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Why does Bad News Increase Volatility and
Decrease Leverage?

Ana Fostel ∗ John Geanakoplos†‡

December 26, 2010

Abstract

A recent literature shows how an increase in volatility reduces leverage.
However, in order to explain pro-cyclical leverage it assumes that bad news
increases volatility, that is, it assumes an inverse relationship between first and
second moments of asset returns. This paper suggests a reason why bad news
is more often than not associated with higher future volatility. We show that,
in a model with endogenous leverage and heterogeneous beliefs, agents have
the incentive to invest mostly in technologies that become more volatile in bad
times. Agents choose these technologies because they can be leveraged more
during normal times. Together with the existing literature this explains pro-
cyclical leverage. The result also gives a rationale to the pattern of volatility
smiles observed in the stock options since 1987. Finally, the paper presents
for the first time a dynamic model in which an asset is endogenously traded
simultaneously at different margin requirements in equilibrium.
Keywords: Collateral, Endogenous Leverage, VaR, Volatility, Volatility Smile.
JEL Codes: D52, D53, E44, G01, G11, G12

1 Introduction

After the recent financial crisis there is almost universal agreement that leverage is
pro-cyclical: leverage is high during normal times and low during anxious or crisis
times. Figures 1 and 2, taken from Geanakoplos (2010b), display leverage and asset
prices for the housing market and for AAA Securities from 1998-2009. They both
show that leverage is pro-cyclical: prices rise as leverage increases, and prices fall
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as leverage decreases. In particular, both leverage and prices collapsed during the
recent financial crisis. This has also been documented by Adrian and Shin (2009)
and Gorton and Metrick (2010).

Figure 1: Pro-cyclical leverage: Housing.

A recent theoretical literature has gone quite far in explaining how leverage is
influenced by volatility in equilibrium, and why there is a positive relationship be-
tween leverage and asset prices. For example, Geanakoplos (1997, 2003, 20010a)
shows how supply and demand determine equilibrium leverage and why higher tail
volatility reduces leverage. In his model higher leverage increases asset prices. He
suggested (in 2003) that big crises occur when bad news is of a particular kind he
called “scary bad news”, because the news raises tail volatility, as well as decreasing
expectations, and hence reduces leverage. Prices then decline not only because of the
lower expectations, but also because of the lower leverage.1 A similar story has been
told in Brunnemeier and Pedersen (2009). Geanakoplos has called this amplification
mechanism the Leverage Cycle.2 Fostel-Geanakoplos (2008) extended it further to
many assets and adverse selection.

1Prices also decline because the optimists, who leverage up in the ebullient phase of the cycle,
go disproportionately bankrupt when bad news comes and prices start to fall.

2As opposed to Credit Cycles from the more classical literature in Macroeconomics (such as
Kiyotaki and Moore (1997) and Bernanke and Gertler (1997), which refers to the feedback and co-
movement between borrowing and prices, ignoring changes in their ratio, that is, ignoring changes
in leverage.
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Figure 2: Pro-cyclical leverage: AAA Securities.

The leverage cycle mechanism essentially assumes that bad news is associated
with high volatility, so that there is an inverse relationship between first moments
(expected future payoffs ) and second moments (volatility of payoff). This assump-
tion that bad news, at least very bad news, is associated with very high volatility
seems quite plausible. Figure 3 shows the history of the VIX index (the Chicago
Board Options Exchange Volatility Index) a popular measure of the implied volatil-
ity of SP 500 index options. A high value corresponds to a more volatile market and
therefore more costly options. Often referred to as the fear index, it represents one
measure of the market’s expectation of volatility over the next 30 day period. We
clearly see that the index was very high during the recent financial crisis implying
that bad news indeed came associated with high volatility.

Without a theory that explains why bad news induces high volatility we are only
half way in explaining the pro-cyclical pattern of leverage observed in the data. The
main contribution of this paper is to shed light on this missing link and hence to
more fully understand the relationship between news, volatility and leverage. We
show that in a model with endogenous leverage and heterogeneous beliefs, agents
have the incentive to invest mostly in technologies that become more volatile in bad
times. Agents choose these technologies because they can be leveraged more during
normal times. In this sense, the paper “closes” the leverage cycle models.

More precisely, we consider a family of projects (assets) k such that every agent
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Figure 3: VIX index.

h believes every project has the same probability Qh of ultimate success U and
probability 1 − Qh of ultimate failure D in the last period. Without loss of gen-
erality, we suppose the projects pay off 1 if they succeed, and R < 1 if they fail.
In an intermediate period agents get good news u about the projects, which raises
their probabilities of success to qhuU(k) > Qh, or they get bad news d, which low-
ers their probabilities of success to qhdU(k) < Qh. Projects k are characterized by
their probabilities of good news qhu(k), as well as by qhuU(k) and qhdU(k), where
qhu(k)qhuU(k) + (1 − qhu(k))qhdU(k) = Qh. It is important to the model to have het-
erogeneity among agents. For simplicity we suppose that the agents are risk neutral
and perfectly patient, and are ordered according to their optimism, so that when
i > h, (qiu(k), qiuU(k), qidU(k)) > (qhu(k), qhuU(k), qhdU(k)). We assume a continuum of
agents h ∈ (0, 1).

In “Post-Bad News Volatile projects” (from now on BV ), bad news comes asso-
ciated with an increase in future payoff volatility. Extreme BV projects are charac-
terized by qhuU(k) = 1 for all h, so that everyone agrees all the volatility comes after
bad news. In “Post-Good News Volatile projects” (from now on GV ) good news
induces higher future payoff volatility. Extreme GV projects are characterized by
qhdU(k) = 0 for all h, so that everyone agrees all the volatility comes after good news.

Three BV examples of bad news inducing higher volatility are: i) an airline
announces that the plane is now expected to be ten minutes late, which makes
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people worry it will be an hour late, ii) a bank announces it has lost $5 billion, which
makes investors fear another $20 billion may follow, and iii) subprime delinquencies
shoot up from 2% to 5%, which makes people worry they may go up to 30%. A GV
example of good news inducing higher volatility might be that after a presidential
candidate wins a crucial primary he may become president or be destroyed by a
hitherto unknown scandal. Similarly, after a biotech company patents a new drug,
its profits may soar, or side effects from the drug may force the whole research effort
to be scratched. Notice that in the three BV examples each piece of bad news reveals
only a little information about expected outcomes but creates a lot of uncertainty,
while in the GV examples it is the good news that raises expected outcomes a little
but creates much more volatility.

Which projects will be chosen to be produced in equilibrium, and therefore what
are the equilibrium fluctuations in volatility and leverage as good news or bad news
arrives? In Section 2 we begin to answer this question by describing how the economy
will trade the projects, and at what prices, assuming that K of them have already
been chosen. In the model, agents can use these projects (assets) as collateral to bor-
row money. Agents are presented with a menu of one-period non-contingent promises,
each collateralized by one unit of asset (or project). The leverage an agent uses to
buy an asset is defined by the total value of all the promises he makes using the asset
as collateral divided by the total value of asset he holds. Leverage becomes endoge-
nous because in equilibrium agents may choose different non-contingent promises
from the menu.

In Section 3 we specialize to the case where exactly one of the projects has already
been chosen. Propositions 1 and 2 show that then equilibrium exists and is unique
and that leverage is endogenously determined in equilibrium and corresponds to the
“Value at risk equal zero” rule (VaR=0 ). Each buyer uses the asset as collateral to
promise the value of the asset in the worst case scenario in the next period, that is
borrowing as much as possible while preventing default from occurring in equilibrium.
(We call this the maxmin promise). The key assumption in the proposition is that
the tree is binary. Another important ingredient in the proof is the continuum of
distinct risk neutral agents. This allows us to find a marginal buyer who partitions
the set of agents into “optimists” who want to leverage as much as possible and
“pessimists” who do not want to compete with the optimists for any risky portfolio
and who therefore end up holding no risk at all.

In propositions 3 to 5 we show that: i) the initial prices of all the extreme GV
projects are the same, and lower than all other projects, ii) the highest initial priced
project is always an extreme BV project iii) initial leverage is higher in extreme BV
projects than in extreme GV projects and iv) leverage is pro-cyclical in extreme BV
projects and counter-cyclical in all the others.

Why do the projects have such different prices and leverage characteristics in
equilibrium despite their identical final payoff distribution?
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Extreme BV projects can be leveraged more at time 0 than extreme GV projects
due to the type of bad news. Given the endogenous VaR=0 rule, the maximum that
agents can promise is the worst case scenario in the immediate future: the price of the
project after bad news. But in extreme BV projects the price does not fall much after
bad news precisely because bad news is little informative. By contrast, bad news
in extreme GV projects is very informative, drastically lowering the equilibrium
promise at time 0.

Extreme BV projects are more valuable than extreme GV projects at the begin-
ning because they can be leveraged more. A higher borrowing capacity implies that
all the assets in the economy can be bought by fewer investors. Since there is a con-
tinuum of buyers with continuously decreasing valuations, the marginal buyer then
has a more optimistic asset valuation. This raises the project’s price. The reason
some extreme BV projects are more valuable than all other projects is a bit more
subtle and is explained in detail in the proof. Essentially the former give optimists
the incentive to leverage at time 0, effectively betting on uU , rather than waiting
until after the news to leverage and betting on both uU and dU . Again this raises
the marginal buyer at time 0 and so raises the price.3

Finally, an implication of the VaR = 0 rule is that all projects other than extreme
BV projects exhibit counter-cyclical leverage in equilibrium. Every project is worth
the most after good news u, but as long as every agent still thinks D is possible,
the same minimum promise of R will be the only traded promise at u and d. Hence
the value ratio of promise to collateral will be least just when the price of the asset
is highest. Only in extreme BV projects will leverage be pro-cyclical, because in
those projects agents do not think D is possible after u and hence the only traded
promise shoots up to 1 after good news. Since there are comparatively few of these
pro-cyclical projects, we have biased our search for the equilibrium projects in favor
of projects that will exhibit counter-cyclical leverage. A more general setting might
have allowed for the worst case scenario to become much worse after bad news. That
would have explained why leverage goes down after bad news. But we have instead
assumed that the same two outcomes of 1 and R are feasible after both good news
and bad news. Despite tying our hands, we find that the highest priced project
displays pro-cyclical leverage and counter-cyclical volatility.

