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ABSTRACT

A new class of kernel estimates is proposed for long run variance (LRV) and
heteroskedastic autocorrelation consistent (HAC) estimation. The kernels are called
steep origin kernels and are related to a class of sharp origin kernels explored by
the authors (2003) in other work. They are constructed by exponentiating a mother
kernel (a conventional lag kernel that is smooth at the origin) and they can be used
without truncation or bandwidth parameters. When the exponent is passed to infin-
ity with the sample size, these kernels produce consistent LRV/HAC estimates. The
new estimates are shown to have limit normal distributions, and formulae for the
asymptotic bias and variance are derived. With steep origin kernel estimation, band-
width selection is replaced by exponent selection and data-based selection is possible.
Rules for exponent selection based on minimum mean squared error (MSE) criteria
are developed. Optimal rates for steep origin kernels that are based on exponenti-
ating quadratic kernels are shown to be faster than those based on exponentiating
the Bartlett kernel, which produces the sharp origin kernel. It is further shown that,
unlike conventional kernel estimation where an optimal choice of kernel is possible
in terms of MSE criteria (Priestley, 1962; Andrews, 1991), steep origin kernels are
asymptotically MSE equivalent, so that choice of mother kernel does not matter as-
ymptotically. The approach is extended to spectral estimation at frequencies w # 0.
Some simulation evidence is reported detailing the finite sample performance of steep
kernel methods in LRV /HAC estimation and robust regression testing in comparison
with sharp kernel and conventional (truncated) kernel methods.

Key words and Phrases: Exponentiated kernel, lag kernel, long run variance, optimal
exponent, spectral window, spectrum.

JEL Classification: C22



1 Introduction and Motivation

Following the vast time series literature on spectral estimation, kernel estimates were
proposed and analyzed in the econometric literature for long run variance (LRV) and
heteroskedasticity and autocorrelation consistent (HAC) covariance matrix estima-
tion. These procedures have been found to be particularly useful in the construction
of robust regression tests, unit root tests, and cointegration estimators. There is now
a wide literature discussing these procedures, their various refinements and data-
based empirical implementations in econometrics (see den Haan and Levin, 1997, for
a recent review).

It is known that in cases like robust hypothesis testing, consistent HAC estimates
are not needed in order to produce asymptotically valid tests. In recent work on this
issue, Kiefer and Vogelsang (2002a, 2002b) have proposed the use of inconsistent HAC
estimates based on conventional kernels but with the bandwidth parameter (M) set
equal to the sample size (T'). Kiefer and Vogelsang show that such estimates lead to
asymptotically valid tests that can have better finite sample size properties than tests
based on consistent HAC estimates. Their power analysis and simulations reveal that
the Bartlett kernel among the common choices of kernel produces the highest power
function in regression testing when M = T, although power is noticeably less than
that which can be attained using conventional procedures involving consistent HAC
estimators.

In other work, the authors (2003) recently showed that sharp origin kernels, con-
structed by exponentiating the Bartlett kernel, can deliver consistent LRV /HAC esti-
mates while eliminating truncation and retaining some of the size advantages noticed
by Kiefer and Vogelsang. The present paper pursues this approach by considering
the use of mother kernels other than the Bartlett kernel in the construction of LRV
estimates. In particular, we consider as mother kernels a class of quadratic kernels
that includes many of the popular kernels that are used in practical work, such as
the Parzen and Tukey Hanning kernels. Exponentiating these kernels produces a
class of kernels that have steep but smooth behavior at the origin, in contrast to
the Bartlett kernel which produces a sharp, non differentiable kernel at the origin.
Earlier work on quadratic kernels with the use of bandwidths M < T showed that
there are certain advantages, including improved rates of convergence, arising from
the smooth behavior of such kernels at the origin. The present paper is motivated to
explore whether similar advantages may arise in the use of exponentiated kernels of
this type when M = T and the exponent is passed to infinity with the sample size.

Accordingly, the paper develops an asymptotic theory for this new class of steep
origin kernel estimates, providing a central limit theory, and giving formulae for as-
ymptotic bias, variance and mean squared error (MSE) of the estimates. It is shown
that data-determined selection of the exponent parameter is possible and rules are
provided for optimal choice of the exponent based on a minimum MSE error crite-
ria. Optimal rates of convergence for steep origin kernel estimates constructed from
quadratic mother kernels are shown to be faster than those based on exponentiating
the Bartlett kernel. This steep origin approach to LRV estimation applies more gen-
erally to cases of spectral density and probability density estimation and the paper



illustrates such extensions by considering spectral estimation at frequencies w # 0.
Simulations reveal that steep kernel methods generally outperform sharp kernel and
conventional quadratic kernel estimators in both LRV estimation and robust regres-
sion testing, although sharp kernel estimators tend to do better in extreme cases like
white noise or nearly nonstationary spectra.

The paper is organized as follows. Section 2 describes a class of steep origin
kernels, characterizes their asymptotic form, develops a central limit theory, provides
bias, variance and MSE formulae and discusses data-determined optimal exponent
selection. Section 3 provides a similar analysis for the corresponding spectral density
estimates at non-zero frequencies. Section 4 reports some simulation evidence on the
finite sample performance of these estimates and associated tests. Conclusions are
given in Section 5. Proofs and other technical material are included in the Appendix
(Section 6) and a glossary of notation is given in Section 7.

2 LRV Estimation with Steep Origin Kernels

We construct a class of steep origin kernels for use in LRV estimation based on
quadratic mother kernels, study the asymptotic form of the associated windows, and
develop an asymptotic theory for the estimates.

2.1 Exponentiated Quadratic Kernels

Consider an m-vector stationary process {Xt}thl with non-singular spectral density
matrix fxx (A). The long run variance matrix of X; is defined as

Q=0+ (1 + ) = 20fxx(0) 1)
h=1

where v, = E(X;X,_,). To estimate Q, we consider the following lag kernel estimator
Of fX X (0)

N = b
fxx(0) = & > () @)
h=—T+1
5, = FY L Xen Xy forj =0 .
" T Zthth XionX; forj <0

where k, (z) is equal to k(z) raised to some positive integer' power p, i.e.
kp () = kP () . (4)

When k(z) is the Bartlett kernel, fX x(0) is the sharp origin estimator considered by
Phillips, Sun and Jin (PSJ hereafter, 2003).

Tt is often convenient to treat the exponent p as an integer. But when k (z) is nonnegative any

positive real value of p may be considered.



Exponentiating the kernel k(x) induces a class of kernels {k, (m)}p€Z+ . The kernel
k() itself belongs to this class and is called the mother kernel of the class. This paper
will consider mother kernels that have quadratic behavior at the origin and satisfy
the following assumption.

Assumption 1: (a) k(z) : [ — 1,1] — [0,1] is even, nonnegative and differentiable
with k(0) =1 and k(1) = 0.

(b) For any n > 0, there exists & < 1 such that k(x) <& for |x| > n.

(c) k(x) has a valid quadratic expansion in a neighborhood of zero:

k:(ac):l—gx2+o(:c2),asx—>0forsomeg>0. (5)

Under Assumption 1(c), the kernel k(x) has Parzen (1957) exponent ¢ = 2 such

that
1—Fk(x)

z—0
The Parzen exponent characterizes the smoothness of k(x) at the origin. Assumptions
1(a) and 1(c) imply that £’(0) = 0 and k”(0) = —2¢g. Thus, the kernels satisfying
Assumption 1 have quadratic behavior around the origin.
Examples of commonly used kernels satisfying Assumption 1 include the Parzen
and Tukey-Hanning kernels:

1—622 46|z  for0<|z] <1/2,

Parzen kpr(z) =< 2(1 —|=|)3 for 1/2 < |z| <1,
0 otherwise.
. [ (1+4cosmz) /2 for |z| <1,
Tukey-Hanning krp(x) = { 0 otherwise.

For the Parzen kernel, g = 6. For the Tukey-Hanning kernel, g = 72 /4. The Parzen
kernel has been used in the literature concerning long run variance estimation and the
Tukey-Hanning kernel is popular in the spectral density estimation literature. The
quadratic spectral (QS) kernel is also quadratic at the origin and has some optimality
properties in conventional LRV /HAC estimation. However, the QS kernel is not used
in the present paper because it is unsuitable as a mother kernel, being nonzero for
|z| > 1 and not always nonnegative.

Since k,(x) = k” (), the kernel k, (x) satisfies Assumption 1 if & (x) does. Obvi-
ously, k,(x) has series expansion

kp(ac):l—pgx2+o(ac2), as x — 0

and -
lim ——2 " 5 (z)
r—0 X

= pg. (6)



Thus, the curvature of k,(z) at the origin increases as p increases. In other words, as
p increases, k,(x) becomes successively more concentrated at the origin and its shape
steeper. k,(x) is therefore called a steep origin kernel. Figs. 1 and 2 graph k,(x) for
p =1,5,10, 20 illustrating these effects.

1 L) L]
09 -
08 4
0.7 = parzen(l) T
ecccce parzen(s)
06 parzen(10) -
== parzen(20)

0.5

0.4

0.3

0.2

0.1

Figure 1: Steep Origin Kernels with Parzen Kernel as the Mother Kernel

2.2 Asymptotic Bias, Variance and MSE Properties of the LRV/HAC

estimator

This section develops an asymptotic theory for the spectral estimatorfx XA(O) when
p — o0 as T — oo. Under certain rate conditions on p, we show that fxx(0) is
consistent for fx x(0) and has a limiting normal distribution. Of course, as is apparent
from Figs. 1 and 2, the action of p passing to infinity plays a role similar to that
of a bandwidth parameter in that very high order autocorrelations are progressively
downweighted as T" — oco. R

To establish the asymptotic bias and variance of fxx(0), we use the conditions
below.

