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Abstract

This paper overviews maximum likelihood and Gaussian methods of estimating contin-
uous time models used in �nance. Since the exact likelihood can be constructed only in
special cases, much attention has been devoted to the development of methods designed to
approximate the likelihood. These approaches range from crude Euler-type approximations
and higher order stochastic Taylor series expansions to more complex polynomial-based ex-
pansions and in�ll approximations to the likelihood based on a continuous time data record.
The methods are discussed, their properties are outlined and their relative �nite sample
performance compared in a simulation experiment with the nonlinear CIR di¤usion model,
which is popular in empirical �nance. Bias correction methods are also considered and par-
ticular attention is given to jackknife and indirect inference estimators. The latter retains
the good asymptotic properties of ML estimation while removing �nite sample bias. This
method demonstrates superior performance in �nite samples.
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1 Introduction

Continuous time models have provided a convenient mathematical framework for the develop-
ment of �nancial economic theory (e.g., Merton, 1990), asset pricing, and the modern �eld of
mathematical �nance that relies heavily on stochastic processes (Karatzas and Shreve, 2003).
These models now dominate the option pricing literature, which has mushroomed over the last
three decades from a single paper (Black and Scholes, 1973) to a vast subdiscipline with strong
practical applications in the �nance industry. Correspondingly, the econometric analysis of
continuous time models has received a great deal attention in �nancial econometrics, providing
a basis from which these models may be brought to data and used in practical applications.
Much of the focus is on the econometric estimation of continuous time di¤usion equations.
Estimation not only provides parameter estimates which may be used directly in the pric-
ing of �nancial assets and derivatives but also serves as a stage in the empirical analysis of
speci�cation and comparative diagnostics.

Many models that are used to describe �nancial time series are written in terms of a
continuous time di¤usion X (t) that satis�es the stochastic di¤erential equation

dX(t) = �(X(t); �)dt+ �(X(t); �)dB(t); (1)

where B(t) is a standard Brownian motion, �(X(t); �) is some speci�ed di¤usion function,
�(X(t); �) is a given drift function, and � is a vector of unknown parameters. This class of
parametric model has been widely used to characterize the temporal dynamics of �nancial
variables, including stock prices, interest rates, and exchange rates.

It has been argued that when the model is correctly speci�ed, the preferred choice of esti-
mator and preferred basis for inference should be maximum likelihood (ML) �see, for example,
Aït-Sahalia (2002) and Durham and Gallant (2002). Undoubtedly, the main justi�cation for
the use of the ML method lies in its desirable asymptotic properties, particularly its consis-
tency and asymptotic e¢ ciency under conditions of correct speci�cation. In pursuit of this
goal, various ML and Gaussian (that is, ML under Gaussian assumptions) methods have been
proposed. Some of these methods involve discrete approximations, others are exact (or exact
under certain limiting conditions on the approximation). Some are computationally inexpen-
sive while others are computationally intensive. Some are limited to particular formulations,
others have much wide applicability.

The purpose of the present chapter is to review this literature and overview the many
di¤erent approaches to estimating continuous time models of the form given by (1) using ML
and Gaussian methods. In the course of this overview, we shall discuss the existing methods of
estimation and their merits and drawbacks. A simple Monte Carlo experiment is designed to

1



reveal the �nite sample performance of some of the most commonly used estimation methods.
The model chosen for the experiment is a simple example of (1) that involves a square root
di¤usion function. This model is popular in applied work for modeling short term interest rates
and is known in the term structure literature as the Cox-Ingersoll-Ross or CIR model (see (8)
below). One of the principal �ndings from this simulation experiment is that all ML methods,
including �exact�methods, have serious �nite sample estimation bias in the mean reversion
parameter. This bias is signi�cant even where the number of observations is as large as 500
or 1000. It is therefore important in ML/Gaussian estimation to take such bias e¤ects into
account. We therefore consider two estimation bias reduction techniques �the jackknife method
and the indirect inference estimation �which may be used in conjunction with ML, Gaussian
or various approximate ML methods. The indirect inference estimator demonstrates markedly
superior results in terms of bias reduction and overall mean squared error in comparison with
all other methods.

The chapter is organized as follows. Section 2 outlines the exact ML method, Section 3
and Section 4 review the literature on implementing ML/Gaussian methods in continuous time
�nancial models and the practicalities of implementation. Section 5 reports a Monte Carlo
study designed to investigate and compare the performance of some ML/Gaussian estimation
methods for the CIR model. Section 6 reviews two bias reduction methods and examines their
performance in the CIR model example. Section 7 brie�y outlines some issues associated with
extensions of ML/Gaussian procedures for multivariate models, and Section 8 concludes.

2 Exact ML Methods

2.1 ML based on the Transition Density

Assume the data X(t) is recorded discretely at points (h; 2h; � � � ; Nh(� T )) in the time interval
[0; T ], where h is the discrete interval of observation of X(t) and T is the time span of the
data. The full sequence of N observations is fXh; X2h; � � � ; XNhg. If X(t) is conceptualized
for modeling purposes as annualized data which is observed discretely at monthly (weekly or
daily) intervals, then h = 1=12 (1=52 or 1=252). It is, of course, most convenient to assume
that equi-spaced sampling observations are available and this assumption is most common in
the literature, although it can be and sometimes is relaxed.

Many estimation methods are based on the construction of a likelihood function derived
from the transition probability density of the discretely sampled data. This approach is ex-
plained as follows. Suppose p(XihjX(i�1)h; �) is the transition probability density. The Markov
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property of model (1) implies the following log-likelihood function for the discrete sample1

`TD(�) = ln(p(XihjX(i�1)h; �)): (2)

The resulting estimator will be consistent, asymptotically normally distributed and asymp-
totically e¢ cient under the usual regularity conditions for maximum likelihood estimation in
(stationary) dynamic models (Hall and Heyde, 1980; Billingsley, 1961). In nonstationary,
nonergodic cases, the limit theory is no longer asymptotically normal and there are several
possibilities, including various unit root, local to unity, mildly explosive and explosive limit
distributions (Phillips, 1987, Chan and Wei, 1988; Phillips, 1991; Phillips and Magdalinos,
2006).

To perform exact ML estimation, one needs a closed form expression for `TD(�) and hence
ln(p(XihjX(i�1)h; �)). Unfortunately, only in rare cases, do the transition density and log
likelihood component ln(p(XihjX(i�1)h; �)) have closed form analytical expressions. All other
cases require numerical techniques or analytic or simulation-based approximants.

The following list reviews the continuous time models used in �nance that have closed-form
expressions for the transition density.

1. Geometric Brownian Motion:

dX(t) = �X(t) dt+ �X(t) dB(t): (3)

Black and Scholes (1973) used this process to describe the movement of stock prices in
their development of the stock option price formula. Since

d lnX(t) =
1

X (t)
dX (t)� (dX (t))

2

2X (t)2
= �dt+ �dB(t)� 1

2
�2dt;

the transformed process lnX(t) follows the linear di¤usion

d lnX(t) =

�
�� �

2

2

�
dt+ � dB(t): (4)

As a result, XihjX(i�1)h � LN((�� �2

2 )h+ ln(X(i�1)h); �
2h), where LN denotes the log-

normal distribution.
1Our focus in the present discussion is on the usefulness of the transition density for estimation purposes.

