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Abstract

A general equilibrium analysis of monopoly power is proposed as an alter-
native to the partial equilibrium analyses of monopolization common to most
antitrust texts. This analysis introduces the notion of a cost minimizing market
equilibrium. The empirical implications of this equilibrium concept for antitrust
policy is derived in terms of a family of equilibrium inequalities over market data
from observations on a market economy with competitive factor markets. The
social cost of monopoly power is measured using Debreu’s coefficient of resource
utilization. That is, we propose Pareto optimality as the ultimate objective of
antitrust policy.
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In this paper we assume that the primary objective of antitrust law is promoting
efficiency by controlling the creation, maintenance, and exercise of monopoly power
by one or more firms. Monopoly power is difficult to measure, hence market share
or the deviation between price and average variable cost are often suggested as op-
erational proxies. In antitrust analyses of monopolization the major determinants
of monopoly power are the marginal cost of production and the price elasticity of
demand. We follow Debreu (1951) and measure the social cost of monopoly power by
p, the coefficient of resource utilization. p is a measure of the allocative inefficiency
due to monopolization and can be used to compute the money value of the associated
real economic costs, i.e., deadweight loss.

We derive nonparametric estimates of the determinants of monopoly power and
its social cost from a general equilibrium analysis of a history of observations on
endogenous and exogenous market variables. In our model some firms are price-setters
in their output markets, but all firms are assumed to be price-takers in competitive
factor markets. The principal analytical constructs in our model are the notion
of a “cost minimizing market equilibrium” and the implied family of equilibrium
inequalities for a history of cost minimizing market equilibria.

In his classic 1957 expository paper on welfare economics, Bator gave a nonmathe-
matical treatment of welfare maximization in general equilibrium theory. His general
equilibrium model was the two-sector model with two factors of production, two con-
sumption goods, two consumers or households and two producers or firms. Consumers
have utility functions, endowments of the factors of production and limited liability
shares of profits of each firm. Firms have production or cost functions and factors
are inelastically supplied by consumers. Equilibrium in his model is the neoclassical
notion of competitive equilibrium, where households and firms are price-takers. In
equilibrium households maximize utility subject to their budget constraints and a
consumer’s income is the value of her endowment of factors at equilibrium prices plus
her share of each firm’s profits. Firms maximize profits by first choosing output such
that its marginal cost is equal to the market price and then producing that output
at minimum cost. In equilibrium all markets clear, i.e., supply is equal to demand in
every market.

Brown and Heal (1983) used the same model to give an intuitive existence proof
of two equilibrium notions occurring in public sector economics, i.e., average cost
pricing equilibrium and marginal cost pricing equilibrium. In their model one firm
has decreasing average cost and is regulated. One mode of regulation specifies the
firm’s output and requires the firm to produce that output at minimum cost and sell
it at average cost. The Hotelling regulatory prescription specifies the firm’s output,
but requires the firm to produce that output at minimum cost and sell it at marginal
cost. In this regime the firm is subsidized by taxes levied on consumers to cover
the firm’s losses. These regulated price-setting firms are price-takers in competitive
factor markets and quantity-takers in their output markets.

This behavior is not characteristic of the price-setting firms in the static partial
equilibrium models of monopoly pricing prevalent in monographs and case books
on antitrust law, e.g., Fox et al. (2004), Gavil et al. (2002), Gellhorn and Kovacic



(1994), Hylton (2003), Morgan (2001), and Posner (2001). In this literature firms are
assumed to face downward sloping demand curves and maximize profits by choosing
the output where marginal revenue is equal to marginal cost and produce that output
at minimum cost. The monopoly price is then determined by the firm’s demand curve.
It is now well established in the economic theory literature that the partial equilibrium
model of monopoly pricing cannot be extended to the two-sector or, more generally,
the Arrow—Debreu general equilibrium model. A profit maximizing firm that sets
prices gives rise to a fundamental indeterminacy in general equilibrium models that
determine relative prices, but not the absolute price level. In the general equilibrium
theory literature this indeterminacy is called “the price normalization problem,” i.e.,
equilibrium quantities will depend on the price normalization or equivalently the
choice of numeraire. An illuminating discussion of the price normalization problem
and its implications for economic policy can be found in Dierker and Grodal (1998).

Assuming competitive factor markets, a characteristic of competitive, regulated
and monopolistic pricing of outputs in the three models discussed above is that in each
instance the firm’s output is produced at minimum cost. Since price-taking behavior
in competitive factor markets is immune from the price normalization problem, we
propose a new notion of market equilibrium, “cost minimizing market equilibrium.”
In this equilibrium concept households maximize utility subject to their budget con-
straints; factor markets are competitive; each firm produces its output at minimum
cost; firms make nonnegative profits at the prevailing equilibrium prices; and all mar-
kets clear. In general, a cost minimizing market equilibrium is not Pareto optimal.
See Appendix A for a formal discussion of cost minimizing market equilibria.

The testable implications of a history of observations on an economy, where in each
observation the economy is in a cost minimizing equilibrium, is completely character-
ized by the equilibrium inequalities. This is a finite family of polynomial inequalities
where the unknowns are utility levels and marginal utilities of income of consumers
and the marginal costs of firms in each observation. The parameters in these inequal-
ities are demands of households; each firm’s demands for factors; the output of each
firm; and the equilibrium prices of goods and factors in each observation.

The equilibrium inequalities exhaust the empirical content of our equilibrium
notion in the sense that there exists utility functions for consumers and production
or cost functions for firms such that in each observation the economy is in a cost
minimizing equilibrium if and only if the equilibrium inequalities have a solution for
the parameter values given by the observed market data. The equilibrium inequalities
are derived in Appendix B.

In the antitrust analyses of monopoly pricing we previously cited, the economic
costs of monopolization is measured in terms of social surplus, i.e., the sum of con-
sumer and producer surplus. These texts, with the exception of Morgan (2001) use
the Kaldor—Hicks notion of efficiency, based on potential compensation of losers by
winners after a change in economic states, e.g., after the introduction of a tax. Social
surplus is used to measure the potential compensation. Only in Posner (2001) do
we find an explicit recognition that this measure of efficiency is “determined on the
heroic assumption that a dollar is worth the same to everybody.” In the jargon of



economic theory consumer surplus only measures changes in consumers’ welfare if
the marginal utility of income is the same for every household, rich and poor alike.
Social surplus as a measure of economic efficiency is basically a partial equilibrium
notion, ill-suited for general equilibrium analysis.

