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1 Introduction

Dynamic games with incomplete information have a long history in economics. With few

exceptions, these games model the uncertainty as fixed throughout the game, and private

signals about the state of nature are observed only once at the beginning of the game. In

many of these models, information is asymmetric, with one player’s information being finer

than his opponent’s. Players may know their own payoffs, as in games of reputation (see

Mailath and Samuelson (2006) for a survey), or they may not necessarily know those, as in

the games considered by Aumann and Maschler (1968, 1995). In these games, two players are

engaged in a repeated zero-sum game, whose payoff matrix depends on the state of nature

that is drawn according to some commonly known distribution. The informed player observes

the state; his opponent, on the other hand, has no proprietary information. Actions taken

during the game are observed, but payoffs are not. Our understanding of these games spans

a variety of issues: the payoffs that can be attained; the structure of the strategies achieving

those; and the long-run outcome of the game.

Yet in many applications, uncertainty evolves. In reputation models, for instance, the in-

formed player’s preferences might change. Equivalently, the informed player might be replaced

in a way that cannot be observed: restaurants change ownership, hedge funds change man-

agement. Such extensions are not only realistic. They are also called for by some of the more

paradoxical features of traditional models. (For instance, they can explain why reputations

need not disappear in the long-run.)

In economics, there is a burgeoning literature on such Markov games. See Athey and

Bagwell (2008), Mailath and Samuelson (2001), Phelan (2006) and Wiseman (2008). In these

papers, the type of one of the players is private information and affects the players’ preferences

over outcomes. The type changes over time according to a Markov process. On the pure game-

theoretic side, Renault (2006) considers a variant of the Aumann-Maschler setup, in which the

state of the game follows a Markov chain. One of the players always observes the realization

of the current state, while the other player only observes the past actions chosen by the first

player.

While attractive, these models remain very challenging. As optimization problems, these

are partially observable competitive Markov decision processes, in which players differ in their
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observation of the underlying state. Renault (2006) provides a result on the existence of the

value for such games. Neyman (2008) obtains an alternative proof to Renault’s result, using a

reduction to the case of repeated games with incomplete information on one side à la Aumann

and Maschler. However, neither paper provides a method for determining the value, or for

identifying optimal strategies.

This paper illustrates the difficulties raised by such games, and suggests some methods

to tackle them, within the framework of a simple, but paradigmatic example. This example

has been introduced by Renault (2006), and generalizes a well-known example by Aumann

and Maschler (1995). It features the basic trade-off displayed by such games, as the informed

player would like to take advantage of his private information, but doing so would reveal it.

Despite the simplicity of this game, we are only able to solve the game (value and optimal

strategies) for a subset of parameters. We rely on the average cost optimality equation, which

is well known in operations research, to verify the optimality of some strategy profiles. For

the informed player, the optimal strategy that is identified is Markovian (with respect to the

commonly known belief of his opponent). Remarkably, this strategy is myopically optimal in

the stage game given this belief. For the uninformed player instead, the optimal strategy is

represented by a finite-state automaton. The scope and generality of these properties remain

to be seen. We strongly hope that our analysis piques some theorists’ curiosity, and paves the

way towards a more general analysis.

Our approach also suggests that numerical methods might be fruitfully applied to this type

of problem, since it reduces the problem of determining the value to the study of average cost

optimality equations. One of the difficulties is that the state space for one of the dynamic

programming problems is continuous, namely, it is the set of possible beliefs. Polynomial

methods can be used to numerically solve such problems (see, for instance, Judd (1998) for an

overview), although most results are for the discounted case. One possible approach is via the

Tauberian theorem relating the average reward criterion to the discounted reward criterion

(see, for instance, Ma and Powell (2008) for a survey as well as recent results). Alternatively,

there are algorithms that directly study the average optimality equation (see, for instance,

Rieder (1997)).

The paper is organized as follows. Section 2 describes the game. Section 3 states the

results. Section 4 gathers the proofs.
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2 The game

Consider the following two-player, zero-sum, infinite-horizon game Γp. In any stage n ≥ 1, the

game is in one of two states, s and s. The actual state sn at stage n ≥ 1 follows a stationary

Markov chain, in which sn is equal to sn−1 with probability p ∈ [0, 1]. Let θ1 denote the

probability that the initial state s1 is s.

The action sets of the two players are I = {T,B} and J = {L,R}, respectively. We denote

by gs(i, j) the payoff to player 1 when the action combination (i, j) is played in state s. This

payoff function is given in the two tables in Figure 1.

B

T

L R L R

B

T

state s state s

0

1

0

0

0

0

1

0

Figure 1: The payoff function.

The game is played as follows. At each stage n ≥ 1, both players simultaneously choose

actions in ∈ {T,B} and jn ∈ {L,R}. These actions are publicly observed. In addition, player

1 observes the realization of sn+1. The data of the game is common knowledge among the

players.