But we note that the transition density is needed and used for many other applications, such as for pricing
derivatives and for obtaining interval and density forecasts.
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2. Ornstein-Uhlenbeck (OU) process (or Vasicek model):

dX(t) = �(��X(t))dt+ � dB(t): (5)

Vasicek (1977) used this process to describe the movement of short term interest rates.
Phillips (1972) showed that the exact discrete model corresponding to (5) is given by

Xih = e
��hX(i�1)h + �

�
1� e��h

�
+ �

q
(1� e�2�h)=(2�)�i; (6)

where �i � i.i.d. N(0; 1). Phillips (1972) also developed an asymptotic theory for nonlin-
ear least squares/ML estimates of the parameters in a multivariate version of (5) using
the exact discrete time model (6), showing consistency, asymptotic normality and e¢ -
ciency under stationarity assumptions (� > 0 in the univariate case here). The transition
density for the Vasicek model follows directly from (6) and is

XihjX(i�1)h � N
�
�(1� e��h) + e��hX(i�1)h; �2(1� e�2�h)=(2�)

�
: (7)

3. Square-root (or Cox-Ingersoll-Ross) model:

dX(t) = �(��X(t))dt+ �
p
X(t) dB(t): (8)

Cox, Ingersoll and Ross (1985, CIR hereafter) also used this process to describe move-
ments in short term interest rates. The exact discrete model corresponding to (8) is given
by

Xih = e
��hX(i�1)h + �

�
1� e��h

�
+ �

Z ih

(i�1)h
e��(ih�s)

p
X(s)dB (s) : (9)

When 2��=�2 � 1, X is distributed over the positive half line. Feller (1952) showed that
the transition density of the square root model is given by

XihjX(i�1)h = ce�u�v(v=u)q=2Iq(2(uv)1=2) (10)

where c = 2�=(�2(1 � e��h)); u = cX(i�1)he��h; v = cXih; q = 2��=�2 � 1, and Iq(�) is
the modi�ed Bessel function of the �rst kind of order q.

4. Inverse square-root model:

dX(t) = �(��X(t))X(t)dt+ �X1:5(t) dB(t): (11)

Ahn and Gao (1999) again used this process to model short term interest rates. When
�; � > 0, X is distributed over the positive half line. Ahn and Gao (1999) derived the
transition density of the inverse square root model as

XihjX(i�1)h = c�1e�u�v(v)q=2+2u�q=2Iq(2(uv)1=2) (12)

where c = 2��=(�2(1� e���h)); u = ce���h=X(i�1)h; v = c=Xih; q = 2(�+ �2)=�2 � 1.
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2.2 ML based on the Continuous Record Likelihood

If a continuous sample path of the process X(t) were recorded over the interval [0; T ], direct
ML estimation would be possible based on the continuous path likelihood. This likelihood is
very useful in providing a basis for the so-called continuous record or in�ll likelihood function
and in�ll asymptotics in which a discrete record becomes continuous by a process of in�lling
as the sampling interval h! 0: Some of these in�ll techniques based on the continuous record
likelihood are discussed later in Section 4. Since �nancial data are now being collected on a
second by second and tick by tick basis, this construction is becoming much more important.

When X(t) is observed continuously, a log-likelihood function for the continuous record
fX (t)gTt=0 may be obtained directly from the Radon Nikodym (RN) derivative of the relevant
probability measures. The RN derivative produces the relevant probability density and can be
regarded as a change of measure among the absolutely continuous probability measures, the
calculation being facilitated by the Girsanov theorem (e.g., Karatzas and Shreve, 2003). The
approach is convenient and applies quite generally to continuous time models with �exible drift
and di¤usion functions.

In the stochastic process literature the quadratic variation or square bracket process is well
known to play an important role in the study of stochastic di¤erential equations. In the case
of equation (1), the square bracket process of X (t) has the explicit form

[X]T =

Z T

0
(dX(t))2 =

Z T

0
�2(X(t); �)dt; (13)

which is a continuously di¤erentiable increasing function. In fact, we have d[X]t = �(X(t); �)2dt:
In consequence, when a continuous sample path of the process X(t) is available, the quadratic
variation of X provides a perfect estimate of the di¤usion function and hence the parameters
on which it depends, provided these are identi�able in �2(X(t); �). Thus, with the availability
of a continuous record, we can e¤ectively assume the di¤usion term (i.e., �(X(t); �) = �(X(t))
is known and so this component does not involve any unknown parameters. It follows that the
exact continuous record or in�ll log-likelihood can be constructed via the Girsanov theorem
(e.g., Liptser and Shiryaev, 2000) as

`IF (�) =

Z T

0

�(X(t); �)

�2(X(t))
dX(t)� 1

2

Z T

0

�2(X(t); �)

�2(X(t))
dt: (14)

In this likelihood, the parameter � enters via the drift function �(X(t); �): Lánska (1979)
established the consistency and asymptotic normality of the continuous record ML estimator
of � when T !1 under certain regularity conditions.
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To illustrate the approach, consider the following OU process,

dX(t) = �X(t)dt+ �0dB(t);

where �0 is known and � is the only unknown parameter. The exact log-likelihood in this case
is given by

`IF (�) =

Z T

0

�X(t)

�20
dX(t)� 1

2

Z T

0

�2X2(t)

�20
dt;

and maximizing the log-likelihood function immediately gives rise to the following ML estimator
of �:

�̂ =

�Z T

0
X2(t)dt

��1 Z T

0
X(t)dX(t) (15)

This estimator is analogous in form to the ML/OLS estimator of the autoregressive coe¢ cient
in the discrete time Gaussian autoregression

Xt = �Xt�1 + �t; �t � i.i.d. N(0; 1) (16)

viz., �̂ =
�Pn

t=1X
2
t�1
��1Pn

t=1XtXt�1: It is also interesting to observe that when � = 0 (15)
has the same form as the limit distribution of the (discrete time) autoregressive coe¢ cient
estimator when � = 1 in (16). These connections with unit root limit theory are explored in
Phillips (1987).

In practice, of course, a continuous record of fX (t)gTt=0 is not available and estimators
such as (15) are infeasible. On the other hand, as the sampling interval h shrinks, discrete
data may be used to produce increasingly good approximations to the quadratic variation (13),
the continuous record likelihood (14) and estimators such as (15). These procedures may be
interpreted as in�ll likelihood methods in that they replicate continuous record methods by
in�lling the sample record as h! 0:

3 Approximate ML Methods Based on Transition Densities

Except for a few special cases such as those discussed earlier, the transition density does not
have a closed-form analytic expression. As a result, the exact ML method discussed in Section
2.1 is not generally applicable. To address this complication, many alternative approaches have
been developed. The methods involve approximating the transition densities, the model itself
or the likelihood function. This section reviews these methods.
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3.1 The Euler Approximation and Re�nements

The Euler scheme approximates a general di¤usion process such as equation (1) by the following
discrete time model

Xih = X(i�1)h + �(X(i�1)h; �)h+ �(X(i�1)h; �)
p
h�i; (17)

where �i � i.i.d. N(0; 1). The transition density for the Euler discrete time model has the
following closed form expression:

XihjX(i�1)h � N
�
X(i�1)h + �(X(i�1)h; �)h; �

2(X(i�1)h; �)h
�
: (18)

For the Vasicek model, the Euler discrete approximation is of the form

Xih = ��h+ (1� �h)X(i�1)h + �N(0; h): (19)

Comparing the approximation (19) with the exact discrete time model (6), we see that ��h, 1�
�h and �2h replace �(1�e��h), e��h, and �2(1�e�2�h)=(2�); respectively. These replacements
may be motivated by considering the �rst order term in the following Taylor expansions:

�(1� e��h) = ��h+O(h2); (20)

e��h = 1� �h+O(h2); (21)

�2(1� e�2�h)=(2�) = �2h+O(h2): (22)

Obviously, when h is small, the Euler scheme should provide a good approximation to the
exact discrete time model. However, when h is large, the Euler approximation can be poor.
To illustrate magnitude of the approximation error, �rst consider the case where � = 1 and
h = 1=12; in which case e��h is 0.92 whereas 1� �h is 0.9167 and the approximation is good.
But if � = 1 and h = 1, then e��h is 0.3679 whereas 1 � �h is 0. These comparisons suggest
that the Euler discretization o¤ers a good approximation to the exact discrete time model for
daily or higher frequencies but not for annual or lower frequencies. The bias introduced by this
discrete time approximation is called the discretization bias.

