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Abstract

We propose a functional estimation procedure for homogeneous stochastic differential equa-
tions based on a discrete sample of observations and with minimal requirements on the data
generating process. We show how to identify the drift and diffusion function in situations where
one or the other function is considered a nuisance parameter. The asymptotic behavior of the
estimators is examined as the observation frequency increases and as the time span lengthens
(that is, we implement both infill and long span asymptotics). We prove consistency and con-
vergence to mixtures of normal laws, where the mixing variates depend on the chronological
local time of the underlying process, that is the time spent by the process in the vicinity of
a spatial point. The estimation method and asymptotic results apply to both stationary and
nonstationary processes.
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1. INTRODUCTION

Many popular models in economics and finance, like those for pricing derivative securities, in-
volve diffusion processes formulated in continuous-time as stochastic differential equations. These
processes have been used to model options prices, the term structure of interest rates, exchange
rates, and foreign currency interest rates, inter alia. A recent introduction to some of these applica-
tions is given in Baxter and Rennie (1996). Stochastic differential equations have also been used to
model macroeconomic aggregates like consumption and investment, and systems of such equations
have been used for many years to model economic activity at the national level, as described in
Bergstrom (1988). In all these applications, statistical estimation involves the use of discrete data.
It is then necessary to identify and estimate with discretely sampled observations the parameters
and functionals of a process that is defined in continuous time.

The stochastic differential equation that defines a diffusion process, like X; in (2.1) below,
involves two components. These components measure the conditional drift, p(X¢), and the con-
ditional variation, o?(X;), of the process in the vicinity of each point visited by X;. The most
general approach to estimating stochastic differential equations is to avoid any functional form
specification for the drift and the diffusion term. In some cases, attention may focus on one of
the functions and it is then of interest to estimate it in the context of the other function being
treated as a nuisance parameter. A substantial simplification to the estimation problem is obtained
by the commonly made assumption of stationarity. Indeed, under stationarity and provided suit-
able regularity conditions are met, the marginal density of the process is fully characterized by
the two functions of interest (e.g. see Karatzas and Shreve (1991) and Karlin and Taylor (1981)).
This fact justifies some estimation methods that have appeared recently in the literature which
exploit the restrictions imposed on the drift and diffusion function by virtue of the existence of
a time-invariant density of the process (see, in particular, Ait-Sahalia (1996a,b) and Jiang and
Knight (1997)). Notwithstanding the advantages of assuming stationarity, it would appear that,
for many of the empirical applications mentioned in the preceding paragraph at least, it would be
more appropriate to allow for martingale and other possible forms of nonstationary behavior in
the process. In such cases, it becomes necessary to achieve identification without resorting to cross
restrictions delivered from the existence of a time-invariant density and transitional density, and
estimation and inference must be performed when such restrictions cannot be imposed, namely
when the process is nonstationary. Of course, there may also be interest in testing either local or
more general martingale behavior in the process.

The aim of the present paper is to construct a nonparametric estimation method for diffusion



models without imposing a stationarity assumption. Recurrence, which is a substantially milder
assumption than stationarity, is our identifying condition. In other words, we simply require the
continuous trajectory of the process to visit any level in its range an infinity number of times over
time. Our approach is a refined sample analog method, which builds local estimates of the drift and
diffusion components from the local behavior of the process at each spatial point that the process
visits. We assume that the process is discretely sampled, but we explore the limit theory of the
proposed estimators as the sample frequency increases (i.e. as the interval between observations
tends to zero, as in Florens-Zmirou (1993), Jacod (1997) and Jiang and Knight (1997)) and also
as the total time span of observation lengthens. In technical terms this amounts to both infill and
long span asymptotics. The twofold limit theory allows us to avoid the well-known aliasing problem
(i.e. different continuous-time processes may be indistinguishable when sampled at discrete points
in time) and be extremely general about the dynamic features of the underlying diffusion process
(Phillips (1973) and Hansen and Sargent (1983) are early references on the aliasing phenomenom
in the econometric literature on the identification of continuous-time Markov systems).

We give conditions for almost sure convergence of the proposed sample analog estimators to the
theoretical functions and provide a limit distribution theory for the general case. The asymptotic
distributions of the estimates are mixed normal and the mixture variates can be expressed in terms
of the chronological local time (see Phillips and Park (1998)) of the underlying process, a random
quantity that measures in chronological time units the amount of time the process spends in the
vicinity of each spatial point. Our results also enable us to comment on the fixed time span
situation. We confirm earlier findings that the diffusion term can be consistently estimated over
a fixed time span (as in Florens-Zmirou (1993) and Jacod (1997), for example) and discuss the
difference between this case and the long span situation. We also confirm that, in general, the
drift term can not be identified nonparametrically on a fixed interval without cross-restrictions,
no matter how frequently the data is sampled (c.f. Merton (1973), Ait-Sahalia (1996a) and Bandi
(1998, theorem 2.1)). Despite this limitation, by letting the time span increase to infinity, the
theoretical drift term can be recovered in the limit, provided the process continues to repeat itself,
that is provided the process is recurrent. Geman (1979) utilized the same property but assumed
the availability of a continuous record of observations. To our knowledge, our drift estimator is
the first fully nonparametric estimator which permits identification of the drift function by use
of discretely sampled data, without relying on cross-restrictions based on the existence of a time-
invariant marginal density. It is therefore robust against deviations from stationarity.

Interestingly, both the nonparametric theory on the estimation of conditional expectations in



the stationary discrete time framework (c.f. Pagan and Ullah (1999) for references) and the recent
functional theory on the identification of conditional first moments in the unit root literature (c.f.
Phillips and Park (1998)) are reflected in our general results which can be specialized to various
forms of recurrent behavior and, in consequence, cover both the stationary case and the Brownian
motion (unit root, that is) case in the existing nonparametric literature, inter alia.

Our work is presented as follows. Section 2 lays out the model and objects of interest. Section
3 gives some useful theoretical preliminaries. Section 4 contains a description of the methodology.
Section 5 presents the main results and Section 6 concludes. Appendix A provides proofs and

technicalities. Notation is laid out in Appendix B.

2. THE MODEL, ASSUMPTIONS AND OBJECTS OF INTEREST

The model we consider is the autonomous stochastic differential equation

dXt = M(Xt)dt + O'(Xt)dBt, (21)

with initial condition Xy = X and where B; is a standard Brownian motion defined on the filtered

probability space (Q2, 2, (3P)i>0, P). The initial condition X € L? and is taken to be independent

of {B; :t > 0}. We define the left-continuous filtration

l
[
2,
=
<
@
“

=0(X,B;;0<s<t) 0<t<oo
and the collection of null sets
N:={N C Q3G € S with N C G and P(G) = 0}.
We create the augmented filtration
X =0 (SLUN) 0<t<o0.

The following conditions will be used in the study of (2.1). They will assure the existence and
pathwise uniqueness of a nonexplosive solution to (2.1) that is adapted to the augmented filtration
{3
ASSUMPTION 1:
(i) p(-) and o(-) are time-homogeneous, B-measurable functions on © = (l,u) with —oo <1 <
u < 0o where B is the o-field generated by Borel sets on . Both functions are at least once

continuously differentiable. Hence, they satisfy local Lipschitz and growth conditions. Thus,



for every compact subset J of the range of the process, there exist constants C1 and Cy such

that, for oll x and y in J,

l(x) — p)| + lo(z) —o(y)| < Cilz —yl,

and

()] + |o(@)] < Co{1 + [=[}.
(ii) o%() >0 on D.
(iii) (Feller’s (1952) necessary and sufficient condition for nonexplosion). We define V() as
/a S'(y) /y __ 2 |ala
Jo 7 [5@e@] T
where S’(x) is the first derivative of the natural scale function,
* Y1 2p(x)
S(a :/ exp{/ {— ]dm}dy.
@ 0 0 o?(z)

We require V() to diverge at the boundaries of D, i.e.

lim V(a) = lim V(a)= oo.

a—lt a—u~

Assumption (i) is sufficient for pathwise uniqueness of the solution to (2.1) (c.f. Karatzas and
Shreve (1991, Theorem 5.2.5, page 287)). Assumptions (i) and (ii) assure the existence of a unique
strong solution up to an explosion time (c.f. Karatzas and Shreve (1991, Theorem 5.5.15, page 341
and Corollary 5.3.23, page 310)). Assumption (iii) guarantees that neither ! nor u are attained in
finite time (c.f. Karatzas and Shreve (1991, Theorem 5.5.29, page 348)); and the same condition is
necessary and sufficient for recurrence, meaning that, for each ¢ € (I,u), there exist a sequence of

times {t;} increasing to infinity such that Xy, = c for each 4, almost surely.

REMARK 1: Global Lipschitz and growth conditions are typically assumed to guarantee exis-
tence and uniqueness of a strong solution to (2.1) (c.f. Karatzas and Shreve (1991, Theorem 5.2.9,
page 289), for example). We do not impose these conditions here because, as Ait-Sahalia (1996a,b)

points out, they fail to be satisfied for interesting models in economics and finance.

REMARK 2: Geman (1979) requires the natural scale measure S(«) to diverge to oo as a — wu,

and to —oo as a — [. Notice that this condition is only sufficient for nonexplosion and recurrence.



Feller’s (1952) condition based on the function V(«) is necessary and sufficient. The following

implications are easily derived (c.f. Karatzas and Shreve (1991, Problem 5.5.27, page 348)):
SIT)=-c0= V(") =00
and

S(uT)=00=V(u") = oo.

Thus, under conditions (i), (ii) and (iii), the stochastic differential equation has a strong solution
X; that is unique, recurrent and continuous in t € [0, 7. X; satisfies

g -t

1(X,)ds + / o (X,)dB,

Xt=X0+/
, 0

0
a.s., with [ E[X?]dt < co.
The objects of econometric interest are the drift and diffusion terms in (2.1). These functions

have the following definitions:

E* (X, —xz] = tu(z)+o(t) (2.2)

E°[(X, —2))] = to?(z)+o(t) (2.3)

where x is a generic initial condition and E® is the expectation operator associated with the process
started at x. Loosely speaking, (2.2) and (2.3) can be interpreted as representing the “instanta-
neous” conditional mean and the “instantaneous” conditional variance of the process when X; = .
More precisely, (2.2) describes the conditional expected rate of change of the process for infinitesimal

time changes, whereas (2.3) gives the conditional rate of change of volatility at x.

3. LOCAL TIME PRELIMINARIES

In what follows we introduce some preliminary results regarding the local or sojourn time of a
continuous semimartingale (SMG). These results will be useful in the development of our analysis

(Protter (1990) and Revuz and Yor (1998) are standard references).

DEFINITION 1: (CONTINUOUS SMG) A continuous SMG is a continuous process M which can
be written as M = LM + A where LM is a continuous local martingale and A is a continuous

adapted process of finite variation.



Continuous-time stochastic differential equations like (2.1) are known to have solutions that are
SMGs since Xg + ]Ot 1(Xs)ds is a continuous adapted process of finite variation and ]Ot 0(Xs)dBs
is a continuous local martingale. Hence, our theory comes within the ambit of SMG analysis. The

local time of a continuous SMG M is defined as follows:

DEFINITION 2: (THE TANAKA FORMULA) For any real number a, there exists a non-decreasing

continuous process Ly;(.,a) called the local time of M at a, such that
t
|My —a| = |My—a —I—/ sgn(Ms — a)dMs + Lys(t,a),
0
t 1
(]\/-[t — a)+ = (]\/_[0 — a)"" —|—/ 1{]Vls>a}d]\/-[8 + EL]\[(t, Cl),
0
t
1
(]\/-[t — a)_ = (]\/_[0 — a)_ — / 1{]V13§a}d]\/-[8 + EL]\[(t, Cl).
0

In particular, |My — a|, (My —a)* and (M; —a)~ are SMGs.

LeEMMA 1: (CoNTINUITY OF SMG LocAL TIME) For any continuous SMG M, there exists a
version of the local time such that (t,a) — Lj(t,a) is a.s. continuous in both t and a. Moreover,
it can be chosen so that a w— Las(t,a) is Holder continuous of order k for every k < 1/2 uniformly

i t on every compact interval.

