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Abstract

This paper considers an empirical likelihood method to estimate the parameters of
the quantile regression (QR) models and to construct confidence regions that are
accurate in finite samples. To achieve the higher-order refinements, we smooth the
estimating equations for the empirical likelihood. We show that the smoothed empiri-
cal likelihood (SEL) estimator is first-order asymptotically equivalent to the standard
QR estimator and establish that confidence regions based on the smoothed empirical
likelihood ratio have coverage errors of order n−1 and may be Bartlett-corrected to
produce regions with an error of order n−2, where n denotes the sample size. We
further extend these results to censored quantile regression models. Our results are
extensions of the previous results of Chen and Hall (1993) to the regression contexts.
Monte Carlo experiments suggest that the smoothed empirical likelihood confidence
regions may be more accurate in small samples than the confidence regions that can
be constructed from the smoothed bootstrap method recently suggested by Horowitz
(1998).

Keywords: Bartlett correction, Bootstrap, Edgeworth expansion, Empirical like-
lihood, Quantile regression model, Censored quantile regression model
JEL Classification Numbers: C12, C13, C15



1 Introduction

The quantile regression models, originally introduced by Koenker and Bassett (1978,
1982), have recently been very popular in both theoretical and applied econometrics
literature, particularly due to their usefulness in characterizing the entire conditional
distribution of a dependent variable given regressors and the robustness property of
the quantile regression estimators to outlier observations. See Buchinsky (2000) for
a recent survey.
Koenker and Bassett (1978, 1982) give conditions under which their quantile re-

gression (hereafter QR) estimator is n1/2-consistent and asymptotically normal. This
result enables one to construct a standard asymptotic confidence region on the true
parameters. However, the first-order approximation might be inaccurate with samples
of the sizes encountered in many applications and hence it might yield a substantial
gap between the true and the nominal coverage probabilities in practice. On the other
hand, it is well known that bootstrap generally provides asymptotic refinements to
the coverage probabilities of confidence regions under regularity conditions, see Beran
(1988), Hall (1986, 1992), and Horowitz (1997, 2001). However, the standard theory
of the bootstrap can not be directly applied to the confidence regions based on the QR
estimator because the statistic of interest is not a smooth function of sample moments
that has an Edgeworth expansion.1 In his important recent contribution, Horowitz
(1998) considers a median regression model and shows that one can overcome this
difficulty by smoothing the least absolute deviation (LAD) objective function to make
it differentiable. He shows that the resulting smoothed LAD (hereafter SLAD) es-
timator is asymptotically equivalent to the standard LAD estimator and bootstrap
provides asymptotic refinements in the sense that, with bootstrap critical value, the
rejection probabilities of symmetrical t and χ2 tests (of linear restrictions) based on
the SLAD estimator are correct up to order O(n−a) under the null hypothesis, where
a < 1 and n denotes the sample size. He suggests that his results also apply to
coverage probabilities of confidence regions.

This paper considers an empirical likelihood method to estimate the parameters of
the QR models and to construct confidence regions for the parameters. The empirical
likelihood method was originally introduced by Owen (1988, 1990, 1991) and has
received a lot of attention in recent econometrics literature. Examples include Bravo
(2002, 2004), Donald, Imbens and Newey (2003), Guggenberger and Smith (2003),
Imbens, Spady and Johnson (1998), Kitamura (1997, 2001), Kitamura and Stuzer
(1997), Moon and Schorfheide (2003), Newey and Smith (2003) and Su and White
(2003), to mention only a few.2 Qin and Lawless (1994) link empirical likelihood to
general estimating equations for many interesting estimators. One of the advantages

1For a first-order consistency result of bootstrap estimators in (non-smooth) QR models, see
Hahn (1995).

2Visit also the empirical likelihood homepage of Owen ( http://www-stat.stanford.edu/~owen/
empirical ) for a recent update of the literature.
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of empirical likelihood confidence regions is that they do not require estimation of the
asymptotic covariance matrix of point estimators and allow the shapes of confidence
regions to be determined automatically by the data. In contrast, classical (including
bootstrap) confidence regions that depend on estimates of the asymptotic covariance
matrix might sensitively depend on the quality of the estimates and typically require
some subjective judgement on the shapes and orientations of the confidence regions.
Also, in certain regular cases, empirical likelihood confidence regions are Bartlett
correctable so that their asymptotic coverage accuracy can be improved, see e.g.
DiCiccio, Hall and Romano (1991) and Hall and La Scala (1990). However, to get
the asymptotic refinements, most of the existing empirical likelihood theory requires
the statistic of interest to be a smooth function of sample moments. This implies
that one can not directly apply the empirical likelihood method to QR models since
the estimating equations for the standard QR estimator are not smooth.
In this paper, we avoid these problems by appropriately smoothing the estimat-

ing equations. We establish that the resulting smoothed empirical likelihood (SEL)
estimator is first-order asymptotically equivalent to the standard QR estimator and
the confidence regions based on the smoothed empirical likelihood ratio statistic have
coverage errors of order O(n−1). Furthermore, we show that the smoothed empirical
likelihood (for the full parameter vector) is Bartlett correctable under suitable con-
ditions, so that the coverage errors of confidence regions can be further reduced from
order O(n−1) to order O(n−2).3 We demonstrate that this improvement is possible
for a wide range of smoothing parameter values and hence discussion on the concept
of the ”optimal” smoothing parameter is not necessary. We also provide a (heuristic)
discussion on Bartlett correctability of SEL confidence regions for a sub-vector of the
true parameters. We further extend our results to the censored quantile regression
(CQR) models of Powell (1984, 1986).

There are a number of papers in the literature that are related to this paper.
Previous research by Chen and Hall (1993) has shown that the smoothed confidence
intervals for quantiles with no covariates have coverage error of order O(n−1) and
may be Bartlett-corrected to produce intervals with an error of order only O(n−2).
Our paper extends the results of Chen and Hall (1993) to the quantile regression
contexts which perhaps should be more of interest to econometricians. The extension
is not trivial, at least to us, because the necessary multivariate Edgeworth expansions
of the smoothed models have terms that depend on bandwidth parameters, which
complicates the asymptotic analysis substantially, and the proofs of the validity of

3We do not claim here that empirical likelihood is the only way of achieving such higher-order
refinements. Alternative method such as double bootstrap (initially suggested by Hall (1986) and
Beran (1987)) is known to enable further refinements over the standard bootstrap and hence might
also yield results analogous to those obtained in this paper. However, the latter procedure can be
computationally very expensive. On the other hand, in certain regular cases, it is known that em-
pirical likelihood is the only member of the Cressie-Read family which admits a Bartlett correction,
see Jing and Wood (1996) and Baggerly (1998). We expect that the same result will hold in our
context under suitable assumptions.

2



Bartlett correction in the standard parametric and nonparametric (i.e., empirical
likelihood) contexts are substantially different. For example, the standard results of
Di Ciccio, Hall and Romano (1991) can not be directly applied to our contexts. On
the other hand, contrary to De Angelis et. al (1993) and some of the other papers
in the literature, we do not assume that the error terms in the uncensored (and
censored) quantile regressions are independent of regressors (X) and hence can have
unknown form of conditional heteroskedasticity. Finally, independently of our work,
Otsu (2003) has recently proposed that similar results to ours hold in the uncensored
quantile regression model, but he assumes independence of the error and regressors
and does not provide a rigorous proof. However, the main focus of the latter paper
is on the relative efficiency of smoothed conditional empirical likelihood estimators
over other competing estimators and hence is different from ours.
The remainder of this paper is organized as follows: Section 2 defines the SEL

estimator and confidence region in quantile regression models and discusses their
asymptotic properties. Section 3 extends the previous results to censored quantile
regression models. Section 4 reports some Monte Carlo results. Section 5 is a con-
clusion. An appendix contains proofs of the results.

2 Smoothed Empirical Likelihood for Quantile Re-
gressions

2.1 Definition of the SEL estimator and confidence regions

In this section, we define the smoothed empirical likelihood estimator and confidence
regions for the quantile regression models.
Consider the linear quantile regression model given by:

Yi = Xiβ0 + Ui for i = 1, ..., n, (1)

where Yi ∈ R is an observed dependent variable, Xi is an observed K × 1 vector of
regressors, β0 is a K×1 vector of constant parameters, and Ui is an unobserved error
that satisfies P [Ui ≤ 0|Xi] = q a.s. ∀i ≥ 1 for 0 ≤ q ≤ 1. For simplicity, we assume
that {(Yi,Xi) : i = 1, ..., n} are i.i.d.
To motivate our estimator, consider the following estimating equations:

Eg(Yi, Xi,β0) = 0, (2)

where
g(Yi,Xi,β) = [1(Yi ≤ Xiβ)− q]Xi (3)

and 1(·) denotes the indicator function. Note that the function g(Yi,Xi,β) is not
differentiable at points β such that Yi = Xiβ for some i. This causes some problem
to our subsequent (higher-order) asymptotic analysis because most of theoretical
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development of empirical likelihood has focused on the statistic which is a smooth
function of sample moments. In this paper, we circumvent this problem by smoothing
the function g, i.e., by replacing the indicator function in g with a smooth function.
For this purpose, let K(·) denote a kernel function that is bounded, compactly

supported on [−1, 1] and integrated to one. Additional assumptions onK(·) are given
below. Define G(x) =

u<x
K(u)du and Gh(x) = G(x/h). Then, a smoothed version

of g in (3) may be given by

Zi(β) = (Gh(Xiβ − Yi)− q)Xi. (4)

Let p = (p1, ..., pn) be a vector of nonnegative numbers adding to unity. Then,
the smoothed empirical log likelihood ratio is defined by

lh(β) = −2 min
p: piZi(β)=0

n

i=1

log(npi). (5)

For given β, using the standard Lagrange multiplier arguments, the optimal value for
pi solving (5) can be shown to be

pi(β) = n
−1 (1 + t(β) Zi(β))

−1
, (6)

where t(β) is a K × 1 vector of Lagrange multipliers satisfying

n−1
n

i=1

Zi(β)/ (1 + t(β) Zi(β)) = 0. (7)