The advantages of the Euler method include the ease with which the likelihood function
is obtained, the low computational cost, and the wide range of its applicability. The biggest
problem with the procedure is that when h is �xed the estimator is inconsistent (Merton, 1980;
Lo, 1988). The magnitude of the inconsistency can be analyzed, using the methods of Sargan
(1974), in terms of the observation interval h. Lo (1988) illustrated the size of inconsistency in
the context of model (3).
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A closely related discretization method, suggested by Bergstrom (1966) and Houthakker
and Taylor (1966), is based on integrating the stochastic di¤erential equation and using the
following trapezoidal rule approximationZ ih

(i�1)h
�(X(t); �)dt =

h

2

�
�(Xih; �) + �(X(i�1)h; �)

	
:

For the OU process the corresponding discrete approximate model is given by

Xih �X(i�1)h = ���
�h

2

�
Xih +X(i�1)h

�
+ �N(0; h); (23)

which involves the current period observation Xih on both sides of the equation. Solving (23)
we obtain

Xih =
��h�
1 + �h

2

� + 1� �h
2

1 + �h
2

X(i�1)h +
��

1 + �h
2

�N(0; h)
= ��h+ (1� �h)X(i�1)h + �N(0; h) +O

�
h3=2

�
;

so that the Bergstrom approximation is equivalent to the Euler approximation to O (h) : In the
multivariate case, the Bergstrom approximation leads to a non-recursive simultaneous equations
model approximation to a system of recursive stochastic di¤erential equations. The resulting
system may be estimated by a variety of simultaneous equations estimators, such as instrumen-
tal variables, for example by using lagged X values as instruments. Again, the magnitude of
the inconsistency may be analyzed in terms of the observation interval h; as in Sargan (1974)
who showed the asymptotic bias in the estimates to be typically of O

�
h2
�
.

There are a number of ways to reduce the discretization bias induced by the Euler approxi-
mation. Before we review these re�nements, it is important to emphasize that the aim of these
re�nements is simply bias reduction.

Elerian (1998) suggests using the scheme proposed by Milstein (1978). The idea is to take
a second order term in a stochastic Taylor series expansion to re�ne the Euler approximation
(17). We proceed as follows. Integrating (1) we haveZ ih

(i�1)h
dX(t) =

Z ih

(i�1)h
�(X(t); �)dt+

Z ih

(i�1)h
�(X(t); �)dB(t); (24)

and by stochastic di¤erentiation we have

d�(X(t); �) = �0(X(t); �)dX (t) +
1

2
�00(X(t); �) (dX (t))2

= �0(X(t); �)dX (t) +
1

2
�00(X(t); �)�2(X(t); �)dt;
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and
d�(X(t); �) = �0(X(t); �)dX (t) +

1

2
�00(X(t); �)�2(X(t); �)dt;

so that

�(X (t) ; �) = �(X(i�1)h; �) +

Z t

(i�1)h
�0(X(s); �)dX (s) +

1

2

Z t

(i�1)h
�00(X(s); �)�2(X(s); �)ds

= �(X(i�1)h; �) +

Z t

(i�1)h
�0(X(s); �)�(X(s); �)ds+

1

2

Z t

(i�1)h
�00(X(s); �)�2(X(s); �)ds

+

Z t

(i�1)h
�0(X(s); �)�(X(s); �)dB(s);

and

�(X (t) ; �) = �(X(i�1)h; �) +

Z t

(i�1)h
�0(X(s); �)�(X(s); �)ds+

1

2

Z t

(i�1)h
�00(X(s); �)�2(X(s); �)ds

+

Z t

(i�1)h
�0(X(s); �)�(X(s); �)dB(s);

with �0(X(i�1)h; �) = [@�(X; �)=@X]X=X(i�1)h : Substituting these expressions into (24) we
obtain

Xih �X(i�1)h = �(X(i�1)h; �)h+ �(X(i�1)h; �)

Z ih

(i�1)h
dB (t)

+

Z ih

(i�1)h

Z t

(i�1)h
�0(X(s); �)�(X(s); �)dB(s)dB (t) +R; (25)

where R is a remainder of smaller order. Upon further use of the Ito formula on the penultimate
term of (25), we obtain the following re�nement of the Euler approximation

Xih �X(i�1)h ' �(X(i�1)h; �)h+ �(X(i�1)h; �)

Z ih

(i�1)h
dB (t) +

�0(X(i�1)h; �)�(X(i�1)h; �)

Z ih

(i�1)h

Z t

(i�1)h
dB(s)dB (t) ;
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The multiple stochastic integral has the following reductionZ ih

(i�1)h

Z t

(i�1)h
dB(s)dB (t) =

Z ih

(i�1)h

�
B(t)�B(i�1)h

�
dB (t)

=

Z ih

(i�1)h
B(t)dB (t)�B(i�1)h

�
Bih �B(i�1)h

�
=

1

2

n�
B2ih �B2(i�1)h

�
� h
o
�B(i�1)h

�
Bih �B(i�1)h

�
=

1

2

n�
Bih �B(i�1)h

�2 � ho ;
Then the re�ned Euler approximation can be written as

Xih �X(i�1)h ' �(X(i�1)h; �)h+ �(X(i�1)h; �)
�
Bih �B(i�1)h

�
+�0(X(i�1)h; �)�(X(i�1)h; �)

1

2

n�
Bih �B(i�1)h

�2 � ho
=

�
�(X(i�1)h; �)�

1

2
�0(X(i�1)h; �)�(X(i�1)h; �)

�
h+ �(X(i�1)h; �)

�
Bih �B(i�1)h

�
+
1

2
�0(X(i�1)h; �)�(X(i�1)h; �)

�
Bih �B(i�1)h

�2
The approach to such re�nements is now very well developed in the numerical analysis literature
and higher order developments are possible - see Kloeden and Platen (1999) for an extensive
review.

It is convenient to write Bih � B(i�1)h =
p
h�i where �i is standard Gaussian. Then, the

Milstein approximation to model (1) produces the following discrete time model:

Xih = X(i�1)h + �(X(i�1)h; �)h� g(X(i�1)h; �)h+ �(X(i�1)h; �)
p
h�i + g(X(i�1)h; �)h�

2
i ; (26)

where
g(X(i�1)h; �) =

1

2
�0(X(i�1)h; �)�(X(i�1)h; �):

While Elerian (1998) used the Milstein scheme in connection with a simulation based approach,
Tse, Zhang and Yu (2004) used the Milstein scheme in a Bayesian context. Both papers
document some improvement from the Milstein scheme over the Euler scheme.

Kessler (1997) advocated approximating the transition density using a Gaussian density
whose conditional mean and variance are obtained using higher order Taylor expansions. For
example, the second-order approximation leads to the following discrete time model:

Xih = �̂(X(i�1)h; �) + �̂(X(i�1)h; �)�i; (27)
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where

�̂(X(i�1)h; �) = X(i�1)h + �(X(i�1)h; �)h+ 
�(X(i�1)h; �)�

0(X(i�1)h; �) +
�2(X(i�1)h; �)�

00(X(i�1)h; �)

2

!
h

2

and

�̂2(X(i�1)h; �) = X2
(i�1)h +

�
2�(X(i�1)h; �)X(i�1)h + �

2(X(i�1)h; �)
�
h

= f2�(X(i�1)h; �)(2�0(X(i�1)h; �)X(i�1)h + �(X(i�1)h; �)
+�(X(i�1)h; �)�

0(X(i�1)h; �)) + �
2(X(i�1)h; �)�

[�00(X(i�1)h; �)X(i�1)h + 2�(X(i�1)h; �) + (�
0(X(i�1)h; �))

2

+�(X(i�1)h; �)�
0(X(i�1)h; �)]g

h2

2
� �̂2(X(i�1)h; �):

Nowman (1997) suggested an approach which assumes that the conditional volatility re-
mains unchanged over the unit intervals, [(i� 1)h; ih), i = 1; 2:::; N: In particular, he approxi-
mates the model:

dX(t) = �(��X(t))dt+ �(X(t); �)dB(t) (28)

by
dX(t) = �(��X(t))dt+ �(X(i�1)h; �)dB(t); (i� 1)h � t < ih: (29)

It is known from Phillips (1972) and Bergstrom (1984) that the exact discrete model of (29)
has the form

Xih = e
��hX(i�1)h + �

�
1� e��h

�
+ �(X(i�1)h; �)

q
(1� e�2�h)=(2�)�i; (30)

where �i � i.i.d. N(0; 1). With this approximation, the Gaussian ML method can be used
to estimate equation (30) directly. This method also extends in a straightforward way to
multivariate systems. The Nowman procedure can be understood as applying the Euler scheme
to the di¤usion term over the unit interval. Compared with the Euler scheme where the
approximation is introduced to both the drift function and the di¤usion function, the Nowman
method can be expected to reduce some of the discretization bias, as the treatment of the drift
term does not involve an approximation at least in systems with linear drift.

