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Abstract

This paper proposes a novel positive nonparametric estimator of the conditional variance

function without reliance on logarithmic or other transformations. The estimator is based

on an empirical likelihood modification of conventional local level nonparametric regression

applied to squared mean regression residuals. The estimator is shown to be asymptotically

equivalent to the local linear estimator in the case of unbounded support but, unlike that

estimator, is restricted to be non-negative in finite samples. It is fully adaptive to the un-

known conditional mean function. Simulations are conducted to evaluate the finite sample

performance of the estimator. Two empirical applications are reported. One uses cross

section data and studies the relationship between occupational prestige and income. The

other uses time series data on Treasury bill rates to fit the total volatility function in a

continuous-time jump diffusion model.

Keywords: Conditional variance function; Empirical likelihood; Conditional heteroskedas-

ticity; Jump diffusion; Local linear estimator; Heteroskedastic nonparametric regression;

Volatility. (JEL Classification: C13; C14; C22.)

∗Corresponding author. University of Alberta School of Business and Department of Economics, Texas A&M
University, College Station. Address: Business Building 3-40N, University of Alberta School of Business, Edmon-
ton, Alberta, T6G 2R6, Canada. E-mail: keli.xu@ualberta.ca.

†Yale University, University of Auckland, University of Southampton, and Singapore Management University.
Address: Department of Economics, Cowles Foundation for Research in Economics, Yale University, P. O. Box
208281, New Haven, CT 06520, USA. E-mail: peter.phillips@yale.edu.

1



1 Introduction

Conditional variance estimation is important in many applications. It is crucial in inference for

the parameters in the conditional mean function. For example, to test for the causal treatment

effect in a regression discontinuity design (Hahn et al., 2001, Porter, 2003, Imbens and Lemieux,

2008), the conditional variances of the outcome variable on the running variable at the thresh-

old have to be estimated. In a time series context, Hansen (1995) obtained GLS-type efficient

estimators of parameters in the mean function by incorporating nonparametric conditional vari-

ance estimates; see also Xu and Phillips (2008). Conditional variance estimation is also a key

intermediate step in estimating some economic or financial quantities of practical importance.

In a recent study, Martins-Filho and Yao (2007) proposed a nonparametric method to estimate

a production frontier function starting from estimation of the conditional variance of the output

given the input. Shang (2008) provided a two-stage value-at-risk forecasting procedure in a non-

parametric ARCH framework based on preliminary estimation of the volatility function (viz. the

conditional standard deviation) and then quantile estimation using the de-volatized residuals.

When the conditional variance is modeled nonparametrically, as in the applications mentioned

above, the estimation methods usually recommended are based on local polynomial estimation,

among which local linear estimation is especially popular due to its attractive properties. The

theoretical foundation for this approach has been developed by Ruppert et al. (1997) and Fan

and Yao (1998), inter alia. However, one drawback of the local linear variance estimator, which

does not arise for the local linear mean function estimator, is that it may give negative values

in finite samples which makes volatility estimation impossible. Negative variance estimates may

occur for large or small smoothing bandwidths and are frequently observed at design points

around which observations are relatively sparse. In consequence, it is commonly recommended

in applications to use the theoretically less satisfactory local constant estimator (also known as

Nadaraya-Watson estimator) when fitting the variance function (Chen and Qin, 2002, Porter,

2003).

This paper proposes a new volatility function estimator that is almost asymptotically equiva-

lent to the local linear estimator but is guaranteed to be non-negative. It has the same asymptotic
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bias and variance as those of the local linear estimator when the explanatory variable has un-

bounded support. Such equivalence is important since it renders efficiency arguments along the

lines of of Fan (1992) for the local linear estimator extendable to this new procedure. It is also

convenient in that the mean squared error (MSE) or integrated MSE based selection criteria for

a global or local variable smoothing bandwidth for the local linear estimator continue to apply.

The new volatility function estimator is based on the idea of adjusting the conventional local con-

stant estimator by minimally tilting the empirical distribution subject to a discrete bias-reducing

moment condition satisfied by the local linear estimator (Hall and Presnell, 1999). The resultant

re-weighted local constant estimator, or tilted estimator, inherits the non-negativity restriction

of the variance function from the usual local constant estimator, while preserving the superior

properties of bias, boundary correction and minimax efficiency of the local linear estimator. We

also show adaptiveness of this procedure to the unknown mean function, i.e. it estimates the

volatility function as efficiently as if the true mean function were known.

Ziegelmann (2002) recently obtained a non-negative nonparametric volatility estimator by

fitting an exponential function locally (rather than a linear function as in the local linear estima-

tor) within the general locally parametric nonparametric framework of Hjort and Jones (1996);

see also Yu and Jones (2004) in a Gaussian iid setting. This estimator is not equivalent to the

local linear estimator and it essentially estimates the logarithm of the variance rather than the

variance itself, thus leading to an additional bias term.

The remainder of the paper is organized as follows. Section 2.1 describes the nonparamet-

ric heteroskedastic regression model, the framework within which the re-weighted local constant

volatility estimator is introduced in Section 2.2. The asymptotic distributional theory is devel-

oped for stationary and mixing time series in Section 2.3 for both interior and boundary points,

and a consistent estimator of the asymptotic variance is suggested. In Section 3 the finite sample

performance of the proposed estimator is evaluated via simulations. Section 4 reports two empir-

ical applications. One studies the volatility of the relationship between income and occupational

prestige in Canada using cross section data. The other estimates the total volatility of 90-day

Treasury bill yields in the context of a continuous time jump diffusion model. Section 5 concludes
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and discusses some extensions. Proofs are collected in the appendix.

