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Abstract

This paper investigates a generalized method of moments (GMM) approach to
the estimation of autoregressive roots near unity with panel data and incidental
deterministic trends. Such models arise in empirical econometric studies of Þrm
size and in dynamic panel data modeling with weak instruments. The two moment
conditions in the GMM approach are obtained by constructing bias corrections to the
score functions under OLS and GLS detrending, respectively. It is shown that the
moment condition under GLS detrending corresponds to taking the projected score
on the Bhattacharya basis, linking the approach to recent work on projected score
methods for models with inÞnite numbers of nuisance parameters (Waterman and
Lindsay, 1998). Assuming that the localizing parameter takes a nonpositive value,
we establish consistency of the GMM estimator and Þnd its limiting distribution. A
notable new Þnding is that the GMM estimator has convergence rate n1/6, slower
than

√
n, when the true localizing parameter is zero (i.e., when there is a panel unit

root) and the deterministic trends in the panel are linear. These results, which rely
on boundary point asymptotics, point to the continued difficulty of distinguishing
unit roots from local alternatives, even when there is an inÞnity of additional data.
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1 Introduction

Recent years have seen the introduction of several important panel data sets where the
cross sectional dimension (n) and the time series dimension (T ) are comparable in magni-
tude. Some of these panel data sets, like the Penn World Tables, involve time series that
are manifestly nonstationary and have persistent or slowly decaying serial correlations.
These features distinguish the new data from the characteristics that are conventionally
assumed in the analysis of panel data where T is very small and n is very large.
Since the early 1990�s, there has been ongoing theoretical and applied research on

panels whose time series components are nonstationary or persistent. For large n and
Þxed T panels, see Hahn et al (2001) and Kruiniger (2000). For large n and T panels
allowing for nonstationarity in the data over time, the theoretical research includes the
study of asymptotically unbiased estimation of the dynamic panel model (e.g., Hahn and
Kuersteiner, 2000), panel unit root tests (e.g., Quah, 1994, Levin and Lin, 1993, Im et al.,
1996, Maddala and Wu, 1997, and Choi, 1999), panel cointegration tests (e.g., Pedroni,
1999, Binder et al., 1999), and the development of linear regression theories for panel
estimators under nonstationarity (e.g., Pesaran and Smith, 1995, and Phillips and Moon,
1999). Applied research includes tests of growth convergence theories (Bernard and Jones,
1996), purchasing power parity relations (MacDonald, 1996, Oh, 1996, Pedroni, 1996, Wu,
1996, andWu, 1997), and studies of the international links between savings and investment
(Coakley et al., 1996 and Moon and Phillips, 1998).
Two recent papers by the authors (Moon and Phillips, 1999 & 2000) study panel

regression models that allow for both deterministic trends and stochastic trends with roots
local to unity. As we discuss in Section 2 of the present paper, such models are important
empirically in studying Gibrat�s law and they have received attention recently in the
weak instrument literature. When the deterministic trends in nonstationary panel data
are heterogeneous across individuals, Moon and Phillips (1999) show that the maximum
likelihood estimator (MLE) of the local to unity parameter in the stochastic trend is
inconsistent. They call this phenomenon, which arises because of the presence of an inÞnite
number of nuisance parameters, an incidental trend problem because it is analogous to
the well-known incidental parameter problem in dynamic panels when T is Þxed1. To
solve the incidental trend problem, Moon and Phillips (2000) propose various methods,
including an iterative ordinary least squares (OLS) procedure and a double bias corrected
estimator, and establish limit theories for these consistent estimators that can be used for
statistical inference about the localizing parameter.
As a continuation of the two studies just mentioned, the present paper investigates a

generalized method of moments (GMM) estimator of autoregressive roots near unity with
panel data. We establish two moment conditions that form the basis for inference. The
Þrst moment condition is obtained by adjusting for the bias of the score function after con-
ventional OLS detrending. The second moment condition is constructed by adjusting for
the bias of the score function following quasi-difference (QD) detrending. Interestingly, the
second moment condition is shown to correspond to the Gaussian projected score, where
the projection is taken on the so-called Bhattacharya basis that has been studied recently
in the conventional incidental parameter problem by Waterman and Lindsay (1996, 1998)
and Hahn and Kuersteiner (2000). Unlike the conventional moment conditions used in
estimating dynamic panel data models, these moment conditions do not suffer the weak
instrument problem that is discussed, for example, in Kruiniger (2000) and Hahn et al.
(2001).
Consistency of the GMM estimator is proved under the assumption that the local-

izing parameter takes a nonpositive value. This condition is not too restrictive because

1Lancaster(2000) provides a recent general survey of the incidental parameter problem in econometrics.
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most econometric models consider non-explosive autoregressive regression models. Nev-
ertheless, the restriction does matter in deriving the limiting distribution of the estimator
because it is possible that the true parameter lies on the boundary of the parameter set.
The most interesting case is, of course, the pure unit root case where the true localizing
parameter is zero. In this case, in establishing the limiting distribution we cannot use
the conventional approach that approximates the Þrst order condition because the true
parameter could be on the boundary of the parameter set. To avoid this difficulty, we use
the approach that takes a quadratic approximation of the nonlinear objective function
and optimize it on the parameter set (c.f. Andrews, 1999, for some recent developments
of estimation and inference in boundary problems).
One of the most interesting Þndings in the present paper is that the GMM estimator

has slower convergence rate than
√
n when the time series components in the panel have

unit roots (i.e., the true localizing parameter is zero), and the deterministic trends are
linear. In this case the convergence rate is actually O(n1/6) rather than O(

√
n). This

slow convergence rate arises because of lack of information in the moment conditions
when there is a unit root, i.e., at the point c = 0 in the space of the localizing parameter.
It points to the continued difficulty of distinguishing unit roots from local alternatives
in the presence of heterogeneous deterministic trends even when there is an inÞnity of
additional data from a cross section.
The paper is organized as follows. Section 2 lays out the model and gives the basic

assumptions that are maintained throughout the paper. We also discuss the empirical
relevance of the model and the conventional moment conditions used in dynamic panels
models of this type. In section 3 we introduce two new moment conditions and prove
that the second of these moment conditions corresponds to a Gaussian projected score on
the Bhattacharya basis. In Section 4 we establish consistency of the GMM estimator and
obtain the limiting distributions of the GMM estimator when the true parameter is less
than zero and equal to zero. The appendix contains technical derivations and proofs of
the results in the main text.

2 Persistent Dynamic Panels

2.1 The Model and Assumptions

We study panel data that may show characteristics of time trends and persistent tem-
poral shocks and whose dimension is large in both cross section (n) and time series (T )
dimensions. To model such data, we extend the conventional dynamic panel model by
taking the components formulation

zit = β
0
igpt + yit, (1)

where gpt =
¡
t, t2, ..., tp

¢0
, the coefficients βi are p−vectors that could be random, and

the residuals yit follow

yit = ρyit−1 + εit

with a common autoregressive coefficient ρ that is close to one deÞned in (4) below. Let
yi0 = zi0 be the panel observations at the initial time period. In (1) , the Þrst term
β0igpt represents deterministic trends in the data, omitting an intercept because this is
not consistently estimable from time series data when yit is near integrated (e.g., Phillips
and Lee, 1996) and can be incorporated in the initial condition yi0. Assuming that the
coefficient βi varies across i, we may treat the trends β

0
igpt as systematic individual effects
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or Þxed effects in the panel. Since ρ is in the vicinity of unity, the components yit have
stochastic trends with persistent innovations εit.
The components model (1) can also be written in the more familiar format of an

augmented regression form as

zit = ρzit−1 + δi + γ0igpt + εit, (2)

where

δi = ρβ0iιp, ιp = −
³
−1, (−1)2 , ..., (−1)p

´0
,

γ0i = β0iΥ (ρ) , Υ (ρ) is a (p× p) matrix depending on ρ.

For example, when p = 1, the deterministic panel trends are linear and the augmented
model (2) is

zit = ρβi + (1− ρ)βit+ ρzit−1 + εit. (3)

This linear trend model (3) is an extended version of the standard model for dynamic
panels in which the individual effects are the incidental trends ρβi + (1− ρ)βit and the
autoregressive parameter is assumed to be close to one.2

The augmented format (2) has the drawback that linear regression leads to inefficient
trend elimination, but the advantage that the detrended data is invariant to the trend
parameters in (2) . In the next section, we use the augmented formation (2) to deÞne the
Þrst moment condition, and the component model (1) for the second moment condition.
To enable a rigorous development when ρ is close to one, we take the speciÞc near

unity formulation,

ρ = 1 +
c

T
, (4)

or equivalently,

T (ρ− 1) = c,

in which the standardized deviation of the coefficient ρ from unity remains constant (c).
In this case, the stochastic trends yit are near integrated and they are characterized by the
parameter c instead of the autoregressive coefficient ρ. The time series properties of the
near integrated process yit are well known from the nonstationary time series literature
(e.g., Phillips, 1987, and Stock, 1994). Recently, Hahn el al. (2001) and Kruiniger (2000)
use the related speciÞcation ρ = 1 + c

n to model an autoregressive coefficient near unity
in a panel with large n and Þxed T.
In a conventional time series autoregression (AR), the probabilistic features (and the

asymptotics) are discontinuous with respect to the AR coefficient as it passes through
unity. When |ρ| < 1, the process is stationary, reverts to its mean, converges to a steady
state, and has no stochastic trend, whereas when ρ = 1, the process is nonstationary, not
mean-reverting, and contains stochastic trends. Models with near unit roots as in (4) have
probabilistic features that are continuous with respect to parameter c, while still retaining
some of the implications of the three different cases: ρ < 1 (c < 0), ρ = 1 (c = 0), and
ρ > 1 (c > 0). More speciÞcally, a direct calculation shows that V ar (yit) increases at
the rate t, regardless of the sign of the parameter c. Thus, yit is nonstationary and has a

2For other examples of incidental trend models, see Section 11.2.1 of Wooldridge (2001) and the
references therein.
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stochastic trend regardless of the sign of the parameter c. On the other hand, when for
t = [Tr] with 0 < r ≤ 1, it is well known that

yit√
T
⇒ Jc (r) as T →∞, (5)

where Jc (r) =
R r
0
ec(r−s)dW (s) is the Ornstein-Uhlenbeck process, andW (s) is a Brown-

ian motion (e.g., Phillips, 1987). So, the marginal asymptotic distribution of the standard-
ized process yit√

T
is continuous in c. Also, when c < 0, the limit process Jc (r) is stationary

and mean reverting, while for c = 0, the limit process is Brownian motion. Thus, the
standardized process yit√

T
preserve some of the probabilistic implications implied by the

conventional AR(1) model for |ρ| < 1 and ρ = 1. One beneÞt of the continuity property is
that it is possible to produce conÞdence intervals for the AR coefficient ρ from estimates
of c (Stock, 1991) even though consistent estimation of c from time series observations is
not possible. In this paper we use notation c0 to denote the true coefficient for c.
In later sections of the paper, as part of the asymptotic development, we need to

verify some properties of complicated nonlinear functions of c that depend on the trend
gpt. These functions are so complicated that it is very difficult to establish analytic results
under the general polynomial trend set up with gpt = (t, ..., tp)0 . Instead, we rely on
numerical methods for this part of the analysis. To assist the analytic development, we
restrict our attention to the following two cases: (i) g1t = t and (ii) g2t =

¡
t, t2

¢0
. This

restriction is hardly restrictive in practice because the linear and quadratic trends are the
most widely used in empirical applications. The set up is formalized as follows:

Assumption 1 (Trend Formulation)
The polynomial trend in model (1) is either (i) g1t = t or (ii) g2t =

¡
t, t2

¢0
.

Assumption 2 (Initial Condition) The initial observations zi0 = yi0 are independent
across i with supiEy

4
i0 <∞.

Assumption 3 (Error Condition) The error terms εit ∼ iid
¡
0,σ2

¢
across i and t with

Eε4it <∞ and εit are independent of yi0 for all i.

Assumption 4 (Parameter Set)
(a) The localizing parameter c takes a value in a compact subset C = [ c̄ , 0 ] ⊂ R,

where c̄ < 0.
(b) The true localizing parameter c0 is in the set C0 = ( c̄ , 0 ].

Assumption 4(a) restricts the parameter set C = [c̄ , 0] to be non-positive. This re-
striction is made because in most econometric applications, the cases |ρ| < 1 and ρ = 0
are of most interest. When the true parameter c0 = 0, the model becomes nonstandard
in the sense that the true parameter is on the boundary of the parameter set. Section 4.3
explores the implications of the boundary point aspect of this case.
The practical implication of the restriction of c0 to C = [c̄ , 0] is of some interest. One

of the advantages of pooling is that consistent estimation of c0 is achievable with panel
data while it is not with a single time series. Take the case where the true value ρ0 = 1+

c0
T

lies in the interior of the compact interval [1 + c̄
T , 1] for some c̄ < 0. Theorem 3 below

shows that the GMM estimator �c is consistent for c0 and has a limit normal distribution√
n(�c− c0)→d Z. The corresponding autoregressive coefficient estimate is �ρ = 1+ �c

T and√
nT (�ρ − ρ0) →d Z. So, panel pooling affects the �usual asymptotic distribution� of the

autoregressive coefficient in near integrated models. The distribution is normal and lives
in a shrunken neighbourhood within the compact set [1 + c̄

T , 1]. In effect, �ρ is distributed
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in an O
³

1√
n

´
neighbourhood of the true value ρ0 ∈ [1 + c̄

T , 1]. The main thrust of the
present work is to put panel pooling to good effect, so that we get this increased precision
about the value of ρ0 even when it is already in the locality of unity. To the extent
that many economic time series are near integrated but also may have idioscyncratic
deterministic trend components, this process increases precision in estimation, conÞdence
interval construction and local discriminatory power at unity for ρ0 (where it increases

from O
¡
T−1

¢
to O

³
T−1n−

1
6

´
- see section 4.3), but also near unity (where it increases

from O
¡
T−1

¢
to O

³
T−1n−

1
2

´
- see section 4.2).

Assumption 5 (n, T →∞) with logn
log T < 2 +O

³
1

log T

´
.

Assumption 5 restricts the relative size of the cross-section and temporal dimensions
in the panel in the asymptotic theory. It is assumed that n increases at a lesser speed than
T 2 as T → ∞. So if n = Tα then α < 2, thereby allowing for panels in which n and T
are of comparable size satisfying n

T → κ, 0 < κ <∞, as in Hahn and Kuersteiner, 2000),
and some panels where the size of the cross section dominates the time series count, i.e.,
n
T → ∞. This assumption is required for the derivation of the limit distribution of the
estimator of c in Section 4. Consistency of the estimator does not require this restriction.

2.2 Discussion of the Model

2.2.1 Empirical Relevance in Modeling Firm Size

In the empirical industrial organization literature on Þrm size, dynamic panel models have
been used widely to describe Þrm growth in terms of a simple formulation that follows
the spirit of Gibrat�s law of proportional effect (Gibrat, 1931). Gibrat�s law states that
the expected value of the increment in a Þrm�s size each time period is proportional to
the current size of the Þrm. Let Zit denote the size of Þrm i at time t and eit denote the
(stochastic) proportionate rate of growth of Þrm i between time t and t−1. Then Gibrat�s
law is formalized as

Zit − Zit−1 = Zit−1eit.