We close Section 3 by showing that the initial price of the extreme BV project
is higher still if we extend the number of periods, so that at each period either good
news arrives, in which case the project is worth 1 for sure, or bad news arrives, in

3Given an arbitrary project that is not extreme BV, it is possible to find an extreme BV project
such that every agent’s beliefs conditional on bad news d are the same, (so that the price after
bad news is the same and hence just as much can be borrowed in equilibrium at time 0) and for
which (qi

uqi
uU/qi

dq
i
dU )/(qh

uqh
uU/qh

d qh
dU ) has risen for all i > h. This makes it more attractive for an

optimist to buy the asset at time 0 by leveraging, rather than waiting to buy the asset after news
has arrived, and thus gives the extreme BV project a higher initial price.
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which case one needs to wait another period for further good or bad news. In this
case, extreme BV projects represent the situation in which crises develop slowly.

In Section 4 we move on to answer a more difficult question. Suppose each
agent owns a technology that can transform his labor into any portfolio (a, b) of
two projects, an extreme BV and an extreme GV, such that a + b = 1. Now both
projects can co-exist within the same economy and hence the analysis becomes more
difficult. We make the analysis even richer by allowing news about the projects to
be independent, so time 0 is followed by four possible pieces of news, and the tree is
no longer binary.

Unlike before, VaR=0 is not the only contract traded in equilibrium at time
zero. Now, two non-contingent promises will be actively traded in equilibrium for
each asset: a risk-less promise and a risky one that defaults in the worst state. Each
contract has an associated leverage, and asset leverage is defined as the average
leverage over all the traded contracts that use the asset as collateral. Two new
things appear in this extended model (that were not in the baseline model with one
asset) which are more in tune with what we observe in the real world. First, there is
default in equilibrium and second the same asset is traded simultaneously at different
margin requirements by different investors.

We numerically show that all agents choose mainly the BV project. In equilib-
rium in our simulation all agents choose to invest their labor in a portfolio with a
70% share of the BV project.4 Moreover, both projects display the same leverage
patterns as when considered separately, i.e. the extreme BV project is leveraged
more than the exreme GV project and leverage is pro-cyclical in the BV project
and counter-cyclical in the GV project. Most of the time when we observe bad
news about a project we will observe high volatility and low leverage, explaining
the leverage cycle stylized facts above. We emphasize that this preference for BV
technologies relies uniquely on a liquidity channel. Agents in this economy are risk-
neutral. Agents choose mainly BV technologies because they can borrow more at
the initial period.

This result suggests an explanation of why crises develop slowly: agents have an
incentive to choose projects in which bad news is little informative, because those are
the most valuable in the initial period. It is worth remembering that the subprime
crisis of 2007-9 developed very slowly over two and a half years. Over the first year
and a half most pundits maintained that the crisis would turn out to be minor, even
though mortgage security prices and housing prices were steadily declining.

Finally, this result also suggests an explanation for the observed “Volatility Smile”
in stock options. This refers to the fact that implied volatility has a negative relation-
ship with the strike price, so volatility decreases as the strike price increases. Hence,

4This result is robust to different choices of parameter values as shown in the appendix. The
proportion of labor invested in the BV technology is never less than 70%.
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bad news comes (or are assumed to come) with high volatility. This pattern has
existed for the majority of equities only after the stock market crash of 1987. This
has led some economist like Bates (2000) and Rubinstein (1995) to explain volatilites
smiles by “crashophobia”. Traders were concerned about the possibility of another
crash and they priced options accordingly. Our result provides a completely differ-
ent explanation. Our agents are perfectly rational, they endogenously chose projects
associated with volatile bad news since they can leverage more with them.

Our paper is most closely related to Geanakoplos (2003), which (in our language)
analyzed the leverage cycle in the context of an extreme BV example. Our paper
is related to a literature on collateral and credit constraints as in Bernanke, Gertler
and Gilchrist (1999), Caballero and Krishnamurthy (2001), Fostel and Geanakoplos
(2008a), Holmstrom and Tirole (1997), Kiyotaki and Moore (1997) and Shleifer and
Vishny (1992). More closely, our paper is related to a literature on leverage as in
Araujo, Kubler and Schommer (2009), Acharya and Viswanathan (2009), Adrian and
Shin (2009), Brunnermeier and Pedersen (2009), Cao (2010), Fostel and Geanakoplos
(2008b and 2010), Geanakoplos (1997, 2003 and 2010a), Gromb and Vayanos (2002)
and Simsek (2010). It is also related to work that studies the asset price implications
of leverage as Hindy (1994), Hindy and Huang (1995) and Garleanu and Pedersen
(2009). Some of these papers focus on investor-based leverage as in Acharya and
Viswanathan (2009), Adrian and Shin (2009) and Gromb and Vayanos (2002), and
others like Brunnermeier and Pedersen (2009), Cao (2010), Fostel and Geanakoplos
(2008b and 2010), Geanakoplos (1997, 2003 and 20010a) and Simsek (2010) focus on
asset-based leverage. Not all these models present a theory of endogenous leverage;
most of them assume a VAR=0 rule and study the cyclical properties of leverage
as well as its asset pricing implications. In Acharya and Viswanathan (2009) and
Adrian and Shin (2009) the endogeneity of leverage relies on asymmetric informa-
tion and moral hazard problems between lenders and borrowers. In Araujo et. al
(2009), Cao (2010), Geanakoplos (1997, 2003, 2010a), Fostel-Geanakoplos (2008b)
and Simsek (2010) endogeneity does not rely on asymmetric information, rather fi-
nancial contracts are micro founded by a collateralized loan market. However, while
all of these papers related low leverage with high volatility, none of them explain or
endogenize the type of bad news, but rather assume that bad news comes with an
increase in volatility. Furthermore, our paper is the first model to solve fully for en-
dogenous leverage in a dynamic economy with a continuum of agents and more than
two successor states. Geanakoplos (1997) showed how to make leverage endogenous
by defining a contract as an ordered pair (promise, collateral) and requiring that
every contract be priced in equilibrium, even if it is not actively traded. In Geanako-
plos (1997, 2003, 2010a) and Fostel-Geanakoplos (2008b) only one contract is traded.
Araujo et.al (2009) gives a two period example of an asset which is used as collateral
in two different actively traded contract. Finally, Bloom (2009), provides a theory of
why high volatility creates recessions. The main channel in his paper is risk aversion.
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2 A General Equilibrium Model of Endogenous

Leverage

2.1 Time and Uncertainty

The model is a finite-horizon general equilibrium model, with time t = 0, · · · , T .
Uncertainty is represented by a tree of date-events or states s ∈ S, including a root
s = 0. Each state s 6= 0 has an immediate predecessor s∗, and each non-terminal
node s ∈ S\ST has a set S(s) of immediate successors. Each successor τ ∈ S(s) is
reached from s via a branch σ ∈ B(s); we write τ = sσ. We denote the time of s by
the number of nodes t(s) on the path from 0 to s∗.

2.2 Financial Contracts and Collateral

A financial contract (A,C) consists of both a promise, A, and collateral backing it,
C. Collateral consists of durable goods, which will be called assets. The lender has
the right to seize as much of the collateral as will make him whole once the loan
comes due, but no more.

Suppose there is a single storable consumption good c and k = 1, ..., K assets
which pay dividends dks in each state s. We take the consumption good as numeraire
and denote the price of asset k in each state as pks . We will focus on one-period
non-contingent contracts. Contract jks is of the form (j · 1̃s, 1k), where 1̃s ∈ RS(s)

stands for the vector of ones with dimension equal the number of successors of s and
1k stands for one unit of asset k. Hence, contract jks promises j units of consumption
good in each successor state of s and the promise is backed by one unit of asset k.
Contract jks ∈ Jks where Jks is the set of all contracts at state s that use as collateral
one unit of asset k. Finally, Js =

⋃
k J

k
s and J =

⋃
s∈S\ST Js.

The price of contract jks in state s is πjks . An investor can borrow πjks today by
selling contract jks in exchange for a promise of j tomorrow. Since the maximum a
borrower can lose is his collateral if he does not honor his promise, the actual delivery
of contract jks in states τ ∈ S(s) is min{j, pkτ + dkτ}. If the collateral is big so that
j ≤ pkτ + dkτ ∀τ ∈ S(s), then the contract will not default. In that case its price
defines a riskless rate of interest (1 + rjks ) = j

πjks
.

The margin requirement mjk
s associated to contract jks in state s is given by

mjk
s =

pks − πjks
pks

(1)

Leverage associated to contract jks in state s is the inverse of the margin, 1/mjk
s

and the Loan-to-Value (LTV) associated to contract jks in state s is 1−mjk
s .
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We define the asset loan-to-value for asset k, as the trade-value weighted average
of 1 − mjk

s across all contracts actively traded in equilibrium that used asset k as
collateral.5

2.3 Production

Each investor h has an endowment of the consumption good and labor, denoted by
ehs ∈ R+ and lhs ∈ R+ in each state s ∈ S. We assume that the consumption good
and labor are present at time 0,

∑
h∈H e

h
0 > 0,

∑
h∈H l

h
0 > 0.

Every agent has direct access to two types of constant-returns-to-scale production
processes in the model: an inter-period and a within-period production. The inter-
period production is a simple way to model consumption good durability in the
economy. A unit of consumption warehoused in state s yields one unit of consumption
in all successors states. There is no depreciation.

The second type of production, the within-period production, transforms labor,
l, into a portfolio of assets to be chosen by the investor in the set Zh

s = {(z1
s , ..., z

K
s ) ∈

RK
+ : z1

s + ... + zKs ≤ lhs}. Any investor can use his lhs units of labor to produce any
combination of assets.

2.4 Utility

The von-Neumann-Morgenstern expected utility of each investor h ∈ H is character-
ized by a Bernoulli utility, uh, a discounting factor, δh and subjective probabilities,
qh. We assume that the Bernoulli utility function for consumption in each state
s ∈ S, uh : R+ → R, is differentiable, concave, and monotonic. Agent h assigns
subjective probability qhs to the transition from s∗ to s; naturally q0 = 1. Letting q̄hs
be the product of all qhs′ along the path from 0 to s, we have

Uh =
∑
s∈S

q̄hs (δh)t(s)uh(cs) (2)

2.5 Budget Set

Given asset and contract prices ((pks , π
jk
s ), s ∈ S, jks ∈ Jks ), each agent h ∈ H decides

what assets to produce, zs, consumption, cs, warehousing, ws, asset holdings, ys, and
contract sales (borrowing) ϕjks > 0, and purchases (lending), ϕjks < 0, in order to
maximize utility (2) subject to the budget set defined by

5For a detailed description see Fostel-Geanakoplos (2010)
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Bh(p, π) = {(z, c, w, y, ϕ) ∈ RSK
+ ×RS

+ ×RS
+ ×RSK

+ × (RJs)s∈S\ST : ∀s

(cs + ws − ehs − ws∗) +
∑

k p
k
s(y

k
s − yks∗ − zks ) ≤∑

k y
k
s∗d

k
s +

∑
jks∈Js

ϕjks π
jk
s −

∑
jks∗∈Js∗

ϕjks∗min(pks + dks , j);

zs ∈ Zh
s ;∑

jks∈Jks
max(0, ϕjks ) ≤ yks ,∀k}

In each state s, expenditures on consumption and warehousing minus endowments
and storage, plus total expenditures on assets minus asset holdings carried over
from the last period and asset output from the within-period technology, can be at
most equal to total asset deliveries plus the money borrowed selling contracts, minus
the payments due at s from contracts sold in the previous period.6 Within-period
production is feasible. Finally, those agents who borrow must hold the required
collateral.