This gives the (profile) smoothed empirical log likelihood ratio statistic:

lh(β) = 2
n

i=1

log(1 + t(β) Zi(β)), (8)

where t(β) satisfies (7). By definition, the SEL estimator βE of β0 solves

min
β∈B

lh(β) (9)

where B is the parameter space.4

4In practice, since lh(β) is a smooth function of β, βE can be computed by using a nested
algorithm as in Owen (1990) in which the inner stage solves for t(β) that satisfies (7) for fixed values
of β and the outer stage minimizes lh(β) in (8) over β ∈ B. Alternatively, as in Hall and La Scala
(1990), one can use a multivariate Newton’s algorithm that jointly solves the nonlinear system of
2K first-order conditions given in Lemma 3 in Appendix. See also Owen (2001, Ch. 12) for more
examples of alternative algorithms.
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We now compare the SEL estimator with the standard QR estimator. The stan-
dard QR estimator βQ of β0 solves

min
β∈B

Hn(β) =
1

n

n

i=1

ρq(Yi −Xiβ), (10)

where ρq(x) = [q − 1(x ≤ 0)]x is the check function. When q = 1/2, the estimator
is the standard LAD estimator. Koenker and Bassett (1978, 1982) show that βQ
is n1/2-consistent and asymptotically normal. Intuitively, it is reasonable to expect
that βQ and βE are asymptotically equivalent if h goes to zero sufficiently fast as
n → ∞. This is because, under regularity conditions, βQ satisfies the first-order
condition (FOC)

n−1
n

i=1

g(Yi,Xi,β) = n
−1

n

i=1

[1(Yi ≤ Xiβ)− q]Xi = 0 (11)

with probability that goes to one as n → ∞, which is also an unsmoothed version
(i.e., h = 0) of the estimating equations piZi(β) = 0 for the smoothed empirical
likelihood (5). Under the regularity conditions given below, we shall show that the
two estimators are (first-order) asymptotically equivalent in the sense that

√
n βE − βQ = op(1) as n→∞. (12)

This result implies that the asymptotic distribution of the SEL estimator is given by
that of the usual QR estimator, i.e.,

√
n βE − β0

d→ N(0,Λ0), (13)

where

Λ0 = q(1− q)D−10 S0D−10 , (14)

S0 = E[XiXi] , D0 = E [f(0|Xi)XiXi] , (15)

and f(u|x) denote the conditional density of U given X = x. On the other hand,
when q = 1/2, the result (12) and Horowitz (1998)’s theorem 2.1 imply that βE
is also asymptotically equivalent to the SLAD estimator of Horowitz (1998) in the
first-order approximation.
Now, we define the SEL confidence regions. Consider the smoothed empirical log

likelihood ratio statistic given in (8). The SEL confidence region for β0 ∈ RK is
defined by

Ihc = {β : lh(β) ≤ c} , (16)
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where c > 0 is a constant which determines the coverage probability αhc of Ihc :

αhc = P (β0 ∈ Ihc) = P (lh(β0) ≤ c) . (17)

The coverage accuracy of Ihc depends on the asymptotic distribution of lh(β0) sta-
tistic. As we shall see below, under suitable regularity conditions, lh(β0) has an
asymptotic χ2K distribution and hence c might be chosen using this result. On the
other hand, the SEL confidence region for a subvector β10 ∈ RK1 of the parameter
vector β0 = (β10,β20) is defined by

Ihc,1 = β1 : lh(β1, β2) ≤ c ,

where β2 minimizes lh(β1,β2) with respect to β2 holding β1 fixed. We shall also
establish that lh(β10,β2) converges in distribution to χ

2
K1
distribution under suitable

conditions, and so c might be chosen using the latter distribution.5 As noted by
Chen and Hall (1993), if Gh is a higher-order kernel, then it is possible that Ihc or
Ihc,1 might be a union of disjoint convex sets for small n and unusual values of h.
Now we comment on the main features of the SEL confidence regions. First, since

they are based on the likelihood function, they do not depend on any explicit estimate
of Λ0. This is an advantage over the confidence regions that are based on Wald-type
statistics (such as (45) - (48) below), which depend on explicit estimates of Λ0 and
might subsequently create problems regarding the quality of the estimates. Second,
the shapes of the SEL confidence regions are not restricted a priori to be elliptical or
rectangular and are allowed to be determined by the likelihood or, equivalently, by
the data.6 See also Wu (1986). Furthermore, as in the standard parametric contexts,
we shall show that the SEL confidence regions are Bartlett-correctable provided the
smoothing parameter is suitably chosen and other regularity conditions hold, improv-
ing higher-order accuracy of inferences.

2.2 Asymptotic Equivalence and Coverage Accuracy

In this section, we derive the asymptotic distribution of the SEL estimator and es-
tablish asymptotic equivalence of the SEL and QR estimators. We also discuss as-
ymptotic coverage accuracy of the SEL confidence regions.

5In practice, the contours of Ihc or Ihc,1 can be computed using a multivariate New-
ton’s algorithm as in Hall and La Scala (1990). In our simulation experiments below, we
used the modified Newton algorithm written in gauss codes by Bruce Hansen (available at
http://www.ssc.wisc.edu/~bhansen/progs/elike.prc ).

6This feature is also shared by bootstrap confidence regions constructed by multivariate kernel
density estimation applied to the resampled data (viz. Hall (1987)) or by constructing polygons to
the resampled data (viz. Owen (1990)), but these methods do not seem to be very satisfactory, see
Owen (2001, Ch.1).
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Let r ≥ 2 be an integer. We denote F (·|x) to be the CDF of Ui conditional on
Xi = x and define f(·|x) to be the conditional density of Ui with respect to Lebesgue
measure whenever it exists. We need the following assumptions for our main results.

Assumption 1: {(Yi, Xi) : i = 1, ..., n} are independent and identically distrib-
uted random vectors.
Assumption 2: The parameter vector β0 is an interior point of the compact

parameter space B in RK .
Assumption 3: Xi has bounded support and S0 and D0 are nonsingular.
Assumption 4: (a) F (0|x) = q for almost every x. (b) For all u in a neighborhood

of 0 and almost every x, f(u|x) exists, is bounded away from zero, and is r times
continuously differentiable with respect to u.
Assumption 5: (a) K(·) is bounded and compactly supported on [−1, 1]. (b)

For some constant CK = 0, K(·) satisfies

ujK(u)du =

 1, if j = 0,
0, if 1 ≤ j ≤ r − 1,
CK , if j = r.

(18)

(c) Let G(u) = [G(u)] , [G(u)]2 , ..., [G(u)]L+1 for some L ≥ 1, where G(u) =

v<u
K(v)dv. For any θ ∈ RL+1 satisfying θ = 1, there is a partition of [−1, 1],

−1 = a0 < a1 < · · · < aM = 1 such that θ G(u) is either strictly positive or strictly
negative on (am−1, am) for l = 1, ..., L+ 1.
Assumption 6: h satisfies (a) nh2r → 0 and (b) nh/ log n→∞ as n→∞.
Assumptions 1-5 are similar to Assumptions 1-5 of Horowitz (1998, p.1333), which

were used to establish asymptotic refinement of the SLAD estimator-based t and χ2

tests through bootstrap. Assumptions 1-5(b) are used to establish the asymptotic
normality of

√
n(βE−β0) and to justify a Taylor expansion for the empirical likelihood

ratio statistic which in turn is used to calculate the coverage probabilities of our SEL
confidence regions. The boundedness assumption for Xi (Assumption 3) is made to
simplify the proofs in Appendix. It can be removed at the cost of more complicated
proofs. Assumption 5(c) is used to verify a version of the Cramér’s condition (Lemma
4 of Appendix) which is necessary to justify a formal Edgeworth expansion for the
distribution of lh(β0).
Assumption 6 requires that h goes to zero as n → ∞ at a suitable rate. It is

satisfied if h ∝ n−κ for 1/(2r) < κ < 1, where r ≥ 2. The part (a) of Assumption 6
ensures that the smoothing has an asymptotically negligible effect on the distribution
of lh(β0). On the other hand, the part (b) of Assumption 6 requires that h should not
be too small. It is needed to ensure a minimum level of smoothness of lh(β0) which
is necessary to derive the Cramér’s condition for the Edgeworth analysis. Intuitively
this assumption makes sense, because the Cramér’s condition is usually intended to
ensure distributions of statistics to have an absolutely continuous component but the
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latter might be hard to attain for lh(β0) if h is chosen too small, see Hall (1992, p.57)
for a general interpretation of the Cramér’s condition.

We now derive the asymptotic distribution of the SEL estimator and establish
asymptotic equivalence of the SEL and QR estimators.

Theorem 1 Under Assumptions 1-5(b) and 6(a) of Section 2.2, we have

(a) n βE − βQ = op(1) and

(b)
√
n βE − β0

d→ N(0,Λ0),

where Λ0 is defined in (14).

The asymptotic covariance matrix Λ0 can be estimated, for example, by

Λ = q(1− q)D−1SD−1 , where (19)

D = h−1
n

i=1

n−1K Yi −XiβE /h XiXi and S =
n

i=1

n−1XiXi. (20)

This estimator is analogous to the covariance matrix estimator of Powell (1984, 1986)
in the standard QR model. Alternatively, one may estimate Λ0 using Λ with n−1 in
(20) replaced by pi(βE), where pi(·) is as defined in (6). As shown by Qin and Lawless
(1994), the latter estimator should be more efficient than the former in finite samples
because it fully exploits the restriction n

i=1 pi(βE)Zi(βE) = 0. Under the assump-
tions of Theorem 1, it is not difficult to show that both estimators are consistent
for Λ0. Another way to estimate Λ0 is to use a bootstrap estimator as in Buchinsky
(1995, 2000), see Section 4 below for an example. The bootstrap estimator has an
advantage in the sense that it does not require a choice of h, but its computation can
be more demanding than the kernel-based estimators.

