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Abstract

This paper considers tests in an instrumental variables (IVs) regression model with
IVs that may be weak. Tests that have near-optimal asymptotic power properties
with Gaussian errors for weak and strong IVs have been determined in Andrews,
Moreira, and Stock (2006a). In this paper, we seek tests that have near-optimal
asymptotic power with Gaussian errors and improved power with non-Gaussian errors
relative to existing tests. Tests with such properties are obtained by introducing rank
tests that are analogous to the conditional likelihood ratio test of Moreira (2003).
We also introduce a rank test that is analogous to the Lagrange multiplier test of
Kleibergen (2002) and Moreira (2001).

Keywords: Asymptotically similar tests, conditional likelihood ratio test, instrumen-
tal variables regression, Lagrange multiplier test, power of test, rank tests, thick-tailed
distribution, weak instruments.
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1 Introduction

This paper is concerned with inference in the standard linear instrumental variable
(IV) regression model with possibly weak IVs. We start by giving a brief account of
recent developments in the literature on weak IVs in order to explain the contribution
of this paper to the literature. It has been documented in the weak IV literature that
standard methods, such as two-stage least squares-based tests and confidence intervals
(CIs), perform poorly when IVs are weak, especially when endogeneity is moderate
to strong. Specifically, such tests have size well in excess of their nominal level and
corresponding CIs have size well below their nominal level. See the review papers of
Stock, Wright, and Yogo (2002), Dufour (2003), and Andrews and Stock (2005).

The well-known Anderson and Rubin (1949) (AR) test does not exhibit size dis-
tortions due to weak IVs. Hence, Staiger and Stock (1997) and Dufour (1997) propose
basing inference on the AR test. AR-based CIs can be constructed by inverting AR
tests. The AR test has good power properties when the model is just identified, see
Moreira (2001) and Andrews, Moreira, and Stock (2006a) (AMS1) for some optimal-
ity properties for the case of Gaussian errors. However, the AR test sacrifices power
when the model is over-identified. This leads to excessively long AR-based CIs.

In consequence, considerable effort has been expended recently to develop new
tests that circumvent this problem. Such tests are of interest in their own right
and because they can be used to construct CIs by inversion. Kleibergen (2002) and
Moreira (2001) introduce an LM test whose size is robust to weak IVs and whose
power exceeds that of the AR test in many cases when the model is over-identified.
However, this test has somewhat quirky power properties. For example, its power
function can be non-monotonic, see AMS1 and Andrews, Moreira, and Stock (2006b)
(AMS2).

Subsequently, Moreira (2003) showed that any test can be made robust to weak
IVs asymptotically by using a conditional critical value function that conditions on a
statistic that is complete and sufficient under the null hypothesis. Using this method,
he introduced the conditional likelihood ratio (CLR) test. AMS investigate the power
properties of the CLR test in the case of a single right-hand side endogenous variable
and show that its power is essentially on the asymptotic power envelope for two-sided
invariant similar tests under the assumption of Gaussian errors. This is true under
both the “weak IV asymptotics” introduced in Staiger and Stock (1997), in which
the coefficient on the IVs in the first-stage regression shrinks to zero as the sample
size goes to infinity, and under the standard “strong IV asymptotics.” Andrews and
Stock (2005) show that these optimality properties extend to the “many weak IV
asymptotic scenario,” in which the number of IVs increases with the sample size.
Hence, the CLR test has the desirable features of having size that is robust to weak
IVs and near-optimal power properties with Gaussian errors.2

In this paper, we aim to further improve the power properties of weak IV tests
by constructing a test that has the same asymptotic behavior as the CLR test with

2We note that the CLR test reduces to the AR test when the model is just-identified, so that the
optimality properties mentioned in this paragraph are consistent with those mentioned above for the
AR test.
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Gaussian errors, but improved power with non-Gaussian errors. To do this, we con-
struct a rank analogue of the CLR test, denoted RCLR. We also construct a rank
analogue of the LM test of Kleibergen (2002) and Moreira (2001), denoted RLM. As is
well-known from location and regression models, rank estimators and tests have more
robust efficiency properties than least squares-based procedures, see Hettmansperger
(1984). For example, Chernoff and Savage (1958) have shown that the asymptotic
relative efficiency (ARE) of the normal scores rank test to the analogous least-squares
t test is greater than or equal to one for all symmetric error distributions with equal-
ity at the Gaussian. This holds in both location and regression models, and it also
holds for estimators. This suggests that for the linear IV model rank-based tests
whose size is robust to weak IVs may exhibit similarly desirable power properties
under non-normality.

Andrews and Marmer (2004) develop a rank analogue of the AR test, denoted
RAR. This test has exact finite sample size under Gaussian and non-Gaussian errors
under certain circumstances. Its asymptotic power properties improve on those of the
AR test and are excellent for just-identified models. However, as with the non-rank
AR test, the RAR test sacrifices power in over-identified models. The RCLR and
RLM tests developed here substantially improve the power properties of the RAR
test in over-identified models.

We now summarize the results of the paper. The model considered is a linear IV
regression model with a single structural equation withm right-hand side endogenous
variables and p exogenous variables coupled with m reduced-form equations for the
rhs endogenous variables. The null hypothesis is H0 : β = β0, where β is the m-
dimensional coefficient on them rhs endogenous variables. The alternative hypothesis
is H1 : β = β0.

First, we introduce rank analogues of the CLR and LM tests. This is more difficult
than for the AR test because the LR and LM statistics are more complicated functions
of the data than is the AR statistic. A hybrid rank/linear test statistic is required to
obtain power properties of RCLR and RLM tests that are analogous to those of the
CLR and LM tests under Gaussianity and superior for other distributions.

Second, we obtain the weak IV asymptotic distributions of the rank statistics
under the null and fixed alternatives. These results are used to show that under
Gaussian errors the normal scores (NS) RCLR and RLM tests have the same null
and alternative asymptotic behavior as the non-rank versions of these tests. The same
is true for the Wilcoxon scores (WS) rank and non-rank CLR and LM tests under
uniform errors. Furthermore, these asymptotic distributions allow one to compare
the weak IV asymptotic power of the rank to non-rank tests under different error
distributions. It is shown that the same AREs for the rank versus non-rank LM and
AR tests arise in the weak IV context as in the location and regression models. Hence,
the Chernoff-Savage result also applies to these tests. That is, the NS-RLM test
(weakly) dominates the LM test in terms of power for all symmetric error distributions
and the same is true for the NS-RAR test versus the AR test.

For the rank versus non-rank CLR tests, the weak IV asymptotic power compari-
son is more complicated. However, numerical calculation of the asymptotic powers of
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these tests shows the same pattern that is typical for rank versus non-rank procedures
in other contexts. In particular, the NS-RCLR test has noticeably higher asymptotic
power for thin-tailed (uniform) and thick-tailed (t3 and difference of independent log
normals (DLN)) errors than the non-rank CLR test and equal asymptotic power for
Gaussian errors. The WS-RCLR test has asymptotic power that is close to that of
the CLR test for Gaussian and uniform errors and substantially higher power for t3
and DLN errors.

Third, we establish the strong IV asymptotic distributions of the rank statistics
under the null and local alternatives. These results show that the RCLR and RLM
tests are asymptotically equivalent under strong IV asymptotics. This is also true of
the non-rank versions of these tests. The results also show that the ARE of the rank
to the non-rank versions of these tests under strong IV asymptotics is the same as the
standard ARE that arises in location and regression models for tests and estimators.
Hence, the Chernoff-Savage result applies under strong IV asymptotics to both the
NS-RCLR test and the NS-RLM test. In consequence, the NS-RCLR test (weakly)
dominates the CLR test in terms of power for symmetric errors under strong IV
asymptotics.

The proofs of the weak and strong IV asymptotic results make use of results and
arguments given in Hájek and Sidák (1967) and Koul (1969, 1970).

Fourth, we carry out finite sample size and power comparisons of the WS-RCLR,
NS-RCLR, CLR, LM, and AR tests. For brevity, we do not report results for the
RLM and RAR tests, because they are found to be inferior (both asymptotically and
in finite sample experiments) to those of the RCLR tests. We compare the tests for a
variety of scenarios that differ according to the degree of endogeneity, strength of the
IVs, number of IVs, and size of the sample. For each scenario we consider Gaussian,
uniform, t1, t2, t3, and DLN errors. The two RCLR tests perform noticeably better
in terms of size than the non-rank CLR, LM, and AR tests. The finite sample power
comparisons reflect the asymptotic power comparisons discussed above fairly closely.
Specifically, the NS-RCLR test has similar power to the CLR test for Gaussian errors
and higher power for non-Gaussian errors. The WS-RCLR test does not perform as
well as the NS-RCLR test with uniform errors, but it performs better with thick-tailed
errors.

Based on the asymptotic and finite sample results, we recommend the NS-RCLR
test over the WS-RCLR, CLR, LM, and AR tests. The WS-RCLR test also has good
overall properties, but we prefer the NS-RCLR test because of its excellent power
performance for both thin-tailed and thick-tailed errors.

The main drawback of the RCLR tests is that they are not robust to heteroskedas-
ticity of the errors. That is, their size may be distorted by heteroskedasticity. This
is also true of the CLR test. However, it is possible to robustify the CLR test to
heteroskedasticity, see Andrews, Moriera, and Stock (2004) and Kleibergen (2005).
It is not possible to robustify the RCLR tests to heteroskedasticity. Hence, there is a
trade-off between power for non-Gaussian errors and robustness to heteroskedasticity
for these tests. If heteroskedasticity is a possible problem, then the robustified CLR
test is preferred to the NS-RCLR or WS-RCLR tests. If not, then the rank tests are
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preferred.
There is a vast literature on rank procedures in statistics, e.g., see Hájek and

Sidák (1967), Hettmansperger (1984), Puri and Sen (1985), and Hájek, Sidák, and
Sen (1999). Rank procedures have been used in both cross-section and time series
econometrics. For a review, see Koenker (1996). Some more recent econometric ref-
erences include Hasan and Koenker (1997), Cavanagh and Sherman (1998), Abrevaya
(1999), Chen (2000, 2002), and Thompson (2004).

The remainder of this paper is organized as follows. Section 2 defines the model.
Section 3 introduces the rank analogues of the CLR, LM, and AR tests. Sections
4 and 5 provide asymptotic results for these tests under weak IV and strong IV
asymptotics, respectively. These sections also give asymptotic power comparisons of
rank and non-rank tests. Section 6 provides finite sample size and power comparisons
of rank and non-rank tests. An Appendix contains proofs of the results.

All limits are taken as n→∞. vec(·) is the column by column vec operator.

2 Model

We consider the following model, which consists of a single structural equation
and m reduced-form equations:

y1i = β y2i + γ1Xi + ui,

y2i = Π Zi + ξ1Xi + v2i, (2.1)

where y1i ∈ R, y2i ∈ Rm, Xi ∈ Rp, and Zi ∈ Rk are observed variables; ui ∈ R and
v2i ∈ Rm are unobserved errors; and β ∈ Rm, Π ∈ Rk×m, γ1 ∈ Rp, and ξ1 ∈ Rp×m
are unknown parameters.

Our interest is in testing the hypotheses

H0 : β = β0 and H1 : β = β0. (2.2)

Let Z and X denote the n × k IV and n × p regressor matrices whose i-th rows
are Zi and Xi, respectively. We transform the IV matrix Z so that the transformed
IV matrix, Z, and the regressor matrix, X, are orthogonal:

Z = MXZ, MX = In − PX , PX = X(X X)−1X , and

y2i = Π Zi + ξ Xi + v2i, (2.3)

where Zi is the i-th row of Z written as a column and ξ = ξ1 + (X X)−1X ZΠ. By
construction, Z X = 0.

Substituting the reduced-form equations for y2i into the structural equation for
y1i yields m+ 1 reduced-form equations:

y1i = β Π Zi + γ Xi + v1i and

y2i = Π Zi + ξ Xi + v2i, where

v1i = ui + β v2i, (2.4)
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and γ = γ1 + ξβ. The m+ 1 reduced-form equations also can be written as

yi = AΠ Zi + η Xi + vi, where

yi = (y1i, y2i) ∈ Rm+1, vi = (v1i, v2i) ∈ Rm+1,

A =
β
Im

∈ R(m+1)×m, and η = [γ : ξ] ∈ Rp×(m+1). (2.5)

Let Y and Y2 denote the n× (m+1) and n×m matrices whose i-th rows are yi and
y2i, respectively.

We make the following basic assumptions about the model. (Additional assump-
tions are given below.)

Assumption 1. (a) {(ui, v2i) : i ≥ 1} are iid random variables with mean zero.
(b) v2i has nonsingular variance matrix Ω22 ∈ Rm×m.
Assumption 2. (a) {(Zi,Xi) : i ≥ 1} are fixed (i.e., non-random).
(b) The first element of Xi is 1 for all i.
(c) n−1 n

i=1(Zi,Xi) (Zi,Xi)→ D > 0.

(d) maxi≤n(||Zi||2 + ||Xi||2)/n→ 0.

The combination of Assumptions 1 and 2(a) implies that the distribution of the
errors {(ui, v2i) : i ≥ 1} does not depend on the IVs or regressors. In place of
Assumption 2(a), one could treat the IVs and regressors as random. In this case,
the IVs and regressors would be assumed to be independent of the errors. As is,
Assumption 2(a) is consistent with random IVs and regressors provided one conditions
on these variables.

Assumption 2(b) requires that the structural and reduced-form equations include
an intercept. Given that Z X = 0, this implies that n−1 n

i=1 Zi = 0. Assumptions
2(c) and 2(d) are standard assumptions concerning the behavior of IVs and regressors.
They hold with probability one if {(Zi,Xi) : i ≥ 1} is a realization of an iid sequence
with pd variance matrix and 2 + δ moments finite for some δ > 0, see Lemma 12 in
the Appendix.

We now define the CLR test of Moreira (2003), the LM test of Kleibergen (2002)
and Moreira (2001), and the AR test. The CLR test depends on an LR test statistic
coupled with a “conditional” critical value defined below. The LR, LM, and AR test
statistics are based on the following statistics:1

Sn = (Z Z)−1/2Z Y b0 · (b0Ωnb0)−1/2 ∈ Rk and
Tn = (Z Z)−1/2Z Y Ω−1n A0(A0Ω

−1
n A0)

−1/2 ∈ Rk×m, where

b0 =
1
−β0

∈ Rm+1, A0 =
β0
Im

∈ R(m+1)×m,

Ωn = (n− k − p)−1Y M[Z:X]Y, and M[Z:X] = In − PZ − PX . (2.6)

1The statistics Sn and Tn are denoted S and T , respectively, in Moreira (2003).
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Note that Ωn is an estimator of the variance matrix Ω = Evivi, which needs to be well-
defined and positive definite in order for Sn and Tn to be well-behaved asymptotically.
After proper centering, the statistics Sn and Tn have a joint multivariate normal
asymptotic distribution with zero covariance under weak IV asymptotics under the
null and the alternative. Hence, Sn and Tn are asymptotically independent.

The LR, LM, and AR test statistics depend on (Sn, Tn) in the following way:

LRn = SnSn − λmin([Sn :Tn] [Sn :Tn]),

LMn = SnTn(TnTn)
−1TnSn, and

ARn = SnSn/k, (2.7)

where λmin(C) denotes the minimum eigenvalue of the matrix C. When m = 1, LRn
can be written as

LRn =
1

2
QSn −QTn + (QSn −QTn)2 + 4Q2STn , where

QSn = SnSn, QTn = TnTn, and QSTn = SnTn, (2.8)

see Moreira (2003) and Andrews and Stock (2005).2

The CLR test with asymptotic level α rejects the null hypothesis when

LRn > κLR,α(QTn, k,m), (2.9)

where κLR,α(·, k,m) is a critical value function defined such that the CLR test has
asymptotic null rejection rate α under weak IV asymptotics (under the assumptions
above and Eu2i <∞). See (3.10) below for the definition of κLR,α(·, k,m).

The LM statistic has a chi-squared asymptotic null distribution with m degrees
of freedom, denoted χ2m, under weak and strong IVs (under the assumptions above
and Eu2i < ∞). Hence, the critical value for the asymptotic level α LM test is the
1− α quantile of a χ2m distribution.

The AR statistic times k has a chi-squared asymptotic null distribution under
weak and strong IVs with k (≥ m) degrees of freedom (under the assumptions above
and Eu2i <∞). Under the assumption of normal errors {vi : i ≥ 1}, it has an exact
Fk,n−k−p distribution. Thus, use of the 1− α quantile of an Fk,n−k−p distribution as
the critical value for the level α AR test is justified asymptotically for non-normal
errors and yields an exact test for normal errors.

