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Abstract

In this paper we make two contributions. First, we show by example that empirical likelihood
and other commonly used tests for parametric moment restrictions, including the GMM-based
J-test of Hansen (1982), are unable to control the rate at which the probability of a Type I
error tends to zero. From this it follows that, for the optimality claim for empirical likelihood
in Kitamura (2001) to hold, additional assumptions and qualifications need to be introduced.
The example also reveals that empirical and parametric likelihood may have non-negligible
differences for the types of properties we consider, even in models in which they are first-order
asymptotically equivalent. Second, under stronger assumptions than those in Kitamura (2001),
we establish the following optimality result: (i) empirical likelihood controls the rate at which
the probability of a Type I error tends to zero and (ii) among all procedures for which the
probability of a Type I error tends to zero at least as fast, empirical likelihood maximizes the
rate at which probability of a Type II error tends to zero for “most” alternatives. This result
further implies that empirical likelihood maximizes the rate at which probability of a Type II
error tends to zero for all alternatives among a class of tests that satisfy a weaker criterion for

their Type I error probabilities.
KEYWORDS: Empirical Likelihood, Large Deviations, Hoeffding Optimality, Moment Restrictions
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1 Introduction

The purpose of this paper is two-fold. First, we show by example that empirical likelihood and
other commonly used tests for parametric moment restrictions, including the GMM-based J-test
proposed in Hansen (1982), are unable to control the rate at which the probability of a Type I error
tends to zero. This fact has not been noted in previous research as this difficulty is not present
in fully parametric models. The example shows in particular that, for the optimality claim for
empirical likelihood in Kitamura (2001) to hold, additional assumptions and qualifications need to
be introduced. It also reveals that empirical and parametric likelihood may have non-negligible
differences for the types of properties we consider, even in models in which they are first-order
asymptotically equivalent. This fact has also been unnoticed in previous research on empirical
likelihood. Second, under stronger assumptions than those in Kitamura (2001), we establish a
more qualified optimality result for empirical likelihood. This result further implies that empirical
likelihood maximizes the rate at which probability of a Type II error tends to zero for all alternatives

among a class of tests that satisfy a weaker criterion for their Type I error probabilities.

More concretely, let P € P on X C R% and ¢ : R x © — R™, where © C R", be given.
Consider the null hypothesis
Hy: PePy, (1)

where
Py={P e P: Ep[g(X,0)] =0 for some 0 € O} . (2)

The alternative hypothesis is understood to be
H11P€P1:P\P0.

The problem is to test (1) based on X;,i =1,...n, an i.i.d. sequence of random variables with dis-
tribution P € P. When m > r this is typically referred to as a test of over-identifying restrictions.
Hansen (1982) introduced a method based on the generalized method of moments as a means of
testing (1). Subsequently, several alternatives to this test have also been proposed, including a
continuously updated version of the generalized method of moments (Hansen et al. (1996)) and
the empirical likelihood ratio test (Owen (1988) and Qin and Lawless (1994)) along with its vari-
ants (Kitamura and Stutzer (1997) and Imbens et al. (1998)). These alternatives are part of the
generalized empirical likelihood framework studied in Newey and Smith (2004).

Following Kitamura (2001), we consider an asymptotic framework in which the probability of
a Type I error tends to zero as the sample size, n, tends to infinity. This framework was first
developed by Hoeffding (1965), who used it to study the asymptotic properties of tests of certain
hypotheses about the parameters of a multinomial distribution. For this problem, he showed that
among all tests for which the Type I error tends to zero at a suitable rate, the likelihood ratio

test maximizes the rate at which the Type II error tends to zero for “most” alternatives. Such a



property is sometimes called Hoeffding optimality. The generalization of the results of Hoeffding
(1965) to tests of (1) is nontrivial because, in contrast to his setting, the null hypothesis is not

required to be parametric and P is not assumed to have finite support.

As in Kitamura (2001), we restrict attention to nonrandomized tests of (1) based on the em-
pirical distribution of the observations, P,. Any such test can be identified with a pair of sets of
distributions, (1,5, 2,), such that the test accepts when b, e 1 5, and rejects when b, e Qo .
The empirical likelihood ratio test rejects when a certain (fixed) function of P, exceeds a pre-
specified value, 1. For each n > 0, denote by (A1(n),A2(n)) the corresponding acceptance and
rejection regions. Under weak assumptions on P and g, but stronger than the ones posited by

Kitamura (2001), we prove that for all n sufficiently small

1 R
sup limsup —log P"{P,, € Aa(n)} < —n . (3)
PePy n—oo T
where 1s the n-fo roduct measure o . In this sense, empirical likelihood controls the rate
h Pm"is th fold prod ®?71P In thi , pirical likelihood Is th

at which the Type I error tends to zero. Moreover, we prove that any test (£, 2,) satisfying

1 .
sup limsup — log P"{P, € Qg Wt <—n (4)
PePy n—oo N ’

for some § > 0, we have that

lim sup 1 log P"{P, € Q1 ,} > limsup 1 log P"{P, € Ai(n)} (5)
n—oo T n—oo TN

for “most” P € Py. Here, the notation A% denotes the (open) 0-“blowup” of a set A C M with
respect to Prokhorov-Lévy metric. More formally, A% = Upec4B(P,d), where B(P,§) denotes an
open ball with center P and radius ¢ with respect to the Prokhorov-Lévy metric. This is sometimes
referred to as d- “smoothing”; see Dembo and Zeitouni (1998) for further discussion of this technique.
With this caveat in mind, this is the sense in which this result shows that empirical likelihood is
more powerful at “most” alternatives than any other test that also controls the rate at which the

Type I error tends to zero.

Part (a) of Theorem 2 in Kitamura (2001) claims, under very weak assumptions on P and g,
that empirical likelihood controls the rate at which the Type I error tends to zero in the sense
that (3) holds for any n > 0. We provide two examples that demonstrate that this claim is false
without stronger assumptions and further qualifications. More specifically, we show that given the
assumptions in Kitamura (2001), (3) is not satisfied for any n > 0. Importantly, our examples
illustrate that if P is “too rich,” then empirical likelihood, as well as the discussed alternative tests,
will fail to satisfy (4) for any n > 0, which motivates the restrictions we ultimately place upon P.
Our examples also reveal that the the sort of asymptotic equivalence of empirical likelihood with
parametric likelihood underlying many of their shared large-sample properties is insufficient for the

types of properties we consider.



The remainder of the paper is organized as follows. In Section 2, we describe empirical likelihood
more precisely and formulate it in terms of the empirical distribution, as is required for our analysis.
In Section 3, we describe our examples that show empirical likelihood, the GMM-based J-test, and
other commonly available tests fail to control their size in terms of large deviations. We then
provide in Section 4 a precise statement of the optimality of empirical likelihood for testing (1) as

described above. Proofs of all results are collected in the Appendix.

2 The Empirical Likelihood Ratio Test

Qin and Lawless (1994) propose testing (1) by rejecting for large values of the empirical likelihood

ratio crained
L%OHS raine
L%nconstrained ’
where
pgrsrained — supsup{ [[ P{X:}: P € M, P < P, Ep[g(X,,0)] = 0} (6)
0O 1<i<n

and Lgncongtraimd is simply equal to n~". Here, M denotes the set of probability distributions on
X (with the Borel o—algebra) and the supremum over the empty set is understood to be zero. It
is well known that such a test also has an information-theoretic interpretation. Let
PQ) = J{PeM:P<Q,Q< P,Ep[g(X;,0)] =0} .
0cO
The above test is equivalent to a test that rejects for large values of

inf  I(P,|P), (7)
PcP(P,)

where I(Q|P) is the Kullback-Leibler divergence of P from @ defined as

[log(9¥)aQ it Q< P

00 otherwise

1(QIP) =

Here, the infimum over the empty set is understood to be infinity. Note the importance of the
restriction P < P, for all P(P,). Indeed, without this requirement, it is possible to show that (7)
is zero whenever {g(z,0) : v € X} = R™ for some 0 € O. In this case, one would never reject the

null hypothesis.

In this language, empirical likelihood can be identified with a partition of M into the pair sets
of distributions (A1(n), A2(n)), where

Ai(n) ={Q e M: - (QIP) <n} (8)

inf I
€P(Q)
for some pre-specified > 0 and

A2(n) = M\ Ai(n) - 9)
Empirical likelihood rejects (1) whenever P, € Ay(n) and fails to reject (1) if B, € A1(n).



3 Two Examples

Part (a) of Theorem 2 in Kitamura (2001) claims that the test based on (8) and (9) satisfies (3)
for any n > 0 provided that

P{sup||g(X,0)|| =cc}=0forall PP (10)
0cO

g(x,0) is continuous at every 6 € O for each z € R? . (11)

The following example, however, shows that this claim does not hold without additional restrictions.