We now discuss coverage properties of the SEL confidence regions. To this end,
it is convenient to write the empirical log likelihood-ratio statistic lh(β) (given by (8)
and (7)) at β = β0 in terms of standardized variables. That is, we let

λ = V 1/2n t and Wi = V
−1/2
n Zi (21)

for i = 1, ..., n, where t = t(β0), Zi = Zi(β0) and Vn = EZiZi. Then, in terms of the
standardized variables λ and Wi, lh(β0) can be re-written as

lh(β0) = 2
n

i=1

log(1 + λWi), (22)
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where λ satisfies

n−1
n

i=1

Wi/ (1 + λWi) = 0. (23)

We need to introduce a few more notation. We let W j
i denote the j-th component of

Wi and define

αj1···jk = EW j1
i · · ·W jk

i , (24)

A
j1···jk = n−1

n

i=1

W j1
i · · ·W jk

i , and A
j1···jk = A

j1···jk − αj1···jk .

In particular, αjk = δjk, where δjk is the Kronecker delta.7

Under the regularity conditions, we first establish that lh(β0) has an asymptotic
χ2K distribution.

Theorem 2 Suppose Assumptions 1-5(b) and 6(a) hold. Then, we have

lh(β0)
d→ χ2K

as n→∞.
Remarks: 1. Theorem 2 is a nonparametric version of Wilks (1938)’ theorem,

which has first been proved by Owen (1991) in the standard linear regression models.
Chen and Hall (1993, Theorem 3.1) have also established a similar result for the
quantiles (with no covariates).
2. From the expansion (A.12) and Lemma 1(a) in Appendix, we can see that

n1/2EZi → 0 if nh2r → 0 and, if E Xif
(r−1)(0|Xi) = 0, n1/2EZi → 0 implies

nh2r → 0. Therefore, if E Xif
(r−1)(0|Xi) = 0, the bandwidth condition 6(a) is

in fact a necessary and sufficient condition for lh(β0) to have an asymptotic χ2K
distribution.
If c = cα is chosen such that

P (χ2K ≤ cα) = α, (25)

then Theorem 2 implies that the asymptotic coverage of the SEL confidence region
Ihc will be α, i.e.,

P (β0 ∈ Ihc) = P (lh(β0) ≤ cα) = α+ o(1)

as n goes to infinity.
Similarly, when one is interested in constructing a confidence region for a sub-

vector β10 ∈ RK1 of the parameter vector β0 = (β10, β20) ∈ RK , one can use the
following result.

7This α-A notation was originally used by Di Ciccio, Hall and Romano (1991).
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Corollary 1 Suppose Assumptions 1-5(b) and 6(a) hold. Then, we have

lh(β10,β2)
d→ χ2K1

as n→∞, where β2 minimizes lh(β10,β2) with respect to β2.

Corollary 1 implies that the SEL confidence region Ihc,1 = β1 : lh(β1,β2) ≤ cα,1
with cα,1 satisfying P (χ2K1

≤ cα,1) = α has asymptotic coverage error α, as desired.

We now discuss the higher-order properties of the SEL confidence regions. Using
an Edgeworth expansion of the distribution of lh(β0), we can show that the asymptotic
coverage accuracy of Ihc is in fact of order O(n−1) :

Theorem 3 Define c = cα by (25). Suppose Assumptions 1- 6 hold. If we further
assume that supn nh

r <∞, then we have

P (β0 ∈ Ihc) = α+O(n−1) (26)

as n→∞.

Remarks: 1. The expansion (A.31) in Appendix implies that the bandwidth
condition supn nh

r < ∞ is not only sufficient but also necessary for the asymptotic
coverage error to be of orderO(n−1) ifE Xif

(r−1)(0|Xi) = 0. IfE Xif
(r−1)(0|Xi) =

0, then the result of Theorem 3 still holds even if nhr diverges as long as nh2r → 0
and nh/ log n→∞, i.e. Assumption 6 holds.
2. When nhr → C (<∞), the expansion (A.31) and the results (A.28) - (A.30) in

Appendix may be used to derive the ”optimal” value of C that minimizes the O(n−1)
term on the right hand side of (26). However, this possibility is not practically of
interest because of the availability of Bartlett correction, which is discussed in the
next section.

2.3 Bartlett Correction

In the previous section, the coverage error of the empirical likelihood confidence
region is Ihc of order O(n−1). This error might be partly explained by the fact that
the mean of the distribution of lh(β0) does not agree with that of χ

2
K distribution,

i.e., E [lh(β0)] = K. Therefore, one might suspect that this discrepancy might be
diminished by rescaling lh(β0) so that it has correct mean. This idea is known as
the Bartlett correction in the literature. In this section we show that, provided h is
chosen suitably, the Bartlett correction reduces the coverage error to O(n−2).

From expansion (A.11), we can show that if nhr → 0

E [lh(β0)] = K 1 + n−1b + o(n−1),

10



where
b = K−1 αiikk/2− αikmαikm/3 . (27)

Here and throughout this paper, we use the convention that terms with repeated
superscripts are to be summed over. The result (27) suggests that we might consider
a confidence region corrected with the Bartlett factor b:

Ibhc = β : lh(β) ≤ c(1 + n−1b) . (28)

In practice, b is not observed and has to be estimated. Let β denote any n1/2- con-
sistent estimator of β0 such as the SEL estimator βE or the usual quantile regression
estimator βQ. Define the estimated Bartlett factor to be

b = K−1 αiikk/2− αikmαikm/3 , (29)

where

αiikk = n−1
n

j=1

ε4j XjV
−1
n Xj

2

, (30)

αikm = n−1
n

j=1

ε3jv
−1/2
ni Xjv

−1/2
nk Xjv

−1/2
nm Xj ,

Vn = n−1
n

j=1

ε2jXjXj , εj = Gh Xjβ − Yj − q ,

and v−1/2ni is the i -th row of V −1/2n . With some calculation, one can show that

αikmαikm = n−2
n

j=1

n

l=1

ε3jε
3
l XjV

−1
n Xl

3

. (31)

The confidence region corrected with b is now defined to be

Ibhc = β : lh(β) ≤ c(1 + n−1b) . (32)

Theorem 4 below shows that the coverage error of the SEL confidence region is of
order O(n−2) if it is Bartlett corrected by either b or b.
On the other hand, from (A.29) and (A.30) in Appendix, we have

αiikk = q−1(1− q)−1(1− 3q + 3q2)E XjS0Xj
2
+O(h)

and

αikm = q−1/2(1− q)−1/2(1− 2q)E s
−1/2
i Xj s

−1/2
k Xj s−1/2m Xj +O(h),

11



where s−1/2i denotes the i -th row of S−1/20 . This suggests that one might also consider
a confidence region

Ibhc = β : lh(β) ≤ c(1 + n−1b) . (33)

with Bartlett factor given by

b = K−1 2−1(1− 3q + 3q2)q−1(1− q)−1 n−1
n

j=1

XjS
−1
Xj

2

−3−1(1− 2q)2q−1(1− q)−1 n−2
n

j=1

n

l=1

XjS
−1
Xl

3

, (34)

where S = n−1 n
k=1XkXk . However, if b is used instead of b, we will not have the

same asymptotic accuracy as b or b due to relatively large estimation error of b. This
is because we have b = b + O(n−1/2) + O(h) and hence, with Bartlett factor b, the
coverage error is of order O(n−1h) instead of O(n−2).
The following theorem formally states the above results:

Theorem 4 Define c = cα by (25). Suppose Assumptions 1- 6 hold. If we further
assume that supn n

3h2r <∞, then we have

(a) P (β0 ∈ Ibhc) = α+O(n−2); (b) P (β0 ∈ Ibhc) = α+O(n−2); (c) P (β0 ∈ Ibhc) = α+O(n−1h)

as n→∞.

Remark: The result (A.35) in Appendix implies that the condition supn n
3h2r <∞

is also necessary for the asymptotic coverage error of Ibhc or I
b
hc to be of order O(n

−2)
if E Xif

(r−1)(0|Xi) = 0.
We now discuss Bartlett correctability of Ihc,1. Lazar and Mykland (1999) show

that the empirical likelihood defined by two estimating equations in the presence of
one nuisance parameter is not Bartlett correctable. This casts a serious doubt on the
Bartlett correctability of Ihc,1. Recently, however, Chen and Cui (2002, 2003) show
that, if the nuisance parameter is profiled out given the parameter of interest, the
empirical likelihood is still Bartlett correctable. They propose that ”the real cause of
not being Bartlett correctable found in Lazar and Mykland (1999) is due to plugging-
in a global maximum likelihood estimate for the nuisance parameter rather than any
fundamental differences between estimating equations and the smooth function of
means.” Therefore, it would be interesting to see if one could extend the Chen and Cui
(2002, 2003)’s result to Ihc,1. However, a formal investigation of such result is beyond
the scope of this paper, because profiling out β2 given β1 = β10 requires an additional
Edgeworth expansion of the profile empirical likelihood which is substantially more
complicated than the one given in Appendix as well as that of Chen and Cui (2002,

12



2003).8 However, a practical solution in this situation would be to use the following
bootstrap procedure9 :

(i) Using the original sample χ = {(Yi,Xi) : i = 1, ..., n}, compute β =

(β1,β2) by minimizing lh(β) with respect to β.

(ii) Draw bootstrap samples χ∗b = {(Y ∗bi, X∗
bi) : i = 1, ..., n} for 1 ≤ b ≤ B

randomly with replacement from the original sample χ.

(iii) Letting l∗bh(β1, β2) be the value of lh(β1,β2) computed from χ∗b instead
of χ, compute l∗bh(β1,β2), where β2 minimizes l

∗
bh(β1,β2) with respect to

β2 holding β1 fixed.

(iii) Estimate the bootstrap Bartlett factor b1B by solving the equation 10

B−1
B

b=1

l∗bh(β1, β2) = K1 1 + n−1b1B .

(iv) The Bartlett corrected confidence region is given by

Ib1Bhc,1 = β1 : lh(β1,β2) ≤ cα,1(1 + n−1b1B) .

Although we do not prove here that Ib1Bhc,1 has an asymptotic coverage error of order
O(n−2) as in the full parameter vector case, we expect that this correction may still
be expected to improve upon the approximation of the distribution of the (smoothed)
empirical likelihood.11

3 Extension to Censored Quantile Regressions

In this section, we extend the previous results to the censored quantile regression
model of Powell (1984, 1986). The model is given by

8For Bartlett correction of Ihc,1, we need a higher-order Taylor expansion of the 2K first-
order equations (A.13)-(A.14) around (β20, 0). But, the expansion of (A.14) introduces many
additional terms, which makes computation of higher-order cumulants of the signed root of
lh(β10,β2) complicated. They are even more complicated than in Chen and Cui (2002, 2003) because
the terms in general depend on bandwidth parameter h which interacts with the sample size n.