2 Main Results

2.1 The heteroskedastic regression model

We focus on the following nonparametric heteroskedastic regression model

Yt = m(Xt) + σ(Xt)εt, (1)

where {Xt, Yt, t = 1, · · · , n} are two stationary random processes, and {εt} are innovations

satisfying E(εt|Xt) = 0, Var(εt|Xt) = 1. The conditional mean function m(x) = E(Yt|Xt = x)

and the conditional variance function σ2(x) = Var(Yt|Xt = x) > 0 are left unspecified and are

the focus of statistical investigation. The reader should keep in mind that the volatility estimator

proposed below applies straightforwardly to the zero mean case, e.g. the nonparametric ARCH

model when Xt = Yt−1 (Pagan and Schwert, 1990, Pagan and Hong, 1991). Many nonparametric

economic models can be cast within the framework (1); e.g. see Martins-Filho and Yao (2007)

for a recent application in stochastic frontier analysis and Hahn et al. (2001), Porter (2003)

and Imbens and Lemieux (2008) in the analysis of causal treatment effects. As is well known,

the model (1) is also of fundamental importance in financial econometrics due to its ability to

allow for nonlinearity and conditional heteroskedasticity in financial time series modeling. It can

further be regarded as the discretized version of the nonparametric continuous-time diffusion

model which is commonly used in financial derivative pricing (Ait-Sahalia, 1996, Stanton, 1997,

Bandi and Phillips, 2003).

2.2 The conditional variance estimator

Our nonparametric estimator of the conditional variance function σ2(·) is residual-based, which

relies on first-stage nonparametric estimation of the conditional mean function m(·). Let W (·)

and K(·) be kernel functions and h0 = h0(n), h = h(n) > 0 be smoothing bandwidths which

4



determine model complexity. As is widely recommended in both the theoretical and empirical

literatures, we can fit m(·) using the local linear method which solves

(bγ1,bγ2) = arg min
(γ1,γ2)

nX
t=1

[Yt − γ1 − γ2(Xt − x)]2W ((Xt − x)/h0) (2)

leading to the estimate bm(x) = bγ1 of m(x) at the spatial point x. Application of different

bandwidths in mean and variance estimation has been stressed by several authors (Ruppert et

al., 1997, and Yu and Jones, 2004), and we use h0 for mean regression estimation and h for

variance estimation in what follows.

To estimate the conditional variance function σ2(x), instead of fitting the squared residuals

br2t = [Yt − bm(Xt)]
2 to Xt using a second-stage local linear smoother as in Ruppert et al. (1997)

and Fan and Yao (1998), we consider the following re-weighted local constant estimator

bσ2(x) = Pn
t=1 bwt(x)K((Xt − x)/h)br2tPn
t=1 bwt(x)K((Xt − x)/h)

, (3)

where bwt(x) solves the constrained optimization problem

{bw1(x), · · · , bwn(x)} = arg min
{w1(x),··· ,wn(x)}

ln(w1(x), · · · , wn(x)), (4)

with ln(w1(x), · · · , wn(x)) = −2
Pn

t=1 log(nwt(x)), subject to restrictions

wt(x) ≥ 0,
nX
t=1

wt(x) = 1, (5)

and
nX
t=1

wt(x)(Xt − x)Kh(Xt − x) = 0, (6)

whereKh(·) = K(·/h)/h. The discrete moment condition (6) is satisfied by the local linear weights

wLL
t (x) = Γn,2− (Xt− x)Γn,1 with Γn,j =

Pn
t=1(Xt− x)jKh(Xt− x), j = 1, 2, and is regarded as

the key condition for local linear estimation to achieve bias reduction; see Fan and Gijbels (1996).

Without (6), the optimization problem (4)-(5) is solved by the uniform weights wUNIF
t (x) = 1/n
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for all t which reduces (3) to the usual local constant estimator (or Nadaraya-Watson estimator).

So the re-weighted local constant estimator (3) effectively minimizes the distance to the local

constant estimator while preserving the bias-reducing condition of the local linear estimator.

The distance used here is Kullback—Leibler divergence, although other distance measures can

also be used (Cressie and Read, 1984), and has important connection to the empirical likelihood

approach of Owen (2001).

Computationally the re-weighted estimator is very easy to use in practice as (4) can be solved

by any empirical likelihood maximization program. To be specific, the weights bwt(x) in (3) can

be obtained via the Lagrange multiplier method, viz.

bwt(x) = (n[1 + λ(Xt − x)Kh(Xt − x)])−1, (7)

where the Lagrange multiplier λ satisfies

nX
t=1

[1 + λ(Xt − x)Kh(Xt − x)]−1(Xt − x)Kh(Xt − x) = 0. (8)

The re-weighting idea is due to the intentionally biased bootstrap of Hall and Presnell (1999).

It is especially powerful for conditional variance estimation since the associated estimates always

fall within the range [min1≤t≤n br2t ,max1≤t≤n br2t ], thereby ensuring non-negative results. The re-
striction in (6) is used so that the original estimator (viz. the local constant estimator) is modified

to the least extent needed to maintain the attractive properties of the local linear estimator. We

can expand (6) so that the resulting variance estimator satisfies other desirable properties. For

example, we can additionally impose the constraint d[bσ2(x)]/dx ≥ 0 or d2[bσ2(x)]/dx2 ≥ 0 to

ensure monotonicity (Hall and Huang, 2001) or convexity of the estimated variance function as

may be needed.

The re-weighting idea has been fruitfully used in other contexts, e.g. by Hall et al. (1999)

for monotone estimation of the conditional distribution function that is within the range [0, 1],

by Cai (2002) for monotone conditional quantile estimation, and by Xu (2010) for non-negative

diffusion functional estimation in a continuous-time nonstationary diffusion model.
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2.3 Limit theory

The asymptotic distribution of the re-weighted local constant estimator of the conditional vari-

ance function is given in the following theorem for both interior and boundary spatial points. Let

f(·) be the stationary density function of Xt and σ̈2(z) = d2[σ2(z)]/dz2. Assume that the kernel

functions W (·) and K(·) are symmetric density functions each with bounded support [−1, 1].