Example 3.1. Suppose d =1, m = 1 and g(z,0) = z for all § € O©. Let P be any set of probability
distributions satisfying (10) and (11) and containing

Co={P.:0<c<1,},
where P, is the distribution that puts mass 1 — ¢ on ¢ and mass ¢ on —(1 — ¢). Then
1 1
sup hmsup log P"{P, € Ay(n)} > sup limsup — logP"{P €Na(n)} =0 (12)
PePy n—oo PeCy n—oo

for any n > 0. To see that (12) holds, let n > 0 be given and note that
PH{X;,=cforalll1<i<n}=(1-¢)"
Moreover, when X; = ¢ for all 1 < i < n, we have that (7) is infinity, so b, e As(n). Thus,
(1—¢)" < PM{Py € M)}

from which (12) follows. We conclude that (3) cannot be satisfied by a test based on (8) and (9)

for any n > 0 without further assumptions on P. m

The above example suggests that if P is “too rich” then empirical likelihood can not satisfy (3)
for any value of n > 0. It is important to note that this shortcoming is not unique to empirical
likelihood and is shared by many commonly used tests. In particular, Example 3.1 applies to the
test that rejects for large values of the absolute value of the t-statistic. Equivalently, it applies to
the GMM-based J-test proposed in Hansen (1982). Hence, these tests are also unable to control size
as in (3) if P is “too rich.” The simplicity of Example 3.1 is illustrative but potentially misleading,
as it suggests the problem is caused by measures that have “too little” mass on one side of zero.
Example 3.2 shows this is actually not a necessary condition and also helps us uncover what drives

the result in Example 3.1.

Example 3.2. As in the previous example, assume d = 1, m = 1 and g(z,0) = z for all § € ©.

Let P be any set of probability distributions satisfying (10) and (11) and containing

Ko—{PKC—CD1+(1—C)RKC.0<C< K>2}



where D_; is the degenerate distribution at —1, and Rk . is the distribution satisfying:

—2c 1 2Ke 1

m} =5 Ry {X; = m} L

RK,C{Xi - 9

Then, empirical likelihood is unable to control size on P, as (12) holds with Kg in place of Cy. To

see this, note that by direct calculation it is straightforward to obtain that

1 1+ K 1 1+ K
inf I(Rg¢|P) = =log(———) + = log(——— 13
Pt (RielP) = 5 log(— ) + 5 log(—5—) (13)
which is greater than n for K sufficiently large. Denote such a choice by K,. From (13), it is
possible to show that

1 .
lim inf - log R, AP0 € Aa(n)} =0 (14)

n—oo

Define A, = {X; # —1: for all 1 <i < n} and note that

. 1 A
lim sup - log Py, APn € A2(n)}

n—oo

1 - 1
> liminf —log Py, {Pn € A2(n)|An} + liminf —log Py, {An}
n ’ n—oo n ’

n—oo

1 A 1
= liminf — log R% { P, € Aa(n)} + liminf —log P {A,} =log(l—¢). (15)
n—oo N m n—oo 1 m

Letting ¢ tend to zero, we see from (15) that (3) cannot be satisfied by a test based on (8) and (9)

for any n > 0 without further assumptions on P. m

Note that the problem revealed in this example also applies to other commonly used tests such
as the GMM-based J-test. Both Examples 3.1 and 3.2 rely on a sequence of distributions for which
the rate at which the probability of a Type I error tends to zero itself tends to zero. These sequences
are linked by

ii_{% P. = il_{l% Pk .= Dy, (16)

where Dy is the degenerate distribution at 0 and the limit should be interpreted in the weak
topology. The measure Dy is unique in that it is the only measure satisfying the null hypothesis
whose support has zero dimension. In more generality, the logic of these examples reveals that
empirical likelihood fail to satisfy (3) for any n > 0 in the neighborhood of measures that satisfy
the null hypothesis but whose support is contained in lower dimensional subspaces. We show in
the next section that removing such neighborhood from the null space is sufficient to restore size

control as in (3) for some 7 > 0.

Remark 3.1. Empirical and parametric likelihood often share desirable large-sample properties.

To illustrate this phenomenon in a simple setting, fix ¢y > 0 and consider the binomial family

P,={PeM:P«P,, P,< P},



where P, is defined as in Example 3.1. Under the maintained assumption that P € P, the
likelihood ratio test statistic for Hp : Ep[X] = 0 versus H; : Ep[X] # 0 is then

Cpar = I(P”I’PCO) : (17)

Similarly, once our sample includes both ¢y and 1—¢q (and therefore P(P,) = {P,,}), the empirical
likelihood ratio statistic is simply
b = I(P,|P.,) . (18)

Therefore from (17) and (18) it follows that £par = fe with probability approaching one under any
fixed P € P,,. This equivalence can be shown to hold in greater generality; see Newey and Smith
(2004). For this reason, empirical likelihood inherits many of the desirable large-sample properties
of parametric likelihood in this model. However, this sort of equivalence is too weak for the types of
properties we consider. Specifically, while Example 3.1 reveals empirical likelihood can not satisfy
(3) for n > —log(1l — ¢p) on Py = {P,,}, parametric likelihood is able to do so for any 7 > 0. See
Theorem 3.5.4 in Dembo and Zeitouni (1998). m

Remark 3.2. It is instructive to contrast empirical likelihood with parametric likelihood further.
To this end, let Ppar = {Pe : £ € ZE}, where 2 C R?. Consider testing the null hypothesis that
P € Py, versus the alternative that P € M\ Ppg,. It is possible to show that the likelihood ratio
test rejects the null hypothesis for large values of

inf I(P,|P) . 1
piaf I(BalP) (19)

Heuristically, (19) is the distance between the empirical distribution B, and the model Ppar. This
representation of the likelihood ratio test is used by Zeitouni and Gutman (1991) to establish its
Hoeffding optimality in this setting. On the other hand, in our analysis the model is given by Py
defined by (2), but the empirical likelihood ratio test does not reject for large values of

Anf I(FalP), (20)

which is the direct analogue of (19), but instead for large values of (7), contrary to equation (5)
in Kitamura (2001). This modification is needed because P is “too large.” In fact, the infimum
in (20) may even be equal to zero. It is therefore reasonable to expect the need for additional
conditions in establishing the Hoeffding optimality of empirical likelihood than those employed in
the study of parametric likelihood. m

4 The Main Result

The proofs of large deviation optimality results rely on large deviation principles for the empirical
measure P,. These principles are often called Sanov’s Theorem, of which several versions exist. We

now state the result that will suffice for our purposes.



Theorem 4.1. Let M(X) denote the space of probability measures on a Polish space ¥ equipped
with the weak topology. Suppose P € M(X). Then,

1 N
li —log P"{P, € G} < — inf I(Q|P
imsup —log P"{P, € G} < = inf 1(QIP)

n—oo

for all closed sets G C M(X), and

1 .
liminf — log P"{P, € H} > — inf I(Q|P
iminf ~ log P"{P, € H} > ~ inf 1(Q|P)

n—~o0

for all open sets H C M(X).

See Chapter 6.2 in Dembo and Zeitouni (1998) for different proofs of this result as well as refinements

to stronger topologies.

Before stating the assumptions we require, we need to introduce some additional notation.
Recall that M is the set of probability measures on X (with the Borel c—algebra) and define for
each P € M,

O9(P) = {0 € © : Ep[g(X,0)] =0} (21)

We denote the set of distributions that agree with the hypothesized moment restriction by

As shown by our example, empirical likelihood is unable to satisfy (3) for Py = My. For this reason

we impose the following assumptions on the model and Py C My,
Assumption 4.1. Py C My is closed in the weak topology.
Assumption 4.2. For each P € Py, ©¢(P) is a singleton denoted 0y(P).

Assumption 4.3. For some € > 0,

sup sup P{v'g(X;,00(P)) >0} <1—¢.
PePg v#0

Assumption 4.4. X and © are compact subsets of R% and R", respectively.

Assumption 4.5. g : X x © — R™ is continuous in both of its arguments.

Assumption 4.1 is employed in showing P is “well separated” from the rejection region (see
(31) below). It is left as a high level assumption, but we note closed sets in the weak topology are
easily constructed by imposing moment restrictions on bounded continuous functions. Assumption
4.2 is employed to show y(P) is continuous in P € Py under the weak topology. Continuity of

¢

0o(P) can in turn be employed to verify Py and Ay(n) are “well separated.” Since we are typically

interested in cases where m > r, we feel that Assumption 4.2 is not particularly restrictive. It



may be possible to weaken it at the expense of a more complicated argument. Assumption 4.3
is made precisely to avoid Example 3.1. Assumption 4.4 implies that M is compact in the weak
topology, a crucial point in showing that Py and As(n) are “well separated.” Assumption 4.5 is

straightforward.