3 Rank CLR, LM, and AR Tests

In this section, we introduce rank analogues, Sϕn and T
ϕ
n , of the statistics Sn and

Tn, where ϕ is a score function defined below. By design, S
ϕ
n and T

ϕ
n are asymptot-

ically independent. Given Sϕn and T
ϕ
n , we define rank statistics that are analogous

2The statistic LRn is the likelihood ratio statistic for the case of normal errors vi with known
covariance matrix Ω and with Ωn plugged in for Ω. One can also consider the likelihood ratio statistic
for the case of normal errors and unknown covariance matrix, see Moreira (2003).
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to the CLR, LM, and AR statistics defined above. We show that for normal scores,
i.e., ϕ = ϕNS, and multivariate normal errors (ui, v2i), S

ϕ
n and T

ϕ
n are asymptotically

equivalent to Sn and Tn under weak IV and strong IV asymptotics under the null
and the alternative. For non-normal errors, the rank tests have power advantages.

The statistic Sn depends on the inner product of Z and a vector of null-restricted
residuals from the structural equation (2.1):

Z Y b0 =
n

i=1

Zi(y1i − β0y2i) =
n

i=1

Zi(y1i − β0y2i − γ1nXi), (3.1)

where γ1n is some estimator of γ1 and the second equality holds because Z X = 0.
The rank analogue of Sn that we consider depends on the inner product of Z with
the vector of ranks of {y1i − β0y2i − γ1nXi : i ≤ n}.

Let γn(β0) be some “null-restricted” estimator of γ1. For example, one could use
the least squares (LS) null-restricted estimator:

γLSn (β0) = (X X)−1X Y (1,−β0) . (3.2)

Estimators other than the LS estimator could be considered, but the LS estimator is
convenient because it is easy to compute.

Let Ri(β0) be the rank of y1i − β0y2i − γn(β0) Xi in {y1j − β0y2j − γn(β0) Xj :

j = 1, ..., n}. The ranks {Ri(β0) : i ≤ n} are referred to as aligned ranks.3,4
Let ϕ : [0, 1)→ R be a non-stochastic score function. Different score functions ϕ

lead to different rank statistics. Of primary interest are: (a) the normal (or van der
Waerden) score function and (b) the Wilcoxon score function:

(a) ϕNS(x) = Φ−1(x) and (b) ϕWS(x) = x, (3.3)

where Φ−1(·) is the inverse standard normal distribution function (df). Define

cϕ =
1

0
[ϕ(x)− ϕ]2dx > 0, where ϕ =

1

0
ϕ(x)dx. (3.4)

For normal scores, cϕ = 1. For Wilcoxon scores, cϕ = 1/12.
Let Rϕ denote the n-vector whose i-th element is ϕ(Ri(β0)/(n + 1)). The rank

analogue of Sn is

Sϕn = (Z Z)
−1/2Z Rϕc

−1/2
ϕ ∈ Rk. (3.5)

3 If there are any ties in the ranks, then we determine a unique ranking by randomization. For
example, if y1i−β y2i−γn(β) Xi = y1j−β y2j−γn(β) Xj for some i = j and these observations are
the -th largest in the sample, then Ri(β) = with probability 0.5, Ri(β) = + 1 with probability
0.5, Rj(β) = + 1 if Ri(β) = , and Rj(β) = if Ri(β) = + 1. Ties only occur with positive
probability if the distribution of y1i−β y2i−γn(β) Xi is not absolutely continuous. In consequence,
in practice ties rarely occur.

4The matrix programming languages GAUSS and Matlab have very fast built-in procedures for
finding the ranks of a given vector. The GAUSS procedure is called rankindx.
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The rank statistic Sϕn replaces Y b0 · (b0Ωnb0)−1/2 in Sn by Rϕc
−1/2
ϕ . We want the

rank analogue of Tn to do the same, as well as to be asymptotically independent of
Sϕn . In consequence, to construct a rank analogue of Tn, it is helpful to rewrite Tn as
follows:

Tn = (Z Z)−1/2Z [Y b0σ
−1
n : Y2]Ω

−1
∗nH(H Ω

−1
∗nH)

−1/2, where σ2n = b0Ωnb0,

H =
0m
Im

∈ R(m+1)×m, Ω∗n = [b0σ−1n : H] Ωn[b0σ
−1
n : H] =

1 νn
νn Ω22n

,

Ω22n = H ΩnH = (n− k − p)−1Y2 M[Z:X]Y2 ∈ Rm×m, and νn = H Ωnb0σ
−1
n ∈ Rm.

(3.6)

(See (7.81) in the Appendix for a proof of (3.6).) As defined, Ω∗n is an estimator of the
asymptotic variance matrix, Ω∗, of n−1/2

n
i=1[b0σ

−1
gn : H] yi = n

−1/2 n
i=1(b0yiσ

−1
gn ,

y2i) . The definition of Ω∗n is chosen to yield asymptotic independence of Sn and Tn.
The rank analogue of Tn is5

Tϕ
n = (Z Z)−1/2Z [Rϕc

−1/2
ϕ :Y2]Ω

−1
ϕnH(H Ω

−1
ϕnH)

−1/2 ∈ Rk×m, where

Ωϕn =
1 νϕn
νϕn Ω22n

and νϕn = n
−1Y2 M[Z:X]Rϕc

−1/2
ϕ ∈ Rm. (3.7)

Note that Ωϕn is an estimator of the asymptotic variance matrix of n−1/2
n
i=1

(ϕ(Ri(β0)/(n + 1))c
−1/2
ϕ , y2i) . The definition of Ωϕn ensures that S

ϕ
n and T

ϕ
n are

asymptotically independent.
We define the rank LR, LM, and AR statistics to be

RLRϕ
n = Sϕn S

ϕ
n − λmin([S

ϕ
n :T

ϕ
n ] [S

ϕ
n :T

ϕ
n ]),

RLMϕ
n = Sϕn T

ϕ
n (T

ϕ
n T

ϕ
n )
−1Tϕ

n S
ϕ
n , and

RARϕ
n = Sϕn S

ϕ
n/k. (3.8)

For m = 1, the RLRϕ
n statistic simplifies as in (2.8) with (S

ϕ
n , T

ϕ
n ) in place of (Sn, Tn).

Notice that when k = m (i.e., the structural equation is just identified),
k · RARϕ

n = Sϕn S
ϕ
n = RLMϕ

n = RLRϕ
n .6 That is, the rank CLR, LM, and AR

tests are equivalent when k = m.
5The definition of Tϕ

n uses the ranks Rϕ of {y1j−β0y2j−γn(β0) Xj : j = 1, ..., n}, but is linear in
Y2 (or equivalently, in Y2−PXY2 since Z PX = 0). One might think that it is more natural to replace
Y2 in the definition of Tϕ

n by the ranks of Y2 − PXY2. We do not do this for the following reason.
For power purposes one wants the Y2 term in the definition of Tϕ

n to be (asymptotically) linear in its
mean ZΠ. If one replaces Y2 by the ranks of Y2 − PXY2, then (asymptotic) linearity does not hold
under strong IV asymptotics, defined in Section 5 below, because ZΠ is not an n−1/2-perturbation
from the zero vector, see Lemma 6 in the Appendix. Hence, one does not obtain the desired power
properties under strong IV asymptotics. Under weak IV asymptotics, defined in Section 4 below,
(asymptotic) linearity holds because ZΠ = ZCn−1/2 for some matrix C and the latter is an n−1/2-
perturbation from the zero vector. Hence, power problems with this alternative definition of Tϕ

n only
arise under strong IV asymptotics.

6The second equality holds because Tϕ
n is a square invertible matrix when k = m. The last

equality holds because [Sn :Tn] [Sn :Tn] is positive semi-definite and singular, which implies that
λmin([Sn :Tn] [Sn :Tn]) = 0. Singularity holds because [Sn :Tn] is an (m + 1) × m matrix and
[Sn :Tn] [Sn :Tn] is (m+ 1)× (m+ 1) when k = m.
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The rank CLR, LM, and AR tests use the same critical values as the non-rank
versions of these tests. Hence, the rank LM and AR tests with asymptotic significance
level α have critical values given by the 1 − α quantiles of the χ2m and Fk,n−k−p
distributions, respectively.

The rank CLR test rejects the null hypothesis if

RLRϕ
n > κLR,α(T

ϕ
n T

ϕ
n , k,m), (3.9)

where κLR,α(·, k,m) is defined as follows. For t ∈ Rk×m, define κLR,α(t t, k,m) via

P LR∞(S0, t) > κLR,α(t t, k,m) = α, where

S0 ∼ N(0, Ik) and LR∞(s, t) = s s− λmin([s : t] [s : t]) (3.10)

for s ∈ Rk. Note that κLR,α(·, k,m) depends on k (the dimension of Zi) and m (the
dimension of y2i). AMS2 provides detailed tables of κLR,α(τ , k,m) for m = 1 and a
variety of values of τ and k. Andrews, Moreira, and Stock (2006c) provide a GAUSS
program for computing p-values of the CLR test for m = 1 and arbitrary k. This
program also can be used for the rank CLR test by replacing AMS1’s LRn and QT,n
statistics by RLRϕ

n and T
ϕ
n T

ϕ
n , respectively.

For m > 1, the critical value function κLR,α(·, k,m) can be simulated quite easily
by simulating S0(r) ∼ iid N(0, Ik) for r = 1, ..., Reps and taking κLR,α(t t, k,m) to
be the 1 − α sample quantile of {LR∞(S0(r), t) : r = 1, ..., Reps}, where Reps is a
large integer, such as 25,000.

4 Weak IV Asymptotic Results

4.1 Weak IV Asymptotic Distributions of Rank Statistics

In this section, we establish the weak IV asymptotic distributions of the RLRϕ
n ,

RLMϕ
n , and RAR

ϕ
n test statistics under the null and fixed alternatives.

We assume the score function ϕ satisfies:

Assumption 3. (a) ϕ : [0, 1)→ R is absolutely continuous and bounded with two
derivatives that exist almost everywhere and are bounded.
(b) 0 < cϕ <∞ for cϕ defined in (3.4).

Assumption 3 holds for normal scores and Wilcoxon scores.

Under weak IVs, the asymptotic variance matrix, Ωϕg, of n−1/2
n
i=1(ϕ(Ri(β0)/(n+

1)), y2i) is defined by

Ωϕg = V ar
ϕ(Ugi)c

−1/2
ϕ

y2i
=

1 νϕg
νϕg Ω22

∈ R(m+1)×(m+1), where

Ugi = G(ui + (β − β0) v2i) ∈ R, νϕg = Cov(y2i,ϕ(Ugi)c−1/2ϕ ) ∈ Rm, (4.1)

G is the df of ui + (β − β0) v2i, and g is the density corresponding to G.
7

7V ar(ϕ(Ugi)) = cϕ because Ugi has a U [0, 1] distribution.
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Let I(f) denote Fisher’s information of an absolutely-continuous density f . That
is, I(f) = [f (x)/f(x)]2f(x)dx.

The weak IV assumption is the first part of the following assumption.

Assumption 4W. (a) Π = Cn−1/2 for some matrix C ∈ Rk×m.
(b) β does not depend on n.
(c) ui + (β − β0) v2i has an absolutely-continuous strictly-increasing df G and an
absolutely-continuous and bounded density g that satisfies I(g) <∞.
(d) (ui + (β − β0) v2i, v2i) has an absolutely-continuous bounded joint density with
partial derivative with respect to its first argument that is bounded over both argu-
ments.
(e) Ωϕg is positive definite.
(f) n1/2(γn(β0)− γ1 − ξ1(β − β0)) = Op(1).

Assumption 4W(b) implies that the data-generating process satisfies the null hy-
pothesis or a fixed alternative. Assumptions 4W(c) and (d) require that (ui + (β −
β0) v2i, v2i) is absolutely-continuous, but otherwise are not very restrictive. Note that
Assumptions 1-3 and 4W place no moment restrictions on ui.

Assumption 4W(f) requires the null-restricted estimator γn(β0) to be well-behaved.
It is satisfied by the LS estimator under the assumptions above if Eu2i <∞:

Lemma 1 Under Assumptions 1, 2, 4W(a), and 4W(b) and Eu2i < ∞, γLSn (β0)
satisfies Assumption 4W(f).

We show that Sϕn and T
ϕ
n converge in distribution to independent random quan-

tities Sϕ∞ ∈ Rk and Tϕ
∞ ∈ Rk×m, respectively, that are defined as follows. Let

DZ ∈ Rk×k be the probability limit of n−1Z Z:

DZ = D11 −D12D−122 D21, D =
D11 D12
D21 D22

, (4.2)

where D11 ∈ Rk×k, D12 ∈ Rk×p, and D22 ∈ Rp×p.
For a score function ϕ and a density f , define

ξ(ϕ, f) =

1
0 ϕ(x, f)ϕ(x)dx

2

1
0 [ϕ(x)− ϕ]2dx

, where

ϕ(x, f) = −f (F
−1(x))

f(F−1(x))
for x ∈ [0, 1] (4.3)

and f denotes the derivative of f. For normal and Wilcoxon scores,

ξ(ϕNS, f) =
f2(x)

φ(Φ−1(F (x)))
dx

2

and ξ(ϕWS , f) = 12 f2(x)dx
2

, (4.4)

respectively, where φ and Φ denote the standard normal density and df and F = f.8

8The expressions for ξ(ϕ, f) for normal and Wilcoxon scores are established by change of variables
and integration by parts.
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Let [Nϕ : N2] be a k × (m+ 1) multivariate normal matrix with

ENϕ = DZC
ϕ
g,β−β0 ∈ R

k, where ϕ
g,β−β0 = (β − β0)ξ

1/2(ϕ, g) ∈ Rm,
EN2 = DZC ∈ Rk×m, and
V ar(vec([Nϕ : N2])) = Ωϕg ⊗DZ , (4.5)

where g is the density of ui + (β − β0) v2i, see Assumption 4W(c). Now, define

Sϕ∞ = D
−1/2
Z Nϕ ∼ N(D1/2Z C ϕ

g,β−β0 , Ik) ∈ R
k,

Tϕ
∞ = D

−1/2
Z [Nϕ : N2]Ω

−1
ϕgH(H Ω

−1
ϕgH)

−1/2 ∈ Rk×m, and

vec(Tϕ
∞) ∼ N(vec(D

1/2
Z C[ ϕ

g,β−β0 : Im]Ω
−1
ϕgH(H Ω

−1
ϕgH)

−1/2), Ikm). (4.6)

Under H0, S
ϕ
∞ has mean zero, but T

ϕ
∞ does not. It is shown below that the covariance

of Sϕ∞ and Tϕ
∞ is zero and, hence, these normal random variates are independent

(under H0 and H1).
The following result holds under the null hypothesis and fixed (i.e., non-local)

alternative hypotheses.

Theorem 1 Under Assumptions 1-3 and 4W,
(a) (Sϕn , T

ϕ
n )→d (S

ϕ
∞, T

ϕ
∞), where S

ϕ
∞ and Tϕ

∞ are independent,
(b) RLRϕ

n →d LR
ϕ
∞ := Sϕ∞S

ϕ
∞ − λmin([S

ϕ
∞ :T

ϕ
∞] [S

ϕ
∞ :T

ϕ
∞]),

(c) RLMϕ
n →d S

ϕ
∞T

ϕ
∞(T

ϕ
∞T

ϕ
∞)−1T

ϕ
∞S

ϕ
∞, and

(d) RARϕ
n →d S

ϕ
∞S

ϕ
∞/k.

Comments. 1. Theorem 1(d) shows that k·RARϕ
n has an asymptotic χ2k distribution

under the null and a χ2k(δ
ϕ
AR,W ) distribution under fixed alternatives, where

δϕAR,W = (β − β0)C DZC(β − β0) · ξ(ϕ, g). (4.7)

This justifies using the 1−α quantile of the Fk,n−k−p distribution as the critical value
for the test based on RARϕ

n because Fk,n−k−p →d χ
2
k/k as n→∞.