Nowman�s method is related to the local linearization method proposed by Shoji and Ozaki
(1997, 1998) for estimating di¤usion processes with a constant di¤usion function and a possible
nonlinear drift function, that is

dX(t) = �(X(t); �)dt+ �dB(t): (31)

11



While Nowman approximates the nonlinear di¤usion term, Shoji and Ozaki (1998) approximate
the drift term, both by a locally linear function. The local linearization method can be used to
estimate a di¤usion process with a nonlinear di¤usion function, provided that the process can
be �rst transformed to make the di¤usion function constant. This is achieved by the so-called
Lamperti transform which will be explained in detailed below.

While all these re�nements o¤er some improvements over the Euler method, with a �xed
h, all the estimators remain inconsistent. As indicated, the magnitude of the inconsistency or
bias may analyzed in terms of its order of magnitude as h ! 0: This appears only to have
been done by Sargan (1974), Phillips (1974) and Lo (1988) for linear systems and some special
cases.

3.2 Closed-form Approximations

The approaches reviewed above seek to approximate continuous time models by discrete time
models, the accuracy of the approximations depending on the sampling interval h. Alterna-
tively, one can use closed-form sequences to approximate the transition density itself, thereby
developing an approximation to the likelihood function. Two di¤erent approximation mecha-
nisms have been proposed in the literature. One is based on Hermite polynomial expansions
whereas the other is based on the saddlepoint approximation.

3.2.1 Hermite Expansions

This approach was developed in Aït-Sahalia (2002) and illustrated in Aït-Sahalia (1999). Before
obtaining the closed-form expansions, a Lamperti transform (mentioned earlier) is performed
on the continuous time model so that the di¤usion function becomes a constant. The transfor-
mation has the form Y (t) = G(X(t)); where G0(x) = 1=�(x; �): The transformation is variance
stabilizing and leads to another di¤usion Y (t) ; which by Ito�s lemma can be shown to satisfy
the stochastic di¤erential equation

dY (t) = �Y (Y (t); �)dt+ dB(t); (32)

where

�Y (Y (t); �) =
�(G�1(Y ); �)

�(G�1(Y ); �)
� 1
2
�0(G�1(Y ); �):

Based on a Hermite polynomial expansion of the transition density p(YihjY(i�1)h; �) around
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the normal distribution, one gets

p(YihjY(i�1)h; �) � h�1=2�
�
Yih � Y(i�1)h

h1=2

�
exp

 Z Yih

Y(i�1)h

�Y (!; �)d!

!
KX
k=0

ck(YihjY(i�1)h; �)
hk

k!
;

(33)
where �(�) is the standard normal density function, c0(YihjY(i�1)h) = 1,

cj(YihjY(i�1)h) = j(Yih � Y(i�1)h)�j
Z Yih

Y(i�1)h

(! � Y(i�1)h)j�1f�Yih(!; �)cj�1(!jY(i�1)h; �)

+
1

2
@2cj�1(!jY(i�1)h; �)=@!2gd!; 8j � 1;

and
�Y (y; �) = �

1

2

�
�2Y (y; �) + @�Y (y; �)=@y

�
:

Under some regular conditions, Aït-Sahalia (2002) showed that when K !1, the Hermite
expansions (i.e., the right hand right in Equation (33)) approaches the true transition density.
When applied to various interest rate models, Aït-Sahalia (1999) has found negligible approx-
imation errors even for small values of K. Another advantage of this approach is that it is in
closed-form and hence numerically tractable.

As noted in Durham and Gallant (2002), there are some drawbacks in this method. First,
when the Lamperti transform is not feasible, the Hermite expansions are not possible. As a
result, some interesting continuous time models cannot be estimated by this approach. Second,
it is not clear how to apply the method to latent variable models.

3.2.2 Saddlepoint Approximations

The leading term in the Hermite expansions is normal whose tails may be too thin and the
shape too symmetric relative to the true transition density. When this is the case, a moderately
large value of K may be needed to ensure a good approximation of the Hermite expansion. An
alternative approach is to choose a better approximating distribution as the leading term. One
way to achieve this is to use a saddlepoint approximation.

The idea of the saddlepoint approximations is to approximate the conditional cumulant
generating function of the transition density by means of a suitable expansion, followed by a
careful choice of integration path in the integral that de�nes the transition density so that most
of the contribution to the integral comes from integrating in the immediate neighborhood of
a saddlepoint. The method was originally explored in statistics by Daniels (1953). Phillips
(1978) developed a saddlepoint approximation to the distribution of ML estimator of the co-
e¢ cient in discrete time �rst order autoregression, while Holly and Phillips (1979) proposed
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saddlepoint approximations for the distributions of k-class estimators of structural coe¢ cients
in simultaneous equation systems. There has since been a great deal of interest in the method
in statistics - see Reid (1988) and Field and Ronchetti (1990) for partial overviews of the �eld.
Aït-Sahalia and Yu (2006) proposed the use of saddlepoint approximations to the transition
density of continuous time models, which we now consider.

Let 'X(i�1)h(u; �) be the conditional characteristic function corresponding to the transition
density, viz.,

'X(i�1)h(u; �) = E[exp(uXihjX(i�1)h)]:

The conditional cumulant generating function is

KX(i�1)h(u; �) = ln('X(i�1)h(u; �)): (34)

The transition density has the following integral representation by Fourier inversion:

p(XihjX(i�1)h; �) =
1

2�

Z +1

�1
exp(�iXihu)'X(i�1)h(iu; �)du

=
1

2�

Z û+i1

û�i1
exp(�uXih)'X(i�1)h(u; �)du

=
1

2�

Z û+i1

û�i1
exp(KX(i�1)h(u; �)� uXih)du (35)

Applying a Taylor expansion to KX(i�1)h(u; �)� uXih around the saddlepoint û, one gets

KX(i�1)h(u; �)� uXih = KX(i�1)h(û; �)� ûXih �
1

2

@2KX(i�1)h(û; �)

@u2
�

�1
6

@3KX(i�1)h(û; �)

@u3
i�3 +O(�4):

Substituting this expansion to (34), one obtains a saddlepoint approximation to the integral,
which involves the single leading term of the form

exp(KX(i�1)h(û; �)� uXih)
p
2�

�
@2KX(i�1)h (û;�)

@u2

�1=2 ;
and higher order terms of small order. As shown in Daniels (1954), the method has the
advantage of producing a smaller relative error than Edgeworth and Hermite expansions.

When applying this method to transition densities for some continuous time models that
are widely used in �nance, Aït-Sahalia and Yu (2006) have found very small approximation
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errors. The method requires the saddlepoint to be analytically available or at least numerically
calculable, an approach considered in Phillips (1984) that widens the arena of potential appli-
cation. The saddlepoint method also requires the moment generating function of the transition
density to exist, so that all moments of the distribution must be �nite and heavy tailed transi-
tion distributions are therefore excluded. Multivariate extensions are possible using extensions
of the saddlepoint method to this case - see Phillips (1980,1984), Tierney and Kadane (1986)
and McCullagh (1987).