LEMMA 2: (THE OCCUPATION TIME FORMULA) Let M be a continuous SMG with quadratic

variation process [M]s and let L* be the local time at a. Then,

/ My, )M, = / :° a | ' a,8)dLag(s.0)

for every positive Borel measurable function f. If f is homogeneous, then the expression simplifies

to
1 —+o00
/ f(My)d[M]s = fla)Ly(t,a)da. (3.1)
0 —oo
LEMMA 3: If M is a continuous SMG then, almost surely
1 t
LM(t,a) = hII(lJ g 1[(1, a+5[(Ms)d[]\/[]s Va,t. (32)
e— 0

If M is a continuous local martingale then, almost surely

I
Ear(t,0) = limy 5= [ By (MM, Vet (33)

The process Ly(t,a) is called the local time of M at the point a over the time interval [0,¢].

It is measured in units of the quadratic variation process and gives the amount of time that the



process spends in the vicinity of a. The chronological local time (terminology from Phillips and
Park (1998)) is a standardized version of the conventional local time that is defined in terms of
pure time units. It can be easily derived in the Brownian motion case. >From (3.3), the local time

of a standard Brownian motion W is

1
Lw(t,a) = 2%2—6 /0 1(|sta|<5)d5 a.S. Va,t.

Now, consider the Brownian motion B = oW with variance o?. We can write, as in Phillips and

Park (1998),
Lp(t,a) = lim 1 /t 1B ,aKE)Jst =o0Lwy (t, ﬂ) a.s. Va,t.
e—0 2¢ Jy ¢ o

Since the quadratic variation of Brownian motion is deterministic, the chronological local time can
be obtained as a scaled version of the conventional sojourn time as

— 1 [t

Lp(t,a) = lim > /0 1(p, o|<c)ds = 0 2Lp(t,a) as. Va,t. (3.4)
Equation (3.4) clarifies the sense in which Lp(t, @) measures the amount of time (out of ¢) that the
process spends in the neighborhood of a generic spatial point a.

It turns out that a similar expression can be defined for more general processes such as those
driven by stochastic differential equations like (2.1). In this case, the measure d[X], is random and
equal to 0?(X,)ds. Hence, given the limit operation, a natural way to define the chronological local
time of a process like (2.1) is by

_ 1 .1 1
Lx(t,0) = s lim = | Lia aaef(X)r* (Xo)ds = 5

Lx(t,a) a.s. Va,t. 3.5
0'2(@)6%08,0 X(7 ) ’ ( )
This is the notion of local time that we will use extensively in what follows. It appears in other

recent work on the nonparametric treatment of diffusion processes (Bosq (1998, p. 146) and Florens-

Zmirou (1993)) where it is sometimes referred to simply as local time.

Lemma 4 and 5 below contain additional results that will be used in the development of our
limit theory. Lemma 4 generalizes to diffusion processes the limit theory for Brownian local time

(see Yor (1983), Revuz and Yor (1998) and Phillips and Park (1998)).

LEMMA 4: (LimiT THEORY FOR THE LOCAL TIME OF A DIFFUSION) Let X satisfy the prop-
erties in Section 2. Let r and a > 0 be fized real numbers and treat {Lx(t,r +$) — Lx(t,7)} as a

double indexed stochastic process in (t,a). Then, as A — oo
1
sV Lx(tr+ ) = Ix(tr)} = B(Lx(t,1),0)

8



where B(t,a) is a standard Brownian sheet independent of X. If a <0, then

%\/X {LX(t,r + %) - LX(t,r)} = B(Lx(t,r), —a).

Finally, Lemma 5 specializes to scalar diffusion processes a result that has wider applicability

in the theory of occupation times for recurrent Markov processes (c.f. Revuz and Yor (1998)).

LEMMA 5: Let X satisfy the properties in Section 2. Then, for any Borel measurable pair f(.)
q()Q() of X where S(x)
is the scale function (c.f. Assumption 1 (iii)), the ratio of the additive functionals .[0 f(Xs)ds and

and g(.) that are integrable with respect to the speed measure s(dx) =

fo s)ds is such that

lim foT (Xs)ds _ Ifooo f(x)s(dz)

T g s e g@sdn) |

We now turn to the estimation method.

4. ECONOMETRIC ESTIMATION

Assume the process X; is observed at {t = t1, 2, .., t,} in the time interval [0, T], with T' > Ty >
0, where Tj is a positive constant. Further assume that the observations are equispaced. Then,
{Xe = XA, 1, Xon, 1, X3n
20, 7, t3 = 3An 1, .yt = Ay 1} where Ay =T /n.

XnAn,T} are n observations on the process X; at {t1 = A, 1,t2 =

n,T? n, T """

We want the number of sampled points (n) to increase as the time span (T") lengthens. We also
want the frequency of observation to increase with n. Thus, we will explore the limit theory of the
proposed estimators as n — oo, T'— oo and A, ;7 = T/n — 0. We will also comment on the fixed
T case where T =T.

We propose the following estimators for (2.2) and (2.3).

n Xin,, o= M, 7 (1An,7)—1
ria K ( o T ) (mn,T@Aln R 0 Xiane) A~ Xt(iAn,T)j])
Zz 1 K ( lAn L )
zAn ~
Zz 1 K < — ) Hr, T(X’iAn,T)

iN, 7%
Zz lK( n:; )

~

H(n,T) (m) =

, (4.1)



Xin, 7—% My, (10, 7)—1
Z?:1K( hn,:; ) <mn,T(iAi AT Zj—OT ‘ [Xt(iAn,T)jJrAn,T _Xt(iAn,T)jP)
iN, 7T
Zz 1K< n; )
N, pTEN ~
SR (TR )aiﬂmn,n
S ()
i=1

where K(.) is a standard kernel function whose properties are specified below. In the above formu-

/O\-?n,T) (w) =

: (4.2)

lae, {t(iAy 1);} is a sequence of random times defined in the following manner:

t(iApr)o =inf{t > 0: [ Xy — Xsa, ,| <enr},
and
t(iAn,1)j+1 = inf{t > t(@An71); + An1 | Xt — Xin, | <ent}-
The number my, 7(iA, ) < n counts the stopping times associated with the value XZA"’T and is
defined as
My, 7(i10p 1) = Jz; ]-HXjAn,T_XiAn,T‘SEn’T} )
where 14 denotes the indicator of A. The quantity e, is a bandwidth-like parameter that is

taken to depend on the time span and on the sample size. We call this parameter the spatial

bandwidth. As usual, the random time ¢(iA,, 7) is defined on 2 and takes values on [0, co). Further,

{t(iAn7) < t*} € X . where 37 .is a right-continuous filtration defined as N S.

u>t*
The kernel K(-) that appears in (4.1) and (4.2) is assumed to satisfy the following condition.

AssuMPTION 2: The kernel K(.) is a continuous differentiable, symmetric and nonnegative

function whose derivative K' is absolutely integrable and for which
/ K(s)ds =1, / K?(s)ds < oo, supK(s) < Cs,

and

/ s*K(s)ds < 0.

—0o0

The method hinges on the simultaneous operation of infill and long span asymptotics. The

intuition underlying the construction of (4.1) and (4.2) is fairly clear. By using observations over a

10



lengthening time span as well as of increasing frequency we aim to “reconstruct” as well as possible
the path of the process in terms of the key objects of interest, the drift and diffusion functions,
which vary over the path. The idea is twofold.

First, the use of local averaging and stopping times in the algorithm is designed to replicate
as well as possible the instantaneous features of the actual functions. Notice, in fact, that the
components 53,T(XiAn,T) and fi, p(Xia, ;) in (4.1) and (4.2) are defined as empirical analogs to
the true functions for all 7. Further, the estimates &Z,T(XiAn,T) and fi,, 7(Xia, ) are consistent
for UQ(XZ-AH}T) and H(Xz'An,T) as the random quantity mg, 1 (iA, ) goes to infinity Vi. Under
suitable conditions on the bandwidths, mn7T(z’An7T) diverges to infinity almost surely when T — oo.
In particular, given appropriate choices of the smoothing sequences, divergence occurs when the
process X is recurrent, as it is under Condition (iii) in Assumption 1. In this case, the process
almost surely hits any point in its range an infinite number of times, i.e. P;{X; hits z at a sequence
of times increasing to co} = 1, Vz, z (here x represents possible initializations of the process X;).

Second, we apply standard nonparametric smoothing to recover the two functions of interest

from the crude estimates 5,%7T(XZ-A"7T) and fi, 7(Xia, ;) calculated at the sample points.

5. MAIN RESULTS

5.1. Some Preliminary Theory

We start with the following preliminary result. Throughout, we assume that Assumptions 1

and 2 hold.

THEOREM 1: (ALMOST SURE CONVERGENCE TO THE CHRONOLOGICAL LOCAL TIME) Given

n — oo, T fized ( =T ) and h,7 — 0 (as n — 00) in such a way that ﬁ(An:_r)a = O(1) for

A = X'LA ——Z — —
some o € (0,3), the estimator 223" | K <%> converges to Lx (T, x) a.s.

h, T

REMARK 3: Theorem 1 is general enough to be applicable to transient processes. The following

Corollary illustrates the difference between the two cases when we let 1" go to infinity.

COROLLARY 1: If T — oo with n but % =A,r — 0 and hyr — 0 (as n — 00) in such a way

that M(Any)“ = Oq.5.(1) for some a € (O, %) Vx € D, then

hn,T

" XA g — T e —
B ZK <A"—Tm> — Lx(sup{t: X; =z}, x).

Further, if the process is recurrent, then Ly (sup{t: X; = z},2) = o0 a.s.

11



5.2. Function Estimation of the Drift

We next develop the asymptotic theory for the drift estimator.

THEOREM 2: (ALMOST SURE CONVERGENCE TO THE DRIFT TERM) Given n — oo, T' — 00,
Apr — 0 and hpp — 0 (as n,T — oo) such that Z’fLT(ZfBZ(AmT)O‘ = Oqg.5.(1) for some a € (O,%)
Ve € ©, and provided e, — 0 (as n,T — o0) such that %%Z(A,%T)ﬂ = Oqy.5.(1) for some
8 e (O, %) and 7 Lx (T, ) % 0o Vo € D, the estimator (4.1) converges to the true function with

probability one.

THEOREM 3: (THE LIMITING DISTRIBUTION OF THE DRIFT ESTIMATOR) Given n — 0o,
T — oo, Ayr — 0, hyr — 0 (as n,T — o0) such that fﬁﬁl( Apr)® = Oas.(1) for some
o € (O, 2) Vo € ©, and provided e, — 0 (as n,T — oo) such that Lx—ml( T)ﬁ = O045.(1)
for some (3 € ( ,%), enrLx(T, r) ¥ 0o and 5n7TLX(T, x) “3 0 Vo € D, then the asymptotic

distribution of the drift function estimator is of the form

enrLyx (T, ) {ﬁ(m (z) — M(x)} =N (o, Kg"d(;?(a;)) : (5.1)

where Kznd 1 f 00 {|a‘<1}da = % Zf hn,T = 0(5n,T)' If hn,T = O(gn,T) with hn,T/gn,T - ¢ > 07
then

o Ex(1.2) () = )} = N (0,505 ). 52)

z+1 z+1
where 0, = % [0 f((z 1))//(2) f((z 1))//(ZJK K(e)dzdade.

Under the same conditions, but provided 527TZX(T, x) = Oq5.(1) Vo € D, the limiting distribu-

tion of the drift estimator displays an asymptotic bias term whose form is

Py (x) = 2 K [u’ @° (f)) on <x>] (5.3)

with K{*! = § [% a®1qjq<1yda = 3, provided hnz = o(enr), and

7

N0 () = 20 (K102 + K [u @i L <x>] , (5.4

s(x)
with K1 = [fooo a’K(a)da, provided hy,1 = O(en 1) with hyr/enr — ¢ > 0. The function s(x) in

(5.3) and (5.4) is the speed function of the process X, namely s(x) = W (c.f. Lemma 5).