2. Theorem 1(a) and (c) imply that RLMϕ
n has an asymptotic χ2m distribu-

tion under the null hypothesis (because Sϕ∞ ∼ N(0k, Ik) under the null implies that
Sϕ∞T

ϕ
∞(T

ϕ
∞T

ϕ
∞)−1T

ϕ
∞S

ϕ
∞ has a χ2m distribution conditional on Tϕ

∞ and, hence, an
unconditional χ2m distribution as well). Under the alternative, conditional on PTϕ∞
(= Tϕ

∞(T
ϕ
∞T

ϕ
∞)−1T

ϕ
∞ ), RLM

ϕ
n has a noncentral chi-squared distribution, χ2m(δ

ϕ
LM,W ),

with m degrees of freedom and noncentrality parameter

δϕLM,W = (β − β0)C D
1/2
Z Tϕ

∞(T
ϕ
∞T

ϕ
∞)
−1Tϕ

∞D
1/2
Z C(β − β0) · ξ(ϕ, g). (4.8)

The random projection matrix PTϕ∞ equals PTϕ∞M , where M is any random or non-
random nonsingular m×m matrix. In consequence, PTϕ∞ has the same distribution as

PT∗∞ , where vec(T
∗
∞) ∼ N(vec(D

1/2
Z C), Ikm). Note that the distribution of T ∗∞ does

not depend on ϕ or g. Hence, the asymptotic distribution of RLMϕ
n only depends on

(ϕ, g) through the distribution of Sϕ∞.
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3. The statistics RLRϕ
n and RLMϕ

n and their asymptotic distributions de-
pend on (Sϕn , T

ϕ
n ) and (S

ϕ
∞, T

ϕ
∞) only through Q

ϕ
n = [Sϕn : T

ϕ
n ] [S

ϕ
n : T

ϕ
n ] and Q

ϕ
∞ =

[Sϕ∞ : Tϕ
∞] [S

ϕ
∞ : Tϕ

∞], respectively. Given the multivariate normal distribution of
[Sϕ∞ :T

ϕ
∞], Q

ϕ
∞ has a noncentral Wishart distribution. It depends on unknown para-

meters only through

[ESϕ∞ : ET
ϕ
∞] [ES

ϕ
∞ : ETϕ

∞], where

[ESϕ∞ : ET
ϕ
∞] = D

1/2
Z C ϕ

g,β−β0 : [
ϕ
g,β−β0 : Im]Ω

−1
ϕgH(H Ω

−1
ϕgH)

−1/2 . (4.9)

The following Corollary uses Theorem 1(a) and (b) to show that the use of
κLR,α(τ , k,m) (defined in (3.10)) as the critical value function for the RLR

ϕ
n sta-

tistic yields a test with asymptotic null rejection rate α under weak IV asymptotics.

Corollary 1 Under the null hypothesis, H0 : β = β0, and Assumptions 1-3 and 4W,
limn→∞ P RLRϕ

n > κLR,α(T
ϕ
n T

ϕ
n , k,m) = α.

4.2 Weak IV Asymptotic Distributions of Non-Rank Statistics

To enable comparisons of the power of rank and non-rank tests, we now provide
the null and non-null weak IV asymptotic distributions of the non-rank statistics Sn
and Tn under the assumption that Ω = Evivi is well-defined and positive definite.
The results given here extend results in AMS1 from m = 1 to m ≥ 1. They are not
covered by Moreira (2003), because Moreira (2003) only provides asymptotic results
under the null hypothesis.

To make comparisons of rank and non-rank tests more transparent, we write the
asymptotic distributions of the non-rank tests in a form that is analogous to that of
Sϕ∞ and Tϕ

∞, which differs from the form given in AMS1. Define

Ωg = V ar
yib0σ

−1
g

y2i
= V ar

(ui + (β − β0) v2i)σ
−1
g

v2i

= b0σ
−1
g : H Ω b0σ

−1
g : H =

1 νg
νg Ω22

,

σ2g = V ar(yib0) = V ar(ui + (β − β0) v2i) = b0Ωb0, and

νg = Cov(y2i, (ui + (β − β0) v2i)σ
−1
g ) = H Ωb0σ

−1
g . (4.10)

Let [N1 : N2] be a k × (m+ 1) multivariate normal matrix with N2 as above,
EN1 = DZC(β − β0)σ

−1
g ∈ Rk, and

V ar(vec([N1 :N2])) = Ωg ⊗DZ . (4.11)

Next, define

S∞ = D
−1/2
Z N1 ∼ N(D1/2Z C g,β−β0 , Ik),

T∞ = D
−1/2
Z [N1 : N2]Ω

−1
g H(H Ω

−1
g H)

−1/2 ∈ Rk×m,

vec(T∞) ∼ N(vec(D1/2Z C[ g,β−β0 : Im]Ω
−1
g H(H Ω

−1
g H)

−1/2), Ikm), and

g,β−β0 = (β − β0)σ
−1
g ∈ Rm. (4.12)
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Lemma 2 Under Assumptions 1-3 and 4W and Ω > 0,
(a) (Sn, Tn)→d (S∞, T∞), where S∞ and T∞ are independent,
(b) LRn →d S∞S∞ − λmin([S∞ :T∞] [S∞ :T∞]),
(c) LMn →d S∞T∞(T∞T∞)

−1T∞S∞, and
(d) ARn →d S∞S∞/k.

Comments. 1. Lemma 2(d) shows that k ·ARn has an asymptotic χ2k distribution
under the null and a χ2k(δAR,W ) distribution under fixed alternatives, where

δAR,W = (β − β0)C DZC(β − β0) · σ−2g . (4.13)

2. Lemma 2(a) and (c) imply that LMn has an asymptotic χ2m distribution
under the null hypothesis. Under the alternative, conditional on PT∞ , LMn has
an asymptotic noncentral chi-squared distribution, χ2m(δLM,W ), with m degrees of
freedom and noncentrality parameter

δLM,W = (β − β0)C D
1/2
Z T∞(T∞T∞)

−1T∞D
1/2
Z C(β − β0) · σ−2g . (4.14)

4.3 Weak IV Power Comparisons: Rank Versus Non-rank Tests

In this section, we compare the weak IV asymptotic power of the rank AR, LM,
and CLR tests to that of the non-rank versions of these tests. We consider the AR
and LM tests first because the comparison is simpler for these tests.

4.3.1 Anderson-Rubin and Lagrange Multiplier Tests

The RARϕ
n and ARn statistics have noncentral chi-squared distributions under

weak IV asymptotics by Comment 1 to Theorem 1 and Comment 1 to Lemma 2(d).
Their noncentrality parameters, given in (4.7) and (4.13), respectively, differ only
by the multiplicative constants ξ(ϕ, g) and σ−2g . In consequence, for weak IVs, the
asymptotic relative efficiency9 (ARE) of the rank AR test to the (non-rank) AR test
is

AREg(RAR
ϕ
n , ARn) = ξ(ϕ, g)σ2g. (4.15)

(An ARE greater than one means that the rank AR test has higher power than the
AR test.) Note that the ARE in (4.15) is independent of the location and scale of g.

9The ARE of one test to another is usually defined, roughly speaking, to be the limit of the
ratio of the sample sizes of the second test to the first required for the two tests to have the same
power, see Lehmann (1986, p. 321). In standard scenarios–in which the two tests have noncentral
chi-square asymptotic distributions–the ARE reduces to the ratio of the (asymptotic) noncentrality
parameter of the first test to the second. In the present section, which involves non-standard weak
IV asymptotics–in which the power of a test does not necessarily increase with the sample size–
we adopt the ratio of the (asymptotic) noncentrality parameters to be the definition of the ARE.
That is, by definition, the ARE of one test to another is the ratio of the noncentrality parameter
of the asymptotic distribution of the first test to that of the second test provided this ratio is
nuisance parameter free and the two tests have noncentral chi-square asymptotic distributions or
mixed noncentral chi-square asymptotic distributions (and the ratio of the noncentrality parameters
is the same for all values of the mixing variable).
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When k = m, the ARE in (4.15) also applies to the rank versus non-rank CLR and
LM tests because they are the same as the AR tests.

The RLMϕ
n and LMn statistics have noncentral chi-squared distributions under

weak IV asymptotics conditional on PTϕ∞ and PT∞ , respectively, by Comment 2 to
Theorem 1 and Comment 2 to Lemma 2(d). Note that the distributions of PT∞ and
PTϕ∞ are equal by the argument given in Comment 2 to Theorem 1. In consequence,
the ARE of the RLMϕ

n test to the LMn test is the same as that of the rank to
non-rank AR test given in (4.15).

The literature on rank tests contains extensive calculations of the ARE in (4.15)
because exactly the same ARE arises when comparing a rank test with the usual
t-test in a simple location model with error density g. In addition, it is the same as
the ARE of a rank estimator with the sample mean in the location model.

For a density g and normal scores, ϕNS(x) = Φ−1(x), the ARE is

ARENSg = ξ(ϕNS , g)σ2g = σ2(g)
g2(x)

φ(Φ−1(G(x)))
dx

2

, where

ARENSg = AREg(RAR
NS
n , ARn) = AREg(RLM

NS
n , LMn) (4.16)

and G(·) of the df of g. A result due to Chernoff and Savage (1958) implies that
ARENSg ≥ 1 for all symmetric distributions g (about some point not necessarily
zero). Hence, the asymptotic power under weak IVs of the normal scores rank AR
(LM) test is greater than or equal to that of the non-rank AR (LM) test for any
symmetric distribution.

For a density g and Wilcoxon scores, ϕWS(x) = x, the ARE of the rank AR test
to the non-rank AR test is

AREWS
g = ξ(ϕWS , g)σ2g = 12σ

2
g g2(x)dx

2

, where

AREWS
g = AREg(RAR

WS
n , ARn) = AREg(RLM

WS
n , LMn). (4.17)

For the normal distribution, i.e., g = φ, AREWS
φ = .955. For the double exponential

distribution gde, AREWS
gde

= 1.50. For a contaminated normal distribution φε(x) =

(1 − ε)φ(x) + εφ(x/3)/3, AREWS
φε

= 1.196, 1.373, and 1.497 for ε = .05, .10, and
.15, respectively, see Hettmansperger (1984, pp. 71-2). A result due to Hodges and
Lehmann states that AREWS

g ≥ .864 for all symmetric distributions g (about some
point not necessarily zero), see Hettmansperger (1984, Thm. 2.6.3, p. 72). Hence,
the noncentrality parameter of the Wilcoxon scores rank IV test is almost as large as
that of the AR test for the normal distribution, is significantly larger than that of the
AR test for heavier tailed distributions, and is not much smaller for any symmetric
distribution.

For any densities g1 and g2 symmetric about zero (with df’s G1 and G2),
AREg1 (RAR

WS
n , RARNSn ) ≤ AREg2(RAR

WS
n , RARNSn ) whenever the tails of g1

are lighter than the tails of g2 in the sense that G−12 (G1(x)) is convex for x ≥ 0, see
Thm. 2.9.5 of Hettmansperger (1984, p. 116). (The same is true with AR replaced
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by LM.) Thus, the comparative power of Wilcoxon scores to normal scores tests in-
creases as the tail thickness of the distribution increases. For any symmetric density
g, AREg(RARWS

n , RARNSn ) ∈ (0, 1.91), see Hettsmansperger (1984, Thm. 2.9.3, p.
115).

4.3.2 Conditional Likelihood Ratio Test

Next, we compare the weak IV asymptotic power of the rank CLR and (non-rank)
CLR tests. Analytical comparisons are difficult because of the complicated form of
the asymptotic distributions. However, the power of these tests comes primarily from
the magnitude of the means of Sϕ∞ and S∞, respectively, see (4.6) and (4.12). Hence,
when ui+(β−β0) v2i has relatively heavy tails, the rank CLR test should have higher
power. Furthermore, as discussed in Andrews and Stock (2005), the CLR test is a
data-dependent combination of the AR and LM tests and, hence, the advantage of
the rank versions of the latter tests when ui + (β − β0) v2i has relatively heavy or
thin tails should carry over to that of the CLR rank test.

These conjectures are shown to hold (in the scenarios considered) by numerical
comparisons of the asymptotic power of the RCLRn and CLRn tests using the as-
ymptotic results of Theorem 1(b), Corollary 1, and Lemma 2(b). Table I reports
the weak IV asymptotic powers of the WS-RCLR, NS-RCLR, and CLR tests. For
comparative purposes, asymptotic powers of the LM and AR tests also are given in
Table I.

The cases considered in Table I include a Base Case and several variations of
it. The Base Case has m = 1 (i.e., β is a scalar), λ = C DZC = 10 (which corre-
sponds to moderately weak IVs), k = 5 (i.e., five IVs), ρuv2 = Corr(ui, v2i) = 0.75
(which corresponds to moderately strong endogeneity), and β0 = 0 (without loss
of generality). Two values of β are considered viz., β = 1 and β = −0.43. These
values are selected so that the CLR test has asymptotic power 0.40 with normal
errors (ui, v2i). A “High Endogeneity” case is the same as the Base Case except that
ρuv2 = Corr(ui, v2i) = 0.95 and β = 1.1 or β = −0.37. A “Weaker IV” case is the
same as the Base Case except that λ = 4.0 and β = 5.0 or β = −0.7. A “Ten IV”
case is the same as the Base Case except k = 10. In each variation of the Base Case,
the values of β considered are chosen so that the CLR test has asymptotic power
approximately equal to 0.40 with normal errors.

In all cases considered, the structural error ui and a latent variable εi are taken to
be independent with distribution F. We consider four distributions F, viz., standard
normal, uniform [−2

√
3, 2
√
3], t3, and difference of independent log-normals (DLN).

The uniform distribution exhibits thin tails, whereas the t3 and DLN distributions
exhibit thick tails. The reduced-form error v2i is defined to be the following function
of ui and εi:

v2i = (1− ρ2uv2)
1/2εi + ρuv2ui. (4.18)

By construction, Corr(ui, v2i) = ρuv2 . The distribution G, upon which the asymptotic
properties of the tests depend, is the distribution of ui + (β − β0) v2i when ui and
εi are independent with distribution F. When F has thin or thick tails, so does G.
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Details concerning the computation of the asymptotic power reported in Table I are
given in the Appendix.

Table I indicates that for the normal distribution F the WS-RCLR, NS-RCLR,
and CLR tests have roughly equal asymptotic power in all cases. (This is analogous
to the result in Section 4.3.1 that ARENSφ = 1 and AREWS

φ = 0.955.) For the (thin-
tailed) uniform distribution, the NS-RCLR test has higher power than the CLR test,
whereas the WS-CLR test has lower power in all cases. (The former is analogous to
the result in Section 4.3.1 that ARENSg ≥ 1 for all symmetric distributions g. The
latter is analogous to the result in Section 4.3.1 that AREg (RARWS

n , RARNSn ) ≤
AREφ(RAR

WS
n , RARNSn ) for any distribution g that has thinner tails than φ.) For

the (thick-tailed) t3 and DLN distributions, the WS-RCLR and NS-RCLR tests have
noticeably higher power than the CLR test except in one case (viz. the “Weaker IV”
case with positive β and t3 distribution). In the Base Case, for the t3 distribution, the
rank CLR tests’ powers are 33% higher or more than the non-rank CLR test. In the
Base Case, for the DLN distribution, the rank tests’ powers are more than 50% higher.
(This is analogous to the results in Section 4.3.1 that ARENSg ≥ 1 for all symmetric
distributions g and AREg (RARWS

n , RARNSn ) ≥ AREφ(RAR
WS
n , RARNSn ) for any

distribution g that has thicker tails than φ.)
Table I shows that the NS-RCLR and WS-RCLR tests cannot be rank ordered

in an overall sense because the NS-RCLR test has noticeably higher power for the
uniform distribution, but lower power for the t3 and DLN distributions. Table I also
shows that the AR test has lower asymptotic power than the other tests considered
(because k = 5 > m = 1 or k = 10 > m = 1). Also, the LM test has comparable
asymptotic power to the CLR test in the scenarios considered except the “Weaker
IV” case with negative β, in which case it has lower power.

We conclude from Table I that the WS-RCLR and NS-RCLR tests have weak
IV asymptotic power advantages over the CLR test. For the NS-CLR test, this is
true both for thin- and thick-tailed distributions. Furthermore, there is little or no
cost asymptotically for using the WS-RCLR or NS-RCLR test in place of the CLR
test for the normal distribution. Since it is shown in AMS1 that the CLR test is
nearly asymptotically UMP in the class of invariant similar tests under normality,
the results suggest that the NS-CLR test also inherits this property.

4.3.3 Asymptotic Equivalence

We now provide a result that establishes when the rank and non-rank versions
of the CLR, LM, and AR tests are asymptotically equivalent. We show that for a
given score function ϕ(x) there is a distribution G of ui+(β−β0) v2i (and vice versa)
such that the rank and non-rank versions of these tests are asymptotically equivalent
under weak IV asymptotics.

Lemma 3 Let L(·) be some df with finite variance. Suppose (ui+(β−β0) v2i)κ ∼ L(·)
for some κ > 0 and ϕ(x) = L−1(x), then
(a) ϕ(Ugi)c

−1/2
ϕ = (ui + (β − β0) v2i)σ

−1
g ,

(b) Ωϕg = Ωg,

16



(c) 1
0 ϕ(x, g)ϕ(x)dx · c

−1/2
ϕ = σ−1g , and

(d)Nϕ ∼ N1, Sϕ∞ ∼ S∞, and Tϕ
∞ ∼ T∞, where “∼” denotes “has the same distribution

as.”