9The idea of using a bootstrap procedure for Bartlett correction is orginally due to Hall and La
Scala (1990). We extend their idea to account for the presence of nuisance parameters.
10A bootstrap procedure similar to this can also be used to estimate Bartlett factor b for the

confidence region Ibhc for the full parameter vector. In this case, the bootstrap estimator bB solves
B−1 B

b=1 l
∗
bh(β) = K1(1 + n

−1bB).
11In a context different from ours, Monti (1997) shows that a Bartlett correction via bootstrapping

might still yield asymptotic refinements in finite samples, even if it does not reduce the coverage
error to O(n−2).
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Yi = max {0, Xiβ0 + Ui} for i = 1, ..., n, (35)

where Yi, Xi, and Ui are as defined in (1).

The censored quantile regression (CQR) estimator β
∗
of β0 solves

min
β∈B

H∗
n(β) = n

−1
n

i=1

ρq (Yi −max {0, Xiβ}) , (36)

where B is the parameter space and ρq(x) is the check function as in (10). Under

regularity conditions, β
∗
satisfies the first-order condition (FOC)

n−1
n

i=1

1(Yi ≤ Xiβ
∗
)− q 1(Xiβ

∗
> 0)Xi = 0

with probability that goes to one as n → ∞. This motivates us to consider the
estimating function

g∗(Yi, Xi, β) ≡ [1(Yi ≤ Xiβ)− q] 1(Xiβ > 0)Xi
for our empirical likelihood. However, like the function g in (3), g∗ is not smooth.
Therefore, we replace the indicator functions in g∗ with smooth functions and consider

Z∗i (β) = (Gh(Xiβ − Yi)− q)Gh(Xiβ)Xi, (37)

as our estimating functions, where Gh is as in (4). Given this, the smoothed empirical
log likelihood ratio statistic for the CQR model is now defined by

l∗h(β) = 2
n

i=1

log(1 + t∗(β) Z∗i (β)), (38)

where t∗(β) satisfies n−1 n
i=1 Z

∗
i (β)/ (1 + t

∗(β) Z∗i (β)) = 0. By definition, the SEL
estimator β

∗
E of β0 solves minβ∈B l

∗
h(β), where B is the parameter space. Under

assumptions given below, we may show that the CQR and SEL estimators are as-
ymptotically equivalent in the sense that

√
n β

∗
E − β

∗
= op(1) as n→∞. Therefore,

this result and asymptotic normality of
√
n β

∗ − β0 (see Powell (1984, 1986)) imply
that the SEL estimator satisfies

√
n β

∗
E − β0

d→ N(0,Λ∗0),

where

Λ∗0 = q(1− q)D∗−10 S∗0D
∗−1
0 , S∗0 = E[1(Xiβ0 > 0)XiXi],

D∗0 = E [f(0|Xi)1(Xiβ0 > 0)XiXi] .
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For a discussion on consistent estimators of Λ∗0, see Powell (1984, 1986) or Buchinsky
(1995, 2000).
We now discuss the confidence region for β0. The confidence region for β0 ∈

RK based on the smoothed empirical log likelihood ratio is defined by

I∗hc = {β : l∗h(β) ≤ c} , (39)

where c > 0 is a constant. Under conditions given below, l∗h(β0)
d→ χ2K and hence, if

c is chosen from χ2K distribution, the SEL confidence region I
∗
hc has asymptotically

correct coverage. Similarly, the confidence region for a sub-vector β10 ∈ RK1 is defined
by

I∗hc,1 = β1 : l
∗
h(β1, β2) ≤ c , (40)

where β2 minimizes lh(β1,β2) with respect to β2 holding β1 fixed, has asymptotically
correct coverage if c is chosen from χ2K1

distribution.
If the bandwidth h is chosen suitably, we may ensure that the coverage accuracy

of I∗hc is of order O(n
−1). The coverage error can be further reduced to order O(n−2)

if we apply a Bartlett correction to the confidence region I∗hc and h is chosen suitably.
To define the Bartlett factor, let αj1···jk be defined as in (24), but with Wi replaced
by W ∗

i = V
∗−1/2
n Z∗i , where V

∗
n = EZ∗i Z

∗
i and Z

∗
i = Z∗i (β0). After this change, the

Bartlett factor b∗ is defined to be the same as b in (27). The estimated Bartlett factor
b∗ is defined to be

b∗ = K−1 (2n)−1
n

j=1

ε∗4j XjV
∗−1
n Xj

2

− 3n2
−1

n

j=1

n

l=1

ε∗3j ε∗3l XjV
∗−1
n Xl

3

(41)
where

V ∗n = n
−1

n

j=1

ε∗2j XjXj , ε
∗
j = Gh Xjβ − Yj − q Gh(Xjβ), (42)

and β is a n1/2 - consistent estimator such as β
∗
E or β

∗
. On the other hand, by the

same reasoning as in (34), we might also consider the Bartlett factor

b∗ = K−1 2−1(1− 3q + 3q2)q−1(1− q)−1 n−1
n

j=1

X∗
j S

∗−1
X∗
j

2

−3−1(1− 2q)2q−1(1− q)−1 n−2
n

j=1

n

l=1

X∗
j S

∗−1
X∗
l

3

, (43)

where S
∗
= n−1 n

m=1X
∗
mX

∗
m, X

∗
m = 1(Xmβ > 0)Xm for m = 1, ..., n and β is as in

(42). We define the SEL confidence region corrected with Bartlett factor b given by
b∗, b∗ or b∗ to be

I∗bhc = β : l∗h(β) ≤ c(1 + n−1b) . (44)
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To establish the above claims, we need to modify Assumption 3 as follows:

Assumption 3∗: Xi has bounded support, P (Xiβ0 = 0) = 0, andE [1 (Xib > ε)XiXi]
is nonsingular for some ε > 0 and all b in a neighborhood of β0.

The following theorem shows that the SEL estimator and CQR estimator are as-
ymptotically equivalent and the SEL confidence region has asymptotically correct cov-
erage and we may achieve an asymptotic higher-order improvement through Bartlett
correction of I∗hc.

Theorem 5 Suppose that Assumptions 1, 2, 3∗, 4, 5(b) and 6(a) hold. Define c = cα
by (25). Then, as n→∞, we have

(a)
√
n β

∗
E − β

∗
= op(1),

(b) l∗h(β0)
d→ χ2K,

(c) l∗h(β10, β2)
d→ χ2K1

,

where β2 minimizes l
∗
h(β10,β2) with respect to β2. If Assumptions 1-6 hold and supn nh

r <
∞, then

(d) P (β0 ∈ I∗hc) = α+O(n−1).

If Assumptions 1—6 hold and supn n
3h2r <∞, then

(e) P (β0 ∈ Ib
∗
hc) = α+O(n−2); (f) P (β0 ∈ Ib

∗
hc) = α+O(n−2); (g) P (β0 ∈ Ib

∗
hc) = α+O(n−1h).

4 Monte Carlo Simulations

In this section, we describe some Monte Carlo simulation results that are designed to
investigate coverage probability accuracy of the SEL confidence regions.

4.1 Experimental Design

We consider a linear median regression model

Yi = Xiβ0 + Ui for i = 1, ..., n,

where Xi = (1, X2i) , β0 = (β01,β02) is a 2 × 1 parameter vector whose true value
is β0 = (1, 1) , the regressor X2i is generated from a uniform distribution U [1, 5],
and error satisfies P [Ui ≤ 0|X2i] = 0.5. We consider three different distributions for
the error Ui : (i) Student t distribution with 3 degrees of freedom rescaled to have
variance 2 (DGP1), (ii) Ui = 0.25(1 +X2i)Vi, where Vi ∼ N(0, 1) (DGP2), and (iii)
chi-square distribution with 3 degrees of freedom recentered to have median zero
(DGP3). In DGP2, Ui is heteroskedastic and, in DGP3, the distribution is skewed.
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DGP1 and DGP2 are the same as the simulation designs of Horowitz (1998) and
DGP3 is considered by Chen and Hall (1993).
We consider confidence regions for the parameter vector β0.We smooth the empiri-

cal likelihood using a second-order kernel (i.e., r = 2)K(u) = (3/4)(1−u2)1 (|u| ≤ 1) ,
which is the so-called Bartlett or Epanečnikov kernel. The SEL confidence regions
considered are Ihc, Ibhc, and I

b
hc which are defined in (16), (32), and (33) respectively.

In simulation results given below, we denote them SEL1, SEL2, and SEL3 respec-
tively. The confidence region corrected with the true Bartlett factor b, i.e. Ibhc defined
in (28) is not considered, because it is not of practical interest.

