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On the Nonparametric Identification of
Nonlinear Simultaneous Equations Models:
Comment on B. Brown (1983) and Roehrig

(1988)∗

C. Lanier Benkard
Stanford University and NBER

Steven Berry
Yale University and NBER

September 7, 2004

Abstract

This note revisits the identification theorems of B. Brown (1983)
and Roehrig (1988). We describe an error in the proofs of the main
identification theorems in these papers, and provide an important
counterexample to the theorems on the identification of the reduced
form. Specifically, contrary to the theorems, the reduced form of a
nonseparable simultaneous equations model is not identified even un-
der the assumptions of those papers. We conclude the note with a
conjecture that it may be possible to use classical exclusion restric-
tions to recover some of the key implications of the theorems.

∗We have had very helpful conversations with Pat Bayer, Don Brown, Yossi Feinberg,
Guido Imbens, Yuliy Sannikov, Andy Skrzypacz, and Chris Timmons. Any remaining
errors are our own.



1 Introduction

In this note, we reconsider the nonparametric identification of nonlinear si-
multaneous equations models, as in B. Brown (1983) and Roehrig (1988). We
believe the identification results in these papers to be potentially much more
powerful than has been widely recognized to date, applying in some cases
to systems whose identification has only been shown very recently, including
examples in Chernozhukov and Hansen (2001), Chesher (2003), Imbens and
Newey (2002), Matzkin (2003), and others. Despite this, the Brown/Roehrig
identification theorems have thus far remained largely as a topic in the liter-
ature on mathematical economics, and have been used infrequently and/or
awkwardly in other areas.

Our intention in starting this project was to show the strength of these
papers’ results and to show how they could be applied quite generally in
empirical work, extending even to cases where identification is not currently
known to hold. However, in revisiting this literature, we have also discovered
that a key lemma (B. Brown (1983), pp 180-181, cited by Roehrig (1988),
p. 438) in the proof of the primary theorems of both Brown and Roehrig is
false. This finding is substantive. An important implication of this lemma,
that the model’s reduced form is identified under assumptions much weaker
than the structural model, can be shown to be false – see section 4 for a
counterexample.

The counterexample also contradicts the main theorems in both Brown
and Roehrig, and we have as yet been unable to correct the theorems our-
selves. However, we remain optimistic that some essential features of the
theorems may still be true, and that the theorems may be able to be cor-
rected with some modifications to the assumptions. We view these theorems
as having important implications for empirical work in economics and we
therefore hope that this shortcoming will be rectified soon in future research.

Note that Brown (1983) and Roehrig (1988) are widely cited in the liter-
ature on nonparametric identification (some recent examples include Newey
and Powell (1999), Angrist, Graddy, and Imbens (2000), Guerre, Perrigne,
and Vuong (2000), Athey and Haile (2002), Imbens and Newey (2002),
Chesher (2003), Matzkin (2003), and Newey and Powell (2003)). Their iden-
tification theorems also play a key role in a few important papers in this
literature, including D. Brown and Wegkamp (2002), and D. Brown and
Matzkin (1998).

We begin the note with an outline of the model, and a statement of the
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primary assumptions of Brown (1983). We continue with a statement of
Brown’s lemma and a summary of the flaw in the proof of the lemma, as well
as some intuition behind the failure of the lemma. Next we present the coun-
terexample to the lemma on the identification of the model’s reduced form.
We conclude with a discussion of why we believe that the main identification
theorems of Brown and Roehrig may still hold with some modifications to
the assumptions, and directions for future research.

2 Model and Assumptions

The model is characterized by a set of exogenous variables, (X, U), and
a set of endogenous variables, Y . The random vector X ∈ IRK denotes the
observed exogenous variables, while U ∈ IRL are assumed not to be observed.
The endogenous variables, Y ∈ IRG, are assumed to be observed and are
defined below. Realizations of the the random variables are denoted using
lowercase letters, e.g., (x, y, u).