Theorem 1. (i) Suppose that x is such that x ± h is in the support of f(x). Under the

assumptions stated in the appendix, as n→∞,

√
nh[bσ2(x)− σ2(x)− h2K1σ̈

2(x)/2]
d→ N

µ
0, K2σ

4(x)ξ2(x)/f(x)

¶
, (9)

where K1 =
R 1
−1 u

2K(u)du, K2 =
R 1
−1K

2(u)du, ξ2(x) = E[(ε2t−1)2|X = x] with εt = σ−1(Xt)[Yt−

m(Xt)].

(ii) Suppose that f(x) has bounded support [a, b] and c is a constant such that 0 < c < 1.

Under the assumptions stated in the appendix, as n→∞,

√
nh

µbσ2(a+ ch)− σ2(a+ ch)− h2K1σ̈
2(a+ ch)/[2K0]

¶
d→ N

µ
0, K2σ

4(a)ξ2(a)/[K
2

0f(a)]

¶
,

(10)

where K0 =
R c
−1[1−λcuK(u)]−1K(u)du, K1 =

R c
−1[1−λcuK(u)]−1u2K(u)du, K2 =

R c
−1[K(u)/(1−

λcuK(u))]
2du and λc satisfies Lc(λc) = 0 with

Lc(λ) =

Z c

−1
uK(u)/[1− λuK(u)]du,

and

√
nh

µbσ2(b− ch)− σ2(b− ch)− h2K1σ̈
2(b− ch)/[2K0]

¶
d→ N

µ
0,K2σ

4(b)ξ2(b)/[K2
0f(b)]

¶
,

where K0 =
R 1
c
[1−λcuK(u)]

−1K(u)du, K1 =
R 1
c
[1−λcuK(u)]

−1u2K(u)du, K2 =
R 1
c
[K(u)/(1−
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λcuK(u))]
2du and λc satisfies Lc(λc) = 0 with

Lc(λ) =

Z 1

c

uK(u)/[1− λuK(u)]du.

Remark 1. In Theorem 1, part (i) is concerned with interior points when f has bounded

support or the case where f has unbounded support, and part (ii) is concerned with boundary

points. The theorem shows that the re-weighted local constant variance estimator is asymptot-

ically equivalent to the local linear variance estimator (c.f. Ruppert et al., 1997, Fan and Yao,

1998) except for different scale constants for the bias and the variance at boundary points. The

condition (6) is effective in removing a bias term of order Op(h
2) in the interior and a bias term

of order Op(h) on the boundary of the local constant estimator. Thus, no additional boundary

correction is needed. The following heuristic argument helps to elucidate this feature. The bias of

bσ2(x) is approximately accounted for by the term (nh)−1Pn
t=1 pt(x)K((Xt−x)/h)[σ2(Xt)−σ2(x)],

where pt(x) = [
Pn

t=1 bwt(x)K((Xt − x)/h)]−1 bwt(x); c.f. the proof of Theorem 1 in the appendix.

By a second-order Taylor expansion of σ2(Xt) at x and the discrete moment condition (6),

(nh)−1
nX
t=1

pt(x)K((Xt − x)/h)[σ2(Xt)− σ2(x)]

= (nh)−1
nX
t=1

pt(x)K((Xt − x)/h)[σ̈2(x)(Xt − x)2/2] + smaller order terms

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
h2f(x)K1σ̈

2(x)/2 + op(h
2), if x is in the interior;

h2f(a)K1σ̈
2(a+ ch)/2 + op(h

2), if x is on the left boundary;

h2f(b)K1σ̈
2(b− ch)/2 + op(h

2), if x is on the right boundary.

The bias term of order Op(h) is removed by the condition (6) for any n both at interior and

boundary points just as for the local linear smoother. It is essentially different from the conven-

tional local constant estimator for which the bias term of order Op(h) is eliminated in the limit

via symmetry of the kernel function for interior points, but does not vanish for boundary points.

Remark 2. The constants λc and λc decrease with c and approach zero when c → 1.
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Theorem 1 (ii) also holds for an interior point x by noting that K0 = K0 = 1, K1 = K1 = K1

and K2 = K2 = K2 when c ∈ [1, (b− a)/2h].

Remark 3. When the true mean function m(·) is known, the re-weighted local constant

conditional variance estimator follows from Cai (2001) with the outcome variable [Yt −m(Xt)]
2

since σ2(x) = E[(Yt−m(Xt))
2|Xt = x]. Theorem 1 shows that the residual-based estimator bσ2(·)

which does not require m(·) to be known is asymptotically as efficient as the oracle estimator,

which assumes knowledge of m(·). This adaptiveness property to the unknown conditional mean

function is also shared by other residual-based variance estimators (see Fan and Yao, 1998,

Ziegelmann, 2002).

Remark 4. Implementation of the re-weighted volatility estimator involves determination

of the amount of smoothing, i.e. selection of the smoothing bandwidth h. Theorem 1 shows that

minimization of the asymptotic MSE (mean squared error) or IMSE (integrated MSE) leads to an

optimal local bandwidth or global bandwidth of the form h = ςn−1/5, where ς involves nuisance

parameters f(x), σ2(x), σ̈2(x), ξ2(x) and constants related to the kernel function. A feasible

bandwidth is usually obtained by estimating ς, e.g. via parametric fitting (the rule of thumb),

iterations (the plug-in method) or cross validation. An attractive feature of the re-weighted

estimator is that given its asymptotic equivalence to the local linear estimator as implied by

Theorem 1, the asymptotic MSE or IMSE based bandwidth selection criteria for the local linear

estimator (see Fan and Yao, 1996) generally also apply to the re-weighted estimator.

Remark 5. Härdle and Tsybakov (1997) studied a volatility estimator for the model (1)

assuming Xt = Yt−1 based on differencing the local polynomial estimators of the second condi-

tional moment and the squared first conditional moment. Their estimator is not non-negative

and, as noted by Fan and Yao (1998), is not fully adaptive to the mean function. Ziegel-

mann’s (2002) non-negative residual-based local exponential (LE) variance estimator is obtained

as bσ2LE = exp(bψ1), where (bψ1, bψ2) = argmin(ψ1,ψ2)Pn
t=1[br2t−exp(ψ1+ψ2(Xt−x))]2K((Xt−x)/h).