(e.g., Steindle, 1965, and Sutton, 1997). Let zit = logZit and, using the approximation
log(1 + a) ≈ a for small a, we may write the proportional law in autoregressive form as

zit = zit−1 + eit, (6)

which McCloughan (1995) calls Gibrat�s process � a law in which the growth rate of a
Þrm is independent of its initial size. When eit ∼ iid

¡
µ,σ2e

¢
, set εit = eit − µ, and then

we may rewrite Gibrat�s process (6) in the component form

zit = µt+ yit, (7)

yit = yit−1 + εit,

which is a special case of model (1) . The panel model (1) (or (2)) can therefore be
interpreted as a generalized version of Gibrat�s process when applied to Þrm growth data.
To motivate (1), we now discuss more detailed features of the model in the context of this
application and indicate how we can explain in terms of this model (1) some empirical
Þndings relating to the violation of Gibrat�s law.
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First we consider several well known implications of Gibrat�s law. For T large, by
virtue of the functional central limit theorem applied to T−1/2zit in (6), the distribu-
tion of Þrm size Zit is approximately lognormal and therefore skewed. Evidence sup-
porting lognormality and skewness of Þrm size distributions has been reported in many
past empirical papers. The more recent literature argues that Þrm size distributions do
not follow a �typical� distributional shape but nevertheless have skewness as their cen-
tral characteristic (e.g., Sutton, 1997, and Schmalensee, 1989). Next, observing that
∆V ar (zit) := V ar(zit)− V ar(zit−1) = σ2 in Gibrat�s process (7), Prais (1976) and more
recently McCloughan (1995) claimed that the proportionate model implies that size in-
equalities between Þrms will increase at a constant rate, and the rate of concentration
will be greater the higher the variance of the growth distribution, σ2. For this reason, Mc-
Cloughan (1995) calls ∆V ar (zit) = σ2 Gibrat�s effect. For other implications of Gibrat�s
law, see Lucas (1978) and Sutton (1997).
Over the last two decades, many studies have found empirical violations of Gibrat�s

law. These are reviewed and classiÞed in McCloughan (1995). For example, Evans (1987)
found through a cross-sectional analysis that Þrm growth decreases with Þrm age and
Þrm size, which is claimed to be consistent with the prediction made by the theory in
Jovanovic (1982). More recently, Hall and Mairesse (2000) investigated the time series
properties of several variables in Þrm-level panel data that are related to the growth of
Þrms. One of their Þndings was that the growth rates of these variables vary widely across
Þrms. Another was that the sample serial correlations typically decay very slowly.
In what follows, we compare the implications of the panel model (1) with those of

Gibrat�s process and consider possible explanations, in terms of (1), of the empirical
violations of the law.
(i) According to (1) and (4), the stochastic shock in the logarithm of Þrm size is nearly

integrated and involves the parameter c. As discussed earlier, for T large this formulation
ensures that the distribution of Þrm size is asymptotically lognormal, as indicated by
Gibrat�s law3. Also, since the autoregressive coefficient ρ is close to unity for large T,
the serial correlations of zit will not decay. These properties coincide with what Hall and
Mairesse (2000) observe in their Þrm panel data.
(ii) Since the random growth rate process is ∆zit = δi + γ0igpt +

c
T zit−1 + εit, we have

∂∆zit
∂zit−1

= c
T < 0 if c < 0. Thus, Þrm growth decreases as Þrm size increases, giving the size

effect.
(iii) If the deterministic trends are quadratic and the coefficient of the quadratic coef-

Þcient is negative, we have the age effect because ∂E(∆zit)∂t = 2βi2 < 0 when zi0 = yi0 = 0.
(iv) A simple calculation shows that

V ar (zit) = σ
2
³
1 + ρ2 + ...+ ρ2(t−1)

´
∼ σ2

t−1X
s=0

exp
³
2c
s

T

´
(8)

when yi0 is nonrandom. So,

∆V ar (zit) ' σ2 exp
µ
2c
t− 1
T

¶
. (9)

3 In empirical studies, a commonly used model for representing a generalized Gibrat process is the
conventional AR(1) model

zit = µ+ ρzit−1 + eit,

e.g., McCloughan, 1995, and Hall and Mairesse, 2000. In this case, when −1 < ρ < 1, the size distribution
depends on the distribution of the error eit and skewess of the size distribution is not guaranteed. By
contrast, skewness is guaranteed, at least asymptotically, in the near integrated case.
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Equations (8) and (9) indicate that inequalities in Þrm growth grow over time and the
rate of change in the inequality depends on the value of the growth parameter c.
(v) Model (2) introduces individual speciÞc effects through the trend coefficients βi

and the initial conditions zi0. These effects may explain certain heterogeneous factors
such as the x-inefficiency of some Þrms.
In view of these characteristics, the panel model (2) helps to bridge the gap between

the pure form of Gibrat�s law and the empirical evidence indicating certain systematic
violations of the law. In addition, consistent estimation of the systematic growth parame-
ter c makes it possible to measure the size effect and changes in growth inequality or Þrm
concentration.

2.2.2 Conventional Moment Conditions and Weak Instruments

In recent years, one of the most widely used methods of estimating dynamic panel regres-
sion models with Þxed effects, such as

zit = (1− ρ)βi + ρzit−1 + εit,
is to utilize the moment conditions implied by the assumptions imposed on the model.
(For details and references, see the recent survey by Arellano and Honore, 2000). Among
these moment conditions4, the moment restrictions known as the basic moment conditions,
viz.,

E (zis∆εit) = 0 for s = 0, ..., t− 2, (10)

are the most widely applied. This section considers the properties of the basic form of
moment conditions implied by the model (1).
For simplicity, we consider only the linear trend case, i.e.,

zit = ρβi + (1− ρ)βit+ ρzit−1 + εit.
Due to the presence of the incidental trends, instead of (10) the basic moment conditions
in the model 1 are

E
¡
zis∆

2εit
¢
= 0 for s = 0, ..., t− 3, (11)

which provide the orthogonality conditions in an instrumental variable regression of

∆2zit = ρ∆
2zit−1 +∆2εit, (12)

with instrumental variables zis, s = 0, ..., t− 3. Notice from (12) that the basic moment
conditions (11) are linear in the parameter ρ. To evaluate the orthogonality conditions in
(11) in terms of their information content, we calculate the Þrst derivative of the moments
with respect to the parameter ρ. Then,

∂E
¡
zis
¡
∆2zit − ρ∆2zit−1

¢¢
∂ρ

= E
¡
zis∆

2zit−1
¢
, s = 0, ..., t− 3,

which is the covariance between the instrumental variable zis and regressor in (12).
First, when ρ = 1, as is well known in the conventional dynamic panel model, the

information content of the basic moment conditions is zero because E
¡
zis∆

2zit−1
¢
= 0

4Other types of moment conditions used in conventional dynamic panel models are derived under
extra assumptions on the initial conditions, the Þxed effect parameter, and the covariance stationarity
restrictions.
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for s = 0, ..., t − 3, and so the instruments are not correlated with the regressors of (12).
In this case, the parameter ρ is not identiÞable from the basic moment conditions.
When ρ = 1 + c

T with c < 0, a direct calculation shows that

E
¡
zis∆

2zit−1
¢
=
³ c
T

´2
E (βis+ yis) (2βi + yt−3) ∼ O

µ
1√
T

¶
.

This implies that if the coefficient is near unity as in (4) and the time dimension is large,
the information in the basic moment conditions is small, and the instruments zis become
weak5. In consequence, GMM estimation involving only conventional moment conditions
cannot estimate the model consistently. This has become an issue of some importance in
empirical studies of dynamic panel regression.
We therefore proceed to consider a different approach that augments the information

content of the basic moment conditions. This approach arises from a consideration of the
incidental trends problem, which we now discuss.

2.2.3 Incidental Trends Problem

Two recent papers by the authors (Moon and Phillips, 1999 & 2000) Þnd that an in-
cidental trend problem arises in estimating the local to unity parameter c in the panel
regression model (1) or (2) where inÞnite number of nuisance parameters are present.
Moon and Phillips (1999) show that the score of the (pseudo) likelihood that concentrates
out the incidental trend parameters βi are biased (even in the limit). In consequence, the
maximum likelihood estimator (MLE) of c in (1) is inconsistent. Also, according to Moon
and Phillips (2000), when the incidental trend parameters βi are eliminated by ordinary
least squares (OLS) projection, the normal equation of the pooled OLS estimator is biased
as well (even in the limit) due to the correlation between the OLS detrended error term
and the OLS detrended regressor. It follows that the pooled OLS estimator of c obtained
from OLS detrended data is also biased.

3 Moment Conditions

We now propose an estimation procedure that eliminates the effects of the incidental
trend problem. The approach involves GMM and minimizes a distance criterion based on
a vector of sample moment functions. The moment conditions are designed to have a limit
that will identify the true localizing parameter c0 even in the presence of the incidental
trend coefficients βi.
The principle we use for contructing moment conditions with this property is to adjust

for the bias that arises in the usual score functions, the latter being explained in Moon
and Phillips (1999, 2000). The adjustments are based on formulae from the explicit
computation of the bias functions. The next subsections explain these constructions in
detail.6

5When T is Þnite and n is large, Hahn et al (2001) and Kruiniger (2000) investigate similar weak
intrument effects in the conventional dynamic panel regression model with near unit root speciÞcations
ρ = 1 + c

n
.

6The principle employed can be applied to any biased score function for transformed data that is
invariant to the incidental trend coefficients. A referee suggested such a biased score function that leads
to an alternative moment condition that turns out to be closely related to the Þrst moment condition
described below. In view of this similarity and space constraints, we do not investigate this alternative
moment condition here.
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3.1 The First Moment Condition

The following notation is deÞned to assist with the analysis of the trend function asymp-
totics and it will be used throughout the rest of the paper. Let

�γi = (δi,γ
0
i)
0
,

�gpt =
¡
1, g0pt

¢0
, gp (r) = (r, ..., r

p)0 with r ∈ [0, 1], �gp (r) =
¡
1, gp (r)

0¢0
,

Gp,T =
¡
g0p1, ..., g

0
pT

¢0
, Gp,T,−1 =

¡
g0p0, ..., g

0
pT−1

¢0
, �Gp,T =

¡
�g0p1, ..., �g

0
pT

¢0
,

�Mp,T = IT − �Gp,T

³
�G0p,T �Gp,T

´−1
�G0p,T ,

Dp,T = diag (T, ..., T p) , �Dp,T = diag (1,Dp,T ) ,

hpT (t, s) = g0ptD
−1
p,T

Ã
1

T

TX
t=1

D−1p,T gptg
0
ptD

−1
p,T

!−1
D−1
p,T gps,

�hpT (t, s) = �g0pt �D
−1
p,T

Ã
1

T

TX
t=1

�D−1p,T �gpt�g
0
pt
�D−1p,T

!−1
�D−1
p,T �gps,

hp (r, s) = g0p (r)
µZ 1

0

gp (r) gp (r)
0 dr
¶−1

gp (s) ,

�hp (r, s) = �g0p (r)
µZ 1

0

�gp (r) �gp (r)
0 dr
¶−1

�gp (s) .

Write zi = (zi1, ..., ziT )
0
, zi,−1 = (zi0, ..., ziT−1)

0
, and εi = (εi1, ..., εiT )

0
. DeÞne

z
�i
= �Mp,T zi, ε

�i
= �Mp,T εi, z

�i,−1
= �Mp,T zi,−1.

Then, it is straightforward to show that

z
�i
= y

�i

and z
�i,−1

= y
�i,−1

,

where

y
�i

= �Mp,Tyi, y
�i,−1

= �Mp,Tyi,−1,

yi = (y1, ..., yT )
0
, and yi,−1 = (y0, ..., yT−1)

0
. Letµ

z
�i,−1

¶
t

= zit−1 − 1

T

TX
s=1

�hpT (t, s) zis−1

be the tth element of z
�i,−1

.

One straightforward procedure of estimating c0 (equivalently ρ0 = 1 +
c0
T ) is to elim-

inate the unknown trends δi + γ0igpt by taking OLS regression residuals and then apply
pooled least squares with an appropriate bias correction for the serial correlation of εit.
We call this method iterative OLS. However, as noted in Moon and Phillips (2000), this
iterative OLS procedure yields an inconsistent estimator of c0 due to a nondegenerat-
ing asymptotic bias between the detrended regressor and the detrended error term. The
Þrst moment condition is obtained simply by subtraction of this asymptotic bias term in
iterative OLS from the normal equation for the OLS detrended data.
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More speciÞcally, write the model (2) in vector notation as

zi = ρ0zi,−1 + �Gp,T �γi + εi, ρ0 = 1 +
c0
T
. (13)

Applying �MpT to both sides, we have

z
�i
= ρ0z

�i,−1
+ ε
�i
, (14)

where z
�i
, z
�i,−1

, and ε
�i
are OLS detrended versions of zi, zi,−1, and εi, respectively. In gen-

eral, the detrended regressor vector z
�i,−1

and the detrended error vector ε
�i
are correlated

and the Þrst moment condition is found by correcting for the bias due to the correlation
between z

�i,−1
and ε

�i
.

Before we deÞne the Þrst moment condition, we discuss the estimation of the error
variance σ2. Let �ρ be the pooled OLS estimator of (14) ,

�ρ =

Pn
i=1 z�

0
i
z
�i,−1Pn

i=1 z�
0
i,−1

z
�i,−1

,

and �ε
�i
be the OLS residual of (14) , �ε

�i
= z

�i
− �ρz

�i,−1
. The estimator of σ2 is

�σ2 =
1

nT

nX
i=1

�ε
�

0
i
�ε
�i
. (15)

The Þrst moment condition formula is deÞned as

m1,iT (c) =
1

T

µ
z
�i
−
³
1 +

c

T

´
z
�i,−1

¶0
z
�i,−1

+ �σ2ωpT (c) (16)

=
1

T
ε
�

0
i
y
�i,−1

− (c− c0) 1
T 2
y
�

0
i,−1

y
�i,−1

+ �σ2ωpT (c)

=
1

T

TX
t=1

εityi,t−1 − 1

T 2

TX
t=1

TX
s=1

εityi,s−1�hpT (t, s)− (c− c0) 1
T 2

TX
t=1

Ã
y
�i,−1

!2
t

+ �σ2ωpT (c) ,

where

ωpT (c) =
1

T 2

TX
t=2

t−1X
s=1

·³
1 +

c

T

´T¸ t−s−1T

�hpT (t, s) ,

and ε
�it
and (y

�i,−1
)t are the tth elements of ε

�i
and y

�i,−1
, respectively. The terms �σ2ωpT (c)

corrects for the bias that arises from the correlation between ε
�it
and (y

�i,−1
)t.

This Þrst moment condition was utilized in the double bias corrected estimator of Moon
and Phillips (2000). Suppose that a preliminary consistent estimate of c is available. By
linearizing the bias correction term �σ2ωpT (c) in (16) around the consistent estimate of
c, we may approximate the Þrst moment condition as a linear function of (c− c0) . The
double bias corrected estimator solves this linear approximation equation. In this paper,
to estimate the parameter c, we continue to use the nonlinear moment condition (16)
rather than work with a linear approximation.
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3.2 The Second Moment Condition

Before discussing the second moment condition, we introduce some additional notation.
Let

∆c =
³
1−

³
1 +

c

T

´
L
´
,

where L is the lag operator. DeÞne

Fp,T = diag
¡
1, T, ..., T p−1

¢
=
1

T
Dp,T , \∆cgpt = F−1p,T∆cgpt

·
gp (r) =

d

dr
gp (r) =

¡
1, 2r, ..., prp−1

¢0
,

·
gpc (r) =

·
gp (r)− cgp (r) ,

ApT (c) =
1

T

TX
t=1

\∆cgpt\∆cgpt
0
, Ap (c) =

Z 1

0

·
gpc (r)

·
gpc (r)

0
dr,

BpT (c) =
1

T

TX
t=1

\∆cgptg0pt−1D−1pT , Bp (c) =

Z 1

0

·
gpc (r) gp (r)

0
dr.

The second moment condition is obtained from the efficiently detrended regression equa-
tion. According to Canjels and Watson (1997) and Phillips and Lee (1996), the trend
coefficient in the model (1) can be efficiently estimated in the time domain by employing
a procedure that amounts to quasi-differencing the data with the operator ∆c. That is,
when the localizing parameter c is known, an estimator of βi in (1) that is asymptotically
more efficient than the OLS estimator of βi is

�βi (c) =

Ã
TX
t=1

∆cgpt∆cg
0
pt

!−1Ã TX
t=1

∆cgpt∆czit

!
.

Denoting yit (βi) = zit − β0igpt, we write

�βi (c) = βi +

Ã
TX
t=1

∆cgpt∆cg
0
pt

!−1Ã TX
t=1

∆cgpt∆cyit (βi)

!
.

DeÞne εit (c,βi) = ∆czit − β0i∆cgpt.
The second moment function m2,iT (c) is deÞned as

m2,iT (c) =
1

T

TX
t=1

εit
³
c, �βi (c)

´
yit−1

³
�βi (c)

´
+ �σ2λpT (c) , (17)

where

λpT (c) =
1

T 2

TX
t=2

t−1X
s=1

·³
1 +

c

T

´T¸ t−s−1T

\∆cgps
0
ApT (c)

−1\∆cgpt.

Notice that yit−1
³
�βi (c)

´
is the induced residual of the regression equation zit = β

0
igpt+yit

and εit
³
c, �βi (c)

´
is the residual of the quasi-differenced equation ∆czit = β0i∆cgpt +

∆cyit. In the second moment function m2,iT (c) we correct for the asymptotic bias of
1
T

PT
t=1 εit

³
c, �βi (c)

´
yit−1

³
�βi (c)

´
by substracting off the estimate �σ2λpT (c) .
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As mentioned above, Moon and Phillips (1999) showed that the Gaussian MLE of the
panel regression model (3) with linear incidental trends is inconsistent. The main reason
for inconsistency of the MLE is that the concentrated score of the (standardized) Gaussian
likelihood function, 1

n

Pn
i=1

1
T

PT
t=1 εit(c,

�βi (c))yit−1(�βi (c)), has non-zero mean in the
limit. In the second moment formulation of m2,iT (c) , by subtracting off the estimate
�σ2λpT (c) , we eliminate the asymptotic bias of the concentrated Gaussian score function.