Remark 4.1. Examples 3.1 and 3.2 illustrate that Py must not contain neighborhoods of those

P € My whose supports are included in lower-dimensional subspaces. We denote these distributions
Dy ={P € My : 30 € O¢(P) with s(P,0) < m} (23)

where s(P,0) denotes the dimension of the convex hull of the support of g(X;, ) under P, i.e.
s(P,0) = dim(co(suppp(9(Xi,0)))) - (24)

The requirements imposed on Py ensure that there exists a § > 0 such that Pg N Dg = (. If, in
addition, ©¢(P) is a singleton for every P € My \ Dy, then for every > 0 there exists a Py with
M \ Dg C Py and Py satisfying Assumptions 4.1-4.3 (see Lemma 5.9 in the Appendix). Given the

implications of Examples 3.1 and 3.2, the restrictions on Py are therefore quite weak. m

We are now in a position to state our main result:

Theorem 4.2. Let X;,i = 1,...,n be an i.i.d. sequence of random wvariables with distribution
P e M. Let (A1(n),A2(n)) be defined by (8) and (9). Suppose Assumptions 4.1 - 4.5 hold. Then,

the following statements follow:

(a) There exists 7 > 0 such that for all 0 < n < 7 we have that

1 .
sup limsup —log P"{P, € Aa(n)} < —n .
PePy n—oo TN

(b) If a test (1 p,Q2,) satisfies
1 .
sup limsup — log P"{P, € Q5 ,} < -1 (25)
PePy, n—oo N ’

for some 6 > 0, then

1 A 1 .
lim sup - log Q"{P, € Q1 ,} > limsup —log Q"{P,, € A1(n)}

n—oo n—oo E
for any Q satisfying

inf I(Q|P)>n. 26
pinE L T@IP) 2 (26)

PROOF: See Appendix. m

Theorem 4.2 establishes the desired optimality property of empirical likelihood. When using

empirical likelihood, the probability of a Type I error tends to zero at a rate that is uniform on Py.



Furthermore, for any distribution @ satisfying (26), the probability of a Type II error vanishes at
a rate at least as fast as that of any procedure based on the empirical distribution P, satisfying
the requirement (25). We emphasize the non-local nature of the optimality property, in that it
holds for all distributions @ satisfying (26). Condition (26) demands that @ be sufficiently “far”
from the subset of Mg over which we do not demand control on the rate at which the probability
of a Type I error tends to zero. While in (26) “far” is defined in terms of entropy, the following
corollary shows that “far” may also be interpreted in terms of the Total Variation metric or the

Prokhorov-Lévy metric.

Corollary 4.1. Under Assumptions 4.1 - 4.5, Theorem 4.2 holds if condition (26) is replaced by

. n
f d(Q,P)>4/=
PEI{/III()\PO (Q’ ) - \/; ’

where d(Q, P) may be either the Total Variation or Prokhorov-Lévy metric.

PROOF: See Appendix. m

Remark 4.2. It is worthwhile to point out that any distribution @ satisfying

nt 1@QIP) > (27)

also satisfies (26). Hence, part (b) of Theorem 4.2 applies to all distributions that are sufficiently
“far” from the null hypothesis. The requirement (26) is weaker than (27) in the sense that it only
requires the distribution ) to be “far” from distributions in Mg that are not in Pg. In this sense,
part (b) of Theorem 4.2 applies to alternatives that are “close” to the null hypothesis as well. See

Figure 1 for a useful illustration of this feature of Theorem 4.2. m

Remark 4.3. Note that we only smooth (in the sense of §-“smoothing”) alternative tests in
Theorem 4.2. In contrast, much of the related literature smoothes both the original and alternative
tests. See, for example, Dembo and Zeitouni (1998). As noted by Kitamura (2001), if one restricts

attention to alternative tests that are “regular” in the sense that

lim sup lim sup — P”{P e nt = sup hmsup P (P, € Qan},
6\OP€P n—oo N P n—oo

then one may avoid the use of 4-“smoothing” altogether. This condition has been used by Zeitouni

and Gutman (1991), who also provide a sufficient condition for it. m
The principal challenge in deriving our optimality result consists in showing that the empirical

likelihood test satisfies (3) for 7 sufficiently small. Our strategy for establishing this result can be

described in three steps:

10



Figure 1: The larger and smaller (two-dimensional) ellipses represents My and Py, respectively
(both are subsets of M). Note that M has no interior relative to M. Therefore, all points of Py
are on the boundary of My. The distribution @ is within n > 0 of My and My \ Py. In contrast,
Q2 is within n > 0 of My, but not of Mg \ Py. Part (b) of Theorem 4.2 applies to 2, but not Q;.

STEP 1: Show Ay(n) C Ay(n), where Ay(n) is defined as follows. Let
PQ) = J{PeM: P<Q.Q< Ps(Q,0) =m,Epl[g(X;,0)] = 0} ,
0cO

The set Ay(n) is then defined as

Aa(n) ={Q eM: I(Q|P) = n}

inf
PeP(Q)
STEP 2: Show Ay(n) is closed in the weak topology and employ Theorem 4.1 to establish

1 A 1 . ..
lim sup - log P"{P, € Az2(n)} < limsup - log P"{P, € A2(n)} < — Qei]?f( )I(Q|P)
n—oo n—oo 2N

STEP 3: Establish that Ay(n) and P are “well separated” in the sense that

inf inf I(Q|P) >
L (@QIP) =7

for n > 0 sufficiently small. Result (3) immediately follows from (30) and (31).

(29)

(30)

(31)

Remark 4.4. Note that As(n) differs from Ay(n) only through the difference between P(Q) and
P(Q). In defining P(Q) in (28), we imposed the additional constraint s(Q, ) = m, which is not

11



present in the definition of P(Q). This modification ensures that Ay(n) is closed in the weak
topology, as shown in the Appendix. A simple example establishes As(n) is not closed. Let
X =[-1,1] and g(z,0) = x for all §. Further define Dy to be the measure with Do{X; =0} =1

and D,, to be the measure satisfying

Dp{X; =0} =

, Dp{X; =1} =

= 3\>—‘

Clearly, D,, converges to Dy in the weak topology and D,, € Ay(n)
also Zeitouni and Gutman (1991). m

or all n, but Dy € A1(n). See

As Examples 3.1 and 3.2 show, commonly used tests for (1) fail to control uniformly the rate
at which the probability of a Type I error tends to zero in neighborhoods of Dy. As a way of
comparing among such procedures, it is interesting to examine optimality when we require

sup lim sup log P{P, € (2, \ D§)°} < — (32)
PePy n—o

instead of (25). Requirement (32) should not be interpreted as “size” control, but rather as a
benchmark for tests that fail to satisfy (25) for any n > 0 on My N Df. Clearly, given the weaker
criterion for a Type I error probability in (32), any optimal test must have D§ C g ,,. For this
reason, we define:

Ai(n) = Ai(n) \ D Az(n) = Az(n) UDG (33)

where € is an arbitrary positive constant and the dependence on € is omitted in the notation. Note
that the tests (A1(n), A2(n)) and (A(n), A2(n)) may differ only on the event P, € D§. We can
use Theorem 4.2 to show the optimal test in this framework is given by the modified empirical
likelihood test (A;(n), Aa(n)).

Corollary 4.2. Let P = M and suppose Assumptions 4.4 and 4.5 hold. Suppose further that
©o(P) is a singleton for every P € My \ Dy, where Dy is defined in (23). Then, the following

statements hold:

(a) There exists 7j(€) > 0 such that for all 0 < n < 7(e) we have that

1
sup limsup — logP {P, € Aa(n) \D§} < —1p .
PePy n—oo

(b) If a test (Q n,Q2,) satisfies

sup limsup — log P"{P IS (an\Do) }<—n (34)
PePy n—oo

for some 6 > 0, then

hmbup —1log Q"{P, € Q,,} > lim sup -~ log Q"{P, € Ai(n)} (35)

n—oo N n—00

for every probability measure Q).

12



PROOF: See Appendix. m

As mentioned earlier, (32) differs from (25) only in how the former treats distributions that
are too close to distributions in Dg. Remarkably, as a result of this rather simple modification, it
is possible to remove the assumptions on Pg entirely. Moreover, in contrast to Theorem 4.2, (35)
holds without qualifications on @). This result may therefore provide some guidance when choosing
among tests that have difficulty controlling the rate at which the Type I error tends to zero in
neighborhoods of Dy, such as tests based on (generalized) empirical likelihood or the GMM-based
J-test.
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5 Appendix

Lemma 5.1. Let {By,...,Bgy1} be a collection of closed balls in RY such that for any collection of points
{91, 9a+1} with g; € B; for each 1 <i<d+1,

0 € int(co({g1,-..,9d+1})) (36)

(relative to the topology on R?). Then, there exists € > 0 such that for all 0 # v € R% there exists
j=7j(y) e{l,...,d+ 1} such thatv'g <0 and |7'g| > |g||v|e for all g € B;.

