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Penalised maximum likelihood estimation for fractional

Gaussian processes

By OFFER LIEBERMAN
Faculty of Industrial Engineering and Management,
Technion—Israel Institute of Technology, Haifa 32000, Israel
and Cowles Foundation for Research in Economics, Yale University.

offerl@ie.technion.ac.il

SUMMARY

We apply and extend Firth’s (1993) modified score estimator to deal with a class of
stationary Gaussian long-memory processes. Our estimator removes the first order bias
of the maximum likelihood estimator. A small simulation study reveals the reduction
in the bias is considerable, while it does not inflate the corresponding mean squared

error.

Some key words: ARFIMA; Firth’s formula; Fractional differencing; Approximate mod-

ification.



1. INTRODUCTION

Long-memory models have been prominent in a number of areas, including hy-
drology, finance, economics and the internet. The possibility that certain time series
possess autocorrelations which decay hyperbolically were first investigated by Hurst
(1951) in the context of reservoir waterflows. Economic and financial investigations of
long-range dependence sprouted following the seminal papers by Hosking (1981) and
Granger & Joyeux (1982). Surveys of the literature over the years were conducted by,
among others, Lawrance & Kottegoda (1977), Taqqu (1986), Beran (1994) and Robin-
son (1994). Long-range dependence was also considered in modelling network traffic;
see Willinger et al. (1998).

The most popular model of long memory in use is probably the Gaussian ARFIMA.
Estimation of the long memory parameter in the ARFIMA model is commonly done by
the time domain Gaussian maximum likelihood estimator (Sowell, 1992), the frequency
domain maximum likelihood estimator (Fox & Taqqu, 1986; Giraitis & Surgaillis, 1990)
or the semiparametric estimator (Geweke & Porter-Hudak, 1983; Robinson, 1995). The
time domain estimator has superior asymptotic properties (Dahlhaus, 1989), given
correct model specification, whereas the frequency domain estimator is particularly
appealing in the case where the mean of the process is unknown (Cheung & Diebold,
1994). The semiparametric estimator can be severely biased, even asymptotically; see
Agiakloglou et al. (1993), Hurvich & Beltrao (1993) and Lieberman (2001). In addition,
the inefficiency of this estimator renders it unsuitable for use in small samples.

There is now a growing literature on bias properties of the maximum likelihood
estimator of d; see among others, Cheung & Diebold (1993), Smith et al. (1997),
Hauser (1999) and an unpublished Erasmus University technical report by M. Ooms
and J. A. Doornik. Since bias in the estimation of d and the other ARFIMA parameters

can be severe, we are motivated to suggest a general estimator with improved bias



properties. Our methodology and developments are, in fact, suitable for a much more
general class of models than ARFIMA. The class of models covered requires only some
very mild conditions on the spectral density function. Firth (1993) presented a general
method for the removal of the first order bias of the maximum likelihood estimator,
based on a modification of the score function. While his arguments are not restricted
to the independent and identically distributed setting, all the null cumulants in his
expansions are assumed to be O(1). We apply and extend Firth’s (1993) device in the
following way: we apply Firth’s (1993) original modified score to the class of models in
hand; we conduct an error analysis showing that the null cumulants and the error rate
in Firth’s (1993) expansion are still O(1) and O(n~=3/2), respectively, under long-range
dependence; we replace Firth’s (1993) modification by a simple approximation, such
that a considerable easing in the computational effort is achieved together with the
removal of the first order bias of the maximum likelihood estimator. In the important
special case of the Gaussian ARFIMA(0,d,0) model, we suggest an estimator for d
based on the approximate modified score 94()/0d = —18((3)/7? ~ —2.1923, where
¢(0) is the loglikelihood, 6 = (d,w), w is the error variance, and ((-) is the Riemann
zeta function. This simple modification results in a removal of the first order bias of
the conventional maximum likelihood estimator.

In §2, we set up structure and give a brief review of Firth’s (1993) method. In §3, we
derive the modified score and conduct error analysis under long range dependence. A
bias-corrected maximum likelihood estimator based on an approximate modified score
is suggested in §4. An application to the ARFIMA model is demonstrated in §5. Some
simulations supporting the superiority of the new estimator in terms of bias over the

conventional estimator are presented in §6. Section 7 concludes.