We stress that the information available to player 2 at stage n only consists in the se-

quence i1, j1, . . . , in−1, jn−1 of past actions, while player 1’s information contains in addition

the sequence s1, . . . , sn−1, sn of states, including the current one. In particular, payoffs are not

observed.1

The goal of player 1 is to maximize the long-run frequency of stages in which the payoff is

equal to one, while the goal of player 2 is to minimize this frequency. Equivalently, the goal

of player 1 is to minimize the expected time between two occurrences of payoffs of one. In

other words, player 1 seeks to minimize the expected time at which his action matches both

1Player 1 can determine his flow payoff from his observations, while player 2 cannot. If he observed his
realized payoffs, the game would become trivial.
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the current state and the action of player 2. In this sense, the game Γp bears some similarity

to so-called rendez-vous games, see notably Alpern and Gal (2002, 2003), Gal and Howard

(2006), and Lin (2007).

Observe that, for p = 1/2, the states (sn) are independent random variables. The two

players then effectively face a sequence of independent, identical one-shot games with incom-

plete information, and the repetition of a stage-game optimal strategy is an optimal strategy

in the Markov game: it is optimal to optimize payoffs myopically, because the information

revealed on the current state is irrelevant for the future. At the other extreme, for p = 1,

the current state is fixed throughout the game, and Γ1 then coincides with the well-known

Example I.2 in Aumann and Maschler (1995). In both cases, the value can be derived from

the value of the one-shot game. The open and challenging question is the case p ∈ (0, 1),

which is henceforth assumed.

Since player 1 always observes the state, a naive strategy available to player 1 consists in

systematically matching the current state. However, player 2 would then infer the current

state from player 1’s action, and would thus play next whichever action is most likely to

mismatch the next period’s state. Player 1 would obtain no more than min{p, 1 − p} in the

long run. As we shall see, player 1 can do significantly better.

A strategy for the uninformed player, player 2, is a function τ : ∪n∈N(I × J)n−1 → [0, 1],

where τ(h) is the probability assigned to the action L after the sequence h of actions. A

strategy for player 1 can be described by a function

σ : ∪n∈N(S × I × J)n−1 → [0, 1] × [0, 1],

with the following interpretation. Given a sequence h of past actions and past states prior to

stage n, σ selects a pair (x, y) = σ(h) of mixed actions. This pair specifies which mixed action

is used, as a function of the current state, in stage n: the action T is played with probability

x if the current state sn turns out to be s, and it is played with probability y if sn = s.

Given a strategy pair (σ, τ), let Pσ,τ denote the probability measure over the set of infinite

plays induced by (σ, τ), and Eσ,τ the corresponding expectation operator. The distribution

Pσ,τ also depends on θ1, the probability that the initial state is s. Results are independent of

θ1, which is fixed throughout, and it is therefore omitted hereafter.
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For a given stage N ∈ N, let

γN(σ, τ) =
1

N
Eσ,τ

[

N
∑

n=1

gsn
(in, jn)

]

denote the average payoff in the first N stages.

A strategy σ∗ of player 1 guarantees an amount v ∈ R if

lim inf
N→∞

γN(σ∗, τ) ≥ v,

for every strategy τ of player 2. Player 1 can guarantee v if he has a strategy that guarantees

v.

Similarly, a strategy τ ∗ of player 2 guarantees an amount v ∈ R if

lim sup
N→∞

γN(σ, τ ∗) ≤ v,

for every strategy σ of player 1. Player 2 can guarantee v if he has a strategy that guarantees

v.

The real number v ∈ R is the value of the game if both players can guarantee v. The

corresponding strategies σ∗ and τ ∗ are then called optimal.

If (σ∗, τ ∗) is a pair of optimal strategies, then γ(σ∗, τ ∗) := limN→∞ γN(σ∗, τ ∗) does exist,

and the pair (σ∗, τ ∗) is a Nash equilibrium, in the sense that

lim sup
N→∞

γN(σ, τ ∗) ≤ γ(σ∗, τ ∗) and lim inf
N→∞

γN(σ∗, τ) ≥ γ(σ∗, τ ∗),

for every σ, τ . The converse also holds.

3 Results

It follows from Renault (2006), or Neyman (2008), that the game Γp has a value vp, which

is both the limit of the values of the N -stage games as N goes to infinity, and the limit of

the values of the δ-discounted game, as the discount factor δ goes to one. As mentioned, vp

is independent of the initial distribution θ1 (for p ∈ (0, 1)). Also, because of the symmetry
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of the game, it must be that vp = v1−p for every p.2 Therefore, it is sufficient to study vp for

p ∈ [1/2, 1).

Our goal is to determine the value vp and to identify optimal strategies for both players.

We first summarize our findings regarding the value.

We are able to solve the game Γp for a range of values of p. We first state results concerning

the value vp.

Theorem 1 The following holds:

1. vp = p
4p−1

, for p ∈ [1/2, 2/3], and vp ≤ p
4p−1

for p ≥ 2/3.

2. Let p∗ be the unique real solution of 9p3 − 13p2 + 6p − 1 = 0 (p∗ ⋍ 0.76). One has

vp∗ = p∗

1−3p∗+6(p∗)2
(vp∗ ⋍ 0.35).