REMARK 4: (THE FIXep T CASE) If we fix the time span T the drift function cannot be

identified. In particular, the drift estimator would diverge at a speed equal to —= (c.f. Theorem

VEn,T
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2.1 in Bandi (1998)). However, if we do not constrain the time span to be fixed, by virtue of
recurrence, there are repeated visits to every level over time and this opens up the possibility of
recovering the true function by using a single trajectory of the process over a long time, through
a combination of infill and long span asymptotics. Since the local dynamics of the underlying
continuous process reflect more of the features of the diffusion function than those of the drift, only
the diffusion function estimator can be meaningfully defined over a fixed time span of observations

as we will see in the sequel (c.f. Geman (1979) and Merton (1973), inter alia).

REMARK 5: (THE RATE OF CONVERGENCE) The normalizations in (5.1) and (5.2) are random
because of the presence of the local time factor (ZX (T, x))l/ ’ In general, therefore, the rate
of convergence will be path-dependent. The precise rate of convergence in (5.1) and (5.2) will
depend on the asymptotic divergence characteristics of the chronological local time of the process
{X¢;t > 0}. We consider the two cases for which closed-form expressions for the rates of convergence
exist: Brownian motion and the wide class of stationary processes. First, assume X; is a Brownian
motion (i.e. u(X) =0 and 0(X) = o). Then,

a

_ _ 1
— _ 12l
Lx(T,x) = Lp(T,x) = T"*~ Ly (1, T

) = Ous ().

In this case, the convergence rate of [, 1)(x) is \/en 1T 1/2 the asymptotic distribution is mixed
normal and the limiting variance depends inversely on the local time of the underlying standard
Brownian motion at the origin and time 1. Now consider the class of stationary processes. For any

strictly stationary real ergodic process, Bosq (Theorem 6.3, 1998, page 150) proves that

EX(T; 33) a.s.
7 = f(z),

where f(x) is the time-invariant stationary distribution of the process at x. As expected, for
stationary processes the rate of convergence is faster than in the Brownian motion case, i.e. /e 7T,
the distribution is normal and the limiting variance depends inversely on the marginal distribution

function of Xj;.

REMARK 6: (SINGLE SMOOTHING) We can simplify (4.1) above and write the estimator as a

weighted average of differences with weights based on simple kernels. Consider

n— XlAn —
_ 1 Zi:ll K (ﬁ) (X(iJrl)An’T - iAn’T)
Fon( @ =5 7 S K (X ) - (55
7 i=1 9n,T

The limit theory in this paper and Bandi (2000) allows us to show that 7z, () is consistent almost

surely for the unknown drift function provided the window width g,, 7 is such that % (AmT)fB =
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O,.5.(1) for some 3 € (0, %) and g, 7Lx (T, x) % ooV € Dasn,T — oo with % — 0. Furthermore,
if gg7TfX(T, z) “% 0 Vo € D, then

VInaLx (T,) {Figu ) () — () } = N (0, Kz0%(2))

where Ky = ffooo K?(s)ds. Additionally, if g;inX(T, x) = O0q5.(1) Vo € D, then

9t Lx(T,2) {Tign 1) (@) = (@) = Tu(w) } = N (0, Ka0%(2))

where

Lu@) = (gnr)* K [u’ @5 o <x>] ,

s(x) is the speed function of the process X and K; = [%_ s*K(s)ds.

It is noted that (5.5) behaves asymptotically like (4.1) in the case where h, 7 = o(e, ) and
(4.1) is originated from a smooth kernel convoluted with another smooth kernel rather than with
an indicator function as in our original formulation. In other words, single-smoothing is the same
as double-smoothing asymptotically if h,r/e,7 — ¢ = 0. If hyr/enr — ¢ > 0, then double-
smoothing offers additional flexibility over its simple counterpart. In fact, the parameter 6, (which
affects the asymptotic variance) is a decreasing function of the constant ¢, whereas the parameter
Ky = K¢ + K4 (which affects the asymptotic bias) is an increasing function of the same
constant. For some processes and some levels x, appropriate choice of the smoothing sequences
(and, consequently, appropriate choice of ¢) can improve the limiting trade-off between bias and
variance delivering an asymptotic mean-squared error that is minimized at values ¢ that are strictly
larger than 0 (as would be the case in the single-smoothing case). Notice that if hy, /e, 7 — ¢ =0
and 615%fo (T,x) % 0 (which implies undersmoothing with respect to the optimal bandwidth, i.e.
515%fo (T,z) 2 O(1)), then the asymptotic bias of our double-smoothed estimator is zero, while

the limiting variance is %02 (x). These are the same limiting bias and variance of the single-smoothed

estimator originated using an indicator kernel. If h,r/ep17 — ¢ > 0 and 627fo(T ) 450,
then the limiting bias remains zero but the limiting variance becomes %94)02 () which is strictly
smaller than % In other words, for suboptimal bandwidth choices, which are usually implemented
to eliminate the bias term and center the limiting distribution around zero, double-smoothing
guarantees a smaller asymptotic mean-squared error than single-smoothing for any processes and
any level x.

The finite sample benefits of convoluted kernels for drift estimation are discussed in a recent

simulation study by Bandi and Nguyen (2000).
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5.3. Function Estimation of the Diffusion

We now turn to the asymptotic theory for the diffusion estimator (4.2).

THEOREM 4: (ALMOST SURE CONVERGENCE OF THE DIFFUSION ESTIMATOR) Given n — 00,
T — o0, Ayr — 0 and hy7 — 0 (as n,T — o0) such that %%Z(Amgp)“ = Og.s.(1) for some
a € (O, %) Vo € ®, and provided e, — 0 (as n,T — oo) such that L’;—(TT"Q(AMT)B = 045.(1) for

some 3 € (0,3) Vo €D, the estimator (4.2) converges to the true function with probability one.
2

THEOREM 5: (LIMITING DISTRIBUTION OF THE DIFFUSION ESTIMATOR) Assume n — oo, T
— 00, Ay — 0, hyr — 0 (as n, T — o) such that M(Amgp)o‘ = Oy.5.(1) for some a € (O, %)
Ve € ©. Also, assume e, 7 — 0 (as n,T — oo) such that w(An T)ﬁ = Og.5.(1) for some

(Ta:) a.s.

B e (0, %) , enrLx(T,x) “3 0 and % 0 Vx € ©. Then, the asymptotic distribution of

the diffusion function estimator is of the form

enrLx (T, x) 52 2 ind 4
s {3 (@) —o*(@) } = N (0,4K50% () (5.6)
where K%nd = 711 I.OOOO 1%|a\<1}d = % if hn,T = 0(5n,T)- If hn,T = O(gn,T) with hn,T/gn,T - ¢ > Ov
then

TZ;(TT) {3tn@ - 0*@] = N (0,200 (@) (5.7)

z+1 z+1
where 0 = & [0 ]((Z +1))//$ ]((Z +1))//$K JK(e )dzdade
5 Lx(T)x)

Under the same conditions, but provided nAiT = 045 (1) Y € D, the limiting distribution

of the diffusion estimator displays an asymptotic bias term whose form is

Cy2(x) = 527TK§”d [(02(36))/ s () —|—% (02 (ac))”] (5.8)

with Kird =L [ a21{|a‘§1}da = %, provided hyp 1 = o(en 1), and

MO (@) = 27 (Kag? + K{) {(o%x))' A GCNE (5.9

with K; = [fooo a’K(a)da, provided ho v = O(en,1) with hyr/ena — ¢ > 0. The function s(x) in
(5.8) and (5.9) is the speed function of the process X, namely s(x) = m (c.f. Lemma 5).

We now consider the fixed T = T case.
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THEOREM 6: (LIMITING DISTRIBUTION OF THE DIFFUSION ESTIMATOR FOR A FIXED TIME
SPAN T) Givenn — oo, T =T and h,7 — 0 (as n — o0) such that — = (An 7)* = O(1) for some
a € (O, %), and provided €, 7 — 0 (as n — o00) such that T(A” T)ﬁ = 0(1) for some [ € (O, %),
the estimator (4.2) converges to the true function with probability one.

If h,7 = 0(5717) and nsiT — 0, then the asymptotic distribution of the diffusion function
estimator is driven by a “martingale” effect and has the form

VT 7 @) = ()} = MN (o %) (5.10)

If h, 7 = 0(5n77) and nsiT — 00, then the asymptotic distribution of the diffusion function

estimator is driven by a “bias” effect and has the form

, 2
21/721 {3%nT)( )_02(33)} = MN 071690ind% ) (5.11)

where o™ =2 i [ (31g1ai<1}) (31pi<13) min(a, b)dadb.
If h,7 = O(e,7) with h, 7/¢,7 — ¢ >0 and nsiT — 0, then the asymptotic distribution of

the diffusion function estimator is driven by a “martingale” effect and is of the form

IEF {7 (@) o)} = MN (o %) (5.12)

z+1 z+1
where 04 = 3 [*7 f((z 1))//(2) f(z 1))//$K K(e)dzdade.

If h,7=O(e,7) with h, 7/e,7 — ¢ >0 and nsi;—F — 00, then the asymptotic distribution of

the diffusion function estimator is driven by a “bias” effect and is of the form

31/2 {32 (@) —o*()} = MN [ 0,16 (545 (5)) % : (5.13)
nT )

where @K (¢) is a positive function of ¢ (c.f. Proof of Theorem 6) such that ™" (gp) — p™md
as ¢ — 0.

REMARK 7: The statement of Theorem 6 uses the terms ‘bias’ effect and ‘martingale’ effect to
refer to the principal terms that govern the asymptotic distribution. These effects are revealed in
the proof of the theorem. The essential factor governing the magnitude of the two effects is the
relation of the observation rate, Anj, of the process to the spatial bandwidth parameter, €T If
An,T is small relative to €77 SO that nai 7 — 00, then the bias effect dominates the asymptotics. In

i

contrast to conventional nonparametric regression situations (Hérdle (1990)) and to the long span
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case (c.f. Theorem 5 above), the bias effect turns out to be random, as it is in the nonstationary
autoregressive case studied in Phillips and Park (1998). If the spatial bandwidth ¢ 7 is small

relative to the observation interval and nsi 7 — 0, the bias effects are eliminated asymptotically

)

and the martingale effect governs the limit theory. Due to the very slow rate of convergence of the
variance term in the estimation error decomposition for the drift, the bias term never plays a role

in the limit theory for the infinitesimal first moment.

REMARK 8: When T is fixed as in Theorem 6 above, the admissible bandwith conditions can

be easily written as a function of the number of observations. The variance term dominates if

11
EpTF XN klw1thk1€<4 2)

and
kg s 1
h, 7 o< n”" with ko€ |0, 5
On the other hand, if
ko 1
€, xn "t with ky € (0, 1
and
ks 1
h, 7 ocn” " with ky € { 0, 5
then the “bias” term drives the limiting distribution.

REMARK 9: (THE RATE OF CONVERGENCE) The diffusion function estimator converges at a

faster rate than the drift estimator ( Y ey w—— En, TLX Tm) Versus y/en, TL x(T,x ) Using the results

in Remark 5 above, in the Brownian motion and stationary case the normalizations in (5.6) and

1
3 T? T i3 T 3
(5.7) are |/ %L — = 1/?;1/5 and %T—T = \/M&nT, respectively.

REMARK 10: (SINGLE SMOOTHING) As in the drift case, we consider a simpler version of our

infinitesimal volatility estimator based on single smoothing. Define

2

1 AV
1 i K (qii) (X(i-i-l)An o= XiAn}T)
iNy, 7T
T Zz 1 K ( Qni )

Following our derivations in the convoluted case (also, c.f. Bandi (2000)), we can prove that

(5.14)

(5.14) is consistent almost surely for the unknown function provided the window width g,, 7 is such
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that ﬂ(An,T)fB = O,.5.(1) for some 3 € (0,%) as n,T — oo with % — 0. Furthermore, if

. rLlx (T, ®) as.

s = 0 Vx €D, then
n7Lx (T, x)
A—; { %n T)( ) 2(33)} =N (0,4K20’4($)) )
where Ky = [ 2(s)ds. Additionally, if M = O4.5.(1) Vz € D, then
nTLx(T,x) (_
InT AX(T ) {a%,m (z) — 02(2) — T (g;)} = N (0,4Kq0%(2)) ,
where

Iﬁ@%ﬂ%ﬂﬁgk#m)d@+%w%m1,

s(x) is the speed measure of the process X and K; = [0 s*K(s)ds.