In general equilibrium theory, the appropriate notion of efficiency or consumer
welfare is Pareto optimality, called “allocative efficiency” in Morgan (2001). A state
of the economy is said to be Pareto optimal if no consumer can be made better off by
reallocating productive resources and engaging in mutually beneficial trades without
making another consumer worse off. The first welfare theorem of general equilibrium
theory states that every competitive equilibrium is Pareto optimal. Hence as in
Posner (2001), “we value competition because it promotes efficiency, that is, as a
means rather than as an end.” If maximization of consumer welfare is the ultimate
antitrust goal, then Pareto optimality and not competitive markets is the proper
benchmark for measuring the economic costs of monopoly.

In antitrust analysis this cost is the difference between the monopoly output of a
firm and the counterfactual competitive output of that firm. That is, the benchmark
is competitive markets. Our analysis of this approach is in Appendix C.

The general equilibrium measure of allocative inefficiency due to monopolization
introduced by Debreu (1951) is p, the coefficient of resource utilization. p is the
smallest fraction of total resources capable of providing consumers with utility levels
at least as great as those attained in the monopolized economic state. Hence the
efficiency loss in real terms is (1 — p)x total resources. That is, the economy can
throw away (1 — p) x total resources and not make anyone worse off. In fact, relative
to this reduced resource endowment, the original monopoly state is Pareto optimal.

The second welfare theorem of general equilibrium theory states that every Pareto
optimal economic state can be realized as a competitive equilibrium with lump sum
transfers of income between households. In this sense the basic intuition of an-
titrust analysis is correct that competitive markets serve as a benchmark for mea-
suring monopoly power. In particular, we agree with Hylton (2003) that measuring
monopoly power with the Lerner index overstates the monopoly surcharge, if we drop
the unrealistic assumption that the monopolist has constant marginal costs. In the
partial equilibrium models of monopoly pricing used in antitrust analysis, the “cor-
rect” price-cost margin is the difference between the observed monopoly price and
the counterfactual price of the competitive output.

We have argued that the partial equilibrium analysis of monopoly pricing found
in the previously cited antitrust texts is seriously flawed. It relies on untenable
assumptions such as equal marginal utilities of income for all consumers. Moreover,
it ignores the recently proven impossibility of extending the paradigmatic general
equilibrium model of Arrow and Debreu, Nobel Laureates in economics, to include
price-setting profit-maximizing firms.

As an alternative mode of analysis, not subject to these criticisms, we suggest gen-
eral equilibrium analysis where the equilibrium concept is “cost minimizing market
equilibria.” In our approach, consistent with the informal welfare analysis appear-
ing in antitrust case books such as Morgan (2001), we propose Pareto optimality as



the ultimate objective of antitrust policy. A natural measure of the deviation of an
economic state from Pareto optimality is Debreu’s coefficient of resource utilization,
p. The economic costs of monopolization are easily computed from p. See Appen-
dix D for an illustrative example, using the two-sector model. In practice p must
be estimated from market data. Given a history of observations on household and
firm behavior in a market economy with competitive factor markets, the equilibrium
inequalities for cost minimizing market equilibria can be used to derive upper and
lower bounds on p in each observation, hence bounding the deadweight loss in each
observation. Proposed remedies can also be evaluated in terms of p, i.e., if p; is the
value of p for remedy ¢, where ¢ = 1,2,...,7T. Then the remedy with the smallest
deadweight loss is the remedy with the largest coefficient of resource utilization. In
Appendix E we compute p in an example using the two-sector model and simulated
market data.

The table below summarizes the principal differences between the partial and
general equilibrium analyses of monopoly power.

Partial equilibrium

General equilibrium

Firms’ behavior

Price-setting Profit
maximizer

Cost minimizing
market equilibrium

Benchmark behavior

Competitive market

Pareto optimal
economic states

Measure of
economic cost

Social surplus

Coefficient of resource
utilization, p

Computation of
deadweight loss

Varian’s cost
minimizing inequalities

Equilibrium
inequalities

Remedy

Increase competition

Increases p

We illustrate these differences in Figures 1a and 1b. Figure 1b is discussed in

Appendix D.
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Figure 1b. General Equilibrium Analysis

The economic model used in the appendices is the two-sector general equilibrium
model. The intended interpretation is a model of two product markets where the
monopoly good and the competitive good are close substitutes in consumption. The
affect of other products on the welfare of consumers can be explicitly modeled by
assuming households have quasilinear utility functions, linear in a third composite
commodity. This is common practice in the 1.O. literature.



The Justice Department’s Merger Guidelines suggest constraints on monopoly
pricing, arising from close substitutes in consumption, as a means of defining the
relevant market for abuse of monopoly power or the efficacy of a proposed merger.
If the relevant market for analysis contains several products, then we propose the
multisector general equilibrium model and the associated equilibrium inequalities for
cost minimizing market equilibria as a methodology for estimating the social cost of
monopolization.

This is a paper on antitrust analysis from a general equilibrium perspective, but
we close with a brief comment on the empirical theory of monopolistic competition
and the welfare implications of market power. Using the methodology developed in
this paper you can estimate the social cost of market power in a multisector general
equilibrium model of monopolistic competition, where in the cost minimizing market
equilibria the market price of each good exceeds its marginal cost of production,
i.e., every firm has some market power. In this model the number of firms is fixed,
i.e., no entry or exit; goods or products are differentiated; and households may have
heterogeneous tastes. The measure of consumer welfare or the social cost of market
power is, again, Debreu’s coefficient of resource utilization.



Appendix A: Cost Minimizing Market Equilibrium

In this appendix we give a formal definition of a cost minimizing market equilibrium in
the two-sector general equilibrium model. The characterization of cost minimization
in Varian (1984) plays an essential role in our analysis. For readers unfamiliar with
the geometry of the two-sector model, we recommend the paper by Bator (1957).
Here we follow the notation in Brown and Heal (1983).

The inputs or factors are capital (K) and labor (L). The outputs or goods are
natural gas (G) and electricity (F). Each household has a utility function denoted
U, and U,. Endowments and shareholdings in firms are given by (K, L;), (Ky, Ly);
(Oxq,9xE), (Oyq,0yg). Each firm has a production function, F; and Fg, or equiv-
alently, cost functions Cg and Cg. Let K = K, + K, and L = L, + L.

We make the same assumptions regarding firms and households as Bator, with
one exception: we do not assume constant returns to scale in both firms, but firms are
assumed to exhibit diminishing marginal rate of substitution along any isoquant, that
is, the market for factors is competitive. Under these assumptions, we construct the
Edgeworth-Bowley box for production and the social production possibility frontier,
PPF.