Brown considers a parametric system of structural equations that is non-
linear in the observed variables, (Y,X), but that can be written as linear
in an unknown parameter vector and an additively separable error term, U .
Roehrig relaxes Brown’s framework to allow for a nonparametric system of
structural equations with a nonseparable error. Our results apply equally to
both frameworks. Indeed, they apply to any system of structural equations
that is sufficiently general as to generate a reduced form that is nonseparable
in the errors. Thus, because it makes the exposition cleaner, we will present
our results in the context of a nonseparable parametric structural model. In
the model, the endogenous variables, Y , are defined implicitly as the solution
to a set of structural equations,

Y = m(X, Y, U ; θ), (1)

where m(·) is a known function and θ is an unknown parameter vector.1

We emphasize that our results hold in a more general setting in which m(·)
is unknown. We denote the true data generating process by the parameter
vector θ0.

1Note that since the function m(·) could contain the term Y , this specification is non-
restrictive. We write the model in this form because it matches the form of many commonly
used econometric models.
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A leading example of such a structure is the nonseparable supply and
demand model,

Q = D(Z, P, εD; θD) (2)

P = S(W, Q, εS; θS), (3)

where in the general notation, Y = (Q,P ), X = (Z,W ), U = (εD, εS) and
the structural model is m = (D, S).

We assume for purposes of identification that the joint distribution of
the endogenous variables and the observed exogenous shifters, F (x, y), is
known. We maintain the assumptions that the structural equations are con-
tinuously differentiable, and that the data comes from a continuous distri-
bution.2 These are largely technical assumptions. All that is required is
differentiability almost everywhere, and it is our belief that even this could
be relaxed.

We divide Brown and Roehrig’s assumptions into two groups. The first
three assumptions, which we call the basic assumptions, are those used by
Brown to prove the lemma in dispute. The remaining assumptions, which we
omit from this note, are rank conditions similar to those used in identifying
the structural equations in a linear model.

2.1 The Three Basic Assumptions

Assumption 1 [Reduced Form]:The data is generated by a continuously
differentiable reduced-form,

Y = f(X, U ; θ0), (4)

where θ0 is the index of the true structural model.

Brown and Roehrig assume that the structural model gives a unique
reduced-form, but their proofs require only that the data is generated by
a differentiable function that maps X and U into Y .

Assumption 2 [Solution for U ]: There is a unique solution to the
structural equations giving the unobservables as a function of the observables.
That is, for every θ, there exists a ρ(Y,X; θ) such that Y = m(X, Y, ρ(Y,X; θ); θ).
Further, the function U = ρ(Y,X; θ) is continuously differentiable.

2The data is generated by a continuous distribution with positive density everywhere
on its support.
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Assumption 2 places strong restrictions on the way the unobservables
enter the model and on the relationship between the dimension of the error
(L) and the dimension of Y (G). In particular, it would typically require that
L ≤ G. Existence of a residual function, ρ, also implies that, while the error
may be non-separable in the structural equations, there is a transformation
of the structural equations that is linear in the errors.

In addition to the above assumptions about the model, a stochastic re-
striction on the errors is required:

Assumption 3 [Independence]: The observed exogenous shifters, X,
are independent of the unobserved errors, U .

3 Brown’s Lemma

In considering identification of the model, an important insight of Brown
(1983) was to focus on the residual function, ρ. For any alternative model
under consideration, θ, we can substitute the true reduced form into the
residual function to obtain a mapping from (x, u) into u:

ũ(x, u; θ, θ0) = ρ(f(x, u; θ0), x; θ), (5)

where ũ(x, u; θ, θ0) is the error implied by the model evaluated at θ (and
where ũ(x, u; θ0, θ0) = u).3 Brown (1983), followed by Roehrig (1988), uses
this relationship to provide conditions under which imposing independence
on the errors in the alternative model, Ũ ≡ ũ(X,U ; θ, θ0), will identify the
true model θ0.

The argument of Brown’s lemma is quite simple. Assumptions 1-2 require
that the relationship in (5) holds for any candidate model, θ, for all (x, u)
pairs in the support of (X, U). The theorem then asks what restrictions, if
any, independence places on the candidate model.