3.3 The Relationship between the SecondMoment Condition and
the Projected Score

This section shows that the second moment function m2,iT (c) is a projected score of the
panel regression model (1) under Gaussian errors. Suppose that the error process εit in
the model (1) is an iid standard normal process across i and over t. For convenience we
assume that zi0 = yi0 = 0 for all i.
Under general regularity conditions, it is well known that the asymptotic properties

of the MLE, and most notably its consistency, are closely related to the unbiasedness of
the score function at the true parameter. However, it is also well known that in dynamic
panel regression models with incidental parameters the MLE is not consistent (e.g., see
Neyman and Scott, 1948, and Nickel, 1981) as n→∞ with T Þxed. Recently, Moon and
Phillips (1999) found that this incidental parameter problem also arises in nonstationary
panel regression models with incidental trends and roots local to unity when both n→∞
and T →∞, covering models such as (1) .
The main reason for the inconsistency of the MLE is that the score function in an

incidental trend model has a bias at the true parameter. Therefore, in order to obtain a
consistent estimate, one needs to correct for the bias in the score function. One recently
investigated method to correct for this bias is to use a projected score function, where
the projection is taken onto the so-called Bhattacharyya basis. The resulting approach is
called �a projected score method�.
To deÞne a projected score in the present case, assuming that εit are iid N (0, 1) , we

introduce the following notation. Denote the joint density of zi

fi(zi; c,βi) =

µ
1√
2π

¶T
exp

Ã
−1
2

TX
t=1

¡
∆czit − β0i∆cgpt

¢2!
(18)

and set

U1i (c,βi) =
∂fi/∂c

fi
, V1i (c,βi) =

∂fi/∂βi
fi

,

V2i (c,βi) =

∂2fi
∂βi∂β

0
i

fi
, Vi (c,βi) =

µ
V1i (c,βi)

D+p vecV2i (c,βi)

¶
,

where D+p =
¡
D0pDp

¢−1
D0p and Dp is the duplication matrix.

For convenience, we mix notation U1i, Vi, and Vki for U1i (c,βi) , Vi (c,βi) , and
Vki (c,βi) , k = 1, 2, respectively. In the statistics literature, V1i and V2i are known
as the Bhattacharyya basis of order 1 and 2, respectively (see Bhattacharyya, 1946 and
Waterman and Lindsay, 1996). The projected score U2i is deÞned as the residual in the
L2− projection of U1i on the closed linear space spanned by V1i and V2i, i.e.,

U2i = U1i − ξ01V1i − ξ02D+p (vecV2i) . (19)

Recently, using the projected score method, Waterman and Lindsay (1998) and Hahn
(1998) were able to solve similar nuisance parameter problems in the classical Neyman
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and Scott panel regression model and in a simple dynamic panel regression model with
Þxed effects, respectively.
When the joint density of zi is given in (18) , U1i, V1i, and V2i are found to be

U1i (c,βi) =
1

T

TX
t=1

εit (c,βi) yit−1 (βi) ,

V1i (c,βi) =
TX
t=1

εit (c,βi)∆cgpt,

V2i (c,βi) = −
TX
t=1

∆cgpt∆cg
0
pt +

Ã
TX
t=1

εit (c,βi)∆cgpt

!Ã
TX
t=1

εit (c,βi)∆cgpt

!0
.

Some algebra veriÞes that EV1iU1i = 0 and EV1i
£
D+p (vecV2i)

¤0
= 07 . Hence, the two

L2− projection coefficients ξ1 and ξ2 in (19) are given by
ξ1 = [EV1iV

0
1i]
−1
EV1iU1i = 0,

and

ξ2 =
£
D+p E (vecV2i) (vecV2i)

0
D+0p

¤−1
D+p E (vecV2i)U1i.

Next

E (vecV2i) (vecV2i)
0

=
TX
t=1

TX
s=1

¡
∆cgpt∆cg

0
pt ⊗∆cgps∆cg0ps

¢
+

TX
t=1

TX
s=1

¡
∆cgpt∆cg

0
ps ⊗∆cgps∆cg0pt

¢
,

and

E (vecV2i)U1i

=
1

T

TX
t=2

t−1X
s=1

[∆cgpt ⊗∆cgps +∆cgps ⊗∆cgpt]
·³
1 +

c

T

´T¸ t−s−1T

.

Therefore, the projected score U2i (c,βi) is

U2i (c,βi)

=
1

T

TX
t=1

εit (c,βi) yit−1 (βi) + ξ
0
2D

+
p

TX
t=1

(∆cgpt ⊗∆cgpt)

−ξ02D+p
Ã

TX
t=1

εi,t (c,βi)∆cgpt

!
⊗
Ã

TX
s=1

εis (c,βi)∆cgps

!
,

where

ξ2

=

"
TX
t=1

TX
s=1

D+p
©¡
∆cgpt∆cg

0
pt ⊗∆cgps∆cg0ps

¢
+
¡
∆cgpt∆cg

0
ps ⊗∆cgps∆cg0pt

¢ª ¡
D+p
¢0#−1

× 1
T

TX
t=2

t−1X
s=1

D+p [∆cgpt ⊗∆cgps +∆cgps ⊗∆cgpt]
·³
1 +

c

T

´T¸ t−s−1T

.

7The expectation is evaluated at the parameters c and βi.
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Since βi in U2i is unknown, we replace it with the estimate

�βi (c) =

Ã
TX
t=1

∆cgpt∆cg
0
pt

!−1Ã TX
t=1

∆cgpt∆czit

!
.

Then, we have the following concentrated projected score

U2i

³
c, �βi (c)

´
=
1

T

TX
t=1

εit

³
�βi (c) , c

´
yit−1

³
�βi (c)

´
+ ξ02D

+
p

TX
t=1

(∆cgpt ⊗∆cgpt) , (20)

because
PT
t=1 εit

³
c, �βi (c)

´
∆cgpt = 0.

When the error process εit is iid(0, 1) across i and over t, the second moment function
m2,iT (c) is

m2,iT (c) =
1

T

TX
t=1

εit

³
c, �βi (c)

´
yit−1

³
�βi (c)

´
+ λpT (c) .

The following lemma states that the bias correction term λpT (c) in m2,iT (c) is equivalent
to ξ02D+p

PT
t=1 (∆cgpt ⊗∆cgpt) . So, the second moment function actually corresponds to

the concentrated projected score function of the Gaussian model. The proof of the lemma
is in the appendix.

Lemma 1 (Equivalence) Suppose that the errors in model 1 are iid normal with mean
zero and variance 1 across i and over t and yi0 = zi0 = 0 for all i. Then, the sec-
ond moment condition m2,iT (c) is equivalent to the concentrated projected score function

U2i

³
c, �βi (c)

´
.

4 GMM Estimation and Asymptotics
This section investigates the asymptotic properties of a GMM estimator of c that is based
on the two moment conditions introduced in the previous section. Let

MnT (c) =
1

n

nX
i=1

miT (c) ,

where miT (c)
0 = (m1,iT (c) ,m2,iT (c)), and m1,iT (c) and m2,iT (c) are deÞned in (16)

and (17) , respectively. Let �W be a (2× 2) random weight matrix and BnT be a sequence
of real numbers that converges to inÞnity as (n, T →∞) . The GMM estimator �c for the
unknown parameter c0 in (13) is deÞned as the extremum estimator for which

ZnT (�c) ≤ min
c∈C

ZnT (c) + op
¡
B−2nT

¢
, (21)

where

ZnT (c) =MnT (c)
0 �WMnT (c) .

Since the objective function ZnT (c) is continuous in c and the parameter set C =[c̄, 0]
for some c̄ < 0 that contains c0 is assumed to be compact, it is possible to Þnd a global
minimum of ZnT (c) over C. The main purpose in allowing for an op

¡
B−1nT

¢
deviation

bound from the global minimum min
c∈C

ZnT (c) is to reduce the computational burden and

allow for potential numerical computational errors within a range of op
¡
B−1nT

¢
. Later in

the paper, depending on the convergence rate of �c to c0, we will determine the sequence
BnT .
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4.1 Consistency of the GMM Estimator

DeÞne

M (c) =

µ
m1 (c)
m2 (c)

¶
,

where

m1 (c) = ωp (c)− ωp (c0)− (c− c0)ψp (c0) ,

ωp (c) =

Z 1

0

Z r

0

ec(r−s)�hp (r, s) dsdr,

ψp (c0) = − 1

2c0

µ
1 +

1

2c0

¡
1− e2c0¢¶

−
Z 1

0

Z 1

0

ec0(r+s)
1

2c0

³
1− e−2c0(r∧s)

´
�hp (r, s) dsdr,

and

m2 (c)

= − (c− c0)
µZ 1

0

Z r

0

e2c0(r−s)dsdr
¶

+(c− c0)
Z 1

0

Z 1

0

Z r∧s

0

ec0(r+s−2v)
·
gpc (s)

0
Ap (c)

−1 ·
gpc (r) dvdsdr

+(c− c0)
Z 1

0

Z r

0

ec0(r−s)
·
gpc (r)

0
Ap (c)

−1
gp (s) dsdr

+(c− c0)
Z 1

0

Z r

0

ec0(r−s)
·
gpc (s)

0Ap (c)
−1 gp (r) dsdr

− (c− c0)2
Z 1

0

Z 1

0

Z r∧s

0

ec0(r+s−2v)
·
gpc (s)

0
Ap (c)

−1
gp (r) dvdsdr

− (c− c0)
Z 1

0

Z r

0

ec0(r−s)
·
gpc (r)

0
Ap (c)

−1
Bp (c)Ap (c)

−1 ·
gpc (s) dsdr

− (c− c0)
Z 1

0

Z r

0

ec0(r−s)
·
gpc (s)

0
Ap (c)

−1
Bp (c)

0
Ap (c)

−1 ·
gpc (r) dsdr

+(c− c0)2
Z 1

0

Z 1

0

Z r∧s

0

ec0(r+s−2v)
·
gpc (s)

0Ap (c)
−1Bp (c)Ap (c)

−1 ·gpc (r) dvdsdr

−
Z 1

0

Z r

0

ec0(r−s)
·
gpc (s)

0
Ap (c)

−1 ·
gpc (r) dsdr + λp (c) ,

where

λp (c) =

Z 1

0

Z r

0

ec(r−s)
·
gpc (s)

0
Ap (c)

−1 ·
gpc (r) dsdr.

The following lemma derives the convergence rate of �σ2 deÞned in (15).8

8 In this paper, we assume that εit are iid (Assumption 3). If the error process εit has both serial
correlation and heteroskedasticity, we may need to estimate the one-side long-run variance (Λi) and the
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Lemma 2 Suppose that Assumptions 1 � 3 hold. DeÞne

�σ2 =
1

nT

nX
i=1

TX
t=1

ε2it

Then, as (n, T →∞) ,

�σ2 = �σ2 +Op

µ
1

T

¶
,

and

�σ2 = σ2 +Op

µ
1√
nT

¶
.

The next lemma shows that the sample moment conditionMnT (c) has a uniform limit
in c.

Lemma 3 (Uniform Convergence) Under Assumptions 1-3,

MnT (c)→p σ
2M (c) uniformly in c,

as (n,T →∞) .
Assumption 6 As (n, T →∞) , �W →p W , where W is positive deÞnite.

Observe that the limit function M (c) is continuous on the compact parameter set C.
Also, note that M (c) = 0 at the true parameter c = c0. In Appendix D, we conÞrm
numerically that M (c) = 0 only when c = c0. Then, by a standard result (e.g., theorem
2.1 of Newey and McFadden, 1994), the GMM estimator �c is consistent for the true
parameter c0. Summarizing, we have the following theorem.

Theorem 1 (Consistency) Suppose Assumptions 1-3 and Assumption 6 hold. Then,
as (n,T →∞) , �c→p c0.

4.2 Limiting Distribution of the GMM Estimator when c0 < 0

By inspection the objective function ZnT (c) is differentiable in c on the region c ∈ (c̄, 0) ,
and it has right and left derivatives at c = c̄ and 0, respectively. To derive the limit dis-
tribution of the GMM estimator, we employ an approach that approximates the objective
function ZnT (c) uniformly in terms of a quadratic function in a shrinking neighborhood
of the true parameter.
For this purpose, we deÞne

dMnT (c) =
1

n

nX
i=1

dmiT (c) ,

long-run variance (Ωi) of εit. Letting �Λi and �Ωi denote the estimates of Λi and Ωi, respectively, we need
1√
n

Pn
i=1

³
�Λi − Λi

´
= op (1) and 1√

n

Pn
i=1

³
�Ωi − Ωi

´
= op (1) . Typically, we use nonparametric kernel

estimation for �Λi and �Ωi. In this case, in order to have the desired property, we may need to choose a
proper bandwidth parameter and a kernel as well as strenthen the restriction on the relative convergence
rates between n and T to be n

T
→ 0. For details, the reader is referred to Moon and Perron (2002).
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where dmiT (c) denotes the derivative of miT (c) with respect to c when c ∈ (c̄ , 0) and
the right and left derivatives when c = c̄ and 0, respectively. By the mean value theorem,
for c 6= c0,

MnT (c) =MnT (c0) + dMnT (c0) (c− c0) + rnT (c, c0) (c− c0) ,

where

rnT (c, c0) = (r1nT (c, c0) , r2nT (c, c0))
0
,

rknT (c, c0) =
1

n

nX
i=1

¡
dmkiT

¡
c+k
¢− dmkiT (c0)

¢
,

and c+k lies between c and c0 for k = 1, 2.
DeÞne

SnT = dMnT (c0)
0 �WMnT (c0) ,

and

HnT = dMnT (c0)
0 �WdMnT (c0) .

Then, we can write

ZnT (c) = MnT (c0)
0 �WMnT (c0) + 2 (c− c0)SnT + (c− c0)2HnT

+(c− c0)R1nT (c, c0) + (c− c0)2R2nT (c, c0) ,

where

R1nT (c, c0) = 2MnT (c0)
0 �WrnT (c, c0) ,

and

R2nT (c, c0) = 2dMnT (c0)
0 �WrnT (c, c0) + rnT (c, c0)

0 �WrnT (c, c0) .

Next, we give some asymptotic results that are useful in establishing the limit distri-
bution of �c.

Lemma 4 Suppose that Assumptions 1-3 hold. When the true parameter is c0,

dMnT (c)→p σ
2dM (c) = σ2

µ
dM1 (c)
dM2 (c)

¶
uniformly in c as (n, T →∞)

for some continuous function dM (c) with

dM1 (c0) =

Z 1

0

Z r

0

ec0(r−s) (r − s) �hp (r, s) dsdr − ψp (c0) ,

18



and

dM2 (c0)

= −
Z 1

0

Z r

0

e2c0(r−s)dsdr

+

Z 1

0

Z 1

0

Z r∧s

0

ec0(r+s−2v)
·
gpc0 (s)

0Ap (c0)
−1 ·gpc0 (r) dvdsdr

+

Z 1

0

Z r

0

ec0(r−s)
·
gpc0 (r)

0
Ap (c0)

−1
gp (s) dsdr

+

Z 1

0

Z r

0

ec0(r−s)
·
gpc0 (s)

0
Ap (c0)

−1
gp (r) dsdr

−
Z 1

0

Z r

0

ec0(r−s)
·
gpc0 (r)

0
Ap (c0)

−1
Bp (c0)Ap (c0)

−1 ·
gpc0 (s) dsdr

−
Z 1

0

Z r

0

ec0(r−s)
·
gpc0 (s)

0Ap (c0)
−1Bp (c0)

0Ap (c0)
−1 ·gpc0 (r) dsdr

+

Z 1

0

Z r

0

(r − s) ec0(r−s) ·gpc0 (r)0Ap (c0)−1
·
gpc0 (s) dsdr.

Lemma 5 Suppose that Assumptions 1-3 hold and set BnT =
√
n. Then, as (n, T →∞)

following Assumption 5,

BnTMnT (c0) =
1√
n

nX
i=1

miT (c0)⇒ N
¡
0,σ4J 0Φ (c0)J

¢
,

where J =
µ
1 −1 0 0 0
1 0 −1 −1 1

¶0
and Φ (c0) is deÞned in (46) .

Remarks

(a) The proof of Lemma 5 is similar to that of Lemma 3 and is omitted.

(b) Figs. 3-4 plot the graphs of dM1 (c0, c0) in the cases �g1t = (1, t)
0 and �g2t =

¡
1, t, t2

¢0
,

respectively. The graphs reveal that dM1 (c0, c0) < 0 for c0 < 0, and, therefore,
HnT > 0 for c0 < 0.
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Fig. 3. Graph of dM1 (c0) when �g1t = (1, t)
0
.
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Fig. 4. Graph of dM1 (c0) when �g2t =
¡
1, t, t2

¢0
.

