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Abstract

In this paper we make two contributions. First, we show by example that empirical likelihood
and other commonly used tests for parametric moment restrictions, including the GMM-based
J-test of Hansen (1982), are unable to control the rate at which the probability of a Type I
error tends to zero. From this it follows that, for the optimality claim for empirical likelihood
in Kitamura (2001) to hold, additional assumptions and qualifications need to be introduced.
The example also reveals that empirical and parametric likelihood may have non-negligible
differences for the types of properties we consider, even in models in which they are first-order
asymptotically equivalent. Second, under stronger assumptions than those in Kitamura (2001),
we establish the following optimality result: (i) empirical likelihood controls the rate at which
the probability of a Type I error tends to zero and (ii) among all procedures for which the
probability of a Type I error tends to zero at least as fast, empirical likelihood maximizes the
rate at which probability of a Type II error tends to zero for “most” alternatives. This result
further implies that empirical likelihood maximizes the rate at which probability of a Type II
error tends to zero for all alternatives among a class of tests that satisfy a weaker criterion for
their Type I error probabilities.

KEYWORDS: Empirical Likelihood, Large Deviations, Hoeffding Optimality, Moment Restrictions

ACKNOWLEDGMENTS: The research of the first author has been supported by the National

Science Foundation grants SES-0551271 and SES-0851759. The research of the third author has

been supported by the National Science Foundation grant DMS-0820310.

1



1 Introduction

The purpose of this paper is two-fold. First, we show by example that empirical likelihood and

other commonly used tests for parametric moment restrictions, including the GMM-based J-test

proposed in Hansen (1982), are unable to control the rate at which the probability of a Type I error

tends to zero. This fact has not been noted in previous research as this difficulty is not present

in fully parametric models. The example shows in particular that, for the optimality claim for

empirical likelihood in Kitamura (2001) to hold, additional assumptions and qualifications need to

be introduced. It also reveals that empirical and parametric likelihood may have non-negligible

differences for the types of properties we consider, even in models in which they are first-order

asymptotically equivalent. This fact has also been unnoticed in previous research on empirical

likelihood. Second, under stronger assumptions than those in Kitamura (2001), we establish a

more qualified optimality result for empirical likelihood. This result further implies that empirical

likelihood maximizes the rate at which probability of a Type II error tends to zero for all alternatives

among a class of tests that satisfy a weaker criterion for their Type I error probabilities.

More concretely, let P ∈ P on X ⊆ Rd and g : Rd × Θ → Rm, where Θ ⊆ Rr, be given.

Consider the null hypothesis

H0 : P ∈ P0 , (1)

where

P0 = {P ∈ P : EP [g(X, θ)] = 0 for some θ ∈ Θ} . (2)

The alternative hypothesis is understood to be

H1 : P ∈ P1 = P \P0 .

The problem is to test (1) based on Xi, i = 1, . . . n, an i.i.d. sequence of random variables with dis-

tribution P ∈ P. When m > r this is typically referred to as a test of over-identifying restrictions.

Hansen (1982) introduced a method based on the generalized method of moments as a means of

testing (1). Subsequently, several alternatives to this test have also been proposed, including a

continuously updated version of the generalized method of moments (Hansen et al. (1996)) and

the empirical likelihood ratio test (Owen (1988) and Qin and Lawless (1994)) along with its vari-

ants (Kitamura and Stutzer (1997) and Imbens et al. (1998)). These alternatives are part of the

generalized empirical likelihood framework studied in Newey and Smith (2004).

Following Kitamura (2001), we consider an asymptotic framework in which the probability of

a Type I error tends to zero as the sample size, n, tends to infinity. This framework was first

developed by Hoeffding (1965), who used it to study the asymptotic properties of tests of certain

hypotheses about the parameters of a multinomial distribution. For this problem, he showed that

among all tests for which the Type I error tends to zero at a suitable rate, the likelihood ratio

test maximizes the rate at which the Type II error tends to zero for “most” alternatives. Such a
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property is sometimes called Hoeffding optimality. The generalization of the results of Hoeffding

(1965) to tests of (1) is nontrivial because, in contrast to his setting, the null hypothesis is not

required to be parametric and P is not assumed to have finite support.

As in Kitamura (2001), we restrict attention to nonrandomized tests of (1) based on the em-

pirical distribution of the observations, P̂n. Any such test can be identified with a pair of sets of

distributions, (Ω1,n,Ω2,n), such that the test accepts when P̂n ∈ Ω1,n and rejects when P̂n ∈ Ω2,n.

The empirical likelihood ratio test rejects when a certain (fixed) function of P̂n exceeds a pre-

specified value, η. For each η > 0, denote by (Λ1(η),Λ2(η)) the corresponding acceptance and

rejection regions. Under weak assumptions on P and g, but stronger than the ones posited by

Kitamura (2001), we prove that for all η sufficiently small

sup
P∈P0

lim sup
n→∞

1
n

logPn{P̂n ∈ Λ2(η)} ≤ −η . (3)

where Pn is the n-fold product measure
⊗n

i=1 P . In this sense, empirical likelihood controls the rate

at which the Type I error tends to zero. Moreover, we prove that any test (Ω1,n,Ω2,n) satisfying

sup
P∈P0

lim sup
n→∞

1
n

logPn{P̂n ∈ Ωδ
2,n} ≤ −η (4)

for some δ > 0, we have that

lim sup
n→∞

1
n

logPn{P̂n ∈ Ω1,n} ≥ lim sup
n→∞

1
n

logPn{P̂n ∈ Λ1(η)} (5)

for “most” P ∈ P1. Here, the notation Aδ denotes the (open) δ-“blowup” of a set A ⊂ M with

respect to Prokhorov-Lévy metric. More formally, Aδ = ∪P∈AB(P, δ), where B(P, δ) denotes an

open ball with center P and radius δ with respect to the Prokhorov-Lévy metric. This is sometimes

referred to as δ-“smoothing”; see Dembo and Zeitouni (1998) for further discussion of this technique.

With this caveat in mind, this is the sense in which this result shows that empirical likelihood is

more powerful at “most” alternatives than any other test that also controls the rate at which the

Type I error tends to zero.

Part (a) of Theorem 2 in Kitamura (2001) claims, under very weak assumptions on P and g,

that empirical likelihood controls the rate at which the Type I error tends to zero in the sense

that (3) holds for any η > 0. We provide two examples that demonstrate that this claim is false

without stronger assumptions and further qualifications. More specifically, we show that given the

assumptions in Kitamura (2001), (3) is not satisfied for any η > 0. Importantly, our examples

illustrate that if P is “too rich,” then empirical likelihood, as well as the discussed alternative tests,

will fail to satisfy (4) for any η > 0, which motivates the restrictions we ultimately place upon P.

Our examples also reveal that the the sort of asymptotic equivalence of empirical likelihood with

parametric likelihood underlying many of their shared large-sample properties is insufficient for the

types of properties we consider.
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The remainder of the paper is organized as follows. In Section 2, we describe empirical likelihood

more precisely and formulate it in terms of the empirical distribution, as is required for our analysis.

In Section 3, we describe our examples that show empirical likelihood, the GMM-based J-test, and

other commonly available tests fail to control their size in terms of large deviations. We then

provide in Section 4 a precise statement of the optimality of empirical likelihood for testing (1) as

described above. Proofs of all results are collected in the Appendix.

2 The Empirical Likelihood Ratio Test

Qin and Lawless (1994) propose testing (1) by rejecting for large values of the empirical likelihood

ratio
Lconstrained
n

Lunconstrained
n

,

where

Lconstrained
n = sup

θ∈Θ
sup{

∏
1≤i≤n

P{Xi} : P ∈M, P � P̂n, EP [g(Xi, θ)] = 0} (6)

and Lunconstrained
n is simply equal to n−n. Here, M denotes the set of probability distributions on

X (with the Borel σ−algebra) and the supremum over the empty set is understood to be zero. It

is well known that such a test also has an information-theoretic interpretation. Let

P(Q) =
⋃
θ∈Θ

{P ∈M : P � Q,Q� P,EP [g(Xi, θ)] = 0} .

The above test is equivalent to a test that rejects for large values of

inf
P∈P(P̂n)

I(P̂n|P ) , (7)

where I(Q|P ) is the Kullback-Leibler divergence of P from Q defined as

I(Q|P ) =


∫

log(dQdP )dQ if Q� P

∞ otherwise

Here, the infimum over the empty set is understood to be infinity. Note the importance of the

restriction P � P̂n for all P(P̂n). Indeed, without this requirement, it is possible to show that (7)

is zero whenever {g(x, θ) : x ∈ X} = Rm for some θ ∈ Θ. In this case, one would never reject the

null hypothesis.

In this language, empirical likelihood can be identified with a partition of M into the pair sets

of distributions (Λ1(η),Λ2(η)), where

Λ1(η) = {Q ∈M : inf
P∈P(Q)

I(Q|P ) < η} (8)

for some pre-specified η > 0 and

Λ2(η) = M \ Λ1(η) . (9)

Empirical likelihood rejects (1) whenever P̂n ∈ Λ2(η) and fails to reject (1) if P̂n ∈ Λ1(η).
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3 Two Examples

Part (a) of Theorem 2 in Kitamura (2001) claims that the test based on (8) and (9) satisfies (3)

for any η > 0 provided that

P{sup
θ∈Θ
||g(X, θ)|| =∞} = 0 for all P ∈ P (10)

g(x, θ) is continuous at every θ ∈ Θ for each x ∈ Rd . (11)

The following example, however, shows that this claim does not hold without additional restrictions.

Example 3.1. Suppose d = 1, m = 1 and g(x, θ) = x for all θ ∈ Θ. Let P be any set of probability

distributions satisfying (10) and (11) and containing

C0 = {Pc : 0 < c < 1, } ,

where Pc is the distribution that puts mass 1− c on c and mass c on −(1− c). Then

sup
P∈P0

lim sup
n→∞

1
n

logPn{P̂n ∈ Λ2(η)} ≥ sup
P∈C0

lim sup
n→∞

1
n

logPn{P̂n ∈ Λ2(η)} = 0 (12)

for any η > 0. To see that (12) holds, let η > 0 be given and note that

Pnc {Xi = c for all 1 ≤ i ≤ n} = (1− c)n .

Moreover, when Xi = c for all 1 ≤ i ≤ n, we have that (7) is infinity, so P̂n ∈ Λ2(η). Thus,

(1− c)n ≤ Pnc {P̂n ∈ Λ2(η)} ,

from which (12) follows. We conclude that (3) cannot be satisfied by a test based on (8) and (9)

for any η > 0 without further assumptions on P.