As benchmarks of our simulation experiments, we considered the confidence re-
gions based on the unsmoothed LAD and the SLAD estimators. The former is defined
to be

ILAD = β : n βQ − β Λ−1 βQ − β ≤ cα (45)

where βQ is the LAD estimator of β0, cα is the α- quantile of χ22 distribution, and
Λ is as in (19) with the kernel function given by the second-order kernel K1(u) =
(15/16) (1 − u2)21 (|u| ≤ 1) , which was also used by Horowitz (1998). We also con-
sidered a confidence region

IBLAD = β : n βQ − β Λ∗−1 βQ − β ≤ cα , (46)

where Λ∗ is a bootstrap estimator of Λ0. The latter is computed by

Λ∗ =
n

B

B

b=1

β
∗
Qb − β

∗
Q β

∗
Qb − β

∗
Q , (47)

where β
∗
Q = (1/B)

B
b=1 β

∗
Qb and {β

∗
Qb : b = 1, ..., B} are the B bootstrap estimates

for β0, for the B samples (each of size n) drawn from the empirical joint distribution
of original data {(Yi, Xi) : i = 1, ..., n}. The estimate Λ∗ is based on the original idea
of Efron (1979, 1982) and is also used by Buchinsky (1995) in the QR models.
On the other hand, the confidence region based on the SLAD estimator is given

by

ISLAD = β : n βS − β Λ−1 βS − β ≤ c∗α . (48)

Here, βS is the SLAD estimator of β0 which solves

min
b∈B

Hn(b) =
1

n

n

i=1

(Yi −Xib) 2G
Yi −Xib

h
− 1 ,
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and its variance is estimated by

Λ = Dn(βS)
−1Tn(βS)Dn(βS)

−1,

where

Dn(b) = 2(nh)−1
n

i=1

XiXiG
(1) Yi −Xib

h
,

Tn(b) = n−1
n

i=1

XiXi 2G
Yi −Xib

h
− 1

+2
Yi −Xib

h
G(1)

Yi −Xib
h

2

,

G (·) is the integral of a fourth-order kernel given by

G(u) =

 0 if u < −1
0.5 + 105

64
u− 5

3
u3 + 7

5
u5 − 3

7
u7 if |u| ≤ 1,

1 otherwise,
(49)

and G(1) (u) = dG(u)/du. The constant c∗α is computed from the following bootstrap
procedure: (i) Generate a bootstrap sample {(Y ∗i ,X∗

i ) : i = 1, ..., n} by sampling
the original data {(Yi,Xi) : i = 1, ..., n} randomly with replacement. (ii) Using the
bootstrap sample, compute the SLAD estimate β

∗
S and its variance estimate Λ

∗ and

get S∗n = n β
∗
S − βS Λ∗−1 β

∗
S − βS . (iii) Estimate the bootstrap distribution of

S∗n by the empirical distribution that is obtained by repeating steps (i) and (ii) many
(B) times. (iv) Take c∗α to be the α-quantile of this empirical distribution.
Computing the LAD, SLAD, and SEL confidence regions requires choosing a band-

width h for each. Existing theories suggest the following rules for choosing h: Hall
and Horowitz (1990) show that the bandwidth that minimizes the asymptotic mean
squared error of the LAD standard error is of order n−1/2, so this rule might be
useful for the LAD confidence regions. Also, using the duality of confidence region
and hypothesis testing and Assumption 6 of Horowitz (1998), the bandwidth that is
compatible with the SLAD confidence region based on the fourth order kernel (49) is
of order n−κ, where 2/9 < κ < 1/3. On the other hand, our Theorems 3 and 4 show
that, when the kernel order r = 2, the uncorrected and Bartlett corrected SEL confi-
dence regions have coverage errors of order O(n−1) and O(n−2) if h is of order smaller
than n−1/2 and n−3/4, respectively. However, all of the above rules are justified in an
asymptotic sense and hence they provide little practical guidance how to choose h in
finite samples. We consider a rule of thumb h = c0n

γ in our simulations and take
γ ∈ [−1.0,−0.9, ....,−0.1]. We take c0 = 1.0 in our experiments but, as will be seen,
the coverage probabilities of the SEL confidence regions vary little over a wide range
of c0 and γ values.
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The number of simulation repetitions used is 40,000 for LAD and SEL confidence
regions. This yields simulation standard errors of approximately .0015 and .0010
for the simulated coverage probabilities of nominal 90% and 95% confidence regions
respectively. For the BLAD and SLAD confidence regions, however, the number of
repetitions is merely 1,000 because of the very long computing times required for
simulations with bootstrapping. In this case, the simulation standard errors are
approximately .0094 and .0068 for nominal 90% and 95% levels respectively. The
number of bootstrap repetitions used is also restricted to B = 100 due to heavy
computational cost. We consider eight different sample sizes n ∈ [15, 20, ..., 50].

4.2 Simulation Results

Tables 1-3 summarize results for simulated coverage probabilities of confidence re-
gions. Figure 1 shows coverage errors of SLAD and SEL3 (i.e., Bartlett corrected with
b) confidence regions for different values of γ values (which determines bandwidth h).
The dotted lines surrounding the solid lines are Bonferroni uniform 95% confidence
bands for the coverage errors, which were computed by connecting (1 − 0.05/m)
pointwise confidence intervals where m (= 10) is the number of points at which the
coverage error was estimated. Figure 2 shows coverage errors of SLAD and SEL1
(i.e., no Bartlett correction), and SEL3 confidence regions for varying sample sizes
n. Here, we draw the Bonferroni uniform confidence band only for the SLAD case
to make the picture less complicated. (The simulation standard errors for SEL1 and
SEL3 are virtually negligible because of the large number of repetitions, i.e., 40,000.)
Our simulation results can be summarized as follows:

1. The coverage probabilities of the LAD confidence regions are relatively poor and
very sensitive to the choice of bandwidth. For example, in DGP1 and n = 35
case, the coverage probabilities of the nominal 95% LAD confidence region are
.920 and .204 for γ = −0.1 and γ = −0.9 respectively. On the other hand, the
coverage probabilities of the BLAD confidence regions are relatively very good
and stable across different designs.

2. Both SLAD and SEL confidence regions are robust to the choice of bandwidth.
However, Figure 1 shows some evidence that the SEL3 confidence region is less
sensitive to bandwidth than the SLAD confidence region especially for DGP1
and DGP2 and for n ≥ 35.

3. The SEL confidence regions with no Bartlett correction (SEL1) or Bartlett
corrected with b∗ (SEL2) perform similarly, though SEL2 is slightly better than
SEL1 in almost all cases. This confirms the theory in Theorem 3 and 4(c),
which shows that the coverage errors are O(n−1) and O(n−1h) for SEL1 and
SEL2 respectively.

19



4. The SEL confidence regions Bartlett corrected with b (i.e., SEL3) dominate the
other confidence regions in most cases. For example, for n = 50, the SEL3
coverage error is virtually zero (up to simulation errors) in almost all cases.

5. The SLAD confidence regions perform fairly well especially in small samples
(n ≤ 20) and, in some case, out-perform SEL1 and SEL2.

6. The effect of increasing the sample size is to reduce coverage errors for almost
all confidence regions.

7. Figure 2 shows that, as the sample size increases, SEL3 coverage errors decrease
to zero at a faster speed than the SLAD coverage errors. This confirms our
theory because the SLAD confidence region has coverage errors of order O(n−a)
for a < 1, whereas the SEL3 confidence region has coverage errors of order
O(n−2).

8. There is not much difference in relative performance of confidence regions under
different DGP’s.

9. The results for nominal 90% and 95% confidence regions are similar.

10. The bandwidth that gives the best overall performance for the SEL3 confidence
regions is h = nγ for γ = −0.8. This result is compatible with Theorem 4 which
requires −1 < γ < −0.75 for Bartlett correction. Therefore, we recommend to
use the latter rule of thumb in practical applications, though the results seem
to be very robust to the choice of γ.

5 Conclusion

In this paper, we have used smoothed empirical likelihood methods to obtain as-
ymptotically valid point estimators and confidence regions about the parameters of
uncensored and censored quantile regression models that allow for unknown form
of heteroskedasticity. We further have shown that, if simple corrections are made,
the smoothed empirical likelihood confidence regions can achieve higher order re-
finements, which are better than the refinements that might be obtained through
the (smoothed) bootstrap approach. Extensions to other econometric models with
discontinuous estimating equations and a rigorous investigation of higher-order prop-
erties of the confidence regions in the presence of nuisance parameters in smoothed
models would be an interesting future topics.
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6 Appendix

Lemma 1 Under Assumptions 1-5(b) and 6(a) , the following relations hold as n→
∞ :

(a) EZi(β0) = (−h)r (r!)−1CKE Xif
(r−1)(0|Xi) + o(hr),

(b) EZi(β0)Zi(β0) = q(1− q)S0 + o(1),
(c) E

∂Zi(β0)

∂β
= D0 + o(1),

where S0 = E[XiXi] and D0 = E [f(0|Xi)XiXi] .

Proof of Lemma 1: By a change of variables, we have

EZi(β0) = E Xi [F (−hu|Xi)− F (0|Xi)]K(u)du .

Then, apply a Taylor expansion to establish part (a). Similarly, parts (b) and (c)
hold by noting that

EZi(β0)Zi(β0) = q(1− q)E [XiXi]
+2E XiXi [F (−hu|Xi)− F (0|Xi)] [G(u)− q]K(u)du

and

E
∂Zi(β0)

∂β
= E [f(0|Xi)XiXi] +E XiXi [f(−hu|Xi)− f(0|Xi)]K(u)du .

Lemma 2 Suppose Assumptions 1-5(b) and 6(a) hold. Then, with probability 1 as
n→∞,

(a)
1

n

n

i=1

Zi(β) = O(dn),

(b)
1

n

n

i=1

Zi(β)Zi(β) = q(1− q)S0 + o(1),

(c) t(β) = O(dn)

uniformly in β ∈ Bn ≡ {β : β − β0 ≤ dn}, where t(β) satisfies (7), dn = n−1/3−δ
and 0 < δ < 1/6.
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Proof of Lemma 2: By a Taylor expansion,

1

n

n

i=1

Zi(β) =
1

n

n

i=1

{Zi(β0)− EZi(β0)}+EZi(β0) +Rn(β), (A.1)

where

Rn(β) =
1

n

n

i=1

∂Z(β∗)
∂β

(β − β0)

and β∗ lies between β and β0. Using Cauchy-Schwartz inequality, triangle inequality
and an argument similar to the proof of Lemma 1, we have

sup
β∈Bn

Rn(β)

≤ dn · sup
β∈Bn

1

n

n

i=1

∂Z(β∗)
∂β

−E∂Z(β∗)
∂β

+ E
∂Z(β∗)
∂β

= O(dn) a.s. (A.2)

Therefore, using (A.1), (A.2), law of iterated logarithm, Lemma 1(a), and Assumption
6, we have

sup
β∈Bn

1

n

n

i=1

Zi(β) = O n−1/2 (log log n)1/2 +O(hr) +O(dn)

= O(dn) a.s.

as desired. The proof of part (b) is similar to part (a).
To prove part (c), fix β such that β − β0 ≤ dn. Write t ≡ t(β) = ρα, where

ρ ≥ 0 and α = 1. We have

0 =
1

n

Zi(β)

1 + t Zi(β)
=

1

n

Zi(β)

1 + ρα Zi(β)

≥ 1

n

α Zi(β)

1 + ρα Zi(β)

=
1

n
ρ
α Zi(β)Zi(β)α

1 + ρα Zi(β)
− α Zi(β)

≥ 1

n
ρ
α Zi(β)Zi(β)α

1 + ρα Zi(β)
− 1

n
α Zi(β)

≥ ρ

1 + ρmaxi Zi(β)
· α 1

n
Zi(β)Zi(β) α− 1

n
Zi(β) ,

where the last inequality follows from the positivity of 1 + ρα Zi(β) (which holds
from pi = n

−1(1 + t Zi(β) )−1 ≥ 0). Rearranging terms, we have
ρ

1 + ρmaxi Zi(β)
· α 1

n
Zi(β)Zi(β) α ≤ 1

n
Zi(β) . (A.3)
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Observe that maxi Zi(β) = O(1) uniformly in β ∈ Bn . Therefore, (A.3) and the
results of parts (a) and (b) yield

ρ ≤ q−1(1− q)−1λ−1min(S) + o(1) ·O(dn) a.s. (A.4)

uniformly in β ∈ Bn , where λmin(·) denotes the minimum eigenvalue of ·. (A.4) now
establishes part (c) since λ = ρ.