Comment. Lemmas 2 and 3 and Theorem 1 imply that if ui + (β − β0) v2i has a
normal distribution, then the normal score function leads to asymptotic equivalence
between the rank and non-rank versions of the CLR, LM, and AR tests. Likewise,
if ui + (β − β0) v2i has a uniform [−a, a] distribution for some a > 0, then the
Wilcoxon score function leads to asymptotic equivalence between the rank and non-
rank versions of these statistics.

5 Strong IV Asymptotic Results

5.1 Strong IV Asymptotic Distributions of Rank Statistics

In this section, we provide the asymptotic distributions of the RLRϕ
n , RLM

ϕ
n , and

RARϕ
n test statistics under standard strong IV asymptotics under the null hypothesis

and local alternatives.
In place of Assumption 4W, we use the following assumption. The first part of

this assumption is the local alternative assumption.

Assumption 4S. (a) β = β0 +Bn
−1/2 for some vector B ∈ Rm.

(b) Π does not depend on n and is full column rank m.
(c) v2i = εi + ρui for i ≥ 1, where εi is a random m-vector and ρ ∈ Rm is a vector
of constants.
(d) {εi : i ≥ 1} are iid and independent of {ui : i ≥ 1}, and E εi

2+δ <∞ for some
δ > 0.
(e) ui has an absolutely-continuous strictly-increasing df F and an absolutely-contin-
uous and bounded density f that satisfies I(f) <∞.
(f) (ui, v2i) has an absolutely-continuous bounded joint density with partial derivative
with respect to its first argument that is bounded over both arguments.
(g) Ωϕf is positive definite.
(h) ∞

i=1 ||Zi||2/i2 <∞ and ∞
i=1 ||Xi||2/i2 <∞.

(i) n1/2(γn(β0)− γ1) = Op(1).

Assumption 4S(c) allows for dependence between the structural error ui and the
reduced-form error v2i, but it must be of a special form. The special form is needed
to make the asymptotic results for the rank statistic Sϕn tractable. Assumption 4S(h)
is not very restrictive.10 Assumption 4S(i) holds for the null-restricted LS estimator
under Assumptions 1, 2, and 4S(a)-4S(c).11 The combination of Assumptions 1 and
4S(c) implies that Eu2i <∞.
10A sufficient condition for Assumption 4S(h) is the same condition with 2 replaced by 1 + δ and

the latter holds with probability one for sequences {(Zi, Xi) : i ≥ 1} that are realizations of iid
random vectors with finite 1 + δ moments, see Lemma 12 in the Appendix.
11The proof is the same as for Lemma 1 except that in place of (7.69) we have n1/2(ξ−ξ1)(β−β0) =

O(1) because β − β0 = O(n
−1/2) by Assumption 4S(a) and ξ − ξ1 = O(1) by Assumptions 2(c) and

4S(b).
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Under strong IV asymptotics, Sϕn has a nondegenerate asymptotic distribution
given by that of Sϕf∞, and n

−1/2Tϕ
n converges in probability to a constant α

ϕ
T = 0,

where

Sϕf∞ ∼ N(α
ϕ
S , Ik), α

ϕ
S = D

1/2
Z Π

ϕ
f,B ∈ R

k,

αϕ
T = D

1/2
Z Π(H Ω

−1
ϕfH)

1/2 ∈ Rk×m,

Ωϕf = V ar
ϕ(F (ui))c

−1/2
ϕ

y2i
=

1 νϕf
νϕf Ω22

∈ R(m+1)×(m+1), and

νϕf = Cov(y2i,ϕ(F (ui))c
−1/2
ϕ ) ∈ Rm. (5.1)

Note that Sϕf∞ differs from Sϕ∞ only in that ϕ
f,B replaces

ϕ
g,β−β0 (both of which are

defined in (4.12)) in its mean.
The main result of this section is the following.

Theorem 2 Under Assumptions 1-3 and 4S,
(a) (Sϕn , n−1/2T

ϕ
n )→d (S

ϕ
f∞,α

ϕ
T ),

(b) RLRϕ
n →d S

ϕ
f∞α

ϕ
T (α

ϕ
T α

ϕ
T )
−1αϕ

T S
ϕ
f∞ ∼ χ2m(δ

ϕ
LM,S), where

δϕLM,S = αϕ
S α

ϕ
T (α

ϕ
T α

ϕ
T )
−1αϕ

T α
ϕ
S ,

(c) RLMϕ
n →d S

ϕ
f∞α

ϕ
T (α

ϕ
T α

ϕ
T )
−1αϕ

T∞S
ϕ
f∞ ∼ χ2m(δ

ϕ
LM,S), and

(d) RARϕ
n →d S

ϕ
f∞S

ϕ
f∞/k ∼ χ2k(δ

ϕ
AR,S)/k, where δ

ϕ
AR,S = αϕ

S α
ϕ
S.

Comments. 1. Theorem 2(b) and (c) show that under strong IV asymptotics the
RLR and RLM test statistics are asymptotically equivalent under the null and local
alternatives for any values of k and m. (As noted above, when k = m, the RLR and
RLM test statistics are the same, so the tests are trivially asymptotically equivalent.)

2. Theorem 2(b)-(d) shows that the RAR test statistic has a different asymptotic
distribution from that of the RLR and RLM statistics when k > m. When k =
m, k · RARϕ

n = RLMϕ
n = RLRϕ

n, so the three rank statistics are asymptotically
equivalent.

5.2 Strong IV Asymptotic Distributions of Non-Rank Statistics

For comparative purposes, we now provide the strong IV asymptotic distributions
under the null hypothesis and local alternatives of the non-rank LRn, LMn, and ARn
test statistics. The results for LRn with m > 1 are new. (AMS1 provides the same
results for m = 1.) Let

Sf∞ ∼ N(αS, Ik), αS = D1/2Z ΠBσ
−1
f ∈ R

k,

αT = D
1/2
Z Π(H Ω

−1
f H)

1/2 ∈ Rk×m, and

Ωf = V ar((uiσ
−1
f , v2i) ) =

1 νf
νf Ω22

, νf = Cov(y2i, uiσ
−1
f ). (5.2)
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Lemma 4 Under Assumptions 1-3 and 4S and Ω > 0,
(a) (Sn, n−1/2Tn)→d (Sf∞,αT ),
(b) LRn →d Sf∞αT (αTαT )

−1αTSf∞ ∼ χ2m(δLM,S), where
δLM,S = αSαT (αTαT )

−1αTαS ,
(c) LMn →d Sf∞αT (αTαT )

−1αTSf∞ ∼ χ2m(δLM,S), and
(d) ARn →d Sf∞Sf∞/k ∼ χ2k(δAR,S)/k, where δAR,S = αSαS.

5.3 Strong IV Power Comparisons: Rank Versus Non-rank Tests

Theorem 2 and Lemma 4 allow calculation of the ARE of the rank and non-
rank tests with strong IVs. The calculation is analogous to that given in Section
4.3.1 for weak IVs, but with three differences. The first difference is that αϕ

T and
αT are fixed in the strong IV case, whereas Tϕ

∞ and T∞ are random in the weak
IV case. This does not affect the ARE calculations. The second difference is that
the asymptotic distributions depend on the density f of ui rather than the density
g of ui + (β − β0) v2i. This occurs because β converges to β0 under strong IV local
alternatives and, hence, (β − β0) v2i → 0 as n → ∞. The third difference is that
under strong IVs the asymptotic distributions of RLRϕ

n and RLM
ϕ
n are the same

and, analogously, those of LRn and LMn are the same.
Combining the results of Section 4.3.1 with these differences, we find that under

strong IVs the ARE of the rank to non-rank AR tests is the same as for the rank
to non-rank LM and CLR tests and is equal to the usual ARE for rank to non-rank
procedures based on the density f . That is,

AREf (RAR
ϕ
n , ARn) = AREf (RLM

ϕ
n , LMn) = AREf (RLR

ϕ
n , LRn) = ξ(ϕNS , f)σ2f ,

(5.3)

where ξ(ϕNS , f)σ2f is given in (4.16) and (4.17) for normal and Wilcoxon scores,
respectively, with f in place of g.12

In sum, all of the statements in Section 4.3.1 concerning (4.15) apply to the ARE
of the rank to non-rank versions of the AR, LM, and CLR tests under strong IVs,
but with f in place of g.

5.4 Asymptotic Equivalence

The next result establishes when the rank and non-rank versions of the CLR, LM,
and AR tests are asymptotically equivalent under strong IV asymptotics.

Lemma 5 Let L(·) be some df with finite variance. Suppose uiκ ∼ L(·) for some
κ > 0 and ϕ(x) = L−1(x), then
(a) ϕ(F (ui))c

−1/2
ϕ = uiσ

−1
f ,

12The AREs discussed in this section can be defined by the usual method involving the limit of
ratios of sample sizes or in terms of the ratio of noncentrality parameters–see the footnote in Section
4.3.1 regarding these definitions. Under strong IV asymptotics, the two definitions are equivalent for
the tests considered here.
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(b) Ωϕf = Ωf ,

(c) 1
0 ϕ(x, f)ϕ(x)dx · c

−1/2
ϕ = σ−1f ,

(d) Sϕf∞ ∼ Sf∞, and αϕ
T = αT .

Comments. 1. Lemmas 4 and 5 and Theorem 2 imply that if ui has a normal
distribution, then the normal score function leads to asymptotic equivalence between
the rank and non-rank versions of the CLR, LM, and AR tests. Likewise, if ui has a
uniform [−a, a] distribution for some a > 0, then the Wilcoxon score function leads
to asymptotic equivalence between these statistics.

2. For the case of normal errors, the (non-rank) CLR and LM tests are as-
ymptotically efficient under strong IV asymptotics, see AMS1. This combined with
Comment 1 implies that the normal scores rank CLR and LM tests also are asymp-
totically efficient under normal errors and strong IV asymptotics. When k > m, the
rank AR statistic has a different asymptotic distribution from that of the rank LR
and LM statistics (see Comment 2 to Theorem 2) and, hence, it is not asymptotically
efficient.

6 Finite Sample Results

In this section, we report simulation results concerning the finite sample size
of some of the rank and non-rank tests discussed above. We also provide power
comparisons of size-corrected versions of these tests.

We consider the Wilcoxon scores rank CLR test, denoted RCLRWS
n , and the

normal scores CLR rank test, denoted RCLRNSn . For comparative purposes, we also
consider the CLR, LM, and AR tests. We do not report results for the rank LM and
rank AR tests both for brevity and for the following reasons. First, when the model is
over-identified, the AR test has distinctly lower power than the CLR test, see AMS1
and AMS2, and the same is true for the rank versions of these tests. Second, the LM
test has quirky power properties in parts of the parameter space, e.g., see AMS1 and
AMS2, and the rank LM test inherits these properties.

6.1 Experimental Design

We take the model to be as in (2.1) with y2i and β being scalars (m = 1) and
v2i defined as in (4.18), where ρuv2 ∈ [−1, 1]. Let Zi = (Zi1, ..., Zik) and Xi =
(1,Xi2, ...,Xip) .We take Zij ,Xis, ui, εi to be iid with distribution F for all j = 1, ..., k,
s = 2, ..., p, and i = 1, ..., n.13

The test statistics considered are invariant with respect to γ1, ξ1, and the location
and scale of F. Hence, without loss of generality we take γ1 and ξ1 to be zero and we
take F to have mean zero (if its mean is well defined), center of symmetry zero (if it
is symmetric), and variance one (if its variance is well defined).

13Thus, we consider a model with random exogenous variables and IVs. The tests considered have
the correct size asymptotically both conditionally and unconditionally on the exogenous variables
and IVs.
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The parameter vector π ∈ Rk determines the strength of the IVs. It is taken to
be proportional to a k-vector of ones:

π =
ρIV

k1/2(1− ρ2IV )
1/2
(1, ..., 1) for some ρIV ∈ [−1, 1], (6.1)

where ρIV is the correlation between the reduced-form regression function, Ziπ, and
the endogenous variable y2i (when F has a finite variance). The parameter ρIV can
be related to a parameter λ which directly measures the strength of the IVs (and is
closely related to the so-called concentration parameter):

λ =
nρ2IV
1− ρ2IV

= nπ EZiZiπ ≈ π Z Zπ, (6.2)

where the first equality defines λ, the second equality holds provided Zi has a finite
variance, and an ≈ bn means an/bn →p 1 as n→∞.

The hypotheses of interest are H0 : β = β0 and H1 : β = β0. Without loss of
generality, we take β0 = 0.

14

For both the size and power results, we first consider a Base Case with moder-
ately weak IVs λ = 10 (equivalently, ρIV = .302 when n = 100), moderately strong
endogeneity ρuv2 = .75, sample size n = 100, number of IVs k = 5, no exogenous
variables beyond a constant p = 1, and distribution F equal to the normal, uniform,
t1, t2, t3, or difference of independent log-normals (DLN). The uniform distribution
exhibits thin tails, and the t distributions exhibit heavy tails (e.g., t1 is the Cauchy
distribution) as does the DLN distribution. For the power results, both positive and
negative true β values are considered. The β values are selected so that the level .05
CLR test has power around .4 for the given choice of λ, ρuv2 , n, k, and p when F is
normal.

We also consider a number of variations of the Base Case to illustrate the effect of
changes in the level of endogeneity: ρuv2 = 0, .95; strength of IVs: λ = 4, 20; number
of IVs: k = 1, 10, and sample size: n = 50, 200. In each variation of the Base Case,
only one of these parameters is different from the Base Case. In the Base Case, we
find that when F is normal the power of the normal scores rank CLR test is slightly
higher than that of the non-rank CLR test, but the opposite is true for negative β.
(These differences disappear asymptotically under weak and strong IV asymptotics.)
In consequence, to maintain fair comparisons and for brevity, in each variation of the
Base Case, we report average power for two β values–one positive and one negative–
each of which is chosen so that the CLR test has power approximately equal to .4
when F is normal.15

For the power results, the tests are all size-corrected. The size-correcting critical
values are obtained via simulation with 100, 000 simulation repetitions. The number
of simulation repetitions is 20, 000 for the size results and 5, 000 for the power results.
14There is no loss of generality in taking β0 = 0 because the structural equation y1i = y2iβ+γ1Xi+

ui and hypothesis H0 : β = β0 can be transformed into y1i = y2iβ+γ1Xi+ui and H0 : β = 0, where
y1i = y1i − y2iβ0 and β = β − β0.
15The reported power of the CLR test for the case where λ or n is small is less than .4 because it

is not possible to choose β so that the CLR test has power as high as .4.
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Note that the size results for the AR test are invariant to ρuv2 and λ.

6.2 Size Results

Table II presents the size results. The two rank CLR tests perform noticeably
better in terms of size than the non-rank CLR, LM, and AR tests. Nine different
cases are considered with six different distributions for each case. Over the 54 trials,
the range of null rejection rates for each test is WS-RCLR: [.027, .052]; NS-CLR:
[.033, .051]; CLR: [.047, .091; LM: [.042, .070]; and AR: [.049, .127]. For the two rank
tests, the majority of rejection rates are in the desired [.040, .050] range, which cor-
responds to no over-rejection and sufficiently small under-rejection as to minimize
the power loss. (In particular, 42/54 for WS-CLR and 38/54 for NS-CLR are in
this range.) In contrast, for the non-rank tests a small number of rejection rates are
in this desired range: 1/54 for CLR, 3/54 for LM, and 11/54 for AR. Not surpris-
ingly, the largest over-rejections for the non-rank tests occur for the thickest-tailed
distributions.

6.3 Power Comparisons

Table III presents the power results. The general pattern of finite sample power
in Table III reflects that of asymptotic power given in Table I. In particular, the NS-
RCLR and CLR tests have comparable power for the normal distribution, the NS-
RCLR test has noticeably higher power than the CLR test for the uniform distribution
and much higher power for the thick-tailed distributions. This occurs in the Base
Case and in the variations of the Base Case. For example, in the Base Case with two
β values the (average) power of the NS-RCLR test for t2 distribution is 0.67 compared
to 0.46 for the CLR test. The WS-RCLR and NS-RCLR tests have similar power
with the NS-RCLR test having slightly higher power for the normal distribution,
noticeably higher power for the uniform distribution, and slightly worse power for
the thick-tailed distributions. The LM test has similar power to the CLR test, but
with lower power in the weaker IVs case with normal distribution and slightly higher
power for the heavy-tailed distributions. The AR test has significantly lower power
than the other tests except in the case with k = 1.