PROOF: Let B() be the maximal subset of {By,..., Bgy1} such that for all B € B(«y) we have that v'g < 0
for all g € B. Note that the desired claim will follow if we can show (i) B(7) is nonempty for any 0 # v € R?
and (ii)

inf >0,
07$lyneRd€(w

where ,
. 1yl
inf .
BeB(v) g€B |g||7|

e(y) =

To establish (i), consider the hyperplane H., = {g € R? : /g = 0} and note that if v # 0, then H,
must strongly separate at least two balls B;, By, € {B, ..., Bay1} with i # k. Otherwise, for either 4 =+ or
7 = —7, there exists a collection of points {g1,...,gqs+1} with g; € B; and 7'g; > 0 for each 1 < i < d+ 1,
which contradicts (36). Therefore, since H., strongly separates at least two balls B;, By, € {Bi, ..., Bqt1}
with i # k, it follows that there exists a j = j(7y) such that 7'g; < 0 for all g € B;.

To establish (ii), note that we may assume without loss of generality that |y| = 1 and suppose by way of
contradiction that there exists a sequence 7, such that e(v,) — 0. Since |vy,| = 1, we have that there exists
a subsequence vy, such that ,, — v* and |y*| = 1. Moreover, since B(7*) C B(vy, ) for all n; sufficiently

large, it follows that for such ny

€(Yn,) > max inf P, gl (37)
BeB(v*) 9B |g]
Next, note that
inf >0 38
inf o (39)

for 1 <i < d+ 1. To see this, note that if (38) fails, there exists 1 < i* < d+ 1 such that 0 € B;~ since each
B; is closed. In this case, any collection of points {g1,..., 9441} with g; € B; for 1 <i <d+1 and g;» =0
will not satisfy (36). It thus follows that |v,, gl/|g| — |v*'g|/|g| uniformly over g € B for each B € B(v").
The righthand side of (37) therefore tends to e(y*). But, since each B € B(y*) is compact and there are
only finitely many such B, e(v*) > 0. Hence, €(y,) 7 0, from which the desired claim follows. m

Lemma 5.2. If Assumptions 4.4 and 4.5 hold, then Ag(n) is closed under the weak topology for any n > 0.

PROOF: Let Q,, be a sequence such that Q,, — Q and Q,, € Ay(n) for all n. We wish to show that Q € Ay(n).
Note that if P(Q) = 0, then

inf I(Q|P) = +o0,
PeP(Q)

s0 Q € Ay(n). We may therefore assume further that P(Q) # 0.
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Now suppose by way of contradiction that Q & A, (n). Define the set,
P(Qve) = {P EM: P K QaQ < va(Q>0> = m7EP[g(XZ7€)] = 0} ’ (39)
and note that P(Q) = Uyce P(Q, ). Further define the set:

0(Q)=1{0€0:P(Q.0) # 0} (40)
Since P(Q) # 0, it follows that ©(Q) # () and therefore the Primal Constraint Qualification of Theorem 3.4
of Borwein and Lewis (1993) is satisfied for all § € ©(Q). Hence,

inf I(Q|P)= inf ma /10 1++g(z,9))dqQ . 41
aut 1@IP) =t e [0+ 702,040 (an)

It follows that there exists 0* € ©(Q) such that

max /log(l +7'g(z,6%))dQ < n . (42)
~eR™

Further notice that since 15(62, 0*) # 0, by virtue of 8* € ©(Q), it follows that

s(Q,0")=m . (43)

Next, we argue that
0 € int(co(suppg (g(Xi, 0%)))) (44)

(relative to the topology on R™). If this were not the case, then there exists a 0 # v € R™ such that
v g(x,0*) > 0 for all z € supp(Q). Moreover, it must be the case that Ng(X;,0*) > 0 with positive
probability under @, for otherwise supp,(9(X;,6*)) will be contained in a m — 1 dimensional subspace of

R™, which contradicts (43). For such v we have for scalars «,

lim [ log(1+ av'g(x,60%))dQ = oo ,

a— 00

which contradicts (42), so (44) is thus established.

We now show P(Q,,,8*) # 0 for n sufficiently large. It follows from (44) that there exists a collection of
points {g1, ..., gs(Q,6+)+1} in suppg(g(Xi, 0*)) such that

0 € int(co({g1,---,9s(0.0)+1}) (45)

(relative to the topology on R™). For 1 < i < s(Q,6%) 4+ 1, let B; be an open neighborhood of g; so small
that any collection of points {g1,...,Jsq,0)+1} With g; € B; for 1 <i < s(Q,0%) + 1 will also satisfy (45)
with g; in place of g;. For 1 <14 < s(Q,0*) + 1, let

Bi'={re X :g(x,0") € B;} . (46)

Since each B; is open and g(zx, #*) is continuous, each B;l is also open. Moreover, since each B; is an open

neighborhood of a point in the support of g(X;, 6*) under Q,

Q{X, € Bj'} = Q{g(X;,0") € B;} > 0. (47)
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By the Pormanteau Lemma, we therefore have that for all n sufficiently large
Q. {X;, € B '} >0 (48)

for all 1 <i < s(Q,0%)+ 1. Thus, for n sufficiently large (44) holds with @,, in place of Q. It follows that
P(Qn, 6*) # ) for n sufficiently large. Hence, the Primal Constraint Qualification of Theorem 3.4 of Borwein

and Lewis (1993) is satisfied for such values of n, from which it follows that

it 1(QIP) = mpx [ log(1+'9(2,6%))dQ, (49)
PeP(Qn,0%) yER™
Let
Tn € arg max / log(1 +7'g(x,0"))dQn . (50)
’Y m

We now argue that the «; are uniformly bounded. If this were not the case, then for each M > 0 there
would exist a subsequence +;; for which |y: | > M for all k. By Lemma 5.1, there is an ¢ > 0 and
) €{1,...,5(Q,0%) 4+ 1} such that

Yo g <0 and |y, gl > |gllv, |e (51)

forall g € Bj(%ik)' There exists a further subsequence V;ke along which j(%*;w) is constant. Let j* = j(vzke ).
For « such that g(x,0*) € B;-, we have from (51) that

Y, 9(2,07) <0 and |30 g(@,07)] > |g(x,0)|lvs,, le - (52)
We have from (50) that
ané{l + ’Y;’;;ZQ(XMG*) > O} =1,
which, together with (52), implies that

Qun, {9(X0,6%) € By g(X:, 6l e > 1} = 0. (53)

Hence,

* * 1 * * *
anl{{g(Xive ) € Bj*a g(Xive )| > m} < an,{{g(Xive ) € Bj*’ g(Xive )H’ym%lS > 1} =0,

where the inequality follows from the fact that |’y;§k£ | > M and the equality follows from (53). Thus, by the

Pormanteau Lemma,
1
X;,0%) € B, |g(X;,0" —1}=0

Q(X:.0%) € By 1g(X:.67)| > )
which implies that

* * * 1

Q{g(Xi,0%) € Bj} = Q{g(X:,07) € B+, |9(X;,07)| < —~

Letting M — oo, we conclude from (47) that 0 € B;+, which contradicts the requirement that any collection
of points {1, ..., Js(q,0)+1} With g; € B; for 1 < i < 5(Q,0%) + 1 must satisfy (45) with g; in place of g;.

Hence, it must be the case that v;; are uniformly bounded.

We therefore have that there exists a subsequence ~;, such that 4, — 7" and v* € R™. We will now
argue that
Q{1 +7"g(X;,07) >0} =1. (54)
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To this end, for § > 0 let
Ry ={z e X:1+~"g(x,0") <5} Rf={zeX:1++"g(x,0") >} (55)
and note that

o1+ 790,040, = /R

<),
<),

where the equality holds by inspection, the first inequalty holds by the Cauchy-Schwartz inequality, and the

log(1+ 77, (0,6")d@ue + [ ToB(1+ 77 (2. 6))d G,
5 R}

log(L+ 7y, 9(2,07))dQn, + /R+ log(1 + [y, llg(z,07)])dQy,
5 5

log(1 + 7, g(x,0"))dQn, +log(1 + M max lg(z,07)]) , (56)

5

second inequality holds because |v;; | < M. Since 1 + ;) g(x,0*) — 1 +~*g(x,0*) uniformly for z € X, we
have that for k sufficiently large the integrand in the first term in (56) is bounded above by log(24). Thus,
for k sufficiently large (56) is bounded above by

Quo{X; € Ry }log(26) + log(1 + M max lg(,0)]) (57)
But,
liminf Q,, {X; € Ry} > Q{X, € R;} > Q{Xi: € Ry } , (58)

where the first inequality follows from the Pormanteau Lemma and the second inequality follows from the
fact that Ry C Ry for all § > 0. If (54) fails, then from (58) we have that
inf liminf @, {X; € Ry } > 0.

>0 nr—oo

It now follows from (56) and (57) that

/ log(1 + 72 g(2,6%))d@n, < 0

for § > 0 sufficiently small, which contradicts (50). Hence, (54) is established.