Assumption 2: X; is a mean zero stationary linear process
o e, 0)
Xi=) Cjerjy > il Cjll< oo (7)
§=0 j=0
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— tukey(1)
ecccce tukey(E)

tukey(10)
== tukey(20) |

Figure 2: Steep Origin Kernels with a Tukey Kernel as the Mother Kernel

where ¢; is i4d(0, ;) with E || & ||*< oo.

Assumption 3: T/p+p/T? — 0 as T — oo and p — co.

Assumption 2 is convenient and includes many series of interest in applications,
although condition (7) is stronger than necessary in establishing results for the as-
ymptotic bias and variance. Let f)(?;((O) = >"%°_ h%y,, then Assumption 2 implies
that

PO < YRl < oo ®)

The boundedness of f)(?;((O) is often assumed in the LRV estimation and spectral
density estimation literature, ensuring that the spectral density has some degree of
smoothness. In particular, (8) ensures that fxx (\) is twice continuously differen-
tiable and that results for the asymptotic bias, variance and MSE of kernel estimates
can be derived. However, the linear process assumption facilitates asymptotic calcula-
tions and is particularly useful in establishing a central limit theory for our estimates.

Assumption 3 imposes both upper and lower bounds on the rate that p approaches
infinity. Given the lower bound 7'/p — 0, we can use either the biased covariance
estimate 7, as in (3) or the unbiased covariance estimate 7, in the construction of
fxx(0). The unbiased covariance estimate 7, is equal to 7, divided by the factor
(1 —|h| /T) . Both approaches lead to the same asymptotic results. Some simulations



show that the form involving the usual biased covariance estimator works better in
practice. The upper bound p/T? — 0 ensures that the asymptotic bias diminishes as
T goes to co. It also helps prove the concentration of the spectral window, which is
defined in (9) and whose asymptotic form is given in Lemma 2 below.

Assumption 3 holds when p = aT® for some @ > 0 and 1 < b < 2. Note that
the expansion rate for p implied by Assumption 3 is very different from the rate
condition 1 + ph’TgT — 0 that was used in developing an asymptotic theory for the
sharp origin kernel in PSJ (2003). While p/T" — 0 in that case, we require T'/p — 0
in the present case, so that p tends to infinity much faster. The reason for this
difference is the Bartlett mother kernel rapidly decays from unity at the origin and
less exponentiation is required with this kernel in order to achieve a similar degree
of weighting to the autocorrelogram. On the other hand, the sharp behavior of the
Bartlett kernel at the origin prevents a second order development that enables a
higher rate of convergence in the kernel estimator. So, with this accommodating rate
condition on p, we have the opportunity to achieve both objectives in exponentiating
a quadratic kernel.

Let

Z k z/\h (9)
-T+1

be the spectral window and

Ixx(\) = ! zT:Xte“\t _ 1 > Ape (10)
2T —T41
be the periodogram. Then
R = L =
Fxx(0) = o hET:H ko() A = 7 2 K (Xs) Ixx (As) - (11)

Note that 7, = [ Ixx(X\)e*d), so Fxx(0) can also be written as

Fex (0 Z i a :% " Ky () Ixx () (12)
—T+1

The two representations in (11) and (12) will be used in establishing the asymptotic
variance of fx x(0) in the theorem below.

Before stating the theorem, we introduce some notation. Let K, be the m? xm
commutation matrix (e.g. Magnus and Neudecker, 1979). Define the Mean Squared
Error (MSE) as

2

MSE(fxx(0),W) = E {VGC(J?XX(O) — fxx(0))'W vec(fxx(0) — fXX(O))} ,

2

for some m? x m? positive semi-definite weight matrix IW.



Theorem 1 Let Assumptions 1-3 hold. Then, we have:
(a) limg—oe (T2/p) (Efxx(0) = fxx(0)) = =g/ X (0).

~1/2 ~
(b) im0 (%ﬂg) Var (Vec(fXX(O))) = (I + Kumm) fxx(0) ® fxx(0).
(¢) If p° /T8 — ¥ € (0,00), then

Jim TY5MSE( fx x (0), W)

= 92/5¢%vec (f)(?;((O))/erc( )((2;((0))

1/2
+ <%> 90 {W (I + Konm) fxx(0) ® fxx(0)} .

Results (a) and (b) of Theorem 1 are similar to those for the LRV estimate based
on a sharp origin kernel in PSJ (2003). They also bear similarities to those for
conventional LRV estimates as given, for example, in Andrews (1991). Note that the
asymptotic variance of fx x(0) depends explicitly on fxx(0) and the Parzen exponent
parameter pg. In fact, as the proof of part (b) makes clear the asymptotic variance
of fxx(0) can be written in the more conventional form

1
[ R @ eI+ Ko (Fxx(0) @ £x(0)),

involving the second moment of the kernel &, (x). However, as p — oo, k, () con-
centrates at the origin and a Laplace approximation gives

[ = () avo. (13)

as shown in (58) in the Appendix. Thus, the critical parameter affecting the asymp-
totic variance is g, the Parzen exponent of the mother kernel & (x) . This point turns
out to be important in constructing comparable exponent sequences for comparing
kernels as discussed below.

Since k, (x) becomes successively more concentrated at the origin as p and T
increase, the overall effect in this approach is analogous to that of conventional HAC
estimation where increases in the bandwidth parameter M ensure that the band of
frequencies narrows as T' — oo. The increase of the asymptotic bias and the decrease
of the asymptotic variance with pg reflect the usual bias/variance trade-off. As in
the conventional case, the absolute asymptotic bias increases with the curvature of
the true spectral density at the origin. R

Observe that when p°/T® — ¥ € (0,00), MSE(fxx(0), W) = O (T~%%). So
fXX(O) converges to fxx(0) at the rate of O (T*2/5) , which is a faster rate than
in the case of the sharp origin Bartlett kernel. In the latter case, the optimal rate
for the exponent was found to be p = O (T 2/ 3) and the rate of convergence of the
estimate to be O (T~1/3) . The T—2/3 rate of convergence for the steep origin kernel
estimate represents an improvement on the sharp origin Bartlett kernel. Note that the



T—2/5 rate for the steep origin kernel estimate is the same as that of a conventional
(truncated) quadratic kernel estimate with an optimal choice of bandwidth (e.g.,
Hannan, 1970; Andrews, 1991).

With the given expressions for the asymptotic MSE, we may proceed to compare
different mother kernels. However, the mother kernels satisfying Assumption 1 are
not subject to any normalization. In other words, both k(z) and k%(x) for any
a € R can be used as mother kernels to construct steep origin kernels. It is therefore
meaningless to compare two kernels using the same sequence of exponents. To make
the comparison meaningful, we use comparable exponents defined in the following
sense. Suppose ki(z) is the reference kernel and p;,1 is a sequence of exponents to
be used with ki(x). Then the comparable sequence of exponents for kernel ko(z) is
P2 such that

-1/2 —1/2
. 7T (1) L 7T 22)
Jim (2 pT,1> Var (VeC(fXX(O))) = (2pm> Var <Vec(fXX(0)))(7 |
14

where f)((lg( (0) and J/”\)((Q;( (0) are spectral density estimates based on ki (x) and ka(x),
respectively. In view of Theorem 1(b), this definition yields

Pr2 = 910T,1/92a (15)

where g; and gy are the Parzen parameters for the two kernels (i.e. g1 = —1/2k; (0),
g2 = —1/2k,(0)). The requirement (15) for pp,; and pg,e to be comparable expo-
nent sequences adjusts for the scale differences in the kernels that is reflected in the
asymptotic approximation (13) of the second moment of the mother kernel.

When comparable exponents are employed, it is easy to see that the pairs (k1(x), pr 1)
and (k2(), p2) produce estimates with the same asymptotic bias, variance and MSE.
This is expected, as the second order derivative k" (0) is the only parameter that ap-
pears in the expressions for asymptotic bias, variance and MSE. Alternatively, we can
normalize the mother kernels first and then compare the mean squared errors of the
resulting LRV estimates, using the same exponent. As an example, let the Parzen
kernel be the reference kernel. The normalized Tukey kernel is,

cos )\ 2™
(o) = (S5) T gl <), (16)

Then, for any p satisfying Assumption 3, (kpr(x))” and (k9 (x))? will deliver LRV
estimates with the same asymptotic MSE.

Thus, our asymptotic theory shows that all quadratic kernels are equivalent as-
ymptotically. In effect, since the exponentiated kernels concentrate as p,T — oo,
what matters asymptotically is the local shape of the mother kernel at the origin.
When comparable exponent sequences as in (15) are employed, it follows that the
asymptotic MSE’s of the kernel LRV estimates are the same for all mother kernels
with the same Parzen exponent (here g = 2).

The equivalence of quadratic kernels in our context is in contrast to earlier re-
sults in the LRV /spectral density estimation literature. In the conventional spectral



density estimation, Priestley (1962; 1981, pp.567-571) showed by a variational argu-
ment that the quadratic spectral kernel is preferred in terms of an asymptotic MSE
criterion to other quadratic kernels when comparable bandwidths are used. Later,
Andrews (1991) utilized this result in the context of LRV/HAC estimation. Priest-
ley’s variational argument involves optimizing a quadratic functional with respect
to the spectral window. In the case of steep origin kernels, Lemma 2 below shows
that the spectral window K,()\) has the same asymptotic normal behavior (up to
scaling by the fixed parameter g) for all quadratic kernels windows. This explains
the asymptotic MSE equivalence of steep origin quadratic kernels.

