh
[w]

�2
= Ezi

"�
d` (zi; b�)
d�j

� d` (zi; b�)
dh

[w]

�2#
� Ezi

"�
d` (zi; ��)

d�j
� d` (zi; ��)

dh
[w]

�2#
+ op (1)

�

s
Ezi

��
d` (zi; b�)
d�j

� d` (zi; b�)
dh

[w]

�
�
�
d` (zi; ��)

d�j
� d` (zi; ��)

dh
[w]

��2

�

vuut2E sup
�2N0;w2Hn

����d` (zi; �)d�j
� d` (zi; �)

dh
[w]

����2
!

= oP (1) ;
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where the last equality also follows from assumption A.2. Here, Ezi denotes the expectation

taken only respect to zi regarding b� as a nonstochastic constant. Thus,
min
w2Hn

1

n

nX
i=1

�
d` (zi; b�)
d�j

� d` (zi; b�)
dh

[w]

�2
= min

w2Hn

E

"�
d` (zi; ��)

d�j
� d` (zi; ��)

dh
[w]

�2#
+ op (1)

= inf
w2H

E

"�
d` (zi; ��)

d�j
� d` (zi; ��)

dh
[w]

�2#
+ op (1) ;

where the second equation follows from assumption A.1. The lemma now follows immediately.

We now argue that bVp is exactly identical to bVsmle. We recall that the practitioner�s asymp-
totic variance for b�, Vp, is simply the upper-left block of the above variance and covariance
matrix 24 E

h
d`(z;��;��)

d�
d`(z;��;��)

d�0

i
E
h
d`(z;��;��)

d�
d`(z;��;��)

d�0

i
E
h
d`(z;��;��)

d�
d`(z;��;��)

d�0

i
E
h
d`(z;��;��)

d�
d`(z;��;��)

d�0

i 35�1
The partitioned inverse formula on the other hand, has another interpretation as the inverse of

the variance of the least squares projection residual of d`(z;��;��)
d�

on d`(z;��;��)
d�0 :

Vp =
�
E
�
�p (zi)�p (zi)

0���1 ;
where

�p (z) =

2664
d`(z;��;��)

d�1
� d`(z;��;��)

d�0 c�1
...

d`(z;��;��)
d�d

� d`(z;��;��)
d�0 c�d

3775
and

c�j = argmin
cj2RK

E

"�
d` (z; ��; ��)

d�j
� d` (z; ��; ��)

d�0
cj

�2#
for j = 1; :::; d:

If the practitioner uses the outer-product based estimator of the information matrix, then the

asymptotic variance matrix for
�b�; b��0 can be consistently estimated by the following matrix:

24 1
n

Pn
i=1

d`(zi;b�;b�)
d�

d`(zi;b�;b�)
d�0

1
n

Pn
i=1

d`(zi;b�;b�)
d�

d`(zi;b�;b�)
d�0

1
n

Pn
i=1

d`(zi;b�;b�)
d�

d`(zi;b�;b�)
d�0

1
n

Pn
i=1

d`(zi;b�;b�)
d�

d`(zi;b�;b�)
d�0

35�1 ;
and the asymptotic variance for b� can be consistently estimated by the upper-left block of
the above matrix, which can be computed by the partitioned inverse formula, which also has

another interpretation that can be characterized by the following algorithm:
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1. Compute the solution bc�j to
min
cj2RK

nX
i=1

0@d`
�
zi; b�; b��
d�j

�
d`
�
zi; b�; b��
d�0

cj

1A2

:

2. Compute

b�p (zi) =

26664
d`(zi;b�;b�)

d�1
� d`(zi;b�;b�)

d�0 bc�1
...

d`(zi;b�;b�)
d�d

� d`(zi;b�;b�)
d�0 bc�d

37775 :
3. Compute

bVp =  1
n

nX
i=1

b�p (zi) b�p (zi)
0

!�1
:

We argue that bVp is in fact numerically identical to bVsmle, since b�p (zi) is numerically identical

to b�(z). For this purpose, it su¢ ces to note that with hl(xl) = pKl
l (xl)

0�(l), � =
�
�0(1); : : : ; �

0
(L)

�0
and c =

�
c0(1); : : : ; c

0
(L)

�0
, we have:

d`
�
zi; b�; b��
d�0

c =
LX
l=1

d`
�
zi; b�;bh�
dhl

pKl
l (�)

0 c(l)

Therefore, the minimization problem over c 2 RK is in fact identical to the minimization prob-
lem over all linear combinations w(l) = pKl

l (�)
0 c(l), which in turn is identical to the minimization

over w =
�
w(1); : : : ; w(L)

�
2 Hn = H1;n � � � � � HL;n, with Hl;n given by (9) for l = 1; :::; L.

It follows that the variance estimator bVp obtained from the pretension that the model is para-

metrically speci�ed is exactly identical to the sieve variance estimator bVsmle obtained under the
correct assumption that the model is semiparametrically speci�ed.