The first statement settles an open question raised in Renault (2006) consisting in de-

termining v2/3. Computing the value for, say, p = 3/4, remains an open problem, but the

statement also provides an upper bound on vp valid for all p. A lower bound is provided below.

Independently of us, and using different methods, Marino (2005) establishes that vp = p
4p−1

for p ∈ [1/2, 2/3]. In Section 4, we describe the feature that sets apart the case p ∈ [1
2
, 2

3
] from

the case p > 2
3
.3

We now turn to the optimal strategies that are used for p ∈ [1
2
, 2

3
] and p = p∗. Given

a strategy σ of player 1, let θn(σ) denote the conditional probability that sn = s, given the

actions played by both players in the first n− 1 stages.4 The value θn(σ) represents the belief

that player 2 holds in stage n, assuming that player 1 uses strategy σ.

2To see this, start from a strategy σ of player 1, and define a ‘mirrored’ strategy σ′, obtained by flipping
actions and states at even stages. That is, given a finite history h, we first construct h′ by changing at all
even stages every appearance of T (resp. B, s, s) to B (resp. T , s, s), and we define σ′(h) to be σ(h′) at odd
stages, and 1 − σ(h′) at even stages. Given a strategy τ for player 2, we define its mirrored version τ ′ in a
similar way. It is immediate to check that the average payoff induced by (σ′, τ ′) in the game Γ1−p is equal to
the average payoff induced by (σ, τ) in Γ. This readily implies our claim.

3Marino manages to compute the limit of the values of the finitely repeated game. His approach does not
yield optimal strategies.

4Even if transition probabilities do not depend on player 2’s actions, and player 2 does not observe states,
the conditional probability θn(σ) may still depend on player 2’s actions, since player 1’s actions may depend
on player 2’s past actions. That is, the value of θn(σ) is independent of the strategy of player 2, but may
depend on past actions of player 2, and the distribution of θn(σ) may depend on the strategy of player 2.
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When checking for optimality properties of a given strategy σ for player 1, we assume the

use of such a strategy, and assume that it is known to player 2, so that player 2 can recursively

compute θn(σ) and act upon it. It is therefore natural to look for optimal strategies σ of player

1 in which player 1’s mixed action in stage n only depends on θn(σ), and on the current state.5

Player 1’s strategy σ∗ is defined as follows. Given θ := θn(σ∗) at stage n, the strategy σ∗

prescribes the mixed action

θ >
1

2

{

If sn = s, Play T with probability 1−θ
θ

,
If sn = s, Play T with probability 0.

θ ≤ 1

2

{

If sn = s, Play T with probability 1,
If sn = s, Play T with probability 1 − 1−θ

θ
.

Table 1: the strategy σ∗

We shall prove that this strategy is optimal both for p ∈ [1
2
, 2

3
] and for p = p∗. Numerical

calculations seem to suggest that it is optimal for all values in the whole interval (2
3
, p∗) as well,

but we have been unable to prove this. Part of the difficulty lies in the following observation.

When player 1 is known to follow the strategy σ∗, the sequence of posterior beleifs held by

player 2 follows a dynamical system. This dynamical system admits a Markov partition when

p ∈ [1
2
, 2

3
], but not when p > 2

3
. As a consequence, it is not clear how to compute the highest

amount that is guaranteed by σ∗, except for specific values of the parameter such as p∗ (see

Remark 6 for an elaboration on this point).

Player 2’s optimal strategy differs according to the parameter range considered. We de-

scribe a first strategy τ ∗ of player 2, that can be implemented using a simple two-state au-

tomaton. The two states are labelled ξ0, ξ1. The initial state of the automaton is irrelevant. In

state ξ0 (resp. in state ξ1), the automaton plays R (resp. L) with probability 2p
4p−1

. Transitions

between ξ0 and ξ1 depend only on player 1’s action and are given by:

(ξ0, T ) → ξ1, (ξ1, T ) → ξ1,

(ξ0, B) → ξ0, (ξ1, B) → ξ0.

That is, the automaton moves to ξ0 (resp. to ξ1) whenever B (resp. T ) is played.

5There is no circularity here, since the computation of θn involves only the strategy of player 1 in the first
n − 1 stages.

8



Graphically, τ ∗ looks as follows.

x x

ξ0 ξ1

2p
4p−1

2p−1
4p−1

-

T

�

B


 	
��

T

� �

-

B

Figure 2: Player 2’s strategy τ ∗

In Figure 2 (and Figure 3 below), each state is labelled (below) by its name, and (above)

by the probability that the action R is played in that state. Transitions are described by

arrows.