Of course, the equivalence of quadratic kernels in our case holds only asymptoti-
cally when T is large. In finite samples, different quadratic kernels lead to estimates
with different performance characteristics and they are well known to have different
properties. For example, the Parzen kernel is positive definite and the resulting LRV
estimate is guaranteed to be nonnegative. This property is certainly desirable and is
not shared by the Tukey-Hanning kernel which is not positive definite.

2.3 Optimal Exponent Selection

Theorem 1(c) reveals that there is an opportunity for optimal selection of . The first
order condition for minimizing the scaled asymptotic MSE is

1/2
= 1—10 <2—7;> 90t (W (T + Kom) fxx(0) ® fxx(0)}, (17)
leading to
1/2 2
g (2—7;) tr {W(I + K ) fxx(0) ® fxx(0)}

4g2vec (fg?;((O))/ Wvec ( )((2;((0))
So the optimal p is
2/5
T8/55-1 Vtr {W (I + Kmm?fXX(O) ® fxx(0)}
4+/2vec ( )((2))((0)) Wvec ( )((2;((0))

For illustrative purposes, suppose X; is a scalar AR(1) process such that X; =
aX; 1+ €, € ~iid(0,02). Then

pr= (18)

2 1 aQ 0_2 2c @ o2 2a

7z __- and f |
2m (1 — )2’ XX " 2r (1 —a)? (1 4+ )’ XX om (1 — )t

fxx(0) =
Hence,
N\ 2/5
Peep = T <@u> . (19)

16 o?

9



For this choice of p, the RMSE is

RMSE?,.., = 2.13067~%/5a!/5 (1 — a)71¥/5 . (20)

steep

In contrast, when sharp origin kernels are used in the construction of fx x(0), PSJ
(2003) showed that the optimal exponent satisfies

o 2 1/3
o e ((1—0?)
psharp =T / ( A2 ) (21)
and the resulting RMSE is
RMSEZ g, = V3T /3 (1 —a) 2. (22)

The ratio of the respective RMSE’s of the sharp and steep kernel estimates is

RMSE 01, ,
sharp _ /15 1 \2/5 —1/5
e = 08120471 (1 - )7 0”12, (23)

steep

Table 1 tabulates p} for the sharp origin kernel and the steep origin kernel for
different values of T. For steep kernels, we choose the Parzen kernel as the mother
kernel as it is representative of other quadratic kernels. As implied by the asymp-
totics, the values of p%. are much larger for the steep origin kernel than the sharp
origin kernel. Since the ratio RMSEy,,.,/RMSEf,, is of order T/15, the sharp
kernel estimate is 100% less efficient asymptotically than the steep kernel estimate.
Finite sample performance may not necessarily follow this ordering, however, and
will depend on the magnitudes of T, f, f1) and f*). For example, in the AR(1) case,
when the autoregression parameter is very close to 1, the sharp kernel estimate may

have a smaller RMSE than the steep kernel estimate for moderate T

Table 1: Asymptotically Optimal p* for the Sharp Kernel
and Steep Kernel for AR (1) Processes

Sharp Kernel Steep Kernel

@ T=50 100 200 1000 T=50 100 200 1000
a=.04 73 115 184 538 510 1548 4693 61634
a=.09 42 67 106 311 245 742 2251 29574
a=.25 20 32 52 152 79 240 729 9584
a=.49 11 18 28 84 25 75 229 3018
a=.81 3 4 7 22 3 10 31 415
a=.90 2 3 5 17 1 3 10 136

2.4 Central Limit Theory

We proceed to investigate the limiting distribution of Fxx(0). In view of (11) and (12),
it is apparent that the asymptotic distribution of fx x (0) is that of a smoothed version
of the periodogram and depends on the spectral window K,(Xs), whose asymptotic
form as T — oo is given in the next result.

10
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Figure 3: Spectral Windows of Steep Parzen Kernels

Lemma 2 Let Assumptions 1 and 3 hold. Then, as T — oo

T 7T282
K,(\) = % exp (— — )<1+o<1>>

0 (\%)2 Jor s <O(/p),
O (Te\;—)p; ) for s > O(y/p).

It follows from Lemma 2 that K, (\,) is asymptotically equivalent to

2142
VIT o (ZTXY (24)
VPg 4pg

which is proportional to a normal density with mean zero and variance of order
O (p/T?) . The graph of K,()\) with Parzen kernel as the mother kernel is shown in
Fig. 3 for T?/p = 10, 20,50 and T = 200. The graph shows that the exact expression
as defined in (9) is almost indistinguishable from the asymptotic expression as defined
in (24). The peak in the spectral window at the origin increases and the window
becomes steeper as T?/p increases because K, (0) = O (T/\/p), as is clear from
Lemma 2.

11



Theorem 3 Let Assumptions 1-3 hold, then

4 B0 = 1) = v (0, (5)

As in the proof of Lemma 2, the derivation of this result makes use of the Laplace
method to approximate integrals (see, e.g. De Bruijn 1982). The asymptotic normal-
ity result permits us to make inference on fxx(0), which we discuss further in the
following section.

1/2

(I + Kpmm) fxx(0) ® fXX(O)> )

3 Spectral Density Estimation with Steep Origin Ker-

nels

We consider estimating the spectral density at an arbitrary point w € (0,7) and
extend the asymptotic theory of the previous section to this general case. The results
for w = 0 (and also w = 7) given above continue to apply with minor modifications.
The steep kernel estimator of fxx(w) is

Fxx(w Z Ko( eihe (25)

—T+1

where 7}, is defined as before. When w = 0, the estimator reduces to the estimator
in (2).

Following arguments similar to those in Section 2.2, we can prove the theorem
below.

Theorem 4 Let Assumptions 1-3 hold. Then for w # 0,7,
(a) limr_.o0 (T?/p) (E]?XX(w) - fXX(w)> = —gf)(?;((w) where

x(w) =D Wyt (26)

/2 ~
() limre () Var (vee(fxx(@))) = fxx(@) @ fix ().
(c) If p°/T® — 9 € (0,00), then

TIE};O T4/5MSE(fXX( ), W)

9?5 gPvec (f)(?;((w))/ Wvec ( )((2;( (w))

A\ 1/2 o ,
+ <2_g> 9~/ 104y {W[fXX(w>®fXX(w)]}‘
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Theorem 4 shows that the earlier asymptotic results for bias, variance and MSE
continue to apply for w # 0. The only difference between the case w = 0 (or w = 7)
and w € (0,7) lies in the asymptotic variance. This is typical of the literature on
spectrum estimation. The rates of convergence are the same for all w € [0, 7] and the
optimal power parameter that minimizes the asymptotic MSE is still of order T%/5.
The optimal power parameter now depends on f)(?;( (w) and fxx(w).

To establish the limiting distribution of fX x(w), we proceed as in Section 2.2 by
developing an asymptotic approximation for the spectral window K (As — w).

Lemma 5 Let Assumptions 1 and 3 hold. Then, as T — oo

— 2ms)?
K\ —w) = %exp (—%) (1+0(1))

0 (%) for |wT — 27s| < O(/p),

a @) (% exp (—%)) for |wT' —2ms| > O(/p).

The asymptotic approximation is the same as that in Lemma 2 except that K, ()
now concentrates around w. This is apparent, as Lemma 5 shows that K (A\s —w) is
exponentially small when |wT — 2ms| — co. Note that K, (As) can be written as

% exp (—%) (1+0(1)). (27)

Therefore, the asymptotic approximation to the spectral window is proportional to
a normal density with mean w and variance of order O (p/T 2) .

Using this asymptotic representation of K (As —w), we establish the following
central limit theorem for fxx(w).

Theorem 6 Let Assumptions 1-8 hold. Then

™

pt/* {J/C\XX(W) - fXX(w)} —a N (07 <2_g> v fxx(w)® fﬁ(X(W) ;

for w #0,m.

Again, the asymptotic distribution continues to hold with obvious modifications.
The asymptotic normality results in Theorems 3 and 6 are related, of course, to much
earlier results in the time series literature (see, e.g., Anderson, 1971) on the asymp-
totic normality of conventional spectral density estimates under regularity conditions
on the bandwidth expansion rate.

Using the asymptotic normality of ]?X x (w), we may construct pointwise confidence
regions for fxx(w) in the usual manner. When X is a scalar process,

pt/t {fXX(W) - fXX(W)} —a N (0,V?),

13



where
s

1/2
VZ=(1+6d0w) (@> frx(w)and dgp = 1{w=0,7}.
Thus, an approximate 100(1 — @)% confidence interval is
[Frx() = (/25747 Frx(w) + ev(a/2)p 7] (28)
where
R T \V2
=) (5] Bxo) (29

and cv(a/2) is the critical value of a standard normal for area a//2 in the right tail.
In finite samples, the quantity p~/2V? in (28) may be estimated by

T-1

V2= (1+60.) {% Zkz(%)cos%s} Fix(w). (30)
s=1

The latter expression comes from the proofs of Theorems 3 and 6. With this variance
estimate, the 100(1 — )% confidence interval becomes

[fXX (w) — cv(a/2)V, Fxx(w) — cv(a/z)ﬂ . (31)

The above confidence interval may have a coverage probability closer to the nominal
significance level than that based on the direct asymptotic expression.

The asymptotic covariance between fX x(w;) and ]?X x (wj) for w; # wj is given in
the next result.