As in the case of drift estimation (c.f. Remark 6 above), double-smoothing can reduce the
asymptotic mean-squared error of the diffusion estimator for some processes and some levels z,
thus offerering increased flexibility over its simple counterpart. Contrary to drift estimation (c.f.
Remark 6 above), the finite sample performance of alternative diffusion estimators based on simple

and convoluted kernels is quite similar (c.f. Bandi and Nguyen (2000)).
5.4. Relation to Florens-Zmirou (1993)

There is an important similarity between (5.10) and the limiting distribution obtained in

Florens-Zmirou (1993). It is useful to recall her results before commenting further.

THEOREM 7: (FLORENS-ZMIROU (1993)) Assume we observe X; at {t = t1,ta,...,t,} in the
time interval [0, T] where T can be normalized to 1. Also, the data is equispaced. Consequently,
{X¢ = Xa,, Xoa,, X3a,, - XnA, } are n observations at points {t1 = Ay, ta = 20, ..., t, = Ay},
where A, = 1/n. The estimator

n—1 2

R 1 2 im1 Yix —al<ha} [ X m = Ximl®

(@) = 5 ! S
n Zi:l {|Xi/n*$‘§hn}

provided the sequence h,, is such that nhy, — co and nhit — 0. Further, if nh3 — 0, then

\/ﬁ{%)( ) — 02(;5)} = MN (0,2#) .

X(l, w)

Provided nh: — 0, the bias term disappears asymptotically and the limiting distribution is the

normal distribution to which the ‘martingale’ term converges. It is not surprising that the limiting
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distribution in Florens-Zmirou (1993) resembles the limiting distribution of the estimator proposed
here for choices of ¢, 7 and h,, 7 that make the bias term negligible (and provided h,, 7 = o(e,, 7))
Note, in fact, that in the fixed T case the estimator that we suggest here can be interpreted as a
convoluted version of the Florens-Zmirou’s estimator. In particular, it can be written as a weighted
average of estimates obtained using the Florens-Zmirou’s method. In effect, ai,T(XiAn.f) can be

rearranged as follows Vi,

1 m, 7 (1A, 7)—1

~9 2
=XGA =) = XiGiA =), = XA ),

O'n,T( An,T) mnT(iAnf)AnT = [ t( An,T)ri'An,T t( An,T)]}

n—1 . 2
1 2= Wixga, s, I<e, 7K GH0A, 7 — Xia, 7]

n
An T Zj:l 1{\XjAnj*XiAnT\§€nj}

’

It is easy to prove that when nh: — oo the Florens-Zmirou’s estimator is still consistent but, in the

same manner as our own limit theory, the “bias” term drives the asymptotic distribution, namely

(o)

L ~2 2 ind

where @74 =2 [(% [% (31 {u<1y) (31qe1<1y) min(u, e)dude.

Of course, the similarity between our approach to diffusion function estimation and the approach
in Florens-Zmirou is even more striking when considering sample analogues to the unknown diffusion
function based on single smoothing, as in Remark 10 above, for a fixed time span T. Nonetheless,
our limit theory presents important differences over the results in Florens-Zmirou. First, we extend
her analysis to general smooth kernels (c.f. (5.14)). Second, we provide a proof of convergence with
probability one and related conditions on the relevant bandwidth(s). Third, based on different
bandwidth choices, we describe the potential limiting trade-off between bias (c.f. (5.11)) and

variance (c.f. (5.10)) in the asymptotic distribution.

5.5. Remarks on the Stationary Case

When stationarity holds, our general theory reflects existing results in the estimation of condi-

tional first moments for discrete time series (c.f. Pagan and Ullah (1999) for a recent discussion).

COROLLARY 2 (C.F. THEOREM 3): Assume X is stationary. Furthermore, assume n — 00,
T — o0, Apr — 0, hyr — 0 (as n,T — o0) such that #(AMT)O‘ = O(1) for some o € (0,%),
L (An1)? = 0Q) for some 5 € (0,1) and en T — oo.

En, T

and epr — 0 (as n,T — o0) such that
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a.s.

Then, Hipry(x) = p(x) Vo € D. Additionally, the asymptotic distribution of the drift function

estimator is of the form

Ve i @) = (o) = Tula) } = N (0,3 5. (5.15)

if hpo = o0(enr) and e, = O(T_1/5) where

/(@)

and f(x) is the stationary distribution function of the process at .

Tu(e) = s [u' @ ) <x>] , (5.16)

Equivalently,

COROLLARY 3 (C.F. THEOREM 5): Assume X is stationary. Furthermore, assume n — oo, T
— 00, Apr — 0, by — 0 (as n,T — o0) such that %(An,T)a = O(1) for some o € (0,%) and
enr — 0 (as n,T — o0) such that %(Ani)ﬁ = 0(1) for some B € (0,%). Then, (Af?mT)(x) 5
o%(x) Vo € . Additionally, the asymptotic distribution of the diffusion function estimator is of
the form

ST {aﬁnm (z) — 02(z) — T2 (m)} =N (0, 2?((;3))) , (5.17)

if hpr = o0(enT), €noT — 0 and e, = O(n_1/5) where

Cpa(a) = g {(a%))' J;((;”)) +3 (02(96))"] , (5.18)

and f(x) is the stationary distribution function of the process at .

Interestingly, Corollaries 2 and 3 apply to the stationary case as well as to the case where the
process is not initialized at the stationary distribution, while being endowed with a time-invariant
stationary density at least in the limit. The latter situation is known as positive-recurrence and
is such that the speed measure of the process (from Lemma 5 above) is finite, i.e. $(D) < co. In
particular, the normalized speed measure coincides with the limiting distribution of X (c.f. Pollack

and Siegmund (1985)), that is

lim P*(X; < z) = sh2) L en
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5.6. Practical Implementation

The estimators presented and discussed in this paper are sample analogues to the true theoretical
functions. They are written as weighted averages based on convoluted smoothing functions. As
shown in Remark 6 and 10 above our asymptotic results readily apply to weighted averages based
on simple kernels. In this case, by virtue of the generality of our set-up, only straightforward
modifications to the theory outlined in the convoluted case are needed.

In both the simple and the convoluted case, practical implementation of our methodology
requires the choice of the kernel and relevant bandwidth(s) along with an appropriate specification
for the local time factor estimator (Lx (T, x), that is) that drives the rates of convergence of the
functional estimates.

We start with local time. Theorem 1 provides us with an easy way to estimate it consistently for
every sample path using kernels. Note that in applications it is often conventional to normalize T’
to 1. This implies that the admissible bandwidth A, - is proportional to n~F with k € (0, %) Since

the rate of convergence of the estimated local time to the true process is ﬁ (c.f. Bandi (1998)),

ime

T
that might be chosen using automated methods for bandwidth selection in density estimation (c.f.

it i1s convenient to set hZ equal to cmmemnfé where ¢jtime 18 a constant of proportionality
Pagan and Ullah (1999)). >From a practical standpoint, functional estimation of the local time
factor is perfectly analogous to functional estimation of a marginal density function. What changes
with respect to the standard case that assumes stationarity is the broader interpretation of the
proposed estimator (c.f. Bandi (1998) for additional discussion). We now turn to the functions of
interest.

In the convoluted case two window widths (i.e. hy, 7 and e,7) need to be chosen. In light
of the asymptotic role played by the local time factor in the additional smoothing (see the proof
of Theorem 3, for example), it is natural to choose h, 7 equal to hff,%me both in the drift and
in the diffusion case. The choice of the ‘leading’ (provided h, 1 = 0(gyr)) bandwidth e, 1 is
more awkward. Consider the diffusion case and normalize T" to 1. Remark 7 above illustrates the
relationship between the rate of convergence of the leading bandwidth €T and the limiting trade-

off between bias and variance effects for a fixed time span 7. Based on the limit theory and Remark

dif f
n,T

the optimal rate (i) to eliminate the influence of the bias term from the asymptotic distribution.

equal to cdiff#n_z_li. We undersmooth slightly with respect to

8 it is convenient to set ¢ Tog (1)

The constant cg4; ¢y can be found using standard automated criteria (such as cross-validation) under
the constraint that h,r < 5?? . Given that the drift cannot be identified consistently over a

)

fixed span of data, the admissible condition that the ‘leading’ drift bandwidth ought to satisfy
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cannot be expressed in closed-form as a function of the number of observations. Nonetheless, since

the feasible drift bandwidth vanishes at a slower pace than the feasible diffusion bandwidth, a

. . dri _1 .
simple rule-of-thumb can be applied: we can set eanf b= cdm'ftﬁn 1 and choose cgpifs using
automated methods under the constraint that 6?%’0 b 6;1:%70

the role played by local time in the functional estimation of the drift (c.f. Theorem 3) and set
drift
EnT

. More rigorously, one could recognize

(z) = cdﬁftmfx (T, w)_% Again, we undersmooth slightly with respect to the optimal
case (62”% Ha) o fX (T, x)_%) in order to achieve a close-to-optimal rate, eliminate the influence of
the bias term from the limiting distribution and center it around zero. This choice is level-specific
and implies less smoothing in areas that are often visited. In other words, there is explicit scope
for local adaptation of the leading drift bandwidth to the number of visits to the point at which
estimation is performed. Being the diffusion function estimable over a fixed span of time, the
need for level-dependent bandwidth choices appears to be less compelling. Nonetheless, standard
arguments in favor of level-specific choices leading to bias reduction (c.f. Pagan and Ullah (1999),
for example) can still be made in our framework, even in the diffusion case.

In light of the limiting results in Remarks 6 and 10 above, it is noted that bandwidth choice in
the simple case entails the same procedures as in the convoluted case with the leading bandwidth
en,T being replaced by h, 7. As a caveat, the use of selection criteria designed for density estimation
and/or standard regression analysis can only be considered a preliminary solution in our framework.
Future research should focus on the design of automated criteria for window selection in the context
of nonparametric diffusion model estimation.

We now turn to the kernel. It is well known that choosing the kernel is less crucial than choosing
the optimal window width (also, see Bandi and Nguyen (2000) for simulations in the diffusion case).
For the suggested bandwidth choices, what matters to determine the constant of proportionality
in the asymptotic variance in the convoluted case is the kernel being used in the preliminary
smoothing. We use an indicator function but the generality of the methodology makes it clear
that any smooth kernel could have been used instead. In fact, if we had used a smooth kernel, the
constants of proportionality in the limiting variances would be the same as in the single smoothing
case (i.e. [K?(s)ds and 4 [ K*(s)ds). In consequence, the smoothing function can be chosen to
minimize the asymptotic dispersion of the estimates. Coherently with the standard functional
estimation of conditional expectations in the discrete-time context, the use of higher-order kernels
is expected to improve the rate of convergence to zero of the bias term (c.f. the proof of Theorem

3) when T is not fixed. Interestingly, for a fixed T', the use of higher-order kernels does not increase

the rate of convergence of the random bias term in the case of diffusion estimation.
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Generally speaking, the analogy between our theory and the standard theory for estimating
conditional expectations in discrete-time reveals that conventional methods for selecting the kernel
function (Hérdle (1990) and Pagan and Ullah (1999), for example) readily extend to the non-
parametric estimation of diffusions in the presence of single-smoothing and an enlarging span of

data.

6. CONCLUSION

This paper shows how to identify and consistently estimate both the drift and the diffusion
terms of a general homogeneous stochastic differential equation under broad assumptions on the
data generating process. The method relies on the construction of functional sample counterparts
to conditional expectations and can be extended to multi-equation specifications. The definition
of the estimators in the multivariate case is straightforward but important technical difficulties
associated with the curse of dimensionality arise in that case when deriving a limit theory along
the lines given here. In particular, important issues concerning the recurrence of the process and the
existence of local time in higher dimensions make the problem especially challenging. For instance,
Brownian motion is well known to be transient rather than recurrent in dimensions greater than
two.