In sum, the NS-RCLR test has power that essentially dominates that of the (non-
rank) CLR, LM, and AR tests. Its power is comparable to that of the CLR and LM
tests for the normal distribution and higher for the other distributions, especially the
thick-tailed ones. The power of the WS-RCLR test is similar to that of the NS-RCLR
test.
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7 Appendix of Proofs

The proofs of Lemmas 1-5 and Corollary 1 are given at the end of the Appendix,
as is the description of the numerical calculation of asymptotic power under weak
IVs.

The proofs of Theorem 1(a) and 2(a) rely on the following Lemmas. The first
Lemma follows from results of Koul (1970) and Hájek and Sidák (1967).

Lemma 6 Let Ψn(t) = n−1 n
i=1 (ci − cn)ϕ(ri(t)/(n + 1)), where (i) ri(t) is the

rank of Qi − dit among {Qj − djt : 1 ≤ j ≤ n} for a constant vector t ∈ Rδd ,
(ii) {Qi : i ≥ 1} is a sequence of iid random variables with absolutely-continuous
strictly-increasing df H and absolutely-continuous and bounded density h that satisfies
I (h) < ∞, (iii) {ci : i ≤ n, n ≥ 1} and {di : i ≤ n, n ≥ 1} are triangular arrays of
non-random δc-vectors and δd-vectors, respectively (with dependence of ci and di on
n suppressed for brevity) that satisfy limn→∞max1≤i≤n ||ci−cn||2/ n

i=1 ||ci−cn||2 = 0
and limn→∞ n−1

n
i=1 ||ci − cn||2 <∞ and likewise with ci − cn replaced by di − dn,

where cn = n−1
n
i=1 ci and dn = n

−1 n
i=1 di, and (iv) the score function ϕ satisfies

Assumption 3. Then,
(a) for all ε > 0 and b <∞,

lim
n→∞

P sup
t ≤b

n1/2 Ψn(tn
−1/2)−Ψn (0)− n−1/2Ȧn(0)t > ε = 0, where

Ȧn(0) = −n−1
n

i=1

(ci − cn) (di − d̄n)
1

0
ϕ(x, h)ϕ(x)dx,

(b) for any sequence of random δd-vectors {τn : n ≥ 1} for which n1/2τn = Op(1),

n1/2Ψn(τn) = n
1/2Ψn (0) + Ȧn(0)n

1/2τn + op(1),

(c) n1/2Ψn (0) = n−1/2
n
i=1(ci − cn)ϕ(H(Qi)) + op(1).

Comments. 1. Lemma 6(a) is an extension of Theorem 2.1 and Lemma 2.3 of
Koul (1970) from scalar constants ci and di to vectors. As Koul (1970, p. 1280)
notes, his proof of these results goes through for this extension with virtually no
changes. Lemma 6(b) follows from part (a). Lemma 6(c) follows from the proofs of
Hájek and Sidák’s (1967) Thm. V.1.5a, p. 160, Thm. VI.1.6a, p. 163, and Lem.
VI.1.6a, p. 164, which show that in the scalar ci case E(n−1/2

n
i=1(ci−cn)ϕ(H(Qi))

−n−1/2 n
i=1(ci−cn)a

ϕ
n(i))2 = o(1) and E(n−1/2

n
i=1(ci−cn)a

ϕ
n(i) −n1/2Ψn (0))2 =

o(1), respectively, where aϕn(i) = E(ϕ(H(Q1))|r1(0) = i).
2. The expression for Ȧn(0) on p. 1277 of Koul (1970) is correct, but the

expression for Ȧn(0) given on p. 1278 (which is of the form given above) contains a
typo–a minus sign is missing. Also, the proof of Theorem 2.1 of Koul (1970) contains
a typo that could be confusing to the reader. The term ϕ(qn) that appears at the
end of the expression on the first two lines of the first equation on p. 1276 should be
ϕ (qn) in both places.
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3. We do not require ϕ to satisfy the second condition of (i) on p. 1274 of Koul
(1970) because this is a normalization condition that implies that ϕ(1/2) = 0 which
is not needed for his Theorem 2.1 or Lemma 2.3. It is needed for his n1/2Sn(0) to
have an asymptotic normal distribution. We do not require it for n1/2Ψn (0) to have
an asymptotic normal distribution because we consider demeaned constant vectors
ci − cn, which yields n1/2Ψn (0) invariant to additive constants in ϕ, whereas Koul
(1970) does not.

The next lemma is used to establish the probability limit of νϕn.

Lemma 7 Suppose (i) {(Q1i, Q2i) : i ≥ 1} is an iid sequence of random (m + 1)-
vectors with Q1i ∈ R, (ii) (Q1i,Q2i) has an absolutely-continuous and bounded joint
df HQ1,Q2 that satisfies sup(q1,q2) |∂HQ1,Q2(q1, q2)/∂q1| < ∞, (iii) E||Q2i|| < ∞, (iv)
ri(t) is the rank of Q1i − dit among {Q1j − djt : j ≤ n}, where t ∈ Rδd , (v)
{di : i ≤ n, n ≥ 1} is a triangular array of non-random δd-vectors that satisfies
limn→∞n−1

n
i=1 ||di|| < ∞, and (vi) the score function ϕ satisfies Assumption 3.

Then,
(a) for all b <∞,

sup
t:||t||≤b

n−1
n

i=1

ϕ
ri(tn

−1/2)

n+ 1
Q2i − n−1

n

i=1

ϕ
ri(0)

n+ 1
Q2i = op(1),

(b) for any sequence of random δd-vectors {τn : n ≥ 1} for which n1/2τn = Op(1),

n−1
n

i=1

ϕ
ri(τn)

n+ 1
Q2i = n

−1
n

i=1

ϕ
ri(0)

n+ 1
Q2i + op(1),

(c) n−1 n
i=1 ϕ

ri(0)
n+1 Q2i = Eϕ(HQ1(Q1i))Q2i + op(1), where HQ1 is the df of Q1i.

Comment. Lemma 7(a) follows from arguments similar to the ones used to prove
Lemma 2.2 in Koul (1970), which was originally proved, under different assumptions,
as Theorem 3.1 in Koul (1969). The result established in Lemma 7(a) is different
from the results established in Koul (1969, 1970), but the idea of the argument is
essentially the same. The results in Koul (1969, 1970) are for a linear regression
model with deterministic regressors. Hence, using our notation, the results in Koul
(1969, 1970) are restricted to the case where {Q2i : i ≤ n} are nonrandom real
numbers, and {(Q1i, Q2i) : i ≤ n} and {di : i ≤ n} satisfy the relation imposed by a
linear regression equation. Hence, the conditions in Lemma 7(a) generalize those in
Lemma 2.2 of Koul (1970). On the other hand, Lemma 2.2 of Koul (1970) establishes
that the lhs in Lemma 7(a) is op(n−1/2), which is a stronger result than that given
in Lemma 7(a).

Let Φ be the n-vector with i-th element given by ϕ(Ugi) = ϕ(G(ui+(β−β0) v2i)).
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Lemma 8 Under Assumptions 1-3 and 4W,
(a) n−1/2Z Rϕ = n

−1/2Z (Φ+ ZC ϕ
g,β−β0c

1/2
ϕ n−1/2) + op(1),

(b) Sϕn = (Z Z)−1/2Z (Φc
−1/2
ϕ + ZC ϕ

g,β−β0n
−1/2) + op(1),

(c) n−1Z Z → DZ > 0, and
(d) n−1/2Z [(Φc−1/2ϕ + ZC ϕ

g,β−β0n
−1/2):Y2]→d [Nϕ :N2].

Lemma 9 Under Assumptions 1-3 and 4W, (a) νϕn →p νϕg and (b) Ω22n →p Ω22.

Lemma 10 Under Assumptions 1-3 and 4S,
(a) n−1/2Z Rϕ = n

−1/2Z (Φ+ ZΠ ϕ
f,Bc

1/2
ϕ n−1/2) + op(1),

(b) Sϕn = (Z Z)−1/2Z (Φc
−1/2
ϕ + ZΠ ϕ

f,Bn
−1/2) + op(1), and

(c) n−1Z [Φ : Y2]→p DZ [0k : Π].

Lemma 11 Under Assumptions 1-3 and 4S, (a) νϕn →p νϕf and (b) Ω22n →p Ω22.

The following Lemma gives sufficient conditions for an iid sequence to satisfy
Assumption 2(d) and 4S(h) a.s.

Lemma 12 Suppose {ψi : i ≥ 1} is an iid sequence of non-negative random variables
with Eψ1+δi < ∞ for some δ > 0. Then, (a) ∞

i=1 ψ
1+δ
i /i1+δ < ∞ a.s. and (b)

maxi≤n ψi/n→ 0 a.s.

The last Lemma is a Glivenko-Cantelli Theorem for triangular arrays of random
variables, which is used in the proof of Lemma 7. It is proved by verifying the
conditions in Pollard (1990, Thm. 8.3).

Lemma 13 Suppose (i) {(Q1i, Q2i) : i ≥ 1} is an iid sequence of random (m + 1)-
vectors with Q1i ∈ R, and (ii) {di : i ≥ 1} is any sequence of non-random δd-vectors.
Then, for any b <∞,

sup
(q1,q2)∈Rm+1

sup
t∈Rδd :||t||≤b

n−1
n

i=1

[hni(q1, q2, t)−Ehni(q1, q2, t)] → 0 a.s., where

hni(q1, q2, t) = 1(Q1i ≤ q1 + ditn−1/2, Q2i ≤ q2).

The proofs of Lemmas 7-13 are given after the proofs of Theorems 1-2.

Proof of Theorem 1. Lemma 9 and Assumption 4W(e) imply that

Ωϕn →p Ωϕg and Ω−1ϕnH(H Ω
−1
ϕnH)

−1/2 →p Ω
−1
ϕgH(H Ω

−1
ϕgH)

−1/2. (7.1)

This, Lemma 8, the continuous mapping theorem, and the definitions of (Sϕn , T
ϕ
n ) and

(Sϕ∞, T
ϕ
∞) combine to establish part (a).

Independence of Sϕ∞ and Tϕ
∞ is implied by zero covariance between the normal

variates Nϕ and [Nϕ :N2]Ω
−1
ϕgH. The latter holds by the following argument. Let
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Nϕ,j , N2, , and DZ,j denote the j-th element of Nϕ, the -th row of N2, and the (j, )
element of DZ , respectively. Let e1 denote an m+ 1 vector of ones. The covariance
between Nϕ,j and the -th row of [Nϕ :N2]Ω

−1
ϕgH for j, = 1, ..., k is

Cov(Nϕ,j , [Nϕ, :N2, ]Ω
−1
ϕgH)

= Ee1
Nϕ,j −ENϕ,j

N2,j −EN2,j
[Nϕ, :N2, ]Ω

−1
ϕgH = DZ,j · e1ΩϕgΩ

−1
ϕgH = 0. (7.2)

Parts (b)-(d) of the Theorem follow immediately from part (a) and the continuous
mapping theorem.

Proof of Theorem 2. The result Sϕn →d S
ϕ
f∞ of part (a) follows from Lemma

10(b), Lemma 8(c) (which does not rely on Assumption 4W), and the Lindeberg
CLT applied to n−1/2Z Φc−1/2ϕ . The CLT applies by the same argument as given in
the proof of Lemma 8(d) below.

The result n−1/2Tϕ
n →d α

ϕ
T (or n

−1/2Tϕ
n →p α

ϕ
T ) is established as follows:

n−1/2Tϕ
n =n

−1/2(Z Z)−1/2Z [Rϕc
−1/2
ϕ :Y2]Ω

−1
ϕnH(H Ω

−1
ϕnH)

−1/2

=(n−1Z Z)−1/2[n−1Z Rϕc
−1/2
ϕ :n−1Z Y2]Ω

−1
ϕfH(H Ω

−1
ϕfH)

−1/2 + op(1)

=D
−1/2
Z [n−1Z (Φc−1/2ϕ + ZΠ ϕ

f,Bn
−1/2):n−1Z Y2]Ω

−1
ϕfH(H Ω

−1
ϕfH)

−1/2+op(1)

=D
1/2
Z [0k :Π]Ω

−1
ϕfH(H Ω

−1
ϕfH)

−1/2 + op(1)

=D
1/2
Z Π(H Ω

−1
ϕfH)

1/2 + op(1), (7.3)

where the second equality holds because Lemma 11 and Assumption 4S(g) imply that
Ω−1ϕn →p Ω

−1
ϕf , the third equality holds by Lemma 8(c) and Lemma 10(b), the fourth

equality holds by Lemma 10(c), and the fifth equality holds because [0k :Π] = Π[0m :
Im] = ΠH . The convergence of (Sϕn , n−1/2T

ϕ
n ) holds jointly because α

ϕ
T is a constant.

Parts (c) and (d) follow immediately from part (a) using the continuous mapping
theorem noting that αϕ

T α
ϕ
T is pd by Assumptions 2(c), 4S(b), and 4S(g).

We now prove part (b). Given the definition of RLRϕ
n in (3.8) and the result of

Theorem 2(c), it suffices to show that

λmin([S
ϕ
n :T

ϕ
n ] [S

ϕ
n :T

ϕ
n ]) = S⊥ S⊥ + op(1), where

S⊥ = Sϕn − Tϕ
n (T

ϕ
n T

ϕ
n )
−1Tϕ

n S
ϕ
n . (7.4)

For notational simplicity, let [S :T ] denote [Sϕn :T
ϕ
n ] and let Tj ∈ Rm+1 denote

the jth column of T for j = 1, ...,m. We rotate [S :T ] by an orthogonal matrix
B ∈ R(m+1)×(m+1) whose first column, b1, is designed to be such that [S :T ] b1 = d1S⊥,
where d1 is a positive scalar that equals 1 + op(1). Then, we have

λmin([S :T ] [S :T ]) = λmin(B [S :T ] [S :T ]B) (7.5)

and the (1, 1) element of the matrix on the right-hand side equals λ21d
2
1S
⊥ S⊥.

26



Let bj denote the jth column of B and bij denote the (i, j)th element of B. Define

b1 = d1
1

−(T T )−1T S ∈ Rm+1, (7.6)

where d1 is a constant such that b1b1 = 1. Next, we define the orthogonal vectors
{bj : j = 2, ...,m + 1} via the Gramm-Schmidt procedure applied to the vectors
b1, e2, ..., em+1, where ej is the jth elementary vector (whose jth element is one and
whose other elements are zero). We have

b2 = d2(e2 − (e2b1)b1) = d2(e2 − b12b1),
b3 = d3(e3 − (e3b2)b2 − (e3b1)b1) = d3(e3 − b23b2 − b13b1), (7.7)

and so on, where dj is the constant that yields ||bj || = 1 for j = 1, ...,m.
The constants {dj : j = 1, ...,m+ 1} satisfy

d1 = (1 + n−1(n−1/2S T )(n−1T T )−2(n−1/2T S))−1/2 = 1 + op(1),

d2 = (1− b212)−1/2 = 1 + op(1),
d3 = (1− b223 − b213)−1/2 = 1 + op(1), (7.8)

and so on, using Theorem 2(a) and the fact that

b1j = n−1/2[−d1(n−1T T )−1n−1/2T S]j = Op(n−1/2) for j = 2, ...,m,
b2j = d2(−b12b1j) = Op(n−1) for j = 3, ...,m,
b3j = d3(−b23b2j − b13b1j) = Op(n−1) for j = 4, ...,m, (7.9)

and so on.
Let λ = (λ1, ...,λm+1) = (λ1,λ2) ∈ Rm+1 be such that ||λ|| = 1. Then, we have

λmin(B [S :T ] [S :T ]B) = inf
λ∈Rm+1:||λ||=1

J(λ), where

J(λ) := || [S :T ]Bλ||2 = λ21d
2
1S
⊥ S⊥ + 2λ1d1S

⊥ [S :T ] [b2 · · · bm+1]λ2 + J3(λ),
J3(λ) := λ2[b2 · · · bm+1] [S :T ] [S :T ] [b2 · · · bm+1]λ2. (7.10)

The cross-product summand of J(λ) in (7.10) equals

2λ1d1 S
⊥ S :01×m [b2 · · · bm+1]λ2 = Op(||λ2||), (7.11)

using S⊥ T = 0, (S⊥ S)2 ≤ (S⊥ S⊥)S S ≤ (S S)2 = Op(1), |bij | ≤ 1, and d1 =
1 + op(1). For the third summand J3(λ) of J(λ), we have

[S :T ] [b2 · · · bm+1]
= d2(T1 − b12S⊥):d3(T2 − b23d2(T1 − b12S⊥)− b13S⊥):· · · . (7.12)

Combining this with (7.8), (7.9), S⊥ T = 0, S⊥ = Op(1), and n−1/2T →p αϕ
T (by

part (a) of the Theorem), we obtain

0 ≤ J3(λ) = nλ2(α
ϕ
T α

ϕ
T + op(1))λ2, (7.13)
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where αϕ
T α

ϕ
T is pd by Assumptions 2(c), 4S(b), and 4S(g).