To complete the proof, we argue that

/log(l +7"9(2,07))dQ = n , (59)

which will contradict (42), completing the proof. To this end, note that

/ max{log(14++"g(x, 6%)), log(8) }dQ (60)
- / max{log(1 +~"'g(x, 6%)), 10g(8)}(dQ — dQu,) (61)
+ / max{0, log(8) — log(1 + 2/ g(z,6%))}d Qs (62)

+ /(maX{log(l +7"g(x,0%)),10g(6)} — max{log(1 + 5, g(x,07)),10g(6)})dQn,  (63)

4 / log(1 4+ g(x,6%))dQ, (64)
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By virtue of @, — @, (61) tends to zero, while (62) is nonnegative. Since
max{log(1 + v, g(,0%)),log(8)} — max{log(1 ++"g(x,0%)),log(d)}

uniformly on x € X, (63) tends to zero. Finally, because of (49), (50) and the fact that Q,, € As(n) for all
k, (64) is weakly greater than n. Thus, (60) is weakly greater than n. By letting § \, 0, we see from the

monotone convergence theorem that (59) holds, which contradicts (42). B

Lemma 5.3. Suppose X;,i =1,...,n is an i.i.d. sequence of random variables with distribution P on X.
Suppose further that Assumptions 4.2, 4.4 and 4.5 hold, P € Py and that there exists w > 0 such that all
Q < P with P{X; € supp(Q)} > exp(—w) satisfy P(Q,0o(P)) # 0, where

P(Q.0)={PeM:P<Q,Q< P,s(Q,0) =m,Eplg(X;,0)] =0} . (65)

Also let
T(n,P)={y€R™:e "< P{1++'g(X,0(P)) >0} <1}. (66)

If n <w, and n satisfies

inf sup Ao +nA1 —exp(Ao—1) / exp(A1 log(1++"g(z,00(P)))) {1+~ g(x,00(P)) > 0}dP >n (67)
YEL(M,P) Xg,A\1>0

then it follows that
1 N
limsup — log P"{P, € Aa(n)} < —1n .
n

n—oo

PROOF: Let Ay(n, P) = {Q € M : inf pep (.0, (py) L(QIR) = n} and note that

1 L
limsup —log P"{P, € As(n)} < — inf I(Q|P)
n—oo T QEA2(n)
QEA2(n,P)

where the first inequality follows from Lemma 5.2 and Sanov’s Thoerem, while the final inequality follows

from Ay(n) C Ay(n, P). To complete the proof, it therefore suffices to show that

inf  I(Q|P) =7 (68)
QeRz(n,P)

for n < w satisfying (67).
For S C supp(P), let M(S) = {Q € M : supp(Q) C S}. Note that

Qeill\l/[f(s)f(QIP) = —log(P{X; € S}) . (69)

To see this, observe that the lefthand side of (69) is greater or equal to the righthand side of (69) by Jensen’s
inequality and that I(Q|P) = —log(P{X; € S}) for @ given by the distribution P conditional on S. Next,
note that for any @ such that P{X; € supp(Q)} < exp(—n), we have that

1@QP)> | int (ulP) = ~log(P(X; € supp(@)}) 2 1. (70)

Note further that if @ is not dominated by P, then I(Q|P) = 4+oc0. Hence, for

Asy(n, P) ={Q € Ay(n, P) : Q < P, P{X; € supp(Q)} > exp(—n)}
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we have that

inf  I(Q|P) > min{ inf I(QP),n} . (71)

QEA2(n,P) Q€A (n,P)

We may assume that i&g(n,P) # (), for otherwise the righthand side of (71) equals 7, thus establishing
(68). Furthermore, since < w, we also have by assumption that for any Q € Ay(n, P), P(Q,00(P)) # 0.
Hence, the Primal Constraint Qualification of Theorem 3.4 of Borwein and Lewis (1993) is satisfied, so for
all Q € Ay(n, P) we have

inf I(R|Q) = max / log(1 + /g 80(P)))dQ > 1
REP(Q,00(P)) veR™

where the inequality is implied by Q € As(n, P). Next, we define

I = {yeR™:3Q € Ay(n,P) s.t. v € arg nax, /log(l + Ng(z,00(P)))dQ}
S() = (S Csupp(P):3Q € Ra P) sit. S = supp(Q), € arg max [ log(1 + Xg(z, 60(P))Q)
R(7,8) = {Qe€Ay(n,P):yearg Jmax /log(l + Ng(z,00(P)))dQ, S = supp(Q)} -

With these definitions, we write

/~\2(77»P) = U U R(/V»S) .

YET SeS(y)
Hence,
inf  I(Q|P) = inf inf inf I(Q|P) . 72
o o (QIP) inf dnf et o (QIP) (72)

Note that if @ € R(v,S), then (i) Q < P, (ii) S = supp(Q) and (iii) [log(1 + v'g(x,00(P)))dQ > n. We
therefore have for § > 0 sufficiently small that

inf  [(QIP) > inf{ /8 log(6(x))é(x)dP : 6(x) € L}(S), (x) > 0

QER(v,S)
/ log(1 + +'g(x, 60(P)))$(x)dP > 1, / o(x)dP =1}
S S
> inf{ /5 log(6(x))$(x)dP : (x) € L}(S), p(x) > 0
/S log(1 ++'g(z.600(P)))I{z € R} }o(x)dP > 1, /S o(x)dP =1} (73)

where the first inequality follows from the preceding statements (i), (ii) and (iii), and the second inequality
follows from the definition of Ry in (55) but with (69(P),~) in place of (6*,7*).

We now use Corollary 4.8 of Borwein and Lewis (1992a) and part (vi) of Example 6.5 of Borwein and
Lewis (1992b) to find the dual problem of (73). To this end, first note that since Ay(n, P) # 0, we have that
R(7,S) # 0 for at least one v € " and S € S(y). For any such v and S, we have as a result that there exists
a ¢(x) satisfying the constraints of (73). Next, note that the map A : L'(S) — R defined by

A(g) = /S log(1 +~'g(x, 6o(P))I{x € R} }o(x)dP

is continuous because log(1 +/g(z, 0o(P)))I{z € R} } lies in L>°(S) as a result of S being a subset of the
compact set X and g(x,0(P)) being continuous on X. Using Corollary 4.8 of Borwein and Lewis (1992a)
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and part (vi) of Example 6.5 of Borwein and Lewis (1992b) to find the dual problem of (73) implies

inf I(Q|P) >
oatl o (QIP) >

liminf sup Ag+nA1 —exp(Ao — 1)/ exp(A1 log(1 ++'g(z,00(P)))[{z € Rf})dP . (74)
INO g, A1>0 S

By definition, for every S € S(7) there exists @ such that S = supp(Q) and

€ ang x| log(L+ Ng(,60(P)dQ (75)
For any such @), we must have that
Q{1 +7'9(X;,00(P)) <0} = Q{1 +7'9(Xi,00(P)) <0,X; €S} =0, (76)
from which it follows that
P{1++'g(Xi,00(P)) <0,X; €S} =0 (77)

as well. Hence, by letting § \, 0, we see by the monotone convergence theorem that
[ expulog(1+ /gl 80P e € RY PP
s

is right-continuous at § = 0. Following arguments as in Lemma 17.29 in Aliprantis and Border (2006), it is
possible to show the supremum in (74) is lower semicontinuous at § = 0 as well. Hence, the righthand side

of (74) is greater than or equal to

sup Ao + A1 — exp(Ag — 1)/ exp(A1 log(1 +~'g(x, 00(P))I{1 +~'g(x,00(P)) > 0})dP . (78)
A0;A120 S

Since the integrand in (78) is nonnegative, we have from (74) and (77) and (78) that

inf inf I(Q|P
S€eS(y) QER(Y,S) (Q| )

> inf  sup Ag+nh —exp(Ag — 1)/ exp(Arlog(1 +7'g(x, 00(P)))) {1 ++'g(x,00(P)) > 0}dP
SES(Y) Ag,A1>0 S

> sup A+ nA —exp(Ao—1) /exp()\l log(1 +~'g(z,00(P)) {1+~ g(x,00(P)) > 0}dP (79)
Ao, A1 >0

By definition, for every v € I' there exists a @) € Ag(n, P) such that « satisfies (75). Thus, as before,
(76) holds, from which it follows that

supp(Q) C {z € R : 1+ 7/g(x,00(P)) > 0} .

Therefore,
P(14+'g(X;,00(P)) > 0) > P(X; € supp(Q)) > exp(—n)

by Q € Ay (n, P). Hence, v € T'(n, P), which implies ' C T'(n, P). It therefore follows from (79) that

inf inf inf I(Q|P) >
vEl'SeS(v) QER(Y,S)

inf sup Ao+ 1A —exp(Ap — 1) /exp()\l log(1 +~'g(z,00(P)))I{1 +~'g(x,00(P)) > 0}dP .
YEL(M,P) Xg,\1 >0

The desired claim (68) thus follows for n < w, satisfying (67). B
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Lemma 5.4. If Assumptions 4.2, 4.4 and 4.5 hold, then 0y(P) is continuous on Py under the weak topology.