Nonetheless, Brugiére (1993) extends the methods in Florens-Zmirou (1993) to prove a general
limit theory for a matrix of diffusion functions based on a probabilistic tool that corresponds to
a general version of the local time factor. Equivalently, at the natural cost of a reduction in
the rates of convergence, we expect the techniques that we introduce in the present paper to be
generalizable to permit the development of an asymptotic theory for nonparametric estimates of
the drift and diffusion matrices of multivariate processes that might not possess a time-invariant

density. Research on this topic is being conducted and will be reported in later work.

APPENDIX A: PROOFS

PROOF OF LEMMA 1: See Revuz and Yor (1998), Corollary 1.8, page 226.
PrOOF OF LEMMA 2: See Revuz and Yor (1998), Exercise 1.15, page 232.
PROOF OF LEMMA 3: See Revuz and Yor (1998), Corollary 1.9, page 227.

PROOF OF LEMMA 4: The first part of the result is stated in Yor (1983). We prove the result in the
second case (a < 0, that is). Start by considering a simple application of the Tanaka formula (c.f. Definition
1), namely
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t
1
Xt+ X(_]F‘i‘/ 1(X5>0)dXs+§LX(t70)7
JO

ot 1
(Xt — a)+ = (X() — a)+ + / 1(X3>a)dXS —+ §LX(t,a)
JO

Subtract the second expression from the first expression, giving
X=X —a)t
t

1
= X§ - (%0- 0" - | Lasx.codXe + 3(Lx(t,0) - Lx(t,0)
JO

Equivalently, we can write

O

N A 1
= Xg - (Xo—a/N" - / La/r<x,<0)@Xs + 5 (Lx (t,0) = Lx (¢, a/X)).
JO

Now, multiply through by v/A. This gives,

VX = (X —a/N)7T)
= VAXF - (Xo—a/AN)T) =V /t L(a/a<x,<0)dXs +

+%\/X(Lx(t,0) — Lx(t,a/N)).

Apparently,
|al

o
Hence, the asymptotic distribution of %\/X(LX (t,0)—Lx(t,a/N)) is driven by the term VA jot L(a/a<x,<0)dXs
as A — oo. Further,

VX = (Xe = a/ N+ VAIXS — (Xo —a/N)T| <2

t t ¢
\/X/ 1(a/r<x,<0)dXs = \/X/ La/r<x,<0)i(Xs)ds + \/X/ 1(a/r<x,<0)0(Xs)dDBs. (7.1)
Jo Jo Jo

Now notice that \/ng Lia/r<x,<o)p(Xs)ds %% 0 as A — co. In fact, by the occupation time formula (c.f.
Lemma 2) we can write

-t
\/X/ L(a/a<x,<0)(Xs)ds
Jo
°° b

= \/X/ l(a/ASbSO):Q(_(b))LX(tab)db;
and, setting Ab = ¢, this becomes

= / T HefA)
NS (a<c<0) o2(c/N)

By the properties of the local time (in particular, the map a — Lx(¢,a) is a.s. continuous and has compact
support — c.f. Lemma 1) and the dominated convergence theorem, it follows that

©(0)
a2(0)

Lx(t,c/N)dc.

/ 1(a§c§0) MLX (t7 C/A)dc a._s)- —a LX (tv 0)7

a?(c/A)
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as A — oo. In consequence,

pu(e/A)
\/— La<e<o)y 5y o2 (c/\)

This, in turn, implies that the asymptotic behaviour of (7.1) is determined by VA jg 1(a/r<x,<0)0(Xs)dBs.
Now define

Lx(t,c/N)de “5 0.

M (t) := VA / (a/2<x,<0)0(Xs)dBs.

M? is a continuous martingale with quadratic variation process {[M?*]; : t > 0} given by

A /Ot 1(0/A§XS§0)02(XS)ds.
Again, by the occupation time formula, the properties of local time and dominated convergence, we get
[M*), “% —aLx(t,0).
Setting
=inf{s: [M*], > t},

Bt MA o is a Brownian motion and Mt = B[ M- In fact, Et is the so-called Dambis, Dubins-Schwarz

Browman motion of ZV[ (c.f. Revuz and Yor (1998, Theorem 1.6, page 173 and, for an asymptotic version,
Theorem 2.3, page 496)) It follows that

t
Mt)\ = \/X/ 1(a§)\XSSO)O—(XS)dBS
J0

d

e B_arx(t,0)

p _
=V —GBLX (t,0)
d

= B(Lx(t,0),—a)>

where Lx (t,0) = lim._,g 2 [0 0, e[0°(Xs)ds a.s. Va,t and B is a standard Brownian sheet. So far, we have
proved convergence of the marglnals of a generic family B, of probability measures to corresponding marginal
limit distributions. It is easy to verify the compactness of P, . The proof follows standard arguments and is
omitted here for brevity (see Billingsley (1968)). Weak convergence then follows. In particular, as A — oo,
the process (indexed by (t,a) € By x R_)

VA a
(X s Lx(t.a) s 5-{Lx (£.5) = Lx(t,0)})
converges weakly to
(Xt ; Lx(t,a) s B(Lx(t,0), —a),
where (B(s,c) ; (s,c) € R?) is a standard Brownian sheet independent of X. (For the independence property,

see Revuz and Yor (1998, Exercise 2.12, Chapter XIII).) Then, a simple generalization of the previous finding
to the spatial location r # 0 gives

%\/X{LX (t.r+5) = L)} & B(Lx (1,7, ~),

as A — 00, and this proves the stated result.
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PRrROOF OF LEMMA 5: Immediate given the limit-quotient theorem in Revuz and Yor (1998, Theorem
3.12, page 408) and the observation that any invariant measure for scalar diffusions has to be equal (up to
multiplication by a constant) to the speed measure.

PROOF OF THEOREM 1: See Florens-Zmirou (1993) for the case involving a discontinuous kernel function.
For full derivations in the case of a continuous kernel, see Bandi and Phillips (1998).

PROOF OF COROLLARY 1: If T — oo and £ = A, 7 — 0, then 7 .1 Ly K (%) converges to

Lx (00, ) provided Iy, — 0 (as n — 00) in such a way that %@(AHT) = O,.5.(1) for some a € (0, %)

But Lx (co,z) = Lx (sup{t : X; = x},z) as. (c.f. Revuz and Yor (1998, page 223, Proposition 1.3, Remark
2)). And, if the process is recurrent, then Lx ((sup{t: X; = x}),x) = 00 a.s.

PrOOF OF THEOREM 2: We start by considering the expression

Sl Zz 1K ( Anf z) (B, 7 (Xia, ) — M(Xin, 1))
e UL K ()
1T > K (2—?%) wXin, )
REYLK(TR)

First, we examine (7.3). We want to prove that for some ¢ > 0

; Zz 1K <A77Tw> MXia, 1)
B K (D)
Jo 7 (ii—’f) M(Xs)deroa.S_ (E‘#’TT’”(An:T)l/%s)
oy w5 K (Xh—‘) ds + 0q.s. (%ﬁ—’,xl(AnyT)l/Q—ﬂ _

We begin with the numerator and look at the quantity

A 2T S iNpr — L T 1 XS - X
LY K (SE ) s, - [ K (S uxs (7.4)

n, T = nT
i=

)

1
Given the properties of K(.) and the assumptions on p(.), (7.4) is seen to be bounded as follows

IS e (K i, - (B i

hn,T i—0 iT/n hn,T hn,T
A, Xo— A, XnA,p —

B (i P76 o | B = i (X, r)
hn,T hn,T hn,T hn,T

n—1 (s
1 ('L“Fl)An,T X — T XA .
< K(= Xin o) — K[ =22 2 (XA )| ds
- hn,T Z0 /An T |: < h’n,T > M( Bt ) < hn,T ) M( An,1 ):|
1 n— (4+1)A n, T X.—x X. o A .,
- K - Xs) —K : X; n ds| +2C30,.s. o
o, ; -/An " [ < b, 1 ) (o) < o1 ) uXia "T)] ’ <hn,T )
(i+1) Ay T )? _ X, - X
< is Anr w(Xin, . )ds (7.5)
Ay, hn,T hn,T
n—1 ,
1 (i4+1)An 1 -XS —r
T Z /A K < I o ) (n(Xo) — m(Xia, ) ds (7.6)
d | j=0 Y 1A, T n,
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+203Oa.s. (AH’T) )

hn,T

where )}is in (7.5) is on the line segment connecting X, to X;a Now define

n, 1"

Kp,7 = Max sup |Xs — Xin, 1] (7.7)
SN AL << (i) An, 1

By the Hélder property for continuous SMGs (e.g. Revuz and Yor (1998, Exercise 1.20, Chapter V))

Xire — X,
‘B<{t20zlimsupw>0})=0 a.s. (7.8)
e—0 e
where 93 is the Lebesgue measure on Ry and (7.8) holds for every v < 3. In turn, (7.8) implies that
Rn,T
— = 04.5.(1 .
R =00 1) (7.9

for every o < . Hence, if h,, 7 is such that #}T(AH,T)"‘ = O(1) for some « € (0, 3), then

[e%

A
Rn, T Rn, T n,T

— = ’ 2= = 04.5.(1 7.10
b AL b %a.e.(1) (7.10)

as n,T — oo. In view of (7.10) we have

K (;} _x> - K <XS —° —&—oals(l)) , (7.11)

hnT hnT

) )

uniformly over ¢ = 1, ..., n. It follows from (7.7) and (7.11) that (7.5) is bounded by
Hn,T) 1 nil /'(i"'l)AmT
hn,T hn,T i—0 AT

(

= (Z::T) hnl,T ./OT
(
(

K <% + Oa.s(l)) ‘ WXy + 04.5.(1))ds
n,T

K (Bt o) | e + o )

) L /OO 'K <$ +oa.s(1))‘u(p)fx (Tp) dp

hn,T J —oc0

) /_Z ‘KI (¢ + Oa.s(l))) 1 qhn 1 + 2)Lx (T, qhy 1 + x) dq

< o <hT) Ous (Tx(T,2)),

n,T

for some constant Cy, by virtue of the integrability of K’ and the continuity of Lx and p. Employing similar
methods we can prove that (7.6) is bounded by

05 (Hn,T) Oa.s (fx(T, l’)) .

In consequence, the formula for the numerator (7.4) holds for some € > 0 such that o < § —e. As for the
denominator of (7.3), we can show the stated result using the same steps as for (7.5) above. Next, we prove
that

T s— Lx(T,x —e
Iy K () pOGs +owe (BEEDO0 ) pats(a) tonn) | as i rag
= (T,x) = a.s. - .
JbT hnl,:pK (Xh_l_m> ds + 0q.s. (L;}(lez (An,T)1/2_6> 5(@) + 0a..(1)

where s(x) is the speed measure of the process. By virtue of Lemma 5, for a fixed h, 7, we can write
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T -z 0 a—x

0 hnl,l K thz,'l' > M(Xs)ds a.s. J—00 hnl1 K (hn 1 M(a)s(a)ds
T s—T "o0 a—x ’
0 hnll K (th,l ) ds —o00 hnll K (hml S(Q)ds

which becomes
ix;o ﬁK Zfi p(a)s(a)ds _ [fooo K (u) p(x + by pu)s(x + by, pu)du
‘_00 hl K (}?71, s(a)ds JEOOOK(U) s(x—&—hnyTu)du
o0 Nyt n,T
(@)s(x)

by the continuity of s o u and dominated convergence as hy, 7 — 0 with n,T — oo so that %(Anyq«)“ =
Oa.s.(1) for some a € (0,3) Vo € ©. This establishes (7.12). We now turn to the analysis of (7.2). It is

sufficient to prove that

X, ) = Xia, +) + 0as.(1) (7.13)
in order to verify the stated result. To do so, we bound

My, 7 (18p,1)—1

1 " s tane — Xian,]

> A — w(Xin, )
n, T’

mn,T(iAn,T)

=0

using the Lipschitz property of p as follows:

Mo, 1 (10, 1)—1
1 ! ' [Xt(iA 1)+ A — Xt(A 'r)j]
A = = - - XiAn
m(idn.r) ; A1 1l 1)
1 My (18, 7)1 t(i1An, 1)+ 00,1
_ . ((Xs) — pu(Xin, +))ds
mn,T(ZAn’T)An,T ]_ZO ./t(iAn )5 "’
1 My T 'LAH T ZA,, T +An,,T
: o(X,)dB;
mn,T(zAn,T)An,T /(zAn )5 ( )
1 My, T IAn T ZA,, T -‘rAn,,T
N R N - / o(X,)dB, 714
6 (Kn,1) m(iA, ) A1 t(iAn, 1) ) (19

. .. (1A, A, BRI
where £, 7 has its usual definition. Define yy;ia, ), +A,.+ = Jt((ZZA " TT JitAnr (X,)dBs, which is measurable

with respect to Syia, 1)+, .+ Where Sy, )40, ={A €S A{t(zAn )i+ Apr <t} € SVt > 0}
for all j < m,, 7. Furthermore,

E (yt(iAn,T)j-f-An,T) = 07
and, by the Ito isometry,

t(iAn, )i +A

Ou(inr 2+ 200 = VAT (Ye(it, 1) 40,0) = B / 0?(X,)ds | < oo,

. t(iA”,T)]’
for all j < mp1. S0, (Ye(ian 1)+ 2n 2 St(iAn 1);+A, 1) 1S @ martingale difference array with zero mean and
variance ;A ;),+A, - Invoking a strong law of large numbers for martingale differences (e.g. Hall and

Heyde (1980, Theorem 2.19, page 36)), we have

28



1 m(iA”’T)fl

m Jgo Ye(in,, 1) i+An,r
1 mn,'l'(iAn;T)71 't(iA71,'1')j+An:'1'
- - 0(X:)dBs “% 0 as n, T — oo,
m(iA, 1) ; -/t(iAn,'l')j

as my,,r — oo (Vi). We now explore the rate of convergence. Consider,

1 M, ( IA" ) (1An, 1)+ D01
/ o0(Xs)dBs
t

Mo, 7(180,7) A7 (iBn.7)

Anr (G+1)An,r
1 = =1 1{\X]A = Xin, pl<enT} [An . U(XS)st

A Anr
n,T o i1 YIXga, —Xia, oyl <enr)

1 n—1 (J+1)An,
2en,T ijl 1{‘XJ'A,,,,T X»A,LT\<En T} [An P U(Xs)st

AT noq
2571,'1' j=1 {‘XjAn,'l' —Xin ApT ‘<6n 1}
First, analyze the numerator of this expression. Write,
Xia 1 g G+ A,
1B, T _
Un,T (r) = \VEn,T % Z 1{|XJAn7,1.—X,L-An)T\ggn’,l.}/ 0(Xs)dBs
nT j=1 . ]An,'l'
1 [MZ]ZI ) B
- Loxia, —Xin, ,|<e ,-}/ 0(Xs)dBs.
2VenT A S 7

Xing, o . . . .. Xin, r1 .
U, ™" is a martingale whose quadratic variation process [Un ot ] is
, , -

geen] L o) 11 GH)Anr ]
| i
= Tor X Mens N s (i 0 (D) B
1 T )
= o | L0k e g o ()ds 40 (1)
= JIx(T,Xia,,) + 0as (1)
= 3 Xia, VT OT, Xin, ) + 0 (1),

by virtue of (3.5). Now, as in Theorem 3.4 in Phillips and Ploberger (1996), expanding the probability space
as needed, we have

i 2 i g
(025 )’ [Ulee], —ou
and then it follows that

1 Apg Inr]— (+1)An, 7
- Ay 28,7 £ej=1 1{‘XJA, —Xia,, p|<en7} [JAH T O—(Xs)st
Lx(T, Xin, 1 )en,T At

2en,1 j=1 1{‘XjAn)T*XiAn)T‘SEn,T}
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This result implies that the bound (7.14) becomes

1 a.s
CG(Hn,T) + Oa.s. = = O
Lx(T,Xin, ,)ent

In fact, \/en,TfX (T, Xin, 1) “% 00 as n, T — oo since we control &, 7 to ensure that this property holds.

This proves the stated result.

PRrROOF OF THEOREM 3: Write the estimation error in two components as follows

Anr 1 Xin, =%\ ~
Fon.10 i K ( Bt fon, 7 (Xin, )

n T n 1 N Iu,(:r)
Ao, T ZZ 1 K < Ao, T >
A, iNg, 7T\ ~ A, Ap 1%
P K (TR i (Kia) RS K () (X, )
= » Xin, o —
T Sar o (Fgee )
term V'

n ir, 7% Ay n Xin, p—¢
S ST K (et )u(an,n pla) 728 S K (S5

17,1 1

Ln,T nl Ln, T LAnl
HTZZ 1K( [ ) ILTZZ 1K< ha, >
~~

term B

= term V 4+ term B.

Roughly speaking, this is a decomposition into a bias term B and a second effect, V. We start with the bias
term B. Combining the two fractions constituting B, we obtain

YL 1K( Kot (u(Xia, ) — ()
R I K (S

nl

By Lemma 5 (c.f. the proof of Theorem 2), we find that

TEL Y 1K ",’ )(M(XiA”,T)—M(JC))
i o K (3 )(u(X) () ds + 0.0, (1)
VK (3= )ds+o“(1>
,”J_ (,“) — p(x)) s(a)da + 0. (1)
el 0 ( ) s(a)da + 04.5.(1)

Neglecting the smaller orders of magnitude we can write

+ 04.5.(1).

e ( #=2) (u(a) - pu(x)) s(a)da

hn#, = <g;f) s(a)da

I K (w) (e + why 1) — () s(2 + why, ) du
75 K () s(x + uhy, ) du
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jix;o KW <uh"’TMI(m) + (“hn,T)Z%M” (z) + o(th%,T)>

e X
j_oo K (u) s(x + uh,, r)du

! 1 1"
(5600 4t )+ (a5 )+ 0(a20 ) )

h2 7K, (1 " (z) + w(@)s () (f();;(x)> +o(h2 1)

n,T
where K; = [w?K(u)du

by the symmetry of K(.) (c.f. Assumption 2) and dominated convergence. Now
consider the term V', viz.

Bl ST K () i (Kia) 525 S K (52 X, )
R Tl K (Z5) R LK (T
_:JTLZ'L 1K( AIT ) (1, 7(Xin, o) — 1(Xin, 1))
e T K (TE)

hn,'l'

The numerator can be written as

A, " N
T (F

T ~
=) i (X ) = (Ko, )

n, i ( Ao —rc) 5 Yixsa, e Xany g <o} (X1 = Xymyn) = Xz ) An7]
n, i—1 nT

Tl
Zj:1 {IXja,, p—Xia,, pl<enr}

n T ZK < N $> [“(XiT/n) - ,LL(an,,)] =1

2, T {anA r—Xin,, pl<en,1}
n T An,'l' n

2en,T
num num
Vi VQ .

i=1 H1Xa, 0= Xia, p1Sen,0}

It i

=L

is immediate to prove that V3™ = O (?: p > . Notice that

(G+1)T/n
XG+1yr/n = Xjrm = /

JiT/n

(J+D)T/n
w(Xs)ds + / 0(Xs)dBs.

JiT/n
Hence,

n n—1 n (F+1)T/n
An,T ZK XZAM, —x Zj:l 1{\XjA,,,,T—X,:A,,,,T\SE”,T}T [[j%/n (M(Xs) - M(Xz‘T/n)) ds}
hn,T : hn,T

T
2 =1 WiXja, p—Xia, p|<enr}

(A:'r)
n n—1 n ((j+1)T/n
+ Anr ZK (XZAM - x> 2 5=t W1Xsa,,0—Xia, o | Sona} T [JjT/n ”(Xs)st]
I, 1 P b, Z?:l 1{‘XjAn)T*X'iAn)T‘Sgn,'l'}
(B..r(1))

These two components comprise an additional bias effect, A, 7, and a variance effect, B, (1)
examine ,/Z, 7By 7(r), viz.

First,

31



1 n—1 G+1D)T/n
,—EH,TB _ n T ZK < [7ANS T 33> ﬁ Z] =1 1{|XJA71 I XlAn T |<€” 1} |:jJT/n (XS)dBS

T Y LXa, o —Xea, pl<en )

The term B, 1(r) has a quadratic variation which can be analysed as follows:

[Bn,T]r
A, o\ 2l o N Xia
— n, K 1Qn,T K n, T %
( hn,T > ; ; ( n T ) ( hn,T )

2
1(_a -1 GO/ oy
z( 5,”) Z;‘Z—l L8, 0 Xia, o1 <en o XA, 0~ Xna,, ol <enr} [JJT/H ( s)ds}

n 1 1 An 1 1
2€n o Laj=1 AIXja,, p—Xia, p|<en7} 2€n o Laj=1{Xia,, o —Xka, pl<enr}

[Tr] [Tr] _
( ) / ds/ duK( )K(Xu m) X
n T n T hn T

g Jo BLx-xize, )y XXl e, 7 (X + 0as(1)
(26” f 146 s|<5,LT}db> (25” f 1{\b—u\gs,,,,T}db>

+oo _
( ) / ds/ duK< x)K(u m)><
nT nT hn,T
e S dbLgygi<c, 3 (p—uj<e, 7302 (D) Lx (T,0) Lx (rT, s)Lx (rT, u) B
0q.5(1).
(26}7,,'1' Jfoo 1{|b*5|§5n,'1'}L(T’ b)db> (2577,,'1' JfOoo 1{|b*u|§5n,'1'}L(T’ b)db>

+ 04.5(1)

provided h,, 7 and &, 7 are such that %%Z(AH,T)“ = Oq..(1) for some a € (0,3) and M( nr)? =
Oq.s.(1) for some 3 € (0,4) as n, T — oo. Let

s—x o and u—xr .
hn,T e hn,T -
Then,
1 o'e) 400
P /700 da /700 deK(a)K(e) x
y S0 dbL oo an, p<en 2} L{jo—a—ehy pi<en 7302 (0)Lx (T, 0) Lx (T, x 4 ahy 1) Lx (rT, x 4 ehy, 1)
(25711 T ji)o 1{“’*1*“}% 1r|<en, '1'}ZX (T’ b)db> (25,11},[ jfooo 1{‘b7176hn,'1"g5n,'1'}zx (Ta b)db>
+0a S
+oo
= d deK(a
4€n T / “ / ° )
25 db1 (2=e _gmnr <yl ome e“_nz£|<1}02(b)zx(T, b)Lx (rT,x + ahy 1) Lx (rT,z + ehp 1)
X En,T n,T €n,T -
1 (oo - _
Setting,
b—x
= 2’7
En,T

this last expression becomes
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/_O; da /_:O deK(a)K(e) x
4

T dZ]. hy, 1 hy,
Js {lz—agl <1} {le—ep <1}

<% J—oo {lo— ah_"zL‘<1} (T I’+Z6n T)d > ( j—oo {1+ ehili|<1} (T I’+Z6n T)Cl )

+0a.s(1)‘

o?(x)Lx(T,z + zsnyT)fX (rT,x + ahnyT)fX (rT,x + ehy,T)

Now, if h,, 1 = o(e,, 1), then

(fX (rT,x) ) 2

1
B, 7. as. L 9 X
(Bl = 27 (z) Lx(T,x)

whereas if h,, 1 = O(ep, 1) with hy, 1 /en 1 — ¢ > 0, then

2y X0 T2))

ZX(T, QU)

a.s.