2. NOTATION AND FIRTH’S (1993) MODIFIED SCORE

Let {X;,t € Z} be a zero-mean discrete time stochastic process with a spectral
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density fy()\), depending on an m-dimensional vector of parameters, 0, which satisfy

a(f) € (0,1). Assume that, for each § > 0,
foA) = O (A=) as [N — 0. (1)

A process satisfying (1) is termed long-memory. Interest lies in the estimation of 6.
While we are primarily interested in the case a(f) > 0, our development also covers
the case a(f) = 0, i.e. the short-memory scenario. Further discussion is given in §4.
We assume that a sample of size n, x = (X3,...,X,,)’, is available from a N{0,%,,(fs)}

distribution, where the (7, j)th element of the covariance matrix ¥, (fp) is given by

(S o))y = 5 [ SoVETH2an

In addition, we assume that fp(\) satisfies Dahlhaus’ (1989) assumptions (A2), (A3)
and (AT7). These assumptions are mainly concerned with the behaviour of fy()\) and
its derivatives in the neighbourhood of the origin and their continuity away from it.
All assumptions are fulfilled in the ARFIMA model. See Dahlhaus (1989, p. 1751).

In the following, we make use of the summation convention, described for example
in McCullagh (1987, pp. 2-3). All indices run from 1 to m. Denote the loglikelihood
function by £(6) and its derivatives by U,(0) = 8¢/00" and U,(0) = 8*(/06"06%. The
joint null cumulants of the loglikelihood derivatives are k., = n 'E(U.Us), Krst =
n L E(U.UUy), kst = n 'E(U,Ug), and so on. It is implicitly assumed in Firth’s
(1993) work that the null cumulants are O(1). For a Gaussian long-memory process,
the null cumulants are finite sums of traces of products of ¥, 1(fy) and its derivatives.
Given the nonsummability of the autocovariances, whether or not the order of the
null cumulants is still O(1) remains to be verified. Firth’s (1993) main idea was to
modify the score function by a function A, (#) being either O,(1) or O(1), depending
on whether A,(f) is data-dependent or not. Based on an expansion of the modified
score

UF(0%) = Un(07) + An(67)

T
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about the true value 0, with 6* satisfying U}(6*) = 0, Firth (1993, p. 29) obtained
E(0" —0) = n 'K =YKy + Kogu) /2 4+ s} + O(n2) . (2)

In (2), as is the null expectation of A4(6), ™ is the inverse of the Fisher information

matrix ks, and all the null cumulants are assumed O(1). If we choose a; to satisfy
g = K"K + ) /2 + O(n2) | (3)
then clearly E(0* — 0)" = O(n=?/?). In view of (3), Firth (1993, p. 33) proposed

A(E) = Kuw(ﬁir,u,v + ’fr,uv)/z (4)

T

or

AL = —U ok K" (Ko + Kaw) /20 (5)

where A and A9 stand for modifications based on expected and observed informa-

tion, respectively. The modified maximum likelihood estimator solves either of

U(6%) + AP(67) = 0,

U.(0°) + AQ6*) =0

3. THE MODIFIED SCORE

The loglikelihood of the Gaussian long-memory process is given by

) 1 1
00) = —g log 2 — - log det S, (fy) = 5 'S, (fo) .

To deal with the loglikelihood derivatives and their expectations, we present the fol-

lowing notation:

(27189, = 278,271, (2718 = BT ETIE, DTN,
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and so on, with 3, = 9% /00" and 3, = 028 /00706°, and the dependence on n and on
fo is suppressed for brevity. It is readily verified that the quantities required for the

modified score are

1

. —1y*
frs = oo 17 (= 2) (6)
Kruy = ltr<2_12*> (7)
T n T7u7’u
o = o tr (=" (8)
7Y 2n (ruv—2r,u,v)
It follows from (4)—(8) that
1
(B) _ ~ wuw —1y=
AP =k tr (3 z)u (9)
1
(O) o st u,v — 1y
Ay = o Upsk® K" tr (E E)tﬂw, (10)

where k™" is the inverse matrix of x,, as given by (6). The modified estimator based

on A(¥) solves

—%tr (=7'r) + %tr{xaz' (=7'2) 57+ ﬁ R0 (D7) =0, (1)

U

and similarly for the modification based on A(?).