Lemma 3 Suppose Assumptions 1-5(b) and 6(a) hold. Then, with probability 1 as
n → ∞, (a) there exists a K × 1 vector βE ∈ int (B) such that lh(β) attains its
minimum value at βE and (b) βE and t = t(βE) satisfy

Qn(βE, t) = 0

where

Qn(β, t) = (Q1n(β, t) , Q1n(β, t) )

Q1n(β, t) =
1

n

n

i=1

1

1 + t Zi(β)
Zi(β) = 0,

Q2n(β, t) =
1

n

n

i=1

1

1 + t Zi(β)

∂Zi(β)

∂β
t = 0.

Proof of Lemma 3: This lemma is a slight modification of Lemma 1 of Qin and
Lawless (1994) and can be proved using a similar argument to theirs and Lemma 2
above.

Proof of Theorem 1: By Lemma 1 and WLLN, we have

∂Q1n(β0, 0)

∂β
=

∂Q2n(β0, 0)

∂t
=
1

n

n

i=1

∂Zi(β0)

∂β

p→ D0,

∂Q1n(β0, 0)

∂t
= −1

n

n

i=1

Zi(β0)Zi(β0)
p→−q(1− q)S0, and (A.5)

∂Q2n(β0, 0)

∂β
= 0.

Below, we establish that

√
nQ1n(β0, 0) =

1√
n

n

i=1

[1 (Ui ≤ 0)− q]Xi + op(1) (A.6)

= Op(1).
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Expanding Qn(βE, t) at (β0, 0), by the conditions of Lemma 3 and using (A.5) and
(A.6), we have

√
n βE − β0 = D−10

1√
n

n

i=1

[1 (Ui ≤ 0)− q]Xi + op(1),

which, in turn, is the Bahadur representation of the quantile regression estimator.
We now establish (A.6). Letting Gni ≡ [G (−Ui/h)− 1 (Ui ≤ 0)] and rearranging

terms, we have

√
nQ1n(β0, 0) =

1√
n

n

i=1

G
−Ui
h

− q Xi

=
1√
n

n

i=1

[1 (Ui ≤ 0)− q]Xi + (A.7)

1√
n

n

i=1

[GniXi −EGniXi] +
√
nEGniXi.

The second term on the right hand side of (A.7) is Op(h1/2) and hence op(1) since,
for each ε > 0

P
1√
n

n

i=1

[GniXi − EGniXi] > ε ≤ ε−2E G
−Ui
h

− 1 (Ui ≤ 0)
2

Xi
2

≤ C · P (−h ≤ U ≤ h) = O(h)→ 0.

Also, the last term in (A.7) is o(1) using Assumption 6(a) since
√
nEGniXi =

√
nEZi(β0) = O(n

1/2hr)→ 0

as desired.

Proof of Theorem 2: Let λ ≡ λ(β0) denote the solution of the equation

1

n

Wi

1 + λWi

= 0. (A.8)

Then, we have
λ = Op(n

−1/2 + hr). (A.9)

using the same arguments as in the proof of Lemma 2(c) after noting that we now
have n−1 WiWi

p→ EWiWi = IK by a WLLN, n−1 Wi = Op(n
−1/2 + hr), and

maxi Wi = Op(1) by Assumption 3.
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Next we develop a Taylor expansion for λ and lh(β0). By (A.8) , we have

0 =
1

n

Wi

1 + λWi

(A.10)

=
1

n
Wi 1− (λWi) + (λWi)

2 − (λWi)
3 + (λWi)

4 − · · ·

=
1

n
Wi − 1

n
WiWi λ+

1

n
(λWi)

2Wi − 1
n

(λWi)
3Wi +

1

n
(λWi)

4Wi − · · · .

By Lemma 1(a), we have αj = O(hr). Also, observe that A
j
= Aj +αj = Op(n

−1/2+
hr), Ajk = Op(n

−1/2), and A
j1···jk = Op(1) for k ≥ 3. Solving for λ and then recursive

substitutions in equation (A.10) give, for each L ≥ 1,

λj = A
j −AjkAk +AjklAkAl +AjkAklAl − 2AjklAkpApAl −AklmAjkAlAm

+2A
jkl
A
lmo
A
k
A
m
A
o −AjklmAkAlAm +

L

l=4

R1l +Op((n
−1/2 + hr)L+1),

where Ril denotes a sum of the products of terms of the form A
j
, Ajk, and A

j1···jm for
m ∈ {3, ..., l + 1} so that Ril = Op((n−1/2 + hr)l) for i = 1, 2.
Similarly, we have

1

n
lh(β0) =

2

n

n

i=1

log(1 + λWi)

= 2
L+1

k=2

(−1)k k − 1
k

n

i=1

(λWi)
k

n
+Op (n

−1/2 + hr)L+2

= A
j
A
j
+
2

3
A
jkl
A
j
A
k
A
l −AjkAjAk

+A
jkl
A
jmo
A
k
A
l
A
m
A
o − 1

2
A
jklm

A
j
A
k
A
l
A
m
+AjkAjlA

k
A
l − 2AjklAkpAjApAl

+8A
jklm

A
jpq
A
k
A
l
A
m
A
p
A
q − 8AjklAjpqAqmoApAmAoAkAl − 8

5
A
jklmo

A
j
A
k
A
l
A
m
A
o

+12A
jkl
A
lmo
AjpA

k
A
m
A
o
A
p
+ 3A

jkl
A
mop
AjmA

o
A
p
A
k
A
l
+AjkAjmAklA

m
A
l

−4AjklAjmAkpAmApAl − 4AjklAjmAmoAoAkAl − 6AjklmAjpApAkAlAm

+
L+1

l=6

R2l +Op n−1/2 + hr
L+2

. (A.11)

Therefore, for any k > 1,

lh(β0) = nA
j
A
j
+Op n n−1/2 + hr

k
(A.12)
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=
1√
n

n

i=1

(Zi − EZi) + n1/2EZi V −1n

1√
n

n

i=1

(Zi −EZi) + n1/2EZi

+Op n n−1/2 + hr
k
.

Since Vn−V ar(Zi)→ 0, [V ar(Zi)]
−1/2 ·n−1/2 (Zi − EZi) d→ N(0, IK), and nh2r →

0 as n→∞, lh(β0) has an asymptotic central chi-square distribution with K degrees
of freedom if n1/2EZi → 0. The latter holds by Lemma 1(a) and Assumption 6.

Proof of Corollary 1: Let Wi(β10,β2) = Wi(β2) and λ(β10, β2) = λ. Lemma 3
implies that β2 and λ satisfyHn(β2,λ) = 0,whereHn(β2,λ) = (H1n(β2,λ) , H2n(β2,λ) ) ,

H1n(β2,λ) =
1

n

n

i=1

1

1 + λWi(β2)
Wi(β2) = 0, (A.13)

H2n(β2,λ) =
1

n

n

i=1

1

1 + λWi(β2)

∂Wi(β2)

∂β2
λ = 0. (A.14)

A Taylor expansion of Hn(β2,λ) around Hn(β20, 0) yields

λ = IK −D20(D20D20)−1D20 H1n(β20, 0) + op(n
−1 + hr), (A.15)

(β2 − β20) = −(D20D20)−1D20H1n(β20, 0) + op(n−1 + hr), (A.16)

where D20 = V
−1/2
n E [f(0|Xi)XiXi2] is a K×K2 matrix. Note that

√
nH1n(β20, 0)

d→
N(0, IK). Therefore, we have

1

n
lh(β10, β2) =

2

n
log 1 + λWi(β2)

= λ λ+ op(n
−1 + hr) d→ χ2K1

,

as desired, where the second equality holds by a two-term Taylor expansion.

Let

Q = A1, ..., AK , A11, ..., AKK, ..., A11···1, ..., AKK···K ≡ 1

n

n

i=1

Qi (A.17)

denote a vector of all distinct first L + 1 order multivariate centered moments of
Wi = V

−1/2
n Zi. Note that Qi consists of elements of the form

(G(−Ui/h)− q)|ν|Wi
ν1 · · ·Wi

νk for 1 ≤ k ≤ L+ 1, (A.18)

where |ν| = ν1 + · · · + νk. We first establish the following modified version of the
Cramér’s condition for the Edgeworth expansion, which will be needed later:
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Lemma 4 Let t ∈ Rdim(Q) be a vector and I(t, h) = E {exp [it Q]} , where Q (= Qi)
is given by (A.17) and i = (−1)1/2 . Under Assumptions 1-6, we have: for each ε > 0,
there exists some C > 0 such that

sup
t >ε

|I(t, h)| < 1− Ch

for all sufficiently small h.

