Yale University

EliScholar — A Digital Platform for Scholarly Publishing at Yale

Cowles Foundation Discussion Papers Cowles Foundation

1-1-2003

GMM Estimation of Autoregressive Roots Near Unity with Panel
Data

Hyungsik Roger Moon

Peter C.B. Phillips

Follow this and additional works at: https://elischolar.library.yale.edu/cowles-discussion-paper-series

b Part of the Economics Commons

Recommended Citation

Moon, Hyungsik Roger and Phillips, Peter C.B., "GMM Estimation of Autoregressive Roots Near Unity with
Panel Data" (2003). Cowles Foundation Discussion Papers. 1655.
https://elischolar.library.yale.edu/cowles-discussion-paper-series/1655

This Discussion Paper is brought to you for free and open access by the Cowles Foundation at EliScholar - A
Digital Platform for Scholarly Publishing at Yale. It has been accepted for inclusion in Cowles Foundation
Discussion Papers by an authorized administrator of EliScholar — A Digital Platform for Scholarly Publishing at
Yale. For more information, please contact elischolar@yale.edu.


https://elischolar.library.yale.edu/
https://elischolar.library.yale.edu/cowles-discussion-paper-series
https://elischolar.library.yale.edu/cowles
https://elischolar.library.yale.edu/cowles-discussion-paper-series?utm_source=elischolar.library.yale.edu%2Fcowles-discussion-paper-series%2F1655&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/340?utm_source=elischolar.library.yale.edu%2Fcowles-discussion-paper-series%2F1655&utm_medium=PDF&utm_campaign=PDFCoverPages
https://elischolar.library.yale.edu/cowles-discussion-paper-series/1655?utm_source=elischolar.library.yale.edu%2Fcowles-discussion-paper-series%2F1655&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elischolar@yale.edu

GMM Estimation of Autoregressive Roots Near Unity with Panel Data

By
Peter C.B. Phillipsand Hyungsik Roger Moon

January 2003

COWLESFOUNDATION DISCUSSION PAPER NO. 1390

COWLESFOUNDATION FOR RESEARCH IN ECONOMICS
YALE UNIVERSITY

Box 208281
New Haven, Connecticut 06520-8281

http://cowles.econ.yale.edu/



GMM Estimation of Autoregressive Roots
Near Unity with Panel Data*

Hyungsik Roger Moon
Department of Economics
University of Southern California

&

Peter C.B. Phillips
Cowles Foundation, Yale University

University of Auckland & University of York
November 2002

Abstract

This paper investigates a generalized method of moments (GMM) approach to
the estimation of autoregressive roots near unity with panel data and incidental
deterministic trends. Such models arise in empirical econometric studies of firm
size and in dynamic panel data modeling with weak instruments. The two moment
conditions in the GMM approach are obtained by constructing bias corrections to the
score functions under OLS and GLS detrending, respectively. It is shown that the
moment condition under GLS detrending corresponds to taking the projected score
on the Bhattacharya basis, linking the approach to recent work on projected score
methods for models with infinite numbers of nuisance parameters (Waterman and
Lindsay, 1998). Assuming that the localizing parameter takes a nonpositive value,
we establish consistency of the GMM estimator and find its limiting distribution. A
notable new finding is that the GMM estimator has convergence rate n'/®, slower
than /n, when the true localizing parameter is zero (i.e., when there is a panel unit
root) and the deterministic trends in the panel are linear. These results, which rely
on boundary point asymptotics, point to the continued difficulty of distinguishing
unit roots from local alternatives, even when there is an infinity of additional data.
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1 Introduction

Recent years have seen the introduction of several important panel data sets where the
cross sectional dimension (n) and the time series dimension (7") are comparable in magni-
tude. Some of these panel data sets, like the Penn World Tables, involve time series that
are manifestly nonstationary and have persistent or slowly decaying serial correlations.
These features distinguish the new data from the characteristics that are conventionally
assumed in the analysis of panel data where T is very small and n is very large.

Since the early 1990’s, there has been ongoing theoretical and applied research on
panels whose time series components are nonstationary or persistent. For large n and
fixed T panels, see Hahn et al (2001) and Kruiniger (2000). For large n and T panels
allowing for nonstationarity in the data over time, the theoretical research includes the
study of asymptotically unbiased estimation of the dynamic panel model (e.g., Hahn and
Kuersteiner, 2000), panel unit root tests (e.g., Quah, 1994, Levin and Lin, 1993, Im et al.,
1996, Maddala and Wu, 1997, and Choi, 1999), panel cointegration tests (e.g., Pedroni,
1999, Binder et al., 1999), and the development of linear regression theories for panel
estimators under nonstationarity (e.g., Pesaran and Smith, 1995, and Phillips and Moon,
1999). Applied research includes tests of growth convergence theories (Bernard and Jones,
1996), purchasing power parity relations (MacDonald, 1996, Oh, 1996, Pedroni, 1996, Wu,
1996, and Wu, 1997), and studies of the international links between savings and investment
(Coakley et al., 1996 and Moon and Phillips, 1998).

Two recent papers by the authors (Moon and Phillips, 1999 & 2000) study panel
regression models that allow for both deterministic trends and stochastic trends with roots
local to unity. As we discuss in Section 2 of the present paper, such models are important
empirically in studying Gibrat’s law and they have received attention recently in the
weak instrument literature. When the deterministic trends in nonstationary panel data
are heterogeneous across individuals, Moon and Phillips (1999) show that the maximum
likelihood estimator (MLE) of the local to unity parameter in the stochastic trend is
inconsistent. They call this phenomenon, which arises because of the presence of an infinite
number of nuisance parameters, an incidental trend problem because it is analogous to
the well-known incidental parameter problem in dynamic panels when T is fixed!. To
solve the incidental trend problem, Moon and Phillips (2000) propose various methods,
including an iterative ordinary least squares (OLS) procedure and a double bias corrected
estimator, and establish limit theories for these consistent estimators that can be used for
statistical inference about the localizing parameter.

As a continuation of the two studies just mentioned, the present paper investigates a
generalized method of moments (GMM) estimator of autoregressive roots near unity with
panel data. We establish two moment conditions that form the basis for inference. The
first moment condition is obtained by adjusting for the bias of the score function after con-
ventional OLS detrending. The second moment condition is constructed by adjusting for
the bias of the score function following quasi-difference (QD) detrending. Interestingly, the
second moment condition is shown to correspond to the Gaussian projected score, where
the projection is taken on the so-called Bhattacharya basis that has been studied recently
in the conventional incidental parameter problem by Waterman and Lindsay (1996, 1998)
and Hahn and Kuersteiner (2000). Unlike the conventional moment conditions used in
estimating dynamic panel data models, these moment conditions do not suffer the weak
instrument problem that is discussed, for example, in Kruiniger (2000) and Hahn et al.
(2001).

Consistency of the GMM estimator is proved under the assumption that the local-
izing parameter takes a nonpositive value. This condition is not too restrictive because

I Lancaster(2000) provides a recent general survey of the incidental parameter problem in econometrics.



most econometric models consider non-explosive autoregressive regression models. Nev-
ertheless, the restriction does matter in deriving the limiting distribution of the estimator
because it is possible that the true parameter lies on the boundary of the parameter set.
The most interesting case is, of course, the pure unit root case where the true localizing
parameter is zero. In this case, in establishing the limiting distribution we cannot use
the conventional approach that approximates the first order condition because the true
parameter could be on the boundary of the parameter set. To avoid this difficulty, we use
the approach that takes a quadratic approximation of the nonlinear objective function
and optimize it on the parameter set (c.f. Andrews, 1999, for some recent developments
of estimation and inference in boundary problems).

One of the most interesting findings in the present paper is that the GMM estimator
has slower convergence rate than \/n when the time series components in the panel have
unit roots (i.e., the true localizing parameter is zero), and the deterministic trends are
linear. In this case the convergence rate is actually O(n'/%) rather than O(y/n). This
slow convergence rate arises because of lack of information in the moment conditions
when there is a unit root, i.e., at the point ¢ = 0 in the space of the localizing parameter.
It points to the continued difficulty of distinguishing unit roots from local alternatives
in the presence of heterogeneous deterministic trends even when there is an infinity of
additional data from a cross section.

The paper is organized as follows. Section 2 lays out the model and gives the basic
assumptions that are maintained throughout the paper. We also discuss the empirical
relevance of the model and the conventional moment conditions used in dynamic panels
models of this type. In section 3 we introduce two new moment conditions and prove
that the second of these moment conditions corresponds to a Gaussian projected score on
the Bhattacharya basis. In Section 4 we establish consistency of the GMM estimator and
obtain the limiting distributions of the GMM estimator when the true parameter is less
than zero and equal to zero. The appendix contains technical derivations and proofs of
the results in the main text.

2 Persistent Dynamic Panels

2.1 The Model and Assumptions

We study panel data that may show characteristics of time trends and persistent tem-
poral shocks and whose dimension is large in both cross section (n) and time series (T')
dimensions. To model such data, we extend the conventional dynamic panel model by
taking the components formulation

zit = Bigpt + Yit, (1)

where g, = (t,1?, ...,tp)/, the coefficients 3; are p—vectors that could be random, and
the residuals y;; follow

Yit = PYit—1 + Eit

with a common autoregressive coefficient p that is close to one defined in (4) below. Let
Yio = zip be the panel observations at the initial time period. In (1), the first term
ﬁ;gpt represents deterministic trends in the data, omitting an intercept because this is
not consistently estimable from time series data when y;; is near integrated (e.g., Phillips
and Lee, 1996) and can be incorporated in the initial condition y;9. Assuming that the
coefficient 3; varies across i, we may treat the trends [3;g,; as systematic individual effects



or fixed effects in the panel. Since p is in the vicinity of unity, the components y;; have
stochastic trends with persistent innovations &;;.

The components model (1) can also be written in the more familiar format of an
augmented regression form as

Zit = pZit—1 + 8i +Vigpt + i, (2)
where
2 I
0, = Pﬁ;bp; lp = — (717 (71) y ey (71):0) ’
v = BiY(p), T(p) isa (px p) matrix depending on p.

For example, when p = 1, the deterministic panel trends are linear and the augmented
model (2) is

zit = pB; + (1 — p) Bit + pzit—1 + €z (3)

This linear trend model (3) is an extended version of the standard model for dynamic
panels in which the individual effects are the incidental trends pg; + (1 — p) 5,t and the
autoregressive parameter is assumed to be close to one.?

The augmented format (2) has the drawback that linear regression leads to inefficient
trend elimination, but the advantage that the detrended data is invariant to the trend
parameters in (2). In the next section, we use the augmented formation (2) to define the
first moment condition, and the component model (1) for the second moment condition.

To enable a rigorous development when p is close to one, we take the specific near
unity formulation,

or equivalently,
T (p - 1) =¢

in which the standardized deviation of the coefficient p from unity remains constant (c).
In this case, the stochastic trends y;; are near integrated and they are characterized by the
parameter c¢ instead of the autoregressive coeflicient p. The time series properties of the
near integrated process y;; are well known from the nonstationary time series literature
(e.g., Phillips, 1987, and Stock, 1994). Recently, Hahn el al. (2001) and Kruiniger (2000)
use the related specification p = 1+ £ to model an autoregressive coefficient near unity
in a panel with large n and fixed T.

In a conventional time series autoregression (AR), the probabilistic features (and the
asymptotics) are discontinuous with respect to the AR coefficient as it passes through
unity. When |p| < 1, the process is stationary, reverts to its mean, converges to a steady
state, and has no stochastic trend, whereas when p = 1, the process is nonstationary, not
mean-reverting, and contains stochastic trends. Models with near unit roots as in (4) have
probabilistic features that are continuous with respect to parameter ¢, while still retaining
some of the implications of the three different cases: p < 1 (¢ < 0), p =1 (¢=0), and
p > 1 (c>0). More specifically, a direct calculation shows that Var (y;;) increases at
the rate t, regardless of the sign of the parameter c¢. Thus, y;; is nonstationary and has a

2For other examples of incidental trend models, see Section 11.2.1 of Wooldridge (2001) and the
references therein.



stochastic trend regardless of the sign of the parameter ¢. On the other hand, when for
t = [Tr] with 0 < r <1, it is well known that

Yit

VT

where J, (r) = [ e“(=3)dW (s) is the Ornstein-Uhlenbeck process, and W (s) is a Brown-
ian motion (e.g., Phillips, 1987). So, the marginal asymptotic distribution of the standard-
ized process% is continuous in ¢. Also, when ¢ < 0, the limit process J. () is stationary

= J.(r) as T — oo, (5)

and mean reverting, while for ¢ = 0, the limit process is Brownian motion. Thus, the
standardized process \/L% preserve some of the probabilistic implications implied by the
conventional AR(1) model for |p| < 1 and p = 1. One benefit of the continuity property is
that it is possible to produce confidence intervals for the AR coefficient p from estimates
of ¢ (Stock, 1991) even though consistent estimation of ¢ from time series observations is
not possible. In this paper we use notation ¢y to denote the true coefficient for c.

In later sections of the paper, as part of the asymptotic development, we need to
verify some properties of complicated nonlinear functions of ¢ that depend on the trend
gpt- These functions are so complicated that it is very difficult to establish analytic results
under the general polynomial trend set up with g, = (¢, ...,tp)/. Instead, we rely on
numerical methods for this part of the analysis. To assist the analytic development, we
restrict our attention to the following two cases: (i) g1 = ¢ and (ii) gor = (t,tQ)I. This
restriction is hardly restrictive in practice because the linear and quadratic trends are the
most widely used in empirical applications. The set up is formalized as follows:

Assumption 1 (Trend Formulation)
The polynomial trend in model (1) is either (i) g1z =t or (ii) gar = (¢, %)

!/
Assumption 2 (Initial Condition) The initial observations zy = y0 are independent
across i with sup; Eyj, < 0.

Assumption 3 (Error Condition) The error terms ey ~ iid (0,02) across i and t with
Eel, < o0 and g;; are independent of y;o for all 4.

Assumption 4 (Parameter Set)

(a) The localizing parameter c takes a value in a compact subset C=[¢,0] C R,
where ¢ < 0.

(b) The true localizing parameter cg is in the set Co = ( ¢, 0 ].

Assumption 4(a) restricts the parameter set C = [¢ , 0] to be non-positive. This re-
striction is made because in most econometric applications, the cases [p| < 1 and p =0
are of most interest. When the true parameter ¢y = 0, the model becomes nonstandard
in the sense that the true parameter is on the boundary of the parameter set. Section 4.3
explores the implications of the boundary point aspect of this case.