For p = p∗, we must instead consider player 2’s strategy τ ∗∗ that can be implemented by

the following automaton with four states, labelled 1 − p, 1 − ξ̃, ξ̃ and p.

x x x x

1 − p 1 − ξ̃ ξ̃ p

z1 z2 1 − z2 1 − z1

-

T
-

T
-

T

�

B
�

B
�

B


 	
��

T

� �

-

B

Figure 3: Player 2’s strategy τ ∗∗

Theorem 2 The following holds:

1. The strategy σ∗ is optimal for all p ∈ [1/2, 2/3], and for p = p∗.

2. The strategy τ ∗ is optimal for all p ∈ [1/2, 2/3], and the strategy τ ∗∗ is optimal for p∗.

We comment on the first statement. Whenever p is not equal to 1/2, the sequence (sn)

is autocorrelated, so that any information on sn revealed by player 1 at stage n can be used

by player 2. Casual intuition suggests that player 1 should therefore trade off the flow payoff

that he obtains, with the amount of information that his action discloses about the state.

Somewhat surprisingly, this trade-off is resolved in an extreme way for p ∈ [1/2, 2/3]. Indeed,
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it is simple to check that the mixed action specified by σ∗ at any stage n, as given in Table 1,

forms an optimal mixed action of player 1 in the one-shot game with incomplete information

in which the state is drawn with probabilities θn(σ∗) and 1 − θn(σ∗), and only player 1 is

informed of the state. In this sense, the strategy σ∗ is myopically optimal.6 Thus, statement 1

implies that when the underlying Markov chain is sufficiently mixing, playing in a myopically

optimal way is optimal in the long run for such values of p. It can be shown that a similar

result holds in any Markov game.7

According to the second statement, an optimal strategy of player 2 can be found within

the strategies that can be implemented with finite automata. Whether this holds for all

parameters remains an open question.

Let us now briefly discuss the case of discounted versions of the game. Our proof follows

a guess-and-check approach: we guess optimal strategies and check optimality using a ver-

ification theorem. We could use a similar approach and analyze discounted games, using a

dynamic programming principle. Note that both the value and the optimal strategies would

then depend on the distribution of the initial state.

It is plausible that σ∗ is an optimal strategy in discounted games as well. Indeed, if a

myopic strategy is optimal when payoffs are not discounted, it might a fortiori be optimal

when some positive weight is assigned to current payoffs. On the other hand however, none

of the strategies τ ∗ and τ ∗∗ can possibly be an optimal strategy in discounted versions of the

game, except possibly for highly specific initial distributions of the state. We have no guess

to offer on the optimal behavior of player 2 in discounted games.

In spite of this negative comment, Theorem 2 yields some results in discounted games.

It can be checked that the strategy σ∗ is approximately optimal in all long, finitely repeated

games:8 given ε > 0, there is an horizon N such that γn(σ
∗, τ) ≥ vp − ε for every strategy τ ,

whenever the length n of the game exceeds N . Together with the property that the values of

finitely repeated games and of discounted games here converge to the same value, this implies

that σ∗ is an ε-optimal strategy in all discounted games, provided the discount factor is high

6Indeed, σ∗ plays at every stage as if the current stage were the last one.
7Note that the mixed action in Table 1 is not the unique optimal strategy in the one-shot game. However,

among optimal mixed actions, it is the only one for which player 2 is indifferent between playing L and R,
and it is the one that reveals the least amount of information about the state.

8Similar claims hold for τ∗ and τ∗∗.
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enough.

As mentioned, we have not established that σ∗ is optimal for all values in the range

(2/3, p∗), although it appears to be so numerically. As it turns out (see Section 4), the payoff

that player 1 obtains by following this strategy, denoted by γp, is independent of the strategy

used by player 2. Therefore, it provides a lower bound to the value: vp ≥ γp. We show in the

next section that

1

γp
= u0 + u0u1 + u0u1u2 + · · · ,

where the sequence (un) is defined by u0 = 1 and, for ψ(u) := 3p− 1 − 2p− 1

u
,

un+1 = max{ψ(un), 1 − ψ(un)}.

There seems to be no explicit solution to this sequence, except for a countable set of points,

as explained and described in Subsection 4.4.

Figure 1 features both the upper bound p/(4p− 1), the lower bound γp and, in between,

the value vp. The latter two functions are obtained numerically.

4 Proofs

Proofs are organized as follows. In Subsection 4.1, we state the main theorem from Markov

decision processes that is used throughout, and explain how to apply it to a Markov game. In

Subsections 4.2 and 4.3, we prove all claims relative to players 2 and 1 respectively. Subsection

4.4 provides a lower bound on vp.

4.1 Average Cost Optimality Equations and Applications

We here state a version of the well-known Average Cost Optimality Equation (ACOE) for

general Markov Decision Processes (MDP). We next show how to use it to prove the optimality

of specific simple strategies in Markov games with incomplete information, such as Γp.
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Figure 1: The upper bound p/(4p− 1), the value vp and the lower bound γp.

Proposition 3 Let (S,A, r, q) be a MDP with a compact metric space S, a compact action set

A, a continuous payoff function r : S×A → R, and a continuous transition rule q : S×A →
∆(S) such that q(· | s, a) has finite support for every (s, a) ∈ S ×A.