Proof of Lemma 4: The proof of Lemma 4 is analogous to those of Horowitz (1998,
lemma 9) and Hall (1992, lemma 5.6). We just briefly sketch the main idea.
Note that the terms such as (A.18) can be expanded to be polynomials in [G(−Ui/h)]r

for 0 ≤ r ≤ L+ 1 with coefficients given by (not necessarily distinct) elements of Xi.
Therefore, by collecting terms with the same polynomial order, we may write

I(t, h) = E {exp [it Q]}

= E exp i
L+1

r=0

[G(−U/h)]r τ r(t) gr(Xi) ,

where gr(X) is a vector of the products of elements of X that correspond to the
r -th order polynomial [G(−U/h)]r in the expansion of t Q and τ r(t) denotes the
corresponding sub-vector of t ∈ Rdim(Q).
Since G satisfies G(v) = 1 if v ≥ 1 and G(v) = 0 if v ≤ −1, we can write

I(t, h) =
∞

−∞

∞

−∞
exp i

L+1

r=0

[G(−u/h)]r τ r(t) gr(x) f(u|x)dudP (x)

= I1(t, h) + I2(t, h),

where

I1(t, h) = E [1− F (h|X)] + F (−h|X) exp i
L+1

r=0

τ r(t) gr(x)

and

I2(t, h) =
∞

−∞

h

−h
exp i

L+1

r=0

[G(−u/h)]r τ r(t) gr(x) f(u|x)dudP (x).

First, for h sufficiently small, we have

|I1(t, h)| ≤ E {1− F (h|X) + F (−h|X)}
≤ 1− Ef(0|X)h (A.19)

by a two-term Taylor expansion using Assumption 4.
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Next, given ε > 0, choose h so small that ∞
−∞

1

−1 |f(hu|x)− f(0|x)| dudP (x) ≤
2εEf(0|X). Take η > 0 and γ1 < 1 such that

x ≤η f(0|x)dP (x) = γ1Ef(0|X).
Then, by a change of variables and triangle inequality, we have

|I2(t, h)| ≤ (2ε+ γ1)hEf(0|X) + (A.20)

+h
x >η

Ψ(t, x)f(0|x)dP (x),

where

Ψ(t, x) =
1

−1
exp i

L+1

r=0

[G(u)]r τ r(t) gr(x) du

Let ξ = t and fix t/ t (and hence τ(t)/ t trivially). Define

f(u, x) =
L+1

r=1

[G(u)]r τ r(t) gr(x)/ t .

Let {(am−1, am) : m = 1, ..., L+1} be the partition of [−1, 1] that satisfies Assumption
5(c). Then,

C1 ≡ sup
x >η

sup
t >ε

|Ψ(t, x)|

≤ sup
x >η

sup
ξ>ε

1

−1
exp [i ξf(u, x)] du ,

= sup
x >η

sup
ξ>ε

M

m=1

am

am−1
exp [i ξf(u, x)] du < 1 (A.21)

where the first inequality uses |eitz| ≤ 1 and the last inequality holds by an argument
similar to Horowitz (1998, pp.1346-1347). Now, by combining (A.19), (A.20), and
(A.21), we have

sup
t >ε

|I(t, h)| ≤ 1− {1− 2ε− [γ1 + (1− γ1)C1]}Ef(0|X)h
≡ 1− Ch

for all h > 0 sufficiently small and ε > 0. This completes the proof of Lemma 4.

Define Σ = V ar n1/2Q and d = dim(Q). Let r = (r1, ..., rd) ∈ Rd denote a vector
of nonnegative integers and |r| = r1+ · · ·+ rd. Let Zr ≡ (Z1)r1 · · · Zd rd for Z ∈ Rd
and r! = r1! · · · rd!. Put t = (t1, ..., td) ∈ Rd and define the polynomial Pk(t) by the
following formal expansion:

exp

u−2 ∞

l=0

(−1)l(l + 1)−1


∞

|r|=2
(r!)−1 (it)r (EQr) ur


l+1
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= exp −1
2
t Σt 1 +

∞

k=1

Pk(t)u
k ,

where u is a real number. Let qk(x)φ0,Σ(x) be the density of the finite signed measure
whose Fourier-Stieltjes transform is exp(−t Σt/2)Pk(t), i.e.

exp(it x)qk(x)φ0,Σ(x)dx = exp(−
1

2
t Σt)Pk(t).

Let ∂A denote a boundary of a set A and (∂A)ε for the set of all points distant at
most ε from ∂A. The formal Edgeworth expansion for the distribution of n1/2Q is
given by the following lemma:

Lemma 5 Suppose Assumptions 1-6 hold. Let A denote a class of Borel sets A ⊆ Rd
that satisfy

sup
A∈A (∂A)ε

exp −1
2
x 2 dx = O(ε)

as ε ↓ 0. Then, for each integer m ≥ 1, we have

sup
A∈A

P n1/2Q ∈ A −
A

m

k=0

n−k/2qk(x)φ0,Σ(x)dx = O(n−(m+1)/2).

Proof of Lemma 5: Lemma 2 can be proved using an argument very similar to the
proof of Theorem 5.8 of Hall (1992), which in turn relies on Hall (1992)’s Lemmas
5.6 and 5.7. We just note that Hall’s lemma 5.6 corresponds to our Lemma 1 above
and the result analogous to Hall’s Lemma 5.7 can be proved using a technique which
is similar to (but substantially simpler than) the Hall’s method after replacing the
norming constant (nh)1/2 by n1/2.

Proof of Theorem 3: We first derive the signed root of lh(β0) in (A.11), which is aK
-dimensional vector n1/2S0L = n1/2(S10L, ..., S

K
0L) such that lh(β0) = (n

1/2S0L) (n
1/2S0L).

Consider the expansion

S0L =
L

l=1

Tl + U1L ≡ SL + U1L,

where Tl = Op n−1/2 + hr
l
and U1L = Op n−1/2 + hr

L+1
. Some calculations

yield that we have
T j1 = A

j
,

T j2 =
1

3
A
jkl
A
k
A
l − 1

2
AjkA

k
,
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T j3 =
3

8
AjmAkmA

k
+
4

9
A
jkn
A
lmn
A
m
A
k
A
l − 1

4
A
jklm

A
m
A
k
A
l

− 5
12
A
jkm
AlmA

k
A
l − 5

12
A
klm
AjmA

k
A
l
,

T j4 =
11

16
ArkArjAklA

l

−53
48
A
rkj
ArmAkpA

m
A
p − 53

48
A
rkl
ArjAkpA

p
A
l − 7

6
A
rkj
ArmAmoA

o
A
k − 7

6
A
rkl
ArmAmjA

k
A
l

+
229

108
A
rjl
A
lmo
ArpA

m
A
o
A
p
+
229

108
A
rkl
A
ljo
ArpA

k
A
o
A
p
+
229

108
A
rkl
A
lmo
ArjA

k
A
m
A
o

+
59

36
A
rjl
A
mop
ArmA

o
A
p
A
l − 25

16
A
rjlm

ArpA
p
A
l
A
m − 25

16
A
rklm

ArjA
k
A
l
A
m

+
49

24
A
rjlm

A
rpq
A
l
A
m
A
p
A
q
+
49

24
A
rklm

A
rjq
A
k
A
l
A
m
A
q − 56

27
A
rjl
A
rpq
A
qmo
A
p
A
m
A
o
A
l

−56
27
A
rkl
A
rjq
A
qmo
A
m
A
o
A
k
A
l − 4

5
A
jklmo

A
k
A
l
A
m
A
o
.

Also, by choosing L sufficiently large, we can ensure that

P U1L > n−5/2 = O(n−2).

Hence, for c > 0, we have

P (lh(β0) ≤ c) = P n1/2 SL + U1L ≤ c1/2
and so

max
+,−

P (lh(β0) ≤ c)− P n1/2 SL ≤ c1/2 ± n−2 = O(n−2). (A.22)

We now develop an Edgeworth expansion for the distribution of SnL ≡ n1/2SL.
We first derive the (multivariate) cumulants of SnL. By very tedious and lengthy
calculations, we may show that the cumulants satisfy the following results:

cum(SjnL) = n
1/2αj − 1

n1/2
1

6
αjkk +O(n−1/2hr + n−3/2),

cum(SinL, S
j
nL) = δij +

1

3
αijkαk

+αiαj − 9

24
αjkmmαiαk − 9

24
αikmmαjαk − 7

12
αijkmαkαm

− 1
18

αiklαjmmαkαl − 1

18
αikkαjmlαmαl +

13

18
αiklαjklαkαm

+
1

36
αjklαmmlαiαk +

1

36
αiklαmmlαjαk +

1

18
αjklαkmlαiαm

+
1

18
αiklαkmlαjαm +

1

18
αijkαklmαlαm

+
1

n

1

2
αijkk − 1

3
αikmαjkm − 1

36
αijmαmkk +O(n−1hr + n−2),
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cum(SinL, S
j
nL, S

k
nL) = O(n−1/2hr),

cum(SinL, S
j
nL, S

k
nL, S

l
nL) = O(n−1h2r),

cum(Sj1nL, ..., S
jm
nL) = O(n−(m−2)/2) for m ≥ 5.

Let B be a class of Borel sets satisfying

sup
B∈B (∂B)ε

φ0,I(x)dx = O(ε) as ε ↓ 0, (A.23)

where (∂B)ε denotes the set of all points distant at most ε from the boundary of B
and φ0,I is the density function of the standard K - dimensional normal distribution.
A formal Edgeworth expansion for the distribution of n1/2SL is given as follows:
assuming nh2r → 0,

sup
B∈B

P n1/2SL ∈ B −
B

p(x)φ0,I(x)dx = O(n−2) + o(nh2r), (A.24)

where

p(x) = 1 + p1(x) + p2(x),

p1(x) =
1

2
n−1 {x∆x− tr (∆)} , (A.25)

p2(x) = odd polynomial in x

and ∆ = (∆ij) is a K ×K matrix with

∆ij = n2αiαj + n
1

3
αijkαk − 1

6
αikkαj − 1

6
αjkkαi

+
1

2
αijkk − 1

3
αikmαjkm − 1

36
αijmαmkk +

1

36
αikkαjll.