3.3 Simulated In�ll ML Methods

As explained above, the Euler scheme introduces discretization bias. The magnitude of the
bias is determined by h. When the sampling interval is arbitrarily small, the bias becomes
negligible. One way of making the sampling interval arbitrarily small is to partition the original
interval, say [(i�1)h; ih], so that the new subintervals are su¢ ciently �ne for the discretization
bias to be negligible. By making the subintervals smaller, one inevitably introduces latent
(that is, unobserved) variables between X(i�1)h and Xih. To obtain the required transition
density p(XihjX(i�1)h; �), these latent observations must be integrated out. When the partition
becomes �ner, the discretization bias is closer to 0 but the required integration becomes high
dimensional. We call this approach to bias reduction the simulated in�ll ML method.

To �x ideas, suppose M � 1 auxiliary points are introduced between (i� 1)h and ih, i.e.,

((i� 1)h �)�0; �1; � � � ; �M�1; �M (� ih):

The Markov property implies that

p(XihjX(i�1)h; �) =

Z
� � �
Z
p(X�M ; X�M�1 ; � � � ; X�1 jX�0 ; �)dX�1 � � � dX�M�1

=

Z
� � �
Z MY

m=1

p(X�m jX�m�1 ; �)dX�1 � � � dX�M�1 : (36)

The idea behind the simulated in�ll ML method is to approximate the densities p(X�m jX�m�1 ; �)
(step 1) and then evaluate the multidimensional integral using importance sampling techniques
(step 2). Among the class of simulated in�ll ML methods that have been suggested, Pedersen
(1995) is one of the earliest contributions.

Pedersen suggested approximating the latent transition densities p(X�m jX�m�1 ; �) based on
the Euler scheme and approximating the integral by drawing samples of (X�M�1 ; � � � ; X�1) via
simulations from the Euler scheme. That is, the importance sampling function is the mapping
from (�1; �2; � � � ; �M�1) 7! (X�1 ; X�2 ; � � � ; X�M�1) given by the Euler scheme:

X�m+1 = X�m + �(X�m ; �)h=M + �(X�m ; �)
p
h=M�m+1; m = 0; � � � ;M � 2;
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where (�1; �2; � � � ; �M�1) is a multivariate standard normal.
As noted in Durham and Gallant (2002), there are two sources of approximation error in

Pedersen�s method. One is the (albeit reduced) discretization bias in the Euler scheme. The
second is due to the Monte Carlo integration. These two errors can be further reduced by
increasing the number of latent in�ll points and the number of simulated paths, respectively.
However, the corresponding computational cost will inevitably be higher.

In order to reduce the discretization bias in step 1, Elerian (1998) suggested replacing
the Euler scheme with the Milstein scheme while Durham and Gallant advocated using a
variance stablization transformation, i.e., applying the Lamperti transform to the continuous
time model. Certainly, any method that reduces the discretization bias can be used. Regarding
step 2, Elerian et al (2001) argued that the importance sampling function of Pedersen ignores
the end-point information, X�M , and Durham and Gallant (2002) showed that Pedersen�s
importance function draws most samples from regions where the integrand has little mass.
Consequently, Pedersen�s method is simulation-ine¢ cient.

To improve the e¢ ciency of the importance sampler, Durham and Gallant (2002) considered
the following importance sampling function

X�m+1 = X�m +
Xih �X�m
ih� �m

h=M + �(X�m ; �)
p
h=M�m+1; m = 0; � � � ;M � 2;

where (�1; �2; � � � ; �M�1) is a multivariate standard normal. Loosing speaking, this is a Brownian
bridge because it starts from X(i�1)h at (i � 1)h and is conditioned to terminate with Xih at
ih.

Another importance sampling function proposed by Durham and Gallant (2002) is to draw
X�m+1 from the density N(X�m + ~�mh=M; ~�

2
mh=M) where ~�m = (X�M � X�m)=(ih � �m),

~�2m = �
2(X�m)(M �m� 1)=(M �m).

Elerian et al. (2001) proposed a more e¢ cient importance function which is based on the
following tied-down process:

p(X�1 ; � � � ; X�M�1 jX�0 ; X�M ):

In particular, they proposed using the Laplace approximation (c.f., Phillips, 1984; Tierney and
Kadane, 1986) to the tied-down process. That is, they used the distributional approximation
(X�1 ; � � � ; X�M�1) � N(x�;��) where

x� = argmax
x
ln p(X�1 ; � � � ; X�M�1 jX�0 ; X�M )

�2 = �
"
@2 ln p(X�

�1 ; � � � ; X
�
�M�1 jX�0 ; X�M )

@x0@x

#�1
;
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where x = (X�1 ; � � � ; X�M�1)
0.

Durham and Gallant (2002) compared the performance of these three importance functions
relative to Pedersen (1995) and found that all these methods deliver substantial improvements.

3.4 Other Approaches

3.4.1 Numerical ML

While the transition density may not have a closed-form expression for a continuous time model,
it must satisfy the Fokker-Planck-Komogorov (also known as �forward�) equation. That is,

@p

@t
=
1

2

@2p

@y2
:

where p(y; tjx; s) is the transition density. Solving the partial di¤erential equation numerically
at y = Xih; x = X(i�1)h yields the transition density. This is approach proposed by Lo (1988).
Similarly, one can numerically solve the �backward�equation

@p

@s
= �1

2

@2p

@x2
:

Obviously, solving these two partial di¤erential equations numerically can be computationally
demanding. Consequently, this approach has been little used in practical work.

3.4.2 An Exact Gaussian Method based on Time Changes

Yu and Phillips (2001) developed an exact Gaussian method to estimate continuous time models
with a linear drift function of the following form:

dX(t) = �(��X(t))dt+ �(X(t); �)dB(t); (37)

The approach is based on the idea that any continuous time martingale can be written as a
Brownian motion after a suitable time change. That is, when we adjust from chronological time
in a local martingale Mt to time based on the evolution of the quadratic variation process [M ]t
of M; we have the time change given by Tt = inffsj[M ]s > tg and the process transforms to
a Brownian motion (called DDS Brownian motion) so that Mt =W[M ]t

; where W is standard
Brownian motion.

To see how this approach can be used to estimate equation (37), �rst write (37) as

X(t+ �) = e��hX(t) + �
�
1� e��h

�
+

Z �

0
�e��(���)�(t+ �)dB(�);8� > 0: (38)
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De�ne M(�) = �
R �
0 e

��(���)�(t + �)dB(�), which is a continuous martingale with quadratic
variation process

[M ]� = �
2

Z �

0
e�2�(���)�2(t+ �)d� : (39)

To construct a DDS Brownian motion to represent M(�), one can construct a sequence of
positive numbers f�jg which deliver the required time changes. For any �xed constant a > 0,
let

�j+1 = inffsj[Mj ]s � ag = inffsj�2
Z s

0
e�2�(s��)�2(tj + �)d� � ag: (40)

Next, construct a sequence of time points ftjg using the iterations tj+1 = tj + �j+1 with t1
assumed to be 0. Evaluating equation (38) at ftjg, we have

Xtj+1 = �
�
1� e���j+1

�
+ e���j+1Xtj +M(�j+1): (41)

where M(�j+1) = W[M ]�j+1
= Wa � N(0; a) is the DDS Brownian motion. Hence, equation

(41) is an exact discrete model with Gaussian disturbances and can be estimated directly by
ML conditional on the sequence of time changes. Of course, since the new sequence of time
points ftjg is path dependent, this approach does not deliver the true likelihood. Also, since a
continuous record of observations is not available, the time points ftjg must be approximated.