For simplicity, we proceed with our developments with A% only. Observe that
the modification merely involves traces of products of the covariance matrix and its
derivatives of order one and two.

Next, we investigate the order of magnitude of the terms in (9). Applying Theorem

5.1 of Dahlhaus (1989), which holds under his Assumptions (A2), (A3) and (A7), we

obtain
Jim o (57), = oo 7 SRS a (12
i ce (e = o [0 GRS 0 1)
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where f,(A) = 0fy(X)/80" and f,.., = 0% fo(X)/06"06". Tt follows from (6), (9), (12)
and (13) that A%) = O(1), as in the independent and identically distributed case. The
O(n=3/%) term in the expansion (2) is proportional to factors of the form tr(X~'%*) .,
where (-) indicates a finite partition of the indices. By Theorem 5.1 of Dahlhaus
(1989), these factors are O(n), and thus the choice of ay, as given in (3), renders

E(0* — )" = O(n3/?) under long-range dependence as well.

4. APPROXIMATE MODIFICATION

While the exact modification (11) merely entails traces of product matrices, its
computation can be rather costly if the dimension of ¥, (fs) is moderately large. This
is because (11) involves inverse matrices and matrices of derivatives of the autocovari-
ance function. For a general ARFIMA (p,d, q) model, the autocovariance function is
a complicated functional of hypergeometric functions (Sowell, 1992) and finding its
derivatives can be difficult. Instead of a direct evaluation of the autocovariance deriv-
atives, Lieberman et al. (2000) suggested univariate numerical integration of spectral
density derivatives.

The matrix computation can be avoided by using the relations (12)—(13), along
with standard numerical integration routines, for example within Mathematica. No-
tice that, in Dahlhaus’ (1989) Theorem 5.1, there is no statement about the rate of
convergence. The implication is that, if we replace the terms in A(¥) by their as-
ymptotic counterparts, as given by (12)—(13), and denote the approximation by ALE),
then under long-range dependence A(?) — fl?ﬁE) = 0(1). As a result, the approximate
modified estimator, based on A(), has a bias of o(n™'), compared with O(n~1!) for
the conventional maximum likelihood estimator and O(n~%/2) for the exactly modified
estimator. The simplification in the computation is important, however. Taniguchi
(1983) established a result analogous to Theorem 5.1 of Dahlhaus (1989) for classical

ARMA models with an error of O(n~1). For classical ARMA then, the approximate
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modification under Taniguchi’s (1983) result yields an estimator with a bias of order

O(n=3/2).

5. Bias PREVENTION IN ARFIMA
We now concentrate on the Gaussian ARFIMA(p, d, ¢) model, defined by
¢(B)AdXt = Y(B)er,

where B is the backshift operator, ¢(B) = 1+ 37_, ¢;B7, (B) = 1+ 3I_, ¥; B,
A?X, = (1 — B)?X, and ¢, are independent N(0,w). We assume that all the roots of
¢(z) and 1(z) lie outside the unit circle. The spectral density of the process is given
by
fo(N) = 5{2(1 = cos A)} H .

When d € (0,1/2), fo(X) = O(|\|72%) as |A\| — 0, and the process is stationary long-
memory. The function fy(A) is composed of four functions, of w, of d, of the AR
parameters and of the moving-average parameters, and so it is straightforward to obtain
its derivatives. These are given in Lieberman et al. (2000) up to third order.

A special case of this model is the Gaussian ARFIMA (0, d,0) with an error variance
w. The model has been presented and studied by Mandelbrot & Van Ness (1968).
Geweke & Porter-Hudak (1983) found this model to be very useful in describing the
behaviour of various consumer price indices in the U.S.A. We show in the following
that the approximate modified score in the Gaussian ARFIMA(0,d,0) model merely
involves a rightward shift of the score function.