PRroOF: Let P, — P with P,, € Py for all n and denote

where 0y(P,) # 0 by P, € Py and 6y(P,) is a singleton by Assumption 4.2. Let 6* be a limit point of {6,,}

and 6, a subsequence such that 6, — 6*. It then follows that,

N g — 00

| [oworapl = 1| [ gw.6)dp,,

= lim |/(g($,9*) _g(xvenk))dpnk|

N — 00

< lim sup |g(9€,9*) - g(‘r70nk)|

np—00 ZEX

B (80)

where the first equality follows by P, — P and g(z,0*) continuous and bounded. The second equality is
implied by 6,, = 00(P,,), the inequality follows by inspection and the final result is due to the uniform
continuity of g(z,0). Hence,

0" = 0y(P) . (81)

It follows that 0(P) is the unique limit point of {6, }, which establishes the claim of the Lemma.
Lemma 5.5. If Assumptions 4.2, 4.3, 4.4 and 4.5 hold, then for any § such that 0 < § < e,
P, P) = {7 € R™ - e < P{1+'g(X,00(P)) > 0} < 1} (2)

is monempty, compact valued and upper hemicontinuous on (n, P) € [0,—log(l — € + §)] x Py under the

product of the topology on R and the weak topology.

PROOF: The correspondence I'(n, P) is clearly not empty since 0 € I'(n, P) for all (n, P) € [0,—log(l —
€ + §)] x Pg. To establish upper hemicontinuity we wish to show that if P, — P and n, — n with
(M, Pn) € [0,—1log(1 — e+ d)] x Py for all n, then any sequence {v,}52; with v, € T'(n,, P,,) for all n, has a

limit point in I'(n, P). For this purpose we first show the sequence {7, }52; is uniformly bounded. Suppose
by way of contradiction,
lim sup |y,| = +o0 (83)
n—oo
It follows that there exists a subsequence satisfying

In addition, by compactness there exists an additional subsequence such that
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Along such a subsequence, however, we have

e’ = lim e "k
nkl—MXJ
< limsup Py, {1+ ’Y;Lklg(Xa QO(Pnkl )) = 0}

ng, —00

Yo 1
ut g(X790(Pnkl)) Z -
Y, |

/

= limsup 7, {

nleOO ‘ TLkl |

}

< liminflimsup P, { 7]” 9(X,00(Py,. ) > —€}
Y N, —00 ! nkl| !

< lim\iglf limsup Py, {719(X,00(P)) > —2¢}
€ ng, —0oo

< liminf P{mg(X, 6o(P)) > —2¢}

P{719(X,00(P)) = 0} (86)

where the first equality follows by assumption and the first inequality by Yrw, € I‘(nnk_l , Pnkl) for all I. The
second equality follows by inspection. The second inequality is implied by (84) and the third inequality by
00(Pn,,) — 6o(P) by Lemma 5.4, (85) and the unform continuity of g(z, #). The final inequality and equality

follow by the Portmanteau and Bounded Convergence theorems respectively. Hence,
1—e<e™ < P{7g(X,00(P)) = 0} (87)
by (86) and 7y, € [0, —log(1 — €+ )] for all . Result (87), however, contradicts P € Py.

Because the sequence {7, }52, is uniformly bounded, it follows that there exists a subsequence such that
lim Tn; = V2 (88)
n;—0o0

To conclude establishing upper hemicontinuity we show o € I'(n, P), which is implied by

e = lim e ™y

limsup Py, {1+, 9(X,00(P,,)) > 0}

lim inflimsup P, {1 +759(X, 60(P)) 2 —e}

IN

IN

< ligl\ing{l +79(X, 00(P)) > —¢}
= P{1+79(X,0(P)) > 0} (89)

where the first equality follows by assumption and the first inequality by v,, € I'(n,,, P,,) for all j. By
Lemma 5.4, 0y(P,;) — 0o(P) and therefore the second inequality follows by the uniform continuity of g(x, 8).

The final inequality and equality follow by the Portmanteau and Bounded Convergence theorems respectively.

The arguments in (83)-(86) but for {v,}52; an unbounded sequence in I'(n, P) and n,, =, P, = P for
all n show I'(n, P) is bounded. Similarly, the arguments in (89) but with 1, = »n and P, = P for all n show
I'(n, P) is closed. Hence, I'(n, P) is compact. B

Lemma 5.6. If Assumptions 4.2, 4.4 and 4.5 hold, then the function
f(\1,v, P) = /(1 +~'g(x, 0(P)))YMI{1 +~'g(z,00(P)) > 0}dP

is lower semicontinuous on (A1,v, P) € Ry x R™ x Py where Pq is endowed with the weak toplogy.
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PROOF: Let (A1, 7n, Pn) — (A1,7, P). In order to establish the Lemma we aim to show that,
liminff()\l,nafynapn) Z f(>‘377p) (90)

For this purpose, we define the auxiliary variable,

€me = sup  |vng(x,00(Py)) — ' g(z,00(P))] (91)
rEX ,n>mg

Notice that due to Lemma 5.4 and Assumption 4.4 we have lim,,, .o €m, = 0. Also define,

Mg = SUP Ay Ay = Inf A, (92)
n>mo ’ n>mo
as well as the function:
Lo (u) = w20 I{u > 1} 4 urmo I{0 < u < 1} (93)

The notice that pointwise in x € X we have that:

inf (1 +75,9(z,00(Pn)))" I{1 +7,9(x,00(Pm)) > 0}

m>mg

> inf (1+7},9(x,00(Pn))) M {1 ++'g(x,00(P)) > €m,}

m>mg
> inf (1+49/g(x,00(P)) = €mo) " I{1 +7'g(x,00(P)) > €m, }
m-=mo
> Ling(1+7g(2,00(P)) — €my) (94)

where the first two inequalities are implied by (91) and the final one follows by (93) and direct calculation.
Next, exploiting standard manipulations and (94) we are able to conclude

liminf f(Ar .7 Py) = liminf / (14 7902, B0(Pog )0 {1 + 7, 9(, 60(Prg)) > 0}d P,

n—0o0 ng>n

> lim inf inf [ (1497, 9(2,00(Pm,)) 0 I{1 +70,,9(2, 00(Ps, ) > 0}dPr,

n—o0 n>ng m>mg

> liminf liminf inf /(1 + Vo 9(, O0(Py))) Mo I{1 + Vg 9(%,00(Prny)) > 0}dP,

mp—00 M—00 Mm>mg

> liminfliminf [ inf (1+ 7}, 9(2,00(Pmy)) 0 I{1 +~,,,9(x, 00(Pp,)) > 0}dP,

mop—0o0 MN—00 m>mg

mpo—00 N—00

> liminf lim inf/LmO(l +9'g(x,00(P)) — €my)dPy, (95)

Further, observe from (93) that if A ,,, > 0, then L,,,(u) is continuous, while if A; ,,, = 0 then we have
Lo (u) = I{u > 0}. In both cases, since g(x,00(P)) is continuous and X is compact, we obtain by the
Portmanteau Lemma and P,, — P in the weak topology,

lim inf lim inf/LmO(l +79'g(z,00(P)) — €m,)dP, > lim inf/Lmo(l +9'g(z,00(P)) — €m,)dP

mop—00 M—00 mo— 00

> /lim inf L, (14 7'g(z,00(P)) — €mg)dP (96)

mo— 00

where the second inequality follows by Fatou’s Lemma. Finally, by 5\1,m0 — A1, Almm — A1 and €, — 0,
direct calculation reveals that pointwise in x € X we have,
lim inf Ly, (1 +7'g(x, 00(P)) — €mg) > (1 ++"g(, 00(P))M* I{1 4+ +'g(x, 05(P)) > 0} (97)

mo— 00

Combining (95), (96) and (97) establishes the claim of the Lemma. B
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Lemma 5.7. Suppose Assumptions 4.2, 4.4 and 4.5 hold and for (Ao, \1,n,7, P) € [0,2]2 x Ry x R™ x Py
with Py endowed with the weak topology, define the function

F(Xo, Ai,1,7, P) = X + (A — 1) — et /(1 +'g(x,60(P)M {1 +'g(x,60(P)) > 0}dP .
In addition, consider the following correspondences,

E(Ua%P) = {(/\07)\1’10) € [0?2]2 xR: ) S F(A07/\1a77?’77p)}
(1,7, P) = {y € R: (Ao, \1,y) € E(n,7, P) for some (Mo, \1) € [0,2]%}

It then follows that I1(n,~, P) is lower hemicontinuous on R4 x R x Py.

PROOF: As in Lemma 5.6 we define the function,

f\1,7, P) = /(1 + gz, 00(P))MI{1 +v'g(x,00(P)) > 0}dP (98)

We first show that f(\1,~, P) is continuous at all points on [0, 2] x R™ x Py with A; # 0. For this purpose,
let (A1,n,Yn, Pn) — (A1,7, P) and note that by Lemma 5.4 and X being compact, we have:

lim sup |y,,9(z, 00(Py)) —7'g(x,00(P))| =0 (99)

Further, notice that since A; > 0, then by A;, — A1 we have A, > 0 for n large enough, which implies,

lim sup |(1 +’77lzg(x790(Pn)))>\lan{1 + ’7;9(37700(]371)) >0, 1+ 7’9(%790(13)) < O}| =0 (100)

o gex

as a result of (99). By direct calculations we then obtain from (99) and (100) that,

i sup |(L+77,9(2, 80(Pa))  I{1473,9 (2, 80 (Pa)) > 0} —(14++g(x, 60(P)))™ I{14++"g(x, 6o(P)) > 0} = 0
—Xze
(101)
By (101) and noting that the integrand is a continuous bounded function for A; > 0, P,, — P establishes:
FOns Yos P) = / (1+"g(a, 00 (P))M I{1 +'g(x,00(P)) > 0}dP, +o(1) = f(M, 7. P)  (102)
hence proving the desired continuity of f(A1,7, P) at all points (A1,v, P) € [0,2] x R4 x Pg with Ay > 0.