4 Approximate ML Methods Based on the Continuous Record
Likelihood and Realized Volatility

While (1) is formulated in continuous time, the sample data are always collected at discrete
points in time or over discrete intervals in the case of �ow data. One may argue that for
highly liquid �nancial assets, the sampled data are so frequently observed as to be nearly
continuously available. This is especially true for some tick-by-tick data. Unfortunately, at the
highest frequencies, continuous time models such as that given by (1) are often bad descriptions
of reality. One reason for the discrepancy is the presence of market microstructure noise, due
to trading frictions, bid-ask bounces, recording errors and other anomalies. As a result of these
noise e¤ects, the exact ML method based on the continuous record likelihood that was reviewed
in Section 2.2 is not applicable.

An alternative approach that is available in such situations was developed in Phillips and
Yu (2005c) and involves a two-step procedure to estimate the underlying continuous time model
that makes use of the empirical quadratic variation process. To explain the method, suppose
the model has the form

dX(t) = �(X(t); �1)dt+ �(X(t); �2)dB(t); (42)
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Note that in this speci�cation the vector of parameters �2 in the di¤usion function is separated
from the parameter vector, �1; that appears in the drift function. The reason for this distinction
will become clear below.

In the �rst step, Phillips and Yu (2005c) propose to estimate parameters in the di¤usion
function from the empirical quadratic variation process or so-called realized volatility. The ap-
proach is justi�ed by the fact that realized volatility is a natural consistent estimate of quadratic
variation and, with certain modi�cations, can be made consistent even in the presence of mi-
crostructure noise e¤ects. Also, realized volatility has convenient distributional characteristics
that are determined asymptotically by (functional) central limit theory, as derived by Jacod
(1994) and Barndor¤-Nielsen and Shephard (2002).

To proceed, assume that Xt is observed at the following times

t = h; 2h; � � � ;Mh(= T

K
)| {z }; (M + 1)h; � � � ; 2Mh(= 2T

K
)| {z }; � � � ; nh(= T );

where n = KM with K a �xed and positive integer, T is the time span of the data, h is
the sampling frequency, and M = O(n). Phillips and Yu constructed the non-overlapping K
subsamples

((k � 1)M + 1)h; � � � ; kMh; where k = 1; � � � ;K;

so that each sub-sample has M observations over the interval ((k � 1) TK ; k
T
K ]. For example,

if ten years of weekly observed data are available and we split the data into ten blocks, then
T = 10, h = 1=52, M = 52, K = 10. The total number of observations is 520 and the number
of observations contained in each block is 52.

As h! 0, n = T
h !1 and M !1;

MhX
i=2

(X(k�1)Mh+ih �X(k�1)Mh+(i�1)h)
2 p! [X]k T

K
� [X](k�1) T

K
; (43)

and

ln(
PM
i=2(X(k�1)M+ih �X(k�1)M+(i�1)h)

2 � ln([X]k T
K
� [X](k�1) T

K
)

sk

d! N(0; 1); (44)

where

sk = min

(s
r2k

(
PMh
i=2(X(k�1)M+ih �X(k�1)M+(i�1)h)2)2

;
2

M

)
; (45)
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for k = 1; � � � ;K, and [X]T is the quadratic variation of X which can be consistently estimated
by the empirical counterpart [Xh]T de�ned as

[Xh]T =
nX
i=2

(Xih �X(i�1)h)2:

The limit (43) follows by virtue of the de�nition of quadratic variation. The central limit
theorem (CLT) (44) is based on the asymptotic theory of Barndor¤-Nielsen and Shephard
(2005), which involves a �nite sample correction (45) on some important earlier limit theory
contributions made by Jacod (1994) and Barndor¤-Nielsen and Shephard (2002).

Based on the CLT (44), �2 can be estimated in the �rst stage by running a (nonlinear) least
squares regression of the standardized realized volatility

ln
�PM

i=2(X(k�1)M+ih �X(k�1)M+(i�1)h)
2
�

sk
(46)

on the standardized di¤usion function

ln
�
[X]k T

K
� [X](k�1) T

K

�
sk

=

ln

�R k T
K

(k�1) T
K

�2 (Xt; �2) dt

�
rk

(47)

'
ln
�PM

i=2 �
2
�
X(k�1)Mh+(i�1)h; �2

�
h
�

rk
(48)

for k = 1; � � � ;K. This produces a consistent estimate �̂2 of �2: In the second stage, the
approximate continuous record or in�ll log-likelihood function (AIF) is maximized with respect
to �1

`AIF (�1) =
nX
i=2

�(X(i�1)h; �1)

�2(X(i�1)h; �̂2)
(Xih �X(i�1)h)�

h

2

nX
i=2

�2(X(i�1)h; �1)

�2(X(i�1)h; �̂2)
: (49)

The procedure is discussed more fully in Phillips and Yu (2005c).
To illustrate the two-stage method, we consider the following speci�c models.

1. Vasicek model (5): Since there is only one parameter in the di¤usion function, one
could choose M = 1. As a result, the �rst stage estimation gives the following estimator
for �,

�̂ =

r
[Xh]T
T

; (50)
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and the approximate in�ll log-likelihood function is given by

`AIF (�; �) =
nX
i=2

�(��X(i�1)h)(Xih �X(i�1)h)�
h

2

nX
i=2

�2(��X(i�1)h)2: (51)

2. Square root model (8): With M = 1, the �rst stage estimation gives the following
estimator for �.

�̂ =

s
[Xh]T

h
Pnh
i=1X(i�1)h

: (52)

The approximate in�ll log-likelihood function is given by

`AIF (�; �) =

nX
i=2

�(��X(i�1)h)
�̂2X(i�1)h

(Xih �X(i�1)h)�
h

2

nX
i=2

�2(��X(i�1)h)2

�̂2X(i�1)h
: (53)

5 Monte Carlo Simulations

This section reports the results of a Monte Carlo experiment designed to compare the per-
formance of the various ML estimation methods reviewed in the previous sections. In the
experiment, the true generating process is assumed to be the CIR model of short term interest
rates of the form

dX(t) = �(��X(t))dt+ �
p
X(t) dB(t);

where � = 0:1; � = 0:1; � = 0:1. Replications involving 1000 samples, each with 120 monthly
observations (ie h = 1=12), are simulated from the true model. The parameter settings are
realistic to those in many �nancial applications and the sample period covers 10 years.

It is well-known that � is di¢ cult to estimate with accuracy whereas the other two parame-
ters, especially �, are much easier to estimate (Phillips and Yu, 2005a, b) and extensive results
are already in the literature. Consequently, we only report estimates of � in the present Monte
Carlo study. In total, we employ six estimation methods, namely, exact ML, the Euler scheme,
the Milstein scheme, the Nowman method, the in�ll method, and the Hermite expansion (with
K = 1).

Table 1 reports the means, standard errors, and root mean square errors (RMSEs) for all
these cases. The exact ML estimator is calculated for comparison purposes. Since the other
estimators are designed to approach to the exact ML estimator, we also report the means
and the standard errors of the di¤erences between the exact ML estimator and the alternative
estimators.
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Table 1

Exact and Approximate ML Estimation and Bias Reduced Estimation of �
True Value � = 0:1

Method Exact Euler Milstein Nowman In-�ll Hermite Jackk Jackk Ind Inf
(m=2) (m=3)

Mean .2403 .2419 .2444 .2386 .2419 .2413 .1465 .1845 .1026
Std error .2777 .2867 .2867 .2771 .2867 .2870 .3718 .3023 .2593
RMSE .3112 .3199 .3210 .3098 .3199 .3199 .3747 .3139 .2594
Mean of NA .0016 .0041 -.0017 .0016 .0010 NA NA NA
di¤

Std error NA .0500 .0453 .0162 .0500 .0503 NA NA NA
of di¤

Note: A square-root model with � = 0:1; � = 0:1; � = 0:1 is used to simulate 120 monthly
observations for each of the 1,000 replications. Various methods are used to estimate �.