The above example suggests that if P is “too rich” then empirical likelihood can not satisfy (3)

for any value of η > 0. It is important to note that this shortcoming is not unique to empirical

likelihood and is shared by many commonly used tests. In particular, Example 3.1 applies to the

test that rejects for large values of the absolute value of the t-statistic. Equivalently, it applies to

the GMM-based J-test proposed in Hansen (1982). Hence, these tests are also unable to control size

as in (3) if P is “too rich.” The simplicity of Example 3.1 is illustrative but potentially misleading,

as it suggests the problem is caused by measures that have “too little” mass on one side of zero.

Example 3.2 shows this is actually not a necessary condition and also helps us uncover what drives

the result in Example 3.1.

Example 3.2. As in the previous example, assume d = 1, m = 1 and g(x, θ) = x for all θ ∈ Θ.

Let P be any set of probability distributions satisfying (10) and (11) and containing

K0 = {PK,c = cD−1 + (1− c)RK,c : 0 < c <
1
2
,K ≥ 2} ,
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where D−1 is the degenerate distribution at −1, and RK,c is the distribution satisfying:

RK,c{Xi =
−2c

(1− c)(K − 1)
} =

1
2

RK,c{Xi =
2Kc

(1− c)(K − 1)
} =

1
2
.

Then, empirical likelihood is unable to control size on P, as (12) holds with K0 in place of C0. To

see this, note that by direct calculation it is straightforward to obtain that

inf
P∈P(RKc)

I(RKc|P ) =
1
2

log(
1 +K

2K
) +

1
2

log(
1 +K

2
) (13)

which is greater than η for K sufficiently large. Denote such a choice by Kη. From (13), it is

possible to show that

lim inf
n→∞

1
n

logRnKη ,c{P̂n ∈ Λ2(η)} = 0 (14)

Define An = {Xi 6= −1 : for all 1 ≤ i ≤ n} and note that

lim sup
n→∞

1
n

logPnKη ,c{P̂n ∈ Λ2(η)}

≥ lim inf
n→∞

1
n

logPnKη ,c{P̂n ∈ Λ2(η)|An}+ lim inf
n→∞

1
n

logPnKη ,c{An}

= lim inf
n→∞

1
n

logRnKη ,c{P̂n ∈ Λ2(η)}+ lim inf
n→∞

1
n

logPnKη ,c{An} = log(1− c) . (15)

Letting c tend to zero, we see from (15) that (3) cannot be satisfied by a test based on (8) and (9)

for any η > 0 without further assumptions on P.

Note that the problem revealed in this example also applies to other commonly used tests such

as the GMM-based J-test. Both Examples 3.1 and 3.2 rely on a sequence of distributions for which

the rate at which the probability of a Type I error tends to zero itself tends to zero. These sequences

are linked by

lim
c→0

Pc = lim
c→0

PK,c = D0 , (16)

where D0 is the degenerate distribution at 0 and the limit should be interpreted in the weak

topology. The measure D0 is unique in that it is the only measure satisfying the null hypothesis

whose support has zero dimension. In more generality, the logic of these examples reveals that

empirical likelihood fail to satisfy (3) for any η > 0 in the neighborhood of measures that satisfy

the null hypothesis but whose support is contained in lower dimensional subspaces. We show in

the next section that removing such neighborhood from the null space is sufficient to restore size

control as in (3) for some η > 0.

Remark 3.1. Empirical and parametric likelihood often share desirable large-sample properties.

To illustrate this phenomenon in a simple setting, fix c0 > 0 and consider the binomial family

Pc0 = {P ∈M : P � Pc0 , Pc0 � P} ,

6



where Pc0 is defined as in Example 3.1. Under the maintained assumption that P ∈ Pc0 , the

likelihood ratio test statistic for H0 : EP [X] = 0 versus H1 : EP [X] 6= 0 is then

`par = I(P̂n|Pc0) . (17)

Similarly, once our sample includes both c0 and 1−c0 (and therefore P(P̂n) = {Pc0}), the empirical

likelihood ratio statistic is simply

`el = I(P̂n|Pc0) . (18)

Therefore from (17) and (18) it follows that `par = `el with probability approaching one under any

fixed P ∈ Pc0 . This equivalence can be shown to hold in greater generality; see Newey and Smith

(2004). For this reason, empirical likelihood inherits many of the desirable large-sample properties

of parametric likelihood in this model. However, this sort of equivalence is too weak for the types of

properties we consider. Specifically, while Example 3.1 reveals empirical likelihood can not satisfy

(3) for η > − log(1− c0) on P0 = {Pc0}, parametric likelihood is able to do so for any η > 0. See

Theorem 3.5.4 in Dembo and Zeitouni (1998).

Remark 3.2. It is instructive to contrast empirical likelihood with parametric likelihood further.

To this end, let Ppar = {Pξ : ξ ∈ Ξ}, where Ξ ⊂ Rd. Consider testing the null hypothesis that

P ∈ Ppar versus the alternative that P ∈M \Ppar. It is possible to show that the likelihood ratio

test rejects the null hypothesis for large values of

inf
P∈Ppar

I(P̂n|P ) . (19)

Heuristically, (19) is the distance between the empirical distribution P̂n and the model Ppar. This

representation of the likelihood ratio test is used by Zeitouni and Gutman (1991) to establish its

Hoeffding optimality in this setting. On the other hand, in our analysis the model is given by P0

defined by (2), but the empirical likelihood ratio test does not reject for large values of

inf
P∈P0

I(P̂n|P ), (20)

which is the direct analogue of (19), but instead for large values of (7), contrary to equation (5)

in Kitamura (2001). This modification is needed because P0 is “too large.” In fact, the infimum

in (20) may even be equal to zero. It is therefore reasonable to expect the need for additional

conditions in establishing the Hoeffding optimality of empirical likelihood than those employed in

the study of parametric likelihood.

4 The Main Result

The proofs of large deviation optimality results rely on large deviation principles for the empirical

measure P̂n. These principles are often called Sanov’s Theorem, of which several versions exist. We

now state the result that will suffice for our purposes.
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Theorem 4.1. Let M(Σ) denote the space of probability measures on a Polish space Σ equipped

with the weak topology. Suppose P ∈M(Σ). Then,

lim sup
n→∞

1
n

logPn{P̂n ∈ G} ≤ − inf
Q∈G

I(Q|P )

for all closed sets G ⊂M(Σ), and

lim inf
n→∞

1
n

logPn{P̂n ∈ H} ≥ − inf
Q∈H

I(Q|P )

for all open sets H ⊂M(Σ).

See Chapter 6.2 in Dembo and Zeitouni (1998) for different proofs of this result as well as refinements

to stronger topologies.

Before stating the assumptions we require, we need to introduce some additional notation.

Recall that M is the set of probability measures on X (with the Borel σ−algebra) and define for

each P ∈M,

Θ0(P ) = {θ ∈ Θ : EP [g(Xi, θ)] = 0} (21)

We denote the set of distributions that agree with the hypothesized moment restriction by

M0 = {P ∈M : Θ0(P ) 6= ∅} (22)

As shown by our example, empirical likelihood is unable to satisfy (3) for P0 = M0. For this reason

we impose the following assumptions on the model and P0 ⊂M0,

Assumption 4.1. P0 ⊂M0 is closed in the weak topology.

Assumption 4.2. For each P ∈ P0, Θ0(P ) is a singleton denoted θ0(P ).

Assumption 4.3. For some ε > 0,

sup
P∈P0

sup
γ 6=0

P{γ′g(Xi, θ0(P )) ≥ 0} ≤ 1− ε .

Assumption 4.4. X and Θ are compact subsets of Rd and Rr, respectively.

Assumption 4.5. g : X ×Θ→ Rm is continuous in both of its arguments.

Assumption 4.1 is employed in showing P0 is “well separated” from the rejection region (see

(31) below). It is left as a high level assumption, but we note closed sets in the weak topology are

easily constructed by imposing moment restrictions on bounded continuous functions. Assumption

4.2 is employed to show θ0(P ) is continuous in P ∈ P0 under the weak topology. Continuity of

θ0(P ) can in turn be employed to verify P0 and Λ2(η) are “well separated.” Since we are typically

interested in cases where m > r, we feel that Assumption 4.2 is not particularly restrictive. It
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may be possible to weaken it at the expense of a more complicated argument. Assumption 4.3

is made precisely to avoid Example 3.1. Assumption 4.4 implies that M is compact in the weak

topology, a crucial point in showing that P0 and Λ2(η) are “well separated.” Assumption 4.5 is

straightforward.

Remark 4.1. Examples 3.1 and 3.2 illustrate that P0 must not contain neighborhoods of those

P ∈M0 whose supports are included in lower-dimensional subspaces. We denote these distributions

D0 = {P ∈M0 : ∃θ ∈ Θ0(P ) with s(P, θ) < m} (23)

where s(P, θ) denotes the dimension of the convex hull of the support of g(Xi, θ) under P , i.e.

s(P, θ) = dim(co(suppP (g(Xi, θ)))) . (24)

The requirements imposed on P0 ensure that there exists a δ > 0 such that P0 ∩Dδ
0 = ∅. If, in

addition, Θ0(P ) is a singleton for every P ∈M0 \D0, then for every δ > 0 there exists a P0 with

M0 \Dδ
0 ⊆ P0 and P0 satisfying Assumptions 4.1-4.3 (see Lemma 5.9 in the Appendix). Given the

implications of Examples 3.1 and 3.2, the restrictions on P0 are therefore quite weak.

We are now in a position to state our main result:

Theorem 4.2. Let Xi, i = 1, . . . , n be an i.i.d. sequence of random variables with distribution

P ∈M. Let (Λ1(η),Λ2(η)) be defined by (8) and (9). Suppose Assumptions 4.1 - 4.5 hold. Then,

the following statements follow:

(a) There exists η̄ > 0 such that for all 0 < η ≤ η̄ we have that

sup
P∈P0

lim sup
n→∞

1
n

logPn{P̂n ∈ Λ2(η)} ≤ −η .

(b) If a test (Ω1,n,Ω2,n) satisfies

sup
P∈P0

lim sup
n→∞

1
n

logPn{P̂n ∈ Ωδ
2,n} ≤ −η (25)

for some δ > 0, then

lim sup
n→∞

1
n

logQn{P̂n ∈ Ω1,n} ≥ lim sup
n→∞

1
n

logQn{P̂n ∈ Λ1(η)}

for any Q satisfying

inf
P∈M0\P0

I(Q|P ) ≥ η . (26)

Proof: See Appendix.