It belongs to a wide class of local nonlinear estimators (Hjort and Jones, 1996, Gozalo and Linton,

2000). To ensure non-negativity of the resultant variance estimator, the procedure effectively

approximates the logarithm of the variance (instead of the variance itself) locally by a linear
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function, thereby introducing an extra bias term.

Remark 6. The asymptotic variance of bσ2(x) can be consistently estimated both at interior
and boundary points, thereby allowing construction of consistent point-wise confidence intervals.

Let bΩ(x) = bf−2(x)bV (x) where bV (x) = nh−1
Pn

t=1K
2((Xt − x)/h)[br2t − bσ2(x)]2 and bf(x) =

h−1
Pn

t=1K((Xt − x)/h).

Theorem 2. (i) Under the conditions of Theorem 1 (i), as n→∞, bΩ(x) p→ K2σ
4(x)ξ2(x)/f(x);

(ii) Under the conditions of Theorem 1 (ii), as n→∞, bΩ(a+ ch)
p→ K2σ

4(a)ξ2(a)/[K
2

0f(a)]

and bΩ(b− ch)
p→ K2σ

4(b)ξ2(b)/[K2
0f(b)].

The following two sections provide several numerical examples illustrating the use of the new

volatility estimator with simulated and real data. In all applications, the Epanechnikov function

K(u) = 0.75(1− u2)I(−1,1) is used for both kernels W and K, and the bandwidth parameter in

mean estimation h0 is selected by least squares cross-validation.

3 Simulations

The finite-sample performance of the proposed estimator is assessed in the following simple time

series setting. We generate n+ 201 observations from the AR-ARCH model:

Yt = φYt−1 +
q
ρ0 + ρ1Y

2
t−1εt (11)

with (ρ0, ρ1) = (1, 0.4), Y1 = 0, φ ∈ {0, 0.4} and εt
iid∼ N (0, 1). The first 200 observations are

dropped to eliminate initialization effects, so the sample size is n. The heteroskedastic regression

model (1) is then estimated with the generated data. Note that (11) is different from the

ARCH(1) model no matter what the true value of φ is since it allows for uncertainty in the mean

function. Figures 1 and 2 focus on the case when φ = 0. We plot the averages, 10% quantiles

and 90% quantiles (over 1000 replications) of the re-weighted local constant (RLC) conditional
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variance estimates (when n = 100) at 37 equally spaced spatial points from x = −1.8 to x = 1.8,

a range that is wide enough to cover most spatial points the time series visits. For comparison,

the corresponding results for the local constant (LC), local linear (LL) and Ziegelmann’s (2002)

local exponential (LE) estimators are also plotted together with the true conditional variance

function. In the two figures the smoothing bandwidths h = 0.7 and 1.0 are chosen to illustrate the

bandwidth effects. The common bandwidth effects are observed; a larger bandwidth generally

reduces the variability but increases the bias of the estimate.

A striking finding is that the RLC estimator has overall performance very close to that of the

LL estimator for all spatial points considered in terms of both bias and variability. This is not

surprising given the asymptotic similarity (and equivalence for unbounded support) of the two

methods. But in particular samples, negative LL variance estimates are found (with frequencies

listed in Table 1) mainly at spatial points with sparse neighborhoods or when a small bandwidth

is used in which cases the estimates fluctuate widely. In such cases, of course, the volatility

estimates are effectively useless. On the other hand, the LC and LE estimators generally suffer

from large biases, especially at spatial points in whose neighborhoods there are relatively fewer

observations, e.g. x with |x| ≥ 1.

We also consider the case when there is serial correlation in Yt, i.e. φ = 0.4, and we find

the results reported above are quite robust to weak serial correlation. Table 2 reports the mean

squared errors (MSEs) of the RLC volatility estimates when the data-dependent bandwidths

are used, i.e. h = αbsn−1/5, where bs is the standard deviation of the sample and α ∈ {1, 2, 3}.

The MSEs decrease when the sample size increases, and they are larger for the design point

x = 1.5 where the process sparsely visits than those for x = 0 where the process visits more

frequently. The bandwidth with α = 2 appears to work best in this setting and generally gives

the smallest MSEs compared with the other two bandwidths. The distribution of the values of

the data dependent bandwidths is also described in Table 2. For example, the median of the

bandwidths (over 1000 replications) when n = 100 and α = 2 is 0.559× 2 = 1. 118. Table 2 also

reports the deviation of the MSE of the RLC volatility estimate from that of the estimate based

on the true mean function m(x) = 0.4x. As the sample size increases, the deviation approaches

11



zero and the effects of estimating the unknown mean function on volatility estimation disappear

asymptotically, thereby confirming the adaptiveness property suggested by the limit theory.

Figures 1-2 and Table 1 about here

4 Empirical Applications

This Section provides two empirical examples to illustrate the usefulness of the proposed method-

ology. The first is a cross-section data application and the second involves financial time series.

4.1 Occupational Prestige vs. Income

Fox (2002) studied the relationship between occupational prestige and the average income of

Canadian occupations. The dataset is available in the car package of R (R Development Core

Team, 2010) named as Prestige. It consists of cross section observations for 102 occupations.

Prestige for each occupation is measured by the Pineo-Porter prestige score from a social survey.

Figure 3 (a) shows the scatterplot and a local linear mean fit with the bandwidth h0 = 5809

chosen via cross validation (Li and Racine, 2004, see also Li and Racine, 2007, p.93). It might

also be useful to provide variance estimates, e.g. for the construction of pointwise confidence

intervals for the mean function or some automatic bandwidth selection criteria.

Figure 3 (b) plots the squared mean regression residuals against the explanatory variable

(average income) and the fitted curves that give the functional conditional variance estimates

by the LC, LL and RLC methods. The fitted curves are calculated over 186 levels of average

incomes equally spaced from x = 711 to 19211. For illustration, we use the bandwidth h = 5000.