The practical implication of the restriction of ¢y to C = [¢, 0] is of some interest. One
of the advantages of pooling is that consistent estimation of ¢y is achievable with panel
data while it is not with a single time series. Take the case where the true value py = 1+
lies in the interior of the compact interval [1 + 5, 1] for some ¢ < 0. Theorem 3 below
shows that the GMM estimator ¢ is consistent for ¢y and has a limit normal distribution
\/n(é—cg) —q4 Z. The corresponding autoregressive coefficient estimate is p =1+ % and
VnT(p— py) —a Z. So, panel pooling affects the ‘usual asymptotic distribution’ of the
autoregressive coefficient in near integrated models. The distribution is normal and lives
in a shrunken neighbourhood within the compact set [1+ %, 1]. In effect, p is distributed



in an O (ﬁ) neighbourhood of the true value p, € [1 + %, 1]. The main thrust of the

present work is to put panel pooling to good effect, so that we get this increased precision
about the value of p, even when it is already in the locality of unity. To the extent
that many economic time series are near integrated but also may have idioscyncratic
deterministic trend components, this process increases precision in estimation, confidence
interval construction and local discriminatory power at unity for p, (where it increases

from O (T™') to O <T’1n’%> - see section 4.3), but also near unity (where it increases

from O (T~*) to O (T’ln’%> - see section 4.2).

Assumption 5 (n,T — oo) with Lllgg; <240 (_long) .

Assumption 5 restricts the relative size of the cross-section and temporal dimensions
in the panel in the asymptotic theory. It is assumed that n increases at a lesser speed than
T? as T — oo. So if n = T® then a < 2, thereby allowing for panels in which n and T
are of comparable size satisfying 7+ — #, 0 < £ < 00, as in Hahn and Kuersteiner, 2000),
and some panels where the size of the cross section dominates the time series count, i.e.,
n

# — o0. This assumption is required for the derivation of the limit distribution of the

estimator of ¢ in Section 4. Consistency of the estimator does not require this restriction.

2.2 Discussion of the Model
2.2.1 Empirical Relevance in Modeling Firm Size

In the empirical industrial organization literature on firm size, dynamic panel models have
been used widely to describe firm growth in terms of a simple formulation that follows
the spirit of Gibrat’s law of proportional effect (Gibrat, 1931). Gibrat’s law states that
the expected value of the increment in a firm’s size each time period is proportional to
the current size of the firm. Let Z;; denote the size of firm 7 at time ¢ and e;; denote the
(stochastic) proportionate rate of growth of firm i between time ¢ and ¢ — 1. Then Gibrat’s
law is formalized as

Zit — Zit—1 = Zig—_1€it.

(e.g., Steindle, 1965, and Sutton, 1997). Let z; = log Z;; and, using the approximation
log(1 + a) ~ a for small a, we may write the proportional law in autoregressive form as

Zit = Zit—1 t €it, (6)

which McCloughan (1995) calls Gibrat’s process — a law in which the growth rate of a
firm is independent of its initial size. When ey ~ iid (1, 02) , set €5 = ez — p, and then
we may rewrite Gibrat’s process (6) in the component form

Zig = Mt+ Yit, (7)
Yit = Yit—1 T Eit,

which is a special case of model (1). The panel model (1) (or (2)) can therefore be
interpreted as a generalized version of Gibrat’s process when applied to firm growth data.
To motivate (1), we now discuss more detailed features of the model in the context of this
application and indicate how we can explain in terms of this model (1) some empirical
findings relating to the violation of Gibrat’s law.



First we consider several well known implications of Gibrat’s law. For T large, by
virtue of the functional central limit theorem applied to T71/2z; in (6), the distribu-
tion of firm size Z;; is approximately lognormal and therefore skewed. Evidence sup-
porting lognormality and skewness of firm size distributions has been reported in many
past empirical papers. The more recent literature argues that firm size distributions do
not follow a ‘typical’ distributional shape but nevertheless have skewness as their cen-
tral characteristic (e.g., Sutton, 1997, and Schmalensee, 1989). Next, observing that
AVar (zi) := Var(zi) — Var(zi;—1) = 02 in Gibrat’s process (7), Prais (1976) and more
recently McCloughan (1995) claimed that the proportionate model implies that size in-
equalities between firms will increase at a constant rate, and the rate of concentration
will be greater the higher the variance of the growth distribution, o2. For this reason, Mc-
Cloughan (1995) calls AVar (z;;) = 0 Gibrat’s effect. For other implications of Gibrat’s
law, see Lucas (1978) and Sutton (1997).

Over the last two decades, many studies have found empirical violations of Gibrat’s
law. These are reviewed and classified in McCloughan (1995). For example, Evans (1987)
found through a cross-sectional analysis that firm growth decreases with firm age and
firm size, which is claimed to be consistent with the prediction made by the theory in
Jovanovic (1982). More recently, Hall and Mairesse (2000) investigated the time series
properties of several variables in firm-level panel data that are related to the growth of
firms. One of their findings was that the growth rates of these variables vary widely across
firms. Another was that the sample serial correlations typically decay very slowly.

In what follows, we compare the implications of the panel model (1) with those of
Gibrat’s process and consider possible explanations, in terms of (1), of the empirical
violations of the law.

(i) According to (1) and (4), the stochastic shock in the logarithm of firm size is nearly
integrated and involves the parameter c. As discussed earlier, for T large this formulation
ensures that the distribution of firm size is asymptotically lognormal, as indicated by
Gibrat’s law?. Also, since the autoregressive coefficient p is close to unity for large T,
the serial correlations of z;; will not decay. These properties coincide with what Hall and
Mairesse (2000) observe in their firm panel data.

(ii) Since the random growth rate process is Az;; = 0; + Vigpt + F2it—1 + €it, we have
ng{iiﬁf = % < 0if ¢ <0. Thus, firm growth decreases as firm size increases, giving the size
effect.

(iii) If the deterministic trends are quadratic and the coefficient of the quadratic coef-
ficient is negative, we have the age effect because %ﬁﬁl = 20,5 < 0 when z;p = y;0 = 0.

(iv) A simple calculation shows that

t—1
Y 2 2 2t-1)\ . 2 s
Var(z:)=o (1+p +..+p ) o gexp (2CT> (8)
when ;0 is nonrandom. So,
AVar (zi) ~ o”exp | 2¢ 7 | 9)

3In empirical studies, a commonly used model for representing a generalized Gibrat process is the
conventional AR(1) model
Zit = P+ pzit—1 + €4,

e.g., McCloughan, 1995, and Hall and Mairesse, 2000. In this case, when —1 < p < 1, the size distribution
depends on the distribution of the error e;; and skewess of the size distribution is not guaranteed. By
contrast, skewness is guaranteed, at least asymptotically, in the near integrated case.



Equations (8) and (9) indicate that inequalities in firm growth grow over time and the
rate of change in the inequality depends on the value of the growth parameter c.

(v) Model (2) introduces individual specific effects through the trend coefficients 3,
and the initial conditions z;o. These effects may explain certain heterogeneous factors
such as the x-inefficiency of some firms.

In view of these characteristics, the panel model (2) helps to bridge the gap between
the pure form of Gibrat’s law and the empirical evidence indicating certain systematic
violations of the law. In addition, consistent estimation of the systematic growth parame-
ter ¢ makes it possible to measure the size effect and changes in growth inequality or firm
concentration.

2.2.2 Conventional Moment Conditions and Weak Instruments

In recent years, one of the most widely used methods of estimating dynamic panel regres-
sion models with fixed effects, such as

zit = (1 — p)B; + pzit—1 + €it,

is to utilize the moment conditions implied by the assumptions imposed on the model.
(For details and references, see the recent survey by Arellano and Honore, 2000). Among
these moment conditions?, the moment restrictions known as the basic moment conditions,

viz.,

E (z;sAeg;) =0 for s =0,...,t — 2, (10)

are the most widely applied. This section considers the properties of the basic form of
moment conditions implied by the model (1).
For simplicity, we consider only the linear trend case, i.e.,

zit = pB; + (1 — p) Bit + pzit—1 + €z

Due to the presence of the incidental trends, instead of (10) the basic moment conditions
in the model 1 are

E (ZisAQEit) =0fors=0,..t—3, (11)
which provide the orthogonality conditions in an instrumental variable regression of
APz = pA%2i_1 + Aeyy, (12)

with instrumental variables z;s, s = 0,...,t — 3. Notice from (12) that the basic moment
conditions (11) are linear in the parameter p. To evaluate the orthogonality conditions in
(11) in terms of their information content, we calculate the first derivative of the moments
with respect to the parameter p. Then,

OF (zis (A%2 — pA%2i_1))
Ip

=F (ZisAzzitfl) , S = 07 7t - 37

which is the covariance between the instrumental variable z;5 and regressor in (12).
First, when p = 1, as is well known in the conventional dynamic panel model, the
information content of the basic moment conditions is zero because E (z;sA%z;—1) = 0

40ther types of moment conditions used in conventional dynamic panel models are derived under
extra assumptions on the initial conditions, the fixed effect parameter, and the covariance stationarity
restrictions.



for s =0,...,t — 3, and so the instruments are not correlated with the regressors of (12).
In this case, the parameter p is not identifiable from the basic moment conditions.
When p =1+ £ with ¢ <0, a direct calculation shows that

E (2is0%2i-1) = <%>2 E (8;s 4+ vis) (26; + y1—3) ~ O (%) )

This implies that if the coefficient is near unity as in (4) and the time dimension is large,
the information in the basic moment conditions is small, and the instruments z;; become
weak’. In consequence, GMM estimation involving only conventional moment conditions
cannot estimate the model consistently. This has become an issue of some importance in
empirical studies of dynamic panel regression.

We therefore proceed to consider a different approach that augments the information
content of the basic moment conditions. This approach arises from a consideration of the
incidental trends problem, which we now discuss.

2.2.3 Incidental Trends Problem

Two recent papers by the authors (Moon and Phillips, 1999 & 2000) find that an in-
cidental trend problem arises in estimating the local to unity parameter ¢ in the panel
regression model (1) or (2) where infinite number of nuisance parameters are present.
Moon and Phillips (1999) show that the score of the (pseudo) likelihood that concentrates
out the incidental trend parameters 3, are biased (even in the limit). In consequence, the
maximum likelihood estimator (MLE) of ¢ in (1) is inconsistent. Also, according to Moon
and Phillips (2000), when the incidental trend parameters (3, are eliminated by ordinary
least squares (OLS) projection, the normal equation of the pooled OLS estimator is biased
as well (even in the limit) due to the correlation between the OLS detrended error term
and the OLS detrended regressor. It follows that the pooled OLS estimator of ¢ obtained
from OLS detrended data is also biased.

3 Moment Conditions

We now propose an estimation procedure that eliminates the effects of the incidental
trend problem. The approach involves GMM and minimizes a distance criterion based on
a vector of sample moment functions. The moment conditions are designed to have a limit
that will identify the true localizing parameter ¢y even in the presence of the incidental
trend coeflicients 3;.

The principle we use for contructing moment conditions with this property is to adjust
for the bias that arises in the usual score functions, the latter being explained in Moon
and Phillips (1999, 2000). The adjustments are based on formulae from the explicit
computation of the bias functions. The next subsections explain these constructions in
detail .0

5When T is finite and n is large, Hahn et al (2001) and Kruiniger (2000) investigate similar weak
intrument effects in the conventional dynamic panel regression model with near unit root specifications
p=1+%.

6The nprinciple employed can be applied to any biased score function for transformed data that is
invariant to the incidental trend coefficients. A referee suggested such a biased score function that leads
to an alternative moment condition that turns out to be closely related to the first moment condition
described below. In view of this similarity and space constraints, we do not investigate this alternative
moment condition here.




3.1 The First Moment Condition

The following notation is defined to assist with the analysis of the trend function asymp-
totics and it will be used throughout the rest of the paper. Let

Y = (51'772)17

gpt = (1,g;t)l, gp (1) = (r,...,rP) with r € [0, 1], g (r)=(1,9p (T)I)I,
Gpr = (Gonthr)s  Goror = (Gormhra) s Gor = (G Gpr)
Myr = Ir=Gur (GrrGyr) G,
D,r = diag(T,..,T"),  D,r=diag(1,D,r),
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Write Z; = (Zih ...,ZiT)l, Zi,—1 = (Zi(), ceey Zinl)l, and g, = (81'1, ...,SiT)l. Define

z = Mp,TZi, E = MpyTSi, z = Mp,TZi,fl-

i i i,—1
Then, it is straightforward to show that

z=yadz =y

where

be the ' element of z X
i—

One straightforward procedure of estimating co (equivalently py = 1+ %) is to elim-
inate the unknown trends §; + vg,: by taking OLS regression residuals and then apply
pooled least squares with an appropriate bias correction for the serial correlation of ;.
We call this method iterative OLS. However, as noted in Moon and Phillips (2000), this
iterative OLS procedure yields an inconsistent estimator of ¢y due to a nondegenerat-
ing asymptotic bias between the detrended regressor and the detrended error term. The
first moment condition is obtained simply by subtraction of this asymptotic bias term in
iterative OLS from the normal equation for the OLS detrended data.

10



More specifically, write the model (2) in vector notation as

- c
zi = pozi,—1 + Gpryi +€i, po=1+ TO' (13)

Applying MPT to both sides, we have

z =pz +e, (14)
i -1 i
where z , 2 ,and € are OLS detrended versions of z;, z;,—1, and €;, respectively. In gen-
i i1 i
eral, the detrended regressor vector z and the detrended error vector 5 are correlated
i,—1

and the first moment condition is found by correcting for the bias due to the correlation
between z and €.

Before we deﬁne the first moment condition, we discuss the estimation of the error
variance o2. Let p be the pooled OLS estimator of (14),

7 3 7,—1
1 n
~A2 NN
6= — E'E. 15
nT P i ( )

1 c ! 2
my 1 (¢) = —zflJr—)z z + 6wyt (C
@ = (5= (1rg)z ) ot
= lg'y — (C — CO) izy/ Y + (3'2pr (C)
T iv‘,—l T U‘,—lv‘,—l

T 2
1 N
= T Zfztyz t—1 — T2 Z Zeztyz 5— lhpT t 5) (C - CO) T_ Z (y ) + O—ZW;DT (C) s
7,—1

t=1 s=1 t=1 t
where
T t-1 ErEs]
1 eNT| T -
pr :ﬁ;;[(l—i_T) :| hpT(t,S),
ande and (y ) are the tt" elements of ¢ and y ., respectively. The terms 62wyt (c)
it i,—1 i i,—1
corrects for the bias that arises from the correlation between ¢ and ( )t

it -1

This first moment condition was utilized in the double bias corrected estlmator of Moon
and Phillips (2000). Suppose that a preliminary consistent estimate of ¢ is available. By
linearizing the bias correction term &*w,r (¢) in (16) around the consistent estimate of
¢, we may approximate the first moment condition as a linear function of (¢ — ¢g). The
double bias corrected estimator solves this linear approximation equation. In this paper,
to estimate the parameter ¢, we continue to use the nonlinear moment condition (16)
rather than work with a linear approximation.

11



3.2 The Second Moment Condition

Before discussing the second moment condition, we introduce some additional notation.