Theorem 4.2 establishes the desired optimality property of empirical likelihood. When using

empirical likelihood, the probability of a Type I error tends to zero at a rate that is uniform on P0.
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Furthermore, for any distribution Q satisfying (26), the probability of a Type II error vanishes at

a rate at least as fast as that of any procedure based on the empirical distribution P̂n satisfying

the requirement (25). We emphasize the non-local nature of the optimality property, in that it

holds for all distributions Q satisfying (26). Condition (26) demands that Q be sufficiently “far”

from the subset of M0 over which we do not demand control on the rate at which the probability

of a Type I error tends to zero. While in (26) “far” is defined in terms of entropy, the following

corollary shows that “far” may also be interpreted in terms of the Total Variation metric or the

Prokhorov-Lévy metric.

Corollary 4.1. Under Assumptions 4.1 - 4.5, Theorem 4.2 holds if condition (26) is replaced by

inf
P∈M0\P0

d(Q,P ) ≥
√
η

2
,

where d(Q,P ) may be either the Total Variation or Prokhorov-Lévy metric.

Proof: See Appendix.

Remark 4.2. It is worthwhile to point out that any distribution Q satisfying

inf
P∈M0

I(Q|P ) ≥ η (27)

also satisfies (26). Hence, part (b) of Theorem 4.2 applies to all distributions that are sufficiently

“far” from the null hypothesis. The requirement (26) is weaker than (27) in the sense that it only

requires the distribution Q to be “far” from distributions in M0 that are not in P0. In this sense,

part (b) of Theorem 4.2 applies to alternatives that are “close” to the null hypothesis as well. See

Figure 1 for a useful illustration of this feature of Theorem 4.2.

Remark 4.3. Note that we only smooth (in the sense of δ-“smoothing”) alternative tests in

Theorem 4.2. In contrast, much of the related literature smoothes both the original and alternative

tests. See, for example, Dembo and Zeitouni (1998). As noted by Kitamura (2001), if one restricts

attention to alternative tests that are “regular” in the sense that

lim
δ↘0

sup
P∈P

lim sup
n→∞

1
n
Pn{P̂n ∈ Ωδ

2,n} = sup
P∈P

lim sup
n→∞

1
n
Pn{P̂n ∈ Ω2,n} ,

then one may avoid the use of δ-“smoothing” altogether. This condition has been used by Zeitouni

and Gutman (1991), who also provide a sufficient condition for it.

The principal challenge in deriving our optimality result consists in showing that the empirical

likelihood test satisfies (3) for η sufficiently small. Our strategy for establishing this result can be

described in three steps:

10



Figure 1: The larger and smaller (two-dimensional) ellipses represents M0 and P0, respectively

(both are subsets of M). Note that M0 has no interior relative to M. Therefore, all points of P0

are on the boundary of M0. The distribution Q1 is within η > 0 of M0 and M0 \P0. In contrast,

Q2 is within η > 0 of M0, but not of M0 \P0. Part (b) of Theorem 4.2 applies to Q2, but not Q1.

Step 1: Show Λ2(η) ⊆ Λ̈2(η), where Λ̈2(η) is defined as follows. Let

P̈(Q) =
⋃
θ∈Θ

{P ∈M : P � Q,Q� P, s(Q, θ) = m,EP [g(Xi, θ)] = 0} , (28)

The set Λ̈2(η) is then defined as

Λ̈2(η) = {Q ∈M : inf
P∈P̈(Q)

I(Q|P ) ≥ η} (29)

Step 2: Show Λ̈2(η) is closed in the weak topology and employ Theorem 4.1 to establish

lim sup
n→∞

1
n

logPn{P̂n ∈ Λ2(η)} ≤ lim sup
n→∞

1
n

logPn{P̂n ∈ Λ̈2(η)} ≤ − inf
Q∈Λ̈2(η)

I(Q|P ) (30)

Step 3: Establish that Λ̈2(η) and P0 are “well separated” in the sense that

inf
P∈P0

inf
Q∈Λ̈2(η)

I(Q|P ) ≥ η (31)

for η > 0 sufficiently small. Result (3) immediately follows from (30) and (31).

Remark 4.4. Note that Λ̈2(η) differs from Λ2(η) only through the difference between P̈(Q) and

P(Q). In defining P̈(Q) in (28), we imposed the additional constraint s(Q, θ) = m, which is not
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present in the definition of P(Q). This modification ensures that Λ̈2(η) is closed in the weak

topology, as shown in the Appendix. A simple example establishes Λ2(η) is not closed. Let

X = [−1, 1] and g(x, θ) = x for all θ. Further define D0 to be the measure with D0{Xi = 0} = 1

and Dn to be the measure satisfying

Dn{Xi = 0} =
n− 1
n

, Dn{Xi = 1} =
1
n
.

Clearly, Dn converges to D0 in the weak topology and Dn ∈ Λ2(η) for all n, but D0 ∈ Λ1(η). See

also Zeitouni and Gutman (1991).

As Examples 3.1 and 3.2 show, commonly used tests for (1) fail to control uniformly the rate

at which the probability of a Type I error tends to zero in neighborhoods of D0. As a way of

comparing among such procedures, it is interesting to examine optimality when we require

sup
P∈P0

lim sup
n→∞

1
n

logP{P̂n ∈ (Ω2,n \Dε
0)δ} ≤ −η (32)

instead of (25). Requirement (32) should not be interpreted as “size” control, but rather as a

benchmark for tests that fail to satisfy (25) for any η > 0 on M0 ∩Dε
0. Clearly, given the weaker

criterion for a Type I error probability in (32), any optimal test must have Dε
0 ⊆ Ω2,n. For this

reason, we define:

Λ̃1(η) = Λ1(η) \Dε
0 Λ̃2(η) = Λ2(η) ∪Dε

0 (33)

where ε is an arbitrary positive constant and the dependence on ε is omitted in the notation. Note

that the tests (Λ1(η),Λ2(η)) and (Λ̃1(η), Λ̃2(η)) may differ only on the event P̂n ∈ Dε
0. We can

use Theorem 4.2 to show the optimal test in this framework is given by the modified empirical

likelihood test (Λ̃1(η), Λ̃2(η)).

Corollary 4.2. Let P = M and suppose Assumptions 4.4 and 4.5 hold. Suppose further that

Θ0(P ) is a singleton for every P ∈ M0 \ D0, where D0 is defined in (23). Then, the following

statements hold:

(a) There exists η̄(ε) > 0 such that for all 0 < η ≤ η̄(ε) we have that

sup
P∈P0

lim sup
n→∞

1
n

logPn{P̂n ∈ Λ̃2(η) \Dε
0} ≤ −η .

(b) If a test (Ω1,n,Ω2,n) satisfies

sup
P∈P0

lim sup
n→∞

1
n

logPn{P̂n ∈ (Ω2,n \Dε
0)δ} ≤ −η (34)

for some δ > 0, then

lim sup
n→∞

1
n

logQn{P̂n ∈ Ω1,n} ≥ lim sup
n→∞

1
n

logQn{P̂n ∈ Λ̃1(η)} (35)

for every probability measure Q.

12



Proof: See Appendix.

As mentioned earlier, (32) differs from (25) only in how the former treats distributions that

are too close to distributions in D0. Remarkably, as a result of this rather simple modification, it

is possible to remove the assumptions on P0 entirely. Moreover, in contrast to Theorem 4.2, (35)

holds without qualifications on Q. This result may therefore provide some guidance when choosing

among tests that have difficulty controlling the rate at which the Type I error tends to zero in

neighborhoods of D0, such as tests based on (generalized) empirical likelihood or the GMM-based

J-test.
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5 Appendix

Lemma 5.1. Let {B1, . . . , Bd+1} be a collection of closed balls in Rd such that for any collection of points
{g1, . . . , gd+1} with gi ∈ Bi for each 1 ≤ i ≤ d+ 1,

0 ∈ int(co({g1, . . . , gd+1})) (36)

(relative to the topology on Rd). Then, there exists ε > 0 such that for all 0 6= γ ∈ Rd there exists
j = j(γ) ∈ {1, . . . , d+ 1} such that γ′g < 0 and |γ′g| ≥ |g||γ|ε for all g ∈ Bj.

Proof: Let B(γ) be the maximal subset of {B1, . . . , Bd+1} such that for all B ∈ B(γ) we have that γ′g < 0
for all g ∈ B. Note that the desired claim will follow if we can show (i) B(γ) is nonempty for any 0 6= γ ∈ Rd

and (ii)
inf

06=γ∈Rd
ε(γ) > 0 ,

where
ε(γ) = max

B∈B(γ)
inf
g∈B

|γ′g|
|g||γ|

.

To establish (i), consider the hyperplane Hγ = {g ∈ Rd : γ′g = 0} and note that if γ 6= 0, then Hγ

must strongly separate at least two balls Bi, Bk ∈ {B1, . . . , Bd+1} with i 6= k. Otherwise, for either γ̄ = γ or
γ̄ = −γ, there exists a collection of points {g1, . . . , gd+1} with gi ∈ Bi and γ̄′gi ≥ 0 for each 1 ≤ i ≤ d + 1,
which contradicts (36). Therefore, since Hγ strongly separates at least two balls Bi, Bk ∈ {B1, . . . , Bd+1}
with i 6= k, it follows that there exists a j = j(γ) such that γ′gj < 0 for all g ∈ Bj .

To establish (ii), note that we may assume without loss of generality that |γ| = 1 and suppose by way of
contradiction that there exists a sequence γn such that ε(γn)→ 0. Since |γn| = 1, we have that there exists
a subsequence γnk such that γnk → γ∗ and |γ∗| = 1. Moreover, since B(γ∗) ⊆ B(γnk) for all nk sufficiently
large, it follows that for such nk

ε(γnk) ≥ max
B∈B(γ∗)

inf
g∈B

|γ′nkg|
|g|

. (37)

Next, note that
inf
g∈Bi

|g| > 0 (38)

for 1 ≤ i ≤ d+ 1. To see this, note that if (38) fails, there exists 1 ≤ i∗ ≤ d+ 1 such that 0 ∈ Bi∗ since each
Bi is closed. In this case, any collection of points {g1, . . . , gd+1} with gi ∈ Bi for 1 ≤ i ≤ d+ 1 and gi∗ = 0
will not satisfy (36). It thus follows that |γ′nkg|/|g| → |γ

∗′g|/|g| uniformly over g ∈ B for each B ∈ B(γ∗).
The righthand side of (37) therefore tends to ε(γ∗). But, since each B ∈ B(γ∗) is compact and there are
only finitely many such B, ε(γ∗) > 0. Hence, ε(γn) 6→ 0, from which the desired claim follows.

Lemma 5.2. If Assumptions 4.4 and 4.5 hold, then Λ̈2(η) is closed under the weak topology for any η > 0.