Let us emphasize two important things. First, notice that there is no sign con-
straint on ϕjks : a positive (negative) ϕjks indicates the agent is selling (buying) con-
tracts or borrowing (lending) πjks . Second, notice that we are assuming that short
selling of assets is not possible.

2.6 Collateral Equilibrium

A Collateral Equilibrium in this economy is a set of asset prices and contract prices,
production and consumption decisions, and financial decisions on assets and contract
holdings ((p, π), (zh, ch, wh, yh, ϕh)h∈H) ∈ (RK

+×RJs
+ )s∈S\ST×(RSK

+ ×RS
+×RS

+×RSK
+ ×

(RJs)s∈S\ST )H such that ∀s

1.
∑

h∈H(chs + whs − ehs − whs∗) =
∑

h∈H y
h
s∗ds

2.
∑

h∈H(yhs − yhs∗ − zhs ) = 0

3.
∑

h∈H ϕ
h
jks

= 0, ∀jks ∈ Js

4. (zh, ch, wh, yh, ϕh) ∈ Bh(p, π),∀h

5. (z, c, w, y, ϕ) ∈ Bh(p, π)⇒ Uh(c) ≤ Uh(ch),∀h

Markets for consumption, assets and promises clear in equilibrium and agents
optimize their utility in their budget set. As shown by Geanakoplos and Zame
(1997), equilibrium in this model always exists under the assumptions we have made
so far.

6We take yh
0∗ = 0.
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3 News and Asset Prices and Leverage

3.1 A baseline Economy

In this section we assume that there is only one asset. Throughout the paper we
consider assets and projects as synonyms. Suppose there are three periods, t =
0, 1, 2. The single asset, Y , delivers only at the final period. We assume that state
0 has two successors U , for up, and D, for down, representing good and bad news
respectively. Each of these states s ∈ {U,D} has at most two successors sU and/or
sD, at which the asset pays 1 or R < 1, respectively. Thus the set of states is S ⊆
{0, U,D, UU, UD,DU,DD}. Figure 4 depicts a tree consistent with this description.

U	  

D	  

R	  

1	  

1	  

R	  

0	  

UU	  

UD	  

DU	  

DD	  

qhUU 

qhDU 

qhU qhUD 

qhD 

qhDD 

Figure 4: Asset payoff description.

There is a continuum of heterogenous agents indexed by h ∈ H = (0, 1). The
only source of heterogeneity is in the subjective probabilities qhs that agent h believes
measures the likelihood of moving from s∗ to s, where qhs is a continuous function of
h, for each fixed s ∈ S. If state s exists in the tree, then we suppose that qhs > 0 for
all h. (If state s does not exist in the tree, then for brevity we sometimes refer to qhs
anyway, where we mean qhs = 0 for all h.) U can be interpreted as good news since
we assume that

qhUU > qhDU ,∀h (3)
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i.e., the probability of full payment after U is higher than after D.

We assume the higher the h, the more optimistic the agent is about all aspects of
the future. So, whenever h > h′, qhU > qh

′
U and, provided s has two successors, qhsU >

qh
′
sU for s ∈ {U,D}, and, if DU exists in the tree, then

q̄hUU
q̄hDU
≡ qh0U q

h
UU

qh0Dq
h
DU

>
qh
′

0U q
h
DU

qh
′

0Dq
h′
DU

≡ q̄h
′
UU

q̄h
′
DU

.

The last inequality means that the more optimistic the agent, the more likely he
thinks the payoff of 1 is reached via the UU route as opposed to the DU route. We
shall refer to all these conditions as the Optimism Assumption.

Agents are risk neutral and do not discount the future. They start at t = 0 with
an endowment of 1 unit of the consumption good and 1 unit of labor. More formally,
Uh =

∑
s∈S q̄

h
s cs, e

h
0 = 1 and ehs = 0, s 6= 0, and lh0 = 1 and lhs = 0, s 6= 0. In this

baseline economy with one asset it is clear that in equilibrium every investor will
transform his labor into one unit of the asset at time 0.

3.2 Projects

We consider a family of projects (assets) k such that every agent h believes every
project has the same probability Qh of ultimate success (UU or DU) and probability
1−Qh of ultimate failure (UD or DD) in the last period. In the intermediate period
agents get good news U , which raises their probabilities of success to qhUU(k) > Qh,
or they get bad news D, which lowers their probabilities of success to qhDU(k) <
Qh. Projects k are characterized by the probabilities (qhU(k), qhUU(k), qhDU(k)), where
qhU(k)qhUU(k) + (1 − qhU(k))qhDU(k) = Qh. We ask and answer the question: which of
these projects k has the highest equilibrium price at 0, and does that project display
pro-cyclical or counter-cyclical leverage and volatility?

Consider three extreme families of projects. The first one is described in figure 5.
If state U is reached in the second period, uncertainty is completely resolved since
the asset pays for sure 1 at the end. However, if D is reached, uncertainty remains.
In fact, D is bad news, but of the sort that not only decreases the expected asset
payoff compared with U but also increases final payoff volatility. This kind of project
represents the situation in which each piece of bad news is not very informative and
induces high future volatility. We call it an extreme “Post-Bad News Volatility”
project, or extreme BV for short.7

The second one is described in figure 6. We call this type extreme “Post-Good
News Volatility” projects, or extreme GV for short. If D is reached, all uncertainty is
resolved and the asset pays R for sure. However, if U is reached uncertainty remains.
Extreme GV projects represent the situation in which each piece of good news, as
opposed to bad news as in the extreme BV projects, is not very informative and
induces high future volatility.

7This is the example in Geanakoplos (2003, 2010a).
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U	  

D	  

1	  

1	  

R	  

0	  

UU	  

DU	  

DD	  

1 

qhU 

qhD 
qhDU 

qhDD 

Figure 5: Extreme BV Project.

Thirdly, consider the “two-period” projects shown in Figure 7, in which U is
followed by UU for sure, and D is followed by DD for sure. These projects are
all equivalent to a two-period tree in which 0 is followed immediately by UU with
probability Qh and by DD with probability 1−Qh. Needless to say, the vast majority
of the projects fall into none of these three extreme families.

Propositions 1 and 2 show that for every project, equilibrium exists and is unique
and that leverage is endogenously determined in equilibrium and corresponds to the
“Value at risk equal zero” rule (VaR=0 ). Each buyer uses the asset as collateral to
promise the value of the asset in the worst case scenario in the next period, that is
borrowing as much as possible while preventing default from occurring in equilibrium.
(We call this the maxmin promise). In propositions 2 to 5 we show that: i) the initial
prices of all extreme GV projects are the same as the two period project, and lower
than all other projects, ii) the highest initial priced project is always an extreme BV
project iii) initial leverage is higher in extreme BV projects than in extreme GV
projects and iv) leverage is pro-cyclical in extreme BV projects and counter-cyclical
in all the others.

In the remainder of Section 3 we will prove these results and show numerical
simulations for a fixed families of probabilities.
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qhD 

qhUU 
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Figure 6: Extreme GV Project.

3.3 Endogenous Leverage

Proposition 1 shows that agents will never default in equilibrium, that is, they only
trade VaR=0 contracts. In fact, the proposition proves something stronger, that
only one contract is traded: the maxmin contract.

Proposition 1

Suppose that in equilibrium the max min contract j∗s = minτ∈S(s){pτ + dτ} is
available to be traded, that is j∗s ∈ Js for every non-terminal state s. Then j∗s is
the only contract traded in state s, and the risk-less interest rate is equal to zero,
π
j∗s
s = j∗s .

Furthermore, pU > p0 > pD. At each state s that has two successors, there is
a marginal buyer hs such that all agents h > hs buy the asset and sell j∗s , and all
agents h < hs buy j∗s and/or hold the consumption good. Finally, h0 > hD, if D has
two successors, and h0 > hU = hD, provided that U and D each have two successors.

Proof: Without loss of generality we only consider contracts in state s with
j ≤ maxτ∈S(s){pτ + dτ} since bigger promises are equivalent.

1. All riskless rates are non-positive. If 0 < j ≤ j∗s then πjs ≥ j.
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Figure 7: “Two-period” Project.

Consider first the state s = 0, where we know the endowment of consumption
good is non-zero. Somebody has to hold a positive amount of the consumption
good at the end of period s = 0, either to consume or to inventory. But if
πjs < j they would have done better investing επjs in contract j and receiving
εj in the next period giving them a higher utility since there is no discounting,
a contradiction. Consider now state s = U and suppose πjs < j. No agent
would consume his consumption good at s = 0, because he could do better
inventorying it into states U and D, eating if in D and buying contract j in
state S, and then consuming even more at UU and UD. Hence agents would
enter state s with consumption good, but that leads to a contradiction as
before. The same argument applies to s = D.

2. Observable riskless rates are zero. If 0 < j ≤ j∗s is traded in equilibrium, then

πjs = j and π
j∗s
s = j∗s .

Nobody would buy j if πjs > j, since he could do better by inventorying, so
πjs = j. The seller of j could have sold j

j∗s
units of j∗s instead (and used less

collateral). If he chose not to do so, then π
j∗s
s

j∗s
≤ πjs

j
= 1, so π

j∗s
s = j∗s .

3. If j with psU + dsU > j > j∗s is traded in equilibrium, then π
j∗s
s = j∗s . Letting

as = ps−j∗s
psU+dsU−j∗s

and bs = 1−as, then πjs = asj+bsj
∗
s . (The analogous conclusion
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would hold if psD + dsD > j > j∗s .)

Contract j pays fully in the up state, but defaults and pays only j∗s = psD+dsD
in the down state. The seller of the contract must have put up the collateral
of one unit of the asset, and therefore is effectively buying an Arrow security
in the U state, paying a price per dollar of

ās =
ps − πjs

psU + dsU − j

The seller of contract j could instead have acquired U Arrow securities by
buying the asset while borrowing π

j∗s
s , that is making the riskless promise j∗s .