Let λ∗ = (λ∗1, ...,λ
∗
m+1) = (λ

∗
1,λ

∗
2 ) ∈ Rm+1 be an m + 1 vector that minimizes

J(λ) over λ ∈ Rm+1 such that ||λ|| = 1. If ||λ∗2|| = op(n−1), then

J(λ∗) = S⊥ S⊥ + op(1) (7.14)

by (7.10)-(7.13) and S⊥ S⊥ = Op(1) by part (a) of the Theorem.
On the other hand, suppose ||λ∗2|| = op(1) and ||λ

∗
2|| = op(n

−1), then |λ∗1| =
1 + op(1),

J(λ∗) = S⊥ S⊥ + op(1) + J3(λ
∗) and

0 ≤ J3(λ∗) = nλ
∗
2 (α

ϕ
T α

ϕ
T + op(1))λ

∗
2 = op(1). (7.15)

This contradicts the assumption that λ∗ minimizes J(λ) over λ such that ||λ|| = 1
because a different choice of λ, viz. λ such that ||λ2|| = op(n−1) yields a smaller value
J(λ) as indicated in (7.14).

Next, suppose ||λ∗2|| = op(1). Then,

J(λ∗) = Op(1) + J3(λ
∗),

0 ≤ J3(λ∗) = op(n), and J(λ∗) = Op(1) (7.16)

by (7.10)-(7.13). In particular, for some ε > 0 and some (infinite) subsequence { n}
of {n}, P (J3(λ∗) > nε) > ε when the sample size is n for all n ≥ 1. Again this is a
contradiction, because a different choice of λ, viz., λ such that ||λ2|| = op(n−1) yields
a smaller value J(λ), viz. one that is Op(1) as indicated in (7.14). We conclude that
||λ∗2|| must satisfy ||λ

∗
2|| = op(n−1) and, hence, (7.14) in conjunction with (7.4), (7.5),

and (7.10) combine to establish the result of part (b).

Proof of Lemma 7. Because E||Q2i|| <∞, given any ε > 0, there exists a constant
cε <∞ such that

E||Q2i||1(||Q2i|| > cε) < ε. (7.17)

Hence, using the boundedness of ϕ, say by C, and Markov’s inequality, we have: for
any η > 0 and ε > 0,

P sup
t:||t||≤b

n−1
n

i=1

ϕ
ri(tn

−1/2)

n+ 1
Q2i1(||Q2i|| > cε) > η

≤ C

η
E||Q2i||1(||Q2i|| > cε) <

Cε

η
. (7.18)

Therefore, without loss of generality, we can assume that Q2i is bounded.
Define

L1n(q1, t) = n−1
n

i=1

1(Q1i − dit ≤ q1) and

L12n(q1, q2, t) = n−1
n

i=1

1(Q1t − dit ≤ q1, Q2i ≤ q2). (7.19)
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Note that

EL1n(q1, t) = n−1
n

i=1

HQ1(q1 + dit) and

EL12n(q1, q2, t) = n−1
n

i=1

HQ1,Q2(q1 + dit, q2). (7.20)

Now, we have

n−1
n

i=1

ϕ
ri(t)

n+ 1
Q2i

= n−1
n

i=1

ϕ

⎛⎝ 1

n+ 1

n

j=1

1(Q1j − djt ≤ Q1i − dit)

⎞⎠Q2i
= n−1

n

i=1

ϕ
nL1n(Q1i − dit, t)

n+ 1
Q2i

= ϕ
nL1n(q1, t)

n+ 1
q2dL12n(q1, q2, t)

= ϕ
nL1n(q1, t)

n+ 1
− ϕ

nEL1n(q1, t)

n+ 1
q2dL12n(q1, q2, t)

+ ϕ
nEL1n(q1, t)

n+ 1
q2dL12n(q1, q2, t). (7.21)

Therefore, using the triangle inequality,

sup
t:||t||≤b

n−1
n

i=1

ϕ
ri(tn

−1/2)

n+ 1
Q2i − n−1

n

i=1

ϕ
ri(0)

n+ 1
Q2i

≤ A1n(b) +A1n(0) +A2n, (7.22)

where, for b ≥ 0,

A1n(b) = sup
t:||t||≤b

ϕ
nL1n(q1, tn

−1/2)

n+ 1
− ϕ

nEL1n(q1, tn
−1/2)

n+ 1

×q2dL12n(q1, q2, tn−1/2) and

A2n = sup
t:||t||≤b

ϕ
nEL1n(q1, tn

−1/2)

n+ 1
q2dL12n(q1, q2, tn

−1/2)

− ϕ
nEL1n(q1, 0)

n+ 1
q2dL12n(q1, q2, 0) . (7.23)
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Now, by Lemma 13,

sup
q1∈R

sup
t:||t||≤b

L1n(q1, tn
−1/2)−EL1n(q1, tn−1/2) (7.24)

= sup
q1∈R

sup
t:||t||≤b

n−1
n

i=1

1(Q1i ≤ q1 + ditn−1/2)−HQ1(q1 + ditn−1/2) →p 0.

This implies that A1n(b)→p 0 and A1n(0)→p 0, because ϕ is absolutely continuous,
Q2i is bounded, and 0 ≤ A1n(0) ≤ A1n(b).

Using the triangle inequality again, we have A2n ≤ B1n +B2n, where

B1n = sup
t:||t||≤b

ϕ
nEL1n(q1, tn

−1/2)

n+ 1
q2dL12n(q1, q2, tn

−1/2)

− ϕ
nEL1n(q1, 0)

n+ 1
q2dL12n(q1, q2, tn

−1/2) and (7.25)

B2n = sup
t:||t||≤b

ϕ
nEL1n(q1, 0)

n+ 1
q2d{L12n(q1, q2, tn−1/2)− L12n(q1, q2, 0)} .

To bound B1n and B2n, we write

sup
(q1,q2)∈Rm+1

sup
t:||t||≤b

L12n(q1, q2, tn
−1/2)− L12n(q1, q2, 0)

≤ sup
(q1,q2)∈Rm+1

sup
t:||t||≤b

L12n(q1, q2, tn
−1/2)−EL12n(q1, q2, tn−1/2)

+ sup
(q1,q2)∈Rm+1

sup
t:||t||≤b

EL12n(q1, q2, tn
−1/2)−EL12n(q1, q2, 0)

+ sup
(q1,q2)∈Rm+1

sup
t:||t||≤b

|EL12n(q1, q2, 0)− L12n(q1, q2, 0)| . (7.26)

The first and last terms on the rhs converge to zero a.s. by Lemma 13. The second
term on the rhs converges to zero because it equals

sup
(q1,q2)

sup
t:||t||≤b

n−1
n

i=1

HQ1,Q2(q1 + ditn
−1/2, q2)−HQ1,Q2(q1, q2)

= sup
(q1,q2)

sup
t:||t||≤b

n−1
n

i=1

∂HQ1,Q2(q1 + dit
∗n−1/2, q2)

∂q1
ditn

−1/2 = o(1), (7.27)

where t∗ lies between 0 and t, the first equality holds by a mean-value expansion
around t = 0, and the second equality holds because ∂HQ1,Q2/∂q1 is bounded (As-
sumption 4W(d)) and limn→∞

n
i=1 ||di|| <∞. Therefore, using the boundedness of

ϕ and Q2i, we have B2n →p 0.
Equation (7.27) and a mean-value expansion yield B1n →p 0 because ϕ has a

bounded first derivative by Assumption 3(a). In consequence, A2n →p 0, which
completes the proof of part (a).
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Part (b) of the Lemma follows from part (a) using a standard argument.
To prove part (c), as in part (a), we can assume that Q2i is bounded without loss

of generality. We have

n−1
n

i=1

ϕ
ri(0)

n+ 1
Q2i = ϕ

nL1n(q1, 0)

n+ 1
q2dL12n(q1, q2, 0)

= ϕ
nEL1n(q1, 0)

n+ 1
q2dL12n(q1, q2, 0) + op(1)

= ϕ
nHQ1(q1)

n+ 1
q2dHQ1,Q2(q1, q2) + op(1)

= Eϕ(HQ1(Q1i))Q2i + op(1), (7.28)

where the first equality holds by (7.21) with t = 0, the second equality holds because
A1n(0)→p 0, the third equality holds by (7.20), and the fourth equality holds because
n/(n+ 1)→ 1, Q2i is bounded, and ϕ has a bounded derivative.

Proof of Lemma 8. We prove part (a) first. Using (2.1) and Assumption 4W(a),

y1i − β0y2i − γn(β0) Xi

= (β − β0) y2i − (γn(β0)− γ1) Xi + ui

= (β − β0) C Zin
−1/2 − (γn(β0)− γ1 − ξ1(β − β0)) Xi + ui + (β − β0) v2i.(7.29)

In consequence, we apply Lemma 6 with

Ψn(τn) = n−1Z Rϕ, Qi = ui + (β − β0) v2i, ci = Zi, di = (Zi,Xi) ,

τn =
−C(β − β0)n

−1/2

γn(β0)− γ1 − ξ1(β − β0)
, and h = g. (7.30)

Note that cn = Zn = 0 because Xi contains an intercept by Assumption 2(b) and
Z X = 0 by construction. The required conditions of Lemma 6 on di are satisfied
by Assumption 2. The assumptions on Qi are satisfied by Assumptions 1(a), 4W(b),
and 4W(c). The condition n1/2τn = Op(1) holds by Assumption 4W(f).

We now verify the conditions of Lemma 6 on ci = Zi. By construction, Zi =
Zi − Z X(X X)−1Xi, where Z X(X X)−1 →p D12D

−1
22 by Assumption 2(c). In

consequence, by standard arguments using Assumption 2(c) and 2(d), we obtain
limn→∞ n−1

n
i=1 ||Zi||2 <∞ and limn→∞max1≤i≤n ||Zi||2/n = 0. Hence, all of the

conditions of Lemma 6 hold.
Now, using (7.30) and Zn = 0, Ȧn(0)n1/2τn(

1
0 ϕ(x, g)ϕ (x) dx)

−1 equals

n−1
n

i=1

ZiZiC(β − β0)− n−1
n

i=1

ZiXin
1/2(γn(β0)− γ1 − ξ1(β − β0)). (7.31)

The second summand is zero because Z X = 0. The first summand equals n−1Z ZC(β
−β0) because Z Z = Z MXZ = Z Z. Hence, by Lemma 6(b), we have

n−1/2Z Rϕ = n
1/2Ψn (0) + n

−1Z ZC(β − β0)
1

0
ϕ(x, g)ϕ (x) dx+ op(1). (7.32)
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(By definition, n1/2Ψn (0) = n−1/2Z R0ϕ, where R
0
ϕ is the n-vector whose i-th element

is ϕ(Ri/(n+1)) and Ri is the rank of ui+(β−β0) v2i in {uj+(β−β0) v2j : j ≤ n}.)
Finally, Lemma 6(c) implies that

n1/2Ψn (0) = n
−1/2Z Φ+ op(1). (7.33)

Combining (7.32), (7.33), and the definition of ϕ
g,β−β0 in (4.5) establishes Lemma

8(a).
Lemma 8(b) follows from part (a) and Assumption 2(c).
Lemma 8(c) follows from Assumption 2(c) and Z Z = Z Z − Z X(X X)−1X Z.

Positive definiteness of DZ follows from that of D.
Lemma 8(d) follows from the Lindeberg CLT for triangular arrays applied to

n−1/2Z [Φc−1/2ϕ :Y2 −EY2] plus the facts that

n−1/2Z (ZC ϕ
g,β−β0n

−1/2) = DZC
ϕ
g,β−β0 + o(1),

n−1/2Z EY2 = Z ZCn
−1 = DZC + o(1), and

V ar(n−1/2μ1Z [Φc
−1/2
ϕ :Y2 −EY2]μ2)→ μ2Ωϕgμ2 · μ1DZμ1, (7.34)

for arbitrary fixed non-zero vectors μ1 ∈ Rk and μ2 ∈ Rm+1. Note that EZ Φ = 0
because Zn = 0 and Eϕ(Ugi) does not depend on i.

The Lindeberg condition is verified for n−1/2μ1Z [Φc
−1/2
ϕ :Y2−EY2]μ2 (for μ1 and

μ2 as above), as follows. Let ζi = (ϕ
2(Ugi)c

−1/2
ϕ , v2i)μ2 ∈ R. For any ε > 0,

n−1
n

i=1

(μ1Zi)
2Eζ2i 1((μ1Zi)

2ζ2i > nε)

≤ n−1
n

j=1

(μ1Zj)
2 ·Eζ2i 1(max

j≤n
(μ1Zj)

2ζ2i > nε)→ 0, (7.35)

where the inequality uses (μ Zi)2 ≤ maxj≤n(μ Zj)2 in the indicator function and the
convergence to zero holds by Assumption 2, E||v2i||2 < ∞ (by Assumption 1(b)),
Eϕ2(Ugi) <∞ (by Assumption 3), and the dominated convergence theorem.

Proof of Lemma 9. We prove part (a) first. Let V2 be the n ×m matrix whose
i-th row is v2i. Using Z X = 0, we have

νϕn = n−1V2Rϕc
−1/2
ϕ − n−1V2Z(n−1Z Z)−1n−1Z Rϕc

−1/2
ϕ

−n−1V2X(n−1X X)−1n−1X Rϕc
−1/2
ϕ . (7.36)

We have n−1V2Z →p 0 and n−1V2X →p 0 because they have mean zero and
variance O(n−1) by Assumptions 1, 2(a), and 2(c). Assumption 2(c) implies that
(n−1Z Z)−1 and (n−1X X)−1 are Op(1). Lemma 8(a) and (d) implies that n−1/2Z Rϕ

= Op(1). These results combine to show that the second term on the right-hand side
(rhs) of (7.36) is op(1). Next, we have

n−1||X Rϕ|| = n−1||
n

i=1

Xiϕ
Ri(β0)

n+ 1
|| ≤ Cn−1

n

i=1

||Xi|| = O(1) (7.37)
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for some constant C < ∞, using the triangle inequality, the boundedness of ϕ, and
Assumption 2(c). This result and the others above imply that the third term on the
rhs of (7.36) is op(1). Hence, νϕn = n−1V2Rϕc

−1/2
ϕ + op(1).

We apply Lemma 7 with Q1i = ui + (β − β0) v2i, Q2i = v2i, and di and τn as in
(7.30) to get

n−1V2Rϕc
−1/2
ϕ = E[ϕ(G(ui + (β − β0) v2i))v2i]c

−1/2
ϕ + op(1)

= Cov[ϕ(G(ui + (β − β0) v2i)), y2i]c
−1/2
ϕ + op(1) = νϕg + op(1). (7.38)

The conditions of Lemma 7 on τn, di, and (Q1i, Q2i) hold by Assumptions 4W(f),
2(c), and 4W(d), respectively.

Next, we prove part (b). For simplicity, we replace n−k−p by n in the definition
of Ω22n. We have

Ω22n = n
−1Y2(In − PZ − PX) Y2

= n−1(V2V2 − V2PZV2 − V2PXV2)→p Ω22, (7.39)

where V2 denotes the n × m matrix whose i-th row is v2i, n
−1V2V2 →p Ω22 by

Kolmogorov’s LLN for iid random variables, and n−1Z V2 →p 0 and n−1X V2 →p 0
because they have mean zero and variances that are O(n−1) by Assumptions 1, 2(a),
and 2(c).

Proof of Lemma 10. We prove part (a) first. It suffices to show that (Sϕn , n−1/2T
ϕ
n )

→d (S
ϕ
f∞,α

ϕ
T ) conditional on an {εi : i ≥ 1} sequence that satisfies certain proper-

ties, and that {εi : i ≥ 1} sequences satisfy these properties with probability one.
Because conditional probabilities are bounded by zero and one, this implies that
(Sϕn , n−1/2T

ϕ
n ) →d (S

ϕ
f∞,α

ϕ
T ) unconditionally by the bounded convergence theorem.

The desired properties are

lim
n→∞

max
1≤i≤n

||εi − εn||2/
n

i=1

||εi − εn||2 = 0, (7.40)

lim
n→∞

n−1
n

i=1

||εi − εn||2 <∞, (7.41)

lim
n→∞

n−1
n

i=1

Ziεi = 0, and (7.42)

lim
n→∞

n−1
n

i=1

Xiεi = 0. (7.43)

Conditions (7.40) and (7.41) hold a.s. by Assumption 4S(d), Lemma 12(b), and
Kolmogorov’s strong LLN. Conditions (7.42) and (7.43) hold a.s. by Assumptions
4S(d) and 4S(h) and the strong LLN of Thm. 5.2.1 of Chow and Teicher (1978,
p. 121) applied with αn = 2. Consequently, sequences {εi : i ≥ 1} that satisfy
(7.40)-(7.43) occur with probability one.
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Using (2.1) and Assumptions 4S(a)-(c), we have

y1i − β0y2i − γn(β0) Xi (7.44)

= B Π Zin
−1/2 − (γn(β0)− γ1 − ξ1Bn

−1/2) Xi +B εin
−1/2 + (1 + ρ Bn−1/2)ui.