Theorem 7 Let Assumption 1-3 holds, then for w; # w;

Tlgléo p'/%cov (vec(]?XX (wi), vec(]?XX (wj)> =0. (32)

According to this theorem, fyx (w;) is asymptotically uncorrelated with Fxx (wy)
for any fixed w; # wj, a result that is analogous to that for conventional spectral
density estimators. Intuitively, fX x(w;) is a weighted average of the periodogram
with a weight function that becomes more and more concentrated at w;. The asymp-
totic uncorrelatedness of fx x (w;) across points on the spectrum is therefgre inherited
from that of the periodogram. In fact, the proof of theorem shows that fxx (w;) will
be asymptotically uncorrelated with fxx(w;) unless w; and w; are sufficiently close
together in the sense that |w; —w;| = o(\/p/T). Therefore, \/p/T may be regarded
as the effective width of the spectral window K, ().

4 Finite Sample Performance

In this section, we examine the finite sample performance of steep Parzen kernel
methods in LRV/HAC estimation and robust regression testing in comparison with
sharp Bartlett kernel and conventional Parzen kernel methods.

14



4.1 Spectral Density Estimation

~

We explore the finite sample properties of the new spectral density estimator f(w)
at different frequencies. The frequencies considered are w = 0, 7/6, and 7/4, which
include the low frequency and business cycle frequencies. In order to compare the
performances in a more demanding setting, we allow for spectral peaks at these
frequencies.

To illustrate, suppose X; is a scalar AR(2) process: X; = aX;_1+bX;_9+¢c¢ with
et ~ tid N(0,1). This process has a spectral peak at w if

a

b= ————
a—4cosw’ (33)
provided that
1-b

See Priestley (1981, pp. 241). Fig. 4 depicts combinations of (a,b) satisfying (33) for
w =0, /6, and /4, together with the stationary triangular region of the parameter
space for the AR(2) process X;. Thus, a € [0,2) for a stationary AR(2) process with
spectral peak at w = 0, a € [0,+/3) for a peak at w = /6, and a € [0, /2) for a peak
at w = /4. Accordingly, for our simulations, we select a = 0,0.4,0.8,1.2,1.6 in the
second case, and @ = 0,0.4, 0.8, 1.2 in the third case, together with b = a/(a—4 cosw)
for different values of w. Figs. 5, 6, and 7 display the corresponding spectral densities
of the X; process with peaks at w = 0,7/6, and 7/4, respectively, for a = 0,0.4,0.8
and 1.2. When a = 0, the process is white noise and its spectral density is flat in
each case. As a increases, we move closer to the boundary of the stationary region,
and the spectral densities become progressively more peaked at the corresponding
values of w. The second order derivative of the spectral density at the origin is zero
for an AR(2) process that has a peak at zero, c.f. Fig. 5. Thus, the bias is expected
to be of smaller order and our optimal exponent formula does not apply for that
case. Instead, we use an AR(1) process which has a spectral peak at zero, and select
a=0,0.2,0.4,0.6,0.8.

From Theorem 4 in the last section, we can show that for steep origin kernels the
optimal exponent at w # 0, 7 is
2/5
_ T2 (w
=T8¢~ ff)((;;( ) AR (35)
W3 (15 @)

An analogous analysis shows that for sharp origin kernels the optimal exponent at
w# 0,7 is

S
psteep

1/3

. fixw
psharp:T2/3 L() ’ (36)

2 (F )
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Figure 4: Stationary region and (a,b) combinations satisfying b = a/(a — 4 cosw) for

w=0,m/6, /4

a=0

a=0.4
a=0.8
a=1.2

Figure 5: Spectral density of AR(2) process with peak at w =0
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Figure 6: Spectral density of AR(2) process with peak at w = 7/6

Figure 7: Spectral density of AR(2) process with peak at w = 7/4
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and for the conventional estimator with Parzen kernel the optimal bandwidth at
w# 0, is
9 271/5
s |2 (£ W)
Sr =2.6614T"° | =————| . (37)
XX (w)

Table 2: Ratio of RMSE of steep and sharp estimators to RMSFE of Parzen estimator
using AR(1) plug-in exponents or bandwidths for X; = aX;_1 +bXy_o + ¢4
with b= 1, na/(a —4cosw) and g, ~ iid(0, 1).

T =50 T =100 T =200

a Sharp Steep Sharp  Steep Sharp Steep

w=0 00 0929 0.987 0.946 0.984 0.954 0.983
0.2 0.945 0.993 1.007  0.994 1.063 0.995

0.4 0.955 0.994 1.027  0.995 1.091 0.994

0.6 0.922 0.988 0.996  0.995 1.067 0.995

0.8 0.850  0.945 0.917  0.986 0.995 0.995

w=mn/6 0.0 0.956  0.988 0.948  0.987 0.949 0.987
0.4 0.901 1.000 0.949  1.008 0.982 1.015

0.8 1.138  0.995 1.329  0.994 1.557 0.991

1.2 1.062 0.993 1.098  0.997 1.137 0.997

1.6 0.994 1.007 0.960  1.004 0.915 1.008

w=mn/4 0.0 0.980 0.991 0.985  0.989 0.972 0.988
0.4 1.014 1.003 1.084  1.006 1.179 1.010

0.8 1.157  0.999 1.204  1.003 1.244 1.006

1.2 1.035 1.005 1.014  1.008 0.984 1.013

For data-based implementation of these formulae, we use both AR(1) and AR(2)
plug-in approaches (as in Andrews, 1991). The RM SE's of the different methods are
compared for T' = 50, 100, 200 in Tables 2 and 3. It is clear that for w = 0, both the
steep and sharp estimators outperform the conventional Parzen estimator when the
sample size is small. As T becomes larger, the steep estimator continues to outperform
the Parzen estimator, while the sharp estimator outperforms the latter only when
the AR(1) process is close to extreme cases like white noise or nonstationarity. For
w = m/6 and 7/4, the steep kernel estimator seems to outperform the sharp kernel
estimator in most cases when we use the AR(2) plug-in approach, while the sharp
estimator is better when the AR(2) process is close to extreme cases like white noise
or nonstationarity.
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Table 3: Ratio of RMSFE of steep and sharp estimators to RMSE of Parzen estimator
using AR(2) plug-in exponents or bandwidths for X; = aX;_1 +bXy_o + ¢4
with b= 1y, na/(a —4cosw) and g, ~ iid(0, 1).

T =50 T =100 T =200
a Sharp  Steep Sharp  Steep Sharp Steep
w=0 00 0877 0.986 0.907  0.983 0.922 0.982
0.2 0.899 0.990 0.968  0.992 1.028 0.995
0.4 0922 0.991 0.990 0.997 1.044 0.998
0.6 0.896 0.983 0.970  0.996 1.048 0.996
0.8 0.835 0.932 0.903  0.982 0.985 0.995
w=m/6
0.0 0914 0.990 0.943  0.988 0.960 0.987
0.4 0996 0.999 1.048  1.003 1.074 1.008
0.8 1.052  1.000 1.079  1.003 1.097 1.002
1.2 0.996 0.988 1.032  0.997 1.074 0.999
1.6 0.989 0.935 0.960  0.960 0.985 0.986
w=m/4
0.0 0923 0.992 0.936  0.991 0.942 0.991
0.4 1.022 0.999 1.060  1.000 1.086 1.000
0.8 0.997  0.993 1.040  0.998 1.093 0.998
1.2 0942 0.954 0.978 0.984 1.033 0.997

Table 4: Ratio of RMSFE of steep and sharp estimators to RMSFE of Parzen estimator
using infeasible exponents or bandwidths for X; = aX; 1 +bX¢ o + &4,
with b = 1¢,.01a/(a —4cosw) and g ~ iid(0, 1)

T =50 T =100 T =200
a Sharp  Steep Sharp  Steep Sharp Steep
w=0 02 0989 0.992 1.037 0.991 1.091 0.992
0.4 1.008 0.993 1.061 0.993 1.122 0.992
0.6 0.999 0.994 1.042 0.996 1.101 0.993
0.8 0.940  0.996 1.000 0.994 1.045 0.996
w=m/6
0.4 1.023  1.000 1.061 1.000 1.122 1.000
0.8 1.064  1.000 1.113 1.000 1.163 1.000
1.2 1.006 0.988 1.045 0.994 1.096 0.996
1.6 0996 0.974 0.988 0.978 1.021 0.997
w=m/4
0.4 1.041  1.000 1.085 0.996 1.129 0.993
0.8 1.011  0.992 1.053 0.994 1.107 0.995
1.2 0981  0.978 1.010 1.000 1.064 0.998

If we assume the data generating processes are known, a comparison of the RM SE
of the different methods is presented in Table 4. The steep kernel estimator is better
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than the other two procedures for most cases when w = 0, and when w = 7/6 and 7 /4,
especially when the AR(2) parameters are close to the boundary of the stationary
region. This suggests that the steep kernel estimator has the potential to do better
in worse situations (i.e., when there is a large peak in the spectrum) when w # 0.

4.2 Robust Hypothesis Testing

Using the steep kernel LRV estimator, we propose a new approach to robust hypoth-
esis testing. Consider the linear regression model:

gy =20 +u, t=12..T, (38)

where wu; is autocorrelated and possibly conditionally heteroskedastic and z; is an
m X 1 vector of regressors. Suppose we want to test the null Hy : B3 = r against the
alternative Hy : R3 # r where R is a p x m matrix. Let 3 be the OLS estimator and
Q be 1/TS°L | 22, Then the usual F-statistic is

~ ~ s~ -1
F; = T(RB —r) (RQ7'Q,Q7'R')  (RB—1)/p, (39)

or, when p = 1, the t-ratio is
* 1/2/pR 315 A-1p) V2
tr=TY*(RB —r) (RQ 0,0 R) : (40)

where Qp = 27 fxx(0), fxx(0) is defined in (2) with X; replaced by z(y, — z,5).