E Proof for Section 5.1 on Restricted First Step

We �rst describe Ai and Chen�s sieve estimator of the semiparametric asymptotic variance ofb� for this restricted case. For simplicity of notation, we will write
r (zi; ��) =

2664
y1i � h� (x1i)

...

yLi � h� (xLi)

3775
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Assuming that Hn = fh : h(x) = p1 (x) �1 + � � �+ pKn (x) �Kng, Ai and Chen�s estimator bV of

the asymptotic variance of b� can be computed by the following algorithm:
1. Compute bw� = ( bw�1; :::; bw�d) for j = 1; :::; d as
bw�j = argmin

w2Hn

1

n

nX
i=1

8<:
�
@r(zi;b�)
@�j

�
PL

l=1
@r(zi;b�)
@hl

wj (xl;i)
�0 �

@r(zi;b�)
@�j

�
PL

l=1
@r(zi;b�)
@hl

wj (xl;i)
�

+
�
1
n

Pn
i=1

�
@m(zi;b�)
@�j

�
PL

l=1
@m(zi;b�)
@hl

wj (xl;i)
��2

9=; :

(We write h� (xli) = hl� (xli) for ease of accounting.)

2. Compute

� (zi; b�) = " r (zi; b�)
m (zi; b�)

#
;

b�bw� (zi) =

266664
PL

l=1

 
@r(zi;b�)
@�1

�
PL

l=1
@r(zi;b�)
@hl

bw�j (xl;i)
!

� � �
PL

l=1

 
@r(zi;b�)
@�d

�
PL

l=1
@r(zi;b�)
@hl

bw�j (xl;i)
!

1
n

Pn
i=1

 
@m(zi;b�)
@�1

�
PL

l=1
@m(zi;b�)
@hl

bw�j (xl;i)
!

� � � 1
n

Pn
i=1

 
@m(zi;b�)
@�d

�
PL

l=1
@m(zi;b�)
@hl

bw�j (xl;i)
!
377775

and b
 = 1

n

nX
i=1

�b�bw� (zi)
�0
� (zi; b�) � (zi; b�)0 b�bw� (zi)

3. Compute

bV =  1
n

nX
i=1

�b�bw� (zi)
�0 b�bw� (zi)

!�1 b
 1
n

nX
i=1

�b�bw� (zi)
�0 b�bw� (zi)

!�1
:

Next, we assume that the practitioner adopts the parametric speci�cation h (xl;i; �) =

pK (xl;i)
0 �, where pK(x) = (p1 (x) ; ::::; pK (x))

0, where K = Kn is a function of n although

it is perceived to be �xed for our �ctitious practitioner. Note that the practitioner�s estimator

is identical to the modi�ed SMD estimator. The practitioner�s moment condition is then

g (zi; �; �) =

"
pK (x1;i) (y1i � h (x1i; �)) + � � �+ pK (xL;i) (yLi � h (xLi; �))

m (zi; �; h (x1i; �) ; : : : ; h (xLi; �))

#
where h (xli; �) = pK (xl;i)

0 �. (For ease of accounting, we sometimes write h (xli; �) = hl (xli; �).)

It follows that the practitioner�s estimator of asymptotic variance is (5) with

@g
�
zi; b�; b��

@ (�0; �0)
=

"
0 �pK (x1;i)

�
pK (x1;i)

�0 � � � � � pK (xL;i)
�
pK (xL;i)

�0
@m(zi;b�)
@�0

@m(zi;b�)
@h1

pK1 (xi)
0 + � � �+ @m(zi;b�)

@hL
pKL (xi)

0

#

�
"
0 �PiP 0i
q0i Q0i

#
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and

g
�
zi; b�; b�� =

24 pK1 (x1;i)
�
y1i � h

�
x1i; b���+ � � �+ pKL (xL;i)

�
yLi � h

�
xLi; b���

m
�
zi; b�; h�x1i; b�� ; : : : ; h�xLi; b���

35
�
"
Pi 0

0 Id

#"
yi � hi

mi

#

where

Pi =
h
pK (x1;i) � � � pK (xL;i)

i
q0i =

@m (zi; b�)
@�0

Q0i =
@m (zi; b�)

@h1
pK1 (xi)

0 + � � �+ @m (zi; b�)
@hL

pKL (xi)
0

yi � hi =

26664
y1i � h

�
x1i; b��
...

yLi � h
�
xLi; b��

37775
mi = m

�
zi; b�; h�x1i; b�� ; : : : ; h�xLi; b���

We now apply Lemma 1 to characterize the upper-left block of the estimated variance matrix.

For this purpose, we let

A =
1

n

nX
i=1

"
0

q0i

#
=

"
0

q0

#

B =
1

n

nX
i=1

"
�PiP 0i
Q0i

#
=

"
� 1
n

Pn
i=1 PiP

0
i

Q
0

#

F =
1

n

nX
i=1

g
�
zi; b�; b�� g �zi; b�; b��0

and

��1 =

" �
1
n

Pn
i=1 PiP

0
i

��1
0

0 Id

#
In the minimization problem of the �rst step, we see that the objective function is

(Aj � Bc)0��1 (Aj � Bc) = c0

 
1

n

nX
i=1

PiP
0
i

!
c+ q0jqj � 2qjQ

0
c+ c0QQ

0
c (16)
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Therefore, we can see that c�j =
��

1
n

Pn
i=1 PiP

0
i

�
+QQ

0
��1

Qqj or

c� =

  
1

n

nX
i=1

PiP
0
i

!
+QQ

0
!�1

Qq0

Also, we have

(A� Bc�)0��1 (A� Bbc�) = (c�)0 1
n

nX
i=1

PiP
0
i

!
c� +

�
q �Q

0
c�
�0 �

q �Q
0
c�
�
� b�p

and

(A� Bc�)0��1g (zi; �; �)

=
h
(c�)0

�
1
n

Pn
i=1 PiP

0
i

�
q0 � (c�)0Q

i " � 1
n

Pn
i=1 PiP

0
i

��1
0

0 Id

#"
Pi 0

0 Id

#"
yi � hi

mi

#

=
h
(c�)0 Pi q0 � (c�)0Q

i " yi � hi

mi

#
=
h
(c�)0 Pi (yi � hi) q0mi � (c�)0Qmi

i
and

(A� Bc�)0��1F��1 (A� Bc�)

=
1

n

nX
i=1

��bA� bBbc��0 Fgi���bA� bBbc��0 Fgi�0
= (bc�)0 1

n

nX
i=1

Pi (yi � hi)
0 (yi � hi)P

0
i

!bc� + �q �Q
0bc��0 1

n

nX
i=1

mim
0
i

!�
q �Q

0bc��
� b
p

The practitioner�s parametric estimator bVp for the parametric asymptotic variance of b� is then
equal to bVp = b��1p b
p �b��1p �0 :
Finally, we note that Ai and Chen�s �rst step minimization problem solves for c�j that

minimizes

1

n

nX
i=1

(P 0i c)
0
(P 0i c) +

 
1

n

nX
i=1

(qij �Q0ic)

!2
= c0

 
1

n

nX
i=1

PiP
0
i

!
c+ q0jqj � 2qjQ

0
c+ c0QQ

0
c: (17)
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We can see that the same bc� as above solves the practitioner�s problem (13). Ai and Chen�s

estimator then requires calculating

b�bw� (zi) =

"
P 0ibc�

q �Q
0bc�
#
;

1

n

nX
i=1

�b�bw� (zi)
�0 b�bw� (zi) = (bc�)0 1

n

nX
i=1

PiP
0
i

!bc� + �q �Q
0bc��0 �q �Q

0bc�� ;
and

b
 = 1

n

nX
i=1

�b�bw� (zi)
�0
� (zi; b�) � (zi; b�)0 b�bw� (zi)

= (bc�)0 1
n

nX
i=1

Pi (yi � hi)
0 (yi � hi)P

0
i

!bc� + �q �Q
0bc��0 1

n

nX
i=1

mim
0
i

!�
q �Q

0bc�� :
Note that

1

n

nX
i=1

�b�bw� (zi)
�0 b�bw� (zi) = b�p;

b
 = b
p:
It follows that the practitioner�s estimator of the parametric asymptotic variance is numerically

equal to Ai and Chen�s sieve estimator of the semi-parametric asymptotic variance.

F Proof for Section 5.2 on First Step SieveM-Estimation

We propose the following sieve estimator:

�b�;bh� = argmin
(�;h)2B�Hn

8<:� 1n
nX
i=1

`(zi; h) +
1

2

 1n
nX
i=1

m (zi; �; h (�))

2
9=; ;

which is equivalent to the following two-step semiparametric estimator:

bh = argmax
h2Hn

1

n

nX
i=1

`(zi; h (�)); 0 =
1

n

nX
i=1

m
�
zi; �;bh (�)� :

It can be shown that b� is pn-consistent and asymptotically normal under certain regularity
conditions. In order to simplify presentation we assume that � is a scalar (i.e., dim (�) = 1)

and h is a scalar function of x. Then, under standard regularity conditions, we show thatb� is pn-consistent and asymptotically normal, and solve its asymptotic variance analytically.
Below we provide two ways to characterize the asymptotic variance of b�.
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Explicit characterization of the in�uence function Asymptotic variance can be obtained

by explicitly characterizing the in�uence function of

1

n

nX
i=1

m
�
zi; ��;bh (xi)� :

De�ne the functional f : H ! R as f (h) = E [m (zi; ��; h (xi))]. Using Chen and Shen (1998),

we then have

f 0 [�� ��] = E

�
@m (zi; ��; h� (xi))

@h
(h (xi)� h� (xi))

�
= E

�
@` (zi; h� (xi))

@h
u� (xi)

@` (zi; h� (xi))

@h
(h (xi)� h� (xi))

�
for

u� = E

"�
@` (zi; h� (xi))

@h

�2����� xi
#�1

E

�
@m (zi; ��; h� (xi))

@h

���� xi� :
We can write

f 0 [�� ��] = hv�; �� ��i

where

v� = I (xi)�1Mh (xi) ;

and

I (xi) = E

"�
@` (zi; h� (xi))

@h

�2����� xi
#
= �E

�
@2` (zi; h� (xi))

@h2

���� xi� ;
Mh (xi) = E

�
@m (zi; ��; h� (xi))

@h

���� xi� ; M� = E

�
@m (zi; ��; h� (xi))

@�

�
:

It follows that the in�uence function is

@` (zi; h� (xi))