[Bn,T]r — 0(/,0'

1
2

where

400 loodzlz_a L
da/ deK(a)K(e) | 7—— o Iéll}oil de|<1}
o J-oo (5 f—oo 1{|27(ba|§1}d2> (5 f_oo 1{‘27¢6|§1}d2>
da/

1 [
deK(a)K(e)g/ A21{—gai<1y 1|z —pel<1}

J =00
geel

400 ge'e]
da/ de/ dzK(a)K(e)1{: paj<1}1{z—sel<1}

(Z+1)/¢ (=+1)/0
/ daK(a)K(e).
(

1/
2

1/
2 J(z=1)/¢ z—1)/¢

By earlier arguments (e.g. the proof of Lemma 4) the above results imply that

Bur(l) = MN <0,1M)

En,T = =
:IT Zz . K ( 12,7,1’71" > 2 LX(T, .T)
and
— B, (1 1
en,7Lx (T, ) (1) —— =N <O, 50'2($))
A Dy, T
n T Zl 1 K ( hn,'l' >

provided h,,,p = o(ep, ). If hyyr = O(ep,r) and hy, /e, — ¢ >0, then

— B, (1 1
En,TLX(T7 1’) Z ;E ) " 1) =N (0, 594)02@)) .
ho, T =1

nT

Next, examine the additional bias term A,, r. We have

Z K ( An,T 1) Z?;ll 1UXJA 7 Xin, o 15en, 1'}('U'(Xj'l'/”)_:U‘(Xi'l'/n))
Ry, p £ei=1

T
nT Z] 11(\X]A T IA”T‘SEn,T}

An T
An,1 i, 77T o An,1 i, 77T
n T Zl 1 K ( hn,'l' > n T Zl 1 K ( hn T >
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n—1 (G+1)T/n
a0 g (Rt ) B 00y £ [ 0
n
=1 hn 1 ZJ 11(\XJA1 =Xin, g l<en,T}

+

Pt S K (St

1o g (a,$> 5% 1(\01:(1\55,,,3}(#( )*M(“))S(b)db d
= P S KA J 2% Lp—al<e, ry8(b)db Slajde + Oq.s (A}z/@ )
Yo K ( > s(a)da

Neglecting the order term we can write

En, T

# IS 1{ (bmehare \<l} (p(b)—p(x+hyy,rc))s(b)db
JZ K (o) -

i 1{ pEm—— Kl}s(b)db s(x + hy,rc)de
€, T =

7 K (¢) s(x + hyre)de

e o) ()= (@)s(oten re)da

el
J—oc 1{‘(1 b e

= K(o) $(z + hy,rc)de

ffo 1{ hE':ZTL\<1
jfo K (¢) s(x + hy, re)de
2% 1{ hy 1€ }(H(l’)*M(Z’-H‘bn,'1'C))s(a:+6n,r1va)da

_z_‘<l

ffoooK(c) Jj 4

} s(xz+en,ra)da

hoy . pc S(:E-‘,—E,L,Ta)da S(."If + hn,TC)dC
{‘af—’—” \<1}

En, T '~

ffooo K (¢) s(x + hy,re)de

Je21 oty }(u’ @enrathu’ (z)(sn,m)2+o) (s(@)+en,ras’ (2)+4s" (@) (en,ra)*+0) da
fjooo K (c) = 1{

s(x + hy,re)de

la—Z2+—I<
n, T

[ }S(.'z:—i-s,l’r[a)da

[T K (0) s(z + hp re)de

ffcoo 1{ ‘u,hT_"‘ } (p,/ (J:)h,,,,TC-F%N«” (W)(hn,TC)z‘FO) (S(JJ)-FS”,,TGS/ (Z’)+%S” (:!1)(6,L,Ta)2+o) da

<1

I K() Enr = i~ 1{ e ‘<l}5(1+5n,'1'a)da s(x + hy,re)de
a 17 K (¢) s(x + hn,re)de
Hence, if hy, 7 = o(en, 1), then
An,T
A, n Xi,A”, —T
hf i1 K < hﬁ >
175 oz (W @enratin” @enraf+o) (s tenras’ @+4s @) enra+o) do
_ J*"o Kle 2 i<y s(z+en, ra)da s(a + hn,re)de
B 25 K (¢) s(x + hy re)de
. %0 taren (K @haretdn” @) (hnre)+o) (s@)tenras (@)+4s” (@)(en 1) +o) da
B Jo K (o) ( = 1(a<l}s(2+sn)qu)da s(z + hy, re)de
75 K (¢) s(x + hy re)de
_ (6 )QKind M’(x)sl(m)_i_l'u”( ) +0( )+O(h )
wl L s(z) 2 nT

where Ki" = 1 [* 4?1y, <13da = . Now suppose hn 1 = O(en,1) and 2 IT — ¢. Then,

An T
Ap i, 7T
n 1 ZZ 1 K ( hn,'l' )
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oo ffoool(\a—d;c\gl} Iu’(ac)sn)qva-f—%,u” (:1:)(5”"1-0,)24-0 (s(m)—f—smq-asl(:1:)+%s”(m)(sn#-a)z-l—o)da
S K(0) ( )

00 I 1ja—ge|<1} S(z+en,ra)da

jfooo K (¢) s(x + hy, re)de

o I Ta—sel<1 #/(fﬂ)hn,,TC-f—%#” (z)(hn,Tc)*+0 5(z)+511,,TaS/(Cﬂ)-f-%s/l(z)(E”,Ta)z-f—o da
S K (o) } ( ) ( ) s(x + hy,,re)de

o0 I 1ja—ge|<1} s(z+en, ra)da L
J— \I.J-U

ffooo K (¢) s(x + hy,re)de

s(x + hy,re)de
(715)

We can use the transformation g = a — ¢c¢ and write (7.15) as

1% 1 (W @enr(oro0 . @enn(a+00) +0 ) (s(@)+en,r(e+00)s (@) +5s" (@) (e 1 (0+06)* +0) dg

oK) T Tigi<ny (@t en 1 (g+09))dg o
jfooo K (¢) s(x + hy,re)de
x8(x + hy,pe)de
7 J2% 1gg1<1y (#' (2)s(@)en 1 (gHoe)t3u (@)s(@)(en1 (g+00)) 4% 1 (9+60)% (@)1 (z)> 49
— Jo K (€) 125 Tgisry s@ten m(gtde))dg o e +o(e 1)
J25 K (¢) s(x + hy,re)de i
o0 1% e (# @s@enr G rin’ @@ (e +6° ) el p(o+02)s (@ ) ) dg
_ Jo K () %% Lygisyys(@ten r(g+6e))dg ot fnre)de +0(e2 1)
T K (@) + Ay re)de "

by the symmetry of the indicator kernel. Then,

I Lgai<n) (u’ (@)8(@)en,r(Be)+1n (@)8(2)e2 1 (g2 +62 ) +e2 1 (g2 +62c)s () (m)) dg

.[—oo K (C) chw 1(\9\Sl}S(z+5n,,T(Q+(f)c))dg S(x + hn’Tc)dC
7 K () s(z + hyre)de
_ 22 K () ' ()s(2)en,(¢c) o 1““1}s(iﬁm(gwc))dg (s(x) + 8 (@) hnre+ O> e
J2o K (€) s(x + hy,pe)de

00 ffooclug\su(%u” (w)s(z)el b7 ) dg /

+L°O S 8 1“<1}S(w+€w-(g+¢c>>dg) (S(x) + s (@) hn, T+ o> de
JZ K () s(@ + hn,re)de

00 T2 Taa<ny (%#” (m)S(w)Ei,q-gz) dg ,

+LOO e JZ5% g1y s(aten, (g +6c))dg (S(m) + 5 () hn,C + 0> de

jfooo K (¢) s(x + hy, rc)de

oo [2 1001y (2,09% @K (@) dg :
K@) T e ey (30 + 8 @hnret o) de

jfooo K (¢) s(x + hy, re)de

00 2% Loz (€097 s @)k (2) dg ,
KO T et (2 + 5 @hre +o) de

ffooo K (¢) s(x + hy,re)de

But,

S K ) 1 @)s()en,r(00) ey rrrsayas (50) + 5 (2o e+ o) de
7 K (¢) s(x + hy,re)de
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oo o 1<y in (z)s(z)el d°c® ) dg ,
S K(€) ST 1(g<(1}s(m+s,L,T(g+¢c))dg> (S(x) 5 (@)hnre+ O> de

ffooo K (¢) s(x + hy,re)de

1 ”
= K1¢252,T§M (z),

00 ffooolug\su(%u” (w)S(w)Si,Tf) dg ,
S K Ty eyt ($0) 8 @hare + o) de

jfooo K (¢) s(x + hy, re)de

= Kindsgz,Tiu (.7?),

00 I2% 1 ga<y (22,00%5 @K (@) dg :
Jfoo K (C) ffooo 1Ug\51}8($+6n,'1'(g+¢c))d9 (S(l’) +s (x)hn’TC + 0> de

jfooo K (¢) s(x + hy, re)de

oo 1% Laiz1 (5,097 (@4 (@) dg ,
[ K Q) e S rrtpras (@) 5 @hore +0) de

ffooo K (¢) s(x + hy,re)de

Now, write (7.16) as

1% 1quen (8 @ho et @0 oo ) (s(e)+en o (g+00)s @)+ 43" @) e r(g+00)*+0) dg
Cc

S K(©) 5 Tugi<rys(@ten,m(gtec))dg s(@ + hn,re)de
7 K (0) s(x + hp,pe)de
o I Lgai<ny (u' @)s@hnretdn (@)s@)(hn,ref+enrhn o (g+dc)es (@)’ (z)) dg
_ S K () T2 1 g1<1y s(aten, 1 (gFbc))dg &+ A re)de +o0(e2 )
B 22 K (¢) s(x + hy re)de nT
oo 1% 1o (W @@ rerbn’ @@ petten b rocts @ @) ) dg
— S K(©) J 2% Lgi<nys(@ten, v (g+6c))dg St mele +0(e2 1)
7 K (0) s(x + hp,re)de n T
by the symmetry of the indicator kernel. Then,
oo 1% <0 (W @@ retin @s@) e rharods @ @) do
S K@) T5% Tgg1=ys(@ten, v (g+6c))dg 5(2 + hn,rc)de

7 K (¢) s(x + hp re)de

/:)OOO K (C) H (x)s(m)hn’chfom 1(\g\SL}S(zl-f—s”,,T(g-‘rff)C))d!J (S(I) + S’(x)hn’Tc + O> de
7 K (0) s(x + hp re)de
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oo oS FPIPS! %#H(fﬂ)S(w)hnlc dg ,
Jo K () J“;l(g<£s@+fmlw+¢@yi (SC@‘*S(m)hmTC*‘O)dC

ffooo K (¢) s(x + hy, re)de

00 T2 g1y (hn,'rfn,mczs/ (x)’ (w)) dg /
KO T S o (4 + 5 @hure +o) de

jfooo K (¢) s(x + hy, re)de

But,

ffooo K (C) Ml(m)s(x)hn’chfooo 1(\9\51}S(a:1+6n,'1'(g+¢c))d9 (S(l’) * S/ (x)hn’TC - 0> de

jfooo K (¢) s(x + hy, re)de

oo T2 ey %u/(w) (x)hy pc® | dg ,
2 K () = 1(9<l(}s(m+e,L,T(g+¢c))d)g (s(m) + s (x)hyrc+ o> de

% K (¢) s(x + hy re)de

1
= K1¢ EnTQ/'L ( )

S Luel<ny (hn,'lfn;r(ﬁczs/(w)u/ (w)) dg /
Jo K (o) T= 10, 0y s@ien (a7 60))dg (s(m) + s (x)hy e+ 0) de

ffooo K (¢) s(x + hy,re)de

= K1¢ EnT (x

To conclude, when h,, 7 = O(e,,, 7) with Z"; — ¢, then

N

AnT
fuL v K (et
= 2 (Kid? K (;M (@) + S <x>> .