Let Pg and Pg denote the prices of natural gas and electricity, and w and r
denote the prices of labor and capital. The marginal rate of transformation (MRT)
at a point (é, E) on the PPF is simply the absolute value of the slope of the frontier
at that point and will be denoted Pj/Pg. A point (G, E) is said to be production
efficient if it lies on the PPF.

Each point (G, E‘) on the PPF determines a unique point in the Edgeworth—
Bowley box for production, that is, the point on the efﬁc1ency locus corresponding
to the tangency of the isoquants defined by Fi(Ly, Kg) = E and Fg(Lg, K¢) = G.
The slope of their common tangent line at this point will be denoted as w/r and is
the marginal rate of technical substitution (MRTS) at this point.

We shall use repeatedly that the MRT at a point (G, E) is the ratio of the marginal

dCg(w/r,E)/OE
costs; that is Py /Pg = = 20atw/r).0)/0C"

A consumer’s demand for goods derive from utility maximization subject to her

budget constraint:
oU; /OFE; _ Py (1)
oU;/0G;  Pg
PpE+PsG;, =1, = wL1+TKj+0ig(PGG—wLG—TKO)+0iE(PEE—U)LE—TKE), for i = x,y.
(2)
A firm’s demand for factors derive from cost minimization subject to its output
constraint:

8Fj/8Lj _ E (3)
8Fj/8Kj T
F}(Lj,Kj):j, fOI“j:E,G. (4)

A cost minimizing equilibrium is defined as a set of relative prices Pg/w, Pg/w and
r/w; consumer’s demands for goods E,, G, and E,, Gy; firm’s demands for factors



Lp, Kg and Lg, K¢g; and output levels £ and G such that all markets clear. That
is,
Product Markets:

E,+E,=E (5)
Factor Markets:
Lp+Ko=1L (7)
Kp+Ko=K (8)
and firms make nonnegative profits:
PyE > wLy + 1K (9)
PoG > wLg +rKcq. (10)

Because of Walras’ Law, equation (8) is redundant. This model is indeterminate
in the sense that there are fewer equations (11) than unknowns (13). Despite the
indeterminacy, this system of equations and inequalities suggests a family of equilib-
rium inequalities for a history of market data that allows us to infer the exercise of
monopoly power.

Appendix B: Equilibrium Inequalities

The Afriat inequalities consist of a finite number of polynomial inequalities derived
from a finite number of observations on a consumer’s demands: x1,x2, ..., T, at mar-
ket prices: pi,po,...,pn. For each pair of observations, ¢ and j, there is a pair of
inequalities

Vi
Vi

Vi + A\jpj - (s — x;) and

<
< Vit - (x5 — ),

where V; is the utility level and A; is the marginal utility of income in observation <.
A utility function U is said to rationalize the data {(pi1,z1), ..., (Pn, )} if for all ¢,
U(z;) > U(zx) for all z such that p; - = < p; - ;. Afriat’s celebrated theorem is that
the data is rationalized by a concave, monotonic and continuous utility function U
if and only if the Afriat inequalities are solvable. Moreover, a rationalizing U can
be constructed from each solution of the Afriat inequalities. See Afriat (1967) and
Varian (1982) for further discussion.

Varian’s cost minimizing inequalities consist of a finite number of polynomial in-
equalities derived from a finite number of observations on a firm’s outputs: f1, fo, ..., fn;
factor demands: y1,¥s2, ..., Yr; and factor prices: qi,q2, ..., qn. For each pair of obser-
vations, ¢ and j, there is a pair of inequalities:

fi
i

fi + 845 - (vi — y;) and

<
< fit Bigi - (Y5 — i),



where f3; is the reciprocal of the marginal cost in observation ¢. A production func-
tion f is said to rationalize the data if for all ¢, f(y;) = fi; and f(y) > f(y;) implies
¢ -y > ¢! -y'. That is, y; minimizes the cost over all bundles of factors that can pro-
duce at least f;. Varian (1984) proves the important result that the cost minimizing
inequalities are solvable if and only if there exists a continuous monotonic quasicon-
cave, i.e., diminishing marginal rate of substitution along any isoquant, function that
rationalizes the data.

Brown and Matzkin (1996) introduced the Walrasian equilibrium inequalities as
a means of testing the Walrasian model of a competitive economy with market data.
Here we propose an analogous family of polynomial inequalities that characterize a
history of cost minimizing market equilibria in an economy with competitive factor
markets. The equilibrium inequalities consists of: the Afriat inequalities for each
consumer; her budget constraint in each observation; the cost minimizing inequalities
for each firm; the market clearing conditions for the goods and factor markets in each
observation; and the nonnegative profit conditions for each firm in each observation.
An explicit example for the two-sector model is given in Appendix E.

Appendix C: The Major Determinants of Market Power

In this appendix we give nonparametric estimates of the marginal cost and price
elasticity of demand of a firm minimizing the cost of production in a model where all
firms are price-takers in competitive factor markets. It suffices to consider the firm
producing electricity in the two-sector general equilibrium model. Suppose this firm
is alleged to have abused its market power in the previous year — think of California
before the recall election of Gray Davis. During the year we observe that on three
occasions the firm produced different outputs at the prevailing market prices. We
observe the outputs, factor demands, and factor prices on each occasion. We do not
know the firm’s cost or production function, but if the firm is producing its output
at minimum costs in competitive factor markets, then the following figure must hold
for the unobserved isoquants of the production function.

10
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%
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Figure 2

We have three isoquants where F }E > F % > F g The slopes or factor price ratios
are: r1/wi, r2/ws2, and 73/ws. The factor demands are: (K}, LY), (K%,L%), and
(K3, L3), denoted o, o2, and o3 in the figure.

Using Varian’s cost minimizing inequalities, we have:

Fy < Fg + Mo[(wo Ly + roKpy) — (wolf + oK) (11)

FL < F2 4+ \[(woly + 1 KE) — (wol% + roK2)] (12)

where A9 is the reciprocal of the marginal cost, M C%, of producing F' 1% solving for
MC%, we obtain:

(IUQLJQE + TQK%) — (IUQLBE + T‘QK%) -

MC?% > s =B (13)
MC% < (’LUQLIE + TQK}E) — (U)QL% + TQK%) _ B?nax (14)

Fl—F2

The right-hand side of (13) may be negative, as seen in the next figure, and hence
uninformative. We compute these bounds in an example in Appendix E.