@h
[v�] =

@` (zi; h� (xi))

@h
I (xi)�1Mh (xi)

It follows that, as long as stochastic equicontinuity is satis�ed,
p
n
�b� � ��

�
! N (0; V ), where

V =

E

��
m (zi; ��; h� (xi)) +

@`(zi;h�(xi))
@h

I (xi)�1Mh (xi)
�2�

M2
�

:
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Ai and Chen (2007) style asymptotic variance characterization If we adopt the ap-

proach of Ai and Chen (2007), we have
p
n
�b� � ��

�
! N

�
0; v��
v

�
�

�
, where

v�� =

 
E

"�
�@

2` (zi; h�)

@h@h
[w�;w�]

�
+

�
E

�
@m (zi; ��)

@�
� @m (zi; ��)

@h
[w�]

��2#!�1
;

and


 = Var

�
@` (zi; h�)

@h
[w�] +

�
E

�
@m (zi; ��)

@�
� @m (zi; ��)

@h
[w�]

��
m (zi; ��)

�
;

and w� solves

inf
w2H

E

"�
�@

2` (zi; h�)

@h@h
[w;w]

�
+

�
E

�
@m (zi; ��)

@�
� @m (zi; ��)

@h
[w]

��2#
: (18)

Equivalence of these two asymptotic variance characterizations For the simple case

of scalar h() function of x, the optimization problem (18) can be solved in closed form. Note

that

E

��
�@

2` (zi; h�)

@h@h
[w;w]

��
+

�
E

�
@m (zi; ��)

@�
� @m (zi; ��)

@h
[w]

��2
= E

�
I (xi)w (xi)2

�
+ (M� � E [Mh (xi)w (xi)])

2

has a solution equal to

w� (xi) =

0@M� �
M�E

h
Mh(x)

2

I(x)

i
1 + E

h
Mh(x)

2

I(x)

i
1AMh (xi)

I (xi)
=

M�

1 + E
h
Mh(x)

2

I(x)

iMh (xi)

I (xi)
� M�

�

Mh (xi)

I (xi)

so that

�
v��
��1

=
M2
��

1 + E
h
Mh(x)

2

I(x)

i�2E
"
Mh (x)

2

I (x)

#
+

0@M� �
M�

1 + E
h
Mh(x)

2

I(x)

iE "Mh (x)
2

I (x)

#1A2

=
M2
��

1 + E
h
Mh(x)

2

I(x)

i�2E
"
Mh (x)

2

I (x)

#
+

M2
��

1 + E
h
Mh(x)

2

I(x)

i�2 = M2
�

�

Note that
@` (zi; h�)

@h
[w�] =

@` (zi; h�)

@h

M�

�

Mh (xi)

I (xi)
and

E

�
@m (zi; ��)

@�
� @m (zi; ��)

@h
[w]

�
=M�

 
1� 1

�
E

"
Mh (xi)

2

I (xi)

#!
=
M�

�
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Then,

@` (zi; h�)

@h
[w�] +

�
E

�
@m (zi; ��)

@�
� @m (zi; ��)

@h
[w�]

��
m (zi; ��)

=
M�

�

�
@` (zi; h�)

@h

Mh (xi)

I (xi)
+m (zi; ��)

�
and


 = Var

�
@` (zi; h�)

@h
[w�] +

�
E

�
@m (zi; ��)

@�
� @m (zi; ��)

@h
[w�]

��
m (zi; ��)

�
=
M2
�

�2
Var

�
@` (zi; h�)

@h

Mh (xi)

I (xi)
+m (zi; ��)

�
from which we obtain

v��
v
�
� =

Var
�
@`(zi;h�)
@h

Mh(xi)
I(xi) +m (zi; ��)

�
M2
�

= V:

Consistent Estimator of the Asymptotic Variance We now suggest a consistent estima-

tor of the asymptotic variance of
p
n
�b� � ��

�
. In the following to simplify presentation we as-

sume that � and h are scalars. Letting the sieve space beHn = fh : h(�) = p1 (�) �1 + � � �+ pKn (�) �Kng,
a sieve estimator bV of the asymptotic variance V can be computed by the following algorithm:
1. Compute a consistent estimator bw�:
bw� = argmin

w2Hn

1

n

nX
i=1

8<:
0@�@2`

�
zi;bh�

@h@h
[w (�) ; w (�)]

1A+ 1
n

nX
i=1

�
@m (zi; b�)

@�
� @m (zi; b�)

@h
[w (�)]

�!29=; :

and

bv�� =
0@ 1
n

nX
i=1

8<:
0@�@2`

�
zi;bh�

@h@h
[ bw� (�) ; bw� (�)]

1A+ 1
n

nX
i=1

�
@m (zi; b�)

@�
� @m (zi; b�)

@h
[ bw� (�)]�!2

9=;
1A�1

2. Compute

� (zi; b�) = " @`(zi;b�)
@h

[ bw� (�)]
m (zi; b�)

#
;

b� bw� (zi) =
24 1

1
n

Pn
i=1

�
@m(zi;b�)
@�

� @m(zi;b�)
@h

[ bw� (�)]�
35 ;

and b
 = 1

n

nX
i=1

�b� bw� (zi)
�0
� (zi; b�) � (zi; b�)0 b� bw� (zi) :