(c) According to Moon and Phillips (2000), when c0 = 0, dM1 (c0, c0) = 0 holds for
all polynomial trends �gpt = (1, ..., tp)0 . Also, for c0 = 0, direct calculations show
that dM2 (c0, c0) = 0 for g1t = t and dM2 (c0, c0) = 0 for g2t =

¡
t, t2

¢0
. Therefore,

HnT →p 0 when c0 = 0, g1t = t, and g2t =
¡
t, t2

¢0
.

From Lemma 4 and the following remarks and by Assumption 6, it follows that HnT
has a positive limit as (n, T →∞) when c0 < 0. Thus, H−1nT = Op (1). Then, we can write

B2nTZnT (c)

= MnT (c0)
0 �WMnT (c0)− (BnTSnT )

2

HnT
+HnT

µ
BnT (c− c0)− BnTSnTHnT

¶2
+BnT (c− c0)BnTR1nT (c, c0) + (BnT (c− c0))2R2nT (c, c0) . (22)

Lemma 6 Under Assumptions 1-3 and Assumption 6, for every sequence γnT → 0, we
have as (n, T →∞) following Assumption 5,
(a)

sup
c∈C:|c−c0|≤γnT

|BnTR1nT (c, c0)| = op (1) ,

and
(b)

sup
c∈C:|c−c0|≤γnT

|R2nT (c, c0)| = op (1) .

Theorem 2 Suppose that Assumptions 1-3 and Assumption 6 hold. Then, as (n, T →∞)
following Assumption 5,

BnT (�c− c0) = Op (1) .
Lemma 6 establishes that the two remainder terms BnTR1nT (c, c0) and R2nT (c, c0)

converge in probability to zero uniformly in the shrinking neighborhood of the true param-
eter. Also, Theorem 2 shows that the GMM estimator is BnT ( =

√
n)− consistent. This

implies that in the shrinking neighborhood of the true parameter, the scaled objective
function B2nTZnT (c) is uniformly approximated by the following quadratic function

B2nTZq,nT (c)

= MnT (c0)
0 �WMnT (c0)− (BnTSnT )

2

HnT +HnT
µ
BnT (c− c0)− BnTSnTHnT

¶2
.
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The heuristic ideas of the limit theory are as follows. LetBnT (�cq − c0) = argmin
c∈C

B2nTZq,nT (c) .

Then, we may expect that a minimizer of B2nTZnT (c) will be close to the minimizer of
B2nTZq,nT (c) , suggesting that the GMM estimator BnT (�c− c0) will be close to

BnT (�cq − c0) =
BnTSnT
HnT if

½
BnT (c̄− c0) ≤ BnTSnT

HnT ≤ −BnT c0
¾

= BnT (c̄− c0) if
½
BnT (c̄− c0) > BnTSnT

HnT

¾
= −BnT c0 if

½
BnTSnT
HnT > −BnT c0

¾
.

Notice that BnTSnT
HnT

= Op (1) and recall that it is assumed that the true parameter sat-

isÞes c̄ < c0 < 0. In this case, the probabilities of the events
n
BnT (c̄− c0) > BnTSnT

HnT

o
andn

BnTSnT
HnT

> −BnT c0
o
will be very small and the scaled and centred estimatorBnT (�cq − c0)

will therefore be close with high probability to the random variable

�φnT =
BnTSnT
HnT .

In view of Lemmas 4 and 5 and Assumption 6,

BnTSnT ⇒ S d
= N

¡
0,σ8

£
dM (c0)

0
WJ 0Φ (c0)JWdM (c0)

¤¢
and

HnT →p H = σ4dM (c0)
0
WdM (c0) > 0

as (n, T →∞) with n
T → 0. Thus, when c0 ∈ C0/ {0} ,

�φnT ⇒ φ
d
= H−1S let

= Z.
The proof of the following theorem conÞrms the heuristic argument above.

Theorem 3 Suppose that Assumptions 1-3 and Assumption 6 hold. Suppose that c0 ∈
C0/ {0} and �c be the GMM estimator deÞned in (21) . Then, as (n, T →∞) following
Assumption 5,

√
n (�c− c0)⇒ Z,

where

Z d
= N

Ã
0,
dM (c0)

0
WJ 0Φ (c0)JWdM (c0)£

dM (c0)
0
WdM (c0)

¤2
!
.

Remarks

(a) When c0 ∈ C0/ {0} and J 0Φ (c0)J is invertible, the optimal weight matrix is found
as

�Wopt = (J
0Φ (�c)J)−1 .

The limiting distribution of
√
n (�c− c0) is then

√
n (�c− c0)⇒ Zopt d

= N

Ã
0,

σ4£
dM (c0)

0
WdM (c0)

¤2
!
. (23)
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(b) Fig. 5 plots the graph of the minimum eigenvalue of J 0Φ (c0)J as a function of c0.
As we see through the graph, J 0Φ (c0)J is positive deÞnite except for the case of
c0 = 0.
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Fig. 5. Graph of the Minimum Eigenvalue of J 0Φ (c0)J when g1t = t.
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Fig. 6. Graph of the Minimum Eigenvalue of J 0Φ (c0)J when g2t =
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4.3 Limiting Distribution of the GMM Estimator When c0 = 0

An important special case of model 1 occurs when c0 = 0. The time series components of
yit in (1) then have a unit root, and the deterministic trend is linear, so

zit = βi0t+ yit (24)

yit = ρ0yit−1 + εit,
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where ρ0 = 1, i.e, c0 = 0. According to Remark (c) below Lemma 5, in this case, the
information from the moment conditions is zero because HnT →p 0. We cannot then use
a conventional quadratic approximation approach, as in the previous section, and need
instead to employ a higher order approximation to extract the limit theory (c.f., Sargan,
1983).
This section develops asymptotics for the GMM estimator when the true localizing

parameter is zero, so throughout this section we set c0 = 0. The following lemmas Þnd the
limits of the Þrst and the second moment conditions and their higher order derivatives at
c = 0.

Lemma 7 Suppose that the panel data is generated by (24). Under Assumptions 2 and
3, the following hold as (n, T →∞) following Assumption 5.
(a)

√
nM1nT (0)⇒ N

³
0, σ

4

60

´
≡
q

σ4

60Z, where Z ≡ N (0, 1) ,
(b)

√
ndM1nT (0) = N

¡
0,σ4 11

6300

¢
,

(c)
√
nd2M1nT (0)⇒ op (1) ,

(d) d3M1nT (c)→p σ
2d3M1 (c, 0) uniformly in c with d3M1 (0) = − 1

70 ,
where dkM1nT (c) is the kth left derivative of M1nT (c), and d3M1 (c) is the third left

derivative of M1 (c) , the probability limit of M1nT (c) .

Lemma 8 Suppose that the assumptions in Lemma 7 hold. Then, when (n, T →∞)
following Assumption 5,
(a)

√
nM2nT (0) = op (1) ,

(b)
√
ndM2nT (0)⇒ N

³
0, σ

4

45

´
,

(c)
√
nd2M2nT (0) = op (1) ,

(d) d3M2nT (c)→p σ
2d3M2 (c) uniformly in c with d3M2 (0) = − 1

15 ,
where dkM2nT (0) is the kth left derivative of M2nT (c) at c = 0, and d3M2 (0) is the

third left derivative of d3M2 (c) at c = 0.

Remarks. Since the higher order derivatives of M2nT (0) are complicated and involve
extremely lengthy expressions, we omit the details of their derivation in the appendix.
Instead, we give a sketch of the proof in the appendix and here provide some simulation
evidence relating to the various parts of Lemmas 7 and 8. Using simulated data for zit
in (24) with εit ∼ iid N (0, 1) and yi0 = 0, we estimate the means and the variances
of
√
ndkMjnT (0) , k = 0, ...,2; j = 1, 2 and the means of d3MjnT (0) , j = 1, 2. Table 1

reports the results. The numbers in the table are consistent with the theoretical results
in the lemmas. Noticeably, the variance estimates of

√
nM1nT (0) ,

√
ndM1nT (0) , and√

ndM2nT (0) are all small. This is because their theoretical limit variances are small
but not zero. In fact, a long calculation shows that the theoretical limit variances of√
nM1nT (0) ,

√
ndM1nT (0) , and

√
ndM2nT (0) are 1

60(' 0.01667), 11
6300(' 0.00175), and

1
45 (' 0.0222), respectively when εit ∼ iid N (0, 1).

Table 19

9Notice that the second and the third derivatives of M1nT (c) are deterministic.
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√
nM1nT (0)

√
ndM1nT (0)

√
nd2M1nT (0) d3M1nT (c)

Mean
Variance

−0.0019
0.018

−0.0003
0.0017

7.96× 10−7
0

−0.0169
N/A

√
nM2nT (0)

√
ndM2nT (0)

√
nd2M2nT (0) d3M2nT (0)

Mean
Variance

9.4× 10−5
0.0012

−0.0001
0.022

−2.88× 10−6
4.85× 10−6

−0.06
N/A

Using the left derivatives of the moment condition MnT (c) at c = 0, we approximate
MnT (c) around the true parameter c0 = 0 with a third order polynomial as follows,

MnT (c) =MnT (0) + c (dMnT (0)) +
1

2
c2
¡
d2MnT (0)

¢
+
1

6
c3
¡
d3MnT (0)

¢
+ c3�rnT (c, 0) ,

where

�rnT (c, 0) = (�r1nT (c, 0) , �r2nT (c, 0))
0
,

�rknT (c, 0) = d3MknT

¡
c+k
¢− d3MknT (0) , k = 1 and 2.

Then,

ZnT (c) = MnT (c)
0 �WMnT (c)

=
6X
k=0

ckAk,nT +NnT (c, 0) ,

where

A0,nT = MnT (0)
0 �WMnT (0) ,

A1,nT = 2MnT (0)
0 �WdMnT (0) ,

A2,nT = MnT (0)
0 �Wd2MnT (0) + dMnT (0)

0 �WdMnT (0) ,

A3,nT =
1

3
MnT (0)

0 �Wd3MnT (0) + dMnT (0)
0 �Wd2MnT (0) ,

A4,nT =
1

3
dMnT (0)

0 �Wd3MnT (0) +
1

4
d2MnT (0)

0 �Wd2MnT (0) ,

A5,nT =
1

6
d2MnT (0)

0 �Wd3MnT (0) ,

A6,nT =
1

36
d3MnT (0)

0 �Wd3MnT (0) ,

and

NnT (c, 0) =
6X
k=3

ckNk,nT (c, 0) ,

Nk,nT (c, 0) = αkd
(k−3)MnT (0)

0 �W �rnT (c, 0) for k = 3, 4, 5,

N6,nT (c, 0) = α6d
3MnT (0)

0 �W �rnT (c, 0) + �rnT (c, 0)
0 �W �rnT (c, 0) ,

α3,α4 = 2, α5 = 1, α6 =
1

3
,
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where d0MnT (0) denotes MnT (0) .
In view of Lemmas 7 and 8, it is easy to Þnd that as (n, T →∞) with n

T → κ <∞,

n5/6A1,nT = op (1) , (25)

n2/3A2,nT = op (1) , (26)

n1/3A4,nT = op (1) , (27)

n1/6A5,nT = op (1) , (28)

and

A6,nT →
p

σ4

36

µ
W11

4900
+
2W12

1050
+
W22

225

¶
> 0, (29)

n1/2A3,nT ⇒ A3Z, (30)

nA0,nT ⇒ A0Z2, (31)

where Z ≡ N (0, 1) and A3 = −σ2

3

¡
W11

70 + W12

15

¢q
σ4

60 and A0 =W11
σ4

60 .

Also, using Lemmas 7 and 8 and following similar lines of proof to Lemma 6, we can
show that

sup
c∈C:|c|≤γnT

¯̄̄
n(6−k)/6Nk,nT (c, 0)

¯̄̄
= op (1) , (32)

for any sequence γnT tending to zero as (n, T →∞) . Then, we have the following limit
theory for �c at the origin.

Theorem 4 Under the assumptions in Lemmas 7 or 8, and as (n, T →∞) following
Assumption 5,

n1/6 (�c− c0) = Op (1) ,
where c0 = 0.

So, when the true localizing parameter is c0 = 0, the GMM estimator �c is n1/6−
consistent, which is slower than the regular case of

√
n that applies for c0 < 0 as shown

in Section 4. To Þnd the limiting distribution of �c, we use an argument similar to that of
the previous section. Consequently, we sketch the derivation and give the Þnal result in
Theorem 5 below.
In view of (25) − (31) and (32), the standardized objective function nZnT (c) is ap-

proximated by

Zq,nT (c) = nA0,nT +
³
n1/6c

´3√
nA3,nT +

³
n1/6c

´6
A6,nT .

Notice that the probability limit of A6,nT is positive, as shown in (29). Then, it is easy to
see that the approximate objective function Zq,nT (c) is minimized at

n1/6�cq = −
µ√

nA3,nT
2A6,nT

¶1/3
if
½
n1/6c̄ ≤ −

√
nA3,nT
2A6,nT ≤ 0

¾
= 0 if

½
−
√
nA3,nT
2A6,nT > 0

¾
= −

³
n1/6 (−c̄)

´1/3
if
½
n1/6c̄ > −

√
nA3,nT
2A6,nT

¾
.
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Using arguments similar to those in the proof of Theorem 3, we can prove that the
standardized GMM estimator n1/6�c is approximated by n1/6�cq, the minimizer of Zq,nT (c) ,
that is,

n1/6�c = n1/6�cq + op (1) ,

and the estimator n1/6�cq is approximated by

�φnT = −
µ√

nA3,nT
2A6,nT

¶1/3
1

½
−
√
nA3,nT
2A6,nT ≤ 0

¾
,

where 1{A} is the indicator of A. In view of (30) and (29), as (n, T →∞) following
Assumption 5, it follows by the continuous mapping theorem that

�φnT ⇒ Z1/30 1 {Z0 ≤ 0} ,
where

Z0 = V0Z, (33)

V0 =

¯̄̄̄
¯̄
q

1
15

¡
W11

70 + W12

15

¢
1
3

¡
W11

4900 +
2W12

1050 +
W22

225

¢
¯̄̄̄
¯̄ , (34)

and Wij are the (i, j)
th element of the weight matrix W. Thus, we have the following

theorem.

Theorem 5 Under the assumptions in Lemmas 7 and 8, as (n, T →∞) following As-
sumption 5,

n1/6�c⇒ Z1/30 1 {Z0 ≤ 0} ,
where Z0 is deÞned in (33) .
Remarks

(a) Theorem 4 shows that when the true parameter c0 = 0, i.e., in the case of a panel
unit root, the GMM estimator is n1/6-consistent and that its limit distribution is
nonstandard, involving the cube root of a truncated normal. The truncation in the
limiting distribution arises because the true parameter is on the boundary of the
parameter set.

(b) The reason for the slower convergence rate in the panel unit root case is that Þrst
order information in the moment condition (from the Þrst derivative of the mo-
ment condition) is aymptotically zero at the true parameter. In order to obtain
nonneglible information from the moment condition, we need to pass to third order
derivatives of the moment condition. Taking the higher order approximation slows
down the convergence rate because the rate at which information in the moment
condition is passed to the estimator is slowed down at the origin because of the zero
lower derivatives.

(c) In view of Lemmas 7(a) and 8(a), we Þnd that
√
nM2nT (0) = op (1) , while

√
nM1nT (0)

converges in distribution to a normal random variable with positive variance. Be-
cause of the convergence rate difference between

√
nM2nT (0) and

√
nM1nT (0) , we

have only W11 and W12 but not W22 in the limiting scale V0 of (34) . In this case,
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setting W11 = W12 = 0, i.e. not considering the Þrst moment condition, causes
the variance of the limit variate Z0 in (33) to vanish, from which one might expect
that the GMM estimator from the second moment condition alone would have a
faster convergence rate than n1/6. The reason for using the Þrst moment condition
is to identify the true parameter c0 when c0 < 0. As we discuss in Appendix D, the
second moment condition cannot identify the true parameter c0 unless c0 = 0.

4.4 On Testing for a Unit Root

This section brießy considers how the asymptotic results for the localizing coefficient given
in the previous section may be used to test for a unit root in the panel. Suppose the null
hypothesis is H0 : c0 = 0 and the alternative hypothesis is H1 : c0 < 0. We discuss two
types of panel unit root tests, one involving a t− test and the other an LM test.
First, Theorem 5 shows that to test H0 we can use a suitably constructed t− statistic.