Let
AC:<1—(1+%>L>,

where L is the lag operator. Define

1

Fpr = diag(1,T,..,T""!) = Do, Acgpr = F Ay
. d L . ‘
gp (T) = d_gp (T) = (17 27'7 "'7prp 1) ) gpc (T) = ng (T) - Cgp (T) )
— ) 1 . . ’
Ar(0) = = Z BeapBaas 4@ = [y )i (1)
t 1

1
Byr(c) = Reomdh Dt Bylc) = / Gy () gp (1)’ dr.

HM%

The second moment condition is obtained from the efficiently detrended regression equa-
tion. According to Canjels and Watson (1997) and Phillips and Lee (1996), the trend
coefficient in the model (1) can be efficiently estimated in the time domain by employing
a procedure that amounts to quasi-differencing the data with the operator A.. That is,
when the localizing parameter ¢ is known, an estimator of 3, in (1) that is asymptotically
more efficient than the OLS estimator of j; is

T -l
Bi (C) = (Z AcgptAcg;;t> (Z Acg;utAcZit> .

t=1 t=1

Denoting yi: (8;) = zit — B3;gpt, We write

T -1 7
Bi(c) =B+ (Z AcgptAcg;,t> (Z AcgptDcyit (ﬁﬁ) :

t=1 t=1

Define € (¢, 8;) = Aczit — B AcGpr-
The second moment function ms ;7 (c) is defined as

mair ( ZEzt (C B3 ( ) Yit—1 (Bz (C)) + 6% N1 (), (17)
where
1 T t—1 T S L
o 58 009)] T e
t=2 s=1

Notice that y;;_1 (31 (c)) is the induced residual of the regression equation z;; = 3 Gpt +Yit
and &4 (c, Bi (c)) is the residual of the quasi-differenced equation A.z; = ﬂgACgpt +

Acyit. In the second moment function mo ;7 (c) we correct for the asymptotic bias of
+ Zthl Eit (c, 3 (c)) Yit—1 (BZ (c)) by substracting off the estimate 6\, (c) .

12



As mentioned above, Moon and Phillips (1999) showed that the Gaussian MLE of the
panel regression model (3) with linear incidental trends is inconsistent. The main reason
for inconsistency of the MLE is that the concentrated score of the (standardized) Gaussian
likelihood function, 3% 1 ;le eit(e, B; (€))yit—1(B; (¢)), has non-zero mean in the
limit. In the second moment formulation of mg 7 (c), by subtracting off the estimate

&QAPT (c), we eliminate the asymptotic bias of the concentrated Gaussian score function.

3.3 The Relationship between the Second Moment Condition and
the Projected Score

This section shows that the second moment function mo ;7 (c) is a projected score of the
panel regression model (1) under Gaussian errors. Suppose that the error process €;; in
the model (1) is an iid standard normal process across i and over t. For convenience we
assume that z;0 = y;,0 = 0 for all 3.

Under general regularity conditions, it is well known that the asymptotic properties
of the MLE, and most notably its consistency, are closely related to the unbiasedness of
the score function at the true parameter. However, it is also well known that in dynamic
panel regression models with incidental parameters the MLE is not consistent (e.g., see
Neyman and Scott, 1948, and Nickel, 1981) as n — oo with T fixed. Recently, Moon and
Phillips (1999) found that this incidental parameter problem also arises in nonstationary
panel regression models with incidental trends and roots local to unity when both n — oo
and T — oo, covering models such as (1) .

The main reason for the inconsistency of the MLE is that the score function in an
incidental trend model has a bias at the true parameter. Therefore, in order to obtain a
consistent estimate, one needs to correct for the bias in the score function. One recently
investigated method to correct for this bias is to use a projected score function, where
the projection is taken onto the so-called Bhattacharyya basis. The resulting approach is
called ‘a projected score method’.

To define a projected score in the present case, assuming that ¢;; are iid N (0,1), we
introduce the following notation. Denote the joint density of z;

1 \7 1 & ) 2
fi(zise, B;) = (\/—27) exp | —3 Z (Aczit — BiAcgpt) (18)
=1

and set
Ui (¢, 8;) = %{?C, Vi (¢, ;) = %,
_0%fi
Vai (¢, 8;) = aﬁ}(jﬁﬁa Vile, B;) = ( D;Z:cg/%zﬁ(é), B;) ) ’
where Dif = (D;Dp)_1 D;, and D, is the duplication matrix.

For convenience, we mix notation Uy;, V;, and Vi; for Uy, (c,5;), Vi(e, B3;), and
Vii (¢, 8;), k = 1,2, respectively. In the statistics literature, Vi; and Va; are known
as the Bhattacharyya basis of order 1 and 2, respectively (see Bhattacharyya, 1946 and
Waterman and Lindsay, 1996). The projected score Us; is defined as the residual in the
Lo— projection of Uy; on the closed linear space spanned by Vy; and Vs, i.e.,

Uzi = Uy — &1Vii — £5D;F (vecVs) . (19)
Recently, using the projected score method, Waterman and Lindsay (1998) and Hahn

(1998) were able to solve similar nuisance parameter problems in the classical Neyman
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and Scott panel regression model and in a simple dynamic panel regression model with
fixed effects, respectively.

When the joint density of z; is given in (18), Uy;, Vi, and Va; are found to be

T
Uii (e, 8;) = %Zgit(cvﬁi)yit—l(ﬁi)a
=1

T
Vii(e, ) = > ei(c,8;) Acgpr,
=1

T T T !
Vai (¢, 8) = = AcgpDegy + (Zgit (c, ﬁi)Acgpt> (ZE“ (e, 5i)A09pt> :
t=1 t=1

t=1

Some algebra verifies that EVi;Uy; = 0 and EVy; [D;‘ (vecVQi)]/ = 0”. Hence, the two
Lo— projection coefficients &; and &, in (19) are given by

§1= [EVMVfi]il EViUi; =0,

and
¢, = [D} E (vecVay) (vecVa,)' DY) ™ D E (vecVa;) U
Next
E (vecVa;) (vecVa;)
T T T T
Z Z ( (,gptAcgpt ® AcgpsA Lgps + Z Z (AcgptAcg;s ® AcgpsAcg;t) )
t=1 s=1 t=1 s=1
and
FE (’UECV%) Uli
T t-—1 t=s-l
1 C T T
= T ZZ [Acg;ut & Acgps + Acgps & Acgpt] |:<1 + T) ]
t=2 s=1

Therefore, the projected score Uy; (¢, 3;) is
Ui (¢, B;)

T
1
= T E Eit (C, ﬁz) Yit— 1 +§2D+ § cgpt ® Acgpt)
t=1

T
7§2D+ <Z &g ,t C ﬁ cgpt> <Z 515 cgps> l}
s=1

t=1
where

&

T T -1

/

lz Z D { cgptAcg;;t ® AcgpsAcg;;s) + (AcgptAcg;;S ® AcgpsAcg;;t)} (D;_) ‘|

t=1 s=1

1 K. =t . eN\T feeml

T Dp [Acgpt & Acg;us + Acg;us & Acg;ut] [(1 + T) ]

t=2 s=1

"The expectation is evaluated at the parameters ¢ and £3;.
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Since B; in Us; is unknown, we replace it with the estimate

T T

-1
Bi (C) = (Z AcgptAcg;;t> (Z Acg;utAcZit> .

t=1 t=1

Then, we have the following concentrated projected score

c, ﬁ Zszt Yit—1 5 +&,D +i (Acgpt ® Acgpt),  (20)
T t=1

T .
because Y ,_; €4t (c, B; (c)) Acgpr = 0.

When the error process e;; is iid(0, 1) across ¢ and over ¢, the second moment function
ma T (C) is

ma it ( Zgzt <C B ( ) Yit—1 (BL (C)> + Apr (€) -

The following lemma states that the bias correction term A,z (¢) in mg ;7 (c) is equivalent

to 505 Zthl (Acgpt @ Acgpt) - So, the second moment function actually corresponds to
the concentrated projected score function of the Gaussian model. The proof of the lemma
is in the appendix.

Lemma 1 (Equivalence) Suppose that the errors in model 1 are iid normal with mean
zero and variance 1 across i and over t and y;0 = 2z = 0 for all i. Then, the sec-
ond moment condition ma ;1 (¢) is equivalent to the concentrated projected score function

Us; (c, BZ (c)) .

4 GMM Estimation and Asymptotics

This section investigates the asymptotic properties of a GMM estimator of ¢ that is based
on the two moment conditions introduced in the previous section. Let

M (C) = % ZmLT (C) )

where m;r (¢)' = (myir (c),ma 7 (c)), and my 47 (¢) and ma 7 () are defined in (16)
and (17) , respectively. Let W be a (2 x 2) random weight matrix and B, be a sequence
of real numbers that converges to infinity as (n,T — o0). The GMM estimator ¢ for the
unknown parameter ¢y in (13) is defined as the extremum estimator for which

ZnT (é) S Icnei(anT ( ) + Op (Bniz") (21)
where
A% (C) = M, (C)l WMnT (C) .

Since the objective function Z,7 (¢) is continuous in ¢ and the parameter set C =g, 0]
for some ¢ < 0 that contains ¢g is assumed to be compact, it is possible to find a global
minimum of Z,7 (¢) over C. The main purpose in allowing for an o, (B ) deviation
bound from the global minimum IcrélélZnT (¢) is to reduce the computational burden and

allow for potential numerical computational errors within a range of o, (B"T) Later in
the paper, depending on the convergence rate of ¢ to ¢y, we will determine the sequence
BnT~
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4.1 Consistency of the GMM Estimator

Define
m (¢)
M (c) =
@=(m).
where
mi (¢) = wp (¢) —wp (co) — (¢ — co) ¥, (co) s
1 g 5
wp(e) = / / er=n, (r, 5) dsdr,
o Jo
- fi i _ e2c0
Y, (co) = 2o <1+ e (1—e ))
1l
1 -
- co(r+s) _~ 1— —2¢o(rAs)
/0 /0 e 200( e )hp (r, s)dsdr,
and
my (c)
1 T
= —(c—cp) ( eQCO(TS)deT>
o Jo
1 1 TAS ) .
+(C—Co)/ / / ec‘)(r“*z”)gpc (s)'Ap (c)_1 Gpe (1) dvdsdr
o Jo Jo
1 r
+(c—c0)/ / eCO(’”_S)ng (r) Ay ()" gy (s) dsdr
o Jo
1 r
+(c—c0)/ / e0(r=9)g (s) A, ()" gp (r) dsdr
o Jo
1 1 rAS )
_(0_00)2/ / / 600(7'“_2”)91,0 (s) A, (¢) " gp (r) dudsdr
o Jo Jo

1 r
(e~ co) / / €™ =5 g (1) Ay ()™ By (c) Ap ()™ g () dsdr

1 r
Ap (€) = /0 /O e =9g . (s) Ay () g, (7) dsdr.

The following lemma derives the convergence rate of 62 defined in (15).3

8In this paper, we assume that &;; are iid (Assumption 3). If the error process e;; has both serial
correlation and heteroskedasticity, we may need to estimate the one-side long-run variance (A;) and the
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Lemma 2 Suppose that Assumptions 1 — 8 hold. Define

Then, as (n,T — 00),

and

- 1
02102+Op (ﬁ)

The next lemma shows that the sample moment condition M, (¢) has a uniform limit
in c.

Lemma 3 (Uniform Convergence) Under Assumptions 1-3,
M, (¢) —, 0> M (c) uniformly in c,
as (n,T — o).
Assumption 6 As (n,T — o0), 1174 —p W, where W is positive definite.

Observe that the limit function M (c¢) is continuous on the compact parameter set C.
Also, note that M (¢) = 0 at the true parameter ¢ = ¢y. In Appendix D, we confirm
numerically that M (¢) = 0 only when ¢ = ¢g. Then, by a standard result (e.g., theorem
2.1 of Newey and McFadden, 1994), the GMM estimator ¢ is consistent for the true
parameter cg. Summarizing, we have the following theorem.

Theorem 1 (Consistency) Suppose Assumptions 1-8 and Assumption 6 hold. Then,
as (n,T — 00), &é—p co.

4.2 Limiting Distribution of the GMM Estimator when ¢y < 0

By inspection the objective function Z,r (¢) is differentiable in ¢ on the region ¢ € (¢,0),
and it has right and left derivatives at ¢ = ¢ and 0, respectively. To derive the limit dis-
tribution of the GMM estimator, we employ an approach that approximates the objective
function Z,r (¢) uniformly in terms of a quadratic function in a shrinking neighborhood
of the true parameter.

For this purpose, we define

1 n
dMnT (C) = E deiT (C) y
=1

long-run variance (£2;) of ;4. Letting A; and QZ denote the estimates of A; and €2;, respectively, we need
% > (Al — A,—) = 0p (1) and % Y (Ql — Q.L) = 0p (1) . Typically, we use nonparametric kernel
estimation for A; and €;. In this case, in order to have the desired property, we may need to choose a

proper bandwidth parameter and a kernel as well as strenthen the restriction on the relative convergence
rates between n and T' to be 7& — 0. For details, the reader is referred to Moon and Perron (2002).
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where dm;r (¢) denotes the derivative of m;r (¢) with respect to ¢ when ¢ € (¢, 0) and
the right and left derivatives when ¢ = ¢ and 0, respectively. By the mean value theorem,
for ¢ # cg,

Myr (C) = My (CO) +dM,r (CO) (C - CO) + raT (C, CO) (C - CO) )

where
Tur (¢,c0) = (rinr (¢ ¢0) s T2nT (C; CO))/ )
1 n
Tknt (C,C0) = - Z; (dmuir (¢f) — dmiir (co)) 5
=
and ¢} lies between ¢ and ¢g for k = 1,2.
Define
Snr =dMy, T (CO)I WMnT (CO) ;
and

HnT = dMnT (C())/ WdMnT (Co) .
Then, we can write

Znr (¢) = Myur(co) WMyr (co) +2 (¢ — co) Spr + (¢ — ¢o) Hur
+ (¢ = o) Rint (¢, ¢0) + (¢ = o) Rant (¢, o)

where
Rint (¢, ¢0) = 2Myur (co) Wrar (¢, o),
and
Rant (€, c0) = 2dMyr (co)' Wrnr (c,¢0) + ot (4 co)/ Wrar (¢, ¢o) .

Next, we give some asymptotic results that are useful in establishing the limit distri-
bution of é.