11
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Figure 3

Assuming that the firm is making nonnegative profits and the right-hand side of
(13) is positive, we can derive an upper bound on monopoly power, measured by
the price elasticity of demand for electricity, . Nonnegative profits imply that, the
marginal revenue, M R% > M C%. Hence

Pp—Bi, _ PE—MCh 1
5 > 5 > ——. (15)
Py Pp ‘e

If one makes the additional assumptions of a linear demand curve for electricity,
constant marginal utilities of income for consumers and constant marginal cost. Then
we can derive a lower bound on the deadweight loss as measured by social surplus.
There are dubious and nontrivial assumptions. Of course, we also can estimate a
lower bound on the monopoly’s economic profits and Posner’s measure of the social
cost of monopolization, i.e., monopoly profits + deadweight loss.

Appendix D: The Coefficient of Resource Utilization

A common argument made by firms seeking to merge is that the merger will result in
efficiencies, e.g., a reduction in the labor force or reduction in capital utilization, say
fewer plants. Put simply the merged firm will produce more with less labor or capital.
If true then the original economic state was not Pareto optimal. In a similar vein the
intuition that competition and free entry to markets enhances “efficiency” follows
from the belief that firms with lower marginal costs will enter profitable markets
and produce the market output at lower cost. If true then the original economic
state was not Pareto optimal. The common feature of these two examples is that
in each case the same level of consumer satisfaction can be realized with fewer total
resources. These wasted resources constitute the opportunity cost of the inefficiencies

12



in the original economic state. Debreu’s coefficient of resource utilization, p, is a
quantitative measure of these inefficiencies or real opportunity costs.

We illustrate the computation of p with the two-sector model. Suppose the given
economic state of the model is a cost minimizing market equilibrium where Pg/Pg #
MCg/MCg. As shown in Bator (1957) this violates one of the necessary conditions
for Pareto optimality in the two-sector model.

Suppose in equilibrium household x consumes (E,, G,) and household y consumes
(Ey,Gy). p is the minimum « between 0 and 1 where the given two-sector model
with reduced social endowments oK and oL can produce sufficient electricity E and
natural gas G such that:

Up(Ey,Gy) > Up(Ey, Gy) (16)
Uy(Ey,Gy) > Uy(Ey, Gy) (17)
Fy + Ey=E (18)
Ge+Gy=G (19)

E = Fp(Ly, Kp) (20)

G = Fo(La, Ka) (21)
L+ Lg=aL (22)
Kp+Kg=aK (23)

We denote the Lagrange multipliers for constraints (22) and (23) in the con-
strained minimization problem defining p as w and 7. These “shadow prices” as they
are called by economists are used by Debreu to give an intrinsic valuation of the
economic costs of inefficiency. He defines the opportunity or economic cost in real
terms as the vector ((1—p)K, (1 —p)L) and the deadweight loss as (1 — p)[wL +T7K].

In practice, p must be estimated from market data. Here we use the equilibrium
inequalities. Given a history of observations on the two-sector model, the equilibrium
inequalities are solvable linear inequalities in the utility levels and marginal utilities of
households and the marginal costs of firms, for parameter values given by the observed
market data, if and only if this is a history of cost minimizing market equilibria. Each
solution determines a utility function for each household and a production function
for each firm that rationalizes the market data in each observation. Hence for a given
observation and a given solution of the equilibrium inequalities we can solve the
minimization problem for p defined by equations (16)—(23). Keeping the observation
fixed we compute the minimum p, p.;,, and the maximum p, p,.., over the set
of solutions to the equilibrium inequalities. Hence the “true” p is in the interval
[pmina pma.x] .

A clever illustration of the coefficient of resource allocation was suggested by
T.N. Srinivasan. Suppose both firms in the two-sector model have constant returns
to scale. Then each firm has constant marginal cost. Using the fact that the MRT is
the ratio of the marginal costs at each point on the PPF, we see that the PPF is a
straight line. The outputs (E*, G*) produced in a cost minimizing market equilibrium
lie on the PPF, as a consequence of competitive factor markets and production at

13



minimum cost. Finally the community indifference curve passing through the point

(E*,G*) is the boundary of the set of points (E,G) where

Uy(Eya éy) 2 Uy(E;;ka GZ)

ot By=F
Gt Cy=C
E}+E} = E*
G+ Gy =G

G

Origindl PPF
withslope MC,../ MC..

Countefadud PPF
LV_TEO
Dedwegt  E
p=E/E Loss

a, = aggregate equilibrium demends
a,= aggregaedarendsin counterfectud conpetitive
equilibiumwith trandfers

Figure 4

aq is the output (E*,G*) produced in the cost minimizing market equilibrium.
ay = (E, Q) and satisfies (24)-(29). The social endowments used to produce ay are
pK and pL, where K and L are the original social endowments of capital and labor. If
the slope of the PPF is P}, /Pf, then the deadweight loss is Pj,(E* — E)+ P (G* —G),

and p is the ratio Ex/Ej.

14



Appendix E: Numerical Examples

The first task is simulating market data. To this end we specify factor endowments
for households in a two-sector general equilibrium model and solve the equilibrium
inequalities for three periods. In each period the unknowns are utility levels, mar-
ginal utilities of income and demands of households, output levels, marginal costs
of production and factor demands of firms, and prices of goods and factors in each
period. We use NMaximize to solve this family of polynomial inequalities.

NMaximize is an algorithm in Wolfram (2003) for computing local maxima in
polynomial programs, i.e., constrained maximization problems where the objective
function and constraints are multivariate polynomials. By setting the objective func-
tion equal to zero, NMaximize is an effective algorithm for deciding if a family of
polynomial inequalities is solvable. That is, if the given system is inputed as con-
straints into NMaximize where the objective function is a constant, say zero, then the
output will be a solution to the inequalities or the announcement that the system is
inconsistent. If the range of the objective function in a polynomial program is known
and bounded, then a binary line search on the range, using NMaximize, will produce
the global maximum.

To simplify the simulation’s coding, we departed from the notation in Brown and
Heal (1983). In our simulation the utility levels of households are denoted as U; and
Vi, the demands of households as x;; and y;;; the output levels of firms as F; and Gi;
the factor demands of firms as w;; and z;;; the prices of goods as p;;; the prices of
factors as g;;.