We now establish lower hemicontinuity of II(n, v, P). This requires showing that for any y € I1(n,~, P)
and (Nn, Yn, Pn) — (1,7, P) there exists a subsequence (Mn,, Vny, Pny,) and yn, € I(n,, Yng., Pn,) with
Yn, — Y. Since y € II(n,~, P), there exist a (Ao(y), \1(y)) € [0,2]? with:

y < Fho(y), M(y),n7, P) - (103)
If A1(y) > 0, then we immediately have from (102) that,
FAo () A (Y)s s ns Pa) = F(Ro(y), A (y), 1,7, P) (104)
from which it follows that there exist y,, € II(n,, Yn, Pn) with y,, — y. To address the case A1 (y) = 0, notice:
lim sup F( Ao (%), 0, M, Y, Pn) = Xo(y) + 1 — eoW ™1 x linﬂiigfpn{l + 1mg(a, 0o(Pn)) > 0}

> No(y) + 1 — e x lim inf P{1 ++/g(x,6o(P)) > 0}

= F()\o(y)ﬁﬂ?a%P) (105)
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where the inequality is implied by P, — P, (99), the extended continuous mapping theorem of Theorem
1.11.1 in van der Vaart and Wellner (1996) and the Portmanteau Lemma. The final equality in (105) is
definitional. The existence of a subsequence (Yn, ,Mn,, Pny.) With yn, € I(Vn,,Mn,, Pn,) and y,, — y then
follows. m

Lemma 5.8. If Assumption 4.2, 4.3, 4.4 and 4.5 hold, then for every Q € Pqy there exists an open neigh-
borhood N(Q) in Py with respect to the weak topology and a 7(Q) > 0 such that for all n € [0,7(Q)],

inf inf  sup Ao +n(A —1)—er! /(1 + 9 g(z,00(P)* I{1 +~'g(x,00(P)) > 0}dP >0 (106)
PeEN(Q)YET (M, P) xg,A1 >0

PRrOOF: First notice that since by Lemma 5.5 the correspondence I'(0, Q) is compact valued, there exists a
compact set A such that,
ro,Q)cA

Furthermore, since by Lemma 5.5, T'(n, P) is also upper hemicontinuous at (1, P) = (0, Q), there exists a
a(Q) > 0 and an open neighborhood B(Q) in Py such that for all 0 <7 < a(Q) and P € B(Q), we have

I'(n,P)c A (107)

Thus, since [0,2]2 C R x R, it immediately follows that for all 0 < n < «(Q) and P € B(Q),

inf sup Ao+ n(A —1)—ed! /(1 +7g(x, 00 (P))M I{1 +~g(x,00(P)) > 0}dP
YEL(1,P) Xg,21>0

> inf  sup Ao+ n(\ —1)—e/\o_l/(l+7'g(x,90(P)))’\1[{1+7’g(x,00(P)) > 0}dP (108)
YEA (Xg,A1)€[0,2]2

We will establish the Lemma by showing that for 7 sufficiently small, the right hand side of (108) is non-

negative on an open neighborhood of ). For this purpose, define the function
F(A0,A,m,7, Q) = Xo +n(A — 1) — et /(1 +79(x,00(Q) M I{1 ++'9(,60(Q)) > 0}dQ  (109)
By Lemma 5.6, Lemma 5.7 and Theorem 2 in Ausubel and Deneckere (1993), it follows that

C(%U»Q) max F(A07>\17n777Q) (110)

- (Ao,A1)€[0,2]2

is continuous on (7,7, Q) € R™ x Ry x Py. Moreover, since A is compact, applying Berge’s Theorem of the

Maximum establishes that the correspondence
=E(n, P) = argmin C(v,n, P) (111)
YEA

is well defined and upper hemicontinuous on R4 x Py.

We now show Z(0,Q) = {0}. If v € A\I'(0, @), then Q{1+ +'¢(X,00(Q)) > 0} < 1, and hence

F(1707077aQ):1_Q{1+719(X790(Q)) >O}>O (112)

On the other hand, for any 0 # v € T'(0,Q), we have Q{1 ++v'g(X,00(Q)) > 0} = 1. Therefore,
F(1,1,0,%,Q) = 1~ [ (1+7/9(X.60(Q))dQ =0 (113
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by virtue of @ € Py. Further, since @ € Py, Assumption 4.3 implies that for v # 0,

0 <Q{Y9(X,00(Q)) =0} <1 (114)

Next, use the dominated convergence theorem to exchange the order of differentiation and integration in
(113) and conclude that for 0 # v € T'(0, Q):

0
—F(1
a)\l ( a)‘17077aQ)

1=

= [0 00(Q)) 081 + gl (@I + 7' 5(,00(@) > 0}Q 0.
(115)

where the inequality holds by (114) which implies v'g(z, 0¢(Q)) is not constant on suppg, (g(Xi, 0o(Q))) and

therefore Jensen’s inequality holds strictly. Hence, if 0 # v € T'(0, @), there exists 1 < Ay < 2 such that

F(1,)1,0,7,Q) >0 (116)
Thus, so far we have established through (112) and (116) that if 0 # v € A then
C(7,0,Q)>0
On the other hand, it follows from direct calculation that C(0,0, Q) = 0, and hence we conclude,

2(0,Q) = {0} (117)

Next notice that continuity of g(z,0) in (z,6) and compactness of X and © implies that

sup sup |g(x,0)| < 00 (118)
e zeX
Furthermore, since as argued E(n, P) is upper hemicontinuous at (n, P) = (0,Q), it follows from (117) and
(118) that there exists a a(Q) > 7(Q) > 0 and open neighborhood N(Q) C B(Q) such that if n € [0,7(Q)]
and P € N(Q) then,

1
sup |yl < (119)

veE(n,P) sup e [9(2;60(P))]
We therefore conclude that if 0 < n < 7(Q), P € N(Q) and v € E(n, P) then
P{1+9'g(X,00(P)) >0} =1.
It follows that if 0 <7 < 7(Q) and P € N(Q), then
E(n,P) CT(0,P) .

Consequently, we obtain that for all 0 <7 < 7(Q) and P € N(Q),
i A )\—1—’\0‘1/1 "g(x,00(P))M {1+~ g(z, 00(P)) > 0}dP
min - omax ot —1)—e (L+7"g(, 60(P)™ {1 +"g(x, 60(F)) > 0}

= mi Ao + A—1—k0—1/1+’ LOo(PY))YM {1 ++'g(x,00(P)) > 0}dP (120
O O 2 A nAa—1)—e (L+"g(2,00(P))" {1 ++'g(x,00(P)) > 0}dP (120)

Arguing as in (113) it then follows that F(1,1,0,v, P) = 0 for all v € T'(0, P). To conclude note that since

the minimum is attained, we establish using (120) that,

i Ao + /\—1—*0*1/1+’ L00(P))M {1 +~/g(z,00(P)) >0}dP >0 (121
I 72 R n(d —1)—e (L+~'g(@,60(P))" {1 ++'g(z,00(P)) > 0}dP =0 (121)
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Therefore (108), (120) and (121) establish the claim of the Lemma. B

PROOF OF PART (A) OF THEOREM 4.2: First observe that since P(Q) C P(Q) it follows that As(1) € As(n).
Hence: ) )
lim sup — log P*{P, € Ay(n)} < limsup — log P"{P, € Ay(n)} (122)

n—oo n n—oo n
The proof then proceeds by showing the conditions of Lemma 5.3 hold for all P € Py if n > 0 is sufficiently
small. Define
w1 = —log(l —¢) (123)

We first show that for all P € Py, if Q < P and P{X € supp(Q)} > exp(—w), then P(Q,0y(P)) # 0. For
this purpose note that:

sup P{X € supp(Q),7'g(X,00(P)) >0} < sup P{7'g(X,00(P)) > 0}
< 1-—c¢€
< P{X esupp(Q)} (124)

where the first inequality follows by inspection, the second inequality by P € Py and the last inequality by
hypothesis. It follows from (124) that for all v € R™

P{X €supp(Q),7'9(X,0(P)) >0} > 0 (125)
P{X € supp(Q),7'9(X,0(P)) <0} > 0 (126)

Hence, there exists no hyperplane separating suppg (g(Xi,o(P))) and {0}, which implies

0 € int(co(suppq (9(Xi, 60(P)))))
(relative to the topology on R™). We therefore conclude P(Q, 6y(P)) # 0 as desired.