Lemma 4 Suppose that Assumptions 1-8 hold. When the true parameter is cg,

dM1 (C)

dM,r (c) —p 0*dM (c) = o < My (o)

> uniformly in ¢ as (n,T — 00)

for some continuous function dM (c) with

1 T
dM (o) = /0 /0 eco(r—s) (r—s) lsz (r,s)dsdr — Y, (co),
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and

dMy (C()

)
1 T
= f/ / 20 (=) qsdr
0 0
TAS

/0 eCO(”S*Q”)QPCO (s)' A, (co)™" Ipeo (1) dvdsdr

eCO(T_S)ngO (7“)' A, (co)_1 gp (s) dsdr

Lemma 5 Suppose that Assumptions 1-8 hold and set Byr = v/n. Then, as (n,T — o)
following Assumption 5,

n

1
By M,T (CO) = _’I'L ZmiT (CO) =N (07 OAJ/@ (CO) ‘]) ’
=1

/

1 -1 0 0 O ) .
where J = ( 1 0 -1 -1 1 ) and ® (cq) is defined in (46) .

Remarks
(a) The proof of Lemma 5 is similar to that of Lemma 3 and is omitted.
(b) Figs. 3-4 plot the graphs of dM (co, co) in the cases gi; = (1,t)" and g, = (1, ¢, tz)/ ,

respectively. The graphs reveal that dM; (cp,cp) < 0 for ¢y < 0, and, therefore,
H,7 > 0 for ¢g < 0.

F-0.002
£-0.004
£-0.006
F-0.008
£-0.01

£-0.012
F-0.014
F-0.016
F-0.018

Fig. 3. Graph of dM; (cy) when §i; = (1,t)".
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0
F-0.001

£-0.002
F-0.002
£-0.004
[-0.005
F-0.00¢

F-0.007

~-0.00¢

Fig. 4. Graph of dM; (cp) when goy = (1,t,t2)/.

(¢) According to Moon and Phillips (2000), when ¢y = 0, dM; (¢g,co) = 0 holds for
all polynomial trends g,: = (1, ...,tp)/. Also, for ¢y = 0, direct calculations show

that dMs (co, co) = 0 for g1 = t and dMs (g, co) = 0 for gor = (t,tz)l. Therefore,
Hyr —p 0 when cg =0, g1 = ¢, and gor = (t,tQ)I.

From Lemma 4 and the following remarks and by Assumption 6, it follows that H,p
has a positive limit as (n, T — o) when ¢y < 0. Thus, H, 7 = O, (1). Then, we can write

B Zyur (c)
7 Bn n 2
= MnT (CO)/ WM’ILT (CO) - (,}Z—ST)
nT
BurSnr \’
+H,r <BnT (C - CO) - #)
HnT

+B,7 (¢ — ¢o) BpurRint (¢, c0) + (Bpr (¢ — Co))2 Raont (€5 o) - (22)

Lemma 6 Under Assumptions 1-8 and Assumption 6, for every sequence v, — 0, we
have as (n,T — o00) following Assumption 5,

(a)
sup | BnrRant (¢, c0)| = 0p (1),
c€C:le—co|<vpr
and
(b)

sup |Rant (c,c0)] = 0p (1).
c€C:le—col <Y
Theorem 2 Suppose that Assumptions 1-3 and Assumption 6 hold. Then, as (n,T — o)
following Assumption 5,

BnT (é — Co) = Op (1) .

Lemma 6 establishes that the two remainder terms B,7R 1,7 (¢, ¢o) and Ranr (¢, o)
converge in probability to zero uniformly in the shrinking neighborhood of the true param-
eter. Also, Theorem 2 shows that the GMM estimator is B, ( = /n) — consistent. This
implies that in the shrinking neighborhood of the true parameter, the scaled objective
function B2, Z,r (c) is uniformly approximated by the following quadratic function

BZTZq,nT (c)

(B7LTS’ILT)2

o B.+S 2
= MnT (CO)I WM?LT (Co) — H - nT nT) )

+ Hnr (BnT (C - CO) - Hor
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The heuristic ideas of the limit theory are as follows. Let B, (¢, — co) = argminB2Z, 1 (c) .
ceC

Then, we may expect that a minimizer of B2,Z,r (¢) will be close to the minimizer of
B2, Zynr (c), suggesting that the GMM estimator B, (¢ — ¢p) will be close to

BnrSnr . BnrSn
Bur (6 —cy) = —=—tLif {BnT (€ —co) < =1L < BnTco}
H'nT HnT
BnrSn
= BnT (E - CO) if {BnT (E - CO) > %}
nT
BnrS
= —Burooif {M > _BnTCO} .
HnT
Notice that Eﬂﬂ%‘iﬂ = Op (1) and recall that it is assumed that the true parameter sat-
isfies € < ¢g < 0. In this case, the probabilities of the events {B,LT (¢—co) > Mﬂ} and
’;I—S"T > BnTco} will be very small and the scaled and centred estimator B, (¢4 — co)
will therefore be close with high probability to the random variable
3 o nTSnT
¢nT - H'nT .

In view of Lemmas 4 and 5 and Assumption 6,
BurSur = 8 £ N (0,0% [dM (co) WJ'® (co) JIWdM (co)])
and
Hyr —p H = 0*dM (co) WdM (cp) >0
as (n,T — oo) with & — 0. Thus, when ¢y € Co/ {0},
bur = 0L HISE 2.
The proof of the following theorem confirms the heuristic argument above.

Theorem 3 Suppose that Assumptions 1-3 and Assumption 6 hold. Suppose that co €
Co/ {0} and ¢ be the GMM estimator defined in (21). Then, as (n,T — o) following
Assumption 5,

\/ﬁ (é — Co) = Z,
where
( dM (co) WJ'® (o) JWdM (Co)>
z4 N 2 :
[dM (co)’ WdM (co)]
Remarks

(a) When ¢y € Cy/ {0} and J'® (co) J is invertible, the optimal weight matrix is found

as
Wepe = (J'® (&))"

The limiting distribution of \/n (¢ — ¢p) is then

(e —co) = Zopt 2N (0, o - 23
resal= ( [dM(cO)'WdM(co)]> =
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(b) Fig. 5 plots the graph of the minimum eigenvalue of J'® (¢p) J as a function of cg.
As we see through the graph, J'® (cg) J is positive definite except for the case of
Co = 0.

T
0.002 0.004 0.006 0.008 0.010 0.012 0.014

Fig. 5. Graph of the Minimum Eigenvalue of J'® (¢) J when g1; = t.

T T
0.005 0.006 0.007 0.008 0.009

T
0.004

0.003

!’

Fig. 6. Graph of the Minimum Eigenvalue of J'® (¢y) J when goy = (t, tz)

4.3 Limiting Distribution of the GMM Estimator When ¢y = 0

An important special case of model 1 occurs when ¢y = 0. The time series components of
yi+ in (1) then have a unit root, and the deterministic trend is linear, so

zie = Byt + Yt (24)
Yit = PoYit—1 Tt Eit,
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where py, = 1, i.e, ¢ = 0. According to Remark (c) below Lemma 5, in this case, the
information from the moment conditions is zero because H,r —, 0. We cannot then use
a conventional quadratic approximation approach, as in the previous section, and need
instead to employ a higher order approximation to extract the limit theory (c.f., Sargan,
1983).

This section develops asymptotics for the GMM estimator when the true localizing
parameter is zero, so throughout this section we set ¢y = 0. The following lemmas find the
limits of the first and the second moment conditions and their higher order derivatives at
c=0.

Lemma 7 Suppose that the panel data is generated by (24). Under Assumptions 2 and
3, the following hold as (n,T — o00) following Assumption 5.

(a) V/iMynr (0) = N (o, g—g) = /22, where Z=N(0,1),

(b) \/7_ldM1nT (O) =N (0,04%) N

(¢c) Vnd*Minr (0) = 0, (1),

(d) d*Myyr (¢) —p o*d®* My (c,0) uniformly in ¢ with d*M; (0) = —=5,

where d* My, (c) is the k' left derivative of My, (c), and d>*M (c) is the third left
derivative of M (c), the probability limit of My, (c) .

Lemma 8 Suppose that the assumptions in Lemma 7 hold. Then, when (n,T — o)
following Assumption 5,

(a) \/7_1‘M27LT (0) = 0p (1) )

(b) \/RdMapr (0) = N (o, 5;—5) ,

(¢) Vnd*Manr (0) = 0, (1),

(d) d*Mayr (¢) —p 02d* My (c) uniformly in c with d*Ms (0) = — 4,

where d* Mo, (0) is the k' left derivative of May,r (c) at ¢ = 0, and d>Ms (0) is the
third left derivative of d>M> (c) at ¢ = 0.

Remarks. Since the higher order derivatives of Ma,7 (0) are complicated and involve
extremely lengthy expressions, we omit the details of their derivation in the appendix.
Instead, we give a sketch of the proof in the appendix and here provide some simulation
evidence relating to the various parts of Lemmas 7 and 8. Using simulated data for z;
n (24) with g ~ 4id N (0,1) and y;0 = 0, we estimate the means and the variances
of v/nd*M;,r (0), k =0,...,2; 5 = 1,2 and the means of d*M;,7 (0), j = 1,2. Table 1
reports the results. The numbers in the table are consistent with the theoretical results
in the lemmas. Noticeably, the variance estimates of /nMj,r (0), \/ndMj,r (0), and
V/ndMay,r (0) are all small. This is because their theoretical limit variances are small
but not zero. In fact, a long calculation shows that the theoretical limit variances of
VM1 (0), /ndMinr (0), and \/ndMay,r (0) are g5(~ 0.01667), g5 (~ 0.00175), and
2 (= 0.0222), respectively when e;; ~ iid N (0,1).

Table 1°

9Notice that the second and the third derivatives of My, (c) are deterministic.
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\/ﬁMlnT (0) \/ﬁdMlnT (0) \/ﬁdlenT (0) d3M1nT (C)

Mean —0.0019 —0.0003 7.96 x 10=7 —0.0169
Variance 0.018 0.0017 0 N/A

\/EMZ’ILT (O) \/EdMQ'nT (0) \/EdzMZ'nT (0) d3M2nT (O)

Mean 9.4x107° —0.0001 —2.88 x 107° —0.06
Variance 0.0012 0.022 4.85 x 1076 N/A

Using the left derivatives of the moment condition M, (¢) at ¢ = 0, we approximate
M, 1 (¢) around the true parameter ¢o = 0 with a third order polynomial as follows,

Moy (€) = My (0) + ¢ (dMr (0)) + %CZ (2 Mz (0)) + %03 (& Moz (0)) + B (c,0).

where
Fnr (€,0) = (Fint (¢,0),72nr (c,0)),
fka (C, 0) = dng:nT (CZ) — d3MknT (0), k=1 and 2.
Then,
Z‘ILT (C) = M’ILT (C)/ WMILT (C)
6
= Z " At + Nor (¢,0)
k=0
where
AO,nT = Mur (O)I WM’ILT (O) ’
Al,nT = 2MILT (O)I WdMnT (0) )
Asr = Myur (0) Wd*M,r (0) + dM,7 (0) WdM,,r (0),
Aspr = 5 My (0) WMy 0) + My (0) We My (0),
1 - 1 .
Asr = gdMyr (0) Wd* My (0) + 7d*Myr (0) Wd? My (0),
1 .
A5,nT = EdQMnT (O)I stMnT (0) ;
1 ~
A6,7LT = %dsMnT (0)/ Wd3MnT (0) y
and

6
Nor (¢,0) = > Nir (¢,0),

k=3
Ninr (¢,0) = apd ™3 M7 (0) Wnr (c,0) for k = 3,4,5,
N6,7LT (C, O) - aﬁdgMnT (O)/ Wf'nT (C7 O) + 7Z'nT (C, 0)/ WﬁnT (C, O) )
1
asz,0y = 27 a5:17 a6:§7
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where d° M, (0) denotes M,z (0).
In view of Lemmas 7 and 8, it is easy to find that as (n,T — oo) with & — x < o0,

ns/GALnT = o0,(1), (25)
n2/3v42,nT = Op (1)7 (26)
nP Ay = 0,(1), (27)
nl/GAS,nT = Op(l)v (28)
and
ot (Wi 2Wia  Wao
— 0 29
Asar 2 35 (4900 1050 225> -0 (29)
Az = AsZ, (30)
nAO,nT = A0227 (31)

where Z = N (0,1) and As = —& (T + 112) , Joo and Ay = Wi .
Also, using Lemmas 7 and 8 and following similar lines of proof to Lemma 6, we can
show that

sup ‘n(G*k)/GNk,nT (c, 0)) =o0,(1), (32)

c€Cile[<vnr

for any sequence v, tending to zero as (n,T — oo). Then, we have the following limit
theory for ¢ at the origin.

Theorem 4 Under the assumptions in Lemmas 7 or 8, and as (n,T — 00) following
Assumption 5,

n/S(e—co) =0, (1),
where ¢g = 0.

So, when the true localizing parameter is ¢g = 0, the GMM estimator & is n'/6—

consistent, which is slower than the regular case of y/n that applies for ¢y < 0 as shown
in Section 4. To find the limiting distribution of ¢, we use an argument similar to that of
the previous section. Consequently, we sketch the derivation and give the final result in
Theorem 5 below.

In view of (25) — (31) and (32), the standardized objective function nZ,r (c) is ap-
proximated by

Zynt (€) = nAonr + (n1/60)3 VnAs nr + (nl/ﬁc)G Ag -

Notice that the probability limit of Ag ,,r is positive, as shown in (29). Then, it is easy to
see that the approximate objective function Z, ,,r (c) is minimized at

1/3
g, — - (VAaar ) [y, o VAsnr
a 2A6,7LT - -

6,nT
. \/H-AS nT
= 0if {———>0
' { 2A6,nT
1/3 VnA
— —(n'/%(—¢ ~ /65~ _ NV /13nT
(n ( c)) if {n c> o }
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Using arguments similar to those in the proof of Theorem 3, we can prove that the
standardized GMM estimator n'/6¢ is approximated by n'/ 6é,, the minimizer of Z, .7 () ,
that is,

nt/%¢ = nt/%¢, + 0, (1),

and the estimator n'/ 6¢, is approximated by

1/3
&nT _ (\/EA?),?LT) 1 {_ \/EA?),’ILT S 0} 7

2A6,nT 2A6,nT

where 1{A} is the indicator of A. In view of (30) and (29), as (n,T — oo) following
Assumption 5, it follows by the continuous mapping theorem that

Sy = 25/°1{2, <0},

where
Zy = VyZ, (33)
W W,
y V15 (B +58) (34
0 = |T /W Wiz | W. )
3 (E(l)ﬁ + Jos0 T 72252)

and W;; are the (i, 7)™ element of the weight matrix W. Thus, we have the following
theorem.

Theorem 5 Under the assumptions in Lemmas 7 and 8, as (n,T — o0) following As-
sumption b,

n'/%¢ = 231 {2z, <0},
where Zy is defined in (33).
Remarks

(a) Theorem 4 shows that when the true parameter ¢y = 0, i.e., in the case of a panel
unit root, the GMM estimator is n'/6-consistent and that its limit distribution is
nonstandard, involving the cube root of a truncated normal. The truncation in the
limiting distribution arises because the true parameter is on the boundary of the
parameter set.