Hence

1

ās
=
psU + dsU − j

ps − πjs
≥ psU + dsU − j∗s

ps − πj
∗
s
s

≥ psU + dsU − j∗s
ps − j∗s

=
1

as

The buyer of contract j could have instead inventoried j∗s consumption goods
and bought (j − j∗s ) U Arrow securities via the risky promise as above, hence
it must be that

πjs ≤ j∗s + (j − j∗s )
ps − πjs

psU + dsU − j
and hence that

(j − j∗s )
πjs − j∗s

≥ psU + dsU − j
ps − πjs

It follows that all the previous inequalities must be equalities, otherwise we
would have8

(j − j∗s ) + psU + dsU − j
πjs − j∗s + ps − πjs

>
psU + dsU − j∗s

ps − j∗s
a contradiction.

Thus if contract j is traded, then π
j∗s
s = j∗s and πjs = asj + bsj

∗
s .

4. π
j∗s
s = j∗s

If π
j∗s
s > j∗s , any agent who ends up holding some of the asset would be foolish

not to borrow. At worst the agent uses ε units of the asset as collateral to sell ε
units of contract j∗s , then inventories π

j∗s
s and pays back j∗s , getting extra utility

for nothing. From (2) and (3), no matter which contract j he is borrowing on,

π
j∗s
s = j∗s .

8We make use of the arithmetic property that if a, b, c, d > 0, and a
b > c

d then a+c
b+d > c

d .
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5. If s ∈ {U,D} has two successors, then any portfolio that any agent h would
want to hold delivers (csU , csD), with csU ≥ csD and costs ascsU + bscsD, where
as = ps−j∗s

psU+dsU−j∗s
, and bs = 1− as.

Any feasible portfolio payoff (csU , csD) requires csU ≥ csD. The cheapest way
to buy those payoffs is to inventory csD units of the consumption good and
to buy csU − csD units of the U Arrow security via the purchase of the asset
borrowing using contract j∗s .

6. If s ∈ {U,D} has two successors, then the only contract traded is the maxmin
contract j∗s . Moreover, defining the “marginal buyer” as the unique hs such
that qhssU = as, all agents h > hs simply buy the asset and sell j∗s , and all agents
h < hs simply inventory the consumption good and/or buy j∗s .

Let Hs be the set of all traders with

qhsU
qhsD

>
as
bs

and let Is be the set of all traders with

qhsU
qhsD

<
as
bs

Since every risk neutral agent h wants to hold a portfolio that maximizes his
return per dollar

µhs =
qhsUcsU + qhsDcsD
ascsU + bscsD

it is evident that agents h ∈ Hs will only buy the U Arrow securities and agents
i ∈ Is will only hold portfolios with payoffs csU = csD. In particular, none of
them will buy the contracts j that involve default in the bad state. Since by
our increasing optimism assumption, there is exactly one (measure zero) agent

hs with
qhssU
qhssD

= as
bs
, we conclude that there is no default (up to measure zero)

in equilibrium, confirming the VaR=0 rule. It follows that no agent i ∈ Is
will hold any of the asset. Hence, no i ∈ Is = {h ∈ (0, 1) : h < hs} would
be able to sell any contracts. All the asset will be held by agents h ∈ Hs =
{h ∈ (0, 1) : h > hs}, but since they only want to hold the U Arrow security,
they must all be buying the asset via selling the maxmin contract. In short, the
maxmin contract is the only contract sold in equilibrium. Note that for h ∈ Hs,
µhs = qhsU/as and for i ∈ Is, µis = qisU + qisD = 1 In short, µhs = max{1, qhsU/as}.

7. pU > pD.

If U has just one successor, then pU = 1 > pD. If D has just one successor,
then pU > R = pD. Suppose both s ∈ {U,D} have two successors. By step 6
only agents in Is = [0, hs) consume in state sD, which they do by saving all
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their wealth at state s. If pU ≤ pD, then by step 6 (ps = qhssU1 + qhssDR) and
the optimism assumption, we would need hD > hU . Furthermore, every agent
h ∈ (0, 1) would have at least as much wealth at s = D as he does at s = U.
But that would be a contradiction, since the total supply of consumption goods
is the same 1 +R at UD and DD.

8. Any portfolio that any agent h would want to hold at state 0 delivers (cU , cD),

with cU ≥ cD and costs a0cU + b0cD, where a0 =
p0−j∗0
pU−j∗0

and b0 = 1 − a0. The

only contract traded is the maxmin contract j∗0 . Moreover, there is a “marginal
buyer” h0 who is indifferent between buying the asset or holding money at state
0. All agents h > h0 simply buy the asset and sell j∗0 , and all agents h < h0

simply buy j∗0 and/or hold the consumption good.

Because pU > pD, the description of equilibrium in period s = 0 is completely
analogous to the previous cases, except that now we must replace qhss′ with
qhss′µ

h
s′ . The identical proof goes through provided that we can show that the

utility agent h gets from the cash flows cU > cD is continuous and strictly
increasing in h. That follows if whenever h > i,

qh0Uµ
h
U

qh0Dµ
h
D

>
qi0Uµ

i
U

qi0Dµ
i
D

or equivalently if
qh0U max{1, qhUU/q

hU
UU}

qh0D max{1, qhDU/q
hD
DU}

is increasing in h. For h ≥ hD, this means

qh0Uq
h
UU/q

hU
UU

qh0Dq
h
DU/q

hD
DU

is increasing in h, which follows from the optimism assumption (since qhUUU and
qhDDU are fixed as h varies). For hD ≥ h ≥ hU , this means

qh0Uq
h
UU/q

hU
UU

qh0D

which is increasing in h since qh0U and qhUU are increasing, and qh0D is decreasing
in h. For hU ≥ h, this means

qh0U
qh0D

which is definitely increasing.

9. Furthermore, pU > p0 > pD. If D has two successors, then h0 > hD, and if both
U and D have two successors, then h0 > hU = hD. If U has two successors and
D has one successor, then h0 = hU .

19



The marginal buyer h0 must be indifferent between the asset and the con-
sumption good. Since p0 invested in the consumption good yields p0 in both
states U and D, we must have pU > p0 > pD. Since all the buyers h ∈ (h0, 1)
borrow pD ≥ R at 0, they each owe pD ≥ R at U and D. If D has two suc-
cessors, then pD > R and the most any agent can borrow at D is R. Hence all
the agents h ∈ (h0, 1) go completely bankrupt at D and the marginal buyer
hD < h0. If in adddition U has two successors, then the most that can be
borrowed at U is also R. Hence again the agents h ∈ (h0, 1) are forced to sell
some of their assets, and the marginal buyer hU < h0. But then every agent
h ∈ (0, h0) ⊃ [(0, hU) ∪ (0, hD)] has the same wealth 1 + p0 at U and at D. In
order for consumption demand to equal consumption supply at UD and DD,
we must then have hU = hD = (1 + R)/(1 + p0). If U has two successors and
D has one successor, then hD = R and the agents h ∈ (h0, 1) can just roll over
their loans at U and keep their assets, so h0 = hU = (1 +R)/(1 + p0).�

As discussed before, leverage is endogenously determined in equilibrium. In par-
ticular, the proposition derives the conclusion that although all contracts will be
priced in equilibrium, the only contract actively traded is the maxmin contract,
which corresponds to the Value at Risk equal zero rule assumed by many other
papers in the literature.

Geanakoplos (2003) proved a similar proposition for a special case corresponding
to the extreme BV economy. Proposition 1 is more general and encompasses all
other economies characterized by binary trees we will consider in this paper.

The key assumption in the proposition is that the tree is binary. (This implies that
the maxmin promise plus the U Arrow security, obtained by buying the asset while
selling the maxmin contract, positively spans the set of feasible portfolios payoffs.)
Another important ingredient in the proof is the continuum of distinct risk neutral
agents. This allows us to find a marginal buyer who partitions the set of agents into
“optimists” who want to leverage as much as possible and “pessimists” who do not
want to compete with the optimists for any risky portfolio and who therefore end up
holding no risk at all.

The reader can easily check that the key to the binary assumption is that the asset
has two distinct payoffs in the immediate successors states of every node. We could
have derived Var = 0 even if there were three successors states, or even multiple
assets, provided that each asset had exactly two distinct payoffs in the following
period. The proof also did not depend on there being two terminal payoffs 1 and
R. There could just as well have been four final payoffs, a different one for each
terminal node. It might be natural to assume that the worst terminal payoff after
D is far worse than the worst terminal payoff after U : bad news makes a disaster
possible. In that case, it is clear from Var = 0 that the maxmin promise at D would
be much smaller than the maxmin promise at 0 and U , and hence leverage would be
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pro-cyclical in all projects. But we shall not take this route. We shall tie our hands
and assume that there are only two possible terminal outcomes, 1 and R, but we
shall prove that leverage is nonetheless pro-cycical in the highest priced projects.

3.4 Equilibrium and Uniqueness

We use proposition 1 to describe a system of equations that characterizes equilibrium.
First we deal with the case in which each s ∈ {U,D} has two successors. The system
has six equations and six unkowns p0, pU , pD, h0, hU , hD.

As was shown in proposition 1, at each state s there will be a marginal buyer, hs,
who will be indifferent between buying or selling Y . All agents h > hs will buy all
they can afford of Y , i.e., they will sell all their endowment of the consumption good
and borrow to the max using Y as collateral. On the other hand, agents h < hs will
sell all their endowment of Y and lend to the more optimistic investors. Equating
demand and supply, or equivalently, expenditures and revenues, provides us with the
first three equations in our system.

At s = 0 aggregate revenue from sales of the asset is given by p0.9 On the other
hand, aggregate expenditure on the asset is given by (1− h0)(1 + p0) + pD. The first
term is total income (endowment plus revenues from asset sales) of buyers h ∈ [h0, 1).
The second term is borrowing, which from proposition 1 is pD. Equating we have

p0 = (1− h0)(1 + p0) + pD (4)

Let s ∈ {U,D} have two successors sU and sD. Total revenue from asset sales
must equal total expenditure on asset purchases. This gives us

ps = (ps − pD) + (h0 − hs)(p0 + 1) +R (5)

The first term on the RHS is the income after debt repayment of those holding the
asset from period 0. The second term is the income of the new buyers h ∈ [hs, h0),
carried over from period 0. The last term is new borrowing.10

9All asset endowments and production add to 1 and without loss of generality are put up for
sale even by those who buy it.