Let p be the data-driven exponent as defined in (19) with « replaced by the first
order autocorrelation of X;. Using the results in the previous sections and following
the arguments similar to the proof of Theorem 3 in PSJ (2003), we can show that
under Assumptions 1-3,

pF; = W) (1)W,(1) =a X3, t5 = Wi(1) =4 N(0,1), (41)
under the null hypothesis, and
PE: = (M le+ Wo(1)) (A le+ WD), £ = (v + Wi(1)), (42)

under the local alternative hypothesis H; : RS = r+c¢I'~ /2. Here A*A* = RQ 1QQ 'R/,
7 =c(RQT'QQ'R)~1/2, and W, (r) is p-dimensional standard Brownian motion.

The above limiting distributions hold under large p asymptotics in which the
exponent p approaches infinity at a suitable rate so that we have consistent HAC
estimates. It is known that consistent HAC estimates are not needed in order to pro-
duce asymptotically valid tests. PSJ (2003) showed _that under fixed p asymptotics,
i.e. when T' — oo for a fixed p, the LRV estimator €, is inconsistent. Nevertheless,
they showed that the FJ and ¢} statistics have the following limiting distributions.
First, under the null Hy : RS =,

pE} = W(1) ( [ 1 / ol s)dw)dvp’@)l Wy(1), (43
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and
—1/2

£ = Wil <// r—stl()dVl()> . (44)

Second, under the local alternative H; : RS = r + ¢T'—1/2,

PF? = (Al + Wy(1 (/ / ()dvpf(s)>1 (A*Tet Wy(1)),

(45)

and
~-1/2

= (M (// r—sdm)dvm) . (46)

In these formulae, k,(-) is any positive semi-definite kernel (so the steep Parzen kernel
may be used), and V,(r) is p-dimensional standard Brownian bridge.

Given the above fixed p asymptotics, the critical values for different p values
can be simulated and tabulated. For details, the reader is referred to PSJ (2003).
It turns out that the critical values at a given significance level can be represented
approximately by a hyperbola of the form:

b
p—a

v = +c, (47)
where ¢ is the critical value from the standard normal. Table 5 presents nonlinear
least squares estimates of ¢ and b and the standard errors of the nonlinear regressions.
The standard errors are seen to be very small. Fig. 8 depicts the fitted hyperbolae
for different significance levels. The figure shows the curves are nearly flat for large
p and for p > 60 the critical values are very close to those from the standard normal.
This is not surprising as the t-statistic is asymptotically normal under the large p
asymptotics.

Table 5: Asymptotic critical value functions for
the one-sided ¢7-test with steep Parzen kernels

90.0% 95.0% 97.5% 99.0%

a —2.152 —1.884 —2.036 —2.370
b 4.260 6.604 10.012 16.015
1.282 1.645 1.960 2.326

s.e. 0.001 0.002 0.005 0.007

We now proceed to investigate the asymptotic power of the t* test under both the
fixed p asymptotics and the large p asymptotics. For convenience, we refer to these
two tests as the t7, test and the t% test, respectively. For the t% test, the power curve
is the same as the power envelope that is obtained when the true ) or any consistent
estimate is used. For the ¢} test, we consider three values of p: p = 1,16 and 32. For
each p, we approximate the Brownian motion and Brownian bridge processes by the
partial sums of 1000 normal variates. Fig. 9 presents the asymptotic power curves
based on 50,000 simulation replications. It is apparent that the power curve moves
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Figure 8: Asymptotic critical value curves for various significance levels

up uniformly as p increases, just as it does with sharp origin kernels (PSJ, 2003).
The difference is that with sharp origin kernels, when p > 16, the power curve is
very close to the power envelope, whereas much bigger values of p are needed here,
consonant with the power parameter expansion rates established for consistent HAC
estimation earlier in the paper.

Compared with the t7 test, the t% test has obvious power advantage. However, as
with other tests that use consistent LRV estimates, the t% test has larger size distor-
tion than the ¢7 test in finite samples. Before studying the finite sample performances
of these two tests, we introduce a new test that seeks to combine the good elements
of both procedures. The new test uses the same t3 statistic defined in (40) with
a data-driven p. The point of departure is that, instead of using the critical values
from the standard normal, we propose to use the critical values from the hyperbola
defined in (47). The new testing procedure is thus a mixture of the t% test and the ¢7
test. As a result, the new test has the dual advantage of an optimal choice of power
parameter that is data-determined and at the same time the good finite sample size
properties of the ¢7 test. The latter point will become clear below. Since the critical
value from the hyperbola approaches that from the standard normal as p — oo, the
new test is equivalent to the t% test in large samples. We will refer to the new test
as the 7., test hereafter.

To compare the finite sample performances of the t* tests (including the t7, test,

t5 test and t,,, test) with steep Parzen kernels and the conventional (i.e., bandwidth
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Figure 9: Asymptotic Local Power Function of the t* Tests

truncated) ¢ test, we use a simple location model
Yt = P+ U,

where uy = ajup1 + asup_9 + ey, e; are iid(0,1). We consider the null hypothesis
Hy : = 0 against the one-sided alternative H; : p > 0. We use the Parzen kernel
to construct the conventional t-statistic, which is labeled ¢t 4¢. In computing ¢tz 4c,
the bandwidth is chosen by the AR(1) plug-in approach as in Andrews (1991).
Table 6 presents the finite sample null rejection probabilities via simulation for
T = 50 and 200. The simulation results are based on 50,000 replications. For the
t and t7,,, tests, rejections were determined using the asymptotic 95% critical value
based on the hyperbola formula (47). For the t% and tyac tests, rejections were
determined using the 95% critical value from the standard normal. The results for
the ¢7 test with a fixed p are very similar to those of the test with sharp Bartlett
kernels. First, in all cases, the size distortions of the t7 tests are less than those of
the tgac-test. This is true even for large p. Second, the size distortion increases with
p- But as T increases, the null rejection probabilities approach the nominal size for
all cases. Simulation results (not reported here) show that with the increase of p,
the size distortions of the ¢7 test constructed using steep Parzen kernels increase less
dramatically than those using sharp Bartlett kernels. Third, when the errors follow an
AR(1) process, the size distortion of all tests becomes larger as a; approaches unity.
However, compared to sharp Bartlett kernels, the incremental size distortion is less
(not reported here). The size distortion of the t% test is close to or slightly less than
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that of the t ¢ test, which is expected, since we use the same asymptotic critical
value (1.645) for both tests. Compared with the t}, test for p = 1, 16, and 32, the (o
test has larger size distortion, especially when the error process is persistent. Using
the adjusted critical values, the t., test has significantly smaller size distortions
than the t% test, especially in cases where the t% and ty 4o tests perform worse. In
fact, the ¢}, test achieves the best size properties among all the tests considered

except the ?7 test.

Table 6: Finite Sample Null Hypothesis Rejection Probabilities
for a Location Model y; = p + u; with w; = ajug 1 + aguy o + ey,

uo =u_1 =0 and e; ~ #id(0, 1)

a ay  tgac 5 fhe, o Thlg hog
T=50 —0.500 0.000 0.054 0.047 0.042 0.050 0.050 0.054
0.000  0.000 0.060 0.059 0.056 0.055 0.052 0.060
0.300  0.000 0.078 0.077 0.069 0.058 0.056 0.066
0.500  0.000 0.097 0.096 0.076 0.062 0.066 0.078
0.700  0.000 0.127 0.127 0.082 0.069 0.086 0.110
0.900  0.000 0236 0.227 0.117 0.102 0.184 0.219
0.950  0.000 0.310 0.291 0.155 0.136 0.257 0.288
0.990  0.000 0.384 0.350 0.191 0.175 0.331 0.364
1500  —0.750 0.144 0.129 0.033 0.050 0.022 0.026
1.900  —0.950 0.361 0.147 0.029 0.029 0.030 0.047
0.800  0.100 0.238 0.234 0.131 0.106 0.196 0.230
T = 200
—0.500  0.000 0.046 0.048 0.048 0.059 0.054 0.057
0.000  0.000 0.057 0.056 0.056 0.059 0.054 0.057
0.300  0.000 0.068 0.069 0.067 0.061 0.055 0.057
0.500  0.000 0.074 0.074 0.071 0.061 0.056 0.058
0.700  0.000 0.086 0.086 0.078 0.062 0.059 0.063
0.900  0.000 0.129 0.129 0.088 0.069 0.089 0.101
0.950  0.000 0.175 0.174 0.099 0.084 0.131 0.154
0.990  0.000 0.326 0.308 0.165 0.148 0.273 0.312
1500 —0.750 0.085 0.083 0.051 0.058 0.051 0.050
1900 —0.950 0.199 0.173 0.046 0.051 0.027 0.014
0.800  0.100 0.134 0.133 0.097 0.071 0.094 0.107

There are always trade-offs between finite sample size and power. Fig. 10 shows
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Figure 10: Finite Sample Power for Location Model: y; = g+ ug, uy = 0.7u; 1 + ¢4
with T = 50

the finite sample power of these tests when a; = 0.7 without size correction. The
typical pattern in the figure is that the power curves of t;ac and t% are indistin-
guishable, and the power of the ¢7 test increases as p increases, just as asymptotic
theory predicts. When p > 32, the power of the ¢; test is very close to that of the
conventional robust t-test using the Parzen kernel. The ¢, test also has very com-
petitive finite sample power but much reduced size distortion. Simulation results not
reported show that, as a; moves away from unity, the power of the ¢}, test becomes
closer to that of the ty4c and t% tests. Fig. 10 also shows the size distortions of
the different tests, which are in the descending order: txac, t%, t;:32, t;‘;:m, 1y ew, and
»—1- This pattern is found to be typical in cases where the AR coefficient is large
but less than unity. Overall, the ¢}, test produces favorable results for both size
and power in regression testing and is recommended for practical use.