Let ζn = (1+ ρ Bn−1/2)−1. Since ζn > 0 for n sufficiently large, {Ri(β0) : i ≤ n} are
equal to the ranks of the iid random variables {ui : i ≤ n} plus the terms

ζnB Π Zin
−1/2 − ζn(γn(β0)− γ1 − ξ1Bn

−1/2) Xi + ζnB εin
−1/2 : i ≤ n . (7.45)

Hence, we apply Lemma 6, conditional on an {εi : i ≥ 1} sequence that satisfies
(7.40)-(7.43), with

Ψn(τn) = n
−1Z Rϕ, Qi = ui, ci = Zi,

di =

⎛⎝ Zi
Xi
εi

⎞⎠ , τn =
⎛⎝ −ζnΠBn−1/2
ζn(γn(β0)− γ1 − ξ1Bn

−1/2)
−ζnBn−1/2

⎞⎠, and h = f. (7.46)

The assumptions of Lemma 6 on Qi are satisfied by Assumptions 1 and 4S(e). The
required conditions for ci are verified by the same argument as in the proof of Theorem
1. The assumptions on di are satisfied by Assumption 2, (7.40), and (7.41). The
assumptions on τn are satisfied by Assumption 4S(i) because ζn → 1.

Using the definitions of ci, di, and τn, Ȧn(0)n1/2τn(
1
0 ϕ(x, f)ϕ (x) dx)

−1 equals

ζnn
−1

n

i=1

ZiZiΠB − ζnn
−1

n

i=1

ZiXin
1/2(γn(β0)− γ1 − ξ1Bn

−1/2)

+ζnn
−1

n

i=1

ZiεiB. (7.47)

The first term in (7.47) equals Z ZΠB + o(1) because ζn → 1. The second term is
zero because Z X = 0. The third term equals

ζnn
−1

n

i=1

ZiεiB − ζn(n
−1Z X)(n−1X X)−1n−1

n

i=1

XiεiB = o(1), (7.48)

using (7.42), (7.43), and Assumption 2(c). Hence, by Lemma 6(b) and (c), we have

n−1/2Z Rϕ = n
−1/2Z Φ+ Z ZΠB

1

0
ϕ(x, f)ϕ (x) dx+ op(1), (7.49)

which establishes part (a).
Lemma 10(b) follows from part (a) and Assumption 2(c).
To establish Lemma 10(c), we have

n−1Z Y2 = n
−1Z (ZΠ+Xξ + V2) = n

−1Z ZΠ+ n−1Z V2 →p DZΠ, (7.50)
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where V2 denotes the n ×m matrix whose i-th row is v2i and using n
−1Z V2 →p 0

because its mean is zero and its variance is O(n−1) by Assumptions 1, 2(a), and 2(c).
In addition, we have

n−1Z Φ = n−1Z (Φ−EΦ)→p 0, (7.51)

where the equality holds because EΦ is proportional to 1n and Z 1n = 0 and the
convergence to 0 holds by the strong LLN referenced in the previous paragraph.

Proof of Lemma 11. We prove part (a) first. By the same argument as in the
proof of Lemma 9(a), but with Lemma 8 replaced by Lemma 10, we have νϕn =

n−1V2Rϕc
−1/2
ϕ + op(1). As in the proof of Lemma 10(a), it suffices to show the result

conditional on an {εi : i ≥ 1} sequence that satisfies certain properties and that
{εi : i ≥ 1} sequences satisfy these properties with probability one. In the present
case, we need the property

lim
n→∞

n−1
n

i=1

||εi|| <∞. (7.52)

Condition (7.52) holds a.s. by Kolmogorov’s SLLN using Assumption 4S(d).
Lemma 7 applied conditional on a sequence {εi : i ≥ 1} that satisfies (7.52), with

(Q1i, Q2i) = (ui, v2i) and di and τn as in (7.46), gives

n−1V2Rϕc
−1/2
ϕ = E[ϕ(F (ui))v2i]c

−1/2
ϕ + op(1)

= Cov[ϕ(F (ui)), y2i]c
−1/2
ϕ + op(1) = νϕf + op(1). (7.53)

The conditions of Lemma 7 on τn, di, and (Q1i, Q2i) hold by Assumption 4S(i),
condition (7.52) and Assumptions 2(c) and 2(d), and Assumption 4S(f), respectively.

The proof of part (b) is the same as for Lemma 9(b).

Proof of Lemma 12. Part (a) holds because E ∞
i=1 ψ

1+δ
i /i1+δ = Eψ1+δ1

∞
i=1 i

−(1+δ)

<∞ implies that ∞
i=1 ψ

1+δ
i /i1+δ <∞ a.s. Part (b) holds because the result of part

(a) and Kronecker’s Lemma (e.g., see Chow and Teicher (1978, p. 111)) imply that
n−1−δ n

i=1 ψ
1+δ
i → 0 a.s. Hence, n−1−δmaxi≤n ψ1+δi ≤ n−1−δ n

i=1 ψ
1+δ
i → 0 a.s.

In turn, this gives n−1maxi≤n ψi → 0 a.s.

Proof of Lemma 13. We prove the lemma by verifying the conditions of Pol-
lard’s (1990) Thm. 8.3. To match the notation in Pollard (1990), view the sequence
{(Q1i, Q2i) : i ≥ 1} as depending on ω ∈ Ω, where the probability space is {Ω,F ,P},
and let (Q1i, Q2i)(ω) denote the i-th element of this sequence. Also, view the sequence
of independent processes

{hni(q1, q2, t) : (q1, q2, t) ∈ T ⊂ Rm+1+δd} (7.54)

for i ≥ 1 as a sequence of independent processes indexed by τ ∈ T :

{hni(ω; τ) : τ ∈ T }, where τ = (q1, q2, t) and
hni(ω; τ) = 1((Q1i, Q2i)(ω) ≤ (q1 + ditn−1/2, q2)). (7.55)
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Each of the processes hni(ω; τ) has envelope Hni(ω) = 1 ∀ω ∈ Ω, and these
envelope functions satisfy

∞

i=1

EHni
i2

=
∞

i=1

1

i2
<∞, (7.56)

which is the first condition of Theorem 8.3 of Pollard (1990).
Now, we verify that the processes {hni(ω; τ) : τ ∈ T } and the envelope functions

{Hni(ω) = 1 ∀ω ∈ Ω} for i ≥ 1 satisfy the second condition of Theorem 8.3 of Pollard
(1990). For each ω, define the sets

Hωn = {(hn1(ω; τ), ..., hnn(ω; τ)) ∈ Rn : τ ∈ T } and
α Hωn = {(α1hn1(ω; τ), ...,αnhnn(ω; τ)) ∈ Rn : τ ∈ T } (7.57)

for some α ∈ Rn.
Denote the largest number κ for which there exist points in a subset of a metric

space T with d(ti, tj) > ε, for i = j, by D(ε, T ). The number D(ε, T ) is called the
packing number. Denote the 1 distance in Rn by |α|1 = n

i=1 |αi|.
By Definition 7.9 of Pollard (1990), {hni(ω; τ) : τ ∈ T } for i ≥ 1 is manageable

with respect to the envelopes {Hni(ω) = 1 ∀ω ∈ Ω} for i ≥ 1 if there exists a function
λ(ε) such that

1. 1
0 λ(ε)dε <∞,

2. D(ε|α|1,α Hωn) ≤ λ(ε) for 0 < ε ≤ 1, all ω ∈ Ω, all vectors of nonnegative
weights α and all n.16

The second condition of Theorem 8.3 of Pollard (1990) is that {hni(ω; τ) : τ ∈ T }
for i ≥ 1 is manageable with respect to the envelopes {Hni(ω) = 1 ∀ω ∈ Ω} for i ≥ 1.

For any ω, the class Hωn belongs to a larger class of functions H defined by

H = {h|h(q1, q2) = 1((q1, q2) ∈ C) for C of the type (−∞, c1]× (−∞, c3]m}. (7.58)

The collection of all cells (−∞, c1]× (−∞, c2]m has V C-index equal to (m+ 1) + 1,
which implies that the class of indicator functionsH has V C-index equal to (m+1)+1
as well.17 From Theorem 2.6.7 in van der Vaart and Wellner (1996), it follows that
there exist constants A1 and W such that

N(ε/2,H) ≤ A1(ε/2)−W for 0 < ε ≤ 2, (7.59)

where N(ε/2,H) is the smallest number of closed balls with radius ε/2 that covers
H. The number N(ε/2,H) is called the covering number of H. Since D(ε,H) ≤
N(ε/2,H) and Hωn ⊂ H for every n and ω, it follows that there exist constants A2
and W ,

D(ε,Hωn) ≤ A2ε−W for 0 < ε ≤ 1. (7.60)

16Because Hni(ω) = 1 ∀ω we have that |α H|1 = |α|1, where H = (Hni(ω), ...,Hnn(ω)).
17See van der Vaart and Wellner (1996).
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Now, using an argument similar to the one used in the proof of Theorem 4.8 of
Pollard (1990), we can show that for all n and ω, there exist constants A3 and W
such that

D(ε|α|1,α Hωn) ≤ A3ε−W for 0 < ε ≤ 1. (7.61)

Take H∗ωn to be the set of rescaled coordinates

h∗ni =
αihni

2 n
i=1 αi

for hn ∈ Hωn. (7.62)

Let h∗1 and h
∗
2 in H∗ωn be rescaled coordinates of h1 and h2 in Hωn. Then,

|h∗1 − h∗2|1 ≤
n

i=1

αi
2 n

i=1 αi
|h1i − h2i| ≤ |h1 − h2|1. (7.63)

Hence,

D(ε,H∗ωn) ≤ A2ε−W for 0 < ε ≤ 1. (7.64)

Now, we have

|h∗1 − h∗2|1 < ε/2 ⇔
n

i=1

αi
2 n

i=1 αi
(h1i − h2i) < ε/2

⇔ |α h1 − α h2|1 < ε
n

i=1

αi < ε|α|1. (7.65)

Therefore, (7.61) holds with A3 = 2WA2. This establishes that {hni(ω; τ) : τ ∈ T }
is manageable with respect to the envelopes {Hni(ω) = 1 ∀ω ∈ Ω}. Theorem 8.3 of
Pollard (1990) then gives

n−1 sup
τ∈T

n

i=1

(hni(ω; τ)−Ehni(ω; τ)) → 0 a.s., (7.66)

which gives the result of the Lemma.

Proof of Lemma 1. By definition of γLSn (β0), we have

γLSn (β0) = n−1X X
−1
n−1

n

i=1

Xi((β − β0) y2i + γ1Xi + ui)

= γ1 + ξ(β − β0) + n−1X X
−1
n−1

n

i=1

Xi(ui + (β − β0) v2i), (7.67)

using y2i = Π Zi + ξ Xi + v2i and X Z = 0. Hence, we obtain

n1/2(γLSn (β0)− γ1 − ξ1(β − β0)) = n−1X X
−1
n−1/2

n

i=1

Xi(ui + (β − β0) v2i)

+n1/2(ξ − ξ1)(β − β0). (7.68)
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Assumption 2(c) implies that n−1X X
−1
= D−111 +o(1). The second multiplicand of

the first term on the rhs of (7.68) is asymptotically normal by the Lindeberg central
limit theorem using Assumptions 1 and 2 and Eu2i <∞. The Lindeberg condition is
verified by an argument analogous to that in (7.35), where E(ui+(β−β0) v2i)2 <∞
by Assumption 1(b) and Eu2i <∞. Thus, the first term on the rhs of (7.68) is O(1).
Next, we have

ξ − ξ1 = n−1X X
−1
n−1X ZΠ = n−1X X

−1
n−1X ZCn−1/2 = O(n−1/2),

(7.69)

where the first equality holds by the definition of ξ stated following (2.3), the second
equality holds by Assumption 4W(a), and the last equality holds by Assumption 2(c).
Assumption 4W(b) states that β−β0 is a constant. Hence, n1/2(ξ−ξ1)(β−β0) = O(1),
which completes the proof of the Lemma.

Proof of Corollary 1. We have

P RLRϕ
n > κLR,α(T

ϕ
n T

ϕ
n , k,m) = P LR∞(S

ϕ
n , T

ϕ
n ) > κLR,α(T

ϕ
n T

ϕ
n , k,m)

→ P LR∞(S
ϕ
∞, T

ϕ
∞) > κLR,α(T

ϕ
∞T

ϕ
∞, k,m)

= P LR∞(S
ϕ
∞, t) > κLR,α(t t, k,m) dFTϕ∞(t) = α, (7.70)

where FTϕ∞(·) is the df of T
ϕ
∞, the convergence holds by Theorem 1(a) and the con-

tinuous mapping theorem, the second equality holds by the independence of Sϕ∞ and
Tϕ
∞, and the last equality holds by the definition of κLR,α(t t, k,m) in (3.10) and the
fact that Sϕ∞ ∼ N(0, Ik) under the null by (4.6).

Proof of Lemma 2. The proof is very similar to that of Theorem 1 with Y b0σ−1n in
place of Φc−1ϕ . First, by the same proof as for Lemma 9(b) but with (Y2, V2) replaced

by (Y, V ), we get Ωn →p Ω, where V is the n× (m+ 1) matrix with i-th row equal
to vi. This implies σ

2
n →p b0Ωb0 = σ2g and Ω∗n →p Ωg. Next, we need the following

analogues of Lemma 8(a), (b), and (d):

n−1/2Z Y b0 = n
−1/2Z (Y b0 −EY b0 + ZC(β − β0)n

−1/2), (7.71)

Sn = (Z Z)
−1/2Z (Y b0σ

−1
g −EY b0σ−1g + ZC(β − β0)σ

−1
g n

−1/2) + op(1), (7.72)

n−1/2Z [(V b0σ
−1
g + ZC(β − β0)σ

−1
g n

−1/2) : Y2]→d [N1 : N2], (7.73)

where (7.71) holds by (2.1), (2.3), Assumption 1(a), and Z X = 0, (7.72) holds
by (7.71) and σ2n →p σ2g, and (7.73) holds by the same proof as that of Lemma

8(d) (given below) except with Φc−1/2ϕ , ϕ
g,β−β0 , and ϕ(Ugi)c

−1/2
ϕ replaced by V b0σ−1g ,

(β − β0)σ
−1
g , and v2ib0σ

−1
g , respectively, and with E(v2ib0)

2 <∞ by the assumption
that Ω is well-defined. Given these analogues of Lemma 8(a), (b), and (d), the rest
of the proof of Lemma 2 is the same as that of Theorem 1.
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Proof of Lemma 3. We establish part (a) first. Let σ2L denote the variance of the
df L. Since ϕ(x) = L−1(x), cϕ = σ2L by change of variables. Also, we have

σ2L = V ar((ui + (β − β0) v2i)κ) = σ2gκ
2, κ = σL/σg, and

G(x) = L(κx) = L(σLx/σg). (7.74)

Combining these results gives the result of part (a):

ϕ(Ugi)c
−1/2
ϕ = ϕ(G[(ui + (β − β0) v2i)])c

−1/2
ϕ

= L−1(L[σL(ui + (β − β0) v2i)/σg])σ
−1
L

= ui + (β − β0) v2i)/σg. (7.75)

Part (a) implies that νϕg = νg and so, Ωϕg = Ωg and part (b) holds.
For part (c), we have

1

0
ϕ(x, g)ϕ(x)dx = −

1

0

g (G−1(x))

g(G−1(x))
L−1(x)dx = −

∞

−∞
g (y)L−1(G(y))dy

= −
∞

−∞
g (y)L−1(L(κy))dy = −κ

∞

−∞
g (y)ydy = κ = σL/σg, (7.76)

where the second equality holds by change of variables with y = G−1(x), the third
and last equalities hold by (7.74), and the fourth equality holds by integration by
parts. Combining (7.76) with cϕ = σ2L establishes part (c).

Part (d) follows from parts (b) and (c) and the definitions of Nϕ, N1, S
ϕ
∞, S∞,

Tϕ
∞, and T∞.