10Notice that since D has two successors, pD > R. All the agents h ∈ [h0, 1) will be forced to
sell off all their assets even though they think the price pD is well below the value they would be
willing to pay if they had the money. At U the original buyers h ∈ [h0, 1) can only borrow R, which
is less than the pD they owe, so they will not be able to roll over all their loans without selling
some assets. Even though the traders h ∈ [h0, 1) think the asset is underpriced at pU , and even
though the news is good, tightening margins force them to sell. Thus fire sales can take place in
equilibrium at both U and D. If s has just one successor then any one agent can buy all the assets
since leverage is 100%. Fire sales do not occur in that case.
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The next equations state that the price at s ∈ {U,D} is equal to the marginal
buyer’s valuation of the asset’s future payoff.

ps = qhssU1 + qhssDR (6)

The last equation equates the marginal utility to h0 of one dollar to the marginal
utility of using one dollar to purchase Y at s = 0:

qh0
U pU(qh0

UU/q
hU
UU) + qh0

D pD(qh0
DU/q

hD
DU)

p0

=
qh0
U 1(qh0

UU/q
hU
UU) + qh0

D 1(qh0
DU/q

hD
DU)

1
(7)

Notice that payoffs on both sides of the equation are weighted by the ratio
(qh0
sU/q

hs
sU) for s ∈ {U,D}. If agent h0 reaches state s ∈ {U,D} with a dollar he

will want to leverage his wealth to the max to purchase Y .11 This will result in

a gain per dollar of
q
h0
sU (1−R)

ps−R =
q
h0
sU (1−R)

qhssU1+qhssDR−R
=

q
h0
sU

qhssU
.12 Hence the marginal utility of

a dollar at time 0 is given by the probability of reaching U times the dollar times
the marginal utility given above plus the analogous expression for reaching D. This
explains the RHS of equation (8). The LHS has exactly the same explanation once
we realize that the best action for the h0 at s ∈ {U,D} is to sell the asset and use
the cash to buy more of it on margin. This gives six equations in six unknowns.

If s has a unique successor, then the last equation must be modified by replacing
(qh0
sU/q

hs
sU) by 1 and dropping the variable hs. Furthermore, the equation in (5) and

the equation in (6) corresponding to state s, are replaced with one simple equation
ps = 1(if s = U) or ps = R (if s = D).

Next we prove existence and uniqueness.

Proposition 2

Equilibrium exists and is unique in the baseline economy.

Proof: Consider first the system of six equations, when each state s ∈ {U,D} has
two successors. We shall now reduce the six equilibrium conditions into one equation
F (h) = 0. We proceed to define F . In accordance with step 9 of proposition 1,
let hU = hD = h. For h ∈ (0, 1) let p0(h) = 1+R

h
− 1. Thus we already know

that p0(h) declines as h increases. Define pU(h) = qhUU1 + qhUDR and pD(h) =

11Agents are perfectly rational and forward looking. There are other options at s = D, like eating
the good, storing it or buying Y unleveraged, but these are all dominated strategies in equilibrium.

12Another way of understanding the same is to notice that buying Y on margin at s is equivalent
to buying the Arrow security that pays only at up (since at down the net payoff is zero). The price
of this security is given by qhs

sU , the marginal buyer’s valuation. Hence, with a dollar, h0 can buy
1/qhs

sU units which are worth (qh0
sU/qhs

sU ), explaining the ratio.
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min{qhDU1 + qhDDR, p0(h)}. From equation (4), we have 1 − h0(h) = p0(h)−pD(h)
1+p0(h)

, or

h0(h) = 1+pD(h)
1+p0(h)

or h0(h) = 1+pD(h)
1+R

h. If p0(h) > pD(h), then pD(h) is increasing in h.

Hence h0(h) is increasing in h if p0(h) > pD(h).

Let F (h) =
q
h0(h)
U pU (h)q

h0(h)
UU /qhUU+q

h0(h)
D pD(h)q

h0(h)
DU /qhDU

p0(h)
− q

h0(h)
U 1q

h0(h)
UU /qhUU+q

h0(h)
D 1q

h0(h)
DU /qhDU

1
.

We will show that at any point h ∈ (0, 1) where F (h) = 0, F is increasing in
h. Note first that as h increases, p0(h) decreases, and this causes F to increase.
Next, note from the preceding paragraph that at any h ∈ (0, 1), pU(h) > pD(h).
Hence at F (h) = 0, pU(h)/p0(h) > 1 > pD(h)/p0(h). Hence, h0(h) increases when h
increases in a neighborhood of F (h) = 0. By the optimism assumption this means

q
h0(h)
U q

h0(h)
UU /q

h0(h)
D q

h0(h)
DU increases, which (by the previous inequalities) has the effect of

increasing F (h). Finally,
pU (h)/qhUU
p0(h)

− 1
qhUU

=
[qhUU1+qhUDR]/qhUU

p0(h)
− qhUU+qhUD

qhUU
= ( 1

p0(h)
− 1) +

( R
p0(h)
− 1)

qhUD
qhUU

. This is increasing in h because R
p0(h)

< 1. Exactly the same argument

can be used to show that
pD(h)/qhDU

p0(h)
− 1

qhDU
= ( 1

p0(h)
− 1) + ( R

p0(h)
− 1)

qhDD
qhDU

is increasing

in h. Thus we have shown that indeed F (h) is increasing in h in a neighborhood of
F (h) = 0. This and the continuity of F proves that there is at most a unique h with
F (h) = 0, and hence that equations (4)-(7) have at most one solution.

Notice that as h → 0, p0(h) → ∞, so F (h) must become negative. But when
h = 1, p0(h) = R = pD(h) < pU(h), so F (1) > 0. Since F is continuous, there must
be an h ∈ (0, 1) with F (h) = 0. This completes the proof in the case where each
s ∈ {U,D} has two successors. If exactly one s ∈ {U,D} has two successors, the
proof can be handled almost the same way.

If both U and D have a single successor, then the proof is modified by defining the
equation F in the single variable h0 as follows. As before, define p0(h0) = 1+R

h0
− 1.

Now define F (h) = Qh01+(1−Qh0 )R
p0(h0)

−1. Raising h0 near where F (h0) = 0 lowers p0(h0)

and raises Qh0 , both of which increase F. Hence for the reasons above F (h0) = 0 has
a unique solution.�

3.5 Asset Prices and Leverage

In this section we present results that characterize prices and leverage of different
projects.

Proposition 3

Only extreme BV projects generate pro-cyclical leverage; all other projects (except
the trivial two-period projects) generate counter-cyclical leverage.

Proof: By proposition 1, buying 1 unit of Y on margin at state s means:
selling a promise of minτ∈S(s)[pτ + dτ ] using that unit of Y as collateral, and paying
(ps − minτ∈S(s)[pτ + dτ ]) in cash. The Loan to Value (LTV) of Y at s is, LTVs =
minτ∈S(s)[pτ+dτ ]

ps
. If s ∈ {U,D} has only one successor sU , then smust be good news and
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so s = U . Moreover, every agent will agree on qhsU = qhUU = 1 and so in equilibrium
we must have pU = dUU = 1 and therefore LTVU = 1/1 = 100%. If we are not in
the trivial two-period model, there will be still uncertainty remaining at s = D, i.e.
s = D has two successors, so R < pD < 1 and hence LTVD = R/pD < 100% = LTVU .
Hence, leverage is pro-cyclical. In the other extreme case, if s ∈ {U,D} has only
one successor sD, then s = D, qhsD = qhDD = 1, pD = dDD = R and therefore
LTVU = R/R = 100%. Since there will be still uncertainty remaining at s = U , i.e.
s = U has two successors, then R < pU < 1 and hence LTVU = R/pU < 100% =
LTVD. Hence leverage is counter-cyclical. Every project in which both U and D
have two successors gives rise to counter-cyclical leverage because pU > pD and hence
LTVU = R/pU < R/pD = LTVD. �

The result is a direct consequence of the VaR = 0 rule. Every project is worth
the most after good news U but as long as every agent still thinks D is possible, the
minimum promise of R will be the only traded promise at U. Hence the value ratio
of promise to collateral will be least just when the price of the asset is highest.

Proposition 4 shows that every extreme GV project has the same price, which
is lower than the price of every other project. Finally, proposition 5 shows that the
highest priced projects are always exclusively extreme BV projects.

Proposition 4

Every extreme GV project has the same initial price and leverage as the two-
period model, and these are lower than the initial price and leverage of every other
project.

Proof: From the proof of proposition 1 it is evident that the initial price p0 is
the same as in the trivial two-period project. As we saw in the proof of proposition
2, in the trivial two-period model p0(h0) = 1+R

h0
− 1 = Qh01 + (1−Qh0)R.

Consider now any other project in which at least one s ∈ {U,D} has two suc-
cessors and a marginal buyer h̄. We know from proposition 1 that the initial price
p0(h̄) = 1+R

h̄
− 1 > Qh̄1 + (1 − Qh̄)R. The first equality is the familiar equality

derived in step 9 of proposition 1. The strict inequality holds because by proposi-
tion 1 the marginal utility to h̄ of holding the consumption good at 0 is 1 (since
the price of Y at U and D is equal to its expected payoffs according to h̄, that is
µh̄U = µh̄D = 1) and because h̄ strictly prefers not to buy Y at 0. Thus if h̄ < h0,
then p0(h̄) = 1+R

h̄
− 1 > 1+R

h0
− 1 = p0(h0). But by the optimism assumption, if

h̄ ≥ h0, then p0(h̄) > Qh̄1 + (1 − Qh̄)R ≥ Qh01 + (1 − Qh0)R = p0(h0). Either way,
p0(h̄) > p0(h0).

We now turn to initial leverage, which is R
p0

in the two-period model (and in

any extreme GV project) and p̄D
p̄0

in the other project. Suppose R
p0
≥ p̄D

p̄0
. Then

the down-payment would be strictly less in the two-period project, while the payoff
1 − R > 1 − p̄D would be strictly more. Hence in order for the marginal buyer in
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each economy to be indifferent between the project and money, h0 < h̄0. But that
leads to a contradiction since then from the supply equals demand equation for each

economy, h0 = (1−h0)
p0

+ R
p0
> (1−h̄0)

p̄0
+ p̄D

p̄0
= h̄0.�

According to proposition 4, the extreme GV projects have the lowest initial prices
of all. In proposition 5 we show that some extreme BV project has the highest price
of all, provided we confine our attention to projects satisfying one more optimism
assumption.

Proposition 5

Let qhs > 0 be the probabilities in a non-extreme project in the baseline econ-
omy satisfying the optimism conditions and the condition that q̄hUD/q̄

h
DD is weakly

decreasing in h.13 Then, there is another set of probabilities qBis that give rise to
a corresponding extreme BV economy with pB0 > p0. It follows that among projects
satisfying the additional optimism assumption, only an extreme BV project gives the
maximal initial price.