All the tests considered can be combined with prewhitening procedures such as
those in Andrews and Monahan (1992) and Lee and Phillips (1994). To save space,
we do not report the simulation results for the prewhitening version for the tests. We
remark that all the qualitative observations continue to apply but the size distortions

are smaller in all cases.
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5 Extensions and Conclusion

Exponentiating a mother kernel enables consistent kernel estimation without the use
of lag truncation. When the exponent parameter is not too large, the absence of
lag truncation influences the variability of the estimate because of the presence of
autocovariances at long lags. As has been noted by Kiefer and Vogelsang (2002a &
b) and Jansson (2002) and as confirmed in the simulations reported here, such effects
can have the advantage of better reflecting finite sample behavior in test statistics
that employ LRV/HAC estimates leading to some improvement in test size. When
the exponent is passed to infinity with the sample size, the kernels produce consistent
LRV/HAC and spectral density estimates, thereby ensuring that there is no loss in
test power asymptotically. Similar ideas can, of course, be used in probability density
estimation and in nonparametric regression.

One feature of interest in the asymptotic theory is that, unlike conventional ker-
nel estimation where an optimal choice of quadratic kernel is possible in terms of
MSE criteria, steep origin kernels are asymptotically MSE equivalent, so that choice
of mother kernel does not matter asymptotically, although it may of course do so
in finite samples. Another feature of the asymptotic theory of steep origin kernel
estimation is that optimal convergence rates (that minimize an asymptotic MSE cri-
terion) are faster for quadratic mother kernels than they are for the Bartlett kernel.
The corresponding expansion rate for the exponent is p = O (T 8/ 5) (leading to a con-
vergence rate of T2/ for the kernel estimate fX x) so that p tends to infinity much
faster than the sample size T'. The reason for this fast expansion rate is that quadratic
kernels have a flat shape at the origin and, since no bandwidth or lag truncation is
being employed to control the effect of sample autocovariances at long lags, the fast
rate of exponentiation ensures that the long lag sample autocovariances are suffi-
ciently downweighted for a central limit theory to apply. The use of flat top kernels
with bandwidth parameters and steep decay at long lags has recently attracted in-
terest in the nonparametric literature (e.g., Politis and Romano, 1997) and it may be
worthwhile pursuing these new ideas in conjunction with those of the present paper.

6 Appendix

Proof of Theorem 1. Part (a). Using E7), = v,(1 — %), we have

T2 1 72 h A 1

172 h LT2 G~ bl 1T

2 p Z [ p(T) }’yh 2m p Z p(T)TVh 2m p h
he—T41 h=—T+1 \h|=T

172 2 h 172 =, k| 1

- - ko) — 1| yh — o= — ko() " 4

21 p > [p(T) }Pyh 2m p 2 /)(T)T%JFO(KJ7 )

h=—T+1 h=—T+1
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where the last line follows because )Z\h\ZT 'yh) <772 DT |h?y|. We now con-
sider the first two terms in (48). The second term is bounded by
T-1

1 72 Ih| T1 T
2 7 >, =l o > [hllval O() =o(1) (49)
h=—T+1 h=—T+1

using Assumptions 2 and 3. The first term in (48) can be written as

T/logT

T-1 h h 3
h=—T+1 h=—T/logT T/log T<|h|<T

(50)
Noting that

2 2
T? > [’%(%)—1}% < L S il

T/ log T<|h|<T T/ log T<|h|<T

log? T log? T
<l oy h2m1=0< ,

T/log T<|h|<T P

and using Assumption 1(c), we obtain

T/logT

2 h T2 h log? T
— Z ko) =17 = — Z ko(7) =1 v+ o
P T P T P
h=—T4+1 h=—T/logT
T/logT h
k(T) - 2
h=—T/logT
= —g) My (1+0(1)). (51)
Combining the above results gives
T? 5
Jm FE(fXX( ) — fxx(0)) =~y Z v (52)

Part (b). We prove only the scalar case. The vector case follows from standard
extensions. Note that

Fxx(0 =—/ Ixx (N K, (N) dX. (53)

To find the asymptotic variance of fX x(0), we can work from the following standard
formula (e.g., Priestley, 1981, eqn. 6.2.110 on p. 455) for the variance of a weighted
periodogram estimate such as (53), viz.

Var { fxx(0)} = 2% (0 Z Rl L+ o (V)] (54)

—T+1
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which follows directly from the covariance properties of the periodogram of a linear
process (e.g., Priestley, 1981, p. 426).

To evaluate (54), we develop an asymptotic approximation of 7-1 371 A
Since k,(z) is differentiable by Assumption 1, it follows by Euler summation that the
sum can be approximated by an integral as

1 T-1 h 1
P> s <?> — [ B@de+ow), (55)

——T+1 sl

We use Laplace’s method to approximate the above integral. It follows from As-
sumption 1(b) that for any § > 0, there exists ¢ > 0 such that log k(x) < —( (§) for
|z| > 0. Therefore, the contribution of the intervals § < |z| < 1 satisfies

. ) 1 )
./5§|z|§1 k, (z) dx = ./6§:c|§1 exp{2plogk (z)}dx <exp[-2(p—1)((9)] '/_1 k* (z).

(56)
We now deal with the integral from —d to 6. From Assumption 2(c),
k(z)=1-gaz®+o0(z®), as  — 0 for some g > 0,
we have log k(x) = —gz? + o(2?). So, for any given € > 0, we can determine § > 0
such that
|log k() +g:1:2} <ex?, || <.
In consequence,
.5 -5 -0
/ exp [—2p(g + €)2?] dz < / exp2plogk (x)dx < / exp [—2p(g — €)2?] d.
J-s ) J—s
But
) ~00
/ exp [—2p(g + 5)952] der = / exp [—2p(g + 5):1:2] dz + O (e7%)
J—s J—co
= L + O (efpa) ,
2p(9 +¢)
for some positive a that depends on § but not p.
Similarly,
5
/ exp [—2p(g — 5)952] dr = _ VT +0 (e77).
J-s 2p(g —¢)
Therefore
5 o\ 1/2
/ exp2plogk (x) dx = <—> (14 0(1)). (57)
J=s 2pg
Combining (56) and (57) yields
1 ) - 1/2
ki(x)der = | — 1+o0(1)), 58
[ @ (g=) " (o) (59



which completes the proof of part (b).
Part (c). Part (c) follows directly from parts (a) and (b). m

Proof of Lemma 2. Approximating the sum by an integral, we have

Ky(\) = T Z k(L) eitsh — /qlkp(x)ei%”dﬂc(l+0(1))
—T+1 v

=T [1 exp p (log k(x) + log cos(2msx)) (1 + o(1)) . (59)

Using the Laplace approximation, we find that as p — oo, the contribution to the
integral in (59), as in the proof of Theorem 1(b), comes mainly from a small region
around = = 0, say (—¢, ) for some arbitrarily small § > 0. So there exists ¢ (§) > 0
such that

5
K,(\) = T,/_5 exp {p [log k(x) cos(2msx)]} (1 4+ o(1)) + T exp [—p¢ (8)] (1 + o(1))

- T/i“““““%”wwu+ou»+Temrmq®ul+mn>

-6
_ T / —pg$2+27r5md$ (1 + 0(1)) —+ TeXp [—,OC (5)} (1 + 0(1))

6
- T/ e P9 gy (1 4 0(1)) + T exp [—pC (8)] (1 + o(1))
_ T /°° ¢—po(a®+2msaipa—(x3)2/ () =72/ (09) 1 T excp [— p¢ (8Y] (1 + 0(1))
()
= exp| — | (1 +0o(1)).
N A (1+0(1))

Hence,

O (%2 for s < O(/p),

K,(\s) = 75
p( ) O(Te\/[_)9> fOI‘S>O(\/ﬁ)7

as desired. m

Proof of Theorem 3. We prove the results for the scalar case, the vector case
follows without further complication. Since fxx(0) = % Zzz_ol K,(As)Ixx(Xs) and

-1
KP(AS): Z k

s=0 h=—T+1 s=0

T-1 T 1

eths =T,

’ﬂlb
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we can write the scaled estimation error as

p'/4 {J/C\XX(O) - fxx (0)}
pl/4 -1

= = > Kp(As) Lxx(As) = fxx (0)]
s=0

1/4 T-1
= T D Ky Lxx () = firx (M)
7T
N Z ) [Fxx(As) = fxx (0)]. (60)
Using Lemma 2, we have
\/_T n2s? B
K,(Xs) = \/7 ( 0 ) (1+o0(1)), s=0,1,....[T/2]. (61)

By Assumption 2, |f% y(As)| < o= S A?|y,], so that

|fxx(Xs) — fxx (0 ( Z|h| |,yh|> A2,

Hence, the second term of (60) can be bounded as follows:

1/4T 1

ZK ) [fxx(As) = fxx (0)]

pL/A [T/2 i/ (T/2]

= —2 Z Kp(As) [fxx(As) — fxx (0)] ( Z [ Kp(A )\2)
B L/UTM JAT <_7r2s2> )
= O( T Sz% N exp p Ag

ge's) 2.2
= O <p1/4T2 / exp (—F 5 ) s2ds>
Jo P9

= O(p~YAT7%) = o(1). (62)

Then, by (60) and (62), we have
. 1/4 T—1
P! Txx (0) = Fxx (00} = B 37 Ko (0s) (Ixx () = fxx (M) + 0, (1).
s=0

In view of Assumption 2, we have X; = C(L)e; = > 22 Cje—;. The operator C(L)
has a valid spectral BN decomposition (Phillips and Solo, 1992)