In this notation, ¢ denotes the period and j the good or factor. The j =1 good,
electricity, is produced by the F-firm. The j = 1 factor, labor, is the numeraire.
Hence, ¢11 = g21 = 1. The G-firm has a homogenous production function and the F-
firm has a concave production function, i.e., increasing average costs. The marginal
cost of the F-firm in period ¢ is denoted as 1/M;. The cost minimizing inequalities for
these technologies, as they appear in the simulation, are taken from Varian (1989).

The Afriat inequalities for homogenous utility functions are taken from Varian
(1982).

Here is the Mathematica code for the market data simulation and the results of
one run:

{U1>1,U2>1,U3s>1, 211 >0, 212 >0, 21 > 0, 220 > 0, z31 > 0, 30 >0, V1 > 1, Vo > 1,
Va>1,y11 >0, y12 >0, y21 >0, y22 >0, y31 >0, y32 >0, F1 >0, F» > 0, F3 >0, w11 >0,
wi2 > 0, wa1 > 0, wae > 0, w31 > 0, wse >0,G1 >0,G2>0,G3 >0, z11 >0, z12 >0, 201 >0,
229 >0, 231 > 0, 2320 > 0, p11 > 0, p12 > 0, p21 > 0, p22 > 0, p31 > 0, p32 > 0, 12 > 0,
go2 > 0, g32 > 0, M1 > 0, M2 > 0, Us * {pa1, pea}.-{z21, 222} < U * {pa1, p22}.{®s1, x32},

Ua * {p31,paa}.{z31, 232} < Us * {ps1,p3a}.{zo1, z22},

Us * {p11,pr2} {z11, 212} < Up % {p11, p12}.{z21, x22},

Uy * {p21,pas} . {x21, 20} < U * {pa1,paa} {z11, 212}, {p31,paa}.{z31, 232} = {1, ¢32}.{120,0},
{p21, 22} -{xa1, w22} = {1,¢22}.{90,0}, {p11,p12} {11, 212} = {1, 912} .{60,0},
{pa1, p2a} {wa1, w22} = {1, g22}.{90, 0},
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Vs # {po1, pao}.-{y21,y22} < Vo * {pa1, p22}.{ys1, ys2},
Vo x {p31, ps2}-{ys1,yse} < Vs * {p31,ps2}.{y21,y22},
Vo # {p11, pro}-{y11,y12} < Vi * {p11,p12}-{y21, y22},
Vi x {pa1,p22} {y21, Y22} < Va * {pa1,p22} {y11, y12}, {p31,p32}-{ya1,ys2}
={1,¢32}.{0,75} + pa1 * F3 — {1, g32} . {ws1, waz},
{p21, P22} {yo1, 922} = {1, q22}.{0,50} + pa1 * Fo — {1, gua} {wa1, waz}, {p11, p12}-{y11, 912}
={1,¢12}.{0,25} + p11 * Iy — {1, qro}.{wi1, w12}, po1 * Fo — {1, gao}.{wo1, waa} > 0,
{p21, 22} {y21, Y22} = {1, 422}.{0,50} + pa1 * Fo — {1, ga2} {wa1, wan},
Fy < F3+Ms*{1, gs2}.({wa1, wao } —{ws1, wsz), Fs < Fo+Ma*{1, goo }.({ws1, wsa } —{wo1, wa2}),
Fi < Fp + Mo« {1, qoo}.({w11, w1z < —{wa1,was}), Fo < F1 + My x {1, 12 }.({wo1, wao}
— {wi1,wi12}),
My« {1, qro} {wir, w12} < F1, Ma {1, qoa}.{wa1, w22} < Fh, M3 {1,qs2}.{ws1, w32} < F5,
po1 * Fo — {1, go2} . {wa1, wa2} > 0, p31 * F3 — {1, gs2}.{ws1, w32} > 0,
pi1x F1 — {1, qia} {wi1, w12} =0, {1,q32}.{221, 222} * Gs < {1, g32}.{231, 232} * G2,
{1, q22} {281, 232} * G2 < {1, qo2}.{221, 222} * G,
{1, qa2} {201, 200} * G1 < {1, qo2} {211, 212} * G2,
{1, qua} {211, 212} * G2 < {1, qua} {201, 222} * G1, w31 + 231 = 120, w3z + 232 = 75, wa1 + 221 = 90,
wog + za2 = 50, w11 + 211 = 60, w1z + 212 = 25, wa1 + 221 = 90, waz + 222 = 50, x11 + Y11 = F1,
Z12 + Y12 = GL, 221 + Y21 = Fo, 222 + Y22 = G2, 31 + y31 = Fs, 230 + ys2 = G, Mz > 0}

{F3 — 0.12086015700510068, G's — 0.02113212603605529, M3 — 0.05712764322360773,

pa1 — 35.07799741549837, pas — 5678.541808898278, gaz — 1.20656895072332429,

Uz — 2.9631551816073056, V3 — 1.0537259131402723, w31 — 0.00033879335219921813,
waz — 74.99408293177184, z31 — 9.68493432201779976 230 — 0.02113212587144456,

y31 — 0.12085047207077866, ys2 — 1.6461072895203797 1%, 231 — 119.9996612066478,

z32 — 0.005917068228162191, F1 — 1.408211590367411, F> — 1.365439889409406,

G1 — 0.0020946023279088287, G2 — 0.011633540777631766, M1 — 2.0437503246274403 717,
Mo — 0.05425525266887062, p11 — 37.175585332603234, p12 — 6686.675930253387,

p21 — 54.16966546761761, pae — 8769.163943093063, q12 — 0.2540209672621788,

g22 — 0.7228466215440974, U, — 1.3132899342122344, Uz — 1.439111016814532,

Vi — 1.4034789404061154, Vo — 13.39800717731972, w11 — 49.65901568759563,

w2 — 10.572282884453157, wa1 — 23.939580380550325, wez — 0.25776475034942337,

11 — 1.326713126043797, x12 — 0.0015970062079065607, 21 — 0.6893762026321762,

22 — 0.006004759640005697, y11 — 0.08149846432361406, y12 — 0.0004975961200022679,
yo1 — 0.6760636867772296, y22 — 0.005628781137626068, 211 — 10.340984312404375,

z12 — 14.427717115546843, 291 — 66.06041961944968, 222 — 49.74223524965058}

w

{True, True, True, True, True, True, True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, True, True, True, True, True, True}
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Given the simulated values of Fy, F3, the associated factor demands and factor
prices in each period, we compute a upper bound, B2, on the marginal cost of
producing F». This bound is given by equation (14). An upper bound on the elasticity

of demand is an immediate consequence. Here are those results:

{1, g32}. ({war, wao} — {ws1, ws2})}/.
{F3 — 0.12086015700510068, G5 — 0.02113212603605529, Mz — 0.05712764322360773,
P31 — 35.07799741549837, psa — 5678.541808898278, g3 — 1.206568950723324 2
Us — 2.9631551816073056, Vs — 1.0537259131402723, ws; — 0.00033879335219921813,
waz — 74.99408293177184, x3; — 9.6849343220177997%, 232 — 0.02113212587144456,
ys1 — 0.12085047207077866, ys2 — 1.64610728952037971°, 231 — 119.9996612066478,
239 — 0.005917068228162191, F) — 1.408211590367411, Fy — 1.365439889409406,
G1 — 0.0020946023279088287, G2 — 0.011633540777631766, M; — 2.0437503246274403 717,
My — 0.05425525266887062, p11 — 37.175585332603234, pl2 — 6686.675930253387,
p21 — 54.16966546761761, pae — 8769.163943093063, g12 — 0.2540209672621788,
g2 — 0.7228466215440974, U; — 1.3132899342122344, Uz — 1.439111016814532,
Vi — 1.4034789404061154, Vo — 13.839800717731972, w11 — 49.65901568759563,
wig — 10.572282884453157, wy1 — 23.939580380550325, woy — 0.25776475034942337,
z11 — 1.326713126043797, 12 — 0.0015970062079065607, o1 — 0.6893762026321762,
Z99 — 0.006004759640005697, 11 — 0.08149846432361406, 12 — 0.0004975961200022679,
ya1 — 0.6760636867772296, y2a — 0.005628781137626068, 211 — 10.340984312404375,
210 — 14.427717115546843, 221 — 66.06041961944968, 200 — 49.74223524965058}
{23.9392}

The actual marginal cost is 1/Ms.

{1/Ms}/ {Fs — 0.12086015700510068, Gz — 0.02113212603605529, M; — 0.05712764322360773,
P31 — 35.07799741549837, pss — 5678.541808898278, gss — 1.206568950723324~%°,
Us — 2.9631551816073056, Vs — 1.0537259131402723, ws, — 0.00033879335219921813,
wss — 74.99408293177184, w31 — 9.6849343220177997°, x5, — 0.02113212587144456,
ys1 — 0.12085047207077866, yss — 1.646107289520379 20, 23, — 119.9996612066478,
237 — 0.005917068228162191, Fy — 1.408211590367411, F% — 1.365439889409406,
G1 — 0.0020946023279088287, G5 — 0.011633540777631766, M; — 2.0437503246274403~ 7,
My — 0.05425525266887062, p11 — 37.175585332603234, p1o — 6686.675930253387,
Ppo1 — 54.16966546761761, pas — 8769.163943093063, g12 — 0.2540209672621788,
Q22 — 0.7228466215440974, U; — 1.3132899342122344, Uy — 1.439111016814532,
Vi — 1.4034789404061154, Vo — 13.839800717731972, w1y — 49.65901568759563,
wia — 10.572282884453157, wa1 — 23.939580380550325, was — 0.25776475034942337,
211 — 1.326713126043797, 215 — 0.0015970062079065607, m21 — 0.6893762026321762,
222 — 0.006004759640005697, y11 — 0.08149846432361406, 12 — 0.0004975961200022679,
yo1 — 0.6760636867772296, y25 — 0.005628781137626068, 211 — 10.340984312404375,
219 — 14.427717115546843, 291 — 66.06041961944968, 299 — 49.74223524965058}
{17.5047}
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In this example the lower bound Bfnin is negative.

Finally, we use the simulated observations to estimate an upper bound on the
coefficient of resource utilization, p, in the second period. The estimation procedure
described in Appendix D defines an infinite dimensional optimization problem, i.e.,
the choice variables are utility functions of households and production functions of
firms consistent with the market data. In fact, we can reduce the computation of
Pmin and p .. to polynomial programming problems where now the choice variables
are simply vectors in some appropriate Euclidean space, RYV. The “trick” is to use
the second welfare theorem of general equilibrium theory. For the two-sector or
more generally the Arrow-Debreu general equilibrium model, the theorem states
that an economic state is Pareto optimal if and only if this state can be realized as a
competitive equilibrium with lump-sum transfers of income between households.

Recall that Debreu’s theorem on the coefficient of resource utilization for the two-
sector model states that the economic state, where the social endowments of capital
and labor are pK and pL, is Pareto optimal for the original utility levels. See Figure
4.

Consequently, we simply augment the equilibrium inequalities with the Walrasian
inequalities, characterizing a competitive equilibrium, derived by Brown and Matzkin
(1966), where now the competitive prices for goods and factors are also unknowns.
In the Walrasian inequalities, social endowments are tK and tL, where ¢ is unknown
but constrained to be between 0 and 1. We also need the inequalities given in (16)
and (17) defining the community indifference curve in Figure 4.

NMaximize[{0,U; > 1, Us > 1, U3 > 1, z11 > 0, 12 > 0, z21 >0, z22 > 0, 31 > 0, z32 > 0,
Vi>1, Voa>1, Va>1, y11 > 1/10000, yi2 > 0, y21 >0, y22 >0, y31 >0, y32 >0, F1 >0,
F> >0, F5>0, w1 >0, wia >0, w1 >0, wea >0, ws1 >0, wza >0, G >0, G2 >0,
G3>0, 211 >0, 212 >0, 221 >0, 200 >0, 231 >0, 232 >0, p11 >0, p12 >0, p21 >0,
p22 >0, pa1 >0, p32 >0, q12 > 1/10000, g22 > 0, g3z >0, M1 >0, Mz > 1/10000,
Ms >1/10000, 1 >t >0, U x {p11, p12}-{z11, 212} < U1 * {p11, p12}.{8z21, 22},
Ui * {p21,poo}.{zo1, 220} < Uz % {pa1, pao}.{z11, 12},
Vo * {p11, P12} {y11, y12} < Vi * {p11, p1a}-{yo1, 922},
Vi {po1, pea}{y21, y2e} < Vo x {pa1, p2e}.{y11, y12}, {p11, 12} {z11, 212} = {1, q12}.{60, 0},
{p21,pao}{xar, meo} = {1,922}.{90,0}, {p11, pro}-{y11, 912}
={1,q12}.{0,25} + p11 * F1 — {1, qi2} {wi1,wia}, po1 * Fo — {1, qea}.{war, waa} > 0,
{p21, P22} {y21,y22} = {1, q22}.{0,50} + po1 * I2 — {1, ga2 } . {wa1, w2z},
Fiy < Fy 4+ Mo« {1, gao}.({wrr, w1z} — {wor, waa}), Fo < Fi + My {1, q12}.({wa1, was}
— {wi1,wi2}),
My x{1, qia} {wi1, w12} < Fi, M2 *{1,qoo}.{wo1, w2} < Fa, po1 * Fo — {1, gao }.{wa1, w22} > 0,
pi1* I — {1, qua}{wi1, w12} >0, {1,q22}.{201, 222} * G1 < {1, q22}.{211, 212} * Go,
{1, qu2} {211, 212} * G2 < {1, qr2} {221, 222} * G1, w11 + 211 = 60, w12 + 212 = 25,
wa1 + 221 = 90, waz + 222 = 50, x11 +y11 = F1, T12 +y12 = G1,m21 +y21 = Fo, T2 + y22 = Ga,
Fs < Fy + My« {1, qia}.-({ws1, wse} — {wi1,wi2}), Fi < F5 4+ Ms x {1, gs2}.({w11, w12}