SpeciÞcally, let �V0 be a consistent estimator of V0 and deÞne

tgmm =

√
n�c3

�V0
.

Then, since �V0 →p V0 and from Theorem 5 with (n, T →∞) as in Assumption 5, we get
tgmm ⇒ Z1 {Z ≤ 0} ,

where Z ≡ N (0, 1) . Under the alternative hypothesis c = cA < 0, we have

tgmm =

√
n
¡
�c3 − c3A

¢
�V0

+

√
nc3A
�V0

= Op (1) +

√
nc3A
�V0

by Theorem 3 and the delta method. So, under the alternative hypothesis, tgmm → −∞
and the test is consistent.
Another type of test is to use the asymptotic properties of the moment conditions in

Lemmas 7 and 8 in conjunction with the restricted parameter estimator, which is zero
in this case. For example, in Lemma 7 we observe that

√
ndM1nT (0) = N

¡
0,σ4 11

6300

¢
.

Thus, a simple test can be based on

LMgmm =

Ãr
6300

11

√
ndM1nT (0)

�σ2

!2
.

Then, as (n, T →∞) as in Assumption 5, we have
LMgmm ⇒ χ2 (1) .

Under the alternative c = cA < 0, it is easy to show that (
√
ndM2nT (0))

2
= nO (1)2 →∞,

while d3M2nT (0)→p −σ2 115 < 0. Thus, under the alternative hypothesis, LMgmm →∞.
The same principle can be applied to the second moment condition M2nT (0) .

5 Conclusion

Part of the richness of panel data is that it can provide information about features of a
model on which time series and cross section data are uninformative when they are used on
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their own. In the context of nonstationary panels with near unit roots, an interesting new
example of this �added information� feature of panel data is that consistent estimation of
the common local to unity coefficient becomes possible. This means that panel data help
to sharpen our capacity to learn from data about the precise form of nonstationarity where
time series data alone are insufficient to do so. However, as the authors have shown in
earlier work, the presence of individual deterministic trends in a panel model introduces a
serious complication in this nice result on the consistent estimation of a root local to unity.
The complication is that individual trends produce an incidental parameter problem as
n → ∞ that does not disappear as T → ∞. The outcome is that common procedures
like pooled least squares and maximum likelihood are inconsistent. Thus, the presence
of deterministic trends continues to confabulate inference about stochastic trends even in
the panel data case.
One option is to adjust procedures like maximum likelihood to deal with the bias. The

present paper shows how to make these adjustments. The theory is cast in the context
of moment formulae that lead naturally to GMM based estimation. The paper has two
important Þndings.
The Þrst is that bias correction in the moment formulae arising from GLS estima-

tion of the trend coefficients corresponds to taking the projected score (under Gaussian
assumptions) on the Bhattacharya basis. This correspondence relates the approach we
take here to recent work on projected score methods by Waterman and Lindsay (1998)
that deals with models that have inÞnite numbers of nuisance parameters like the original
incidental parameters problem.
The second is that our limit theory validates GMM-based inference about the localizing

coefficient in near unit root panels. A notable new result is that the GMM estimator has
a convergence rate slower than

√
n when the true localizing parameter is zero (i.e., when

there is a panel unit root) and the deterministic trends in the panel are linear. The
asymptotic theory in this case provides a new example of limit theory on the boundary
of a parameter space. The results point to the continued difficulty of distinguishing unit
roots from local alternatives when there are deterministic trends in the data even when
time series data is coupled with an inÞnity of additional data from a cross section.

6 Appendix

6.1 Proof of the Equivalence Lemma

Before we start the proof of Lemma 1, we give some useful background results.

Lemma 9 LetKm denote the (m×m) commutation matrix, Dm denote them2×1
2m (m+ 1)

duplication matrix, and set D+m = (D0mDm)
−1
D0m. Also, assume that x and y are m −

vectors and A is an (m×m) invertible matrix. Then the following hold.
(a) xy0 ⊗ yx0 = Km (yy0 ⊗ xx0) .
(b) (Im +Km) ((x⊗ y) + (y ⊗ x)) = 2 (x⊗ y) + 2 (y ⊗ x) .
(c) D+p Dp = I 12p(1+p).
(d) DpD+p =

1
2 (Ip +Kp) .

(e)
¡
D+p (A⊗A)Dp

¢−1
= D+p

¡
A−1 ⊗A−1¢Dp.

Proof
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Parts (c), (d), and (e) are standard results (e.g., Magnus and Neudecker, 1988, pp.
49-50). Part (a) holds because

xy0 ⊗ yx0 = (x⊗ y) (y0 ⊗ x0) = vec (yx0) (vec (xy0))0
= (Kmvec (xy

0)) (vec (xy0))0 = Km (y ⊗ x) (y ⊗ x)0
= Km (yy

0 ⊗ xx0) .

Part (b) holds because

(Im +Km) ((x⊗ y) + (y ⊗ x))
= (x⊗ y) + (y ⊗ x) +Kmvec (yx0) +Kmvec (xy0)
= (x⊗ y) + (y ⊗ x) + vec (xy0) + vec (yx0)
= 2 (x⊗ y) + 2 (y ⊗ x) . ¥

Proof of Lemma 1
In this proof we omit the subscript p that denotes the order of the polynomial trends

for notational simplicity. To complete the proof, it is enough to show that λT (c) in

m2,iT (c) is equivalent to ξ
0
2D

+
p

PT
t=1 (∆cgt ⊗∆cgt) in U2i

³
c, �βi (c)

´
. First, we deÞne

�A1T =
1

T

TX
t=2

1

T

t−1X
s=1

D+p

h
[∆cgt ⊗[∆cgs +[∆cgs ⊗[∆cgt

i ·³
1 +

c

T

´T¸ t−s−1T

,

�A2T =
1

T

TX
t=1

1

T

TX
s=1

D+p

n³
[∆cgt[∆cgt

0 ⊗[∆cgs[∆cgs
0´
+
³
[∆cgt[∆cgs

0 ⊗[∆cgs[∆cgt
0´o¡

D+p
¢0
,

�A3T = D+p
1

T

TX
t=1

³
[∆cgt ⊗[∆cgt

´
.

Then, by deÞnition, we write

ξ02D
+
p

TX
t=1

(∆cgt ⊗∆cgt) = �A01T �A
−1
2T
�A3T .

Notice by Lemma 9(a), (d), and (c) that

�A2T

= D+p (Ip +Kp)
1

T

TX
t=1

1

T

TX
s=1

³
[∆cgt[∆cgt

0 ⊗[∆cgs[∆cgs
0´¡
D+p

¢0
= 2D+p DpD

+
p

"Ã
1

T

TX
t=1

[∆cgt[∆cgt
0
!
⊗
Ã
1

T

TX
s=1

[∆cgs[∆cgs
0
!#¡

D+p
¢0

= 2D+p

"Ã
1

T

TX
t=1

[∆cgt[∆cgt
0
!
⊗
Ã
1

T

TX
s=1

[∆cgs[∆cgs
0
!#¡

D+p
¢0

= 2

"
D+p

Ã
1

T

TX
t=1

[∆cgt[∆cgt
0
!
⊗
Ã
1

T

TX
s=1

[∆cgs[∆cgs
0
!
Dp

# ¡
D0pDp

¢−1
.
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By Lemma 9(e),

�A−12T

=
1

2

¡
D0pDp

¢
D+p

Ã 1
T

TX
t=1

[∆cgt[∆cgt
0
!−1

⊗
Ã
1

T

TX
s=1

[∆cgs[∆cgs
0
!−1

Dp


=

1

2
D0p

Ã 1
T

TX
t=1

[∆cgt[∆cgt
0
!−1

⊗
Ã
1

T

TX
s=1

[∆cgs[∆cgs
0
!−1Dp.

Again, from Lemma 9(d) and (b), we have

�A01T �A
−1
2T
�A3T

=
1

T

TX
t=2

1

T

t−1X
s=1

h
[∆cgt ⊗[∆cgs +[∆cgs ⊗[∆cgt

i0 ·³
1 +

c

T

´T¸ t−s−1T ¡
D+p
¢0

×1
2
D0p

Ã 1
T

TX
t=1

[∆cgt[∆cgt

!−1
⊗
Ã
1

T

TX
s=1

[∆cgs[∆cgs
0
!−1Dp

×D+p
1

T

TX
t=1

³
[∆cgt ⊗[∆cgt

´
=

1

8

"
1

T

TX
t=2

1

T

t−1X
s=1

h
[∆cgt ⊗[∆cgs +[∆cgs ⊗[∆cgt

i0 ·³
1 +

c

T

´T¸ t−s−1T

#
(Ip +Kp)

0

×
Ã 1

T

TX
t=1

[∆cgt[∆cgt

!−1
⊗
Ã
1

T

TX
s=1

[∆cgs[∆cgs
0
!−1

× (Ip +Kp)
"
1

T

TX
t=1

³
[∆cgt ⊗[∆cgt

´#

=
1

2

"
1

T

TX
t=2

1

T

t−1X
s=1

h
[∆cgt ⊗[∆cgs +[∆cgs ⊗[∆cgt

i0 ·³
1 +

c

T

´T¸ t−s−1T

#

×
Ã 1

T

TX
t=1

[∆cgt[∆cgt

!−1
⊗
Ã
1

T

TX
s=1

[∆cgs[∆cgs
0
!−1

×
"
1

T

TX
t=1

³
[∆cgt ⊗[∆cgt

´#
. (35)

Expanding (35) yields

1

T

TX
t=2

1

T

t−1X
s=1

1

T

TX
p=1

·³
1 +

c

T

´T¸ t−s−1T h
[∆cgs

0
A−1pT [∆cgp

i h
[∆cgp

0
A−1pT[∆cgt

i

=
1

T

TX
t=2

1

T

t−1X
s=1

·³
1 +

c

T

´T¸ t−s−1T

[∆cgs
0
A−1pT[∆cgt

= λpT (c) . ¥
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6.2 Appendix A: Useful Results for Joint Asymptotics

This section consists of two subsections. The Þrst subsection introduces some useful results
for joint asymptotic theories. Many of these are modiÞed versions of results developed
in Phillips and Moon (1999) so we report them only brießy here. The second subsection
introduces some useful results which will be used repeatedly in the following sections of
the proofs for the results in the main text.

6.2.1 Appendix A1

The following two theorems provide convenient conditions to Þnd the joint probability
limit of double indexed processes.

Theorem 6 (Joint Probability Limits) Suppose the (m× 1) random vectors YiT are
independent across i = 1, ..., n for all T and integrable. Assume that YiT ⇒ Yi as T →∞
for all i. Let XnT = 1

n

Pn
i=1 YiT and Xn =

1
n

Pn
i=1 Yi.

(a) Let the following hold:

(i) lim supn,T
1
n

Pn
i=1E||YiT || <∞,

(ii) lim supn,T
1
n

Pn
i=1 ||EYiT −EYi|| = 0,

(iii) lim supn,T
1
n

Pn
i=1E||YiT ||1{||YiT || > nε} = 0 ∀ε > 0,and

(iv) lim supn
1
n

Pn
i=1E kYik 1{kYik > nε} = 0 ∀ε > 0.

(b) If limn→∞ 1
n

Pn
i=1EYi (:= �µX) exists and Xn →p �µX as n → ∞, then XnT

→p �µX as (n, T →∞).
Theorem 7 Suppose that YiT = CiQiT , where the (m × 1) random vectors QiT are iid
across i = 1, ..., n for all T, and the Ci are (m×m) nonrandom matrices for all i. Assume
that

(i) QiT ⇒ Qi as T −→∞ for all i,

(ii) ||QiT || is uniformly integrable in T for all i.
(iii) supi ||Ci|| <∞, infi ||Ci|| > 0, and C = limn 1

n

Pn
i=1Ci.

Then 1
n

Pn
i=1 YiT →p CE(Qi) as (n, T →∞).

Theorem 8 (Joint Limit CLT for Scaled Variates) Suppose that YiT = CiQiT ,
where the (m× 1) random vectors QiT are iid(0,ΣT ) across i = 1, ..., n for all T and the
Ci are (m×m) nonzero and nonrandom matrices. Assume the following conditions hold:

(i) Let σ2T = λmin(ΣT ) and lim infT σ
2
T > 0,

(ii)
maxi≤nkCik2

λmin(
Pn

i=1CiC
0
i)
= O

¡
1
n

¢
as n→∞,

(iii) ||QiT ||2 are uniformly integrable in T ,
(iv) limn,T

1
n

Pn
i=1Ci

P
T C

0
i = Ω > 0.

Then,

XnT =
1√
n

nX
i=1

YiT ⇒ N(0,Ω) as n,T →∞.
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6.2.2 Appendix A2

Recall that

�hpT (t, s) = �g
0
pt
�Dp,T

Ã
1

T

TX
t=1

�Dp,T �gpt�g
0
pt
�Dp,T

!−1
�Dp,T �gps

It is easy to see that when t = [Tr] and s = [Tv], as T →∞

�hT (t, s)→ �g0p(r)
µZ

�gp�g
0
p

¶−1
�gp(v) = �hp(r, v)

uniformly in (r, v) ∈ [0, 1]× [0, 1]. The following limit also holds
sup

1≤t,s≤T
�hpT (t, s)→ sup

0≤r,v≤1
�hp(r, v).

Next, deÞne

xit =
tX

s=1

³
1 +

c0
T

´(t−s)
εis (36)

and xi0 = 0. Then, we can write yit as

yit = xit +Rit, (37)

where Rit =
¡
1 + c0

T

¢t
yi0.

When t = [Tr], as T →∞,

E

µ
x2it
T

¶
= σ2

 1
T

tX
s=1

·³
1 +

c0
T

´T¸ 2(t−s)T


→ σ2

Z r

0

exp ((r − s)2c0) ds < K̄, (38)

1

T

TX
t=1

s
E

µ
x2it
T

¶
=

1

T

TX
t=1

vuut 1

T

tX
s=1

·³
1 +

c0
T

´T¸ 2(t−s)T

→ σ

Z 1

0

µZ r

0

e(r−s)2c0ds
¶ 1

2

dr < K̄, (39)

where K̄ is a Þnite generic constant.

Lemma 10 Assume that {FT (c)} is a sequence of real valued functions on a compact set
C in R with

FT (c)→ 0, for all c ∈ C,
as T →∞. Suppose that for any given ε > 0 and c ∈ C, there exist T0 (c, ε) and δ (c, ε) > 0
such that T ≥ T0 (c, ε) implies that

sup
|c−c̄|<2δ(c,ε)

|FT (c)− FT (c̄)| < ε. (40)

Then,

sup
c∈C

|FT (c)|→ 0.
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Proof
Let B (c, δ) be a δ− ball around c. From (40) , for the given ε > 0 and c, one may

choose T0 (c, ε) and δ (c, ε) such that if T ≥ T0 (c, ε) , then

|c− c̄| < 2δ (c, ε)

implies

|FT (c)− FT (c̄)| < ε

2
.

Also, since FT (c)→ 0 pointwise in c ∈ C, we may choose T1 (c, ε) such that T ≥ T1 (c, ε)
implies that

|FT (c)| < ε

2
.

Since C is compact, among the open covers {B (c, δ (c, ε))}c∈C , we can choose a Þnite
number of open covers of C, {B (cl, δ (cl))}l=1,...,L . Set T0 (ε) = maxl=1,...,Lmax {T0 (cl, ε) , T1 (cl, ε)} .
Then, if T ≥ T0 (ε), then,

sup
c∈C

|FT (c)| = sup
l=1,...,L

sup
c∈B(cl,δ(cl,ε))

|FT (c)|

≤ sup
l=1,...,L

sup
c∈B(cl,δ(cl,ε))

|FT (c)− FT (cl)|+ sup
l=1,...,L

|FT (cl)|
≤ ε,

and we have the required result. ¥

Lemma 11 Let fT (c) = 1
T2

PT
t=1

PT
s=1

h¡
1 + c

T

¢T ihT ( tT , sT )
gT
¡
t
T ,

s
T , c

¢
, where c ∈ C, a

compact subset in R, gT
¡
t
T ,

s
T , c

¢
is continuously differentiable in c, and sup(r,p,c)∈[0,1]2×C |gT (r, p, c)| ,

sup(r,p,c)∈[0,1]2×C
¯̄̄
∂gT (r,p,c)

∂c

¯̄̄
, sup(r,p)∈[0,1]2 |hT (r, p)| < K̄. Suppose that gT

³
[Tr]
T , [Tp]T , c

´
→

g (r, p, c) and hT
³
[Tr]
T , [Tp]T

´
→ h (r, p) unifomrly in (r, p) ∈ [0, 1]2, where g (r, p, c) and

h (r, p) are continuous functions on [0, 1]2 ×C and [0, 1]2, respectively, satisfyingZ 1

0

Z 1

0

ec̄|h(r,p)|dpdr <∞,

where c̄ = maxc∈C |c| . Then

fT (c)→ f (c) =

Z 1

0

Z 1

0

ech(r,p)g (r, p, c) drdp uniformly in c

as T →∞.