Proof: Let Qn be a sequence such that Qn → Q and Qn ∈ Λ̈2(η) for all n. We wish to show that Q ∈ Λ̈2(η).
Note that if P̈(Q) = ∅, then

inf
P∈P̈(Q)

I(Q|P ) = +∞ ,

so Q ∈ Λ̈2(η). We may therefore assume further that P̈(Q) 6= ∅.
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Now suppose by way of contradiction that Q 6∈ Λ̈2(η). Define the set,

P̈(Q, θ) = {P ∈M : P � Q,Q� P, s(Q, θ) = m,EP [g(Xi, θ)] = 0} , (39)

and note that P̈(Q) =
⋃
θ∈Θ P̈(Q, θ). Further define the set:

Θ(Q) = {θ ∈ Θ : P̈(Q, θ) 6= ∅} (40)

Since P̈(Q) 6= ∅, it follows that Θ(Q) 6= ∅ and therefore the Primal Constraint Qualification of Theorem 3.4
of Borwein and Lewis (1993) is satisfied for all θ ∈ Θ(Q). Hence,

inf
P∈P̈(Q)

I(Q|P ) = inf
θ∈Θ(Q)

max
γ∈Rm

∫
log(1 + γ′g(x, θ))dQ . (41)

It follows that there exists θ∗ ∈ Θ(Q) such that

max
γ∈Rm

∫
log(1 + γ′g(x, θ∗))dQ < η . (42)

Further notice that since P̈(Q, θ∗) 6= ∅, by virtue of θ∗ ∈ Θ(Q), it follows that

s(Q, θ∗) = m . (43)

Next, we argue that
0 ∈ int(co(suppQ(g(Xi, θ

∗)))) (44)

(relative to the topology on Rm). If this were not the case, then there exists a 0 6= γ ∈ Rm such that
γ′g(x, θ∗) ≥ 0 for all x ∈ supp(Q). Moreover, it must be the case that λ′g(Xi, θ

∗) > 0 with positive
probability under Q, for otherwise suppQ(g(Xi, θ

∗)) will be contained in a m − 1 dimensional subspace of
Rm, which contradicts (43). For such γ we have for scalars α,

lim
α→∞

∫
log(1 + αγ′g(x, θ∗))dQ =∞ ,

which contradicts (42), so (44) is thus established.

We now show P̈(Qn, θ∗) 6= ∅ for n sufficiently large. It follows from (44) that there exists a collection of
points {g1, . . . , gs(Q,θ∗)+1} in suppQ(g(Xi, θ

∗)) such that

0 ∈ int(co({g1, . . . , gs(Q,θ∗)+1}) (45)

(relative to the topology on Rm). For 1 ≤ i ≤ s(Q, θ∗) + 1, let Bi be an open neighborhood of gi so small
that any collection of points {g̃1, . . . , g̃s(Q,θ∗)+1} with g̃i ∈ B̄i for 1 ≤ i ≤ s(Q, θ∗) + 1 will also satisfy (45)
with g̃i in place of gi. For 1 ≤ i ≤ s(Q, θ∗) + 1, let

B−1
i = {x ∈ X : g(x, θ∗) ∈ Bi} . (46)

Since each Bi is open and g(x, θ∗) is continuous, each B−1
i is also open. Moreover, since each Bi is an open

neighborhood of a point in the support of g(Xi, θ
∗) under Q,

Q{Xi ∈ B−1
i } = Q{g(Xi, θ

∗) ∈ Bi} > 0 . (47)
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By the Pormanteau Lemma, we therefore have that for all n sufficiently large

Qn{Xi ∈ B−1
i } > 0 (48)

for all 1 ≤ i ≤ s(Q, θ∗) + 1. Thus, for n sufficiently large (44) holds with Qn in place of Q. It follows that
P̈(Qn, θ∗) 6= ∅ for n sufficiently large. Hence, the Primal Constraint Qualification of Theorem 3.4 of Borwein
and Lewis (1993) is satisfied for such values of n, from which it follows that

inf
P∈P̈(Qn,θ∗)

I(Q|P ) = max
γ∈Rm

∫
log(1 + γ′g(x, θ∗))dQn . (49)

Let
γ∗n ∈ arg max

γ∈Rm

∫
log(1 + γ′g(x, θ∗))dQn . (50)

We now argue that the γ∗n are uniformly bounded. If this were not the case, then for each M > 0 there
would exist a subsequence γ∗nk for which |γ∗nk | > M for all k. By Lemma 5.1, there is an ε > 0 and
j(γ∗nk) ∈ {1, . . . , s(Q, θ∗) + 1} such that

γ∗′nkg < 0 and |γ∗′nkg| ≥ |g||γ
∗
nk
|ε (51)

for all g ∈ Bj(γ∗nk ). There exists a further subsequence γ∗nk` along which j(γ∗nk` ) is constant. Let j∗ = j(γ∗nk` ).
For x such that g(x, θ∗) ∈ Bj∗ , we have from (51) that

γ∗′nk`
g(x, θ∗) < 0 and |γ∗′nk` g(x, θ∗)| ≥ |g(x, θ∗)||γ∗nk` |ε . (52)

We have from (50) that
Qnk` {1 + γ∗′nk`

g(Xi, θ
∗) > 0} = 1 ,

which, together with (52), implies that

Qnk`{g(Xi, θ
∗) ∈ Bj∗ , |g(Xi, θ

∗)||γ∗nk` |ε > 1} = 0 . (53)

Hence,

Qnk`{g(Xi, θ
∗) ∈ Bj∗ , |g(Xi, θ

∗)| > 1
εM
} ≤ Qnk` {g(Xi, θ

∗) ∈ Bj∗ , |g(Xi, θ
∗)||γ∗nk` |ε > 1} = 0 ,

where the inequality follows from the fact that |γ∗nk` | > M and the equality follows from (53). Thus, by the
Pormanteau Lemma,

Q{g(Xi, θ
∗) ∈ Bj∗ , |g(Xi, θ

∗)| > 1
εM
} = 0

which implies that

Q{g(Xi, θ
∗) ∈ Bj∗} = Q{g(Xi, θ

∗) ∈ Bj∗ , |g(Xi, θ
∗)| ≤ 1

εM
}

Letting M →∞, we conclude from (47) that 0 ∈ Bj∗ , which contradicts the requirement that any collection
of points {g̃1, . . . , g̃s(Q,θ∗)+1} with g̃i ∈ B̄i for 1 ≤ i ≤ s(Q, θ∗) + 1 must satisfy (45) with g̃i in place of gi.
Hence, it must be the case that γ∗n are uniformly bounded.

We therefore have that there exists a subsequence γ∗nk such that γ∗nk → γ∗ and γ∗ ∈ Rm. We will now
argue that

Q{1 + γ∗′g(Xi, θ
∗) > 0} = 1 . (54)
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To this end, for δ > 0 let

R−δ = {x ∈ X : 1 + γ∗′g(x, θ∗) < δ} R+
δ = {x ∈ X : 1 + γ∗′g(x, θ∗) ≥ δ} (55)

and note that∫
log(1 + γ∗′nkg(x, θ∗))dQnk =

∫
R−δ

log(1 + γ∗′nkg(x, θ∗)dQnk +
∫
R+
δ

log(1 + γ∗′nkg(x, θ∗))dQnk

≤
∫
R−δ

log(1 + γ∗′nkg(x, θ∗))dQnk +
∫
R+
δ

log(1 + |γ∗nk ||g(x, θ∗)|)dQnk

≤
∫
R−δ

log(1 + γ∗′nkg(x, θ∗))dQnk + log(1 +M max
x∈X
|g(x, θ∗)|) , (56)

where the equality holds by inspection, the first inequalty holds by the Cauchy-Schwartz inequality, and the
second inequality holds because |γ∗nk | ≤M . Since 1 + γ∗′nkg(x, θ∗)→ 1 + γ∗′g(x, θ∗) uniformly for x ∈ X , we
have that for k sufficiently large the integrand in the first term in (56) is bounded above by log(2δ). Thus,
for k sufficiently large (56) is bounded above by

Qnk{Xi ∈ R−δ } log(2δ) + log(1 +M max
x∈X
|g(x, θ∗)|) . (57)

But,
lim inf
nk→∞

Qnk{Xi ∈ R−δ } ≥ Q{Xi ∈ R−δ } ≥ Q{Xi ∈ R−0 } , (58)

where the first inequality follows from the Pormanteau Lemma and the second inequality follows from the
fact that R−0 ⊆ R

−
δ for all δ > 0. If (54) fails, then from (58) we have that

inf
δ>0

lim inf
nk→∞

Qnk{Xi ∈ R−δ } > 0 .

It now follows from (56) and (57) that∫
log(1 + γ∗′nkg(x, θ∗))dQnk < 0

for δ > 0 sufficiently small, which contradicts (50). Hence, (54) is established.

To complete the proof, we argue that∫
log(1 + γ∗′g(x, θ∗))dQ ≥ η , (59)

which will contradict (42), completing the proof. To this end, note that∫
max{log(1+γ∗′g(x, θ∗)), log(δ)}dQ (60)

=
∫

max{log(1 + γ∗′g(x, θ∗)), log(δ)}(dQ− dQnk) (61)

+
∫

max{0, log(δ)− log(1 + γ∗′nkg(x, θ∗))}dQnk (62)

+
∫

(max{log(1 + γ∗′g(x, θ∗)), log(δ)} −max{log(1 + γ∗′nkg(x, θ∗)), log(δ)})dQnk (63)

+
∫

log(1 + γ∗′nkg(x, θ∗))dQnk . (64)
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By virtue of Qn → Q, (61) tends to zero, while (62) is nonnegative. Since

max{log(1 + γ∗′nkg(x, θ∗)), log(δ)} → max{log(1 + γ∗′g(x, θ∗)), log(δ)}

uniformly on x ∈ X , (63) tends to zero. Finally, because of (49), (50) and the fact that Qnk ∈ Λ̈2(η) for all
k, (64) is weakly greater than η. Thus, (60) is weakly greater than η. By letting δ ↘ 0, we see from the
monotone convergence theorem that (59) holds, which contradicts (42).

Lemma 5.3. Suppose Xi, i = 1, . . . , n is an i.i.d. sequence of random variables with distribution P on X .
Suppose further that Assumptions 4.2, 4.4 and 4.5 hold, P ∈ P0 and that there exists ω > 0 such that all
Q� P with P{Xi ∈ supp(Q)} > exp(−ω) satisfy P̈(Q, θ0(P )) 6= ∅, where

P̈(Q, θ) = {P ∈M : P � Q,Q� P, s(Q, θ) = m,EP [g(Xi, θ)] = 0} . (65)

Also let
Γ(η, P ) = {γ ∈ Rm : e−η ≤ P{1 + γ′g(X, θ0(P )) ≥ 0} ≤ 1} . (66)

If η < ω, and η satisfies

inf
γ∈Γ(η,P )

sup
λ0,λ1≥0

λ0 +ηλ1− exp(λ0−1)
∫

exp(λ1 log(1 +γ′g(x, θ0(P ))))I{1 +γ′g(x, θ0(P )) > 0}dP ≥ η (67)

then it follows that

lim sup
n→∞

1
n

logPn{P̂n ∈ Λ2(η)} ≤ −η .