Several conclusions can be drawn from the table (Note the true value of � = 0:1:) First,
the ML estimator of � is upward biased by more than 140%, consistent with earlier results
reported in Phillips and Yu (2005a, b). This result is also consistent with what is known
about dynamic bias in local-to-unity discrete time autoregressive models. Second, all the
approximation-based ML methods perform very similar to the exact ML method, and hence,
all inherit substantial estimation bias from the exact ML method that these methods seek to
imitate. Indeed, compared to the estimation bias in exact ML, the bias that is induced purely
by the approximations is almost negligible. Third, relative to the Euler scheme, the Milstein
scheme fail to o¤er any improvements in terms of both mean and variation while Nowman�s
method o¤ers slight improvements in terms of variation and root mean squared error (RMSE).
Although the Hermite expansions do not perform well among the approximation-based methods
examined here, it is important to recognize that the estimator is nonetheless very close to the
exact ML estimator. Further improvements in the quality of this approximation of ML can
be achieved by increasing the value of K, as pointed out in Aït-Sahalia (2002), although such
improvements do not help to remove the �nite sample bias of the ML procedure.

6 Estimation Bias Reduction Techniques

It has frequently been argued in the continuous time �nance literature that ML should be
the preferred choice of estimation method. The statistical justi�cation for this choice is the
generality of the ML approach and its good asymptotic properties of consistency and e¢ ciency.
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Moreover, since sample sizes in �nancial data applications are typically large2, it is often
expected that these good asymptotic properties will be realized in �nite samples. However, for
many �nancial time series, the asymptotic distribution of the ML estimator often turns out to
be a poor approximation to the �nite sample distribution, which may be badly biased even when
the sample size is large. This is especially the case in the commonly occurring situation of drift
parameter estimation in models where the process is nearly a martingale. From the practical
viewpoint, this is an important shortcoming of the ML method. The problem of estimation
bias turns out to be of even greater importance in the practical use of econometric estimates
in asset and option pricing, where there is nonlinear dependence of the pricing functional on
the parameter estimates, as shown in Phillips and Yu (2005a). This nonlinearity seems to
exacerbate bias and makes good bias correction more subtle.

In the following sections we describe two di¤erent approaches to bias correction. The �rst of
these is a simple procedure based on Quenouille�s (1956) jackknife. To improve the �nite sample
properties of the ML estimator in continuous time estimation and in option pricing applications,
Phillips and Yu (2005a) proposed a general and computationally inexpensive method of bias
reduction based on this approach. The second approach is simulation-based and involves the
indirect inference estimation idea of Gourieroux et al (1993). Monfort (1996) proposed this
method of bias corrected estimation in the context of nonlinear di¤usion estimation.

6.1 Jackknife estimation

Quenouille (1956) proposed the jackknife as a solution to �nite sample bias problems in para-
metric estimation contexts such as discrete time autoregressions. The method involves the
systematic use of subsample estimates. To �x ideas, let N be the number of observations in
the whole sample and decompose the sample into m consecutive subsamples each with ` obser-
vations, so that N = m� `. The jackknife estimator of a certain parameter, �, then utilizes the
subsample estimates of � to assist in the bias reduction process giving the jackknife estimator

�̂jack =
m

m� 1 �̂N �
Pm
i=1 �̂li

m2 �m ; (54)

where �̂N and �̂li are the estimates of � obtained by application of a given method like the
exact ML or approximate ML to the whole sample and the i�th sub-sample, respectively. Under
quite general conditions which ensure that the bias of the estimates (�̂N ; �̂li) can be expanded
asymptotically in a series of increasing powers of N�1; it can be shown that the bias in the
jackknife estimate �̂jack is of order O(N�2) rather than O(N�1):

2Time series samples of weekly data often exceed 500 and sample sizes are very much larger for daily and
intradaily data.
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The jackknife has several appealing properties. The �rst advantage is its generality. Unlike
other bias reduction methods, such as those based on corrections obtained by estimating higher
order terms in an asymptotic expansion of the bias, the jackknife technique does not rely
(at least explicitly) on the explicit form of an asymptotic expansion. This means that it
is applicable in a broad range of model speci�cations and that it is unnecessary to develop
explicit higher order representations of the bias. A second advantage of the jackknife is that
this approach to bias reduction can be used with many di¤erent estimation methods, including
general methods like the exact ML method whenever it is feasible or approximate ML methods
when the exact ML is not feasible. Finally, unlike many other bias correction methods, the
jackknife is computationally much cheaper to implement. In fact, the method is not much
more time consuming than the initial estimation itself. A drawback with jackknife is that it
cannot completely remove the bias as it is only designed to decrease the order of magnitude of
the bias.

Table 1 reports the results of the jackknife method applied with m = 2; 3 based on the same
experimental design above. It is clear that the jackknife makes substantial reductions in the
bias but this bias reduction comes with an increase in variance. However, a carefully designed
jackknife method can reduce the RMSE.

6.2 Indirect inference estimation

The indirect inference (II) procedure, �rst introduced by Gouriéroux, Monfort, and Renault
(1993), and independently proposed by Smith (1993) and Gallant and Tauchen (1996), can
be understood as a generalization of the simulated method of moments approach of Du¢ e
and Singleton (1993). It has been found to be a highly useful procedure when the moments
and the likelihood function of the true model are di¢ cult to deal with, but the true model is
amenable to data simulation. Since many continuous time models are easy to simulate but
present di¢ culties in the analytic derivation of moment functions and likelihood, the indirect
inference procedure has some convenient advantages in working with continuous time models
in �nance. A carefully designed indirect inference estimator can also have good small sample
properties, as shown by Gouriéroux, et al (2000) in the time series context and by Gouriéroux,
Phillips and Yu (2005) in the panel context. The method therefore o¤ers some interesting
opportunities for bias correction and the improvement of �nite sample properties in continuous
time estimation.

Without loss of generality, we focus on the OU process. Suppose we need to estimate the
parameter � in the model

dX(t) = �(��X(t))dt+ � dB(t):
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from observations x = fXh; � � � ; XNhg. An initial estimator of � can be obtained, for example,
by applying the Euler scheme to fXh; � � � ; XNhg (call it �̂N ). Such an estimator is inconsistent
(due to the discretization error) and may be seriously biased (due to the poor �nite sample
property of ML in the low � or near-unit-root case).

The indirect inference method makes use of simulations to remove the discretization bias.
It also makes use of simulations to calibrate the bias function and hence requires neither the
explicit form of the bias, nor the bias expansion. This advantage seems important when the
computation of the bias expression is analytically involved, and it becomes vital when the bias
and the �rst term of the bias asymptotic expansions are too di¢ cult to compute explicitly.

The idea of indirect inference here is as follows. Given a parameter choice �, we apply the
Euler scheme with a much smaller step size than h (say � = h=10), which leads to

~Xk
t+� = �(�� ~Xk

t )h+
~Xk
t + �

p
��t+�;

where
t = 0; �; � � � ; h(= 10�)| {z }; h+ �; � � � ; 2h(= 20�)| {z }; 2h+ �; � � � ; Nh:

This sequence may be regarded as a nearly exact simulation from the continuous time OU
model for small �. We then choose every (h=�)th observation to form the sequence of f ~Xk

ihgNi=1,
which can be regarded as data simulated directly from the OU model with the (observationally
relevant) step size h.

Let ~xk(�) = f ~Xk
h ; � � � ; ~Xk

Nhg be data simulated from the true model, where k = 1; � � � ;K
with K being the number of simulated paths. It should be emphasized that it is important to
choose the number of observations in ~xk(�) to be the same as the number of observations in
the observed sequence x for the purpose of the bias calibration. Another estimator of � can be
obtained by applying the Euler scheme to fXk

h ; � � � ; Xk
Nhg (call it ~�kN ). Such an estimator and

hence the expected value of them across simulated paths is naturally dependent on the given
parameter choice �.