Proof
Let FT (c) = fT (c)− f (c) . Under the restrictions in the lemma,

FT (c)→ 0

for all c ∈ C. Then, by Lemma 10, the desired result follows if we verify that FT (c) satisÞes
condition (40) . For this, it is enough to show that fT (c) satisÞes condition (40) because
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f (c) is uniformly continuous in c. Fix c0 ∈ C. Observe that fT (c) is a differentiable
function. Now, by the mean value theorem,

fT (c)− fT (c0) =


1
T 2

PT
t=1

PT
s=1 hT

¡
t
T ,

s
T

¢ ·³
1 + c∗

T

´T¸hT ( tT , sT )− 1
T

gT
¡
t
T ,

s
T , c

∗¢
+ 1
T 2

PT
t=1

PT
s=1

·³
1 + c∗

T

´T¸hT ( tT , sT ) ∂gT ( tT , sT ,c∗)
∂c

 (c− c0) ,

where c∗ is located between c and c0. Let c̄ = maxc∈C |c| . Then,¯̄̄̄
¯̄̄̄
¯

1
T2

PT
t=1

PT
s=1 hT

¡
t
T ,

s
T

¢ ·³
1 + c∗

T

´T¸hT ( tT , sT )− 1
T

gT
¡
t
T ,

s
T , c

∗¢
+ 1
T2

PT
t=1

PT
s=1

·³
1 + c∗

T

´T¸hT ( tT , sT ) ∂gT ( tT , sT ,c∗)
∂c

¯̄̄̄
¯̄̄̄
¯

≤ K̄

T 2

TX
t=1

TX
s=1

·³
1 +

c̄

T

´T¸|hT ( tT , sT )|
→ K̄

Z 1

0

Z 1

0

ec̄|h(r,p)|dpdr = K, say. (41)

Choose 2δ (c0, ε) = ε
K+ε . From (41) , we can choose a T0 (c0, ε) such that T ≥ T0 (c0, ε)

implies¯̄̄̄
¯̄̄̄
¯

1
T2

PT
t=1

PT
s=1 hT

¡
t
T ,

s
T

¢ ·³
1 + c∗

T

´T¸hT ( tT , sT )− 1
T

gT
¡
t
T ,

s
T , c

∗¢
+ 1
T2

PT
t=1

PT
s=1

·³
1 + c∗

T

´T¸hT ( tT , sT ) ∂gT ( tT , sT ,c∗)
∂c

¯̄̄̄
¯̄̄̄
¯ ≤ K + ε.

Then, T ≥ T0 (c0, ε) and |c− c0| < 2δ (c0, ε) imply that
|fT (c)− fT (c0)| ≤ (K + ε) |c− c0| ≤ ε,

and the proof is completed. ¥

Corollary 1 (a) ApT (c)→ Ap (c) uniformly in c ∈ C,
(b) BpT (c)→ Bp (c) uniformly in c ∈ C,
(c) ApT (c)

−1 → A−1p (c) unifomly in c ∈ C,
(d) ωpT (c)→ ωp (c) unifomly in c ∈ C,
(e) λpT (c)→ λp (c) unifomly in c ∈ C, where p = 1, 2.

Proof
Part (a). Notice that each element in ApT (c) is of the form

1

T

TX
t=1

·
tp − (t− 1)p

T p−1
− c

µ
t− 1
T

¶p¸ ·
tp − (t− 1)q

T p−1
− c

µ
t− 1
T

¶q¸
, p = 1, 2 and q = 1, 2.

Apply Lemma 11 with hT (·, ·) = 0 and

gT

µ
t

T
,
s

T
, c

¶
=

·
tp − (t− 1)p

T p−1
− c

µ
t− 1
T

¶p¸ ·
tp − (t− 1)q

T p−1
− c

µ
t− 1
T

¶q¸
.
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Then, we have the required result. ¥

Part (b). The proof of Part (b) is similar to that of Part (a) and is omitted. ¥

Part (c). Let mineig(A) denote the minimum eigenvalue of matrix A. A direct calculation
shows that infc∈C [mineig (A2T (c))] > 0 and infc∈C [mineig (A2 (c))] > 0. So, by Part (a),
we have

sup
c∈C

°°°A2T (c)−1 −A−12 (c)
°°°2

≤
·
sup
c∈C

°°°A2T (c)−1°°°2¸ ·sup
c∈C

kA2T (c)−A2 (c)k2
¸ ·
sup
c∈C

°°°A2 (c)−1°°°2¸
≤ 2

infc∈C [mineig (A2T (c))]
2

infc∈C [mineig (A2 (c))]

·
sup
c∈C

kA2T (c)−A2 (c)k2
¸

= o (1) ,

as required. The proof for the case of p = 1 is similar, and is omitted. ¥

Parts (d) and (e). Parts (d) and (e) hold by Lemma 11 and Parts (b) and (c). ¥

Lemma 12 For j = 1, ..., J, assume that hj (c, �c) are real-valued continuous functions
on the product of the compact parameter set C×C with hj (c, c) = 0. Also, for j =
1, ..., J, assume that ljT (x, y) are real-valued continuous functions on [0, 1] × [0, 1]. Let
fT (x, c) and gT (x, c) be continuously differentiable functions from [0, 1]×C to R such that
fT (x, c) gT (y, c) − fT (x, �c) gT (y, �c) =

PJ
j=1 hj (c, �c) ljT (x, y) . Assume that fT (x, c) →

f (x, c) , gT (y, c) → g(y, c), and supT sup(r,c)∈[0,1]×C |gT (r, c)| < ∞. Suppose that yit =¡
1 + c0

T

¢
yit−1 + εit, where εit follows Assumption 3. Let Assumption 2 holds for the

initial condition yi0. Then, as (n, T →∞) , the following hold.
(a) 1

n

Pn
i=1

1
T2

PT
t=1 y

2
it−1 →p σ

2
R 1
0

R r
0 e

2c0(r−s)dsdr.

(b) 1n
Pn
i=1

³
1√
T

PT
t=1 εitfT
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T , c

¢´³
1

T
√
T

PT
t=1 yit−1gT

¡
t
T , c

¢´→p σ
2
R 1
0

R r
0 e

c0(r−s)g(r, c)f(s, c)dsdr
uniformly in c.
(c) 1

n
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³
1

T
√
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PT
t=1 yit−1fT

¡
t
T , c

¢´³
1

T
√
T

PT
t=1 yit−1gT

¡
t
T , c

¢´
→p σ

2
R 1
0

R 1
0
f(r, c)g(s, c)

R r∧s
0

ec0(r+s−2v)dvdsdr uniformly in c.

(d) 1
n

Pn
i=1

³
1√
T

PT
t=1 εitfT

¡
t
T , c

¢´³
1√
T

PT
t=1 εitgT

¡
t
T , c

¢´ →p σ
2
R 1
0 f(r, c)g(r, c)dr

uniformly in c.

Proof
Part (a) From the decomposition (37) , we write

1

n

nX
i=1

1

T 2

TX
t=1

y2it−1

=
1

n

nX
i=1

1

T 2

TX
t=1

x2it−1 + 2
1

n

nX
i=1

1

T 2

TX
t=1

xit−1Rit−1 +
1

n

nX
i=1

1

T 2

TX
t=1

R2it−1

= Ia + 2IIa + IIIa, say.

In what follows we show that Ia →p σ
2
R 1
0

R r
0 e

2c0(r−s)dsdr and IIa, IIIa →p 0 as (n, T →
∞).

35



For Ia, deÞne QiT = 1
T2

PT
t=1 x

2
it−1. Note that {QiT}i=1,...,n are iid across i. Since

T−
1
2xit ⇒ Jc0,i(r) = σ

2

Z r

0

ec0(r−s)dWi(s) (42)

as T → ∞ (see Phillips, 1987), where Wi is standard Brownian motion, we have by the
continuous mapping theorem as (n, T →∞) ,

QiT ⇒ Qi = σ
2

Z 1

0

J2c0,i(r)dr. (43)

Notice that EQi = σ2
R 1
0

R r
0
e2c0(r−s)dsdr.

We claim Ia →p σ
2
R 1
0

R r
0 e

2c0(r−s)dsdr in joint limits as (n, T →∞) by verifying con-
ditions (i) - (iii) in Theorem 7. Condition (iii) is trivial because Ci = 1. Condition (i) is
obvious from (43) . For condition (ii), observe that

EQiT = σ2
1

T

TX
t=2

1

T

t−1X
s=1

·³
1 +

c0
T

´T¸2 t−1−sT

→ σ2
Z 1

0

Z r

0

e(r−s)2c0dsdr = EQi as (n, T →∞) .

Since QiT (≥ 0) ⇒ Qi with EQiT → EQi as (n, T →∞) , {QiT }T are uniformly inte-
grable in T by Theorem 5.4 in Billingsley (1968).
Next, we prove that

IIa =
1

n

nX
i=1

1

T 2

TX
t=1

xit−1Rit−1 →p 0,

and

IIIa =
1

n

nX
i=1

1

T 2

TX
t=1

R2it−1 →p 0 as n, T →∞,

by showing that E |IIa| , E |IIIa|→ 0 as n, T →∞.
Since

¯̄̄¡
1 + c0

T

¢t−1 ¯̄̄ ≤ 1 and by the Cauchy-Schwarz inequality,
E |IIa| = E

¯̄̄̄
¯ 1n

nX
i=1

1

T 2

TX
t=1

xit−1Rit−1

¯̄̄̄
¯

≤ 1

n

nX
i=1

(
E

¯̄̄̄
¯ 1T 2

TX
t=2

xit−1
³
1 +

c0
T

´t−1
yi0

¯̄̄̄
¯
)

≤ sup
i

q
Ey2i0

1√
T

1

n

nX
i=1

1

T

TX
t=1

s
E

µ
xit−1√
T

¶2
= O

µ
1√
T

¶
,

where the last inequality holds by (39) and by Assumption 2. Thus,

IIa = Op

µ
1√
T

¶
= op (1) .
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Similarly,

E |IIIa| = E

¯̄̄̄
¯ 1n

nX
i=1

1

T 2

TX
t=1

R2it−1

¯̄̄̄
¯ ≤

µ
sup
i
Ey2i0

¶Ã
1

T 2

TX
t=2

³
1 +

c0
T

´2(t−1)!

≤ 1

T

µ
sup
i
Ey2i0

¶
= O

µ
1

T

¶
,

and so

IIIa = Op

µ
1

T

¶
= op (1) .

Therefore we have all the required results to complete the proof of part (a). ¥

Part (b) Using (37) , we write

1

n

nX
i=1

Ã
1√
T

TX
t=1

εitfT

µ
t

T
, c

¶!Ã
1

T
√
T

TX
t=1

yit−1gT

µ
t

T
, c

¶!
= Ib + IIb,

where

Ib =
1

n

nX
i=1

Ã
1√
T

TX
t=1

εitfT

µ
t

T
, c

¶!Ã
1

T
√
T

TX
t=1

xit−1gT

µ
t

T
, c

¶!
,

IIb =
1

n

nX
i=1

Ã
1√
T

TX
t=1

εitfT

µ
t

T
, c

¶!Ã
1

T
√
T

TX
t=1

Rit−1gT

µ
t

T
, c

¶!
.

We will show that

Part (b1): Ib →p σ
2

Z 1

0

Z r

0

ec0(r−s)g(r, c)f(s, c)dsdr uniformly in c

and

Part (b2): IIb →p 0 uniformly in c

as (n, T →∞) .
First, we establish Part (b1) for Þxed c (pointwise convergence). Now, as in Part (a),

we apply Theorem 7. Let

QiT (c) =

Ã
1√
T

TX
t=1

εitfT

µ
t

T
, c

¶!Ã
1

T
√
T

TX
t=1

xit−1gT

µ
t

T
, c

¶!
,

and Qi (c) = σ2
µZ 1

0

f(r, c)dWi (r)

¶µZ 1

0

g (r, c)Jc0,i (r) dr

¶
.

Using (42) and the extended-continuous mapping theorem (see Theorem 1.11.1 in van der
Vaart and Wellner, 1996), we can show that

QiT (c)⇒ Qi (c) (44)

as T →∞ for Þxed c, which veriÞes condition (i) in Theorem 7. Condition (iii) is trivial
because Ci = 1. Condition (ii) holds for Þxed c if

Q1iT (c) =

Ã
1√
T

TX
t=1

εitfT

µ
t

T
, c

¶!2
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and

Q2iT (c) =

Ã
1

T
√
T

TX
t=1

xit−1gT

µ
t

T
, c

¶!2

are uniformly integrable in T for Þxed c.Notice thatQ1iT (c)⇒ Q1i (c) = σ
2
³R 1

0
f(r, c)dWi (r)

´2
>

0, and EQ1iT (c) = σ2 1T
PT
t=1 fT

¡
t
T , c

¢2 → σ2
R 1
0 f (r, c)

2
dr = EQ1i (c) as T →∞ for all

i. By Theorem 5.4 in Billingsley (1968), it follows that Q1iT (c) are uniformly integrable
in T for Þxed c. In a similar fashion, Q2iT (c) is also uniformly integrable in T for Þxed c.
Therfore, as (n, T →∞) ,

Ib →p Ω

Z 1

0

Z r

0

ec0(r−s)g(r, c)f(s, c)dsdr for Þxed c.

Next, deÞne XnT (c) = 1
n

Pn
i=1QiT (c) . To complete the proof, we need to show that

XnT (c) is stochastically equicontinuous. That is, for given ε > 0 and η > 0, there exists
δ > 0 such that

lim sup
(n,T→∞)

P

(
sup

|c−�c|<δ,c,�c∈C
|XnT (c)−XnT (�c)| > ε

)
< η.

Then, since the parameter set C is compact, the pointwise convergence of XnT (c) and
the stochastic equicontinuity of XnT (c) imply uniform convergence.
Now we show the stochastic equicontinuity of XnT (c) . First, notice that

sup
|c−�c|<δ,c,�c∈C

|XnT (c)−XnT (�c)|

= sup
|c−�c|<δ,c,�c∈C

¯̄̄̄
¯ 1n

nX
i=1

1

T 2

TX
t=1

TX
s=1

εitxis−1

½
fT

µ
t

T
, c

¶
gT

³ s
T
, c
´
− fT

µ
t

T
, �c

¶
gT

³ s
T
, �c
´¾¯̄̄̄¯

= sup
|c−�c|<δ,c,�c∈C

¯̄̄̄
¯̄ 1n

nX
i=1

1

T 2

TX
t=1

TX
s=1

εitxis−1


JX
j=1

hj (c, �c) ljT

µ
t

T
,
s

T

¶
¯̄̄̄
¯̄

= sup
|c−�c|<δ,c,�c∈C

¯̄̄̄
¯̄ JX
j=1

hj (c, �c)
1

n

nX
i=1

1

T 2

TX
t=1

TX
s=1

εitxis−1ljT

µ
t

T
,
s

T

¶¯̄̄̄¯̄
≤

"
sup
1≤j≤J

sup
|c−�c|<δ,c,�c∈C

|hj (c, �c)|
# JX

j=1

1

n

nX
i=1

¯̄̄̄
¯ 1T 2

TX
t=1

TX
s=1

εitxis−1ljT

µ
t

T
,
s

T

¶¯̄̄̄
¯
 .

Since hj (c, �c) is continuous on the compact set with hj (c, c) = 0 for all j = 1, ..., J,
we can make sup1≤j≤J sup|c−�c|<δ,c,�c∈C |hj (c, �c)| arbitrarily small by choosing a small
δ > 0. Also, under the assumptions in the lemma, it is not difficult to show thatPJ
j=1

1
n

Pn
i=1

¯̄̄
1
T2

PT
t=1

PT
s=1 εitxis−1ljT

¡
t
T ,

s
T

¢¯̄̄
= Op (1) . Therefore, XnT (c) is stochas-

tically equicontinuous, and Ib →p σ
2
R 1
0

R r
0 e

c0(r−s)g(r, c)f(s, c)dsdr uniformly in c.
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Next, for Part (b2), notice that

|IIb| ≤ 1

n
√
T

nX
i=1

¯̄̄̄
¯yi0

Ã
1√
T

TX
t=1

εitfT

µ
t

T
, c

¶!Ã
1

T

TX
t=1

³
1 +

c0
T

´t−1
gT

µ
t

T
, c

¶!¯̄̄̄
¯

≤ 1√
T

vuut 1

n

nX
i=1

y2i0

vuut1

n

nX
i=1

Ã
1√
T

TX
t=1

εitfT

µ
t

T
, c

¶!2Ã
1

T

TX
t=1

³
1 +

c0
T

´t−1
gT

µ
t

T
, c

¶!2

≤ 1√
T

Ã
1

T

TX
t=1

³
1 +

c0
T

´t−1 ¯̄̄̄
gT

µ
t

T
, c

¶¯̄̄̄!vuut 1

n

nX
i=1

y2i0

vuut1

n

nX
i=1

Ã
1√
T

TX
t=1

εitfT

µ
t

T
, c

¶!2

≤ 1√
T
sup
T

sup
(r,c)∈[0,1]×C

|gT (r, c)|
vuut 1

n

nX
i=1

y2i0

vuut1

n

nX
i=1

Ã
1√
T

TX
t=1

εitfT

µ
t

T
, c

¶!2

Using similar arguments in the proof of the limit of Ia, it is possible to prove that as
(n,T →∞) ,

1

n

nX
i=1

Ã
1√
T

TX
t=1

εitfT

µ
t

T
, c

¶!2
→p σ

2

µZ 1

0

f (r, c)2 dr

¶2
uniformly in c.