It is clear that the LL variance estimates are negative at small values of average incomes, and the

conventional LC estimates are always positive but suffer from large biases. The RLC estimates

proposed in this paper appear to provide a good compromise between these two estimates, and

evidently capture the declining variances in a reasonable way (being always positive) when the

level of average income is low. At moderate and high levels of average incomes where the data
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are relatively rich, the RLC variance estimates are very close to the local linear estimates, which

is not surprising given their first-order asymptotic similarity.

This example shows that bandwidth should be carefully selected to avoid the negativity

problem when the LL estimator is used to estimate variance. We also consider the estimated

integrated-MSE-based optimal bandwidth via rule of thumb (Fan and Gijbels, 1996, p.111) for

the LL and RLC variance estimators. It has value bhop = 1871. We find that this bandwidth

is too small and it gives wiggly estimated curves, which necessitates intervention on bandwidth

selection. Figure 4 shows the estimated curves when h = 2bhop. It poses no problem for the LL

estimator since the estimated curve is still above the zero line. Our empirical results show that

further increasing the bandwidth would induce negative variance estimates.

To study the sensitivity of various functional variance estimates to the smoothing parameter,

we estimate the conditional variance σ2(x) at two levels of average incomes x = 1000 and 6000

using 91 bandwidths equally spaced from h = 1000 to 10000 and the results are shown in Figure

5. At the boundary point x = 1000, negative estimates arising from the local linear fit occur

within the bandwidth range approximately (4000, 6000), which might reasonably be chosen by

empirical researchers. The RLC estimates generally lie between the LL and the conventional

LC estimates, and are apparently quite stable over various bandwidths. At the interior point

x = 6000, the three fitted values are much closer to each other, and the RLC and LL curves are

almost indistinguishable.

Figures 3-5 about here

4.2 Jump Diffusion Volatilities

The re-weighting idea developed in this paper can be also used for functional estimation of

continuous-time jump diffusions. Jump diffusion models are widely used in finance to account

for discontinuities in the sample path, and are more flexible than the single-factor or multi-factor

pure diffusion models in generating higher moments which match those typically observed in

financial time series (see, e.g. Bakshi et al., 1997, Pan, 2002, Johannes, 2004).

Our empirical application uses T = 54 years of daily secondary market quotes for 3-month
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T-bills from January 4, 1954 to March 13, 2008, containing n = 13538 observations, which are

plotted in Figure 6 (a). The dataset is available from Board of Governors of the Federal Reserve

System (http://research.stlouisfed.org/fred2). The spot rate rt is assumed to follow the jump

diffusion process

d log(rt) = µ(rt)dt+ σ(rt−)dWt + d(Σ
It
i=1Zi),

where rt− = lims↑t rs, Wt is a standard Brownian motion, It is a doubly stochastic point process

with stochastic intensity λ(rt) and Zi
iid∼ N (0, σ2z). We have assumed that the mean jump size

is zero without loss of generality. The four quantities of interest in estimation (i.e. the drift

function µ(r), the diffusion function σ2(r), the jump intensity λ(r), for interest rate level r,

and the jump variance σ2z) can be identified for a sufficiently small sampling interval ∆ by the

moments Mj(r) = E(log(rt+∆/rt)
j|rt = r)/∆ for j = 1, 2, 4, 6 using the following approximate

moment conditions:

M1(r) ' µ(r), M2(r) ' σ2(r) + λ(r)σ2z,

M4(r) ' 3λ(r)σ4z, M6(r) ' 15λ(r)σ6z.

We use local linear fitting to estimateM1(r), and apply the re-weighted local constant method

proposed in this paper to estimate the even-order moments M2(r), M4(r) and M6(r) to avoid

the occasional but unreasonable negative estimates that result from local linear fitting. The

estimates are denoted as cMj(r), j = 1, 2, 4, 6. Based on the daily data {ri∆, i = 1, · · · , n},

following Johannes (2004) we obtain the estimates step by step:

bσ2z = n−1
nX
i=1

cM6(ri∆)/[5cM4(ri∆)], bλ(r) = cM4(r)/(3bσ4z),
bσ2(r) = cM2(r)− bλ(r)bσ2z, bµ(r) = cM1(r).

The jump variance σ2z is first estimated by integrating the ratio of sixth-to-fourth moments

over the stationary density with the same bandwidth for the fourth and sixth moments h4 =

1.7bsT−1/5 = 2.1%, where bs is the standard deviation of the sample. The estimate bσ2z is 2.39×10−3.
14



Then, to estimate λ(r) we consider bandwidths h
(j)
4 = 1.2j · h4 (j = 0, 1, 2) in cM4(r). To

estimate σ2(r) we use the bandwidth h4 in computing cM4(r) (and therefore bλ(r)) and bandwidths
h
(j)
2 = 1.2jh2 (j = 0, 1, 2) in cM2(r), where h2 = 1.3bsT−1/5 = 1.7%. Lastly, µ(r) is estimated

by cM1(r) using the bandwidth h
(j)
1 = 1.2jh1, j = 0, 1, 2, where h1 = 2.8bsT−1/5 = 3.5%. We

characterize the bandwidths used in terms of the time span T (instead of the sample size n) since

the convergence rates of the cMj(r) depend on T (or, more generally, the local time process), as

shown by Bandi and Nguyen (2003). The scale constants chosen above are such that the resulting

bandwidths are close to the ones reported in empirical studies of US short rates dynamics.

The estimated curves bµ(r), bλ(r), bσ2(r) are plotted in Figure 6 (b), Figure 7 (a) and (b),
respectively. They are expected to have smaller biases than the estimates of Johannes (2004)

and Bandi and Nguyen (2003), which are based on local constant estimation of the four moments.

Figure 7 (b) also contains the estimates (given in the higher three lines) of the total volatility

function σ2(r)+λ(r)σ2z. The implication is that for most short rate levels the diffusion components

explain about two thirds of the total volatility and the jump components account for about a

third. This can be compared with Johannes (2004) who used a subset of our data and found

that jumps typically generate more than half the volatility of interest rate changes and Eraker

et al. (2003) who found that jumps in equity indices explain 10-15 percent of return volatility.