To complete the proof, we verify that (67) holds uniformly in P € Pq for > 0 sufficiently small. By
Lemma 5.8, for every P € Py, there exists an 7(P) > 0 and an open neighborhood in the weak topology
N(P) such that for all 0 < n < 7(P) we have,

inf inf sup Ao +n(A —1 —eA°_1/1+ 'g(x, 0 M+~ g(z, 6 > 0}dQ >0
oM oy (i o), SUR Ao n(A —1) (1+9'9(z,00(Q))) I{1 ++'g(z,00(Q)) > 0}dQ

By Theorem 15.11 in Aliprantis and Border (2006), M is compact under the weak topology, and hence since

Py € M is closed, it is compact as well. Consequently, as

P, = |J N(P)

PcPy

and N (P) are open for all P € Py, compactness implies the existence of a finite subcover such that

Py = N(P) (127)
i=1
To conclude, let
wo = min{7(Py),...,7(Px)} (128)
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and notice that by construction ws > 0 and in addition, for all 0 < n < wy

inf  inf sup Ao +n(A; —1) —ero? /(1 + v g(x, 0(P))MI{1 +~'g(x,00) > 0}dP >0  (129)
PePo veT'(n,P) \g,A1>0

Letting 77 = min{w;,wy} implies the conditions of Lemma 5.3 are satisfied for all P € Py and 0 <7 < 7,
which establishes the claim (a) of the Theorem. B

PROOF OF PART (B) OF THEOREM 4.2: The proof closely follows arguments in Kitamura (2001) and Dembo
and Zeitouni (1998). Define the set of probability measures,

R(n) = eM: inf [(Q|P)> 130

() ={QeM: _jnt  IQIP)=n} (130)
We first aim to show that the proposition,

Ai(n) NR(n) € Q. NR(n) (131)

holds for all n > ng and ng sufficiently large. Suppose by way of contradiction that there exists an infinite
sequence of probability measures {£,}22, such that &, € Ai;(n) NR(n) and &, € Qa2, NR(n). Since M
is compact under the weak topology by Theorem 15.11 in Aliprantis and Border (2006), there exists a

subsequence &, such that
&n, — & (132)

for some & € M. Hence, there exists a kg such that for all k > ko it follows that &,, € B(&,§/2) and therefore

B(£,6/2) C 93, . Hence, by Sanov’s Theorem and various inclusions restrictions,

sup limsup — logP"{P € n) = sup hmmf—logP"’“{Pnk € .
PcPy, n—oo PcPy 0 TNk
>  sup hmlnf log P"{P, € B(£,6/2)}
PEPo "0 T
> sup — inf I(Q|P
2 sup = A (Q[P)
> sup —I(n, |P) (133)
PcPy
Since &, € A1(n) NR(n), it must be that
f I(&,, |P f e | P 134
pnf (€ny, |1P) < Perl,r(lfw) I(&n,, |P) <m (134)

by virtue of &, € A1(n) and P(&,, ) € My. Furthermore, since &, € R(n) we have,
inf  I(&,, |P) > 1
point 16, 1P) 2 1 (135)
Hence, combining (134), (135) and Py C My we conclude,
AT (& | P) < (136)

Therefore, it follows from results (133) and (138) that,

1 .
sup limsup —log P"{P, € Q5 ,} > —n (137)
PePy n—oo n ’
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which contradicts the assumptions on (€2 ,, {22 ) and hence (131) must be true. Therefore,

1 . 1 .
limsup — log Q"{P,, € A1(n)} < limsup EQn{Pn €} (138)

n—oo N n—00

for all @ € R(n), which establishes claim (b) of the Theorem. W

PROOF OF COROLLARY 4.1: Let dpy (Q, P) and dpr(Q), P) denote the Total Variation and Prokhorov-Lévy
metrics between measures () and P respectively. The claim of the corollary then immediately follows from
Theorem 4.2 and the inequalities I(Q|P) > 2d%,(Q, P) > 2d%,(Q,P). m

Lemma 5.9. (i) If Assumptions 4.1-4.5 hold, then there exists a 6 > 0 such that Po N DY = 0; (i) If
Assumptions 4.4-4.5 hold and ©g(P) is a singleton for every P € Mg \ Dy, then for every é > 0 there exists
a Py satisfying Assumptions 4.1-4.3 and My \ DY C Py.

PRrOOF: To establish the first claim of the Lemma, suppose by way of contradiction that there exists a
sequence { P, } with P, € P for all n such that

lim inf d(Q,P,) =0 (139)

n—oo QED(

where d(Q, P) is any metric compatible with the weak topology. By Theorem 15.11 in Aliprantis and Border
(2006), M is compact in the weak topology, and hence Py C M is as well by virtue of being closed. Therefore
there exists a P* € Py and subsequence P,, such that P, — P*. Hence, we obtain from (139) that

. N < 1 . . £y _
Qléllif)o d(Q,P*) < nllinoo Qléllif)o d(Q, Py,,.) +n1LrI;o d(P,,,P")=0 (140)

Therefore, there exists a sequence {Q,} with @, € Dy for all n and Q,, — P*. Hence, there is a sequence
{6, } with 0,, € ©¢(Q) and s(Qp,0,) < m for all n, while by compactness of © there is a subsequence 0,
with 6,, — 0*. Further, it follows from (80) that

/g(x,@*)dP* =0 . (141)

Since P* € Py, it must be that O¢(P*) = {6*} and s(P*,6*) = m. However, arguing as in (45)-(48) in turn
implies s(Qp,,0n,) = m for k sufficiently large, contradicting that s(Qy,8,) < m for all n.

For the second claim, notice that the arguments in (80) imply My is closed with respect to the weak
topology. Hence, by defining
Py =M, \ D} (142)

it follows that P satisfies Assumptions 4.1-4.2 and M, \ Dg C Py. We verify Py satisfies Assumption 4.3

by way of contradiction. Suppose instead that

sup sup P{v'g(Xi, 00(P)) =0} =1 (143)
PePo [lv]l=1

Letting S™ denote the unit sphere in R%, (143) and compactness of Py x S™ implies there exists a sequence
(Pn,vn) € Po x 8™ for all n satisfying (P, vn) — (P*,7*) € Py x S™ and

Tl P {7,9(X0.00(P,)) > 0} = 1 (144)
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Defining the sets A = {z € X : 9/, g(x,0(P,)) > 0} and A, = {x € X : v, g9(x,0(P,)) < 0} we then obtain
from (144), [ g(x,00(P,))dP, = 0 and g(z,6) bounded on X x O that,

iimsup [ gl 60(Pu)IdPy = limsup( [ _g(o.00(P)AP: ~ [ (o 00(Pu))aP)
AR An

n—oo n—oo

n—oo

zlimsup/ 21v,,9(x, 00(Py))|dP,
Ay

<limsup sup 2[g(z,0)| x P.{A,}
n—oo zeX,0€0

=0 (145)

Since (P, vn) — (P*,~*), Lemma 5.4 and compactness imply sup,cx [7,,9(z, 00(P)) — v g(z, 00 (P*)| — 0.
Hence, (145), P, — P* and g(z,0y(P*)) continuous and bounded yield

/ Iy g, Bo(P*))|dP* < limsup / g, B0 (P*))|(dP* — dP,)

n—oo

+limsup/|7*’g(m,90(P*)) —fy;g(x,eo(Pn)ﬂdPn—|—1imsup/|'y£lg(ac,90(Pn))|dPn =0 (146)

n—o0 n— oo

It follows from (146) that P* € Dg, which contradict P* € Py by (142). B

PrOOF OF COROLLARY 4.2: By Lemma 5.9 there exists a P satisfying Assumptions 4.1-4.3 such that
M, \ D¢ C Py. Therefore, by Theorem 4.2 there exists an 7j; (¢) > 0 such that for all 7; (¢) > n > 0 we have

1 - ~ 1 A
sup limsup —log P"{P, € A2(n) \ D§} < sup limsup —log P"{P, € A2(n)} < —n (147)
PEMo\DO% n—o0 PePy, n—oo N

Let dp,(Q, P) be the Prokhorov-Lévy metric between measures @ and P. The inclusion Ay(n)\D§ C (D§)¢,
Sanov’s Theorem and the inequality I(Q|P) > 2d%; (Q, P) then imply:

1 ~ ~ 1 .
sup  limsup - log P"{P, € A2(n)\ D3} < sup limsup - log P"{P, € (D§)°}

PeMynD? "% PeMonDE "
< sup — inf I(Q|P)
PeMyNDZ @eDp)
< —  inf inf 2d%.(Q,P) (148)

PeMnD? Q€DH)*

Therefore, results (147), (148) and setting 7j(¢) < min{#;(¢),€?/2} establishes part (a) of the Corollary.
Furthermore, the same arguments as in (132)-(137) yield A, (n)UD§ C Q; ,,UD§, which implies A; (1) € Q1.
thus yielding part (b). B
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