For any stationary and invertible Gaussian ARFIMA model, with dim(#) = 2, the

inverse of the asymptotic Fisher information matrix as given by (12) is

x (A — i) fo (N
4r 1 5N (M) f2(N) "

B PO e poy
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where

_ TR gy B T ANEN
A= L f12(/\) dALr f22 AT {/ﬂ 2(0) dA}
and fs(\) = 0f(\)/06°, s =1,2. Firth’s (1993) approximate modification is therefore

im 1 fiM) SrA)fu(d)
A§>_ﬂ{ ()\)d)\/ oy D

S f2(0) (M) fi2(A)
2[R 2 L R

" /—: ;128; @ /;% dA} , r=12. (14)

For the Gaussian ARFIMA (0, d,0) model, 6 = (d,w) and

f@()‘) _ i efdlog[Q(lfcos/\)] )

Setting C(A) = log{2(1 — cos \)}, we have fi(A)/f(A) = —C(N), fo(\)/f(A) = w !,
fuN/f(A) = C*(N), f2(N)/f(A) = 0 and fi2(A)/f(A) = —w™'C(A). From Grad-
shteyn & Ryzhik (1980, pp. 525, 565), [T C(N\)dX = 0, [T C*(N)d\ = (27%)/3 and
[T C3(N)d\ = —247((3), where ((-) is the Riemann zeta function. Thus, for the

Gaussian ARFIMA (0, d,0) model, it immediately follows from (14) that

A = AE) — 18<(3) ~ 2.1923, (15)
) 1
AP = AP = (16)

The solutions required for the approximate modified scores are

- 1 ) 1 ) 1
U; = ——tr 2_12(1 -+ —tr(xl'lz_lzdz_l) + L(?)) == O ) (17)
2 2 us
- , — 1 1
U = — (n2w ) +5 £Y =0, (18)

so that @* = 2/%1(d*)z/(n — 1), d* being the solution to (17). By comparison, the
conventional estimator of w is @ = 'Y~ 1(d)z/n. The approximate modified score (17)
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only differs from the unmodified score by a rightward shift of size 18((3) /7. As argued
in §4, this simple modification removes the first order bias of the maximum likelihood
estimator of d. We thus obtain Theorem 1 as follows.

THEOREM 1. For the model A*X, = ¢, d € (0,1/2), &, ~ NID(0,w), we have
E(d*)—d=o(n"').
6. NUMERICAL EVIDENCE

In Table 1, we compare bias and mean squared error of the maximum likelihood
estimators, d and w, and the approximate modified estimators, d* and w*, based on
(17)—(18), in the Gaussian ARFIMA(0, d,0) model. The sample sizes are n = 20, 40,
the true w is set to unity and d is at the range [0,0.4] at a 0.1 grid. A MATHEMATICA
program was written by the author for the computation. In each simulation experiment,
1000 replications were conducted.

We observe the following. First, the biases of both d* and &* are uniformly smaller
than the respective biases of d and &. The reduction in the bias is considerable for both
estimators. Secondly, the bias of all estimators, whether modified or not, decreases as
n increases. Thirdly, d* is superior to d on mean squared error grounds as well. On the
other hand, the mean squared error of ©* is slightly larger than that of w for n = 20,
and for n = 40 the difference becomes negligible. Fourthly, the mean squared error of

all estimators diminishes as n increases.
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Table 1: Bias and mean squared error in the fractional Gaussian noise model

d w
bias mse bias mse
d d & d @ A R
n =20
0.0 —0.065 0.033 0.043 0.034 —0.056  0.006 0.094 0.103
0.1 —0.059 0.026 0.040 0.030 —0.051  0.006 0.098 0.107
0.2 —0.061 0.009 0.038 0.025 —0.067 —0.017 0.093 0.098
0.3 —0.069 —0.015 0.032 0.018 —0.055 —0.008 0.097 0.103
04 —-0.072 —0.040 0.023 0.013 —0.041  0.005 0.092 0.099
n =40
0.0 —0.030 0.014 0.019 0.017 —0.023  0.004 0.053 0.055
0.1 —0.030 0.010 0.020 0.017 —0.022  0.004 0.050 0.052
0.2 —0.033 0.001 0.018 0.015 —0.032 —0.007 0.051 0.053
0.3 —0.040 —0.012 0.015 0.011 —0.027 —0.003 0.049 0.050
0.4 —0.052 —0.034 0.012 0.009 —0.023  0.000 0.050 0.052
cZ, w — maximum likelihood estimators

d*,w* — approximate Firth’s (1993) estimators

mse — mean squared error
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