Proof: Let Λ̈2(η, P ) = {Q ∈M : infR∈P̈(Q,θ0(P )) I(Q|R) ≥ η} and note that

lim sup
n→∞

1
n

logPn{P̂n ∈ Λ̈2(η)} ≤ − inf
Q∈Λ̈2(η)

I(Q|P )

≤ − inf
Q∈Λ̈2(η,P )

I(Q|P ) ,

where the first inequality follows from Lemma 5.2 and Sanov’s Thoerem, while the final inequality follows
from Λ̈2(η) ⊆ Λ̈2(η, P ). To complete the proof, it therefore suffices to show that

inf
Q∈Λ̈2(η,P )

I(Q|P ) ≥ η (68)

for η < ω satisfying (67).

For S ⊆ supp(P ), let M(S) = {Q ∈M : supp(Q) ⊆ S}. Note that

inf
Q∈M(S)

I(Q|P ) = − log(P{Xi ∈ S}) . (69)

To see this, observe that the lefthand side of (69) is greater or equal to the righthand side of (69) by Jensen’s
inequality and that I(Q|P ) = − log(P{Xi ∈ S}) for Q given by the distribution P conditional on S. Next,
note that for any Q such that P{Xi ∈ supp(Q)} ≤ exp(−η), we have that

I(Q|P ) ≥ inf
µ∈M(supp(Q))

I(µ|P ) = − log(P{Xi ∈ supp(Q)}) ≥ η . (70)

Note further that if Q is not dominated by P , then I(Q|P ) = +∞. Hence, for

Λ̃2(η, P ) = {Q ∈ Λ̈2(η, P ) : Q� P, P{Xi ∈ supp(Q)} ≥ exp(−η)}
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we have that

inf
Q∈Λ̈2(η,P )

I(Q|P ) ≥ min

{
inf

Q∈Λ̃2(η,P )
I(Q|P ), η

}
. (71)

We may assume that Λ̃2(η, P ) 6= ∅, for otherwise the righthand side of (71) equals η, thus establishing
(68). Furthermore, since η < ω, we also have by assumption that for any Q ∈ Λ̃2(η, P ), P̈(Q, θ0(P )) 6= ∅.
Hence, the Primal Constraint Qualification of Theorem 3.4 of Borwein and Lewis (1993) is satisfied, so for
all Q ∈ Λ̃2(η, P ) we have

inf
R∈P̈(Q,θ0(P ))

I(R|Q) = max
γ∈Rm

∫
log(1 + γ′g(x, θ0(P )))dQ ≥ η ,

where the inequality is implied by Q ∈ Λ̈2(η, P ). Next, we define

Γ = {γ ∈ Rm : ∃Q ∈ Λ̃2(η, P ) s.t. γ ∈ arg max
λ∈Rm

∫
log(1 + λ′g(x, θ0(P )))dQ}

S(γ) = {S ⊆ supp(P ) : ∃Q ∈ Λ̃2(η, P ) s.t. S = supp(Q), γ ∈ arg max
λ∈Rm

∫
log(1 + λ′g(x, θ0(P )))dQ}

R(γ,S) = {Q ∈ Λ̃2(η, P ) : γ ∈ arg max
λ∈Rm

∫
log(1 + λ′g(x, θ0(P )))dQ,S = supp(Q)} .

With these definitions, we write
Λ̃2(η, P ) =

⋃
γ∈Γ

⋃
S∈S(γ)

R(γ,S) .

Hence,
inf

Q∈Λ̃2(η,P )
I(Q|P ) = inf

γ∈Γ
inf
S∈S(γ)

inf
Q∈R(γ,S)

I(Q|P ) . (72)

Note that if Q ∈ R(γ,S), then (i) Q � P , (ii) S = supp(Q) and (iii)
∫

log(1 + γ′g(x, θ0(P )))dQ ≥ η. We
therefore have for δ > 0 sufficiently small that

inf
Q∈R(γ,S)

I(Q|P ) ≥ inf{
∫
S

log(φ(x))φ(x)dP : φ(x) ∈ L1(S), φ(x) > 0∫
S

log(1 + γ′g(x, θ0(P )))φ(x)dP ≥ η,
∫
S
φ(x)dP = 1}

≥ inf{
∫
S

log(φ(x))φ(x)dP : φ(x) ∈ L1(S), φ(x) > 0∫
S

log(1 + γ′g(x, θ0(P )))I{x ∈ R+
δ }φ(x)dP ≥ η,

∫
S
φ(x)dP = 1} (73)

where the first inequality follows from the preceding statements (i), (ii) and (iii), and the second inequality
follows from the definition of R+

δ in (55) but with (θ0(P ), γ) in place of (θ∗, γ∗).

We now use Corollary 4.8 of Borwein and Lewis (1992a) and part (vi) of Example 6.5 of Borwein and
Lewis (1992b) to find the dual problem of (73). To this end, first note that since Λ̃2(η, P ) 6= ∅, we have that
R(γ,S) 6= ∅ for at least one γ ∈ Γ and S ∈ S(γ). For any such γ and S, we have as a result that there exists
a φ(x) satisfying the constraints of (73). Next, note that the map A : L1(S)→ R defined by

A(φ) =
∫
S

log(1 + γ′g(x, θ0(P )))I{x ∈ R+
δ }φ(x)dP

is continuous because log(1 + γ′g(x, θ0(P )))I{x ∈ R+
δ } lies in L∞(S) as a result of S being a subset of the

compact set X and g(x, θ0(P )) being continuous on X . Using Corollary 4.8 of Borwein and Lewis (1992a)
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and part (vi) of Example 6.5 of Borwein and Lewis (1992b) to find the dual problem of (73) implies

inf
Q∈R(γ,S)

I(Q|P ) ≥

lim inf
δ↘0

sup
λ0,λ1≥0

λ0 + ηλ1 − exp(λ0 − 1)
∫
S

exp(λ1 log(1 + γ′g(x, θ0(P )))I{x ∈ R+
δ })dP . (74)

By definition, for every S ∈ S(γ) there exists Q such that S = supp(Q) and

γ ∈ arg max
λ∈Rm

∫
log(1 + λ′g(x, θ0(P )))dQ . (75)

For any such Q, we must have that

Q{1 + γ′g(Xi, θ0(P )) ≤ 0} = Q{1 + γ′g(Xi, θ0(P )) ≤ 0, Xi ∈ S} = 0 , (76)

from which it follows that
P{1 + γ′g(Xi, θ0(P )) ≤ 0, Xi ∈ S} = 0 (77)

as well. Hence, by letting δ ↘ 0, we see by the monotone convergence theorem that∫
S

exp(λ1 log(1 + γ′g(x, θ0(P )))I{x ∈ R+
δ })dP

is right-continuous at δ = 0. Following arguments as in Lemma 17.29 in Aliprantis and Border (2006), it is
possible to show the supremum in (74) is lower semicontinuous at δ = 0 as well. Hence, the righthand side
of (74) is greater than or equal to

sup
λ0,λ1≥0

λ0 + ηλ1 − exp(λ0 − 1)
∫
S

exp(λ1 log(1 + γ′g(x, θ0(P )))I{1 + γ′g(x, θ0(P )) ≥ 0})dP . (78)

Since the integrand in (78) is nonnegative, we have from (74) and (77) and (78) that

inf
S∈S(γ)

inf
Q∈R(γ,S)

I(Q|P )

≥ inf
S∈S(γ)

sup
λ0,λ1≥0

λ0 + ηλ1 − exp(λ0 − 1)
∫
S

exp(λ1 log(1 + γ′g(x, θ0(P ))))I{1 + γ′g(x, θ0(P )) > 0}dP

≥ sup
λ0,λ1≥0

λ0 + ηλ1 − exp(λ0 − 1)
∫

exp(λ1 log(1 + γ′g(x, θ0(P ))))I{1 + γ′g(x, θ0(P )) > 0}dP (79)

By definition, for every γ ∈ Γ there exists a Q ∈ Λ̃2(η, P ) such that γ satisfies (75). Thus, as before,
(76) holds, from which it follows that

supp(Q) ⊆ {x ∈ Rd : 1 + γ′g(x, θ0(P )) > 0} .

Therefore,
P (1 + γ′g(Xi, θ0(P )) ≥ 0) ≥ P (Xi ∈ supp(Q)) ≥ exp(−η)

by Q ∈ Λ̃2(η, P ). Hence, γ ∈ Γ(η, P ), which implies Γ ⊆ Γ(η, P ). It therefore follows from (79) that

inf
γ∈Γ

inf
S∈S(γ)

inf
Q∈R(γ,S)

I(Q|P ) ≥

inf
γ∈Γ(η,P )

sup
λ0,λ1≥0

λ0 + ηλ1 − exp(λ0 − 1)
∫

exp(λ1 log(1 + γ′g(x, θ0(P ))))I{1 + γ′g(x, θ0(P )) > 0}dP .

The desired claim (68) thus follows for η < ω, satisfying (67).
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Lemma 5.4. If Assumptions 4.2, 4.4 and 4.5 hold, then θ0(P ) is continuous on P0 under the weak topology.

Proof: Let Pn → P with Pn ∈ P0 for all n and denote

θn = θ0(Pn)

where θ0(Pn) 6= ∅ by Pn ∈ P0 and θ0(Pn) is a singleton by Assumption 4.2. Let θ∗ be a limit point of {θn}
and θnk a subsequence such that θnk → θ∗. It then follows that,

|
∫
g(x, θ∗)dP | = lim

nk→∞
|
∫
g(x, θ∗)dPnk |

= lim
nk→∞

|
∫

(g(x, θ∗)− g(x, θnk))dPnk |

≤ lim
nk→∞

sup
x∈X
|g(x, θ∗)− g(x, θnk)|

= 0 (80)

where the first equality follows by Pn → P and g(x, θ∗) continuous and bounded. The second equality is
implied by θnk = θ0(Pnk), the inequality follows by inspection and the final result is due to the uniform
continuity of g(x, θ). Hence,

θ∗ = θ0(P ) . (81)

It follows that θ0(P ) is the unique limit point of {θn}, which establishes the claim of the Lemma.