(b) The reason for the slower convergence rate in the panel unit root case is that first
order information in the moment condition (from the first derivative of the mo-
ment condition) is aymptotically zero at the true parameter. In order to obtain
nonneglible information from the moment condition, we need to pass to third order
derivatives of the moment condition. Taking the higher order approximation slows
down the convergence rate because the rate at which information in the moment
condition is passed to the estimator is slowed down at the origin because of the zero
lower derivatives.

(c) Inview of Lemmas 7(a) and 8(a), we find that \/nMay,r (0) = o, (1), while \/nMi,7 (0)
converges in distribution to a normal random variable with positive variance. Be-
cause of the convergence rate difference between /nMa,7 (0) and /nMi,7 (0), we
have only Wi, and Wiy but not Was in the limiting scale Vj of (34). In this case,
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setting W1 = Wio = 0, i.e. not considering the first moment condition, causes
the variance of the limit variate Zy in (33) to vanish, from which one might expect
that the GMM estimator from the second moment condition alone would have a
faster convergence rate than n'/6. The reason for using the first moment condition
is to identify the true parameter ¢y when ¢y < 0. As we discuss in Appendix D, the
second moment condition cannot identify the true parameter ¢y unless ¢y = 0.

4.4 On Testing for a Unit Root

This section briefly considers how the asymptotic results for the localizing coefficient given
in the previous section may be used to test for a unit root in the panel. Suppose the null
hypothesis is Hy : ¢g = 0 and the alternative hypothesis is H; : ¢ < 0. We discuss two
types of panel unit root tests, one involving a t— test and the other an LM test.

First, Theorem 5 shows that to test Hy we can use a suitably constructed t— statistic.
Specifically, let Vo be a consistent estimator of Vj and define

Vné?
7

t gmm —

Then, since Vo —p Vo and from Theorem 5 with (n,T — oo0) as in Assumption 5, we get
tgmm = Z1{Z <0},

where Z = N (0,1). Under the alternative hypothesis ¢ = ¢4 < 0, we have

VR(@=d) e
tgmm - ~ + ~

Vo Vo
3
— 0,1+ Yi%
Vo

by Theorem 3 and the delta method. So, under the alternative hypothesis, ¢gmm — —00
and the test is consistent.

Another type of test is to use the asymptotic properties of the moment conditions in
Lemmas 7 and 8 in conjunction with the restricted parameter estimator, which is zero
in this case. For example, in Lemma 7 we observe that /ndMi,r (0) = N (0,0%z55) .

Thus, a simple test can be based on

2
[6300 /md M7 (0)
LMgmm = < 11 5_2

Then, as (n,T — o0) as in Assumption 5, we have

LMy = Xx*(1).

Under the alternative ¢ = c4 < 0, it is easy to show that (/ndMa,r (O))2 =n0 (1)* - oo,

while d®Ma,r (0) —p 702% < 0. Thus, under the alternative hypothesis, LM gpmm — 00.

The same principle can be applied to the second moment condition Ms,r (0).

5 Conclusion

Part of the richness of panel data is that it can provide information about features of a
model on which time series and cross section data are uninformative when they are used on
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their own. In the context of nonstationary panels with near unit roots, an interesting new
example of this ‘added information’ feature of panel data is that consistent estimation of
the common local to unity coefficient becomes possible. This means that panel data help
to sharpen our capacity to learn from data about the precise form of nonstationarity where
time series data alone are insufficient to do so. However, as the authors have shown in
earlier work, the presence of individual deterministic trends in a panel model introduces a
serious complication in this nice result on the consistent estimation of a root local to unity.
The complication is that individual trends produce an incidental parameter problem as
n — oo that does not disappear as T — oo. The outcome is that common procedures
like pooled least squares and maximum likelihood are inconsistent. Thus, the presence
of deterministic trends continues to confabulate inference about stochastic trends even in
the panel data case.

One option is to adjust procedures like maximum likelihood to deal with the bias. The
present paper shows how to make these adjustments. The theory is cast in the context
of moment formulae that lead naturally to GMM based estimation. The paper has two
important findings.

The first is that bias correction in the moment formulae arising from GLS estima-
tion of the trend coefficients corresponds to taking the projected score (under Gaussian
assumptions) on the Bhattacharya basis. This correspondence relates the approach we
take here to recent work on projected score methods by Waterman and Lindsay (1998)
that deals with models that have infinite numbers of nuisance parameters like the original
incidental parameters problem.

The second is that our limit theory validates GMM-based inference about the localizing
coefficient in near unit root panels. A notable new result is that the GMM estimator has
a convergence rate slower than y/n when the true localizing parameter is zero (i.e., when
there is a panel unit root) and the deterministic trends in the panel are linear. The
asymptotic theory in this case provides a new example of limit theory on the boundary
of a parameter space. The results point to the continued difficulty of distinguishing unit
roots from local alternatives when there are deterministic trends in the data even when
time series data is coupled with an infinity of additional data from a cross section.

6 Appendix

6.1 Proof of the Equivalence Lemma

Before we start the proof of Lemma 1, we give some useful background results.

Lemma 9 Let K, denote the (m x m) commutation matriz, D,, denote the m?x %m (m+1)

duplication matriz, and set D}, = (D) Dy,)" ' D!.. Also, assume that x and y are m —
vectors and A is an (m x m) invertible matriz. Then the following hold.

(a) zy' ® yr' = K (yy' ® z2').

(b) Iy + K) (z@y) + (y @) =2(z@y) +2(y @)

(¢) Dy Dp = Lipatp)-

(d) DpyDf =5 (I, + Kp) .

(¢) (D (A® A)D,) " = Dff (A'® A~1) D,,.

Proof

28



Parts (c), (d), and (e) are standard results (e.g., Magnus and Neudecker, 1988, pp.
49-50). Part (a) holds because

ay @ya' = (x®y) (Y ®') =vec(ya') (vec(zy))
= (Kmvec(zy)) (vec(zy) = K (y @ 7) (y ® )’
K, (yy @ za').

Part (b) holds because

Im + Kn) (z@y) + (y @)

= (x ® y) + (y & x) + K,vec (ym ) + Kpvec (xy/)
(z®@y) + (y ®@x) +vec (zy') + vec (yz')

= 2@®y)+2@ycr). N

Proof of Lemma 1
In this proof we omit the subscript p that denotes the order of the polynomial trends
for notational simplicity. To complete the proof, it is enough to show that Ar (¢) in

ma,7 (c) is equivalent to E/QD;‘ Zthl (Acgr ® Acgy) in Us; (c, Bi (c)) . First, we define

~ 1 T 1 t—1 — — — —_ & T t7;71

- St e s[5
t=2 s=1

~ 1 T 1 a + — — — — +\/

AZT _ T Z T ZDP {(AcgtAcgt ® AcgsAcgs ) + (AcgtAcgs &® AcgsAcgt )} (Dp) ;
t=1 s=1

] 1«

A3T — D;FT Z (Acgt ® Acgt)

t

1

Then, by definition, we write
T ~ ~ ~
&D;f Z 9t ® Acgy) = Al p Ayt Ay
t=1

Notice by Lemma 9(a), (d), and (c) that

AQT
1 T 1 T — — /
= D (+Ky) 7 > 7 > (AcgtAcgt ® AcgsAcgs ) (D)
t=1 s=1
+ + 1 T — ]_ 7 —_— + /!
= 207D, D) || =) AcgiBege | @ TZAcgsAcgs (D7)
t=1
+ 1 N — — + !’
= 2Dp TZAcgtAcgt ZACQS cYs (Dp)
t=1 =

1 T — _
= 2 lD; <T ZAcgtAcgt ) <T ZAcgs cYs ) DP] (D;DP) ' :
t



t=1

o

+ 1 e
<Dy =3 (Begi @ Begr)

X
o
+

~+
U
[\
w

Kp)

Sl — S
Nl
g
2
g
S

t—1

R e o i e e AN
TZTZ|:Acgt®Acgs+Acgs®Acgti| [(1+T) ]

=1

T Z AcgtAcgt> &

t=1

Py s Enesa s Saema] [(045)] T

-1
t=1

72| (7))

]_ T — ! 1 T —
<T Z AcgtAcgt ) & <T ZACQSACQS ) DP
s=1

—1 T —1
1 — 1 —
(T Z AcgtAcgt> ® (T ; AcgsAcgs )

-1

1
D,.

—1 1 T —
! —
T Ac sAcs

) < (Ee)

A.g @ A.gs + Aoy ®@}/ [(1 + —)T]? (D5

Dy

1 T —— -
(T Z AcgsAcgs )
s=1

P (550 5w)

1 T — -
(T Z AcgsAcgs )
s=1

] [ s[5

tos—1
—

T —
Acgs A;%Acgt
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6.2 Appendix A: Useful Results for Joint Asymptotics

This section consists of two subsections. The first subsection introduces some useful results
for joint asymptotic theories. Many of these are modified versions of results developed
in Phillips and Moon (1999) so we report them only briefly here. The second subsection
introduces some useful results which will be used repeatedly in the following sections of
the proofs for the results in the main text.

6.2.1 Appendix Al

The following two theorems provide convenient conditions to find the joint probability
limit of double indexed processes.

Theorem 6 (Joint Probability Limits) Suppose the (m x 1) random vectors Y;r are
independent across i = 1,...,n for all T and integrable. Assume that Y;r = Y; asT — o0
foralli. Let Xpr =237 Yir and X,y = 237 | Y.

(a) Let the following hold:
(i) lim Supy, % Z?ﬂ E”}/ZTH < 00,
(if) limsup, 7 3 355, [ EYir — EYil| =0,
(iii) limsup,, <> 7" | E||Yir|[1{|[Yir|| > ne} = 0 Ve > 0,and
(iv) limsup, 2 S°" | E||Y;|| 1{||Yi| > ne} = 0 Ve > 0.

(b) If limnéooyllzzlzl EY; (:= fiyx) exists and X, —, fix as n — oo, then X,r
S fix @5 (0, T — 00).

Theorem 7 Suppose that Yir = C;Qqr, where the (m x 1) random vectors Q;r are iid
across it =1,...,n for all T, and the C; are (m x m) nonrandom matrices for all i. Assume
that

(i) Qir = Q; as T — oo for all i,
(ii) ||Qir|| is uniformly integrable in T for all i.
(iii) sup; ||C;| < oo, inf; [|Cy]| > 0, and C =lim, L 3" | C;.
Then £ 3" | Yir —, CE(Q;) as (n,T — o).

Theorem 8 (Joint Limit CLT for Scaled Variates) Suppose that Vi = C;Q;r,
where the (m x 1) random vectors Q;r are iid(0,X7) across i =1,...,n for all T and the
C; are (m x m) nonzero and nonrandom matrices. Assume the following conditions hold:

(i) Let 02 = Amin(X7) and liminfr o2 > 0,
.. max;<n || Cs||?
(ii) T (s GO <§‘:H1 Cl-HCQ) = O(%) as n — 0o,
(iii) [|Qir||* are uniformly integrable in T,
(IV) limnyT % Z?:l C; ZT Cil =Q>0.

Then,

X, = ﬁZY}TiN(O,Q) asn, T — oo.
i=1
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6.2.2 Appendix A2

Recall that

-1
T
hy, 7(t,s) = gpt p,T ( ZD Tgptgpt p,T ) Dy, 19ps
t=1
It is easy to see that when ¢t = [Tr] and s = [Tv], as T — o0

hr(t,s) = gy(r) ( / @;@;)1 Gp(v) = hy(r,v)

]. The following limit also holds

uniformly in (r,v) € [0,1] x [0, 1
sup ﬁpT(t, $) — sup ﬁp(r,v).
1<t,s<T 0<r,v<1
Next, define
N (1 @)Y 36
Tit = ; ( + T) €is ( )
and x;p = 0. Then, we can write y;; as
Yit = it + Rit, (37)
where Ry = (1+ %l)t Yio-
When ¢t = [T'r], as T — oo,
2 1 co\T o
T\ — S22 =
E(T> 7 Tsz_;[(HT)}
— 02/ exp ((r — s)2¢p)ds < K (38)
0
T 2 T 2(t—s)
1 1 Co T T
it
Lit - = - 14020
; <T> T;JT;{(+T)]
1
2
(39)

where K is a finite generic constant.
Lemma 10 Assume that {Fr (c)} is a sequence of real valued functions on a compact set

C in R with
Fr(c) — 0, forallceC,

as T' — oo. Suppose that for any given e > 0 and ¢ € C, there exist Ty (c,€) and 6 (¢,€) > 0

such that T > Ty (c, €) implies that
sup  |Fr(c)— Fr ()| <e. (40)
le—e|<26(c,e)
Then,

sup | Fr ()] — 0.
ceC
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Proof
Let B(c,8) be a 6— ball around c. From (40), for the given ¢ > 0 and ¢, one may
choose Tj (¢, €) and 6 (¢, &) such that if T > T (¢, €) , then

lc —¢] < 26(c,é€)
implies
_ €
|Fr (c) — Fr ()] < 5

Also, since Fr (¢) — 0 pointwise in ¢ € C, we may choose T3 (¢, ¢) such that 7' > T (c,€)
implies that

5
Fre) <5
Since C is compact, among the open covers {B (c, 6 (c,€))}.cc, We can choose a finite

number of open covers of C, {B (c;,6 (1)) },—y 1 - Set To (¢) = maxj=y,....p max {Tp (c1,¢) , T1 (er,€)} -
Then, if T > Ty (g), then,

sup [Fp (c)] = sup sup |Fr(c)|
ceC I=1,...,L c€B(cy,6(c,€))
< sup sup |Fr(c)— Fr(a)|+ sup |[Fr(a)|
I=1,...,L c€B(cy,6(cr,€)) =1,...,.L
< &

and we have the required result. B

h L’i
Lemma 11 Let fr(c) = %Zthl 23:1 [(1 + %)T} r(#%)

compact subset in R, gr (%, 2. ¢) is continuously differentiable in ¢, and SUD(r. p,c)efo,1]2 xc |97 (7,25 )],

gr (%,%,¢), wherece C, a

Bgr(r,p,c = Tr] [T
SUD (., c)e[0,1]2 xC ‘ﬂam » SUP(y. pyefo,1)2 [h ()| < K. Suppose that gr (J%l lTplC) —

g (r,p,c) and hr (J%l, %l) — h(r,p) unifomrly in (r,p) € [0,1]%, where g (r,p,c) and

h(r,p) are continuous functions on [0,1]? x C and [0, 1]?, respectively, satisfying

1 .1
/ / eah(“p)‘dpdr < 00,
o Jo

where ¢ = max.cc |c|. Then

1,1
fr(e)— f(e) = / / eMP) g (v, p, ¢) drdp uniformly in ¢
o Jo

as T — oo.