Lemma 1 (B. Brown (1983), pp 180-181). The residuals from the can-
didate model, Ũ , are independent of X if and only if the derivative of the

3For example, in a single equation linear model, y = xβ0 + u is the true functional
relationship and the errors from a candidate model β are given by

ũ(x, u;β, β0) = y − xβ = x(β0 − β) + u.
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mapping ũ(x, u; θ, θ0) with respect to x is everywhere zero, that is if:

Dxũ(x, u; θ, θ0) = Dyρ(f(x, u; θ0), x; θ)Dxf(x, u; θ0) + Dxρ(f(x, u; θ0), x; θ)

= 0,

for all (x, u) pairs in the support of (X, U).

The lemma seems very intuitive at first and, as we will see below, if
true it would be incredibly powerful. The lemma is quite obviously true in
one direction: If the derivative of the residual mapping with respect to x is
everywhere zero, then the mapping is not a function of x. Therefore, the
errors in the alternative model, Ũ , can be written as a function only of the
errors from the true model, U . Since U is independent of X, it must be that
Ũ is as well.

The problem with the lemma is in the other direction. While the lemma
is true if the errors are univariate4, in multidimensional spaces it is easy to
generate mappings with nonzero derivatives with respect to x but that still
generate independent errors. We provide a graphical intuition for this below,
and a more interesting class of counterexamples in the next section. Here,
we first replicate the error in the proof of the lemma.

Proof from Brown, p. 181:
Suppose that, for a particular candidate model, θ̄, the total derivative of the
mapping is not zero everywhere. Then there exists a point, (x0, u0), at which
the derivative of the mapping is not zero. Without loss of generality, suppose

∂ũi(x
0, u0; θ̄, θ0)

∂xj

> 0.

By continuity of the derivative, ∂ũi

∂xj
> 0 for all (x, u) ∈ Nx ×Nu, where Nx

and Nu represent neighborhoods of x0 and u0 respectively. Let Nũ denote
the image set generated by the mapping ũ(x, u; θ̄, θ0) for x ∈ Nx and u ∈ Nu

and define

g(ũ) =

{
ũi(x, u; θ̄, θ0) for u ∈ Nu,
0 otherwise.

(6)

4There are numerous ways of showing this but perhaps the simplest is that of Matzkin
(2003).
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Then

Eg(ũ(x, U ; θ̄, θ0)) =

∫
u∈Nu

ũi(x, u; θ̄, θ0)f(u)du (7)

exists and is finite. Consider a point x1 ∈ Nx such that x1 = x0 except
that x1,j > x0,j. Since the derivative of the mapping is positive everywhere
on Nx × Nu, it must be that ũi(x

1, u; θ̄, θ0) > ũi(x
0, u; θ̄, θ0) for all u ∈ Nu.

Therefore
Eg(ũ(x1, U ; θ̄, θ0)) > Eg(ũ(x0, U ; θ̄, θ0)). (8)

Brown, p. 181, then concludes that this last line implies that g(Ũ), and hence
Ũ , is stochastically dependent upon X. �

The error in the proof is in the definition of the function g in equation
(6). The proof uses the fact that g is stochastically dependent on X to infer
that Ũ is stochastically dependent on X. This inference would be correct
if g were a function only of ũ, as is suggested by the left hand side of the
definition in (6). However, the right side of (6) is written in terms of x and
u. Unfortunately, this is not just a simple error in notation. In general,
the right hand side of the definition can not be written in terms of ũ alone
because it must also depend separately on x.

To see this more clearly, consider the simple univariate example ũ = u+x,
with Nu = (0, 1). There are many combinations of u and x that yield the
same value for ũ but different values for g(·) as defined in (6). For example,
(x, u) = (2,−1) gives ũ = 1 and g = 0, whereas (x, u) = (0.5, 0.5) gives the
same ũ but now g = 1. The function g therefore can not be written as a
function of ũ alone, but also depends separately on x: holding ũ fixed and
varying x gives different values for g. Because g is a function of both ũ and
x, the fact that the expectation of g changes with x, as is shown in (8), does
not contradict the independence of Ũ and X.