Also, 1
n

Pn
i=1 y

2
i0 = Op (1) by Assumption 2, and supT sup(r,c)∈[0,1]×C |gT (r, c)| < K̄.

Thus,

IIb = Op

µ
1√
T

¶
= op (1) uniformly in c,

and we complete the proof of Part (b2). ¥

Part (c) and Part (d) The proofs of Parts (c) and (d) are similar to that of Part (b)
and they are omitted. ¥

The following lemma is important in establishing asymptotic normality of the GMM
estimator �c. To simplify notation, let

l1pT (t, s, c) = \∆cgpt
0
ApT (c)

−1\∆cgps

l2pT (t, s, c) = \∆cgpt
0
ApT (c)

−1
gps−1D−1p,T

l3pT (t, s, c) = \∆cgpt
0
ApT (c)

−1
BpT (c)ApT (c)

−1\∆cgps,

and

l1p (r, s, c) =
·
gpc (r)

0
Ap (c)

−1 ·
gpc (s)

l2p (r, s, c) =
·
gpc (r)

0Ap (c)
−1 gp (s)

l3p (r, s, c) =
·
gpc (r)

0
Ap (c)

−1
Bp(c)Ap (c)

−1 ·
gpc (s)

l4p =

Z 1

0

gp (r) gp (r)
0
dr.
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Lemma 13 Suppose that xit = exp
¡
c0
T

¢
xit−1 + εit, where εit are iid

¡
0,σ2

¢
with Þnite

fourth moments and xi0 = 0 for all i. Let

Q1iT =
1

T

TX
t=1

xit−1εit

Q2iT =
1√
T

TX
t=1

1

T
√
T

TX
s=1

εitxis−1�hpT (t, s)− σ2ωpT (c0)

Q3iT =
1√
T

TX
t=1

1

T
√
T

TX
s=1

εitxis−1l1pT (t, s, c0)− σ2λpT (c0)

Q4iT =
1√
T

TX
t=1

1√
T

TX
s=1

εitεisl2pT (t, s, c0)− σ2tr
³
ApT (c0)

−1
BpT (c0)

´
Q5iT =

1√
T

TX
t=1

1√
T

TX
s=1

εitεisl3pT (t, s, c0)− σ2tr
³
ApT (c0)

−1BpT (c0)
´

and QiT = (Q1iT , Q2iT ,Q3iT , Q4iT , Q5iT )
0
. (45)

Then, as (n, T →∞),
1√
n

nX
i=1

QiT ⇒ N
¡
0,σ4Φ (c0)

¢
,

where

Φ (c0) =


Φ11 (c0) Φ12 (c0) Φ13 (c0) Φ14 (c0) Φ15 (c0)
Φ12 (c0) Φ22 (c0) Φ23 (c0) Φ24 (c0) Φ25 (c0)
Φ13 (c0) Φ23 (c0) Φ33 (c0) Φ34 (c0) Φ35 (c0)
Φ14 (c0) Φ24 (c0) Φ34 (c0) Φ44 (c0) Φ45 (c0)
Φ15 (c0) Φ25 (c0) Φ35 (c0) Φ45 (c0) Φ55 (c0)

 (46)

and

Φ11 (c0) =

Z 1

0

Z r

0

e2c0(r−s)dsdr,

Φ12 (c0) =

Z 1

0

Z 1

0

Z r∧s

0

ec0(r+s−2v)�hp (r, s) dvdsdr +
Z 1

0

Z r

0

Z s

0

ec0(r−v)�hp (v, r) dvdsdr,

Φ13 (c0) =

Z 1

0

Z r

0

Z s

0

ec0(r−v)l1p (r, v, c0) dvdsdr +
Z 1

0

Z 1

0

Z r∧s

0

ec0(r+s−2v)l1p (r, s, c0) dvdsdr,

Φ14 (c0) =

Z 1

0

Z r

0

ec0(r−s)l2p (r, s, c0) dsdr +
Z 1

0

Z r

0

ec0(r−s)l2p (s, r, c0) dsdr,

Φ15 (c0) =

Z 1

0

Z r

0

ec0(r−s)l3p (r, s, c0) dsdr +
Z 1

0

Z r

0

ec0(r−s)l3p (s, r, c0) dsdr,
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Φ22 (c0) =

Z 1

0

Z 1

0

Z r∧s

0

ec0(r+s−2v)�hp (r, s) dvdsdr

+

Z 1

0

Z 1

0

Z r

0

Z s

0

ec0(r−v)ec0(s−q)�hp (r, q) �hp (s, v) dqdvdsdr,

Φ23 (c0) =

Z 1

0

Z 1

0

Z 1

0

Z s∧v

0

ec0(s+v−2q)�hp (r, s) l1p (r, v, c0) dqdvdsdr

+

Z 1

0

Z 1

0

Z r

0

Z s

0

ec0(r−v)ec0(s−q)�hp (r, q) l1p (s, v, c0) dqdvdsdr,

Φ24 (c0) =

Z 1

0

Z r

0

Z 1

0

ec0(r−s)�hp (r, v) l2p (v, s, c0) dvdsdr

+

Z 1

0

Z r

0

Z 1

0

ec0(r−s)�hp (r, v) l2p (s, v, c0) dvdsdr,

Φ25 (c0) =

Z 1

0

Z r

0

Z 1

0

ec0(r−s)�hp (r, v) l3p (v, s, c0) dvdsdr

+

Z 1

0

Z r

0

Z 1

0

ec0(r−s)�hp (r, v) l3p (s, v, c0) dvdsdr,

Φ33 (c0) =

Z 1

0

Z 1

0

Z r∧s

0

ec0(r+s−2v)l1p (r, s, c0) dvdsdr

+

Z 1

0

Z 1

0

Z r

0

Z s

0

ec0(r−v)ec0(s−q)l1p (r, q, c0) l1p (s, v, c0) dqdvdsdr,

Φ34 (c0) =

Z 1

0

Z r

0

ec0(r−s)l2p (r, s, c0) dsdr +
Z 1

0

Z r

0

ec0(r−s)l3p (r, s, c0) dsdr,

Φ35 (c0) =

Z 1

0

Z r

0

ec0(r−s)l3p (r, s, c0) dsdr +
Z 1

0

Z r

0

ec0(r−s)l3p (s, r, c0) dsdr,

Φ44 (c0) =
³
vecAp (c0)

−1´0
vecl4p (c0) + tr

³
Ap (c0)

−1
Bp (c0)

0
Ap (c0)

−1
Bp (c0)

´
,

Φ45 (c0) = tr
³
Ap (c0)

−1Bp (c0)Ap (c0)
−1Bp (c0)

0´+ tr ³Ap (c0)−1Bp (c0)Ap (c0)−1Bp (c0)´ ,

Φ55 (c0) = tr
³
Ap (c0)

−1
Bp (c0)Ap (c0)

−1
Bp (c0)

0´+ tr ³Ap (c0)−1Bp (c0)Ap (c0)−1Bp (c0)´ .
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Proof
The proof uses Theorem 8. First, a direct calculation shows that EQiT = 0. Let

ΦnT (c0) = EQiTQ
0
iT . Notice that QiT are iid (0,ΦnT (c0)) across i. As T →∞,

QiT ⇒ σ2Qi,

where

Qi = (Q1i, Q2i, Q3i, Q4i,Q5i)
0

Q1i =

Z 1

0

Jc0,i (r) dWi (r)

Q2i =

Z 1

0

Z 1

0

Jc0,i (r)
�hp (r, s) dWi (s) dr − ωp (c0)

Q3i =

Z 1

0

Z 1

0

l1p (r, s, c0) dWi (r) dWi (s)− λp (c0)

Q4i =

Z 1

0

Z 1

0

l2p (r, s, c0) dWi (r) dWi (s)− tr
³
Ap (c0)

−1Bp (c0)
´

Q5i =

Z 1

0

Z 1

0

l3p (r, s, c0) dWi (r) dWi (s)− tr
³
Ap (c0)

−1Bp (c0)
´
.

Also, a direct calculation shows that as T →∞,

ΦnT (c0) = EQiTQ
0
iT → σ4EQiQ

0
i = σ

4Φ (c0) .

Let l be any (5× 1) vector with klk = 1. We consider two cases.
Case 1: If l0Φ (c0) l > 0.
To establish the desired result with a joint limit, we apply Theorem 7. Condition (i)

holds because it is assumed that l0Φ (c0) l > 0. Conditions (ii) is trivial. Finally condition
(iii), viz.

(l0QiT )
2 are uniformly integrable in T,

holds because (l0QiT )
2 ⇒ (l0Qi)

2 as T → ∞ by the continuous mapping theorem with
E (l0QiT )

2 = l0ΦnT (c0) l → σ4l0Φ (c0) l = σ4E (l0Qi)
2
, and by applying Theorem 5.4 of

Billingsley (1968).
Case 2: If l0Φ (c0) l = 0. Since l0ΦnT (c0) l→ l0Φ (c0) l = 0,

E

Ã
1√
n

nX
i=1

l0QiT

!2
= l0ΦnT (c0) l→ 0,

which leads to 1√
n

Pn
i=1 l

0QiT →p 0. By the Cramér-Wold device, it follows that

1√
n

nX
i=1

QiT ⇒ N
¡
0,σ4Φ (c0)

¢
. ¥

6.3 Appendix B: Proofs of Section 4

Proof of Lemma 2.
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By deÞnition,

�σ2 − �σ2

= (�ρ− ρ0)2
1

nT

nX
i=1

y
�

0
i,−1

y
�i,−1

− 2 (�ρ− ρ0)
1

nT

nX
i=1

ε
�

0
i
y
�i,−1

.

Since �ρ − ρ0 = Op (1), 1
nT2

Pn
i=1 y

�

0
i,−1

y
�i,−1

= Op (1) , and 1
nT

Pn
i=1 ε�

0
i
y
�i,−1

= Op (1) by

Lemma 12 and Theorem 1 of Moon and Phillips (2000),

�σ2 − �σ2 = Op
µ
1

T

¶
.

Next, since

E
¡
�σ2 − σ2¢2 = Oµ 1√

nT

¶
,

it follows that

�σ2 − σ2 = Op
µ

1√
nT

¶
. ¥

Proof of Lemma 3.
We show separately the following

1

n

nX
i=1

(m1iT (c)−m1 (c))→p 0, (47)

and

1

n

nX
i=1

(m2iT (c)−m2 (c))→p 0, (48)

uniformly in c.
First, by deÞnition and the triangle inequality, we have

m1,iT (c) =
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µ
z
�i
−
³
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c

T

´
z
�i,−1

¶0
z
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+ �σ2ωpT (c)

=
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T
ε
�

0
i
y
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− (c− c0) 1
T 2
y
�

0
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y
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+ �σ2ωpT (c)

=
1

T

TX
t=1

εityi,t−1 − 1

T 2
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TX
s=1

εityi,s−1�hpT (t, s)− (c− c0) 1
T 2

TX
t=1

Ã
y
�i,−1

!2
t

+ �σ2ωpT (c) .
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So, ¯̄̄̄
¯ 1n

nX
i=1

(m1iT (c)−m1 (c))

¯̄̄̄
¯

≤

¯̄̄̄
¯̄̄̄
¯̄̄
1

n

nX
i=1



1
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t=1 εityit−1 −

³
1
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s=1 εityis−1�hpT (t, s)− σ2ωp (c0)

´
+σ2 (ωpT (c)− ωp (c))

− (c− c0)
 1
T2

PT
t=1

Ã
y
�i,−1

!2
t

− σ2ψp (c0)




¯̄̄̄
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+
¯̄
�σ2 − σ2¯̄ |ωpT (c)|

≤
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¯ 1n
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1

T

TX
t=1

εityit−1

¯̄̄̄
¯

+

¯̄̄̄
¯ 1n

nX
i=1

Ã
1

T 2
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εityis−1�hpT (t, s)− σ2ωp (c0)
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¯

+ |c− c0|
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¯̄ 1n
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T 2

TX
t=1

Ã
y
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!2
t

− σ2ψp (c0)
¯̄̄̄¯̄

+σ2 |ωpT (c)− ωp (c)|+
¯̄
�σ2 − σ2¯̄ |ωpT (c)|

= I + II + III + IV + V, say.

Notice that the two terms I and II are independent of c, and by Lemma 9 of Moon
and Phillips (1999b), I, II →p 0 as (n, T →∞) . Next, III →p 0 uniformly in c because
| 1n
Pn
i=1(

1
T2

PT
t=1(y

�i,−1
)2t − σ2ψp (c0))| that is independent of c converges in probabil-

ity to zero as (n,T →∞) by Lemma 9 of Moon and Phillips (1999b). Next, IV → 0
uniformly in c by Corollary 1(d). Finally, since �σ2 − σ2 = op (1) by Lemma 2, and
supc∈C ωpT (c) < K̄ for some Þnite K̄, V converges in probability to zero uniformly in c.
Therefore, 1n

Pn
i=1 (m1iT (c)−m1 (c))→p 0 uniformly in c as (n, T →∞) .

Next, to prove (48) , noting by deÞntion that

∆czit = β
0
i0∆cgpt − (c− c0)

yit−1
T

+ εit,
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we write
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¡
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Notice that\∆cgpt andD−1p,T gpt−1 satisfy the conditions for fT (x, c) and gT (x, c) in Lemma
12. The desired result, then, follows by Corollary 1 and by applying Lemma 12 together
with �σ2 − σ2 = op (1) (see Lemma 2) and the boundedness of λpT (c) on the compact
parameter set C. ¥

Proof of Lemma 4.
The proof is similar to that of Lemma 3, and is omitted. ¥

Proof of Lemma 5.
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First, using (37) and by Lemma 2, we may write
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and
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where
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Notice that
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,

where the Þrst equality holds because ER11iT = 0 and R11iT is independent across i
(Assumption 3) and the second equality holds by Assumptions 2. Similary, it follows that
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Therefore,

1√
n

nX
i=1

R1iT = Op

µ
1√
T

¶
. (51)

By using similar arguments, it is possible to show that

1√
n

nX
i=1

R2iT = Op

µ
1√
T

¶
. (52)

In view of (49) - (52), as (n, T →∞) following Assumption 5,

1√
n

nX
i=1

µ
m1iT (c0)
m2iT (c0)

¶
= J 0

Ã
1√
n

nX
i=1

QiT

!
J + op (1) .

The required result follows by Lemma 5. ¥

Proof of Lemma 6.
Part (a).
By deÞnition and by the Cauchy-Schwarz inequality,

sup
c∈C:|c−c0|≤γnT

|BnTR1nT (c, c0)|

≤ 2 kBnTMnT (c0)k
°°° �W°°° sup

c∈C:|c−c0|≤γnT
krnT (c, c0)k .

By Lemma 5 and Assumption 6, we have kBnTMnT (c0)k
°°° �W°°° = Op (1) . Thus, to com-

plete the proof, it is enough to show that supc∈C:|c−c0|≤γnT krnT (c, c0)k = op (1) . Notice
by deÞnition and the triangle inequality that

sup
c∈C:|c−c0|≤γnT

krnT (c, c0)k

≤ sup
c∈C:|c−c0|≤γnT

|r1nT (c, c0)|+ sup
c∈C:|c−c0|≤γnT

|r2nT (c, c0)|

≤ sup
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¯̄̄̄
¯ 1n

nX
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(dm1iT (c)− dm1iT (c0))
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c∈C:|c−c0|≤γnT

¯̄̄̄
¯ 1n

nX
i=1

(dm2iT (c)− dm2iT (c0))

¯̄̄̄
¯ ,

where the last line holds because c+k locates between c and c0 for k = 1, 2.
Notice that

sup
c∈C:|c−c0|≤γnT

¯̄̄̄
¯ 1n

nX
i=1

(dm1iT (c)− dm1iT (c0))

¯̄̄̄
¯
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c∈C
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¯ 1n

nX
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¡
dm1iT (c)− �σ2dm1 (c)

¢¯̄̄̄¯+
¯̄̄̄
¯ 1n

nX
i=1

¡
dm1iT (c0)− �σ2dm1 (c0)

¢¯̄̄̄¯
+�σ2 sup

c∈C:|c−c0|≤γnT
|dm1 (c)− dm1 (c0)| .