Proof
Let Fr(c) = fr(¢) — f(c). Under the restrictions in the lemma,

Fr(c)—0
for all ¢ € C. Then, by Lemma 10, the desired result follows if we verify that Fr (c) satisfies

condition (40) . For this, it is enough to show that fr (c) satisfies condition (40) because
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f(¢) is uniformly continuous in ¢. Fix ¢y € C. Observe that fr(c) is a differentiable
function. Now, by the mean value theorem,

- hr(F.4) =7

1 *

B b (5.4) (14 %) gr (%)
T

fr(e) = fr(co) = r (4% (c—co),
o T 2 T7T) 8gT(%,%,c*)
+T22t IZS 1|:( +T> :| dc
where ¢* is located between ¢ and c¢y. Let ¢ = max.ec |c|. Then,
. 1 hr(FE)-F .
72 Yimt Lt hr (F:7) [<1+T> } g1 (1 7:¢)
AT }LT(%’%) g (L. 2 c*
LT (14g) | el
= T T _ hr(L,%
K c\T | T(TvT)|
< =myy|(rs)]
t=1 s=1
1
- K’/ / M Plapdr = K, say. (41)
o Jo

Choose 26 (cp,€) = . From (41), we can choose a Ty (co,€) such that T' > T (co, €)
implies

T
T T s c
% D=1 2s=1 b (%7 T) {(1 + T)
A hr(FE) .
+H LT (14g)]| T delgaa)
Then, T > Tp (co,€) and |¢ — ¢o| < 26 (co, €) imply that

[fr (¢) = fr (o)l < (K +e) e —co| <e,

and the proof is completed. B

Corollary 1 (a) ApT( c) — A, (¢) uniformly in c € C,

(b) Bpr (c) — ( ) umformly inceC,

(¢) Apr (¢)” ' — A5 (¢) unifomly in c € C,

(d) wpr (c) — ( ) unifomly in c € C,

(e) Apr (c) — ( ) unifomly in c € C, where p =1,2.
Proof

Part (a). Notice that each element in A7 (c) is of the form

tr—(t—1)" t—1\"] [* - (t—-1)* t—1\"
TZ{ Tro1 C<T>:||: T(P*1 ) —C<T>},p:1,2andq:1,2.
Apply Lemma 11 with Az (-,-) = 0 and

t s tp—(t—l)”_c t—1\" tp—(t—l)q_c t—1\?

T T° Tr-1 T Tr-1 T '
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Then, we have the required result. l
Part (b). The proof of Part (b) is similar to that of Part (a) and is omitted. W

Part (c). Let mineig(A) denote the minimum eigenvalue of matrix A. A direct calculation
shows that inf.cc [mineig (Aar (¢))] > 0 and inf.cc [mineig (A4s (¢))] > 0. So, by Part (a),
we have

splr -]

ceC ceC

< Jsup e @7 fsup aar (0 = 42 @1 [sup |42 007" ]

2
inf.cc [mineig (Asr (¢))] inf.cc [mineig (As (¢))]
= o(1),

as required. The proof for the case of p =1 is similar, and is omitted. W

<

[sup s (0) — As <c>||2]
ceC

Parts (d) and (e). Parts (d) and (e) hold by Lemma 11 and Parts (b) and (c). B

Lemma 12 For j = 1,...,J, assume that hj(c,¢) are real-valued continuous functions
on the product of the compact parameter set C x C with hj(c,c) = 0. Also, for j =
., J, assume that ljr (z,y) are real-valued continuous functions on [0,1] x [0,1]. Let
(fc, ¢) and gr(z, c) be continuously differentiable functions from [0,1] x C to R such that

fr(xz,¢)gr(y,c) — fr(z,¢)gr(y,¢) = Zj Lhy (e e) Ly (x,y) . Assume that fr (v,c) —

( ¢), gr(y,c) — g(y,c), and suppsup(, .cpo1)xc |97 (r,¢)| < oo. Suppose that y;x =
(1 + 41) Yit—1 + ¢, where g follows Assumption 3. Let Assumption 2 holds for the
ingtial condition y;0. Then, as (n,T — o), the following hold.

(a) % > e % Z;f:1 Vi1 —p o’ fol for 20 (=) dsdr.
(b) TIL iy (\/LT Z;F:l eitfr (%7 C)) (T_\l/T Z;f:l Yit—19T (%, C)) —p 02 fol fg e =3)g(r,c) f(s, c)dsdr

uniformly in c.
(c) 7_1L Z?:l <T_\1/T Zthl Yit—1fT (%7 C)) <T_\1/T Zthl Yit—19T (%, C))
—p 0 fol fol f(r.c)g(s,c) OMS eco(r+5=29) dudsdr uniformly in c.
(d) + 30 (ﬁ S ek (%,C)) (ﬁ S cingr (%, C)) —p 02 fol f(r,c)g(r,c)dr

uniformly in c.

Proof
Part (a) From the decomposition (37), we write

1 gn 1
E‘Zﬁzyitfl
= _ZTQZth 1+ 2— ZTQZth 1Rig—1 +— ZTQZR” 1

= 1, —|—2IIa +111,, say.

In what follows we show that I, —, o fol fOT e20(r=9)dsdr and I1,, 111, —, 0as (n,T —
00).
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For I,, define Q;7 = % Zle x?,_,. Note that {Qir}i=1...n are iid across i. Since
'
T4 24y = Joys(r) = 02 / €0 =3 g1 (s) (42)
0

as T — oo (see Phillips, 1987), where W; is standard Brownian motion, we have by the
continuous mapping theorem as (n,7T — o0),

Qir = Qi =0’ / Tog,i(r)dr. (43)
0
Notice that EQ; = o2 fo Jy €= dsdr.
We claim I, —, o? fo o €2("=9)dsdr in joint limits as (n, T — o0o) by verifying con-
ditions (i) - (iii) in Theorem 7. Condition (iii) is trivial because C; = 1. Condition (i) is
obvious from (43) . For condition (ii), observe that

,1 T gl co\T 2l
EQir = "T;T;{(HT”

1 T
— 02/ / er=3)2dsdr = EQ; as (n,T — o).
o Jo
Since Q7 (> 0) = Q; with EQ;r7 — EQ;as (n,T — o), {Q;r}r are uniformly inte-

grable in T by Theorem 5.4 in Billingsley (1968).
Next, we prove that

n T
1 1
o=~ 1221 = ;:1 Tit—1Ri—1 —p 0,

and

111, = ZTZZR” 1 —p 0asn,T — oo,

by showing that E|I1,|,FE |[I1I,| — 0 as n,T — cc.
Since ‘(1 + %})til) < 1 and by the Cauchy-Schwarz inequality,

T
1
E|Il,| = ﬁ intflRitfl

i=1 t=1

AN
S
Il S
—N—

=

IA
[0}
S
Lo}
E‘
=
o
H)_‘
SI)—‘

=()

where the last inequality holds by (39

11, =0, (ﬁ) —0,(1).
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Similarly,

E|IIl,] = E

IN
N
»
SN
]
s3]
N
Sio
N———
\
Q
N
S|
N———

and so
1
111, =0, T) =0 (1).
Therefore we have all the required results to complete the proof of part (a). B

Part (b) Using (37), we write

1 - 1 T t 1 T .
EZI ﬁ;é‘ith (T’C) F;Z/itqu <?,c> =1+ 11,

~

where

n

L = =Y

(o
[

—_
‘ -

1th

)
)

,C

N———

3
—

Nl
N

!

n

I, = —Z

=1

—_
~

5=
M’ﬂ HMH

1
T

5

(rfn()
|

#;Rit_lgqp (%c))

t=1

We will show that
1 r
Part (b1): Iy — 02/ / e =9 g(r. ¢) f (s, ¢)dsdr uniformly in ¢
o Jo

and
Part (bg): 11, —; 0 uniformly in ¢

as (n,T — o).
First, we establish Part (b;) for fixed ¢ (pointwise convergence). Now, as in Part (a),
we apply Theorem 7. Let

Qir(c) = (% isith (%,c)) (T_\l/T gxuw:r (%,c)) )
o? </01 f(r,c)dW; (r)) </Olg (r,¢) Jeg.i (1) dr> :

Using (42) and the extended-continuous mapping theorem (see Theorem 1.11.1 in van der
Vaart and Wellner, 1996), we can show that

Qit (¢) = Qi (c) (44)

as T — oo for fixed ¢, which verifies condition (i) in Theorem 7. Condition (iii) is trivial
because C; = 1. Condition (ii) holds for fixed c if

ur 0= (et (1))
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and

ur 0= (g Yoo (16) )

2
are uniformly integrable in T for fixed c. Notice that Q1;7 (¢) = Q1 (¢) = o (fo r,c)dW; ( )) >

0, and EQqir (¢) = 0?4 t I (T,c)2 — o2 fol f(r c) dr = EQq; (c) as T — oo for all
i. By Theorem 5.4 in Billingsley (1968), it follows that Q1,7 (¢) are uniformly integrable
in T for fixed c. In a similar fashion, Q9;7 (c) is also uniformly integrable in T for fixed c.
Therfore, as (n,T — o0),

1 r
I, —, Q/O /0 e =) g(r. ) f (s, ¢)dsdr for fixed c.

Next, define X,,1 (¢) = %Z?:l Qi1 (¢) . To complete the proof, we need to show that
X1 (¢) is stochastically equicontinuous. That is, for given € > 0 and n > 0, there exists
6 > 0 such that

(n,T—00) |c—é|<é,c,ceC

lim sup P { sup | Xt (¢) = Xpr (8)] > 5} <.

Then, since the parameter set C is compact, the pointwise convergence of X, 1 (¢) and
the stochastic equicontinuity of X,,7 (¢) imply uniform convergence.
Now we show the stochastic equicontinuity of X, (c). First, notice that

sup |X’ILT (C) - X’nT (6)|

le—é|<6,e,ceC
n T T
1 1 t S t S
= sup - = EitLis—1 fT <_7C> gr (_76) 7fT <_75) gr (_76)}
le—l<b,c,5eC | M ; 72 ; ; ' T T T T

n T
1 1 - t s
= sup E —_— Z EitTis—1 {Z hj (C, C) le (T, T)

le—é|<é,e,ceC i—1 12 t=1 s=1
141 & t s
= sup h; (C, 6) - — EitTis— ll T ( )
le—¢|<é,e,ceC JZ:; ! n ; T° tZ::sZ:; ’ T
1 T T
ﬁ Zzgztxzs lle (T T)‘

t=1 s=1

< lsup sup |hj<c,e>|] Z%Z

1<5<J |e—¢|<6,c,eeC

Since h; (c, &) is continuous on the compact set with h; (c,c) = 0 for all j = 1,...,J,
we can make SUpP;<;<;SUDP|._z<s.czec | (¢,€)| arbitrarily small by choosing a small
6 > 0. Also, under the assumptions in the lemma, it is not difficult to show that

Z;]:l I & Z;le Z;F:l EitTis—1lT (%, %)‘ = Oy (1) . Therefore, X, (c) is stochas-

tically equicontinuous, and I, —, o2 fol fg e("=5)g(r, c) f (s, ¢)dsdr uniformly in c.
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Next, for Part (bs), notice that

T
| < T 2 Yio (% ;Sith <%7C>> (

IN

IN

IN

—sup  sup gr (r,c
VT 1 (T,C)e[o,uxc' (r.e)

Using similar arguments in the proof of the limit of I,, it is possible to prove that as
(n, T — ),

1 n 1 T + 2 1 2
— — €4 —.,c 2 </ r,c 2 dr) uniformly in c.
n2<ﬁ2 (3 )) — e ([ £ y

Also, 37" y% = O, (1) by Assumption 2, and supy sup,. ejo.1xc |97 (1,¢)| < K.

’n

Thus,
I, =0 ( ! > op (1) uniformly in ¢
b= Up T = 0Op )
T

and we complete the proof of Part (bg). W

Part (c) and Part (d) The proofs of Parts (c) and (d) are similar to that of Part (b)
and they are omitted. H

The following lemma is important in establishing asymptotic normality of the GMM
estimator ¢. To simplify notation, let

Lot (t,5,6) = Dogor Apr () Begye
by (t:5,¢) = Dogor Apr (€)' gpacr Dy
Lz (,5,0) = Bogo Apr () Byr () Apr ()™ Aogpe,
and
hp (1,5.¢) = Gy (1) Ap (€)™ Gpe (5)
lop (r,5,6) = Gpe (1) Ay (c) gy (5)

s (1,5,¢) = Gpe (1) Ap ()" Bp(e)Ap (€)™ e (5)

1
lapy = /0 9p (1) gp (r)/dr.
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Lemma 13 Suppose that x;; = exp (%) Tit—1 + €54, where g are iid (0,02) with finite
fourth moments and x;o =0 for all i. Let

1 T
Quir = f intflgit

T
Z EitLis— lhpT (t 5) - O—ZwQDT (CO)

s=1

1
Qur = ﬁz

t=1

HMH %‘

T
QsiT = T Z eiTis—1lipr (t,8,¢0) — 02 A7 (Co)
T T -
Qur = \/—— Z T Z €it€islopT (t,s,c0) — o’tr <ApT (Co)f1 Byr (Co)>
P
QsiT = \/—— Z T Z it€isl3pT (t,s,c0) — o’tr <ApT (Co)_1 Byr (Co)>

and Qir = (Quir, Q2ir, QziT, Qui, Qi)' - (45)
Then, as (n,T — 00),

where
@11 (co) Pi2(co) Piz(co) Pia(co) Pis(co)
Dio(co) Poo(co) Poz(co) Paa(co) Pas (o)
@ (co) = | Pi3(co) Paz(co) P3z(co) Pssa(co) P35(co) (46)
D14 (co) Poa(co) Psalco) Pasa(co) Pas(co)
®i5(co) Pos(co) Pas(co) Pas(co) Pss(co)
and

1 r
D11 (cp) :/ / 200 (r=9) dsdr,
o Jo
1 1 TAS N 1 T s N
2P (co):/ // e”’(”S*Q“)hP(r,s)dvdserr/ / / e q, (v, 1) dvdsdr,
o Jo Jo o Jo Jo

Dy3 (co) / / / co(r= ”)llp (r,v,co dvdsdr—i—/ / / eco(rts— 2”)llp (r, 8, ¢o) dvdsdr,

1 T 1 T
D1y (o) = / / 600(7'_3)12,, (r,s,co) dsdr +/ / eCO(’"_S)lgp (s,r,co)dsdr,
o Jo o Jo
1 T 1 T
D5 (o) = / / eCO(T*S)lgp (r,s,co) dsdr + / / ec‘)(rfs)lgp (8,7, co) dsdr,
o Jo o Jo
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D95 (co) / / / eco(rHs=20 (1 5) dvdsdr
1 ~ ~
+/ / / / eco(T*v)eCO(sfq)hp (r,q) hy (s, v) dgdvdsdr,
o Jo Jo Jo

@23 CO / / / / £%0 (s+v— 2‘1)h (’I",S) llp (7“71]700) dqude’r
/ / / / co(r=v) yeo(s— qﬁ (r,q) lip (8,0, cp) dgdvdsdr,

Doy (co) = /01
/

<1>25(Co)/01/0r

1 g 1
+/ / / e, (r,0) I3y (5,0, co) dvdsdr,
o Jo Jo

P33 (co) / / / e (rHs=20 1 (1 s, ¢o) dudsdr
1 1 T
+/ / / / 600(7'_”)600(3_‘1)11,,(r,q,co)llp(s,v,co)dqdvdsdr,
o Jo Jo Jo

1 r 1 r
D34 (o) = / / 600(7'_S)l2p (r,8,¢o) dsdr + / / eco(’”_s)lgp (r,8,¢o) dsdr,
0o Jo o Jo
1 r 1 r
D35 (¢o) = / / 600(7'_S)l3p (r,s,¢o) dsdr + / / eco(r_s)lgp (8,7, co) dsdr,
0o Jo o Jo

Dyy (co) = <UecAp (co)_1>/ veclyy (co) + tr <Ap (co)_l B, (co)' A, (co)_1 B, (co)> ,

1
eI, (r,0) Iy (v, 5, ¢o) dudsdr

+

‘S:c\

1
e h (1,0) I3y (v, 5, co) dvdsdr

L
/ eCo(T*S)h (r,v) lgp (8,v, ¢o) dudsdr,
0
/

P45 (o) = tr <AP (CO)_l By (co) Ap (CO)_l B, (CO)I> +tr (Ap (CO)_l By (co) Ap (CO)_l B, (CO)> )

@35 (co) = tr (4 (c0) ™' By (c0) 4y (co) " By (o)) +tr (4 (co) ™" By (o) Ay (c0) ™" By (co)) -
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Proof
The proof uses Theorem 8. First, a direct calculation shows that FQ;7 = 0. Let
@, (co) = EQirQ),p. Notice that Q;r are iid (0, ®,,7 (o)) across i. As T — oo,

Qir = o°Q,
where

Q'i = (Qlu Q2z; Q317 Q4L7 Q5Z)

Qu = /Jm,udW()

Qn = // i (1) Py () AW (5) dr — 0 (c0)

= [ [ s ()i ) - o)

Qu = [ [t )W) W 5) -1 (4, e0) " By (o)
i = [ [ 1o lrs.corai ) awi o) i (4 ) By ).