Proof: We will make use of the following lemma.

Lemma:

Let qhs (0) > 0 be probabilities for an extreme BV. Let the weakly declining
function t : (0, 1)→ (0, 1) define probabilities qhs (t) by the terminal probabilities

q̄hUU(t) = q̄hUU(0) + thq̄
h
DU(0)

q̄hUD(t) = q̄hUD(0) + thq̄
h
DD(0)

q̄hDU(t) = q̄hDU(0)− thq̄hDU(0)

q̄hDD(t) = q̄hDD(0)− thq̄hDD(0)

obtained by moving th of agent h’s probability from DU and DD to UU and DU,
respectively. Then the qhs (t) also satisfy the optimism assumption. Moreover the
unique equilibrium initial price p0(0) of the original extreme BV economy is greater
than the unique equilibrium price p0(t).

Proof of lemma:

Notice that for all h, q̄hUU(t) + q̄hDU(t) = q̄hUU(0) + q̄hDU(0) = Qh and q̄hUD(t) +

q̄hDD(t) = q̄hUD(0) + q̄hDD(0) = 1 − Qh and
q̄hDU (t)

q̄hDD(t)
=

q̄hDU (0)

q̄hDD(0)
. Notice that for i > h,

q̄iUU (t)

q̄iDU (t)
>

q̄hUU (t)

q̄hDU (t)
and

q̄iDU (t)

q̄hDU (t)
≥ q̄iDU (0)

q̄hDU (0)
. Fix the marginal buyer h at D at the equilibrium

level for the original extreme BV economy qhs (0). Following the proof of proposition

13The extra assumption guarantees that the higher is h, the more likely an outcome of R came
from DD rather than UD.
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2, note that pD does not depend on t because
q̄hDU (t)

q̄hDD(t)
=

q̄hDU (0)

q̄hDD(0)
. Hence h0 is a function of

h alone. Consider the expression F (h, t), where F (h, t) = q̄
h0(h)
UU (t)[( 1

p0(h)
−1)+( R

p0(h)
−

1)
qhUD(t)

qhUU (t)
]+ q̄

h0(h)
DU (t)[( 1

p0(h)
−1)+( R

p0(h)
−1)

qhDD(t)

qhDU (t)
]. Then F (h, t) = ( 1

p0(h)
−1)(q̄

h0(h)
UU (t)+

q̄
h0(h)
DU (t))−(1− R

p0(h)
)[q̄

h0(h)
UU (t)

q̄hUD(t)

q̄hUU (t)
+q̄

h0(h)
DU (t)

q̄hDD(t)

q̄hDU (t)
] = ( 1

p0(h)
−1)(q̄

h0(h)
UU (t)+q̄

h0(h)
DU (t))−

(1− R
p0(h)

)[
q̄
h0(h)
UU (t)

q̄hUU (t)
q̄hUD(t)+

q̄
h0(h)
DU (t)

q̄hDU (t)
q̄hDD(t)]. We wish to show that F (h, t) < 0 for t > 0.

Since (q̄
h0(h)
UU (t) + q̄

h0(h)
DU (t)) = Qh0(h) is independent of t, and since (1 − R

p0(h)
) > 0,

we must show that G(h, t) > G(h, 0), where G(h, t) =
q̄
h0(h)
UU (t)

q̄hUU (t)
q̄hUD(t) +

q̄
h0(h)
DU (t)

q̄hDU (t)
q̄hDD(t).

Recall that h0(h) > h, hence
q̄
h0(h)
DU (t)

q̄hDU (t)
≥ q̄

h0(h)
DU (0)

q̄hDU (0)
. Moreover, q̄hUD(0) = 0. At any (h, t),

q̄
h0(h)
UU (t)

q̄hUU (t)
>

q̄
h0(h)
DU (t)

q̄hDU (t)
, so G(h, t) > G(h, 0) because q̄hUD(t) + q̄hDD(t) = q̄hUD(0)+ q̄hDD(0).

Thus we have shown F (h, t) < 0. Hence as in the proof of proposition 2, there must
be h(t) > h with F (h(t), t) = 0. But then by the familiar formula for the initial price
given in (9) of proposition 1 and in proposition 2, p0(h(t)) < p0(h). This concludes
the proof of the lemma.

To prove proposition 5, notice that given any non-extreme project qhs , we can find

an extreme BV project defined by qhDD(0) = qhUD + qhDD and qhDU(0) = qhUD
qhDU
qhDD

+ qhDU

and a weakling decreasing function th (defined by th =
qhUD

qhDD(0)
) so that the original

project corresponds to project t in the lemma. �

The idea of the proof is as follows. Given an arbitrary project that is not extreme
BV, it is possible to find an extreme BV project such that every agent’s beliefs
conditional on bad news d are the same, (so that the price after bad news is the same
and hence just as much can be borrowed in equilibrium at time 0) and for which
(qiuq

i
uU/q

i
dq
i
dU)/(qhuq

h
uU/q

h
dq

h
dU) has risen for all i > h. This makes it more attractive

for an optimist to buy the asset at time 0 by leveraging, rather than waiting to buy
the asset after news has arrived, and thus gives the extreme BV project a higher
initial price.

3.6 Numerical Simulations

In this section we present numerical simulations in order to develop more intuition
for all the previous results.

3.6.1 Three-period economy

We simulate equilibrium now in the two extreme cases of BV and GV. To fix ideas,
suppose that in every project, the probability according to h of final good output 1
is
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Qh = 1− (1− h)2 = qhUq
h
UU + (1− qhU)qhDU (8)

For the extreme BV economy we take qhU = qhDU = h, and for the extreme GV
project we take qhU = qhUU =

√
1− (1− h)2.

We first solve the system of equations described in section 3.4 to find the equilib-
rium in the extreme BV project. Figure 8 shows equilibrium prices, marginal buyers
and leverage for R = .2.

U	  

D	  

1	  

1	  

R=.2	  

0	  

UU	  

DU	  

DD	  

p=.95	  

h=.87	  

LTV=.73	  

p=1	  

h=1	  

LTV=1	  

p=.69	  

h=.62	  

LTV=.3	  

1	  

h	  

1-‐h	  

1-‐h	  

h	  

Figure 8: Extreme BV Equilibrium for R = .2.

The first observation is that the price of the asset falls from 0 to D, from .95 to
.69, a fall of 27%. The marginal buyer at t = 0, h = .87, thinks at the beginning
that there is a probability of 1.69% of reaching the disaster state DD, but once D
is reached this probability rises to 13%. This would imply a fall in the price of only
9%. So why is the crash of 27% so much bigger than the bad news of 9%? There are
three reasons for the crash.

First, as we just saw, is the presence of bad news. The second reason is that
after bad news, the leveraged investors lose all their wealth: the value of the asset at
D is exactly equal to their debt, so they go bankrupt. Therefore even the topmost
buyer at D is below the marginal buyer at 0. Third, with the arrival of bad news,
leverage goes down (margins go up), from LTV0 = .73 to LTVD = .3, so more buyers
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are needed at D than at 0. Thus the marginal buyer at D is far below the marginal
buyer at 0: hD = .62 < .87. The asset falls so far in price at D because every agent
values it less and because the marginal buyer is so much lower. This phenomenon
was called the Leverage Cycle by Geanakoplos (2003) and extended further to many
assets and adverse selection by Fostel-Geanakoplos (2008).

We solve next the system of equations described in section 3.4 to find the equilib-
rium in the extreme GV project. Figure 9 shows equilibrium prices, marginal buyers
and leverage for R = .2.

U	  

D	  

R=.2	  

1	  

R=.2	  

0	  

UU	  

UD	  

DD	  

p=.89	  

h=.63	  

LTV=.22	  

p=.94	  

h=.63	  

LTV=.21	  

p=.2	  

h=.63	  

LTV=1	  

1	  

Figure 9: Extreme GV Equilibrium for R = .2.

In equilibrium, the asset price collapses from .89 all the way to .2 given the
imminent nature of the disaster once D has been reached. It goes up at U to .94.
The marginal buyer at t = 0 and t = U is the same, so optimists roll-over their debt
once they reach U .

3.6.2 Long-run analysis

We extend our previous examples to an N horizon economy. We maintain the same
terminal probabilities for outcomes 1 and R, independent of N , with constant prob-
abilities of U throughout each tree. The extreme BV and extreme GV projects are
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described in figure 10. In the extreme BV project, as before, the imminent occur-
rence of the bad final outcome R is pushed until the very end, and bad news comes
in small drops with an associated higher future volatility. On the other hand, in the
extreme GV project, good news, instead of bad news, has the property of revealing
little information and inducing high volatility. We calculate the equilibrium for each
project separately. The system of equations that characterizes the equilibrium in
each project and the equilibrium values are described in detailed in Appendix 6.1.
They are the natural (though not obvious) extension of the three period case. The
prices and leverage are noted at some of the nodes for N = 10 in figure 10.

…………. 

1 1 1 

R
p=.9875 
LTV=.9827 

…………. 

R R R

1 

t=0 t=1 t=9 t=10 

Extreme BV 

Extreme GV 

p=.9768 
LTV=.9702 

p=.3352 
LTV=.5967 

p=.8928 
LTV=.2240 

p=.9112 
LTV=.2195 

p=.9896 
LTV=.2021 
 

Figure 10: Prices and leverage for extreme BV and extreme GV projects, N = 10
periods for R = .2.

Figure 10 shows that the results of previous sections hold even in longer horizon
economies. The price of the extreme BV project is higher than the price in the
extreme GV project and leverage is pro-cyclical in the extreme BV project and
counter-cyclical in the extreme GV project. In fact, the longer the horizon the
bigger the gap in initial prices. The gradually unfolding descent in the N period
extreme BV project is reminiscent of the slowly building crisis of 2007-2009.
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4 Does Bad News Come With High Volatility?

In this section we move on to answer a more difficult question: if agents have the
opportunity to use their labor to produce any combination of the two type of projects,
extreme BV and extreme GV, which combination would they choose in equilibrium?
The question is made still more difficult because we assume that news about the
projects are independent, requiring four successors of the initial node. We thus get
a good robustness check of our binary tree conclusions.

It is very tempting to jump to the conclusion that all agents will choose the
extreme BV project since it has a higher price at the beginning as shown in Section
3. Unfortunately, this answer is incorrect. Further inspection reveals that once
everyone else has chosen the extreme BV project, it becomes profitable for any one
agent to produce the extreme GV project. To solve the problem we need to appeal
to the full force of the multiple asset and multiple states model described in section
2.