If there is v ∈ R and a bounded function V : S → R such that

v + V (s) = max
a∈A

(

r(s, a) +
∑

s′∈S

q(s′ | s, a)V (s′)

)

for each s ∈ S, (1)

then v is the value of the MDP, for each initial state s ∈ S. Furthermore, a stationary strategy

α = (α(s)) is optimal whenever α(s) attains the maximum in the right-hand side of (1), for

every s ∈ S.

Moreover, if, there is s∗ ∈ S such that the sequence n (vn(s) − vn(s∗)) has a point-wise

limit V for every s ∈ S, and if the value v of the MDP is independent of the initial state, then

v + V (s) = max
a∈A

(

r(s, a) +
∑

s′∈S

q(s′ | s, a)V (s′)

)

for each s ∈ S. (2)

For a proof, see, e.g., Feinberg and Shwartz (2002). In Proposition 3, ∆(S) stands for

the set of probability distributions over S. The value v is the supremum over all policies φ
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of the payoff function γ(φ) := lim inf
N→∞

Eφ

[

1

N

N
∑

n=1

r(sn, an)

]

. Observe that the function V is

determined only up to an additive constant.

Consider a Markov game with incomplete information, such as the game Γp. Suppose

first that one is looking for the highest long-run payoff v that player 1 can guarantee when

using σ∗. The strategy σ∗ is given, so that player 2 effectively faces a MDP over the state

space [0, 1], where an element θ ∈ [0, 1] is interpreted as the conditional probability θn(σ∗)

that player 2 attaches to the state being s. The value of this MDP coincides with the highest

long-run payoff v that σ∗ guarantees.

It turns out that in the game Γp, the strategy σ∗ that was defined in Table 1 satisfies the

following: player 2 is always indifferent between playing L and R. Hence, the value of this

MDP can also be computed by restricting player 2 to one action, say L. In particular, letting r

and q denote the reward and the transition functions of this auxiliary MDP, v is characterized

by the existence of a function V over [0, 1] such that

v + V (θ) = r(θ, L) +
∑

θ′∈S

q(θ′ | θ, L)V (θ′) for each θ.

On the other hand, let now τ be a strategy that can be implemented by a finite automaton

(with deterministic transitions). Suppose that one is looking for the highest long-run payoff

v that player 2 can guarantee when using τ . Since player 1 observes the actions chosen by

both players, he can compute at every stage the current state of the automaton. Since he also

knows the current state of the game, player 1 essentially is facing a MDP whose state space

is the product of the automaton’s state space and of {s, s}. The ACOE can be used to find

the value of the MDP, hence to find v, and a best reply to τ .

4.2 Player 2

Here, we prove that τ ∗ guarantees p
4p−1

for all p ≥ 1
2
, which establishes the first part of

Theorem 1.

Lemma 4 The strategy τ ∗ of player 2 guarantees p/(4p− 1) for all p ≥ 1/2.

13



Proof. As player 1 knows the state of player 2’s automaton and the current state, he

essentially faces a MDP with four states: S = {(s, ξ), (s̄, ξ), (s, ξ̄), (s̄, ξ̄)}. In each one of these

four states he has two available actions, T and B, and the payoff is

r((s, ξ);T ) = 2p
4p−1

r((s, ξ);B) = 0,

r((s̄, ξ);T ) = 0 r((s̄, ξ);B) = 2p−1
4p−1

,

r((s, ξ̄);T ) = 2p−1
4p−1

r((s, ξ̄);B) = 0,

r((s̄, ξ̄);T ) = 0 r((s̄, ξ̄);B) = 2p
4p−1

.

Consider now the transition out of state (s, ξ), when player 1 plays T . Following T , the

automaton state moves to ξ̄. On the other hand, the state of the game moves to s̄ with

probability p. As a result, the next state of the MDP is (s, ξ̄) with probability 1−p, and (s̄, ξ̄)

otherwise. All other transitions are obtained in the same fashion.

By the ACOE, v = p
4p−1

is the value if and only if there is a function V : S → R that

satisfies

v + V (s, ξ) = max

{

2p

4p− 1
+ pV (s, ξ̄) + (1 − p)V (s̄, ξ̄),

pV (s, ξ) + (1 − p)V (s̄, ξ)
}

, (3)

v + V (s̄, ξ) = max
{

pV (s̄, ξ̄) + (1 − p)V (s, ξ̄),

2p− 1

4p− 1
+ pV (s̄, ξ) + (1 − p)V (s, ξ)

}

, (4)

v + V (s̄, ξ̄) = max

{

2p

4p− 1
+ pV (s̄, ξ) + (1 − p)V (s, ξ),

pV (s̄, ξ̄) + (1 − p)V (s, ξ̄)
}

, (5)

v + V (s, ξ̄) = max
{

pV (s, ξ) + (1 − p)V (s̄, ξ),

2p− 1

4p− 1
+ pV (s, ξ̄) + (1 − p)V (s̄, ξ̄)

}

. (6)

14



These equations are symmetric. As is easy to check, they imply that V (s, ξ̄) = V (s̄, ξ) and

V (s̄, ξ̄) = V (s, ξ), so Eqs. (5) and (6) can be omitted. One solution to these equations is

v =
p

4p− 1
,

V (s, ξ) = V (s̄, ξ̄) = 0,

V (s̄, ξ) = V (s, ξ̄) = − 1

4p− 1
.