Also, a direct calculation shows that as T'— oo,
D1 (o) = EQirQip — 0*EQiQ; = o*® (cp) .

Let I be any (5 x 1) vector with [|I|| = 1. We consider two cases.

Case 1: If '® (o)l > 0.

To establish the desired result with a joint limit, we apply Theorem 7. Condition (i)
holds because it is assumed that I’® (¢p) ! > 0. Conditions (ii) is trivial. Finally condition
(iii), viz.

(l'QiT)2 are uniformly integrable in T,
holds because (I'Qir)® = (I'Q;)* as T — oo by the continuous mapping theorem with
E(l'Qir)* = U®,7 (co)l — o '® (cy)l = o*E (I'Q;)*, and by applying Theorem 5.4 of

Billingsley (1968).
Case 2: If '@ (¢y) I = 0. Since I'®,7 (co)l = I'® (¢g)l =0,

E (% éz’@ny 'y (co) L — 0,
which leads to ﬁ S Qi —p 0. By the Cramér-Wold device, it follows that
% ii;QiT = N (0,0"® (cp)). W
6.3 Appendix B: Proofs of Section 4

Proof of Lemma 2.
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By definition,

6% — 52
1 n 1 n
o 2 / ~ /
= (p—py)?— —2(p—py)—= e
(b=po) 2 ¥ v =20 ) nTZ"iy-,l
i=1 2 =1 2
Since p—py = Op (1), s iy ¥y = O0p(1), and 370 €'y
i,—1 " i,—1 ivi 1

Lemma 12 and Theorem 1 of Moon and Phillips (2000),
Next, since

it follows that

Proof of Lemma 3.
We show separately the following
1 n
- > (mair (¢) = my (¢) = 0,

i=1

and

uniformly in c.
First, by definition and the triangle inequality, we have

1 c ' N
mar©) = 3 (2= (145)z )2 P
— 1y ()Y Yy ()
T~i~z,*1 T2 ~z,fl i,—1 b
1 I A )
=T Zfityi,t—l ~ 78 ZZEityi,s—lhpT (t,s) — (c—co)
t=1 t=1s=1
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So,

n

=3 (i (0) = ma ()

i=1

% 2;11 EitYit—1 — (% 2;11 Zil Ez'tyis—lilpT (t,s) — Uzwp (Co))

+0? (wpr (¢) — wp (c))

—(c—co) % Zthl (3{ ) - 021% (co)

IN

1 n

i,—1

5

I
SI=
i\g
el
g
s(\V)
&
|

n T
% Z (% Z Zgityis—lﬁpT (t,s) — 0w, (co)> '

+0? |lwpr (¢) —wp (C)|+}&2*02HW1¢T (o)l
= I+ II+1I14+1V +V, say.

Notice that the two terms I and I are independent of ¢, and by Lemma 9 of Moon
and Phillips (1999b), I,II —, 0 as (n,T — o0). Next, I1] —, 0 uniformly in ¢ because

LSt (& Z;‘r’:l(y. )i — 0?9, (co))| that is independent of ¢ converges in probabil-

i,—1
ity to zero as (n,T — oo) by Lemma 9 of Moon and Phillips (1999b). Next, IV — 0
uniformly in ¢ by Corollary 1(d). Finally, since 6> — 02 = o0, (1) by Lemma 2, and
sup,.cc wpr (¢) < K for some finite K, V converges in probability to zero uniformly in c.
Therefore, £ 3" | (myir (¢) — m1 (¢)) —p 0 uniformly in c as (n,T — o).
Next, to prove (48), noting by defintion that

Aczit = ﬁ;OAcgpt —(c—co) yigl + Eit,
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we write

n

1
— ) mar(c)
Ly
n T n T
1 1 1 1 2
= - (T ;8“%:&—1) (c—co) n T2 ;yitfl
1 n 1 T /\ !
_E <_T Z Acgptgit> ApT < Z Acgptyzt 1> + Uz)‘pT (C)
i=1 t=1
1 & 1 = /
+ (C — CO) E (ﬁ Zl Acgptyit_1> ApT < Z Acgptyzt 1>
i=1 t=
1 n 1 T - !
_E 2 <_T ; Acgptgit> ApT (C) <\/— ngt 1Dp TELt>
TR N — / - _
+ (¢ —co) n £ <ﬁ;Acgptyit—l> Apr () (TE_: Gpt— 1Dp ngt>
1 n [ 1 T o ! ]
+(e—co)~ (ﬁz;Acgptg“> Apr (0)7F ( \/—ngt 1D, it~ 1>
i=1 t=
1 n 1 T - ! 1 T
—(C - 00)2— <_ Z Acgptyit1> ApT (C)_l <_ ngtlD,%’yit1>
N4 VT = VT t=1 ?
1 n 1 T o ! 1 T P
+— — Z&%ﬂu) Apyr (€)' Byr () A - <— Z&g,,ﬁu)
i ( T= VT t=1
Tl & — / 1
— (c — Co) - Z <_ Z Acgptyitl> ApT (C)il Bpr (C) ApT <_
n & \TVT = =
| 1 T\ 1
—(C—CO)— Acg & T() lBT(C)AT(C)71 ey

—

T
t=1

!
Acgptyit1> ApT (C)il BPT (C) APT (

HMH

Notice that A/cg\pt and D - 1-gpt—1 satisfy the conditions for fr (,c) and gr (,c) in Lemma
12. The desired result, then, follows by Corollary 1 and by applying Lemma 12 together
with 6% — 02 = 0, (1) (see Lemma 2) and the boundedness of A,z (c) on the compact

parameter set C. l

Proof of Lemma 4.

The proof is similar to that of Lemma 3, and is omitted. W

Proof of Lemma 5.
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First, using (37) and by Lemma 2, we may write

1 n
_n Z mair (co)

= \/_ Z Quir — Quir) + \/_ ZRMT + 0, (\/_) + 0, (ﬁ) (49)

and
1 n
— m2z’T(CO)
>
1 n
= ﬁZ(QuT—Q&T—QMT-ﬁ-QMT)
1 NG 1
Roir + 0, ( )+O (—) (50)
) T
where
t—1 T s—1
_ Co T ) ) 1 1 A co\T] T -
RlzT - <T2|:(1+ ) :| Ezt> y10< T;T T;gn |:(1+ T) :| hPT(t75)>
= Riuyr — Rioir,
and
T =1 T T s—1
1 Co reT 1 1 Co rT
T = Yo | & 1+ = i —vo | V=) —= it [(1+ = lipr (L, 8,
Rair yo<T;{< +T> } 6t> yo( T;T T;Et[< +T> } 17 ( sco))
= Raour — Raoir.
Notice that
2
1 n n
E TZRWT ==Y ER}y
1=1 1=1
20-1)
2 1 & coN\T] " T 1
< = 2 — = = —
- 3emna) (1El0-9]) o10)

where the first equality holds because FRj;;7 = 0 and Ryq;7 is independent across i
(Assumption 3) and the second equality holds by Assumptions 2. Similary, it follows that

n 2 n
E (% ZR121T> = % Y ERiyy

i=1 ;
o? 9 1~ (1 co\T e ’
T <Sll}p Eyio) T Z (T Z [(1 + T) } hpr (t, 5))

- of3)

IN
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Therefore,

% iRUT _0, (%) . (51)

By using similar arguments, it is possible to show that

1

% ng =0, (ﬁ) . (52)

In view of (49) - (52), as (n,T — o) following Assumption 5,

1 n mlLT (CO) 1 n
- =J | —= ir | J A+ 1).
2 () ) =7 (g en ) +a
The required result follows by Lemma 5.
Proof of Lemma 6.

Part (a).
By definition and by the Cauchy-Schwarz inequality,

sup |BrnrRant (¢, ¢o)|
c€Cile—co| <Y
< 2BurMur ()| W] swp rar (e,co)ll.

c€Cile—col <vp

By Lemma 5 and Assumption 6, we have ||B,r M, (co)|| HWH = Op (1). Thus, to com-

plete the proof, it is enough to show that sup.cc:jc—co|<vy..,. ITn7 (¢, c0)|| = 0 (1) . Notice
by definition and the triangle inequality that

sup a1 (¢, co)l
c€C:le—co|<nr
< sup P10t (¢5 co)| + sup [r2nt (¢, c0)]
c€C:le—co|<vpr c€C:lc—co| <y,
1 n 1 n
< sup - Z (dmyir (¢) — dmair (co))| + sup = Z (dmair (¢) — dmair (co))|
c€C:|e—co| <y | T i—1 ce€C:le—co|<v,r | T i—1

where the last line holds because cz locates between ¢ and ¢q for k= 1,2.
Notice that

1 n
sup - (dmh‘T (C) — dmh‘T (C()))
c€C:ile—co|<v,r | T 5251
1 n . 1 n .
< Sug - Z (dmliT (c) — &2dm, (c)) + - Z (dmliT (co) — &2dm, (co))‘
ce i=1 i=1
+6° sup |dmy (¢) — dmq (co)] -

c€C:le—col <vpp

Then, the first term and the second term in the last line are o, (1) by Lemma 4 and the

last term is also o, (1) because dm (c) is continuous in ¢ and 2 has a finite limit. Therefore
SUPceCife—co| <y, o |T1nT (€5 €0)| = 0p (1) . Similarly, it follows that sup,cc.|c—cy| <, , [T2nT (¢; c0)| =
op (1), and we complete the proof. W
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Part (b).
The proof of Part (b) is similar to that of Part (a) and is omitted. B

Proof of Theorem 2.
We employ similar arguments to the proof of Theorem 1 of Andrews (1999). Define
Onr = Bnr (¢ — ¢p) . Then,

Op (1) < B»,ZLT (ZnT (CO) — Znr (é))
= 7H’ILTéiT + 2H7LT (BnTSnT) énT

. ) 2 )
—0n1BrrRint (€ ¢0) — 0,7 Ront (€ c0) -

From Lemmas 4 and 5 and Assumption 6, we have H,,, H;% = 0, (1) and positive with
probablhty one and BnTSnT - Op (1) . ,A].SO7 by Lemma 6, BnTRlnT (é, Co) = Op (1) and
Rant (é,c0) = 0p (1) . Then,

2

2
Op (1) S - 97LT + 20;) (1) 97LT + enT Op (1) + enT Op (1)7
which is rearranged as
o 2 A
9nT S 20;) (1) enT + Op (1) :
Then, the required result,
9nT = Op (1) )

follows by relation (7.4) on page 1377 of Andrews (1999). W

Proof of Theorem 3.
To complete the proof, it is enough to show (a) By (¢ — co) = Bnr (g — co) + 0p (1)
and (b) Bur (¢ — o) = ¢pp +0p (1)

Part (a). Recall that Eﬁﬂ = O, (1) by Lemmas 4 and 5 and Assumption 6. Then,
it follows by the definition of B,p (¢, — ¢o) that

~ BnTSnT > 2 (B’ILTSnT > 2
B, (¢ — co) — < =0,(1),
( T ( q 0) HnT HnT p ( )
which leads to
BnTSnT

Bnr (éq - CO) = + O;U (1) = OjU (1) :

HnT

From this we find that ¢, is also B, ( = y/n) — consistent.
Notice that we have

Op (1) < BZTZnT (6q) - Bv%TZnT (¢)
BourSur\ 2 BourSar\ 2
= (B"T (6 — co) — %) - (B"T (&—co) — %) +o0, (1)
nT nT
S OLU (1) 1)
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where the first line holds by the definition of ¢, the second line holds since B,1 (¢ — o) ,

By1 (¢ — ¢9) = Op (1) and by Lemma 6, and the last 0, (1) bound holds because (BnT (Eq —co) — Eﬂﬂ%ﬂ
2
(B,LT (¢—co) — Bg_tT—nSTT> < 0 by definition of B,r (¢, — ¢o) . So,

. BurSar\” . BurSnr\”
(B,LT(cq—co)—HT—TT) —(B,LT(c_co)—HT—TT) =o0,(1).  (53)

Now, for any given § > 0, set ¢ = §2. Then, since By (éq — co) achieves the minimum of
the quadratic function f (\) = (/\ - Eg—;LSTﬂ) on the closed interval {\ : B,r (€ —¢p) < A < —Bpreo},
it follows that | B, (¢ — co) — Bpr (¢4 — co)| > 6 implies

> €.

A B”L S”L 2 ~ B”L S7L 2
<BnT (g —co) — HT—TT> — <BnT (¢ —co) — HT—TT>

Therefore

P{|BnT (é - CO) - BnT (éq - CO)| > 6}

2 2
— 0,

>g}

where the last convergence holds by (53), and we have completed the proof of Part (a).