3. Compute bV = bv��b
bv��:
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Numerical equivalence Suppose that a researcher perceives the �rst-step sieve nonpara-

metric estimation to be a parametric estimation. The researcher would perceive b� to be a
simple parametric M-estimator solving the moment equation E [g (zi; ��; ��)] = 0, where

g (zi; ��; ��) =

"
�@`(zi;h(xi;�))

@h
pK (�)

m (zi; �; h (�; �))

#
and h (�; �) = pK (�)0 �. Here, both � and � are �nite dimensional parameters such that dim (g) =
dim (�) + dim (�). A consistent estimator of b� = �b�; b�0�0 is given by the usual formula (which
is (5)):  

1

n

nX
i=1

@g (zi; b�)
@�0

!�1 
1

n

nX
i=1

g (zi; b�) g (zi; b�)0! 1
n

nX
i=1

@g (zi; b�)0
@�

!�1
:

The estimator bVp of the asymptotic variance of b� is then obtained from the upper left corner

of the above formula.

We now apply Lemma 1 to characterize the upper-left block of the estimated variance

matrix. For this purpose, we assume that the practitioner adopts the parametric speci�cation

h (x; �) = pK (x)0 �, with pK(x) = (p1 (x) ; ::::; pK (x))0, whereK = Kn is a function of n although

it is perceived to be �xed for our �ctitious practitioner. Then:

1

n

nX
i=1

@g (zi; �; �)

@ (�; �0)
=
1

n

nX
i=1

"
0 �@2`(zi;h(xi;�))

@h2
pK (xi) p

K (xi)
0

@m(zi;�;h(xi;�))
@�

@m(zi;�;h(xi;�))
@h

pK (xi)
0

#

�
"
0 R

q Q
0

#
and

g (zi; �; �) =

"
�@`(zi;h(xi;�))

@h
pK (xi)

m (zi; �; h (xi; �))

#
Using the notation in Lemma 1, we let

A =
1

n

nX
i=1

"
0

q0i

#
=

"
0

q0

#

B =
1

n

nX
i=1

"
Ri

Q0i

#
=

"
R

Q
0

#

F =
1

n

nX
i=1

g
�
zi; b�; b�� g �zi; b�; b��0

and

��1 =

"
R
�1

0

0 Id

#

37



In the minimization problem of the �rst step in the lemma, we see that the objective function

is

(A� Bc)0 (A� Bc)

= c0Rc+ q2 � 2qQ0c+ c0QQ
0
c

=
1

n

nX
i=1

8<:
�
�@

2` (zi; b�)
@h@h

�
pK (xi)

0 c
�2�

+

 
1

n

nX
i=1

�
@m (zi; b�)

@�
� @m (zi; b�)

@h
pK (xi)

0 c

�!29=;
which is identical to the minimization in our algorithm. We therefore obtain

bv�1p � (A� Bc�)0��1 (A� Bc�) = (c�)0Rc� +
�
q �Q

0
c�
�0 �

q �Q
0
c�
�
=
�bv����1

We also have

(A� Bc�)0��1g (zi; �; �)

=
h
� (c�)0 q � (c�)0Q

i " �@`(zi;h(xi;�))
@h
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=
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@h

�
pK (xi)

0 c�
�
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�
q � (c�)0Q

�
m (zi; �)
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b
p � (A� Bc�)0��1F��1 (A� Bc�)
=
1

n

nX
i=1

��bA� bBbc��0��1gi���bA� bBbc��0��1gi�0
=
1

n

nX
i=1

�
@` (zi; h (xi; �))

@h

�
pK (xi)

0 c�
�
+
�
q � (c�)0Q

�
m (zi; �; h (xi; �))

�2
� b


By Lemma 1, the practitioner�s estimator bVp for the asymptotic variance of b� is then equal to
bVp = bvpb
pbvp

Because bvp = bv�� and b
p = b
, we get the desired conclusion that bV = bVp.
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Notes

1Imposing the structure of the underlying model on the reduced form policy functions would

necessitate solving for the equilibrium, which is exactly what these methods are trying to avoid.

2Bootstrap validity is typically established for con�dence region construction. Even for

parametric linear regressions, one needs additional regularity conditions to justify bootstrap

validity for standard errors (see, e.g., Gonçalves and White (2005) for a recent discussion).

3The �equivalence�throughout the paper refers to the equivalence between Newey (1994)/Ai

and Chen (2007) variance estimators and Murphy and Topel (1985)/Newey and McFadden

(1994) variance estimators. There are obviously other consistent estimators of the relevant

asymptotic variances.

4Imbens and Wooldridge (2005) conjectured an equivalence in propensity score estimation.

5Our numerical equivalence results are established for the two-step semiparametric estima-

tors only when sieve (or series) methods are used in the �rst-step. We doubt such a numerical

equivalence result might still hold for other nonparametric �rst-steps such as kernel, local linear

regression, or nearest neighbor methods. On the other hand, the semiparametric formula in

principle addresses nonparametric �rst step sieve estimation with potentially data dependent

choice of the number of terms used in approximation.