C(L) = C(e™) + Cr(e™™ L) (e L — 1),

30



where Cy(e ML) = >0 CN’Aje*ij’\Lj and (/N’Aj = it C,e®**, leading to the rep-
resentation

X; = C(L)ey = C(e™)er + e e xi—1 — Ext, (63)
where -
Eyp = @(eﬂ'AL)gt - Z éAjefijAgt_j
=0

is stationary. The discrete Fourier transform of X; has the corresponding represen-
tation

_ 1 < itAs
w(As) = m;){ﬁ
= O ueh) + B — B
= C(eP)w.(\s) + Op(T?). (64)
Thus, using the fact that
— 27T 772 252
Sz:% [Kp(As)| = N 2 exp <— e ) (I+0(1))
_ vyl [ ex —7T282 s 0
- /Pg ./oo p< pg )d (1+o()
— ﬂ ~ ex — 82 S o
= g ‘/oo p< 2pg/(27r2)>d (I+0(1)) (65)
-1
VAT 1 )
I ( 27rpg/(27r2)> el
= O(T),
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we get

pt/* {J/C\XX(O) - Ixx (0)}

1/4T 1

= TZKp()\ )Ixx(As) — fxx(Xs)) + 0p(1)
s=0

-1
pl/4

T
1/4

T

[C(e'
pl/4 -1

=

NG

vy
Il
o

>4

X
,

Kp()\s)(w()\s)w()\s)* — fxx(

(A){[C(e™)

*Jwe(As) + Op(T™

As)) +op(1)

we(As) + OP(T71/2)}

1/2)]* — fxx(As)} +op(1)
1

1/4
= LS KT — 500 + 0, (p—TTfﬂ) +0,(1)
s=0

T—1
pl/4

T
s=0

= Kp(AS)[CQ(l)(IEE()‘S) -

1

S0+ 0y(1), (66)

where we have used p/T? — 0. The fourth equality follows because K,(\s) becomes
progressively concentrated at the origin. It can be proved rigorously using the same

steps as those after (77).
Let mq1 = 0 and for ¢ > 2,

t—1
my = ¢ E 6th_j
=1

where
1/4 T— 1
cj= 27r T2 ) cos(JAs))-
Then we can write
1/4 T-1 1
p
T s KP(AS)[C2(1)(IEE(>‘S) %U%]
T p1/4 ) T—1 1 1 T ) )
= 2;mt+ C2(1) S;K,,(As)% f;gt 0o
T p1/4 —1 1
= 2 m+ L) |3 K, 00)| On(—=)
t=1 s=0 T
T 1/4
P 1
> om0 (71 )
T
= 2 th +0,(1) (67)
t=1



By the Fourier inversion formula, we have

(68)

Hence

T 1/2 T . 1/2 1/2 1
2 _o| 2 200y o2 ([ —of(=
;CJ =0 | ;kp(T) O(:m (ng) T) 0(T>. (69)

The sequence m; depends on T" via the coefficients ¢; and forms a zero mean martin-
gale difference array. Then

T 44 1/2 1/2
t=1

by a standard martingale CLT, provided the following two sufficient conditions hold:

otCi(1) ([« 1/2
ZE tFi1) = =5 <%> —p 0, (70)

where F;_1 = o(et—1,&¢—2, ...) is the filtration generated by the innovations €5, and

> E(my}) —, 0. (71)

We now proceed to establish (70) and (71). The left hand side of (70) is

T t-1 ci(1) [ 7\ 2 T
2225 jCt—j W (—) +O'QZZ€T€]'C¢_TCt_j =5+ 1. (72

t=2 j=1 29 =2 1]

The first term, Iy, is
T—1 T—j T—1T—t F4CH(1) 1/2

o? 2(55—02)205 + ot c o2 <2 > = I+ L. (73)
j=1 s=1 t=1 j=1 9

The mean of 177 is zero and its variance is of order

=0 T(i(ﬁ)Q :O<%>,

2
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using (69). Next, consider the second term of (73). We have

!

—17T—j 1/2T 1T—j5

ZC = 47T2 T2 ZZkQ

=1 s=1 j=1 s=1
1/2T 1T-s

e IPILAC

s=1 j=1
1/2T 1

- 47r2 T Zl__kQ

4 T 1/2
- G () o)

ci1) [ 7w \V?
= (2) — +o(1).
8m 29
Here we have used the following result, obtained by means of the Laplace approxi-
mation:

M

Q

04
47r2

% 2(1 o LACIE '/000(1 — @)k2(x)dz(1 + o(1))

1e 2 +1) 1 V2T
e —ex — -
2 CP\VITS) g r 1
1/ = \2
= - |— 1 1)). 4
5 () o) (74)
We have therefore shown that
T t-1 44 1/2
9 o*C*1) (w
h=0Y > - —ga \3g) —»0
t=2 j=1

So the first term of (72) is op(1).
Now consider the second term, Iz, of (72). I has mean zero and variance

7 min(p—1,g—1)

2 Z Z (¢q—rCq—jCp—rCp—j)

P,q=2 T#]
T p—1 T p—1g-—1
= 0|2 Z Z c%_rcg_j +4 Z Z Z(cq_rcq_jcp_rcp_j) . (75)
P=2r#j P=3 q=2 r#j
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In view of (69), we have

T p—1 T 2 1
Y'Y ,2,=o(r|[>ye) | =o (?) | (76)
P=2r#j i=1
For the second component in (75), we have, using (69) and the Cauchy inequality,
T p—1lq—1 T p—1lq—1 q—1
DD W ITEEIRSES 3) 3) 3E I 38
p=3 q=2 r#j p=3q=2r=1 r=1
T T p—1qg-1 T T p—1 p—-1
<ayeys e (e (XX ¥
i=1 p=3 ¢=2 r=1 i=1 p=3 q=2 r=p—q+1
L Lopmlopl =
= 0 ?Z c? :O<T r(T—r—l)cf)
p=3 qg=2r=p—q+1 r=1
P1/2 — r 1/2 B
= 025 YT -1k ) =0 (p / /0 2(1 = 2)k( )d:c) (77)
r=1

We now show that .
p/? / (1 — x)ky(z)dx = o(1). (78)
Jo

To this end, we need the following result: if the function p(z) = x(1—x)k,(x) achieves
its maximum at z*(p) € (0,1), then 2*(p) — 0 as p — oco. The result can be proved
by contradiction. Suppose for any p, there exists an ¢ > 0 and p; > p such that
x*(pg) > €. Since x*(pg) > ¢, it follows from Assumption 1 that there exist a positive
number ((g) such that k(z*(py)) < 1 — ((e). Therefore

p(z*(pg)) < 2" (po) (1 — 2" (pg)) [1 = ()] < 4[1 = ((e)). (79)
But for large pg,

s/ = o (1= (1- i)% (+o() == +o1). (50

Po Po Po

Hence
p(1/po) > p(z™(po)) (81)

for large py. This contradicts with the fact that x*(py) is a maximizing point. So
lim z*(p) must be zero. We note, in passing, that we have effectively shown that
x*(p) is of order O(1/p). Since the function p(x) is strictly concave in a neighborhood
of zero, *(p) is the unique maximizer for any fixed p.

Given that p(x) has a unique maximizer z*, we can apply Laplace’s method to
approximate the integral ‘]61 p(z)dz. Let

sy = P ()
E(x*) E2(x*) °

(82)

35



then

1
/ (1 — x)k,(v)dx
J0

0

1
= / expllog(z) + log(1 — x) + log k,(z)|dz

_ ®(1 % * > _ 1 1 _1 2
= =) [ e (5 + g — o)) w1+ o)
1
= (0] — 5 83
<\/ﬁ> )
using lim,_oc #* = 0, lim, o k(2*) = —2¢ and k,(z*) = O(1) as p — oo.

Combining (76), (77) and (83) completes the proof of Iy —, 0. We have therefore
established condition (70).
It remains to verify (71). Let A be some positive constant, then the left hand side
of (71) is
T

t—1
27 Z E(Z Ssct—8)4
=2 =

1
T t—11¢ t—

3 r(EYS

s=1 r=1p=

t—1

E 6851"5p5qct sCt— T‘Ct—pct q

q=1
t

IN

T t—1

A ( th . +A§Tji

t=2 s=1 t=2 s=1r=

2
T
1 1
2 _
< ara-o(rk)-o(3).
using (69), which verifies (71) and the CLT.
With this construction, we therefore have

IN

cts —r
1

p LT ZK 9—%02)}

otC*(1) (= 1/2
= 2;mt+0p(1)—>d2N(O, 82 <%>

- N (07 0426:2(1) (%)1/2> =N (0,2 <21g>1/2 f§X(0)> .

This gives the required limit theory for the spectral estimate at the origin, viz.,

1/4T 1

p1/4{fXX(O)_fXX( } - T ZK J(Ixx (As) = fxx(As)) + 0p(1)

— 4N (0,2 (%)m f)Q(X(O)> .
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Proof of Theorem 4. Part (a) follows from the same arguments as in the
proof of Theorem 1(a). It remains to prove part (b) as part (c) can be easily proved
using parts (a) and (b). To prove part (b), we write

~ = T-1 h 27r
fxx(w) = 2— Z Jne " = 27r Z ko( ZIXX H2a—w)h
“T41
— Tz: 'L()\S—w)hl Tz:l k
=0 —T+1

T-1
= Tz (N —w) Ixx (Ns) .