4.3 Player 1

Here, we prove the results concerning player 1. First, we will prove that σ∗ guarantees p/(4p−
1) whenever p ∈ [1/2, 2/3]. Together with the results of the previous subsection, this yields

vp = p/(4p− 1), and implies that σ∗ and τ ∗ are indeed optimal for that range of values of p.

Next, we will consider the case where p = p∗, and prove that σ∗ and τ ∗∗ are optimal

strategies.

4.3.1 The case p ∈ [1/2, 2/3]

We here prove that σ∗ is optimal in Γp, for all p ∈ [1/2, 2/3]. Under σ∗, and when the posterior

probability of s is θ < 1
2
, player 1 plays as follows:

0

1

θ
1−θ

1 − θ
1−θ

L R L R
State s State s

P(sn = s) = θn(σ∗) = θ P(sn = s̄) = 1 − θn(σ∗) = 1 − θ

0

1

0

0

0

0

1

0

Observe that the total probability that the action B is played is θ, so that the total

probability that the action T is played is 1 − θ.

Lemma 5 The strategy σ∗ guarantees p/(4p− 1), for each p ∈ [1/2, 2/3].
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Proof. Consider the MDP over the state space [0, 1] of posterior beliefs, induced by σ∗.

Recall that the action of player 2 does not affect the evolution of the posterior belief and note

that, when facing σ∗, both actions L and R yield the same current payoff, θ. Therefore, the

value of this MDP can be found by restricting player 2 to play, say, L in each and every stage.

Transitions in this MDP are as follows. For concreteness, let θ ≤ 1/2:

• If player 1 played B at some stage, the state at that stage was s̄. Therefore, player 2’s

posterior belief assigns probability 1 − p to the next state being s;

• If player 1 played T at some stage, player 2 updates his belief, and assigns a probability

θ/(1 − θ) to the current state being s. Therefore, player 2’s posterior belief assigns

probability
θ

1 − θ
p+ (1 − p)

(

1 − θ

1 − θ

)

= 1 − p+ (2p− 1)
θ

1 − θ

to the next state being s.

In order to prove that the strategy σ∗ guarantees p/(4p− 1), we therefore need to find a

function V , symmetric around 1/2, such that the equality

p

4p− 1
+ V (θ) = θ + (1 − θ)V

(

1 − p+ (2p− 1)
θ

1 − θ

)

+ θV (1 − p) (7)

holds for each θ ≤ 1/2.

Observe that one has 1 − p + (2p − 1) θ
1−θ

≥ 1/2, whenever p ∈ [1/2, 2/3]: under σ∗, the

posterior probability is either p, 1− p, or jumps from one half of the posterior space [1− p, p]

to the other.

Therefore, we need only find a function V : [1 − p, 1/2] → R, such that

p

4p− 1
+ V (θ) = θ + (1 − θ)V

(

p− (2p− 1)
θ

1 − θ

)

+ θV (1 − p).

One can verify that the function V (θ) =
θ

4p− 1
is a solution. The result follows.

Remark 6
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There is little hope to extend this proof for values of p beyond 2/3. Indeed, the above proof

rests on the fact that (7) has a simple solution, V . This in turn is related to the fact that,

given θ, the belief 1− p+ (2p− 1) θ
1−θ

always lies on the opposite side of 1/2. That is, leaving

aside possible transitions to p or 1 − p, the dynamics of beliefs admits a Markov partition

which consists of two intervals: [1−p, 1/2] is mapped into [1/2, p], and vice-versa. As a result,

V has a piecewise linear structure, which consists of two parts. It can be shown that, for

p > 2/3, the corresponding dynamics admits no finite Markov partition.

4.3.2 The case p = p∗

We here analyze the case where p = p∗, the unique real solution to the equation 9p3 − 13p2 +

6p− 1 = 0.

We establish that vp = p
1−3p+6p2 by showing that it is an equilibrium payoff. Since the

game is zero-sum, the equilibrium consists of optimal strategies. We are going to show that

the following strategy profile is an equilibrium: player 1 uses strategy σ∗, as defined in Table

1, and player 2 uses strategy τ ∗∗, as defined in Figure 3.

When facing σ∗, player 2 is always indifferent between playing L or R. Since σ∗ is inde-

pendent of player 2’s actions, the payoff is independent of player 2’s strategy. In particular,

player 2’s automaton is a best-reply to σ∗.

We now prove that σ∗ is a best-reply to τ ∗∗, for appropriate values of z1 and z2. As before,

player 1 is facing an MDP with 8 states. Each state is composed of the current state (2

alternatives) and the state of player 2’s automaton (4 alternatives).