Lemma 5.5. If Assumptions 4.2, 4.3, 4.4 and 4.5 hold, then for any δ such that 0 < δ < ε,

Γ(η, P ) = {γ ∈ Rm : e−η ≤ P{1 + γ′g(X, θ0(P )) ≥ 0} ≤ 1} (82)

is nonempty, compact valued and upper hemicontinuous on (η, P ) ∈ [0,− log(1 − ε + δ)] × P0 under the
product of the topology on R and the weak topology.

Proof: The correspondence Γ(η, P ) is clearly not empty since 0 ∈ Γ(η, P ) for all (η, P ) ∈ [0,− log(1 −
ε + δ)] × P0. To establish upper hemicontinuity we wish to show that if Pn → P and ηn → η with
(ηn, Pn) ∈ [0,− log(1− ε+ δ)]×P0 for all n, then any sequence {γn}∞n=1 with γn ∈ Γ(ηn, Pn) for all n, has a
limit point in Γ(η, P ). For this purpose we first show the sequence {γn}∞n=1 is uniformly bounded. Suppose
by way of contradiction,

lim sup
n→∞

|γn| = +∞ (83)

It follows that there exists a subsequence satisfying

|γnk | ≥ nk (84)

In addition, by compactness there exists an additional subsequence such that

γnkl
|γnkl |

→ γ1 (85)
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Along such a subsequence, however, we have

e−η = lim
nkl→∞

e
−ηnkl

≤ lim sup
nkl→∞

Pnkl {1 + γ′nkl
g(X, θ0(Pnkl )) ≥ 0}

= lim sup
nkl→∞

Pnkl {
γ′nkl
|γnkl |

g(X, θ0(Pnkl )) ≥ −
1
|γnkl |

}

≤ lim inf
ε↘0

lim sup
nkl→∞

Pnkl {
γ′nkl
|γ′nkl |

g(X, θ0(Pnkl )) ≥ −ε}

≤ lim inf
ε↘0

lim sup
nkl→∞

Pnkl {γ
′
1g(X, θ0(P )) ≥ −2ε}

≤ lim inf
ε↘0

P{γ′1g(X, θ0(P )) ≥ −2ε}

= P{γ′1g(X, θ0(P )) ≥ 0} (86)

where the first equality follows by assumption and the first inequality by γnkl ∈ Γ(ηnkl , Pnkl ) for all l. The
second equality follows by inspection. The second inequality is implied by (84) and the third inequality by
θ0(Pnkl )→ θ0(P ) by Lemma 5.4, (85) and the unform continuity of g(x, θ). The final inequality and equality
follow by the Portmanteau and Bounded Convergence theorems respectively. Hence,

1− ε < e−η ≤ P{γ′1g(X, θ0(P )) ≥ 0} (87)

by (86) and ηnkl ∈ [0,− log(1− ε+ δ)] for all l. Result (87), however, contradicts P ∈ P0.

Because the sequence {γn}∞n=1 is uniformly bounded, it follows that there exists a subsequence such that

lim
nj→∞

γnj = γ2 (88)

To conclude establishing upper hemicontinuity we show γ2 ∈ Γ(η, P ), which is implied by

e−η = lim
nj→∞

e−ηnj

≤ lim sup
nj→∞

Pnj{1 + γ′njg(X, θ0(Pnj )) ≥ 0}

≤ lim inf
ε↘0

lim sup
nj→∞

Pnj{1 + γ′2g(X, θ0(P )) ≥ −ε}

≤ lim inf
ε↘0

P{1 + γ′2g(X, θ0(P )) ≥ −ε}

= P{1 + γ′2g(X, θ0(P )) ≥ 0} (89)

where the first equality follows by assumption and the first inequality by γnj ∈ Γ(ηnj , Pnj ) for all j. By
Lemma 5.4, θ0(Pnj )→ θ0(P ) and therefore the second inequality follows by the uniform continuity of g(x, θ).
The final inequality and equality follow by the Portmanteau and Bounded Convergence theorems respectively.

The arguments in (83)-(86) but for {γn}∞n=1 an unbounded sequence in Γ(η, P ) and ηn = η, Pn = P for
all n show Γ(η, P ) is bounded. Similarly, the arguments in (89) but with ηn = η and Pn = P for all n show
Γ(η, P ) is closed. Hence, Γ(η, P ) is compact.

Lemma 5.6. If Assumptions 4.2, 4.4 and 4.5 hold, then the function

f(λ1, γ, P ) =
∫

(1 + γ′g(x, θ0(P )))λ1I{1 + γ′g(x, θ0(P )) > 0}dP

is lower semicontinuous on (λ1, γ, P ) ∈ R+ ×Rm ×P0 where P0 is endowed with the weak toplogy.
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Proof: Let (λ1,n, γn, Pn)→ (λ1, γ, P ). In order to establish the Lemma we aim to show that,

lim inf
n→∞

f(λ1,n, γn, Pn) ≥ f(λ, γ, P ) (90)

For this purpose, we define the auxiliary variable,

εm0 ≡ sup
x∈X ,n≥m0

|γ′ng(x, θ0(Pn))− γ′g(x, θ0(P ))| (91)

Notice that due to Lemma 5.4 and Assumption 4.4 we have limm0→∞ εm0 = 0. Also define,

λ̄1,m0 ≡ sup
n≥m0

λn λ1,m0
≡ inf
n≥m0

λn (92)

as well as the function:
Lm0(u) = uλ1,m0 I{u > 1}+ uλ̄1,m0 I{0 < u ≤ 1} (93)

The notice that pointwise in x ∈ X we have that:

inf
m≥m0

(1 + γ′mg(x, θ0(Pm)))λmI{1 + γ′mg(x, θ0(Pm)) > 0}

≥ inf
m≥m0

(1 + γ′mg(x, θ0(Pm)))λmI{1 + γ′g(x, θ0(P )) > εm0}

≥ inf
m≥m0

(1 + γ′g(x, θ0(P ))− εm0)λmI{1 + γ′g(x, θ0(P )) > εm0}

≥ Lm0(1 + γ′g(x, θ0(P ))− εm0) (94)

where the first two inequalities are implied by (91) and the final one follows by (93) and direct calculation.
Next, exploiting standard manipulations and (94) we are able to conclude

lim inf
n→∞

f(λ1,n, γn, Pn) = lim
n→∞

inf
n0≥n

∫
(1 + γ′n0

g(x, θ0(Pn0)))λn0 I{1 + γ′n0
g(x, θ0(Pn0)) > 0}dPn0

≥ lim
n→∞

inf
n≥n0

inf
m≥m0

∫
(1 + γ′m0

g(x, θ0(Pm0)))λm0 I{1 + γ′m0
g(x, θ0(Pm0)) > 0}dPn0

≥ lim inf
m0→∞

lim inf
n→∞

inf
m≥m0

∫
(1 + γ′m0

g(x, θ0(Pm0)))λm0 I{1 + γ′m0
g(x, θ0(Pm0)) > 0}dPn

≥ lim inf
m0→∞

lim inf
n→∞

∫
inf

m≥m0
(1 + γ′m0

g(x, θ0(Pm0)))λm0 I{1 + γ′m0
g(x, θ0(Pm0)) > 0}dPn

≥ lim inf
m0→∞

lim inf
n→∞

∫
Lm0(1 + γ′g(x, θ0(P ))− εm0)dPn (95)

Further, observe from (93) that if λ̄1,m0 > 0, then Lm0(u) is continuous, while if λ̄1,m0 = 0 then we have
Lm0(u) = I{u > 0}. In both cases, since g(x, θ0(P )) is continuous and X is compact, we obtain by the
Portmanteau Lemma and Pn → P in the weak topology,

lim inf
m0→∞

lim inf
n→∞

∫
Lm0(1 + γ′g(x, θ0(P ))− εm0)dPn ≥ lim inf

m0→∞

∫
Lm0(1 + γ′g(x, θ0(P ))− εm0)dP

≥
∫

lim inf
m0→∞

Lm0(1 + γ′g(x, θ0(P ))− εm0)dP (96)

where the second inequality follows by Fatou’s Lemma. Finally, by λ̄1,m0 → λ1, λ1,m0
→ λ1 and εm0 → 0,

direct calculation reveals that pointwise in x ∈ X we have,

lim inf
m0→∞

Lm0(1 + γ′g(x, θ0(P ))− εm0) ≥ (1 + γ′g(x, θ0(P )))λ1I{1 + γ′g(x, θ0(P )) > 0} (97)

Combining (95), (96) and (97) establishes the claim of the Lemma.
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Lemma 5.7. Suppose Assumptions 4.2, 4.4 and 4.5 hold and for (λ0, λ1, η, γ, P ) ∈ [0, 2]2 ×R+ ×Rm ×P0

with P0 endowed with the weak topology, define the function

F (λ0, λ1, η, γ, P ) = λ0 + η(λ1 − 1)− eλ0−1

∫
(1 + γ′g(x, θ0(P ))λ1I{1 + γ′g(x, θ0(P )) > 0}dP .

In addition, consider the following correspondences,

E(η, γ, P ) = {(λ0, λ1, y) ∈ [0, 2]2 ×R : y ≤ F (λ0, λ1, η, γ, P )}

Π(η, γ, P ) = {y ∈ R : (λ0, λ1, y) ∈ E(η, γ, P ) for some (λ0, λ1) ∈ [0, 2]2}

It then follows that Π(η, γ, P ) is lower hemicontinuous on R+ ×R×P0.

Proof: As in Lemma 5.6 we define the function,

f(λ1, γ, P ) =
∫

(1 + γ′g(x, θ0(P )))λ1I{1 + γ′g(x, θ0(P )) > 0}dP (98)

We first show that f(λ1, γ, P ) is continuous at all points on [0, 2]×Rm ×P0 with λ1 6= 0. For this purpose,
let (λ1,n, γn, Pn)→ (λ1, γ, P ) and note that by Lemma 5.4 and X being compact, we have:

lim
n→∞

sup
x∈X
|γ′ng(x, θ0(Pn))− γ′g(x, θ0(P ))| = 0 (99)

Further, notice that since λ1 > 0, then by λ1,n → λ1 we have λ1,n > 0 for n large enough, which implies,

lim
n→∞

sup
x∈X
|(1 + γ′ng(x, θ0(Pn)))λ1,nI{1 + γ′ng(x, θ0(Pn)) > 0, 1 + γ′g(x, θ0(P )) ≤ 0}| = 0 (100)

as a result of (99). By direct calculations we then obtain from (99) and (100) that,

lim
n→∞

sup
x∈X
|(1+γ′ng(x, θ0(Pn)))λ1,nI{1+γ′ng(x, θ0(Pn)) > 0}−(1+γ′g(x, θ0(P )))λ1I{1+γ′g(x, θ0(P )) > 0}| = 0

(101)
By (101) and noting that the integrand is a continuous bounded function for λ1 > 0, Pn → P establishes:

f(λ1,n, γn, Pn) =
∫

(1 + γ′g(x, θ0(P )))λ1I{1 + γ′g(x, θ0(P )) > 0}dPn + o(1)→ f(λ1, γ, P ) (102)

hence proving the desired continuity of f(λ1, γ, P ) at all points (λ1, γ, P ) ∈ [0, 2]×R+ ×P0 with λ1 > 0.