6We do not address the question of improving existing procedures for semiparametric models.

Our numerical equivalence results may make some readers feel uncomfortable about existing

semiparametric procedures. Some readers may feel that the choice of sieves and the number of

terms to be used in the approximation, which have been buried in a list of regularity conditions,

should be explicitly addressed. Readers may also feel that the existing estimators of variance

in semiparametric models may have room for improvement given our equivalence result. These

are questions that can be potentially addressed within the context of higher order analysis,

which we leave to future research.

7This formulation assumes exact identi�cation, i.e., dim (') = dim (�) and dim ( ) =

dim (�). We consider an overidenti�ed situation in Section 5.3.

8See Wooldridge (2002, Chapter 12.3).

9Researcher A is trying to estimate a theoretical object that is not the true asymptotic
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variance, since she believes that the number of terms in the series will remain constant in her

asymptotics. In fact, Researcher A�s estimator b� in the second step will be inconsistent in
general because her �rst step estimator will not converge to the true nonparametric object.

10In other words, we do not need to worry about the dependence as in Chen and Shen (1998).

11We provide a proof of the consistency of bVsmle along with regularity conditions in Appendix
D because we are not aware of any published papers that establish the consistency of bVsmle,
albeit such an estimator has been used in the literature without proofs; see, e.g., Chen (2007,

remark 4.2), Chen, Fan and Tsyrennikov (2006). For most other results in this paper, we do

not provide any rigorous asymptotic theory, which is already done in the existing literature.

12This problem does not �t into the framework of Ai and Chen (2007). To our knowledge,

the result below is new to the literature.

13See Chen, Linton and van Keilegom (2003).

14Given the �exibility of h(xi), it is not clear from a practical perspective why one would

prefer a Probit over a Logit speci�cation.

15Aguirregabiria (1999), Ryan (2006), Collard-Wexler (2006), Dunne, Klimek, Roberts, and

Xu (2006), Sweeting (2007), Macieira (2008), Ellickson and Misra (2008), Snider (2008), and

Ryan and Tucker (2008) are some examples of empirical applications of these methods.

16Note that this doesn�t identify the structural parameter U (xt; 0; �U) (since by assumption

U (xt; 0; �U) does not depend on xt, this is just a scalar U0). This parameter satis�es

U0 = ��
Z �

0:5772 + ln

�
1 +

Pr (a = 1j z)
1� Pr (a = 1j z))

��
Fx (dzjxt; 0; �F )

17The �rst class of semiparametric estimators is a special case of Ai and Chen (2007).

18The second class does not �t into Ai and Chen (2007). To our knowledge, this result is

new to the literature.

19See their equation (5) or their plug-in estimation equations (6)-(7). In fact, Ai and Chen

(2007) consider a much broader class of models, including misspeci�ed semi/nonparametric

models. Our discussion here is a �translation� of their procedure for the speci�c model we

consider here.
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A Practical Asymptotic Variance Estimator for Two-Step
Semiparametric Estimators: Supplementary Appendix

Daniel Ackerberg, Xiaohong Chen, and Jinyong Hahn

A Understanding Newey�s (1994) Asymptotic Variance

Formula

Newey�s result We consider a simple model where the true unknown function h� is scalar-

valued and solves E [yi � h� (xi)jxi] = 0, and the true �� solves E[m (zi; ��; h� (xi))] = 0.
Newey (1994) considers a method of moment estimator b� that solves

1

n

nX
i=1

m
�
zi; b�;bh� = 0;

where bh is some nonparametric estimator of h�. Newey (1994) shows that the asymptotic
variance of

p
n
�b� � ��

�
is the asymptotic variance of

� (M�)
�1

 
1p
n

nX
i=1

fm (zi; ��; h�) + E [D (z)jx = xi] (yi � h� (xi))g
!

(19)

where M� = E
h
@m(zi;��;h�)

@�0

i
and D (z) = @m (z; ��; h (x))/ @hjh=h�.

Then a consistent estimator for the semiparametric asymptotic variance is equal to�cM�

��1 1
n

nX
i=1

�
m
�
zi; b�;bh�+ bE [D (z)jxi]�yi � bh(xi)��2 �cM 0

�

��1
(20)

where cM� =
1
n

Pn
i=1

@m(zi;b�;bh)
@�0 and bE [D (z)jxi] is some nonparametric estimator ofE [D (z)jx = xi].

(For notational simplicity, we assume that m is scalar-valued.)

In order to prove (19), it su¢ ces to characterize the asymptotic distribution of 1p
n

Pn
i=1m

�
zi; ��;bh�.

(This is because we have

p
n
�b� � ��

�
= � (M�)

�1

 
1p
n

nX
i=1

m
�
zi; ��;bh�!+ op (1)

under regularity conditions.)
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Newey (1994) basically writes

1p
n

nX
i=1

m
�
zi; ��;bh� = 1p

n

nX
i=1

fm (zi; ��; h�) + a (zi)g

and devotes the rest of his paper characterizing the adjustment a (zi) to the in�uence function.