View the labels 1−p, 1− ξ̃, ξ̃, p of player 2’s automaton as fictitious beliefs, set ξ̃ = p
3p−1

⋍

0.5944, and let θ1, the distribution of the initial state, coincide with the initial state of the

automaton.9

We first claim that, for p = p∗ and for our choice of ξ̃, the state ξn of player 2’s automaton

at stage n coincides with θn(σ∗).

Indeed, suppose that player 2 knows that he is facing σ∗, and computes beliefs accordingly.

Denote by φ(θ | a) the belief of player 2 in stage n+ 1, if his belief was θ in stage n, and after

9Recall that the distribution of the initial state is irrelevant for the determination of the value.
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player 1 played a ∈ {T,B} in stage n. By Bayes’ rule, and for θ > 1/2, one has

φ(θ | B) =
2θ − 1

θ
p+ (1 − p)

(

1 − 2θ − 1

θ

)

= p− (2p− 1) × 1 − θ

θ
,

φ(θ | T ) = p.

Using elementary manipulations, one can verify that

φ(p | B) = ξ̃ and φ(ξ̃ | B) = 1 − ξ̃ (8)

whenever player 1 plays B, the posterior belief of player 2 evolves as follows: (i) from p it

moves to ξ̃, (ii) from ξ̃ it moves to 1 − ξ̃ whereas (iii) from either 1 − ξ̃ or 1 − p it moves to

1 − p.

By symmetric arguments, this implies that the transitions of the automaton of player 2

mimic the evolution of his posterior belief, provided player 1 follows σ∗. This implies in turn

that the strategy σ∗ induces a stationary Markov strategy in the auxiliary 8-state MDP.

Recall now that the strategy σ∗ assigns positive probability to both actions T and B

whenever the current state is s and θn(σ∗) > 1/2, and whenever the current state is s̄ and

θn(σ∗) < 1/2 , and assigns otherwise probability 1 to either T or B.

That is, the stationary strategy of player 1 associated with σ∗ (i) assigns positive proba-

bility to both actions in the four states (s, ξ̃), (s, p), (s̄, 1 − ξ̃) and (s̄, 1 − p), (ii) plays T in

states (s, 1 − ξ̃) and (s, 1 − p) and (iii) plays B in states (s̄, p) and (s̄, ξ̃).

By symmetry properties, and using the ACOE, this stationary strategy is an optimal

strategy in the MDP with value v as soon as there is a function V such that the following
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system of equations and inequations is satisfied:

v + V (s, 1 − p) = z1 + pV (s, 1 − ξ̃) + (1 − p)V (s̄, 1 − ξ̃), (9)

v + V (s, 1 − p) ≥ pV (s, 1 − p) + (1 − p)V (s̄, 1 − p), (10)

v + V (s, 1 − ξ̃) = z2 + pV (s, ξ̃) + (1 − p)V (s̄, ξ̃), (11)

v + V (s, 1 − ξ̃) ≥ pV (s, 1 − p) + (1 − p)V (s̄, 1 − p), (12)

v + V (s, ξ̃) = 1 − z2 + pV (s, p) + (1 − p)V (s̄, p), (13)

v + V (s, ξ̃) = pV (s, 1 − ξ̃) + (1 − p)V (s̄, 1 − ξ̃), (14)

v + V (s, p) = 1 − z1 + pV (s, p) + (1 − p)V (s̄, p), (15)

v + V (s, p) = pV (s, ξ̃) + (1 − p)V (s̄, ξ̃). (16)

Eqs. (9) and (10) express the fact that it must be optimal to play T when in state (s, 1−p).
The right-hand side of (10) is obtained by noting that, when playing T in state (s, 1 − p),

the current reward to player 1 is z1, and the MDP moves to state (s, 1 − ξ̃) with probability

p, and to state (s̄, 1 − ξ̃) otherwise. Eq. (11) is obtained by noting that, when playing B in

state (s, 1 − p), the current reward to player 1 is 0, and the MDP moves to state (s, 1 − p)

with probability p, and to state (s̄, 1 − p) otherwise. The other conditions are obtained in a

similar fashion.

Since V is determined up to an additive constant, we can set V (s, p) = 0, and then this

system contains 6 equations in 6 variables. The unique solution is

v =
p

1 − 3p+ 6p2
⋍ 0.348291466,

z1 =
4p− 1

1 − 3p+ 6p2
⋍ 0.934232129,

z2 =
2p

1 − 3p+ 6p2
⋍ 0.696582932,

V (s, 1 − p) =
6p− 2

1 − 3p+ 6p2
⋍ 1.171881327,

V (s, 1 − θ) =
2p

1 − 3p+ 6p2
⋍ 0.696582932,

V (s, θ) =
2p− 1

1 − 3p+ 6p2
⋍ 0.237649197,

V (s, p) = 0.
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One can verify that the inequalities (10) and (12) are satisfied in this case.