Proof of Lemma 4. The proof is like that of Theorem 2 with Y b0σ
−1
n in place of

Rϕc
−1
ϕ . By essentially the same proof as for Lemma 9(b) but with (Y2, V2) replaced

by (Y, V ), we get Ωn −Evivi →p 0. Under Assumption 4S(a), we have

v1i = ui + (β0 +Bn
−1/2) v2i, Evivi → E

ui + β0v2i
v2i

ui + β0v2i
v2i

,

b0E
ui + β0v2i

v2i

ui + β0v2i
v2i

b0 = Eu
2
i = σ2f , and

H E
ui + β0v2i

v2i

ui + β0v2i
v2i

b0 = Ev2iui. (7.77)

In consequence,

σ2n = b0Ωnb0 →p σ
2
f , νn = H Ωnb0σ

−1
n →p Ev2iuiσ

−1
f = νf , and Ω∗n →p Ωf . (7.78)

We need the following analogue of Lemma 10(b):

Sn = (Z Z)
−1/2Z (Y b0σ

−1
f −EY b0σ

−1
f + ZBσ−1f n

−1/2) + op(1), (7.79)
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which holds by (2.1), (2.3), Assumption 1(a), Z X = 0, and σ2n →p σ2f . Next,

an analogue of (7.3) holds with Ωϕn, Ωϕf , and n−1Z Rϕ replaced by Ω∗n, Ωf , and
n−1Z Y b0 = n−1Z (V b0+ZΠBn−1/2), respectively, using the result that Ω∗n →p Ωf
and the fact that n−1Z V b0 →p 0 because its mean is zero and its variance is O(n−1).
Given these analogues of Lemma 10(b) and (7.3), the rest of the proof of Lemma 4
is the same as that of Theorem 2.

Proof of Lemma 5. The proofs of parts (a)-(c) are analogous to those of parts
(a)-(c) of Lemma 3. Part (d) follows from parts (b) and (c) and the definitions of
Sϕf∞, Sf∞, α

ϕ
T , and αT .

Proof of an Alternative Expression for Tn:
We now provide a proof of (3.6), which gives an alternative expression for Tn

from its definition in (2.6). Let M = [b0σ
−1
gn : H] ∈ R(m+1)×(m+1). Straightforward

calculations yield

YM = [Y b0σ
−1
gn : Y2], M A0 = H, Ω∗n =M ΩnM, and

A0Ω
−1
n A0 = A0M(M

−1Ω−1n M
−1)M A0 = H Ω

−1
∗nH. (7.80)

Using the definition of Tn in (2.6), we have

Tn = (Z Z)−1/2Z (YM)(M−1Ω−1n M
−1)(M A0)(A0Ω

−1
n A0)

−1/2

= (Z Z)−1/2Z [Y b0σ
−1
gn : Y2]Ω

−1
∗nH(H Ω

−1
∗nH)

−1/2, (7.81)

where the second equality uses (7.80). The rhs of (7.81) is the expression in (3.6).

Asymptotic Power Calculations

Next, we describe the simulation method used to calculate the weak IV asymptotic
power reported in Table I. The first step is to compute ξ(ϕNS , g) and ξ(ϕWS , g) when
g is the density of ui + βv2i for v2i defined in (4.18) and ui and εi are independent
with distribution F. The idea is to use the fact that the Hodges-Lehmann estimator
of location based on ϕ (e.g., defined in Hettmansperger (1984, eqn. (2.8.12), p. 99))
has asymptotic variance equal to 1/ξ(ϕ, g), see Hettmansperger (1984, Thm. 2.6.5 &
eqn. (2.9.4), pp. 76 & 105). We compute the Hodges-Lehmann estimators based on
ϕNS and ϕWS for 30,000 independent samples of a location model with density g and

sample size 100,000. This yields 30,000 Hodges-Lehmann estimates θ
NS

and θ
WS
.

The reciprocals of the sample variances of these estimates yields estimated values of
ξ(ϕNS, g) and ξ(ϕWS , g), denoted ξ(ϕNS , g) and ξ(ϕWS, g).

The second step is to compute the matrices ΩϕNSg, ΩϕWSg, and Ωg and the
scalar σ2g defined in (4.1) and (4.10). The df G(x) is approximated by the empir-
ical df of 100,000 iid observations with distribution G (independent of the random
variables above), call it G(x). Using the same observations, σ2g is estimated by the
sample variance, denoted σ2g. Next, νϕ,g is estimated by νϕ,g = R−1 R

i=1(v2i −
v2R)ϕ(G(Xi))c

−1/2
ϕ , where R = 40, 000 for all distributions except the uniform,
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R = 100, 000 for the uniform distribution, v2R = R−1
R
i=1 v2i, v2i = (1−ρ2uv2)1/2εi+

ρuv2ui, Xi = ui+βv2i, ui and εi are independent with distribution F, are independent
of G(x), and are iid across i = 1, ..., R, and ϕ = ϕNS ,ϕWS . νg is estimated by the
sample covariance between v2i and Xiσ

−1
g , denoted νg. ω22 is estimated by the sample

variance of v2i, denoted ω22. The matrices ΩϕNSg, ΩϕWSg, and Ωg are constructed
using νϕNS ,g, νϕWS ,g, νg, and ω22.

The third step is to compute 5,000 independent observations of (i) two indepen-
dent k-variate normals (Sϕ∞, T

ϕ
∞) with covariance matrices equal to Ik and means

given by λ1/2βξ(ϕ, g)e1 and λ1/2(βξ
1/2
(ϕ, g), 1)Ω−1ϕg e2(e2Ω

−1
ϕg e2)

−1/2e1, respectively,
for ϕ = ϕNS ,ϕWS , where e1 = (1, 0, ..., 0) ∈ Rk and e2 = (0, 1) , and (ii) two inde-
pendent k-variate normals (S∞, T∞) with covariance matrices equal to Ik and means

as in (i) but with σ−1g in place of ξ
1/2
(ϕ, g). The same normal random variables were

used for (Sϕ
ws

∞ , Tϕws
∞ ), (Sϕ

ns

∞ , Tϕns
∞ ), and (S∞, T∞)–just the means are different.

The last step is to compare each of the 5,000 WS-RCLR, NS-RCLR, CLR, LM,
and AR test statistics based on (Sϕ

ws

∞ , Tϕws
∞ ), (Sϕ

ns

∞ , Tϕns
∞ ), and (S∞, T∞) with the

appropriate conditional critical value (determined by simulation) or unconditional
critical value to determine whether the test rejects the null hypothesis. The fraction
that reject the null hypothesis is the reported power in Table I.
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TABLE I. Asymptotic Power†

Case Dist WS-RCLR NS-RCLR CLR LM AR
Base Case Normal 0.37 0.38 0.39 0.39 0.21
(β = 1.0) Uniform 0.38 0.52 0.40 0.41 0.25

t3 0.58 0.54 0.40 0.40 0.21
DLN 0.69 0.66 0.39 0.39 0.20

Base Case Normal 0.39 0.41 0.41 0.41 0.27
(β = −0.43) Uniform 0.37 0.50 0.41 0.41 0.26

t3 0.60 0.55 0.40 0.40 0.25
DLN 0.78 0.68 0.41 0.40 0.25

High Endogeneity Normal 0.37 0.38 0.39 0.39 0.21
(ρuv2 = 0.95, β = 1.1) Uniform 0.39 0.59 0.39 0.40 0.22

t3 0.59 0.55 0.38 0.38 0.20
DLN 0.75 0.73 0.38 0.38 0.21

High Endogeneity Normal 0.41 0.43 0.42 0.43 0.23
(ρuv2 = 0.95, β = −0.37) Uniform 0.40 0.61 0.42 0.42 0.24

t3 0.67 0.60 0.42 0.42 0.24
DLN 0.87 0.78 0.42 0.42 0.23

Weaker IVs Normal 0.39 0.40 0.41 0.41 0.22
(λ = 4, β = 5.0) Uniform 0.37 0.47 0.41 0.41 0.22

t3 0.35 0.41 0.40 0.40 0.22
DLN 0.48 0.50 0.40 0.40 0.22

Weaker IVs Normal 0.38 0.39 0.39 0.35 0.32
(λ = 4, β = −0.7) Uniform 0.34 0.42 0.38 0.34 0.32

t3 0.57 0.52 0.39 0.35 0.32
DLN 0.73 0.63 0.40 0.35 0.33

Ten IVs Normal 0.38 0.40 0.40 0.40 0.15
(k = 10, β = 1.0) Uniform 0.33 0.47 0.38 0.38 0.16

t3 0.59 0.56 0.41 0.41 0.16
DLN 0.65 0.65 0.39 0.39 0.16

Ten IVs Normal 0.35 0.37 0.37 0.37 0.19
(k = 10, β = −0.43) Uniform 0.33 0.44 0.36 0.36 0.19

t3 0.55 0.51 0.37 0.37 0.18
DLN 0.70 0.61 0.36 0.36 0.18

†All cases have λ = 10, ρuv2 = 0.75, and k = 5, unless otherwise stated.
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TABLE II. Finite Sample Null Rejection Rates of Nominal Level .05 Tests†

Case Dist WS-RCLR NS-RCLR CLR LM AR
Base Case Normal 0.050 0.043 0.056 0.054 0.049

Uniform 0.049 0.041 0.054 0.052 0.053
t1 0.032 0.045 0.073 0.610 0.108
t2 0.044 0.042 0.065 0.058 0.077
t3 0.046 0.039 0.060 0.056 0.058
DLN 0.044 0.038 0.062 0.055 0.071

No Endogeneity Normal 0.048 0.039 0.058 0.055 0.049
(ρuv2 = 0) Uniform 0.048 0.040 0.059 0.053 0.053

t1 0.030 0.039 0.077 0.058 0.108
t2 0.042 0.039 0.072 0.058 0.077
t3 0.046 0.037 0.063 0.057 0.058
DLN 0.043 0.038 0.069 0.055 0.071

High Endogeneity Normal 0.050 0.045 0.054 0.053 0.049
(ρuv2 = 0.95) Uniform 0.050 0.045 0.052 0.051 0.053

t1 0.033 0.047 0.064 0.056 0.108
t2 0.046 0.045 0.059 0.057 0.077
t3 0.047 0.042 0.056 0.055 0.058
DLN 0.043 0.042 0.057 0.055 0.071

Weaker IVs Normal 0.049 0.041 0.058 0.055 0.049
(λ = 4) Uniform 0.049 0.043 0.058 0.053 0.053

t1 0.031 0.045 0.078 0.058 0.108
t2 0.043 0.041 0.073 0.058 0.077
t3 0.046 0.041 0.064 0.056 0.058
DLN 0.043 0.039 0.070 0.055 0.071

Stronger IVs Normal 0.049 0.043 0.054 0.054 0.049
(λ = 20) Uniform 0.049 0.041 0.054 0.052 0.053

t1 0.032 0.045 0.068 0.056 0.108
t2 0.045 0.041 0.063 0.058 0.077
t3 0.047 0.041 0.057 0.055 0.058
DLN 0.043 0.039 0.070 0.055 0.071

†All cases have β = β0 = 0, λ = 10 (equivalently, ρIV = 0.302 for n = 100),
ρuv2 = 0.75, n = 100, k = 5, and p = 1 (an intercept), unless otherwise stated.
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TABLE II. (cont.)

Case Dist WS-RCLR NS-RCLR CLR LM AR
One IV Normal 0.048 0.041 0.053 0.053 0.050
(k = 1) Uniform 0.052 0.045 0.055 0.055 0.053

t1 0.031 0.041 0.047 0.047 0.046
t2 0.041 0.041 0.055 0.054 0.053
t3 0.046 0.041 0.054 0.054 0.052
DLN 0.045 0.047 0.057 0.057 0.054

Ten IVs Normal 0.052 0.048 0.053 0.052 0.050
(k = 10, n = 200) Uniform 0.050 0.046 0.053 0.053 0.051

t1 0.032 0.051 0.058 0.044 0.127
t2 0.049 0.048 0.058 0.050 0.090
t3 0.049 0.045 0.054 0.052 0.062
DLN 0.045 0.041 0.057 0.057 0.054

Smaller Sample Size Normal 0.045 0.036 0.061 0.056 0.048
(n = 50) Uniform 0.050 0.039 0.065 0.058 0.050

t1 0.027 0.035 0.091 0.070 0.127
t2 0.039 0.033 0.078 0.064 0.078
t3 0.044 0.034 0.071 0.061 0.063
DLN 0.044 0.037 0.076 0.064 0.074

Larger Sample Size Normal 0.048 0.046 0.052 0.052 0.049
(n = 200) Uniform 0.049 0.044 0.052 0.052 0.053

t1 0.032 0.049 0.052 0.042 0.090
t2 0.044 0.045 0.058 0.051 0.076
t3 0.048 0.045 0.056 0.053 0.056
DLN 0.050 0.046 0.056 0.054 0.067
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TABLE III. Finite Sample Power of Size-corrected Level .05 Tests.†

Case Dist WS-RCLR NS-RCLR CLR LM AR
Base Case Normal 0.42 0.46 0.40 0.40 0.26
(β = 1.35) Uniform 0.41 0.48 0.40 0.40 0.25

t1 0.92 0.95 0.56 0.61 0.40
t2 0.66 0.66 0.46 0.49 0.26
t3 0.53 0.53 0.42 0.43 0.26
DLN 0.61 0.60 0.43 0.45 0.23

Base Case Normal 0.35 0.35 0.39 0.38 0.25
(β = −0.44) Uniform 0.32 0.38 0.39 0.39 0.25

t1 0.94 0.95 0.55 0.61 0.40
t2 0.72 0.68 0.46 0.49 0.27
t3 0.53 0.50 0.41 0.43 0.25
DLN 0.65 0.59 0.42 0.44 0.22

Base Case Normal 0.38 0.40 0.39 0.39 0.26
(β = 1.35 & β = −0.44) Uniform 0.37 0.43 0.40 0.40 0.25

t1 0.93 0.95 0.55 0.61 0.40
t2 0.69 0.67 0.46 0.49 0.27
t3 0.53 0.51 0.42 0.43 0.26
DLN 0.63 0.60 0.42 0.44 0.23

No Endogeneity Normal 0.44 0.47 0.41 0.37 0.34
(ρuv2 = 0, Uniform 0.43 0.47 0.42 0.37 0.34
β = 0.975 & β = −1.05) t1 0.94 0.97 0.55 0.61 0.42

t2 0.74 0.72 0.46 0.47 0.33
t3 0.57 0.56 0.43 0.40 0.34
DLN 0.67 0.64 0.41 0.42 0.30

High Endogeneity Normal 0.38 0.39 0.41 0.41 0.22
(ρuv2 = 0.95, Uniform 0.39 0.46 0.41 0.41 0.22
β = 0.95 & β = −1.25) t1 0.93 0.96 0.61 0.64 0.41

t2 0.70 0.66 0.49 0.50 0.25
t3 0.53 0.51 0.42 0.42 0.22
DLN 0.67 0.62 0.44 0.44 0.19

†All cases have β0 = 0, λ = 10 (equivalently, ρIV = 0.302 for n = 100), ρuv2 = 0.75,
n = 100, k = 5, and p = 1 (an intercept), unless otherwise stated.
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TABLE III. (cont.)

Case Dist WS-RCLR NS-RCLR CLR LM AR
Weaker IVs Normal 0.33 0.33 0.36 0.31 0.30
(λ = 4, Uniform 0.31 0.33 0.36 0.32 0.29
β = 25 & β = −0.725) t1 0.91 0.94 0.52 0.59 0.40

t2 0.61 0.58 0.41 0.43 0.28
t3 0.43 0.42 0.37 0.35 0.29
DLN 0.55 0.49 0.36 0.37 0.25

Stronger IVs Normal 0.40 0.42 0.40 0.40 0.23
(λ = 20, Uniform 0.38 0.47 0.41 0.41 0.23
β = 0.62 & β = −0.325) t1 0.94 0.96 0.58 0.63 0.40

t2 0.75 0.72 0.48 0.50 0.25
t3 0.57 0.54 0.42 0.43 0.23
DLN 0.59 0.54 0.38 0.40 0.22

One IV Normal 0.37 0.38 0.39 0.39 0.39
(k = 1, Uniform 0.34 0.42 0.39 0.39 0.39
β = 1.05 & β = −0.41) t1 0.88 0.89 0.44 0.44 0.44

t2 0.67 0.64 0.42 0.42 0.42
t3 0.54 0.51 0.42 0.42 0.42
DLN 0.66 0.61 0.40 0.40 0.40

Ten IVs Normal 0.38 0.39 0.41 0.41 0.24
(k = 10, Uniform 0.38 0.43 0.45 0.45 0.27
β = 1.9 & β = −0.49) t1 0.94 0.90 0.60 0.67 0.43

t2 0.72 0.69 0.50 0.54 0.28
t3 0.54 0.52 0.46 0.46 0.28
DLN 0.64 0.60 0.46 0.48 0.24
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