It is noteworthy that limit theories for the local linear and the re-weighted local constant

estimators of the four moments in the jump diffusion model have not yet become available in the

literature. We conjecture that they can be studied along the lines of Bandi and Nguyen (2003).

For the pure diffusion models (where σ2z = 0), the asymptotic theories for these two methods

were studied by Moloche (2001), Fan and Zhang (2003) and Xu (2010).

Figures 6-7 about here
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5 Concluding Remarks

This paper provides a new nonparametric approach to estimating the conditional variance func-

tion based on maximization of the empirical likelihood subject to a bias-reducing moment re-

striction. The method is fully adaptive for the unknown mean function. The construction of the

estimator does not depend on the error distribution, and it is applicable in quite general time

series and cross section settings. The new estimator preserves the appealing design adaptive,

bias and automatic boundary correction properties of the local linear estimator, and it is guar-

anteed to be non-negative in finite samples. Numerical examples suggest that the new estimator

performs well in finite samples and is a promising competitor in estimating conditional variance

functions.

The proposed method can be extended to the case when Xt is multivariate, e.g. in the

nonparametric AR-ARCH(p) model, Yt = m(Yt−1, · · · , Yt−p) + σ(Yt−1, · · · , Yt−p)εt with Xt =

(Yt−1, · · · , Yt−p)0. In such cases, the constrained optimization (4) is conducted under multiple

restrictions. To be specific, suppose we have p covariates, and Xt = (X1,t, · · · ,Xp,t)
0, x =

(x1, · · · , xp)0 are p×1 vectors. The RLC variance estimator is defined as bσ2(x) = [Pn
t=1 bwt(x)Kh(Xt−

x)]−1
Pn

t=1 bwt(x)Kh(Xt−x)br2t where brt are residuals of a p−dimensional nonparametric mean fit
(e.g. a local linear fit) and Kh(Xt − x) = h−pΠp

i=1K((Xi,t − xi)/h) are product kernel weights.

Different bandwidths and kernels could be used for each covariate but we assume they are the

same for expositional simplicity. The weights bwt(x) are such that (4) is solved subject to (5) and

the p-dimensional restrictions

nX
t=1

wt(x)(Xt − x)Kh(Xt − x) = 0. (12)

The local linear weights satisfy (12) and they take the form, e.g. when p = 2, wLL
t (x) =eΓ1 − eΓ2(X1,t − x1) + eΓ3(X2,t − x2) with

eΓ1 = det
⎛⎜⎝eΓ(2,0) eΓ(1,1)eΓ(1,1) eΓ(0,2)

⎞⎟⎠ , eΓ2 = det
⎛⎜⎝eΓ(1,0) eΓ(1,1)eΓ(0,1) eΓ(0,2)

⎞⎟⎠ , eΓ3 = det
⎛⎜⎝eΓ(1,0) eΓ(2,0)eΓ(0,1) eΓ(1,1)

⎞⎟⎠ ,
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where det (A) denotes the determinant of the matrix A and eΓ(i,j) = Σn
t=1(X1,t − x1)

j(X2,t −

x2)
kKh(Xt−x) for j, k = 0, 1, 2. Just as in the univariate case, the re-weighted estimator selects

the weights such that the good bias properties of the local linear estimator are preserved and the

resulting variance estimate is always non-negative.

However, the fully nonparametric volatility estimators above suffer from slow convergence

rates when p is large and difficulties of interpretation. A popular alternative that can achieve the

one-dimensional convergence rate and imposes reasonably weak assumptions on the specification

of the volatility function is the additive model, e.g. the additive ARCH model considered by

Kim and Linton (2004), where σ(Yt−1, · · · , Yt−p) =
q
θ + σ21(Yt−1) + · · ·+ σ2p(Yt−p).The functions

σ21(·), · · · , σ2p(·) can be estimated, e.g. by the method of marginal integration or backfitting, which

essentially involves iterative univariate smoothing. Again, the re-weighted local constant method

proposed here is expected to be a promising alternative to the local linear estimator which is

commonly recommended.
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Appendix

This section provides proofs of Theorems 1 and 2. To derive the asymptotic distribution of bσ2(x),
we make the following assumptions.

Assumptions

(i) For a given design point x, the functions f(x) > 0, σ2(x) > 0, E(Y 3|X = x) and

17



E(Y 4|X = x) are continuous at x, and m̈(x) = d2m(x)/dx2 and σ̈2(x) = d2(σ2(x))/dx2 are

uniformly continuous on an open set containing x;

(ii) E|Y |4(1+δ) <∞ for some δ ≥ 0;

(iii) There exists a constant M < ∞ such that |g1,t(y1, y2|x1, x2)| ≤ M for all t ≥ 2, where

g1,t(y1, y2|x1, x2) is the conditional density of Y1 and Yt given X1 = x1 and Xt = x2;

(iv) The kernel functions W (·) and K(·) are symmetric density functions each with a bounded

support [−1, 1]. A Lipschitz condition is satisfied by each of functions f(·), W (·) and K(·);

(v) The process (Xt, Yt) is strictly stationary and absolutely regular1 with mixing coefficients

β(j) satisfying
P∞

j=1 j
2βδ/(1+δ)(j) <∞, where δ is the same as in (ii);

(vi). As n→∞, h, h0 → 0 and lim infn→∞ nh4 > 0, lim infn→∞ nh04 > 0.