4.4 A lower bound on vp

Recall that γp is the payoff that player 1 obtains if he uses strategy σ∗, which is independent

of the strategy used by player 2. Plainly vp ≥ γp. In the present subsection we compute γp,

thereby providing a lower bound to vp.

By the ACOE, the number γp is the unique real number such that there is a function V

(symmetric around 1/2) that satisfies

γp + V (θ) = θ + (1 − θ)V

(

1 − p+ (2p− 1)
θ

1 − θ

)

+ θV (1 − p) θ ≤ 1/2,

γp + V (θ) = 1 − θ + θV

(

p− (2p− 1)
1 − θ

θ

)

+ (1 − θ)V (p) θ ≥ 1/2.

As V can be determined up to an additive constant, set V (1− p) = 0. Set θ0 = 1− p, and for

each k ∈ N set

θk+1 = min

{

1 − p+ (2p− 1)
θk

1 − θk

, p− (2p− 1)
θk

1 − θk

}

.

Then θk ∈ [1 − p, 1/2], and

γp + V (θk) = θk + (1 − θk)V (θk+1) + θkV (1 − p).

Using V (1 − p) = 0, and given the boundedness of V , it follows that

γp =
θ0 + (1 − θ0)θ1 + (1 − θ0)(1 − θ1)θ2 + · · ·

1 + (1 − θ0) + (1 − θ0)(1 − θ1) + · · · .

The sequence (un) was defined by u0 = 1 and un+1 = 1−θn, so that (un) satisfies the recursive

equation

un+1 = max

{

3p− 1 − 2p− 1

un
, 2 − 3p+

2p− 1

un

}

.

The payoff γp is then given by

1

γp

=
u0 + u0u1 + u0u1u2 + · · ·

1 − u1 + u1 (1 − u2) + u1u2 (1 − u3) + · · ·
= u0 + u0u1 + u0u1u2 + · · ·
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Observe further that, as mentioned, the recurrence equation on (un) writes

un+1 = max{ψ(un), 1 − ψ(un)},

where ψ(u) := 3p − 1 − 2p− 1

u
is increasing. Let u∗ be a solution to u = 1 − ψ(u). It is

immediate to check that u∗ ≥ 1/2, hence ψ(u∗) ≤ u∗, for otherwise, the inequality 2u∗ <

ψ(u∗) + 1 − ψ(u∗) = 1 would hold. In particular, if uN = u∗ for some N , then the sequence

(un) is stationary from that stage on.

Next, consider the sequence (wn) defined by w0 = 1 = u0 and

wn+1 = 3p− 1 − 2p− 1

wn
. (17)

We claim that if wN = u∗ (and wn 6= u∗ for n < N), then un = wn for each n < N and

un = u∗ for each n ≥ N . To prove this claim, it is enough to check that 1 − ψ(wn) ≤ ψ(wn)

for n = 1, 2, · · · , N − 1. To see why this holds, observe first that the sequence (wn) is

decreasing. We argue by contradiction, and assume that wk+1 = ψ(wk) < 1− ψ(wk) for some

k < N . Since wk > wk+1 ≥ wN , this yields wN < 1−ψ(wk). Since ψ is increasing, one obtains

wN < 1 − ψ(wN) – a contradiction.

As a result, the computation of γp is easy for those values of p with the property that

wn = u∗ for some n.

The solution to (17) is

wn =
√

2p− 1
cos ((n + 1)σ − λ)

cos (nσ − λ)
, (18)

where

tan σ =

√

(1 − p) (9p− 5)

(3p− 1)
, tanλ =

3(1 − p)
√

(1 − p) (9p− 5)
.

Using standard manipulations, the following appears. Given N , there exists a unique p such

that N is the smallest integer for which uN−1 = uN . This p solves the polynomial equation

tan((N + 1)σ) =

√

9p− 5

1 − p
× 2p− 1

1 − 3p+
√

p(9p− 4)
.

For instance, (i) p ⋍ .7589 for N = 2, which is the special case already studied, (ii)

p ⋍ .8583 for N = 3, (iii) p ⋍ .9073 for N = 4, (iv) p ⋍ .9348 for N = 5, etc.
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From the expression of wn, one deduces

w0 · · ·wn = (2p− 1)(n+1)/2 cos ((n+ 1) σ − λ)

cosλ
.

It follows that

1

γp
= 2

(

1 − (2p− 1)(N+1)/2
√

2(3p− 1 −
√

p(9p− 4))
√

p(1 − p)(3
√
p−√

9p− 4)(5p− 2 −
√

p(9p− 4))

)

.

For instance, γp ⋍ .2880 for p ⋍ .8583 (more precisely, γp is the unique real root of −162 +

1737x− 7279x2 + 15002x3 − 15276x4 + 6169x5 = 0 for p the unique real root of −4 + 37x −
136x2 + 248x3 − 225x4 + 81x5 = 0), γp ⋍ .2460 for p ⋍ .9073, etc. It is readily verified that

the equation γp = p
1−3p+6p2 , valid for p ⋍ .7589, is not valid on any open interval around this

p.
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