Note also what happens if we try to fix the definition of g. For example,
we could redefine g as a true indicator function of ũ. Holding x fixed at
x0 we can think of the set, Nũ, of values of ũ that keeps u in the original
neighborhood Nu. Following the proof through, in the analog to (7) one
finds that both the integrand and the region of integration change with x, in
possibly off-setting ways, and so the inequality in (8) is no longer guaranteed.
Furthermore, below we have counterexamples to the lemma, so larger changes
to the proof also will not rescue the result.
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3.0.1 A Graphical Intuition

There is also a simple graphical intuition as to why the lemma is false. Sup-
pose that the true structural errors are two-dimensional and uniformly dis-
tributed on the unit circle, independent of X. Suppose that the ũ mapping
is such that the true errors are simply rotated about the origin by an amount
determined by x. This would generate a new set of errors, Ũ , that are still
uniformly distributed on the unit circle for every outcome X = x, and there-
fore independent of X. However, the mapping has nonzero derivatives with
respect to x almost everywhere.

In a single dimension, such rotations are not possible, and it is easy to
show that Brown’s lemma holds in a single dimension (obtaining a result
similar to Matzkin (2003)). However, in multiple dimensions there are many
transformations that can fold, reflect, or rotate the errors in such a way as to
conserve independence. If the transformation is a function of the exogenous
variables, then the lemma fails. We provide a more substantive example in
the next section.

4 A Counterexample: Identification of the

Reduced Form

The power of Brown’s lemma can be seen in the following Corollary:

Corollary 2 (Corollary to Brown’s Lemma: Identification of the Re-
duced Form Derivatives). At every point (y, x) in the support of (Y,X),
any model, θ, that satisfies the basic assumptions and is observationally equiv-
alent5 to the true model, θ0, must imply the same reduced form derivatives
with respect to the exogenous shifters as the true reduced form. That is,

∂f(x, ρ(y, x; θ), θ)

∂x
=

∂f(x, ρ(y, x; θ0), θ0)

∂x
(9)

Proof. Since θ is observationally equivalent to the true model,

f(x, ũ; θ) = y = f(x, u; θ0)

5Here we are using Roehrig’s (p. 435) definition of observational equivalence.
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for every point (x, u) in the support of (X, U), where ũ is given by (5).
Since the reduced form functions, f(·), are differentiable, it must be the

case that in the support of (X, U),

df(x, ũ; θ)

dx
=

df(x, u; θ0)

dx

Brown’s lemma implies that ∂ũ
dx

= 0. Therefore,

∂f(x, ũ; θ)

∂x
=

∂f(x, u; θ0)

∂x

If Brown’s lemma held, then we would automatically have the result that
the reduced form was identified in any model satisfying the three basic as-
sumptions. The remaining rank conditions assumptions in the main theorems
of Brown and Roehrig could then be seen as being analogous to the rank con-
ditions needed to identify the structure in linear models, with the distinction
that they need to hold at every point. However, the following counterex-
ample shows that, in fact, the basic assumptions (1-3) are not sufficient for
identification of the reduced form.

If the corollary above were true, in order to estimate the reduced form
we would only need to find a model that satisfied assumptions 1 and 2 and
generated errors that were independent of X. One such model is the following
triangular construction,6

Ũ1 = F (Y1|X)

Ũ2 = F (Y2|X,Y1)

Ũ3 = F (Y3|X,Y1, Y2)

... =
...

ŨG = F (YG|X, Y1, ..., YG−1)

(10)

The Ũ ’s above are constructed such that they are independent of one another
as well as independent of X. The construction itself satisfies Assumption 2,
and it is easy to invert the system to retrieve a reduced form that satisfies
Assumption 1.