Accepting that the Edgeworth expansion (A.24) is justified, we now develop an
Edgeworth expansion for the distribution of lh(β0). From (A.22) , we have: for any
c > 0

P (lh(β0) ≤ c) =
x <c1/2

p(x)φ0,I(x)dx+O(n
−2) + o(nh2r)

= P (χ2K ≤ c)

+
1

2
n−1

x <c1/2

K

i=1

∆ii xi
2 − 1 −

i=j

∆ijxixj φ0,I(x)dx

+O(n−2) + o(nh2r)

= P (χ2K ≤ c)− n−1tr(∆)K−1cgK(c) +O(n−2) + o(nh2r), (A.26)
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where the second inequality holds by the symmetry of φ0,I(·) and oddness of the
polynomial p2(x) and the third inequality holds by the symmetry of φ0,I(·) and gK(·)
denotes the density of χ2K distribution. It is straightforward to see that

tr(∆) = n2αiαi +
1

2
αiikk − 1

3
αikmαikm. (A.27)

Let
ζ ≡ E Xf (r−1)(0|X) .

Then, using (A.22) and Lemma 1, we have

n2αiαi = n2 (EZ) V −1n (EZ)

= (nhr)2 (r!)−2C2K ζ S−1ζ q−1(1− q)−1 + o (nhr)2 (A.28)

Similarly, we have

αiikk = E [Gh(−U)− q]4 X V −1n X
2

= q−1(1− q)−1(1− 3q + 3q2)E (X SX)
2
+O(h)

< ∞ (A.29)

and

αikm = E [Gh(−U)− q]3 v
−1/2
ni X v

−1/2
nk X v−1/2nm X

= q−1/2(1− q)−1/2(1− 2q)E s
−1/2
i X s

−1/2
k X s−1/2m X +O(h)

< ∞, (A.30)

where v−1/2ni and s−1/2i denote the i -th row of V −1/2n and S−1/2 respectively..
Therefore, (A.26), (A.27), (A.28), (A.29) and (A.30) give

P (lh(β0) ≤ cα)
= α− n−1 (nhr)2 (r!)−2C2K ζ S−1ζ q−1(1− q)−1 +O(1) K−1cαξp(cα)

+o(n−1 + nh2r). (A.31)

It now follows that, since supn nh
r <∞, we have

P (lh(β0) ≤ cα) = α+O(n−1),

as desired.
It remains to check that the formal expansion (A.24) is valid. Since A

j1···jk =
Aj1···jk + αj1···jk for each k ≥ 1, we can see that n1/2SL is a ”smooth function of the
means of independent and identically distributed random variables Qi”, where Qi is
defined in (A.17). Note that the validity of Edgeworth expansion for the distribution
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of n1/2Q has been established in Lemma 5 above. Therefore, from Lemma 2.1 and
Theorem 2 of Bhattacharya and Ghosh (1978), the Edgeworth expansion in Lemma 5
can be transformed to yield a valid Edgeworth expansion (A.24) under Assumptions
1-6. This proves Theorem 2.

Proof of Theorem 3: By (A.26), we have for all c > 0

P lh(β0) ≤ c 1 + n−1b
= P (χ2K ≤ c 1 + n−1b ) (A.32)

−c nαiαiK−1 + n−1b 1 + n−1b gK c 1 + n−1b +O(n−2) + o(nh2r).

Note that since gK is the density of χ2K distribution,

gK c 1 + n−1b = gK(c) +O(n
−1) (A.33)

and
P (χ2K ≤ c 1 + n−1b ) = P (χ2K ≤ c) + cn−1bgK(c) +O(n−2). (A.34)

By substituting (A.33) and (A.34) into (A.32), we have

P lh(β0) ≤ c 1 + n−1b
= P (χ2K ≤ c)
−cnαiαiK−1gK (c) +O(n−2) + o(nh2r)

= P (χ2K ≤ c)
−nh2r(r!)−2C2K ζ Σ−1ζ q−1(1− q)−1 · cK−1gK (c)

+O(n−2) + o(nh2r), (A.35)

where the second equality follows from (A.28). Therefore, supn n
3h2r < ∞ implies

that
P lh(β0) ≤ c 1 + n−1b = P (χ2K ≤ c) +O(n−2) (A.36)

for all c > 0. The proof of Theorem 3 is complete by taking c = cα in (A.36).
The case where b is replaced by b or b may be treated in a similar way using

the fact b = b + Op(n
−1/2) and the parity properties of polynomials in Edgeworth

expansions such as (A.25).
Proof of Theorem 5: Theorem 5 can be verified by repeating the proofs of Lem-
mas 1-5 and Theorems 1-4 with Zi(β) = [Gh(Xiβ − Yi)− q]Gh(Xiβ)Xi and with
Assumption 3∗ in place of Assumption 3.
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Table 1. Estimated True Coverage Probabilities of α-Level Confidence Regions

(DGP1)

α = .90
n −γ LAD BLAD SLAD SEL1 SEL2 SEL3

.1 .828 .932 .947 .860 .861 .878

.3 .675 .932 .962 .869 .870 .884
20 .5 .499 .932 .970 .873 .874 .889

.7 .308 .932 .977 .875 .876 .890

.9 .158 .932 .978 .876 .876 .890

.1 .866 .919 .921 .885 .885 .896

.3 .734 .919 .945 .889 .889 .898
35 .5 .562 .919 .952 .890 .890 .898

.7 .350 .919 .958 .891 .891 .899

.9 .167 .919 .968 .890 .890 .899

.1 .879 .910 .926 .892 .892 .899

.3 .762 .910 .945 .893 .893 .899
50 .5 .597 .910 .948 .895 .895 .900

.7 .377 .910 .942 .895 .895 .901

.9 .172 .910 .956 .895 .895 .900

α = .95
n −γ LAD BLAD SLAD SEL1 SEL2 SEL3

.1 .889 .960 .978 .913 .914 .926

.3 .750 .960 .987 .921 .922 .933
20 .5 .571 .960 .990 .926 .926 .936

.7 .367 .960 .994 .929 .929 .939

.9 .193 .960 .993 .930 .931 .940

.1 .920 .954 .966 .939 .939 .947

.3 .805 .954 .977 .942 .943 .949
35 .5 .637 .954 .985 .943 .943 .949

.7 .412 .954 .988 .944 .944 .949

.9 .204 .954 .989 .944 .944 .949

.1 .932 .949 .964 .944 .944 .949

.3 .830 .949 .976 .946 .946 .950
50 .5 .674 .949 .981 .947 .947 .950

.7 .444 .949 .980 .945 .945 .949

.9 .209 .949 .986 .945 .946 .949
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Table 2. Estimated True Coverage Probabilities of α-Level Confidence Regions
(DGP2)

α = .90
n −γ LAD BLAD SLAD SEL1 SEL2 SEL3

.1 .800 .917 .917 .860 .860 .878

.3 .648 .917 .926 .868 .869 .885
20 .5 .474 .917 .937 .874 .874 .890

.7 .292 .917 .946 .875 .875 .891

.9 .148 .917 .951 .876 .877 .890

.1 .843 .905 .918 .887 .887 .898

.3 .713 .905 .930 .890 .891 .900
35 .5 .540 .905 .945 .890 .891 .900

.7 .337 .905 .946 .890 .890 .899

.9 .159 .905 .956 .891 .891 .898

.1 .857 .900 .906 .892 .892 .900

.3 .742 .900 .928 .893 .893 .899
50 .5 .575 .900 .932 .894 .894 .900

.7 .358 .900 .934 .895 .895 .901

.9 .162 .900 .943 .894 .895 .901

α = .95
n −γ LAD BLAD SLAD SEL1 SEL2 SEL3

.1 .863 .951 .964 .915 .915 .927

.3 .723 .951 .969 .921 .922 .933
20 .5 .544 .951 .974 .926 .926 .936

.7 .350 .951 .973 .928 .929 .939

.9 .183 .951 .976 .930 .931 .940

.1 .901 .945 .963 .938 .938 .945

.3 .783 .945 .972 .943 .943 .949
35 .5 .615 .945 .978 .943 .943 .949

.7 .398 .945 .976 .943 .943 .949

.9 .194 .945 .981 .944 .944 .949

.1 .913 .940 .955 .943 .943 .948

.3 .811 .940 .961 .946 .946 .950
50 .5 .649 .940 .960 .946 .946 .950

.7 .421 .940 .964 .945 .946 .950

.9 .198 .940 .967 .945 .945 .949
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Table 3. Estimated True Coverage Probabilities of α-Level Confidence Regions
(DGP3)

α = .90
n −γ LAD BLAD SLAD SEL1 SEL2 SEL3

.1 .557 .904 .952 .868 .869 .885

.3 .387 .904 .965 .871 .872 .887
20 .5 .223 .904 .969 .873 .873 .887

.7 .104 .904 .973 .874 .874 .887

.9 .042 .904 .968 .874 .874 .887

.1 .660 .890 .932 .887 .887 .897

.3 .497 .890 .950 .889 .889 .897
35 .5 .294 .890 .951 .888 .888 .896

.7 .132 .890 .960 .887 .887 .896

.9 .046 .890 .960 .887 .887 .895

.1 .716 .891 .941 .892 .892 .898

.3 .563 .891 .950 .893 .893 .899
50 .5 .343 .891 .953 .893 .894 .899

.7 .151 .891 .955 .894 .894 .899

.9 .050 .891 .963 .894 .894 .900

α = .95
n −γ LAD BLAD SLAD SEL1 SEL2 SEL3

.1 .632 .940 .977 .923 .924 .935

.3 .454 .940 .982 .926 .927 .937
20 .5 .269 .940 .989 .928 .928 .938

.7 .128 .940 .988 .929 .930 .939

.9 .053 .940 .988 .930 .930 .940

.1 .732 .931 .966 .940 .941 .947

.3 .567 .931 .975 .941 .941 .947
.35 .5 .351 .931 .978 .942 .942 .946

.7 .160 .931 .985 .942 .942 .947

.9 .058 .931 .983 .942 .942 .947

.1 .786 .932 .975 .944 .944 .948

.3 .635 .932 .979 .945 .945 .949
.50 .5 .407 .932 .984 .945 .945 .949

.7 .185 .932 .978 .945 .945 .949

.9 .062 .932 .975 .946 .946 .949
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Fig. 1 Sensitivity of Coverage Errors with respect to Bandwidth Parameters
[α=0.95]
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