We now establish lower hemicontinuity of Π(η, γ, P ). This requires showing that for any y ∈ Π(η, γ, P )
and (ηn, γn, Pn) → (η, γ, P ) there exists a subsequence (ηnk , γnk , Pnk) and ynk ∈ Π(ηnk , γnk , Pnk) with
ynk → y. Since y ∈ Π(η, γ, P ), there exist a (λ0(y), λ1(y)) ∈ [0, 2]2 with:

y ≤ F (λ0(y), λ1(y), η, γ, P ) . (103)

If λ1(y) > 0, then we immediately have from (102) that,

F (λ0(y), λ1(y), ηn, γn, Pn)→ F (λ0(y), λ1(y), η, γ, P ) (104)

from which it follows that there exist yn ∈ Π(ηn, γn, Pn) with yn → y. To address the case λ1(y) = 0, notice:

lim sup
n→∞

F (λ0(y), 0, ηn, γn, Pn) = λ0(y) + η − eλ0(y)−1 × lim inf
n→∞

Pn{1 + γ′ng(x, θ0(Pn)) > 0}

≥ λ0(y) + η − eλ0(y)−1 × lim inf
n→∞

P{1 + γ′g(x, θ0(P )) > 0}

= F (λ0(y), 0, η, γ, P ) (105)
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where the inequality is implied by Pn → P , (99), the extended continuous mapping theorem of Theorem
1.11.1 in van der Vaart and Wellner (1996) and the Portmanteau Lemma. The final equality in (105) is
definitional. The existence of a subsequence (γnk , ηnk , Pnk) with ynk ∈ Π(γnk , ηnk , Pnk) and ynk → y then
follows.

Lemma 5.8. If Assumption 4.2, 4.3, 4.4 and 4.5 hold, then for every Q ∈ P0 there exists an open neigh-
borhood N(Q) in P0 with respect to the weak topology and a η̄(Q) > 0 such that for all η ∈ [0, η̄(Q)],

inf
P∈N(Q)

inf
γ∈Γ(η,P )

sup
λ0,λ1≥0

λ0 + η(λ1 − 1)− eλ0−1

∫
(1 + γ′g(x, θ0(P )))λ1I{1 + γ′g(x, θ0(P )) > 0}dP ≥ 0 (106)

Proof: First notice that since by Lemma 5.5 the correspondence Γ(0, Q) is compact valued, there exists a
compact set A such that,

Γ(0, Q) ⊂ A

Furthermore, since by Lemma 5.5, Γ(η, P ) is also upper hemicontinuous at (η, P ) = (0, Q), there exists a
α(Q) > 0 and an open neighborhood B(Q) in P0 such that for all 0 ≤ η ≤ α(Q) and P ∈ B(Q), we have

Γ(η, P ) ⊂ A (107)

Thus, since [0, 2]2 ⊂ R×R+, it immediately follows that for all 0 ≤ η ≤ α(Q) and P ∈ B(Q),

inf
γ∈Γ(η,P )

sup
λ0,λ1≥0

λ0 + η(λ1 − 1)− eλ0−1

∫
(1 + γ′g(x, θ0(P )))λ1I{1 + γ′g(x, θ0(P )) > 0}dP

≥ inf
γ∈A

sup
(λ0,λ1)∈[0,2]2

λ0 + η(λ1 − 1)− eλ0−1

∫
(1 + γ′g(x, θ0(P )))λ1I{1 + γ′g(x, θ0(P )) > 0}dP (108)

We will establish the Lemma by showing that for η sufficiently small, the right hand side of (108) is non-
negative on an open neighborhood of Q. For this purpose, define the function

F (λ0, λ1, η, γ,Q) = λ0 + η(λ1 − 1)− eλ0−1

∫
(1 + γ′g(x, θ0(Q))λ1I{1 + γ′g(x, θ0(Q)) > 0}dQ (109)

By Lemma 5.6, Lemma 5.7 and Theorem 2 in Ausubel and Deneckere (1993), it follows that

C(γ, η,Q) = max
(λ0,λ1)∈[0,2]2

F (λ0, λ1, η, γ,Q) (110)

is continuous on (γ, η,Q) ∈ Rm×R+×P0. Moreover, since A is compact, applying Berge’s Theorem of the
Maximum establishes that the correspondence

Ξ(η, P ) = arg min
γ∈A

C(γ, η, P ) (111)

is well defined and upper hemicontinuous on R+ ×P0.

We now show Ξ(0, Q) = {0}. If γ ∈ A\Γ(0, Q), then Q{1 + γ′g(X, θ0(Q)) ≥ 0} < 1, and hence

F (1, 0, 0, γ,Q) = 1−Q{1 + γ′g(X, θ0(Q)) > 0} > 0 (112)

On the other hand, for any 0 6= γ ∈ Γ(0, Q), we have Q{1 + γ′g(X, θ0(Q)) ≥ 0} = 1. Therefore,

F (1, 1, 0, γ,Q) = 1−
∫

(1 + γ′g(X, θ0(Q)))dQ = 0 (113)
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by virtue of Q ∈ P0. Further, since Q ∈ P0, Assumption 4.3 implies that for γ 6= 0,

0 < Q{γ′g(X, θ0(Q)) ≥ 0} < 1 (114)

Next, use the dominated convergence theorem to exchange the order of differentiation and integration in
(113) and conclude that for 0 6= γ ∈ Γ(0, Q):

∂

∂λ1
F (1, λ1, 0, γ,Q)

∣∣∣
λ1=1

=
∫

(1 + γ′g(x, θ0(Q))) log(1 + γ′g(x, θ0(Q)))I{1 + γ′g(x, θ0(Q)) > 0}dQ > 0 ,

(115)
where the inequality holds by (114) which implies γ′g(x, θ0(Q)) is not constant on suppQ(g(Xi, θ0(Q))) and
therefore Jensen’s inequality holds strictly. Hence, if 0 6= γ ∈ Γ(0, Q), there exists 1 ≤ λ̃1 ≤ 2 such that

F (1, λ̃1, 0, γ,Q) > 0 (116)

Thus, so far we have established through (112) and (116) that if 0 6= γ ∈ A then

C(γ, 0, Q) > 0

On the other hand, it follows from direct calculation that C(0, 0, Q) = 0, and hence we conclude,

Ξ(0, Q) = {0} (117)

Next notice that continuity of g(x, θ) in (x, θ) and compactness of X and Θ implies that

sup
θ∈Θ

sup
x∈X
|g(x, θ)| <∞ (118)

Furthermore, since as argued Ξ(η, P ) is upper hemicontinuous at (η, P ) = (0, Q), it follows from (117) and
(118) that there exists a α(Q) ≥ η̄(Q) > 0 and open neighborhood N(Q) ⊆ B(Q) such that if η ∈ [0, η̄(Q)]
and P ∈ N(Q) then,

sup
γ∈Ξ(η,P )

|γ| < 1
supx∈X |g(x, θ0(P ))|

(119)

We therefore conclude that if 0 ≤ η ≤ η̄(Q), P ∈ N(Q) and γ ∈ Ξ(η, P ) then

P{1 + γ′g(X, θ0(P )) ≥ 0} = 1 .

It follows that if 0 ≤ η ≤ η̄(Q) and P ∈ N(Q), then

Ξ(η, P ) ⊆ Γ(0, P ) .

Consequently, we obtain that for all 0 ≤ η ≤ η̄(Q) and P ∈ N(Q),

min
γ∈A

max
(λ0,λ1)∈[0,2]2

λ0 + η(λ1 − 1)− eλ0−1

∫
(1 + γ′g(x, θ0(P )))λ11{1 + γ′g(x, θ0(P )) > 0}dP

= min
γ∈Γ(0,P )

max
(λ0,λ1)∈[0,2]2

λ0 + η(λ1 − 1)− eλ0−1

∫
(1 + γ′g(x, θ0(P )))λ11{1 + γ′g(x, θ0(P )) > 0}dP (120)

Arguing as in (113) it then follows that F (1, 1, 0, γ, P ) = 0 for all γ ∈ Γ(0, P ). To conclude note that since
the minimum is attained, we establish using (120) that,

min
γ∈Γ(0,P )

max
(λ0,λ1)∈[0,2]2

λ0 + η(λ1 − 1)− eλ0−1

∫
(1 + γ′g(x, θ0(P )))λ11{1 + γ′g(x, θ0(P )) > 0}dP ≥ 0 (121)

26



Therefore (108), (120) and (121) establish the claim of the Lemma.

Proof of part (a) of Theorem 4.2: First observe that since P(Q) ⊆ P̈(Q) it follows that Λ2(η) ⊆ Λ̈2(η).
Hence:

lim sup
n→∞

1
n

logPn{P̂n ∈ Λ2(η)} ≤ lim sup
n→∞

1
n

logPn{P̂n ∈ Λ̈2(η)} (122)

The proof then proceeds by showing the conditions of Lemma 5.3 hold for all P ∈ P0 if η > 0 is sufficiently
small. Define

ω1 = − log(1− ε) (123)

We first show that for all P ∈ P0, if Q� P and P{X ∈ supp(Q)} > exp(−ω1), then P̈(Q, θ0(P )) 6= ∅. For
this purpose note that:

sup
γ 6=0

P{X ∈ supp(Q), γ′g(X, θ0(P )) ≥ 0} ≤ sup
γ 6=0

P{γ′g(X, θ0(P )) ≥ 0}

≤ 1− ε

< P{X ∈ supp(Q)} (124)

where the first inequality follows by inspection, the second inequality by P ∈ P0 and the last inequality by
hypothesis. It follows from (124) that for all γ ∈ Rm

P{X ∈ supp(Q), γ′g(X, θ0(P )) ≥ 0} > 0 (125)

P{X ∈ supp(Q), γ′g(X, θ0(P )) < 0} > 0 (126)

Hence, there exists no hyperplane separating suppQ(g(Xi, θ0(P ))) and {0}, which implies

0 ∈ int(co(suppQ(g(Xi, θ0(P )))))

(relative to the topology on Rm). We therefore conclude P̈(Q, θ0(P )) 6= ∅ as desired.