— {ws1, ws2}),
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Fs < Fo + Mo« {1, qo2}.({ws1, wsa} — {wa1, waz}), Fo < Fs+ M3 {1, g32}.({wa1,wa}
— {ws1, waa}),
{1, qua} {281, 232} *G1 < {1, qu2}. {211, 212} *G3, {1,qa2}.{711, 212} *G3 < {1,q32}.{231, 232} *G1,
{1, g22} {221, 222} *G3 < {1, q22} . {231, 232} *Ga, {1, q32}.{231, 232} *G2 < {1,q32}.{221, 222} xG3,
Ui # {p31,ps2}.{x31, 230} < Us * {ps1, pso} .{z11, x12},
Us*{p11, p12}-{z11, 212} < Uls{p11,p12}.{x31, z32}, Uas{ps1,ps2}.{x31, 32} < Us{ps1,p32}.{x21, 22},

Us*{pa1, p22 }.{za1, 222} < Uas{p21,pao}{x31,x32}, Vix{ps1, ps2}-{ys1,ys2} < Vax{ps1,ps2}.{vi1,v12},
Vax{p11,p12}-{y11,y12} < Vis{pi1,p12}.{ys1,ys2}, Vox{ps1,p32}.{ys1,ys2} < Vax{ps1,ps2}.-{yo1, y22},

Vs # {po1, pao}.-{y21,y22} < Vo x {pa1,p22}.{ys1,ys2}, wa1 + 231 = ¢ * 90, w3zz + 232 =t % 50,
{ps1,ps2} {xs1, x32} + {p31, P32} -{ys1, ys2} < € (90 + 50gs2), x31 + ys1 = Fj,

x32 +ys2 = G3, G3 *xp3a = {1,q22}.{231, 232}, p31* Mz =1.0, Uy =Us, Vo = Va},

{F1, Fz, F5, wi, wia, w1, waa, wa1, waz, G1, G2, Gz, z11, 212, 221, 222, 231,

z32, Ui, Ua, Us, x11, T12, ®21, To2, T31, T32, Vi, Vo, V3, y11, Y12, o1,

Y22, Y31, Y32, P11, P12, P21, D22, P31, P32, q12, G22, q32, My, Ma, Ms, t}}

{Fy — 1.408211590367411, F> — 1.365439889409406, G1 — 0.0020946023279088287,
G2 — 0.011633540777631766, M; — 2.043750324627440371°,

Mz — 0.05425525266887062, p11 — 37.175585332603234, p12 — 6686.675930253387,
p21 — 54.16966546761761, p2o — 8769.163943093063, g12 — 0.2540209672621788,

q22 — 0.7228466215440974, Uy — 1.3132899342122344, Uz — 1.439111016814532,

V1 — 1.4034789404061154, Vo — 13.839800717731972, w11 — 49.65901568759563,

wiz — 10.572282884453157, wa1 — 23.939580380550325, wae — 0.25776475034942337
11 — 1.326713126043797, 212 — 0.0015970062079065607, x21 — 0.6893762026321762,
22 — 0.006004759640005697 ,y11 — 0.08149846432361406, y12 — 0.0004975961200022679,
yo1 — 0.6760636867772296, y22 — 0.005628781137626068, z11 — 10.340984312404375,
z12 — 14.427717115546843, 221 — 66.06041961944968, 290 — 49.74223524965058 }

A solution to this system of polynomial inequalities defines a family of utility func-
tions, production functions, household demands, factor demands, prices for goods and
factors and p, the value of t. The resulting two-sector model is in a cost minimizing
market equilibrium in both periods. The counterfactual competitive equilibrium with
lump-sum income transfers in the second period defines a Pareto optimal economic
state for the social endowments pK and pL, where aggregate demands of F and GG
lie on the community indifference curve defined by values in the second period, see
Figure 5. The system of inequalities with solution values are given next, where p .,
and p,,., are computed by doing a binary search on [0, 1] with NMaximize.
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NMaximize[{0,Us > 1, z31 > 0, z32 >0, V3 > 1,y31 > 0, ys2 >0,
F3 >0, w31 > 0,ws2 > 1/10000, Gs > 0, 231 > 0, 232 > 1/10000, p31 > 0, p32 > 0,
Ms > 1/10000, 0.95 > ¢, F3 < 1.408211590367411 + 2.043750324627440371°
(—49.65901568759563 4 w31 + 0.2540209672621788(—10.572282884453157 + ws2)),
1.408211590367411 < F3 + M3(49.65901568759563 — w31 + ¢32(10.572282884453157 — ws2)),
F3 <1.365439889409406 + 0.05425525266887062(—23.939580380550325 + ws;
+ 0.7228466215440974(—0.25776475034942337 + ws2)),
1.365439889409406 < F3 + M3(23.939580380550325 — ws1 + ¢32(0.25776475034942337 — ws2)),
0.0020946023279088287 (231 + 0.2540209672621788232) < 14.005926969480676G'3,
(G3(10.340984312404375 + 14.427717115546843¢32) < 0.0020946023279088287 (231 + ¢32232),
102.0164263177113G's < 0.011633540777631766 (231 + 0.7228466215440974232),
0.011633540777631766(231 + g32232) < G3(66.06041961944968 + 49.74223524965058¢32),
1.3132899342122344(ps1x31 + ps2xs2) < (1.326713126043797p31 +0.0015970062079065607p32)Us,
60.Us < 1.3132899342122344(37.175585332603234231 + 6686.675930253387x32),
1.439111016814532(ps1x31 + p3zzsz) < (0.6893762026321762p31 + 0.006004759640005697p32)Us,
90.Us < 1.439111016814532(54.16966546761761231 + 8769.163943093063z32),
1.4034789404061154(p31ys1+pszysz) < (0.08149846432361406ps; +0.0004975961200022679ps2) Vs,
6.357017113545275V3 < 1.4034789404061154(37.175585332603234y31 + 6686.675930253387y32),
13.839800717731972(ps1y31 + p32ys2) < (0.6760636867772296p31 + 0.005628781137626068p32) V3,
85.98184834315961V3 < 13.839800717731972(54.16966546761761y31 + 8769.163943093063y32),
w31 + 231 = £ 90, wsa + 232 = ¢ * 50, ps1T31 + P32T32 + P31yY31 + Pa2yse = ¢ x (90 + 50gs2),
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z31 + y31 = F3, x32 + y32 = G3, Gapsz = 231 + 0.7228466215440974 232,
Msps: =1, 1.439111016814532 = Us, 13.839800717731972 = Vs},
{t, F3,ws1,ws2, G3, 231, 232, U3, T31, 32, V3, Y31, Y32, P31, P32, q32, M3}]
{0, {t — 0.982167, F5 — 1.41684, G3 — 0.0113304, M5 — 0.0206193, p31 — 48.4983,
p3g — 8723.42, g32 — 1.61193, Us — 1.43911, V3 — 13.8398, w31 — 25.0529,
wze2 — —0.0000446665, x31 — 0.720411, z32 — 0.00582745, y31 — 0.696433,
yz2 — 0.00550296, 231 — 63.3422, 230 — 49.1084}}