Proof of Theorem 1. Note that the weights bwt(x) in the RLC estimator as in (3) has the

computationally convenient representation in (7). For simplicity we write bwt(x) as wt in what

follows. Note that brt = Yt − bm(Xt) = [m(Xt)− bm(Xt)] + σ(Xt)εt, so

br2t = σ2(Xt)ε
2
t + 2σ(Xt)εt[m(Xt)− bm(Xt)] + [m(Xt)− bm(Xt)]

2. (13)

Thus by (3)

bσ2(x)− σ2(x) = Σ4j=1Nj, (14)

where

N1 =

Pn
t=1wtK((Xt − x)/h)σ2(Xt)(ε

2
t − 1)Pn

t=1wtK((Xt − x)/h)
, N2 =

Pn
t=1wtK((Xt − x)/h)[σ2(Xt)− σ2(x)]Pn

t=1wtK((Xt − x)/h)
,

N3 =
2
Pn

t=1wtK((Xt − x)/h)σ(Xt)εt[m(Xt)− bm(Xt)]Pn
t=1wtK((Xt − x)/h)

,

and

N4 =

Pn
t=1wtK((Xt − x)/h)[m(Xt)− bm(Xt)]

2Pn
t=1wtK((Xt − x)/h)

.

1See, e.g., Davidson (1994) (page 209) for the definition of an absolutely regular process.
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(i). Suppose that x is such that x± h is in the support of f(x). Since an absolutely regular

time series is α−mixing, Lemma A2 in Cai (2001) holds under our assumptions, i.e. λ =

−hK1f 0(x)
υ2f(x)

+Oa.s.(h
3), where υ2 =

R
u2K2(u)du, and

wt = n−1
µ
1− hK1f 0(x)

υ2f(x)
(Xt − x)Kh(Xt − x)

¶−1
(1 + op(1)), (15)

Consider the term N2 first. The denominator of N2 times 1/h is

h−1
nX
t=1

wtK((Xt − x)/h) = (nh)−1
nX
t=1

K((Xt − x)/h) + op(1)
p→ f(x), (16)

by (15) and an application of Birkhoff’s ergodic theorem (see, e.g., Shiryaev, 1996) since E[h−1K((Xt−

x)/h)] = h−1
R
K((u − x)/h)f(u)du → f(x) as h → 0 after a simple change of variables. By

Taylor expansion of σ2(Xt) at x and the discrete moment condition (6), the numerator of N2

times 1/h is

h−1
nX
t=1

wtK((Xt − x)/h)[σ2(Xt)− σ2(x)]

= h−1
nX
t=1

wtK((Xt − x)/h)[σ̈2(x)(Xt − x)2/2 + o((Xt − x)2)]

= h2f(x)K1σ̈
2(x)/2 + op(h

2), (17)

by (15) and the ergodic theorem. Combining (16) and (17) gives N2 = h2K1σ̈
2(x)/2 + op(h

2).

Noting (15) and (16), it follows from Fan and Yao (1998, the proof of Theorem 1, (b)-(d)) that
√
nhN1

d→ N
µ
0,K2σ

4(x)ξ2(x)/f(x)

¶
, and N3, N4 = op(h

2 + h02). Hence by (14) Theorem (i)

holds.

(ii). Suppose that f(x) has a bounded support [a, b] and x = a+ ch (0 < c < 1). By Lemma

A.3 in Cai (2001),

wt =
1

n(1− λc(Xt − a− ch)Kh(Xt − a− ch))
(1 + op(1)).
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Consider the term N2 in (14) first. Note that

h−1
nX
t=1

wtK((Xt−a−ch)/h) = (nh)−1
nX
t=1

K((Xt − a− ch)/h)

1− λc(Xt − a− ch)Kh(Xt − a− ch)
+op(1)

p→ K0f(a),

(18)

by the ergodic theorem since

E

µ
1
h

K((Xt−a−ch)/h)
1−λc(Xt−a−ch)Kh(Xt−a−ch)

¶
=

Z b

a

1

h

K((z − a− ch)/h)

1− λc(z − a− ch)Kh(z − a− ch)
f(z)dz

→
Z c

−1

K(u)du

1− λcuK(u)
f(a) = K0f(a),

as h→ 0 after a change of variables. By Taylor expansion of σ2(Xt) at a+ ch and the discrete

moment condition (6),

h−1
nX
t=1

wtK((Xt − a− ch)/h)[σ2(Xt)− σ2(a+ ch)]

= h−1
nX
t=1

wtK((Xt − a− ch)/h)[σ̈2(a+ ch)(Xt − a− ch)2/2 + o((Xt − a− ch)2)]

= h2K1f(a)σ̈
2(a+ ch)/2 + op(h

2),

again by the ergodic theorem. Thus, by (18) N2 = [2K0]
−1h2K1σ̈

2(a + ch) + op(h
2). Following

the proof of Theorem 1 in Fan and Yao (1998), it can be shown that N3, N4 = op(h
2 + h02) and

N1 is asymptotically normal with mean zero and variance 1/nh times (noting (18))

1

hK
2

0f
2(a)

E

µ
nwtK((Xt − a− ch)/h)σ2(Xt)(ε

2
t − 1)

¶2
=

1

hK
2

0f
2(a)

E

µ
1

(1−λc(Xt−a−ch)Kh(Xt−a−ch))K((Xt − a− ch)/h)σ2(Xt)(ε
2
t − 1)

¶2
+ op(1)

→ 1

K
2

0f
2(a)

Z c

−1

µ
K(u)

1−λcuK(u)

¶2
du · σ4(a)ξ2(a)f(a) = K2σ

4(a)ξ2(a)

K
2

0f(a)
.

So the result desired follows by (14). The case when x = b − ch can be proved similarly. The

proof of (ii) is complete.
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Proof of Theorem 2. (i). We write bV (x) = bV1(x) + bV2(x) + bV3(x), where
bV1(x) = h−1n

nX
t=1

K2((Xt − x)/h)br4t , bV2(x) = −2h−1nbσ2(x) nX
t=1

K2((Xt − x)/h)br2t ,
bV3(x) = h−1nbσ4(x) nX

t=1

K2((Xt − x)/h).