To complete the proof, we verify that (67) holds uniformly in P ∈ P0 for η > 0 sufficiently small. By
Lemma 5.8, for every P ∈ P0, there exists an η̄(P ) > 0 and an open neighborhood in the weak topology
N(P ) such that for all 0 ≤ η ≤ η̄(P ) we have,

inf
Q∈N(P )

inf
γ∈Γ(η,Q)

sup
λ0,λ1≥0

λ0 + η(λ1 − 1)− eλ0−1

∫
(1 + γ′g(x, θ0(Q)))λ1I{1 + γ′g(x, θ0(Q)) > 0}dQ ≥ 0

By Theorem 15.11 in Aliprantis and Border (2006), M is compact under the weak topology, and hence since
P0 ⊆M is closed, it is compact as well. Consequently, as

P0 =
⋃
P∈P0

N(P )

and N(P ) are open for all P ∈ P0, compactness implies the existence of a finite subcover such that

P0 =
k⋃
i=1

N(Pi) (127)

To conclude, let
ω2 = min{η̄(P1), . . . , η̄(Pk)} (128)
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and notice that by construction ω2 > 0 and in addition, for all 0 ≤ η ≤ ω2

inf
P∈P0

inf
γ∈Γ(η,P )

sup
λ0,λ1≥0

λ0 + η(λ1 − 1)− eλ0−1

∫
(1 + γ′g(x, θ0(P )))λ1I{1 + γ′g(x, θ0) > 0}dP ≥ 0 (129)

Letting η̄ = min{ω1, ω2} implies the conditions of Lemma 5.3 are satisfied for all P ∈ P0 and 0 ≤ η ≤ η̄,
which establishes the claim (a) of the Theorem.

Proof of part (b) of Theorem 4.2: The proof closely follows arguments in Kitamura (2001) and Dembo
and Zeitouni (1998). Define the set of probability measures,

R(η) = {Q ∈M : inf
P∈M0\P0

I(Q|P ) ≥ η} (130)

We first aim to show that the proposition,

Λ1(η) ∩R(η) ⊆ Ω1,n ∩R(η) (131)

holds for all n > n0 and n0 sufficiently large. Suppose by way of contradiction that there exists an infinite
sequence of probability measures {ξn}∞n=1 such that ξn ∈ Λ1(η) ∩ R(η) and ξn ∈ Ω2,n ∩ R(η). Since M

is compact under the weak topology by Theorem 15.11 in Aliprantis and Border (2006), there exists a
subsequence ξnk such that

ξnk → ξ (132)

for some ξ ∈M. Hence, there exists a k0 such that for all k ≥ k0 it follows that ξnk ∈ B(ξ, δ/2) and therefore
B(ξ, δ/2) ⊂ Ωδ2,nk . Hence, by Sanov’s Theorem and various inclusions restrictions,

sup
P∈P0

lim sup
n→∞

1
n

logPn{P̂n ∈ Ωδ2,n} ≥ sup
P∈P0

lim inf
nk→∞

1
nk

logPnk{P̂nk ∈ Ωδ2,nk}

≥ sup
P∈P0

lim inf
n→∞

1
n

logPn{P̂n ∈ B(ξ, δ/2)}

≥ sup
P∈P0

− inf
Q∈B(ξ,δ/2)

I(Q|P )

≥ sup
P∈P0

−I(ξnk0 |P ) (133)

Since ξnk0 ∈ Λ1(η) ∩R(η), it must be that

inf
P∈M0

I(ξnk0 |P ) ≤ inf
P∈P(ξnk0

)
I(ξnk0 |P ) < η (134)

by virtue of ξnk0 ∈ Λ1(η) and P(ξnk0 ) ⊆M0. Furthermore, since ξnk0 ∈ R(η) we have,

inf
P∈M0\P0

I(ξnk0 |P ) ≥ η (135)

Hence, combining (134), (135) and P0 ⊂M0 we conclude,

inf
P∈P0

I(ξnk0 |P ) < η (136)

Therefore, it follows from results (133) and (138) that,

sup
P∈P0

lim sup
n→∞

1
n

logPn{P̂n ∈ Ωδ2,n} > −η (137)
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which contradicts the assumptions on (Ω1,n,Ω2,n) and hence (131) must be true. Therefore,

lim sup
n→∞

1
n

logQn{P̂n ∈ Λ1(η)} ≤ lim sup
n→∞

1
n
Qn{P̂n ∈ Ω1,n} (138)

for all Q ∈ R(η), which establishes claim (b) of the Theorem.

Proof of Corollary 4.1: Let dTV (Q,P ) and dPL(Q,P ) denote the Total Variation and Prokhorov-Lévy
metrics between measures Q and P respectively. The claim of the corollary then immediately follows from
Theorem 4.2 and the inequalities I(Q|P ) ≥ 2d2

TV (Q,P ) ≥ 2d2
PL(Q,P ).

Lemma 5.9. (i) If Assumptions 4.1-4.5 hold, then there exists a δ > 0 such that P0 ∩ Dδ
0 = ∅; (ii) If

Assumptions 4.4-4.5 hold and Θ0(P ) is a singleton for every P ∈M0 \D0, then for every δ > 0 there exists
a P0 satisfying Assumptions 4.1-4.3 and M0 \Dδ

0 ⊆ P0.

Proof: To establish the first claim of the Lemma, suppose by way of contradiction that there exists a
sequence {Pn} with Pn ∈ P0 for all n such that

lim
n→∞

inf
Q∈D0

d(Q,Pn) = 0 (139)

where d(Q,P ) is any metric compatible with the weak topology. By Theorem 15.11 in Aliprantis and Border
(2006), M is compact in the weak topology, and hence P0 ⊂M is as well by virtue of being closed. Therefore
there exists a P ∗ ∈ P0 and subsequence Pnk such that Pnk → P ∗. Hence, we obtain from (139) that

inf
Q∈D0

d(Q,P ∗) ≤ lim
nk→∞

inf
Q∈D0

d(Q,Pnk) + lim
n→∞

d(Pnk , P
∗) = 0 (140)

Therefore, there exists a sequence {Qn} with Qn ∈ D0 for all n and Qn → P ∗. Hence, there is a sequence
{θn} with θn ∈ Θ0(Qn) and s(Qn, θn) < m for all n, while by compactness of Θ there is a subsequence θnk
with θnk → θ∗. Further, it follows from (80) that∫

g(x, θ∗)dP ∗ = 0 . (141)

Since P ∗ ∈ P0, it must be that Θ0(P ∗) = {θ∗} and s(P ∗, θ∗) = m. However, arguing as in (45)-(48) in turn
implies s(Qnk , θnk) = m for k sufficiently large, contradicting that s(Qn, θn) < m for all n.

For the second claim, notice that the arguments in (80) imply M0 is closed with respect to the weak
topology. Hence, by defining

P0 ≡M0 \Dδ
0 (142)

it follows that P0 satisfies Assumptions 4.1-4.2 and M0 \Dδ
0 ⊆ P0. We verify P0 satisfies Assumption 4.3

by way of contradiction. Suppose instead that

sup
P∈P0

sup
‖γ‖=1

P{γ′g(Xi, θ0(P )) ≥ 0} = 1 (143)

Letting Sm denote the unit sphere in Rdm , (143) and compactness of P0×Sm implies there exists a sequence
(Pn, γn) ∈ P0 × Sm for all n satisfying (Pn, γn)→ (P ∗, γ∗) ∈ P0 × Sm and

lim
n→∞

Pn{γ′ng(Xi, θ0(Pn)) ≥ 0} = 1 (144)
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Defining the sets A+
n = {x ∈ X : γ′ng(x, θ(Pn)) > 0} and A−n = {x ∈ X : γ′ng(x, θ(Pn)) < 0} we then obtain

from (144),
∫
g(x, θ0(Pn))dPn = 0 and g(x, θ) bounded on X ×Θ that,

lim sup
n→∞

∫
|γ′ng(x, θ0(Pn))|dPn = lim sup

n→∞
{
∫
A+
n

γ′ng(x, θ0(Pn))dPn −
∫
A−n

γ′ng(x, θ0(Pn))dPn}

= lim sup
n→∞

∫
A−n

2|γ′ng(x, θ0(Pn))|dPn

≤ lim sup
n→∞

sup
x∈X ,θ∈Θ

2|g(x, θ)| × Pn{A−n }

= 0 (145)

Since (Pn, γn)→ (P ∗, γ∗), Lemma 5.4 and compactness imply supx∈X |γ′ng(x, θ0(Pn))− γ∗′g(x, θ0(P ∗)| → 0.
Hence, (145), Pn → P ∗ and g(x, θ0(P ∗)) continuous and bounded yield∫

|γ∗′g(x, θ0(P ∗))|dP ∗ ≤ lim sup
n→∞

∫
|γ∗′g(x, θ0(P ∗))|(dP ∗ − dPn)

+ lim sup
n→∞

∫
|γ∗′g(x, θ0(P ∗))− γ′ng(x, θ0(Pn))|dPn + lim sup

n→∞

∫
|γ′ng(x, θ0(Pn))|dPn = 0 (146)

It follows from (146) that P ∗ ∈ D0, which contradict P ∗ ∈ P0 by (142).

Proof of Corollary 4.2: By Lemma 5.9 there exists a P0 satisfying Assumptions 4.1-4.3 such that
M0 \D

ε
2
0 ⊆ P0. Therefore, by Theorem 4.2 there exists an η̄1(ε) > 0 such that for all η̄1(ε) ≥ η > 0 we have

sup
P∈M0\D

ε
2
0

lim sup
n→∞

1
n

logPn{P̂n ∈ Λ̃2(η) \Dε
0} ≤ sup

P∈P0

lim sup
n→∞

1
n

logPn{P̂n ∈ Λ2(η)} ≤ −η (147)

Let dPL(Q,P ) be the Prokhorov-Lévy metric between measures Q and P . The inclusion Λ̃2(η)\Dε
0 ⊆ (Dε

0)c,
Sanov’s Theorem and the inequality I(Q|P ) ≥ 2d2

PL(Q,P ) then imply:

sup
P∈M0∩D

ε
2
0

lim sup
n→∞

1
n

logPn{P̂n ∈ Λ̃2(η) \Dε
0} ≤ sup

P∈M0∩D
ε
2
0

lim sup
n→∞

1
n

logPn{P̂n ∈ (Dε
0)c}

≤ sup
P∈M0∩D

ε
2
0

− inf
Q∈(Dε

0)c
I(Q|P )

≤ − inf
P∈M0∩D

ε
2
0

inf
Q∈(Dε

0)c
2d2
PL(Q,P ) (148)

Therefore, results (147), (148) and setting η̄(ε) ≤ min{η̄1(ε), ε2/2} establishes part (a) of the Corollary.
Furthermore, the same arguments as in (132)-(137) yield Λ̃1(η)∪Dε

0 ⊆ Ω1,n∪Dε
0, which implies Λ̃1(η) ⊆ Ω1,n

thus yielding part (b).
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