We follow Newey�s (1994) notation for convenience of readers. From Newey (p. 1360), we can

see that, for D (z; h) = D (z)h (v) with D (z) = @m (z; h (v))/ @hjh=h�, we have his equation
(4.1) satis�ed. As is discussed on the same page, we now assume that h�(x) = E [yjx] for some
y and x. Now we follow his equation (4.4), and see if we can �nd

E [D (z) eg (x)] = E [� (x) eg (x)] for all eg:
Obviously the answer is given by � (x) = E [D (z)jx]. Then according to Newey�s (1994)

Proposition 4, we can see that a (z) = � (x) (y � E [yjx]) or

1p
n

nX
i=1

m
�
zi; ��;bh� = 1p

n

nX
i=1

(m (zi; ��; h�) + E [D (z)jx = xi] (yi � h�(xi)) + op (1) : (21)

A Naïve practitioner�s estimator Now we pose the following question. Let�s assume

that a practitioner �ts a ��exible�but �nite-dimensional parametric model h (x; �) for E [yjx].
In other words, he will believe that h� (x) = E [yjx] = h (x; ��). The practitioner pretends

that his parametric model is a correct one. He will then assume that the population analog

of his parametric strategy is �� = argmin� E
�
(y � h (x; �))2

�
. We will further suppose that

h (xi; �) = pK (xi)
0 � = p1 (xi) �1+ � � �+ pK (xi) �K where pK(x) = (p1 (x) ; ::::; pK (x))0, where K

is �nite and �xed.

We now argue that a consistent estimator that this practitioner will use is the outer product

of

�

0@ 1
n

nX
i=1

@m
�
zi; b�; h�xi; b���

@�0

1A�1 
1p
n

nX
i=1

�
m
�
zi; b�; h�xi; b���+ bE� �D (zi) ��pK (xi)� �yi � h

�
xi; b����!

where

bE� �D (zi) ��pK (xi)� �yi � h
�
xi; b���

� pK (xi)
0 (P 0P )

�1

 
nX
i=1

pK (xi)D (zi)

! 
yi � pK (xi)

0 (P 0P )
�1

 
nX
i=1

pK (xi) yi

!!
(22)
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and P =
�
pK (x1) ; : : : ; p

K (xn)
�0
. Because the practitioner believes that �� = argmin� E

�
(y � h (x; �))2

�
,

he would believe that the corresponding moment equation is

E

�
@h (x; ��)

@�
(y � h (x; ��))

�
= 0

With this in mind, he will conclude that

p
n
�b� � ��

�
=

�
E

�
@h (x; ��)

@�

@h (x; ��)

@�0

���1 
1p
n

nX
i=1

@h (xi; ��)

@�
(yi � h (xi; ��))

!
+ op (1)

He will then proceed and conclude that

1p
n

nX
i=1

m
�
zi; ��; h

�
xi; b��� = 1p

n

nX
i=1

m (zi; ��; h (xi; ��))

+

 
1p
n

nX
i=1

@m (zi; ��; h (xi; ��))

@h

@h (xi; ��)

@�0

!�b� � ��

�
+ op (1)

=
1p
n

nX
i=1

m (zi; ��; h (xi; ��))

+

 
1

n

nX
i=1

D (zi)
@h (xi; ��)

@�0

!
p
n
�b� � ��

�
+ op (1) (23)

Now, in his mind, he will think that 
1

n

nX
i=1

D (zi)
@h (xi; ��)

@�0

!
p
n
�b� � ��

�
= E

�
D (zi)

@h (xi; ��)

@�0

�p
n
�b� � ��

�
+ op (1)

= E

�
D (zi)

@h (xi; ��)

@�0

��
E

�
@h (x; ��)

@�

@h (x; ��)

@�0

���1 
1p
n

nX
i=1

@h (xi; ��)

@�
(yi � h (xi; ��))

!
+ op (1)

(24)

We now see that, if we regress D (zi) on
@h(x;��)
@�

in the population, the coe¢ cient is equal to�
E

�
@h (x; ��)

@�

@h (x; ��)

@�0

���1
E

�
@h (xi; ��)

@�
D (zi)

�
and the �tted value is equal to

@h (xi; ��)

@�0

�
E

�
@h (x; ��)

@�

@h (x; ��)

@�0

���1
E

�
@h (xi; ��)

@�
D (zi)

�
= E

�
D (zi)

@h (xi; ��)

@�0

��
E

�
@h (x; ��)

@�

@h (x; ��)

@�0

���1
@h (xi; ��)

@�
(25)
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So, let�s write

E�
�
D (zi)

����@h (xi; ��)@�

�
= E

�
D (zi)

@h (xi; ��)

@�0

��
E

�
@h (x; ��)

@�

@h (x; ��)

@�0

���1
@h (xi; ��)

@�
(26)

where E� denotes the best linear predictor. Combining (24) � (26), we can then see the

practitioner�s thought process would lead to the expression

1p
n

nX
i=1

m
�
zi; ��; h

�
xi; b���

=
1p
n

nX
i=1

�
m (zi; ��; h (xi; ��)) + E

�
�
D (zi)

����@h (xi; ��)@�0

�
(yi � h (xi; ��))

�
+ op (1) (27)

We now compare (21) with (27). It is easy to see that, except for E [D (z)jx = xi] in (21)

and E�
h
D (zi)

���@h(xi;��)@�

i
in (27), the formulae that the practitioner uses for asymptotic variance

calculation are identical. Obviously, we need to ask the question when E�
h
D (zi)

���@h(xi;��)@�

i
can be interpreted to be an approximation of E [D (z)jx = xi]. This is easy. Suppose that

h (xi; �) = pK (xi)
0 �. Then

@h (xi; ��)

@�
= pK (xi)

so the best linear predictor E�
h
D (zi)

���@h(xi;��)@�

i
is essentially the least squares operation on

pK (xi), which can be interpreted to be an approximation to E [D (z)jx = xi] as long as K is

large enough.