As before, the variance of fxx (w) can be calculated using a standard formula (e.g.,
Priestley, 1981, eqn. 6.2.110 on p. 455):

—T+1
-\ 1/2
= @) (2—pg) 1+ 0(1)], (34)

where the last line uses (58). This complete the proof of part (b).
The stated result for the vector case follows directly by standard extensions (e.g.
Hannan, 1970, page 280). =

Proof of Lemma 5. Approximating the sum by an integral, we have

-1
KOMs—w) = T Z ky(=)el@mAdh = 1 / k() e@eT=2ms0)i g (1 4 0(1))
—T+1 =1

1
=T /1 exp p (log k(x) + log cos(waT — 27msz)) (14 o(1)). (85)

Proceeding as before, we approximate the integral using Laplace’s method. For some
small & > 0, we have

5
K,(\s) = T‘/(s exp {plog [k(x) cos(wzT — 2msz)]} (1 4 o(1))
5
= T‘/(s exp {plog[k(x)] + (WT — 27s) xi} dx (1 4+ o(1))
5
=T /6 exp {—pga® + (wT — 27s) wi} da (1 + o(1))

=T /IOO exp [—png + (T — 27s) i) dx (1 + o(1)) .

J =00
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Simple calculations give
K,(\) = Texp |- (T —27s)°/ (4pg)]

X /'00 exp —pg {mQ + (WT — 27s) i/ pg — ((WT — 27s)* /(2pg)?

J =00

- VT <_7(°"T — 2ms) > (1+0(1)

VPg 4pg
) 0 (Jlﬁ) 2 for |wT — 27s| < O(y/p),
wl'—2ms
O (Fpoxp (~5555)) for T = 2ms] > O()

and this completes the proof. m

Proof of Theorem 6. As before, we consider the scalar case as the vector case
can be proved by standard extensions. Note that

T-1
> KA\ —w) Z Ko ( Zez@s “Ih = Tk, (0) =T,
s=0 —-T+1 s=0

and K ()\s) is a real even periodic function of As with periodicity 2.
Without loss of generality, we assume that T is even. Let A; be the Fourier
frequency that is closest to w and

B,={s:s=J-T/2+1,J—-[T)/2,....J,J+1,....J +T/2}. (86)
Then the scaled estimation error can be written as

pt/* {fXX(W) — fxx (w)}

_ T ZK w) Ixx(Xs) — fxx (w)]
!/ -
- TZ (As —w) [Ixx(Xs) = fxx (As)]
€Ba
pT Z (As —w) [fxx(As) = fxx (w)]. (87)
€Ba

By Assumption 2, | fi x (M| < 2= 32 [B]|C ()], so that

|fxx(As) = fxx (w ( ZIhI T (h ) As —w].
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Hence, the second term of (87) is

1/4
ZK (As —w) [fxx(As) = fxx (w)]

SE€E By,

1/4
= ZK (As —w) [As —

(seB - \/—T (_%) Ms—w!>
of
(51

SEB,,

B 2
pT e Xp (—(WT4—27T8)> |27s —wT\)
seB, P9
2 2
p v T
= — ——— | vd
T 49 p > ’ U)
= pT = O 7 (88)
where we have used Lemma 5.
Combining (87) and (88) leads to
pt/t {]?XX( w) = fxx (w }: Z Kp (As —w) [Ixx(As) — fxx (As)] +0(1)
seB,
(89)
In view of (64), the frequency domain BN decomposition, we have
w(As) = C(e™)we(As) + Op(T71/2). (90)
Following the same steps in (65), we can show that
T-1
D Ky (As —w)| = O(T). (91)

s=0

Plugging (90) into (89) and using (65), we have
1“{&xwwaﬁxwﬁ
pl/4 :
85 {0

s€ By,

[C(ei’\s)wg()\s) + op(T—l/Q)} " fXX()\S)} +o(1)
_ P!/t Z K, O — ) Dc(ez’,\s)

SEB,,
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seB,,
1/4 2
P w12 o
= T Kp(As—w)}C(el )’ |:Iee(>‘5)_§:|
s€B,,
1/4 2
1Y 1 As jwy |2 o
2 X 80— ([oe)[ — 10enP) |1 00 - ] + 0.
s€B,,
(92)
where we have used p/T? — 0. But the second term in (92) is bounded by
1/4
ZK (As —w) [As —w| =0, (1) (93)
s€B,
by the smoothness of C(e™) and (88). Hence
1/4 2
1/4 [ 7 14 iwn |2 o
P {Frexte)  fex @)} = o 106 3 K0 00— 5] o
Let mq1 = 0 and for ¢ > 2,
t—1
my = ¢ Zej-ct,j (w)
j=1
where o
}C(ezw)‘ ,01/4 )
¢j(w) = "7 D (Kp(As — w) cos(jAs)).
SeBw
Following the same steps as in (67), we can write
p1/4 o2 T
Z K,(\s —w [ e (Ns) —%] =23 m+oy(1).  (95)
s€ By t=1
Simple calculations show that
Ce™)” p/t, .
¢j (w) = T p(T)coswj. (96)
Hence
- 2 P2 o 2( 1
;cj( T2 Zk = (T> (97)

We proceed to show that

T ot }C(eiw>’4 a0\ /2 o\ /2
2;mt -4 N (o, — <@> =N|{0,f%(w) <2—g> . (98)
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by verifying the following two sufficient conditions for a martingale CLT:

T 4 iwy |4 1/2
2 g }C(e )’ m
;E(mt 1) = — 7 2% —p 0, (99)
and .
ZE(mj}) » 0 (100)
t=1
The left hand side of (99) is
i atC*(1) [« 1/2
2 _
A St )~ TOW () ) S S e e () = T
t=2 j=1 t=2 r#j
(101)
The first term, 73, is
T—1 T—j T-1T—t 4 4 1/2
o*C*(1) (w
o? 2(53 o)) & (w) |+ o 632- (w) — 672 (%> = TIn+1o.
j=1 s=1 t=1 j=1
(102)
The mean of 771 is zero and its variance is of order
T 2 T 2 1
oS (5] | —ojr(Law) | -o(3),
1 \s=1 s=1
using (97). Next, consider the second term of (102). We have
T-1T—j ¢ 4 19 T-1Tj
2 }C ’ P 2
Z c; (w) = Z Z E2(2) cos? ws
7j=1 s=1 7j=1 s=1
}C(elw)él 1/2T 1T—s )
= o2 T2 Z Z o ( cos ws
s=1 j=1
C(e) 4p1/2 T-1
= }]_6—7'(2}? Z( )k2( )COS2U)S
}C(ei‘*’)}4 12 T 2
= == — 1+o(1 1
e (5] (1 ot) (103
_ e (2
162 \2g o
where (103) follows from the approximation
1< 2 2 T\
1——k: )cos“ws = | — 1+0(1)), 104
oY () “wsen
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which can be proved using Laplace’s method. To save space, the details of the proof
are omitted.
The above derivations therefore demonstrate that

T ot-1 4 iwy |4 1/2
n=ety S, - S (1)

t=2 j=1 2g

So the first term of (101) is op(1). Following arguments similar to the proof of
Theorem 3, we can show that Zo —, 0. In fact, since ¢j (w) < 1/2¢;, all steps go
through with no modifications. Similarly, condition (100) can be verified in the same
way.

Combining (94), (95) and (98) yields

/4 2

p 1Y K, ( [I () — ;f—ﬁ}

SeBw

~4 N (0,04‘%6;0)‘4 (%)1/2> =N (0, <%>1/2 f;%x(w)> -

From this, we obtain the limit theory for the spectral estimate at w # 0, 7:

pl/4 {fXX(w) — fXX(w)} —a N (0, <27r_g>1/2 fg(X(w)) ,

as desired. m

Proof of Theorem 7. Note that

Fxx(w) = ZK —wi) Ixx (\s),
SO
R R 1 T—-1T—
cov <fXX(wi), Fxx( ) = Z —wi) K (A — w;) cov (Ixx (A\s), Ixx (Ar).
7=0 s=0

(105)
Under Assumption 2, we have

(i)Var (Ixx(Xs) — fxx(Ns)) = 4n260, fEx(Xs)(1+O(T7Y2)),  (106)
(i1)Cov (Ixx(Xs), Ixx(Ar)) = O (fxx\s)fxx(Ar)/T),s #7,

where dg\, = 1+ 1{x,—0x}, and O(-) holds uniformly in As and A; (see 6.2.37 of
Priestley (1981)). Therefore

cov (fXX(wi),fxx(wj)> = (T_Q §5SK()\S —wi) K (X —wj)> ((1 + O(T—l/Q)))
s=0

T3 K (As —wi) K (A —wj)] | - (107)
SHET
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The second term in (107) is

T-1 T-1
o {T_3 DK (A —%)I) <Z K (Ar —wg')|> } = O0(1/T),
s=0 7=0

using 3775 |K (A\r —w;)| = O(T). The first term in (107) is bounded by

T—1
013 exp (Wi = AT (wy = AT
P = 4pg 4pg
T 2T T2
= 0 —/ exp<——(w'—w2+ w-—m2>>dm>
5 (i) + @ - 2)
2 2
= O Z/%exp ——2 2<x—wi+wj> (i —w;) dx
P Jo 4pg 2 2
T T° 2| VP
- 0l= A
(S e |- i —a?|
1 T2 9
= O{—pe p[—8—(wi—wj) ]} (108)
Therefore
1/2 n n 1/2 T 2
p'=cov (fXX(Wi)anX(Wj)) = 0 (p /T> + O | exp “Spg (wi —wj)
= o(1) (109)
using p/T? — 0. m
7 Notation
LRV  Long Run Variance Ky m? X m? commutation matrix
MSE Mean Squared Error & Kronecker product
HAC Heteroskeda.stlc and' vec(A) vectorization by columns
autocorrelation consistent
—q  weak convergence ] integer part
0p (1) tends to zero in probability —tr{A} trace of A
zt set of positive integers R (—00, 00)
R* (0, 00) || Al Euclidian norm of A
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