The central idea in II estimation is to match the parameter obtained from the actual data
with that obtained from the simulated data. In particular, the II estimator of � is de�ned as

�̂IIN;K = argmin� k �̂N �
1

K

KX
h=1

~�kN (�) k; (55)

where k � k is some �nite dimensional distance metric. In the case where K tends to in�nity,
the II estimator is the solution of the limiting extremum problem

�̂IIN = argmin� k �̂N � E(~�kN (�)) k : (56)
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This limiting extremum problem involves the so-called binding function

bN (�) = E(~�
k
N (�));

which is a �nite sample functional relating the bias to �: In the case where bN is invertible, the
indirect inference estimator is given by

�̂IIN = b�1N (�̂N ):

The II estimation procedure essentially builds in a small-sample bias correction to parameter
estimation, with the bias (in the base estimate, like ML) being computed directly by simulation.

Indirect inference has several advantages for estimating continuous time models. First,
it overcomes the inconsistency problem that is common in many approximate ML methods.
Second, the indirect inference technique calibrates the bias function via simulation and hence
does not require, just like the jackknife method, an explicit form for the bias function or its
expansion. Consequently, the method is applicable in a broad range of model speci�cations.
Thirdly, indirect inference can be used with many di¤erent estimation methods, including the
exact ML method or approximate ML methods, and in doing so will inherit the good asymptotic
properties of these base estimators. For instance, it is well known that the Euler scheme o¤ers
an estimator which has very small dispersion relative to many consistent estimators and indirect
inference applied to it should preserve its good dispersion characteristic while at the same time
achieving substantial bias reductions. Accordingly, we expect indirect inference to perform
very well in practice and in simulations on the basis of criteria such as RMSE, which take
into account central tendency and variation. A drawback with indirect inference is that it is a
simulation-based method and can be computationally expensive. However, with the continuing
explosive growth in computing power, such a drawback is obviously of less concern.

Table 1 reports the results of the indirect inference method with K = 1000 based on the
same experiment discussed earlier. Clearly, indirect inference is very successful in removing
bias and the bias reduction is achieved without increasing the variance. As a result, the RMSE
is greatly reduced.

7 Multivariate Continuous Time Models

Multivariate systems of stochastic di¤erential equations may be treated in essentially the same
manner as univariate models such as (1) and methods such as Euler-approximation-based ML
methods and transition density-approximation-based ML methods continue to be applicable.
The literature on such extensions is smaller, however, and there are more and more �nancial
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data applications of multivariate systems at present; see, for example, Ghysels et al (1996) and
Shephard (2005) for reviews of the stochastic volatility literature and Dai and Singleton (2002)
for a review of the term structure literature.

One �eld where the literature on multivariate continuous time econometrics is well devel-
oped is macroeconomic modeling of aggregative behavior. These models have been found to
provide a convenient mechanism for embodying economic ideas of cyclical growth, market dis-
equilibrium and dynamic adjustment mechanisms. The models are often constructed so that
they are stochastic analogues (in terms of systems of stochastic di¤erential equations) of the
di¤erential equations that are used to develop the models in economic theory. The Bergstrom
(1966) approximation, discussed in Section 3.1 above, was developed speci�cally to deal with
such multiple equation systems of stochastic equations. Also, the exact discrete time model
corresponding to a system of linear di¤usions, extending the Vasicek model in Section 2.1, was
developed in Phillips (1972, 1974) as the basis for consistent and e¢ cient estimation of struc-
tural systems of linear di¤usion equations using nonlinear systems estimation and Gaussian
ML estimation.

One notable characteristic of such continuous time systems of equations is that there are
many across-equation parameter restrictions. These restrictions are typically induced by the
manner in which the underlying economic theory (for example, the theory of production involv-
ing a parametric production function) a¤ects the formulation of other equations in the model,
so that the parameters of one relation (the production relation) become manifest elsewhere in
the model (such as wage and price determination, because of the e¤ect of labor productivity on
wages). The presence of these across-equation restrictions indicates that there are great advan-
tages to the use of systems procedures, including ML estimation, in the statistical treatment
of systems of stochastic di¤erential equations.

While many of the statistical issues already addressed in the treatment of univariate di¤u-
sions apply in systems of equations, some new issues do arise. A primary complication is that
of aliasing, which in systems of equations leads to an identi�cation problem when a continuous
system in estimated by a sequence of discrete observations at sampling interval h: The man-
ifestation of this problem is evident in a system of linear di¤usions for an n� vector process
X (t) of the form

dX (t) = A (�2)X (t) dt+�(�2) dW (t) ;

where A = A (�) is an n�n coe¢ cient matrix whose elements are dependent on the parameter
vector �1; � = �(�2) is a matrix of di¤usion coe¢ cients dependent on the parameter vector �2;
and W (t) is n� vector standard Brownian motion. The exact discrete model corresponding to
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this system has the form

Xih = e
hA(�2)Xih +N

�
0;

Z h

0
esA(�2)� (�2) e

sA(�2)
0
ds

�
;

and the coe¢ cient matrix in this discrete time model involves the matrix exponential func-
tion ehA(�2): However, there are in general, an in�nite number of solutions (A) to the matrix
exponential equation

ehA = B0 (57)

where B0 = ehA
0
= ehA(�

0
2) and �02 is the true value of �2: In fact, the solutions of the matrix

equation (57) all have the form
A = A0 + TQT�1;

where T is a matrix that diagonalizes A0 (so that T�1AT = diag(�1; :::; �n); assuming that A0

has distinct characteristics roots f�i : i = 1; :::; ng), Q is a matrix of the form

Q =
2�i

h

24 0 0 0
0 P 0
0 0 �P

35 ;
and P is a diagonal matrix with integers on the diagonal. The multiple solutions of (57)
e¤ectively correspond to aliases of A0:

Fortunately, in this simple system the aliasing problem is not consequential because there
are enough restrictions on the form of the system to ensure identi�ability. The problem was
originally considered in Phillips (1973). In particular, the coe¢ cient matrix A = A (�) is real
and is further restricted by its dependence on the parameter vector �: Also, the covariance
matrix of the error process

R h
0 e

sA(�2)� (�2) e
sA(�2)

0
ds in the discrete system is real and neces-

sarily positive semi-de�nite. These restrictions su¢ ce to ensure the identi�ability of A0 in (57),
removing the aliasing problem. Discussion and resolution of these issues is given in Phillips
(1973) and Hansen and Sargent (1984). Of course, further restrictions may be needed to ensure
that �1 and �2 are identi�ed in A

�
�01
�
and �

�
�02
�
:

A second complication that arises in the statistical treatment of systems of stochastic dif-
ferential equations is that higher order systems involve exact discrete systems of the vector
autoregressive and moving average type, which have more complicated likelihood functions.
A third complication is that the discrete data often involves both stock and �ow variables,
so that some variables are instantaneously observed (like interest rates) while other variables
(like consumption expenditure) are observed as �ows (or integrals) over the sampling interval.
Derivation of the exact discrete model and the likelihood function in such cases presents further
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di¢ culties - see Phillips (1978) and Bergstrom (1984) - and involves complicated submatrix for-
mulations of matrix exponential series. Most of these computational di¢ culties have now been
resolved and Gaussian ML methods have been regularly used in applied research with these
continuous time macroeconometric systems. Bergstrom (1996) provides a survey of the subject
area and much of the empirical work. A more recent discussion is contained in Bergstrom and
Nowman (2006).

8 Conclusions

Research on ML estimation of continuous time systems has been ongoing in the econometric
and statistical literatures for more than three decades. But the subject has received its greatest
attention in the last decade, as researchers in empirical �nance have sought to use these models
in practical applications of importance in the �nancial industry. Among the more signi�cant
of these applications have been the analysis of the term structure of interest rates and the
pricing of options and other �nancial derivatives which depend on parameters that occur in
the dynamic equations of motion of variables that are most relevant for �nancial asset prices,
such as interest rates. The equations of motion of such variables are typically formulated in
terms of stochastic di¤erential equations and so the econometric estimation of such equations
has become of critical importance in these applications. We can expect the need for these
methods and for improvements in the statistical machinery that is available to practitioners to
grow further as the �nancial industry continues to expand and data sets become richer. The
�eld is therefore of growing importance for both theorists and practitioners.
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