Then, the Þrst term and the second term in the last line are op (1) by Lemma 4 and the
last term is also op (1) because dm (c) is continuous in c and �σ

2 has a Þnite limit. Therefore
supc∈C:|c−c0|≤γnT |r1nT (c, c0)| = op (1) . Similarly, it follows that supc∈C:|c−c0|≤γnT |r2nT (c, c0)| =
op (1), and we complete the proof. ¥
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Part (b).
The proof of Part (b) is similar to that of Part (a) and is omitted. ¥

Proof of Theorem 2.
We employ similar arguments to the proof of Theorem 1 of Andrews (1999). DeÞne

�θnT = BnT (�c− c0) . Then,

op (1) ≤ B2nT (ZnT (c0)− ZnT (�c))
= −HnT�θ2nT + 2HnT (BnTSnT ) �θnT

−�θnTBnTR1nT (�c, c0)− �θ2nTR2nT (�c, c0) .
From Lemmas 4 and 5 and Assumption 6, we have HnT , H−1nT = Op (1) and positive with
probability one and BnTSnT = Op (1) . Also, by Lemma 6, BnTR1nT (�c, c0) = op (1) and
R2nT (�c, c0) = op (1) . Then,

op (1) ≤ −
¯̄̄
�θnT

¯̄̄2
+ 2Op (1)

¯̄̄
�θnT

¯̄̄
+
¯̄̄
�θnT

¯̄̄
op (1) +

¯̄̄
�θnT

¯̄̄2
op (1) ,

which is rearranged as ¯̄̄
�θnT

¯̄̄2
≤ 2Op (1)

¯̄̄
�θnT

¯̄̄
+ op (1) .

Then, the required result,

�θnT = Op (1) ,

follows by relation (7.4) on page 1377 of Andrews (1999). ¥

Proof of Theorem 3.
To complete the proof, it is enough to show (a) BnT (�c− c0) = BnT (�cq − c0) + op (1)

and (b) BnT (�cq − c0) = �φnT + op (1) .

Part (a). Recall that BnTSnTHnT
= Op (1) by Lemmas 4 and 5 and Assumption 6. Then,

it follows by the deÞnition of BnT (�cq − c0) thatµ
BnT (�cq − c0)− BnTSnTHnT

¶2
≤
µ
BnTSnT
HnT

¶2
= Op (1) ,

which leads to

BnT (�cq − c0) = BnTSnT
HnT +Op (1) = Op (1) .

From this we Þnd that �cq is also BnT ( =
√
n)− consistent.

Notice that we have

op (1) ≤ B2nTZnT (�cq)−B2nTZnT (�c)

=

µ
BnT (�cq − c0)− BnTSnTHnT

¶2
−
µ
BnT (�c− c0)− BnTSnTHnT

¶2
+ op (1)

≤ op (1) ,
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where the Þrst line holds by the deÞnition of �c, the second line holds since BnT (�cq − c0) ,
BnT (�c− c0) = Op (1) and by Lemma 6, and the last op (1) bound holds because

³
BnT (�cq − c0)− BnTSnT

HnT

´2
−³

BnT (�c− c0)− BnTSnT
HnT

´2
≤ 0 by deÞnition of BnT (�cq − c0) . So,¯̄̄̄

¯
µ
BnT (�cq − c0)− BnTSnTHnT

¶2
−
µ
BnT (�c− c0)− BnTSnTHnT

¶2 ¯̄̄̄¯ = op (1) . (53)

Now, for any given δ > 0, set ε = δ2. Then, since BnT (�cq − c0) achieves the minimum of

the quadratic function f (λ) =
³
λ− BnTSnT

HnT

´2
on the closed interval {λ : BnT (c̄− c0) ≤ λ ≤ −BnT c0} ,

it follows that |BnT (�c− c0)−BnT (�cq − c0)| > δ implies¯̄̄̄
¯
µ
BnT (�cq − c0)− BnTSnTHnT

¶2
−
µ
BnT (�c− c0)− BnTSnTHnT

¶2 ¯̄̄̄¯ > ε.
Therefore
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≤ P

(¯̄̄̄
¯
µ
BnT (�cq − c0)− BnTSnTHnT

¶2
−
µ
BnT (�c− c0)− BnTSnTHnT

¶2 ¯̄̄̄¯ > ε
)

→ 0,

where the last convergence holds by (53) , and we have completed the proof of Part (a).

Part (b). Recall that c0 ∈ C0/ {0} . For any δ > 0,

P
n¯̄̄
BnT (�cq − c0)− �φnT

¯̄̄
> δ

o
≤ P

½
BnTSnT
HnT < BnT (c¯

− c0)
¾
+ P

½
BnTSnT
HnT > −BnT c0

¾
. (54)

Since BnTSnT
HnT

= Op (1) , for given ε > 0, we can choose K̄ and (n0, T0) such that

P

½¯̄̄̄
BnTSnT
HnT

¯̄̄̄
> K̄

¾
< ε for all n ≥ n0 and T ≥ T0.
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½³
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´2
,
³
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´2
, n0

¾
. Recall that BnT =

√
n. Notice by deÞnition

that n ≥ n1 implies that −BnT c0 ≥ K̄ and BnT (c¯
− c0) ≤ −K̄. So, whenever n ≥ n1 and

T ≥ T0,

P
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¾
≤ 2P
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¾
≤ 2ε. (55)

In view of (54) and (55) , for any given δ, ε > 0,

P
n¯̄̄
BnT (�cq − c0)− �φnT

¯̄̄
> δ

o
≤ 2ε

if n ≥ n1 and T ≥ T0, as required. ¥

49



6.4 Appendix C: Proofs of Section 5

Proof of Lemma 7
Part (a).
Using (37) with c0 = 0, one may write
√
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=
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By Lemma 2,
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where the last equality holds under Assumption 5. Also, using similar arguments that
yield (51) , we may have
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Since (n, T →∞) with
√
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T → 0 under Assumption 5,
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The required result follows by the limit of 1√
n

Pn
i=1 (Q1iT −Q2iT ) in Lemma 13 with

c0 = 0 and p = 1. ¥

Part (b).
By Lemma 2, we may have

√
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.

Using (37) with c0 = 0, i.e., yit−1 = xit−1 + yi0, we write"
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where
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Notice that Q6iT is mean zero and independent across i with Þnite asymptotic variance
V ar (Q6iT )→ σ4 11

6300 . Then, by Theorem 8 with Ci = 1, we have

1√
n

nX
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Q6iT ⇒ N

µ
0,σ4
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6300

¶
. (57)

Also, using similar arguments that yield (51) , we can show that

1√
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nX
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R61iT ,
1√
n

nX
i=1

R63iT = Op

µ
1√
T

¶
(58)
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¶
. (59)

Then, in view of (56)− (59) , we deduce that
√
ndM1nT (0)⇒ N

µ
0,σ4

11

6300

¶
(60)

as (n, T →∞) following Assumption 5. ¥

Part (c).
Notice that
√
n
¡
d2M1nT (0)
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T 2

TX
t=3

t−2X
s=1

µ
t− s− 1

T

¶µ
t− s− 2

T

¶
�h1T (t, s)

!
.

From
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we have
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Also, a direct calculation shows thatZ 1

0

Z r

0

(r − s)2 �h1 (r, s) dsdr = 0.

Therefore, since �σ2 →p σ
2 by Lemma 2 and

√
n
T → 0 under Assumption 5, we have

√
n
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¢
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¶
= op (1) ,

as required. ¥

Part (d).
By deÞnition,

d3M1nT (c) = �σ
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where
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Then, since �σ2 →p σ
2 and by Lemma 11,
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70
,

and we have the required result. ¥

Proof of Lemma 8
Part (a).
By deÞnition, we can write
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Noticing that
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and
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one may rearrange
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= I1 + ...+ I12, say.

Using Assumption 2 and the results in Lemma 12 and modifying its proof, it is possible
to show that
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fore,
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as (n, T →∞) following Assumption 5. ¥

Next, we sketch proofs for Parts (b) � (d). The details of the proofs for Part (b),
(c), and (d) are similar to those of Part (b) of Lemma 7, Part (a) above, and Lemma 3,
respectively, and we omit the details.10

Parts (b)-(d)
Take the Þrst derivative of M2nT (c) with respect to the parameter c and evaluating it

at c = 0 with c0 = 0, apply Lemma 2, and use the relations of (62) and (63) . Then, one
may Þnd that
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Q7iT + op (1) , say,

where xit is deÞned in (36) and the op (1) term holds since (n,T →∞) with
√
n
T → 0

under Assumption 5. Direct calculations show that EQ7iT = 0 and V ar (Q7iT )→ σ4

45 . By
applying Theorem 8 with Ci = 1, then one may derive

√
ndM2nT (0)⇒ N

µ
0,
σ4

45

¶
, (64)

as required.
The proof of Part (c) is similar to that of Part (b). Taking the second order derivative

of M2nT (c) with respect to the parameter c with c0 = 0, considering Lemma 2, and
rearranging terms using the relations of (61) and (62) , it is possible to show that as
(n,T →∞) following Assumption 5,

√
nd2M2nT (0) = Op

µ√
n

T

¶
= op (1) .

The proof of Part (d) is similar to the proof of Lemma 3. After taking the third order
derivative of M2nT (c) with respect to c and using the results in Lemma 12, it is possible
to show the required result. ¥

Proof of Theorem 4
DeÞne �θnT = n1/6�c. First, we consider the case where

n¯̄̄
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o
. By the deÞnition

of the GMM estimator, we have
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In view of (25)− (32) and from Assumption 6, �θnT satisÞes
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(65)

10One can obtain detailed derivations of dM2nT (0), d2M2nT (0) from the Þrst author upon request.
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Since,
¯̄̄
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¯̄̄
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The right hand side of (65)
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+ op (1) .

Following relation (7.4) in Andrews (1999), page 1377, we can deduce that¯̄̄
�θnT
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≤ Op (1) + op (1) .

Therefore, when
n¯̄̄
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o
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≤ Op (1) . (66)

Finally, let the Op (1) random variable in (66) be ξnT . Then,¯̄̄
�θnT

¯̄̄
=

¯̄̄
�θnT
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1
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1
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≤ 1 + ξnT = Op (1) . ¥

Proof of Theorem 5
The proof of the theorem is similar to that of Theorem 3 and is omitted. ¥

6.5 Appendix D: Numerical Validation of the IdentiÞcation Con-
dition of m (c) 11

This section provides a numerical conÞrmation that the uniform limit of the moment
condition function m (c) = (m1 (c) ,m2 (c))

0has a zero only at the true parameter c =
c0.We restrict the parameter set to C = [− 10, 0]in this numerical exercise. The choice of
the lower limit c̄ = −10is made for computational convenience, and the results hold for all
Þnite values of c̄ < 0. All the numerical analysis in this section is done with Mathematica
and with Maple using ScientiÞc Workplace Version 3.0.

6.5.1 When g1t = t

The procedure we apply is to Þnd all the roots of m2 (c) = 0 and verify whether these
roots are also the roots of m1 (c) = 0.We Þrst notice that for given c0, the function m2 (c)
is simply the ratio of two polynomials - the denominator and the numerator of m2 (c) ,

11We are indebted to John Owens for the numerical analysis in this section.
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say md2 (c) and mn2 (c) , respectively, are a fourth degree polynomial and a Þfth degree
polynomial in c, respectively.12

Case A: When c0 6= 0
Step 1: Numerical Calculation of the roots of m2 (c) = 0.

Co

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

-10 -8 -6 -4 -2 0

Fig. A.1. Graph of Roots of �mn2 (c)

12This is veriÞed easily by noticing that
·
gpc (r) , Ap (c) , Bp (c) are polynomials of c, except for the last

term in m2 (c) . However, a direct calculation shows that the last term is also a ratio of two polynomials,
viz., Z 1

0

Z r

0
ec(r−s) ·gpc (s)

0Ap (c)−1
·
gpc (r) dsdr

=

Z 1

0

Z r

0
ec(r−s) (1− cs)

µ
1− c+ 1

3
c2
¶−1

(1− cr) dsdr

= −1
2

2c− 3
3− 3c+ c2 .
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Fig. A.2. Graph of Roots of �mn2 (c)

By a direct calculation, we Þnd that the denominator of m2 (c) , md2 (c) , equals
4c50

¡
c2 − 3c+ 3¢2 when c0 6= 0. Since c2 − 3c + 3 = ¡

c− 3
2

¢2
+ 3

4 > 0, the denomina-
tor of m2 (c) has no real zeros for all c0 6= 0. Thus, if we concerned with the zeros of
m2 (c) , it suffices to consider only the numerator of m2 (c), mn2 (c) . By deÞnition of
m2 (c), we Þnd that the true value c = c0 is always a zero of mn2 (c). Also, by inspection,
we Þnd that c = 0 is always a zero of mn2 (c) . Thus, we can write

mn2 (c) = c (c− c0) �mn2 (c) ,

where �mn2 (c) is a third degree polynomial. Using Mathematica, we solve the third degree
polynomial �mn2 (c) and Þnd three roots of �mn2 (c) as a function of the true parameter c0.
For the numerical calculation we choose c̄ = −10, and so we assume that the parameter
set C = [− 10, 0]. Figs. A.1-A.2 plot the graphs of these roots on C only when the roots
are real numbers (Fig. A2 shows a the graph on a Þner scale to the left of the origin). As
we see from the graphs, for c0 < 0, the roots of �mn2 (c) are all positive, and so �mn2 (c)
does not have a root in the parameter set C.
Step 2: Plug the root c = 0 of m2 (c) in m1 (c)
We now investigate, for given c0 ∈ C/ {0} , whether m1 (c) = 0 when c = 0. By

matching the given true parameter c0 with m1 (0) , we can deÞne the function m1_0 (c0)
of c0. Using Maple, we calculate

m1_0 (c0) =
1

4c4

µ −c30 + 48ec0 − 8ec0c20 − 8c20 − 24
+c30e

2c0 − 8e2c0c20 + 24ce2c0 − 24e2c0 − 24c0
¶
,

and plot the graph ofm1_0 (c0) . Fig. A.3 plotsm1_0 (c0) over the domain c0 ∈ [−10, 0.4]
and Fig. A.4 plots the same function on the domain c0 ∈ [0.4, 0] . Through these graphs,
we can conÞrm that m1_0 (c0) is positive but very close to zero when the true value c0 is
close to zero.
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Fig. A.3 Graph of m1_0 (c0)
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Fig. A.4 Graph of m1_0 (c0)

To investigate further the behavior of m1_0 (c0) around c0 = 0, in Fig. A.5 we plot
the graph of the Þrst derivative of the numerator of m1_0 (c0) over c0 ∈ [−0.05, 0] .

-1.6e-1

-1.4e-1

-1.2e-1

-1e-11
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-6e-12

-4e-12

-2e-12
0
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-0.05 -0.04 -0.03 -0.02 -0.01c

Fig. A.5. Graph of the Þrst derivative of the Numerator of m1_0 (c0)

The graph shows that the Þrst derivative of the numerator of m1_0 (c0) is nega-
tive around zero, and so m1_0 (c0) is strictly decreasing. Therefore, we conclude that
m1_0 (c0) is not zero for all c0 ∈ C0.
Case B: When c0 = 0.
Using Maple, we calculate m2 (c) when c0 = 0, and plot the graph in Figs. A.6 and

A.7. These Þgures conÞrm that m2 (c) = 0 only when c = c0 = 0.
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Fig. A.6 Graph of m2 (c) when c0 = 0
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Fig. A.7 Graph of m2 (c) when c0 = 0
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6.5.2 When g2t =
¡
t, t2

¢
Although the expressions involved inm2 (c) in this case are far more complex, the analysis
is simpler. Like the case of g1t = t, we Þnd that the denominator of m2 (c) does not
change sign over C = [−10, 0], and so we focus on the numerator of m2 (c) . Similar to
the case of g1t = t, we numerically calculate the real roots of the numerator of m2 (c) for
c0 ∈ C = [−10, 0], and we Þnd that there exists only one root in the range of c0, which
implies that m2 (c) = 0 only at the true c0. Therefore, when g2t =

¡
t, t2

¢
, the limit of the

moment condition m (c) identiÞes the true parameter c0 in C.
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