Part (b). Recall that ¢ € Cy/{0}. For any 6 > 0,

P {)BnT (ég — c0) = G| > 5}
< P { BurSnr

B,rS,
Hor < Bpr (c— Co)} +P{% > _BnTCO}-

(54)

Since E%LSTH& = 0, (1), for given € > 0, we can choose K and (ng, Tp) such that

Bn n T
P{ﬂ >K}<sforalln2n0andTZT0.

Hur
Choose n1 = max{( K )2,(R ’

p— 5) ,no}. Recall that B,r = y/n. Notice by definition
that n > ny implies that —B,,7co > K and B,,7 (¢ — ¢y) < —K. So, whenever n > n; and
T Z T07

B, BurSa
p{#<BnT(CCO)}+p{#
HnT
< zp{

> —B,

H'nT TCO}
BnTSnT

- HnT

>K}§25.

In view of (54) and (55), for any given §,¢ > 0,

P{’BnT (¢q — o) — &%T
if n >ny and T > Ty, as required. B

(55)

>6}§25
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6.4 Appendix C: Proofs of Section 5

Proof of Lemma 7

Part (a).
Using (37) with ¢p = 0, one may write
\/EMlnT (0
1 [1& PR
- %Z TZE”QU” 1= T2 ZZEWJZS 1har (t,8) + o?wir ( ++/n (6% — %) wir (0)
i=1 t=1 s=1

L
—i-% ;yio

By Lemma 2,

() )]

s=1

Vi (6* =) (0) = 0, <g> o <%)

where the last equality holds under Assumption 5. Also, using similar arguments that
yield (51), we may have

1 & 1 n 1
(T z) - (T Sk S <t,s>>
Since (n,T — o) with 3@ — 0 under Assumption 5,

T T T

1 1 ~

T E EitTit—1 — T2 E E €itTis—1hir (t,5) + owir (0)
t=1 t=1 s=1

1 n
— Yi

+0p(1).

ViMr (0) = % >

The required result follows by the limit of ﬁ S (Quir — Q2ir) in Lemma 13 with
co=0andp=1.1

Part (b).
By Lemma 2, we may have
\/_dMlnT 0)

Tz Zt 1th 1 T3 Zt 12 1 Yit—1Yis— lth (t,s)
Z l <T2 S >t (5 har (¢, s)) ] (56)

(QM (L),

Using (37) with co = 0, i.e., yit—1 = Zit—1 + Yio, We write
T T T ~
% pIr Y51 — % Dot Doset Yit—1Yis—1har (L, 5)
T t—1
—0” (% Sia sy (5 har (&, 8))

= Qsir + Reir,
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where

T t-1
Qeir = T2 Z%& 177 ZZ%& 12is1har (t,s) — Q%ZZ (%) har (t, )

t=1 s=1 t=2 s=1

and
yio\°  2vio 1 « 1 =
Reir = ( an 1) (ﬁ) - \/T <T—\/T ;xitil (f?_:lth (t73)>>

Yio 1 1 7
by (T >4 zlhm . s>>
t= s=
= Ryt + Re2ir + ReziT + ReaiT, say.

Notice that QGZT 1s mean zero and independent across 7 with finite asymptotic variance
Var (Qeir) — o 6300 Then, by Theorem 8 with C; = 1, we have

ZQGZT =N (0 o 6:1’)(1)0> (57)

Also, using similar arguments that yield (51), we can show that

1 n 1 n 1
ﬁ Z Revir, ﬁ Z Resir = Oy (ﬁ) (58)
i=1 i=1
1 n 1 n n
ﬁ Z Rear, % Z Rezir = O, (%) . (59)
i=1 i=1

Then, in view of (56) — (59), we deduce that

VndMi,r (0) = N (0 ot 6?1)(1) 0) (60)

as (n,T — oo) following Assumption 5. Bl

Part (c).
Notice that
Vi (P My, (0) = &*d*wir (0)
T t—2
1 t—s—1 t—s—2\+
_ A2
(R (e
t=3 s=1
From
k
sup  sup (—> —r¥l = =0(1) for all finite k
16T izt pe e [\ T
we have

o1



Also, a direct calculation shows that

/01 /0"' (r — 8)* hy (r, s) dsdr = 0.

Therefore, since 62 —p 0% by Lemma 2 and 3:@ — 0 under Assumption 5, we have

\/E (d2M1nT (0)) = Op <g> =0p (1) ,

as required. W

Part (d).
By definition,
d3M1nT (C) = &2d3w1T (C) ,
where

t—

Py (c :%i ( )ts4(t—;—1)<t—;—2>(t—;—:’))ﬁlT(t?S)-

t=4 s

w

Il
—

Then, since 62 —, 0% and by Lemma 11,

dSMlnT (C) — p0'2d3M1 C 0)

/ / =) (1 — 8)> hy (1, s) dsdr

uniformly in ¢ € C. Also, a direct calculation shows that

1 T
~ 1
d3M;(0,0) = / / (r—s)*hy (r,s) dsdr = ——,
o Jo 70
and we have the required result. B

Proof of Lemma 8
Part (a).
By definition, we can write

1 n 1 T 1 n 1 T 1 T
Msnr (0) = - ; (T ;Ez’tyit—1> - Z <_T Z&t) <T—ﬁ Z%‘t—l)
1 & 1 1 -1
> <—T Z) (72 — )

Noticing that
Lo 2 1 2
T E Yit—1€it = 5T (yiT - yz’O) o7 E Eity (61)
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and

one may rearrange

= I+ ..+ I3, say.

Using Assumption 2 and the results in Lemma 12 and modifying its proof, it is possible

to show that
1 (1 (yr ) 1
L+1i+1g = —=|—= —0, | =
1+ 4+8 T(n;(ﬁ)) p<T>7

1
I,y = O, <T>’ Is + 1y =0,
1 1
W= o(rg) w-o(z)

Thus,

By Lemma 2, —4 (6% - &2) =0, (31@) . Also, v/n (A1 (0) = 3) =0 (37@) . There-

fore,



as (n,T — oo) following Assumption 5. H

Next, we sketch proofs for Parts (b) — (d). The details of the proofs for Part (b),
(c), and (d) are similar to those of Part (b) of Lemma 7, Part (a) above, and Lemma 3,
respectively, and we omit the details.'”

Parts (b)-(d)

Take the first derivative of My, (c) with respect to the parameter ¢ and evaluating it
at ¢ = 0 with ¢g = 0, apply Lemma 2, and use the relations of (62) and (63). Then, one
may find that

| ROVEREREY S Dt R
1 T t—1 1T -1
VidMane (0) - = ﬁ Z +2% (Wf pp tTl’it*l) - 20’2T St (tT) 1o, (
i=1

2
1 . 1 2
“4(%) 4o
1 n
— %ZQ7Z‘T+OP(1), say,
i=1

where z;; is defined in (36) and the o, (1) term holds since (n,T — oo) with 3@ -0

under Assumption 5. Direct calculations show that EQ7;r = 0 and Var (Qrir) — Z—;. By
applying Theorem 8 with C; = 1, then one may derive

04

VndMa,7 (0) = N <0, E) , (64)
as required.

The proof of Part (c) is similar to that of Part (b). Taking the second order derivative
of Ms,r (¢) with respect to the parameter ¢ with ¢y = 0, considering Lemma 2, and
rearranging terms using the relations of (61) and (62), it is possible to show that as
(n, T — o) following Assumption 5,

n
VM (0) = 0y () =0, 1.
The proof of Part (d) is similar to the proof of Lemma 3. After taking the third order
derivative of My, (¢) with respect to ¢ and using the results in Lemma 12, it is possible
to show the required result. B

Proof of Theorem 4
Define 0,7 = n'/6¢. First, we consider the case where {

of the GMM estimator, we have

op (1) < 1 (Znr (0) = Znr (¢))

6 6
~k ~k
-> (n(l”“/G)Ak,nT> Opr — > O <”(1ik/6)Nk‘v"T (@ O)> '
k=1 k=3

énT

> 1} . By the definition

In view of (25) — (32) and from Assumption 6, 0,7 satisfies

Cop (1) +

6
+

5
op (1) +

Yop (1) + 20, (1)

3
+

9nT

97LT

enT

enT

9nT

enT
(65)

op (1) < —

100ne can obtain detailed derivations of dMay,7 (0), d?> Ma,7 (0) from the first author upon request.
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enT

Since, > 1,

The right hand side of (65)

* (140, (1)) +20, (1)

enT

enT

IA

Then,

97LT

6 3
<20,(1)|0,r| +o0,(1).

Following relation (7.4) in Andrews (1999), page 1377, we can deduce that

3
Onr| <Op(1)+0,(1).

Therefore, when { O

>1},

énT

<0, (1). (66)

Finally, let the O, (1) random variable in (66) be &, ;. Then,

O, = énT 1{ O, < 1} + OnT 1{ énT > 1}
< énT 1 { énT < 1} + EnT
< 146,=0,(1). 0

Proof of Theorem 5
The proof of the theorem is similar to that of Theorem 3 and is omitted. H

6.5 Appendix D: Numerical Validation of the Identification Con-
dition of m (c)!!

This section provides a numerical confirmation that the uniform limit of the moment
condition function m (¢) = (m1 (c),msa (c))'has a zero only at the true parameter ¢ =
cp.We restrict the parameter set to C = [ — 10, 0]in this numerical exercise. The choice of
the lower limit ¢ = —10is made for computational convenience, and the results hold for all
finite values of ¢ < 0. All the numerical analysis in this section is done with Mathematica
and with Maple using Scientific Workplace Version 3.0.

6.5.1 When g;; =t

The procedure we apply is to find all the roots of msy (¢) = 0 and verify whether these
roots are also the roots of my (¢) = 0. We first notice that for given cg, the function ms (c)
is simply the ratio of two polynomials - the denominator and the numerator of ma (c),

H'We are indebted to John Owens for the numerical analysis in this section.
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say mgz (¢) and mys (c), respectively, are a fourth degree polynomial and a fifth degree
polynomial in ¢, respectively.!?

Case A: When ¢y #0
Step 1: Numerical Calculation of the roots of ma (c) = 0.

1.0

0.6

0.2

0.0

-10 -8 -6 -4 -2 0
Co

Fig. A.1. Graph of Roots of 2 (¢)

!12This is verified easily by noticing that g, (r), Ap (c), Bp (c) are polynomials of c, except for the last
term in ma (¢) . However, a direct calculation shows that the last term is also a ratio of two polynomials,
viz.,

1 Ig
| ] e e 51 4 (@7 e (1) sl

1 T 1 -1
= / / e“(r=9) (1 — ¢s) <1 —c+ —c2> (1 —ecr)dsdr
Jo Jo 3
1 2-3

23 _3c+c?
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1.0

0.4

-0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.
Co

Fig. A.2. Graph of Roots of 1,3 (c)

By a direct calculation, we find that the denominator of mas (c), mgae (¢), equals

4 (* - 30+3)2 when ¢ # 0. Since ¢ —3c+3 = (c— %)2 + 2 > 0, the denomina-
tor of mgy (¢) has no real zeros for all ¢y # 0. Thus, if we concerned with the zeros of
ma (c), it suffices to consider only the numerator of ms (c), mu2 (¢). By definition of
ma (¢), we find that the true value ¢ = ¢y is always a zero of my, (¢). Also, by inspection,

we find that ¢ = 0 is always a zero of my2 (¢) . Thus, we can write
Mmp2 (¢) = c(c— o) M2 (c),

where M2 (¢) is a third degree polynomial. Using Mathematica, we solve the third degree
polynomial m,2 (¢) and find three roots of 7,2 (¢) as a function of the true parameter cy.
For the numerical calculation we choose ¢ = —10, and so we assume that the parameter
set C =[—10,0]. Figs. A.1-A.2 plot the graphs of these roots on C only when the roots
are real numbers (Fig. A2 shows a the graph on a finer scale to the left of the origin). As
we see from the graphs, for ¢y < 0, the roots of my,s (¢) are all positive, and so M3 (¢)
does not have a root in the parameter set C.

Step 2: Plug the root ¢ =0 of mg (c) in m; (¢)

We now investigate, for given ¢y € C/{0}, whether m; (c) = 0 when ¢ = 0. By
matching the given true parameter ¢y with my (0), we can define the function m; 0 (cp)
of ¢y. Using Maple, we calculate

1 —} 4 480 — 82 — 8¢ — 24
m1_0(co) = ( g 1~ 8 |

4ct | e — 8e20 ¢ + 24cec0 — 24¢2%0 — 24c

and plot the graph of m;_0(co) . Fig. A.3 plots m1_0(co) over the domain ¢ € [—10,0.4]
and Fig. A.4 plots the same function on the domain ¢ € [0.4,0]. Through these graphs,
we can confirm that m;_0(cp) is positive but very close to zero when the true value ¢ is
close to zero.
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Loor F1.2¢-0
[ le-05
0.008
[ 8e-06
[0.006
y [ 6¥-06
[0.004
[ 4e-06
[0.002 [2e-06
10 8 6 o -4 2 0 0.4 03 Q2 0.1 0
Fig. A.3 Graph of m1_0(cp) Fig. A.4 Graph of mq_0(co)

To investigate further the behavior of m; 0 (co) around ¢y = 0, in Fig. A.5 we plot
the graph of the first derivative of the numerator of my_0(co) over ¢g € [—0.05,0] .

[-2e-12
[-4e-12
[-6e-12
’-%p-lZ
F-le-11

F-1.2e-1
F-1.4e-1

F-1.6e-1

Fig. A.5. Graph of the first derivative of the Numerator of m; 0 (cop)

The graph shows that the first derivative of the numerator of m; 0(cg) is nega-
tive around zero, and so mi_0(cp) is strictly decreasing. Therefore, we conclude that
my_0(cp) is not zero for all ¢y € Cy.

Case B: When ¢y = 0.

Using Maple, we calculate maz (¢) when ¢y = 0, and plot the graph in Figs. A.6 and
A.7. These figures confirm that ms (¢) = 0 only when ¢ = ¢y = 0.

[ 8e-05
ro.6
ro.s [ 6e-05
ro.4
y ’4%’-05
ro.3
ro.2 [2e-05
701 T T T T 0 1
-0.2 -0.15 Q1 -0.05 0.05 .1

-10 8 6 ¢ 4 2

Fig. A.6 Graph of ma (¢) when ¢cg =0  Fig. A.7 Graph of ms (¢) when ¢g =0
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6.5.2 When gy = (t,1?)

Although the expressions involved in ms (¢) in this case are far more complex, the analysis
is simpler. Like the case of g1; = t, we find that the denominator of ms (¢) does not
change sign over C = [—10,0], and so we focus on the numerator of ms (¢). Similar to
the case of g1; = t, we numerically calculate the real roots of the numerator of my (¢) for
¢p € C =[-10,0], and we find that there exists only one root in the range of ¢y, which
implies that my (¢) = 0 only at the true ¢y. Therefore, when gy = (¢,¢?) , the limit of the
moment condition m (c) identifies the true parameter cq in C.
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