6This representation assumes that the dimension of U equals the dimension of Y . While
this was not assumed explicitly above, it is essentially required by assumption 2.
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If Brown’s theorem held, then this system should retrieve the true reduced
form. However, it is easy to see that the system above could not in general
retrieve the true reduced form. Consider the derivative of y1 with respect
to x implied by the triangular system (obtained via the implicit function
theorem),

Dxy1 = −[DxF (y1|x)]−1∂F (y1|x)

∂y1

This expression does not change with y2 (nor any of the other y’s). What
this means is that the error from the second equation (and also from the
other equations) does not change the derivative of y1 with respect to x.
However, a simple inspection of the reduced form in equation (4) shows that,
in general, the derivative of y1 with respect to x might change with the error
from the second equation. In fact, the restriction that the derivative of y1

with respect to x be constant would only be true in some very special cases,
such as if the reduced form were additively separable in the error term, in
which case the derivative of y1 with respect to x depends only on x, or if the
error terms from all equations entered the reduced form as a single index, in
which case the derivative of y1 with respect to x depends only on y1 and x.
Such restrictions may hold for some systems, but do not hold in general for
nonseparable systems. Note also that we could have defined the triangular
system starting with any equation so there are many potentially different
ways to construct the reduced form using this approach.

The triangular construction fails to retrieve the true reduced form for
exactly the same reason that Brown’s lemma fails above. The errors in
the triangular construction, Ũ , are independent of the exogenous variables,
X, but could have been transformed from the original errors in a way that
depends on X. For example, they could have been rotated in a way that
depends on X. Such a transformation could change the implicit functional
relationship between Y and X and thus would not necessarily recover the
true reduced form.

This example shows that the three basic assumptions above are not suf-
ficient to identify the reduced form. An important but negative implication
of the result is that, in general, without further assumptions, a projection
of the endogenous variables on the exogenous variables does not recover the
true reduced form derivatives, even under the relatively strict assumptions
1-3. The intuition for this failure is as follows: in a nonseparable system,
for given values of y1 and x, there may be different derivatives of y1 with re-

9



spect to x depending on the values of the error terms in the other structural
equations. A projection of y1 onto x that ignores the values of y2, ..., yG (or
alternatively, u2, ..., uG) recovers not the true reduced form, but something
akin to the average reduced form derivative weighted over the distribution of
the left out variables.

Finally, the main theorems in Brown and Roehrig add rank conditions
assumptions that serve to identify the structural model from the reduced
form. Since the reduced form always satisfies these rank conditions, the
example above is also a counterexample to these theorems.

5 Conclusions/Areas for Future Research

So far we have shown that the the Brown/Roehrig identification theorems
are incorrect as stated. We have also shown that one consequence is that
additional assumptions beyond those listed in section 2 are required in order
to obtain identification of the reduced form.

However, despite these results, we remain optimistic that some version
of the Brown/Roehrig theorems can be established, perhaps under stronger
conditions. The spirit of Brown’s and Roehrig’s rank conditions is that ex-
clusion restrictions can be used to obtain identification of the system. We
have been unable to contradict this notion. Brown’s and Roehrig’s proofs
only utilize the rank conditions assumptions in identifying the structure from
the reduced form, but it is possible that similar exclusion restrictions may
help to identify the reduced form as well.

One set of restrictions that does identify the system is if the true model
is triangular. For the sake of brevity we provide only an outline of the proof.
Consider the triangular system shown in (10) and suppose that this system
represented the form of the true structural model. Then the first equation
can be shown to be identified using single equation methods. Similarly, each
successive row can be shown to be identified conditional on all previous rows.
Imbens and Newey (2002) consider a two-dimensional system of this kind,
and Chesher (2003) considers a similar multi-dimensional triangular system.

The triangular system uses exclusion restrictions only on the endogenous
variables. However, it is possible that traditional exclusion restrictions on the
exogenous variables, or on groups of both endogenous and exogenous vari-
ables, might also yield identification of the system. It seems likely that such
restrictions would rule out the kinds of transformations that cause Brown’s
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lemma to fail. However, we have as yet been unable to verify or contradict
this conjecture ourselves, and its seems likely that a proof may require more
complex arguments than those used in the original papers.

The identification theorems of Brown and Roehrig provide a simple yet
powerful method for proving identification for a large class of structural mod-
els. Thus, our hope is that these issues will be sorted out in future research.
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