Consider the term bV1(x) first. By (13), we have
br4t = σ4(Xt)ε

4
t + 4σ

2(Xt)ε
2
t [m(Xt)− bm(Xt)]

2 + [m(Xt)− bm(Xt)]
4 + 4σ3(Xt)ε

3
t ·

[m(Xt)− bm(Xt)] + 2σ
2(Xt)ε

2
t [m(Xt)− bm(Xt)]

2 + 4σ(Xt)εt[m(Xt)− bm(Xt)]
3,

and denote bV1(x) =P6
j=1

bV1j, where
bV11 = nh−1

nX
t=1

K2((Xt − x)/h)σ4(Xt)ε
4
t ,

bV12 = 4nh−1
nX
t=1

K2((Xt − x)/h)σ2(Xt)ε
2
t [m(Xt)− bm(Xt)]

2

bV13 = nh−1
nX
t=1

K2((Xt − x)/h)[m(Xt)− bm(Xt)]
4,

bV14 = 4nh−1
nX
t=1

K2((Xt − x)/h)σ3(Xt)ε
3
t [m(Xt)− bm(Xt)],

bV15 = 2nh−1
nX
t=1

K2((Xt − x)/h)σ2(Xt)ε
2
t [m(Xt)− bm(Xt)]

2 ,

and bV16 = 4nh−1
nX
t=1

K2((Xt − x)/h)σ(Xt)εt[m(Xt)− bm(Xt)]
3.

Similar to the analysis of the term N1 in the proof of Theorem 1 (i), we have

n
√
nh−1/2

nX
t=1

K2((Xt − x)/h)σ4(Xt)(ε
4
t − (ξ2(x) + 1)) = Op(1)

provided that

E[K2((Xt − x)/h)σ4(Xt)(ε
4
t − (ξ2(x) + 1))]2+δ/2 <∞,
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which holds by assumption. Thus bV11 = eV11 + op(1), where

eV11 = (ξ2(x) + 1)nh−1 nX
t=1

K2((Xt − x)/h)σ4(Xt)
p→ (ξ2(x) + 1)K2σ

4(x)f(x)

by the ergodic theorem. It follows from Fan and Yao (1998) and the proof of Theorem 1 (c)) thatbV1j = op(1) for j = 2, · · · , 6. Thus, bV1(x) p→ (ξ2(x) + 1)K2σ
4(x)f(x). Similarly using (13) we can

show that bV2(x) p→ −2K2σ
4(x)f(x). Lastly bV3(x) p→ K2σ

4(x)f(x). So bV (x) p→ ξ2(x)K2σ
4(x)f(x)

and Theorem 2 (i) follows from (16).

(ii). These can be proved as in (i) using the arguments in the proof of Theorem 1 (ii).
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Figure 1: The means, 10% quantiles and 90% quantiles of the local constant (LC), local linear
(LL), re-weighted local constant (RLC) and local exponential (LE) estimates of the volatility
function σ2(x) = 1 + 0.4x2 in the AR-ARCH model (11) when φ = 0 over 1000 replications,
using the smoothing bandwidth h = 0.7.
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Figure 2: The means, 10% quantiles and 90% quantiles of the local constant (LC), local linear
(LL), re-weighted local constant (RLC) and local exponential (LE) estimates of the volatility
function σ2(x) = 1 + 0.4x2 in the AR-ARCH model (11) when φ = 0 over 1000 replications,
using the smoothing bandwidth h = 1.0.
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Table 1: Frequencies of negative local linear conditional variance estimates in the AR-ARCH
model (11) when φ = 0 over 1000 replications (zeros for blank cells).

Bandwidth h = 0.7 h = 0.6 h = 0.5 h = 0.4 h = 0.3 h = 0.2

x = 1.8 3 4 6 13 19 61
x = 1.6 2 3 3 16 39
x = 1.4 1 4 18
x = 1.2 6

x = 1.1 1 8
x = 1.0 8
x = 0.9 6
x = 0.8 2

Table 2: Mean squared errors (MSEs) of the RLC volatility estimates and the adaptiveness to
the unknown mean function in the AR-ARCH model (11) when φ = 0.4. [Dev. stands for the
deviation of the MSE of the RLC volatility estimate from that of the estimate based on the true
mean function]

x = 0 x = 1.5

α \ n 50 100 200 400 800 50 100 200 400 800

RLC α = 1 0.375 0.279 0.208 0.141 0.118 1.129 0.815 0.648 0.419 0.319
Dev. 0.039 0.012 0.005 0.002 0.001 0.122 0.102 0.017 0.021 0.001

RLC α = 2 0.317 0.230 0.172 0.133 0.093 1.020 0.758 0.563 0.369 0.254
Dev. 0.066 0.032 0.020 0.010 0.005 0.181 0.112 0.036 0.021 0.012

RLC α = 3 0.355 0.277 0.212 0.158 0.125 1.054 0.787 0.546 0.385 0.269
Dev. 0.119 0.059 0.031 0.017 0.009 0.379 0.286 0.164 0.045 0.021

Value of data-dependent h
when α=1

Mean 0.661 0.587 0.514 0.449 0.394
Std. 0.162 0.142 0.080 0.052 0.037
Median 0.630 0.559 0.501 0.441 0.389
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(b) Estimates of σ2(x) (h=5000)
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Figure 3: Prestige vs. Income: (a) Local linear estimation of the conditional mean function
using the bandwidth h0 = 5809; (b) Estimates of the conditional variance function based on the
squared residuals using the local linear (LL), re-weighted local constant (RLC) and conventional
local constant (LC) methods with the bandwidth h = 5000.
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Figure 4: Prestige vs. Income: Estimates of the conditional variance function based on the
squared residuals using the local linear (LL) and re-weighted local constant (RLC) methods with
the bandwidth h = 2bhop = 3742.
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Figure 5: Prestige vs. Income: estimates of the conditional variance function over 91 bandwidths
using LL, RLC and LC methods when the design point (a) x = 1000; (b) x = 6000.
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Figure 6: (a) The time series of daily 3-month Treasury bill rates (secondary market rates) from
January 4, 1954 to March 13, 2008; (b) the local linear estimators of the drift function using
three bandwidths 3.5%, 4.2% and 5.0%.
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Figure 7: (a) The re-weighted local constant estimators of the jump intensity using three band-
widths; (b) the re-weighted local constant estimators of the second moment cM2(r) (the higher
three lines) and the diffusion coefficient over three bandwidths respectively.
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