A consistent estimator for the �parametric�asymptotic variance is equal to�cM�

��1 1
n

nX
i=1

�
m
�
zi; b�; h�xi; b���+ bE� �D (zi) ��pK (xi)� �yi � h

�
xi; b����2 �cM 0

�

��1
: (28)

Numerical equivalence when bh is a sieve estimator When will Newey�s estimator (20)

of the semiparametric asymptotic variance (19) be numerically identical to the practitioner�s

parametric variance estimator (28)? If we are to use a sieve estimator with basis pK (xi) to

compute bh(xi) = bE [yjx = xi] and bE [D (z)jxi] in Newey�s (20), it can be easily seen thatbE [D (z)jxi]�yi � bE [yjx = xi]
�

= pK (xi)
0 (P 0P )

�1

 
nX
i=1

pK (xi)D (zi)

! 
yi � pK (xi)

0 (P 0P )
�1

 
nX
i=1

pK (xi) yi

!!
; (29)

which is numerically identical to (22). It follows that Newey�s estimator (20) is numerically

identical to (28) when a sieve least squares estimator is used for bh and bE [D (z)jxi]. (In fact,
Murphy and Topel�s (1985) estimator is identical to (28).)
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B Discussion of Ai and Chen (2007)

Ai and Chen�s (2007) sieve estimator of the asymptotic variance may appear somewhat mys-

terious. It is in fact a sample counterpart of the population characterization of the asymptotic

variance involving a minimization problem. In order to gain some intuition, we consider the

following simple example model:

E [yi � h� (xi)jxi] = 0; E [m (zi; ��; h� (xi))] = 0: (30)

Ai and Chen�(2007) modi�ed sieve minimum distance (SMD) estimator20 for �� = (��; h�)

boils down to�b�;bh� = argmin
(�;h)2B�Hn

8<: 1n
nX
i=1

(yi � h (xi))
2 +

 1n
nX
i=1

m (zi; �; h (xi))


2
9=; ;

which amounts to estimating h (xi) by the method of sieves and then estimating � in the

moment equation E [m (zi; ��; h� (xi))] = 0 plugging in the �rst step nonparametric estimator.

In other words, it is exactly the same setup as that in Newey (1994). Ai and Chen (2007)�s

asymptotic variance V for their b� can be characterized by the following algorithm, where we
assume that dim (�) = 1 and scalar-valued h for notational simplicity:

1. Compute w� to solve

inf
w
E

"
(w (xi))

2 +

�
E

�
@m (zi; ��)

@�
� @m (zi; ��)

@h
w (xi)

��2#
:

2. Calculate

�w� (zi) =

24 w� (xi)

E
h
@m(zi;��)

@�
� @m(zi;��)

@h
w� (xi)

i 35 ;
and

� (zi; ��) =

"
yi � h� (xi)

m (zi; ��; h� (xi))

#
:

3. Calculate

V =
�
E
�
�w� (zi)

0�w� (zi)
���1

Var
�
�w� (zi)

0 �(zi; ��)
� �
E
�
�w� (zi)

0�w� (zi)
���1

: (31)

For this simple example model (30), it can be shown that the solutions in the above Steps

1 - 3 are

w� (xi) =
E
h
@m(zi;��)

@�

i
1 + E

�
(E [D (z)jx = xi])

2�E [D (z)jx = xi] ;
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�w� (zi) =

26664
E

�
@m(zi;��)

@�

�
1+E[(E[D(z)jx=xi])2]

E [D (z)jx = xi]

E

�
@m(zi;��)

@�

�
1+E[(E[D(z)jx=xi])2]

37775 ;

�w� (zi)
0 � (zi; ��) =

E
h
@m(zi;��)

@�

i
1 + E

�
(E [D (z)jx = xi])

2� (m (zi; ��; h� (xi)) + E [D (z)jx = xi] (yi � h� (xi))) ;

and

V =
Var [m (zi; ��; h� (xi)) + E [D (z)jx = xi] (yi � h� (xi))]�

E
h
@m(zi;��)

@�

i�2 ;

where D (z) = @m (z; ��; h (x))/ @hjh=h�. In particular, we see that Ai and Chen�s asymptotic
variance V is identical to Newey�s (1994) asymptotic variance (19) for this example model (30).

We note that analytic characterization of w� (�) hence population asymptotic variance V is not
always easy for general semiparametric models considered in Ai and Chen (2007). Their sieve

estimator of the asymptotic variance V simply uses a sample counterpart of the population

minimization problem to bypass such a di¢ culty.
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