Suppose there are two assets, X and Y , with independent payoffs. Asset X
corresponds to the extreme BV project and asset Y to the extreme GV project.
Their probabilities are as defined in the numerical simulations in Section 3.6. The
joint tree of payoffs is described in figure 11. Note that state s = 0 now has four
successors. For example, the state (U,U) in the intermediate period corresponds to
the situation in which X (BV ) and Y (GV ) receive good news. The probability of
such event for agent h is h

√
1− (1− h)2.

Agents are as in the baseline economy in section 3. They can transform their unit
of labor into a portfolio of different projects at t = 0. The within-period technology
is given by Zh

0 = {(zX0 , zY0 ) ∈ R2
+ : zX0 + zY0 = 1}, where zX0 is the share of X (BV

project) and zY0 the share of Y (GV project).

Figure 11 shows the equilibrium prices at each node for both assets, extreme
BV and extreme GV, respectively for R = .2. At equilibrium, all agents choose to
produce the same mix zX0 = .7 and zY0 = .3. But how did we find equilibrium?

4.1 Endogenous Leverage

Before moving on to solve the model, let us go back to the question of endoge-
nous leverage. By proposition 1, Var = 0 holds for the intermediate states s ∈
{UU,UD,DU,DD}, since for each asset there are at most two distinct successor
payoff values. Hence, the only contract traded in all intermediate states is the one
that prevents default in equilibrium as in Section 3.

However, the situation is different at time 0 since there are four successor states
in S(0) with three distinct successor payoff values for each asset14, and therefore it is

14X’s price is 1 at UU and UD and Y ’s price is R at UD and DD.
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(U,U) 
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(.75, .93) 

(.69, .2) 

Figure 11: Joint extreme BV and extreme GV economy. Equilibrium prices for
R = .2.

not possible to appeal to the result anymore. In fact, as we show next, for each asset
two types of contracts will be traded in equilibrium: one that promises the worst-case
scenario and another that promises the middle-case scenario. While the first one is
risk-less as before, the second one is not since it defaults in the worst state. In this
model, not only is there default in equilibrium, but also the same asset is traded
simultaneously with different margin requirements by different investors. Araujo
et.al. (2009) and Fostel-Geanakoplos (2010) displayed the same phenomenon in a
two period model. In the following section we show for the first time that multiple
margins can emerge in equilibrium in a dynamic setting. The dynamic setting is
more difficult because the payoffs of the risky bonds are endogenous.

4.2 Procedure to find the equilibrium

This section describes in detail the procedure to compute the equilibrium. The first
thing we do is find an equilibrium for any fixed zX0 , z

Y
0 = 1−zX0 . Then using the fact

that the two asset prices at the beginning must be equal in a genuine equilibrium15,

15In general equilibrium all assets are put to sale first, if one asset had a higher price, investors
would invest all of their labor into that asset, sell it and buy the other.
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we find the zX0 that precisely accomplishes that.16

Given price expectations, buying an asset on margin using a financial contract
defines a down-payment at time 0 and a profile of net payoffs in the future. In this
sense, we can think of nine different securities at time 0, six risky and three risk-less:
i) buying X on margin using the risky bond (the one that promises pXDU), ii) buying
X on margin using the risk-less bond (which promises the smaller amount pXDD), iii)
buying Y on margin using the risky bond (the one that promises pYDU), iv) buying
Y on margin using the risk-less bond (which promises the smaller amount pYDD), v)
the risky bond that promises pXDU , vi) the risky bond that promises pYDU , vii) the
risk-less bond that promises pXDD, viii) the risk-less bond that promises pYDD and ix)
warehousing.

In equilibrium the riskless interest rate will be zero, as before, hence all the
riskless bonds will be priced equal to their respective promise. In addition to zX0 and
zY0 we need to find the value of 20 variables:

• Asset prices: pX0 , p
Y
0 , p

Y
UU , p

X
DU , p

Y
DU , p

X
DD.17

• Risky bond prices at s = 0: πX , πY , where πk is the price of the bond that
promises pkDU in all successors states in the future.

• Asset marginal buyers: hXM , h
Y
M , h

X
m, h

Y
m, h

Y
UU , h

X
DU , h

Y
DU , h

X
DD, where hkM(hkm)

corresponds to the marginal buyer of the k asset leveraging with the risky
(risk-less) bond.

• Risky bond marginal buyers: hBX , hBY .

• Asset purchases at s = 0 leveraging with the risky bond: yX , yY .

Following the same idea as in Section 3, we guess a regime, consisting of a ranking
of the securities. Then for every consecutive pair of securities, we find a marginal
buyer that is indifferent between the two. This defines a system of equations. Once
we get a solution we need to check: first, that pXDU > pXDD, so that prices are consistent
with our guess about which bonds are risky and riskless on X, second, that pYUU >
pYDU , so that prices are consistent with our guess about which bonds are risky and
riskless on Y , and finally, that each regime is genuine, i.e. all the marginal agents
strictly prefer their pair of securities to all the others, and all agents in between
consecutive marginal agents strictly prefer just one security.

We now describe the regimes at each node. Figure 12 shows a graphical illustra-
tion of them and of the equilibrium values of all marginal buyers.

16Hopefully if we start with a good guess of zX
0 near the true value we will be able to shift zX

0

until prices are equal without changing the equilibrium regime by continuity.
17Notice that some prices are obvious, X’s price equals 1 for sure at UU and UD, whereas Y ’s

price is R at UD and DD. It is also clear that at UD all uncertainty is resolved and there is no
more trade.
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Figure 12: Equilibrium Regimes for R = .2.

At s = 0, the order is the following. hYM > hXM > hXm > hYm > hBY > hBX . All
h > hYM buy Y , sell X and promise pYDU . hYM > h > hXM buy X, sell Y and promise
pXDU . hXM > h > hXm buy X, sell Y and promise pXDD. hXm > h > hYm buy Y , sell X and
promise R. hYm > h > hBY sell both assets and buy the BY bond (lend in the risky
market collateralized by Y ). hBY > h > hBX sell all assets and buy the BX bond
(lend in the risky market collateralized by X). Finally, h < hBX sell everything, hold
risk-less securities (so lend in the risk-less markets).

At s = UU there is only trade on asset Y , and the marginal buyer is such that
hXm > hYUU > hYm. As before, all h > hYUU buy Y and promise R. Below lend and buy
X.

At s = DU , there is trade in both assets, and the marginal buyers are such that
hBY > hXDU > hYDU > hBX . h > hXM go bankrupt since they promise exactly what
they own. h > hXDU buy X and promise R. hXDU > h > hYDU buy Y and promise R.
All h < hYDU lend.

At s = DD there is only trade on asset X and the marginal buyer is such that
hBY > hXDD > hBX . All h > hYm are out of business either because they default or
they have no money left. h > hXDD buy X and promise R. h < hXDD lend.

We calculate the equilibrium values and finally check the assumed regime is a
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genuine equilibrium. The system of equations used to solved for the equilibrium is
presented in appendix 6.2.

4.3 Agents Prefer the Extreme BV Project

All equilibrium values listed in figures 11 and 12 are consistent with the assumed
regimes and prices as discussed in appendix 6.2. The most important thing to observe
is that zX0 = .7, this is, all agents choose to invest their labor in a portfolio with a
70% share of the extreme BV project. Or equivalently, 70% of the economy invests
in extreme BV projects when given the opportunity to choose. The consequence of
this is that, since we assumed that the two projects were independent, 70% of the
time when bad news occurs they will be of the volatile type, and we will observe pro-
cyclical leverage. This result is robust to any choice of the parameter R as discussed
in appendix 6.3.

4.4 Endogenous Leverage Reconsidered

When the asset could take on at most two immediate successor values, equilibrium
determines a unique actively traded promise and hence leverage. With three or more
successor values, we cannot expect a simple promise. But equilibrium still determines
the average leverage used to buy each asset.

Equilibrium leverage is presented in table 1. There are eight securities in total,
six risky securities and two risk-less securities (without considering warehousing).
Columns 2 and 3 show the holdings and value of such holdings for each of the
securities. Most importantly, column 4 shows the LTV of each of the four traded
contracts. As was expected, LTV is higher for the risky contracts (they have a higher
promise) for both assets. Finally, column 5 shows the LTV for each asset. Whereas
the LTV for BV is .76, it is only .6 for GV. As defined in section 2, asset LTV is a
weighted average. For example the LTV for BV is obtained from the total amount
borrowed using all contracts, .423 + .091 divided by the total value of collateral,
.966× .695.

As in Section 3, BV can be leveraged more than the GV. Second, also as before,
leverage in BV is pro-cyclical while it is counter-cyclical in GV. Third, notice that
even though both projects have the same initial price in equilibrium, for both assets
the price is higher than in Section 3 (.966 versus .95 for BV and .89 for GV ). The
main reason for this difference is that now with a different tree, more contracts are
traded in equilibrium, not only the risk-less one. Both assets can be leveraged more
now using risky contracts which promise more (and hence default as well). Whereas
there is not so much difference between the minimum promise and the medium
promise for BV (.691 and .754) this difference is significant for GV (.2 and .936).
For a precise discussion between leverage and asset prices see FG (2010).
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Table 1: Equilibrium Contract and Asset Leverage for R = .2.

  Leverage at s=0       
            

Security Holdings Holdings Value Contract LTV Asset Asset LTV 
            
            

Y lev Medium 0.186 0.180 0.947 X (GV) 0.766 
X lev Medium 0.563 0.544 0.778     

X lev Min 0.132 0.128 0.715 Y (BV) 0.660 
Y lev Min 0.119 0.115 0.207     

Y risky bond 0.186 0.171       
X risky bond 0.563 0.423       

Y riskless bond 0.119 0.024       
X riskless bond 0.132 0.091       

            
            
            
  Leverage at intermediate nodes     
            

  UU UD DU DD   
            

X (BV) 1.000 1.000 0.267 0.290   
            

Y (GV) 0.202 1.000 0.215 1.000   

            

So, why did agents choose extreme BV more? The simple reason is that BV
can be leveraged more at the beginning. So the most optimistic agents will choose
extreme BV. However, as soon as less optimistic people opt for volatile bad news
projects, its price will start to decline and the extreme GV project will start to
become attractive to other investors. This process will continue until prices are
equal in equilibrium.