{Us >1, 231 >0, 230 >0, V3> 1, ys1 >0, ys2 >0, F3 >0, ws >0,
wsz > 1/10000, G3 > 0, z51 > 0, 232 > /10000, ps1 > 0, ps2 > 0, Ms > 1/10000,
0.95 > t, F3 < 1.408211590367411 + 2.0437503246274403~1°

(—49.65901568759563 + w31 + 0.2540209672621788(—10.572282884453157 + ws2)),
1.408211590367411 < F3 + M3(49.65901568759563 — w31 + g32(10.572282884453157 — ws2)),
F3 <1.365439889409406 + 0.05425525266887062
(—23.939580380550325 + ws1 + 0.7228466215440974(—0.25776475034942337 + ws2)),

1.365439889409406 < F3 + M3(23.939580380550325 — w31 + ¢32(0.25776475034942337 — w32)),
0.0020946023279088287( 231 + 0.2540209672621788232) < 14.005926969480676G 3,
(G3(10.340984312404375 + 14.427717115546843¢32) < 0.0020946023279088287 (231 + ¢32232),
102.0164263177113G's < 0.011633540777631766 (231 + 0.7228466215440974232),
0.011633540777631766(231 + g32232) < G3(66.06041961944968 + 49.74223524965058¢32),
1.3132899342122344(p31 231+ ps2x32) < (1.326713126043797p31 +0.0015970062079065607p32)Us,
60.Us < 1.3132899342122344(37.175585332603234x3; + 6686.675930253387x32),
1.439111016814532(ps1x31 + p32zs2) < (0.6893762026321762p31 + 0.006004759640005697p32)Us,
90.Us < 1.439111016814532(54.16966546761761x31 + 8769.163943093063x32),
1.4034789404061154(p31ys1+p32y32) < (0.08149846432361406p31+0.0004975961200022679p32) V3,
6.357017113545275V3 < 1.4034789404061154(37.175585332603234y31 + 6686.675930253387y32),
13.839800717731972(p31ys1 + p32ys2) < (0.6760636867772296p31 + 0.005628781137626068p32) V3,
85.98184834315961V3 < 13.839800717731972(54.16966546761761y31 + 8769.163943093063y32),
w31 + 231 =t % 90, w3a + 232 = € * 50, p31T31 + P32¥a2 + P31ys1 + Paayse =t * (90 + 50g32),
r31 + Y31 = F3, 232 + ysa = G3,Gspsa = 231 + 0.7228466215440974 239,
Msps1 = 1,1.439111016814532 = Us, 13.839800717731972 = V3}/.

{t — 0.9821673551911791, F5 — 1.4168438722691818, G3 — 0.01133040688428589,
M3z — 0.0206192715347645, p31 — 48.49831859064371, p32 — 8723.415125275707,
qs2 — 1.6119294608757908, Us — 1.439111016814532, V3 — 13.839800717731974,
ws1 — 25.052897012712904, w32 — —0.00004466645402345648,
z31 — 0.7204110709198741, x32 — 0.005827451666845332, y31 — 0.6964328013493079,
y32 — 0.005502955217440558, z31 — 63.34216495449321, 230 — 49.10841242601298}

{True, True, True, True, True, True, True, True, False, True, True, True, True, True, True,
False, False, True, False, True, False, False, False, False, False, False, True, True,
True, False, True, False, True, True, False, True, True, False, True, True, True}

We now evaluate the family of inequalities.

{True, True, True, True, True, True, True, True, -0.00004466645402345648, 1/10000,
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True, True, True, True, True, True, False, 1.4168438722691818, 1.408211590367411,
1.408211590367411, 2.275594569911997, 1.4168438722691818, 1.4157323365908143,
True, 0.15880590204227216, 0.15869285135580927, 0.38067274007132446,
0.29848389345084525, 1.1558876190604406, 1.1498593445690541, 1.6577965658013185,
1.6569744981176235, 112.64613823204785, 112.64598882755918, 86.34666100887192,
86.34616563046461, 123.43831648157204, 123.49817216725172, True,
114.77704479373246, 114.77728723293647, 87.97985001067835, 87.9795688810762,
True, 1189.971646411582, 1189.9716464094197, 88.39506196720612,
88.39506196720612, True, 167.55438830041962, 167.55428673436208,

True, True, 98.83984278990754, 98.84001496603086, True, True, True}. p_ ..~ 0.98.

It is important to appreciate that these bounds grow sharper with n, the number
of observations. That is, the equilibrium inequalities grow at the rate O(n?), hence
diminishing the set of utility functions and production functions consistent with the
observed market data.

The corresponding partial equilibrium analysis is illustrated in Figure 6.
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