Our main result also suggests an explanation for the observed “Volatility Smile”
in stock options. This refers to the fact that implied volatility has a negative re-
lationship with the strike price, so volatility decreases as the strike price increases.
Hence, bad news comes (or are assumed to come) with high volatility. The pat-
tern has existed for equities only after the stock market crash of 1987. This has
led some economist like Bates (2000) and Rubinstein (1995) to explain volatilites
smiles by “crashophobia”. Traders are concerned about the possibility of another
crash and they price options accordingly. Our result provides a completely different
explanation. Our agents are perfectly rational, they endogenously choose projects
associated with volatile bad news since they can leverage more with them. For 70%
of the projects in our economy, their volatility goes up after their price falls.
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6 Appendix

6.1 Extreme BV and Extreme GV Projects: Long Run
Analysis.

Notice that since the final probability of disaster is constant (regardless of N), the
probability of bad news in period k is given by (1− hk)2/k.

• pN+1 = R

• pN = (1− (1− hN)2/N) + (1− hN)2/NR

• hN−1 = hN (1+pN )
1+pN+1
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• pN−1 =
(1−(1−hN−1)2/N )+(1−hN−1)2/N

(1−(1−hN−1)2/N )

(1−(1−hN )2/N )
pN

(1−(1−hN−1)2/N )+(1−hN−1)2/N
(1−(1−hN−1)2/N )

(1−(1−hN )2/N )

• hN−2 = hN−1(1+pN−1)

1+pN

...

• p1 =
(1−(1−h1)2/N )+(1−h1)2/N

(1−(1−h1)2/N )

(1−(1−h2)2/N )
p2

(1−(1−h1)2/N )+(1−h1)2/N
(1−(1−h1)2/N )

(1−(1−h2)2/N )

• h0 = h1(1+p1)
1+p2

= 1

We use the fact that the marginal buyer rollover his debt at every node to build
up the system and then verify that the guess is correct. Notice that the probability
of good news in period k is given by (1− (1− hk)2)1/N .

• p1 = ((1− (1− hk)2)1/N)N + (1− ((1− (1− hk)2)1/N)N)R

• p1 = (1−h1)+R
h1

...

• pk = ((1− (1− hk)2)1/N)N−k + (1− ((1− (1− hk)2)1/N)N−k)R

Tables 2 and 3 present all the equilibrium values.

6.2 System of Equations in Section 4.

The system of equations is conceptually an extension of the system in Section 3. In
every state supply equals demand for all the securities. Also marginal buyers are
determined by an indifference condition between investing in two different securities.
As before, all marginal utility of a dollar invested in any security is weighted by
the marginal utility of future actions in each state. Equations (a)-(l) corresponds to
state s = 0. Equations (m)-(n) to state s = UU . Equations (o)-(r) to state s = DU
and the rest to state s = DD.

Notation: qhs is the probability of state s by buyer h.

1. yY =
(1−hYM )+αpX1 (1−hYM )+(1−α)pY1 (1−hYM )

pY1 −πY

2. yX =
(hYM−h

X
M )+(1−α)pY1 (hYM−h

X
M )+αpX1 (hYM−h

X
M )

pX1 −πX

3. (αhXm + α(1− hYM)− yX) =
(hXM−h

X
m)+(1−α)pY1 (hXM−h

X
m)+αpX1 (hXM−h

X
m)

pX1 −pXDD
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Table 2: BV equilibrium N=10, R=.2.

            
            

Period Mrg buyer Price bad state Price good state 
Leverage bad 

state 
Leverage good 

state 
            
0 0.9914 0.9875   0.9827   
1 0.9768 0.9704 1.0000 0.9702 1.0000 
2 0.9547 0.9415 1.0000 0.9534 1.0000 

3 0.9244 0.8976 1.0000 0.9327 1.0000 
4 0.8856 0.8372 1.0000 0.9081 1.0000 
5 0.8394 0.7603 1.0000 0.8791 1.0000 
6 0.7870 0.6684 1.0000 0.8441 1.0000 
7 0.7301 0.5642 1.0000 0.7995 1.0000 
8 0.6718 0.4511 1.0000 0.7431 1.0000 
9 0.6038 0.3352 1.0000 0.5967 1.0000 
10   0.2000 1.0000      
            
            

Table 3: GV equilibrium N=10, R=.2.

            
            

Period Mrg buyer Price good state Price bad state 
Leverage good 

state 
Leverage bad 

state 
            
0 0.6340 0.8928   0.2240   
1 0.6340 0.9112 0.2000 0.2195 1.0000 
2 0.6340 0.9205 0.2000 0.2173 1.0000 
3 0.6340 0.9300 0.2000 0.2151 1.0000 
4 0.6340 0.9396 0.2000 0.2129 1.0000 
5 0.6340 0.9494 0.2000 0.2107 1.0000 
6 0.6340 0.9592 0.2000 0.2085 1.0000 
7 0.6340 0.9692 0.2000 0.2064 1.0000 
8 0.6340 0.9793 0.2000 0.2042 1.0000 
9 0.6340 0.9896 0.2000 0.2021  1.0000 
10   1.0000 0.2000      
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4. ((1− α)hYm + (1− α)(hYM − hXm)− yY ) =
(hXm−hYm)+αpX1 (hXm−hYm)+(1−α)pY1 (hXm−hYm)

pY1 −R

5. ((1− α)(1− hYM) + yY ) =
(hYm−hBY )(1+αpX1 +(1−α)pY1 )

πY

6. (α(hYM − hXM) + yX) =
(hBY −hBX)(1+αpX1 +(1−α)pY1 )

πX

7.
q
hYM
UU (pYUU−p

Y
DU )

pY1 −πY

√
1−(1−hYM )2(1−R)

pYUU−R
=

q
hYM
UU (1−pXDU )

pX1 −πX

√
1−(1−hYM )2(1−R)

pYUU−R
+

q
hYM
UD (1−pXDU )

pX1 −πX

8.
q
hXM
UU (1−pXDU )

pX1 −πX

√
1−(1−hXM )2(1−R)

pYUU−R
+

q
hXM
UD (1−pXDU )

pX1 −πX
=

=
q
hXM
UU (1−pXDD)

pX1 −pXDD

√
1−(1−hXM )2(1−R)

pYUU−R
+

q
hXM
UD (1−pXDD)

pX1 −pXDD
+

q
hXM
DU (pXDU−p

X
DD)

pX1 −pXDD

hXM (1−R)

pXDU−R

9.
q
hXm
UU (1−pXDD)

pX1 −pXDD

√
1−(1−hXm)2(1−R)

pYUU−R
+

q
hXm
UD(1−pXDD)

pX1 −pXDD
+

q
hXm
DU (pXDU−p

X
DD)

pX1 −pXDD
hXm(1−R)

pXDU−R
=

=
q
hXm
UU (pYUU−R)

pY1 −R

√
1−(1−hXm)2(1−R)

pYUU−R
+

q
hXm
DU (pYDU−R)

pY1 −R
hXm(1−R)

pXDU−R

10.
q
hYm
UU (pYUU−R)

pY1 −R
+

q
hYm
DU (pYDU−R)

pY1 −R
hYm(1−R)

pXDU−R
=

=
q
hYm
UU p

Y
DU+q

hYm
UDR+q

hYm
DUp

Y
DU

hYm(1−R)

pX
DU
−R

+q
hYm
DDR

hYm(1−R)

pX
DD
−R

πY

11.
qh
BY

UU pYDU+qh
BY

UD R+qh
BY

DU pYDU
hBY (1−R)

pX
DU
−R

+qh
BY

DD R
hBY (1−R)

pX
DD
−R

πY
=

=
qh
BY

UU pXDU+qh
BY

UD pXDU+qh
BY

DU pXDU
hBY (1−R)

pX
DU
−R

+qh
BY

DD pXDD
hBY (1−R)

pX
DD
−R

πX

12.
qh
BX

UU pXDU+qh
BX

UD pXDU+qh
BX

DU pXDU+qh
BX

DD pXDD
πX

= 1

13.

√
1−(1−hYUU )2(1−R)

pYUU−R
= 1

14. (1− α) =
(pYUU−p

Y
DU )((1−α)(1−hYM )+yY )+(1−pXDU )(α(hYM−h

X
M )+yX)

pYUU−R
+

(1−pXDD)(α(hXM−h
X
m)+(αhXm+α(1−hYM )−yX))(hXM−h

Y
UU )/(hXM−h

X
m)

pYUU−R

15.
hXDU (1−R)

pXDU−R
=

√
1−(1−hXDU )2(1−R)

pYDU−R

16.

√
1−(1−hYDU )2(1−R)

pYDU−R
= 1

17. α =
(pXDU−p

X
DD)(α(hXM−h

X
m)+(αhXm+α(1−hYM )−yX))+(pYDU−R)((1−α)(hXm−hYm)

pXDU−R
+

((1−α)hYm+(1−α)(hYM−h
X
m)−yY ))

pXDU−R
+

pYDU ((1−α)(1−hYM )+yY )(hBY −hXDU )/(hBY −hBX)

pXDU−R
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18. (1− α) =
(hXDU−h

Y
DU )/(hBY −hBX)pYDU ((1−α)(1−hYM )+yY )

pYDU−R

19.
hXDD(1−R)

pXDD−R
= 1

20. α =
R((1−k=α)(1−hYM )+yY )+

hBY −hXDD
hBY −hBX

pXDD(α(hYM−h
X
M )+yX)

pXDD−R

All the values listed in figures 8 and 9 are consistent with the assumed regimes
and prices as discussed in section 4.2. It turns out also that this equilibrium is
genuine in the sense that all agents’ decisions are optimal. The risky bond prices
at date 0 are πX = .7521 on a promise of .7548, corresponding to an interest rate
of .36% and πY = .9156 on a promise of .9366, corresponding to an interest rate of
2.3%. The most leveraged asset purchases at date 0 are yX = .520 and yY = .184.
The verification that each agent is indeed maximizing is available upon request.

6.3 Robustness Analysis.

Table 6 presents the proportion invested in the extreme BV project (α) and leverage
for each project at s = 0 for a grid of values of R, the key parameter in our sim-
ulations. We can see that the two properties, that α > .5 (so that investors invest
mostly in the BV technology) and that initial leverage higher in extreme BV than
in extreme GV, are valid for values of R other than .2 considered in the main text.
The grid presents values up to R = .6. For values larger than R = .7 the equilibrium
regime discussed in section 4.2 is not genuine anymore. Two contracts are still traded
for the extreme BV project, but only the riskless contract is traded for the extreme
GV project. It is obvious that for higher values of R, the extreme BV project will
be leveraged even more and hence our result is clearly true.
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Table 4: Robustness Section 4.

R α price  LTVBV LTVGV 

          

          

0.2 0.6950 0.9664 0.7662 0.6596 

          

0.3 0.7120 0.9800 0.8135 0.5968 

          

0.4 0.7280 0.9891 0.8582 0.5691 

          

0.5 0.7450 0.9947 0.8978 0.5984 

          

0.6 0.7600 0.9978 0.9323 0.6429 
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