In consequence, defining the estimation error decomposition as
An T + Bn T(]-)

An T i, 7% Anr in, 2\’
Zz 1 K ( hn, 1 > Zz 1 K ( hn, 1 )

nl nl

E=B+

we can write

A, n Xin,, p—@\ ~
h; Y K ( i; _> o, (XA, 1)
nlz K( nl £E> _M(m)
,L T =1 ” T
B, (1)
St S K ()

+O(Vﬂ+0(%T)+mﬁﬂ+0( )

N N(agﬁmﬂ,

VenrIx(T,a)

= enrLx (T, 95)(
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if hyr = o(en,1), st,TIX (T,z) “3 0 and 5n,TfX (T,x) “% co. If hn, = o(en1), 5n,TZX(T, r) “% 0o and

6751’T =0, (ZX(T, x)) , then

Bz gon K<_;1_m>/7 (Xia, )
hp =1 n n, T \<X 1Ay, 1
. e @)~ Ty(@) | = N (o a%)) ,
Anr K iN, 7% 2
hn, T Zz:l ( hn, T )

VenaIx(T,2)

where

(@) = (en,) Ki™ Eu" @)+ 1 (@)

® .
—
8
~
IS

with Kzlnd % jfo 1{‘a|§1}a2da = % If hn,T = O(enyT) with hn,T/en,T — ¢ > 0, 6751’TZX(T, :U) a.—sf 0 and
en,TfX(T, x) 3 00, then

A1 n X'LAn T\ ~

Rt S K (5 i (K, )
Anr 1 Xir, r—%
hn,'l' 271:1 K ( hn,'l'

where 6, = 5 Lo [EAle (A V0 g (K (e)dzdade. T by = O(enr) with hyr/enr — ¢ > 0,

VenrIx(T,2) )| =N (o, %94)02(33)) ,

re (=1)/o <z 1)/
enarLx (T, r) % 0o and 5n:T = (LX (T, x)) then
A,,,’T Zn K <X'L'A”’T 7x'> ~ X
— N i=1 " hna ) Hn, r(Xia, +) 1
\/5n,TLX (Ta x) fr tt A . - Iu'(x) - Ffjb) (l’) =N <O’ —9(/)02(36)) )

n T Z K i ey 7% A 2
n T =1 ( n T >

where

L) () = €2 1 (Kig® + K™ Gu (2)+ > ((3 " <x>> :

This proves the stated result.

PRrOOF OF THEOREM 4: The proof follows that of Theorem 2 and is omitted here for brevity. See Bandi
and Phillips (1998) for full derivations.

PrOOF OF THEOREM 5: C.f. the proof of Theorem 3.

PROOF OF THEOREM 6: Fix T = T. We write the estimation error as follows:

—&
nT AT ~2
=DPis 1K< . )%,TX

n,T

—*\ 2
n,,T g (XiA”:T)
n vl n T =
" Zz 1 K h, T
term V'

1:, 2T ZZ 1K < ”’T )UZ(XZ ”’T) 7L1 ST ZZ 1K( n T )UZ(x)
+ —

_—x A = XiA ——=x
n T n, T n, T n n, T
ZZ 1 K ( h. = ) h = Zi:l K < h,_ = >

n T n, T’ n,T

term B

= term V + term B.
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As earlier in the drift case, we have a bias term B and a second effect, V. We start with the bias term B.
Using Lemma 2, the numerator of B can be written as

| /_Z K (c) (0%(2)) ch, 7 (LX e xgi(ihi’iz)z ;X = @) “

1
Bnu m

[ o O )

2
00 1 R QLX(T7m+ChnT)
+ /7 K (¢) 5 (0*(a")) <chnj> T —

B3

nuwm

By Lemma 4 the first term has the following limiting form as a functional of a Brownian sheet 2B,

!

b ganlei@)

i e | 2\/_
e Qr
+2hi{;% '/_'OOO 2 \/_ (LX (T, 2+ h,, 7c) — LX(T,:C)> de

= a2 @éﬁ) /0 K(c)B®(Lx (T, ), c)de

(Lx (T, %+ hnrc) — Lx (T, x)) de (7.17)

LX T,z + hy TC) — LX(T,x)) dc

+2hi/; ((;22((2))) [ cK(c)B®(Lx(T,x),—c)dc

< on¥2 <“j§g) Ix(T,z) < /0 " K (B2 (1, )de + | /_ OOO K(c)B2(1, —c)dc) .

where B9 and B® are independent Brownian sheets (c.f. Revuz and Yor (1994)). It follows that,

/OO cK(c)B9(1,c)dc
Jo

< /Oo cK(c)B¥(c)de
Jo

iN <o, | /0 b | /0 b usK (u)K(s) min(u, s)duds> .

Analogously,
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In consequence,

th/;%\/fx(fx) </0°° K(e)B(1, c)de + /_OOO K(c )%®(1,—c)dc>

’

= th/;@j%))) Lx(T,x) <O 2/ / usK(u )min(u,s)duds)

s9

4 hi/;N (0, 16¢ (0/ (x)> Lx(T, x))

where ¢ =2 [ [0¥ ueK (u)K(e) min(u, e)dude. Then,

. ' Lx (T achn 1)—Lx (T, ) / 2
1SR (%) eh, gz (Bt g 165 (o' ()
3/2 - :> N 0, e ——
(hn,T) AT Z K ( T a:) Lx (T, :U)
h,, T =1 b, T
As for B —— and Bi‘“';(_ —~—, we can write
AuT —n A, T AuT —n N T T
hnT Z;:]K<?> ]LnT Zi:lK W)

.00 ! o (z)—0o :n—i—ch”T
I K(c) (02(@)) ch —(0§(i+chiﬂ 2T [, (T, 2)de

REYLK (SR
00 o 2 (T',z+ch,, =)
Jo K(e) 5 (0 (a%) <Ch _> jz(m—&—chn’%; de _o (h2 _)

—z n,T
n T K n T
n T ZZ 1 h’nT

)

But,
1 (B) = 1 j_ooooK(C) (”Q(x)) ch, 7 (LX(T C(ET—;_E:J};‘FC’];L)H IL)X(T Z)> 10 <h2 >
(hn,T)'g/Q (hn,T)'g/Q nl ZZ 1K< n; 1) a.s. n, T
160 (o' ))2
wlo
2 MN [0, —

Next, consider the numerator of the term V which can be written as

V — V’il’l,l/ln _"_ Vg'mn

where V3*" = O (?f) and

n,T

V’{L’U.m

n—1 n [ (G+1)T/n
A7 ZH:K Xin, 7 — @ > im1 1{\XjA”f7X,-,A”F\gg”f}? [/;%/n (gQ(XS) - UQ(XiT/n)> ds}
hn,? i=1 hn,? Z?:l l{lXJAn,TixiAn,T|S€”’T}

(A7)
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2 [T 2 (X, = X7, ) o(X,)dB,]

n An,T Zn:K (Xm”f — m) Z;l:_ll 1{\XJA”T*Xm”ffe,,,f}T iT/n
hy, 7 = h, 7 2= HiXa, 2 Xia, 21<e, 1)
(B, (1))
n A, 7 iK <Xm”f - m) Z;l;ll 1{‘XJ'A”,?_XiA”,i‘Senf}% [[g(%—;i)T/n 2 (X — X T/n> (Xs)ds]
hoT = hy, T 2= HiXa, 2 Xia, pl<e, 7}
(C..7)
(7.18)

= A, 7+B,7()+C, 7
The three terms comprise an additional bias effect, A, =, a martingale effect, B, (1), and a residual
As we shall see, depending on the bandwidth choices, either A, = or B, 7 may dominate the

effect, C,, 7.
asymptotic distribution. Using the results in Theorem 3 we can show that

EnT Bn_ 1 204
TTZZ 1K< - ) x(T, )
if b, 7 = o(e, 7), and
EnT B =(1 20, 54
’Ll = Zz 1 K ( ,,,,T ) X( 7m)
if h, 7 =0(e,7) and h, 7/e, 7 — ¢ > 0. Next, examine A, 7. If b, 7 = o(e,, 7), then
Lx(T,z+e, 7a)—Lx (T,z)
00 "o Llal<1} ( €n Ta) < BT r— ) da_
A—:/ K (c) — Lx(T,x+h,zc)dc
et J ( 1 [ 1{‘a‘<1}LX(T r+e, Ta)da X( T )
oo ! o*(z)—0*(z+e, 7a) —
3 7% Laisny ((0%() 2, 7a) ( o e e )LX(T,x)da_ B
K(c I Lx(T,x+ h,, 7c)dc
/ % 1{|a‘<1}Lx(T Tr+e Ta)da =
2\ =
oo 1{|a|<1} < € Ta> ) Lx(T,x+e,pa)da
+ / K(c) Lx(T,x+ h, =c)dc
3 1{\a\<1}Lx(T z + ¢, pa)da T

/.00 K <(02 (x)) h,, 7¢ + % (o (x*))// (hnTC> > Lx(T,x+ h,, 7c)d

Using Lemma 4 and proceeding as above, we find that
(<)
531/3 o~ An,TX,-,A”fw = MN | 0, 16@indm (7.21)
n:T n, T Zz:l K (T)
=0(e, 7) and h,, 7/, 7 —

with ¢ = 2 fooo [600 dadb (31¢j0<130) (314e1<1}b) min(a, b)dadb. Next, if :

¢ > 0, then
oo Yja—pe|<1} (( () Enfa> fX(T,m—Q—snyTa)da_ -
Lx(T,z + ¢e,, Fc)de

/ K (c - T
ffoo 1{|a—(/)c\§1}LX (T7 z+ En,Ta)da
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00 ”" 2\ __ _
J 2o Lla—gel<1) <% (*@) (7a) )LX(TafCJrenfa)da
+ / K _ _—
Jooo Jooo Ya—pe<yLx (T, x + ¢, 7a)da

/ K (e L L sy (@) hyz¢) Ix(Tox + <, ga)da
2o Yamvel<y Lx (T, @ + €, 7a)da

Lx (T, x + Pen,re)de

Lx(T,z+ h,, c)dc.

1% 1o sz (3 (0@ (hyze) ) T 6, ga)da
T / K - _
J oo S e Ya—sd <y Lx (T, 2 + €, 7a)da

Only the first and the third term can affect the asymptotic distribution of A,, p. Write the first term as
follows,

Lx(T,x+ h,, 7c)de.

0o '[foool a—gel<1} (02 () /5n—a Lx(T,z+e¢,7a)da_
/ K (c) tozoe=l) (< ) e > a Lx(T,z + e, zc)de

jfo 1{‘a,¢c|<1}fx (T, T+ z—:nja)da

) / Bt gtz ((02@) 2,70+ 60)) Tx (T, + 2, 79 + éc))dg

= Tx (T,x + ¢e, 7c)dc
j, 1{‘S|<1}Lx(T x+enT(s+¢c))d5 T

= e, 7 (gz(x))l /00 K (c) <IX(T,m + ¢¢,, 7C) — Lx (T, x)) de

/ J_ Lig1<1y9Lx (T, x4+, 7(9 + ¢¢))dg
m EnTT K

OO L T,m+¢€n—c dc
P Ysigny Lx (T, @ + €, 75 (s + de))ds Lx( )

= e, 7 (0%(2) / oK (¢ )(LX(T 7+ e, 7¢) — Tx(T,x) ) de
nT/ K (c / Lju—se<1y (u— ¢¢) (Lx(T,x + ¢, 7u) — ZX(T,x)> dude.

As for the third term, write

o % Aamsezyy ((02(@) b ze) Tx(Tow tc, pa)da_
/ K (c = = Lx(T,x+ h, 7c)dc
Jooo Yo sy Lx (T, x + ¢, 7a)da ’
/'°° N ) (%)) h,z¢) Tx (T, +e, 79+ éc)dg
= C o) — —
S Yg=y Lx (T z + €, 7(g + ¢c))dg

Lx(T,x+ h,, 7c)dc

K (¢) (ZX (T, + h, 7¢) — Lx (T, m)) de.

Then,

243/2 3”@ 1 /OO cK (c) (LX(T,x—l- hnTC) — LX(Ta x)) dc

2 0 o0
+ (*()) 32 ! K (c) 1 / 1ju—pel<1y (u— ¢c) (LX(T,QC +en,ru) — Lx (T, x)) dude

3/2, 3/2( 2(@)

= 2
I R

K (c) (LX (T, + h, z¢) — Lx (T, x)) de

—
2 8
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o%(z "0 "0 — _
+( (7)) 32 1 1/ (/ K (¢) 1ju—pe<1y (u — ¢c) dc> (Lx(T,z +enru) — Lx (T, x)) du

o?(x) T =2 [

3/23/3@# /'oo K (c) (LX (T, + h,, zc) — Lx (T, x)) de

= 2
¢ nT 0-2(‘1.) /hnT J—o0

+ (@) 52 1 1 /OO A(¢,u) (LX(T#U +e,7u) — Lx (T, m)> du

3/2 (%(x)) 1 e

= 2¢6n,7 2@ e ) cK(c) (LX (T,x+ ¢, 7c) — Lx (T, x)) dc
(@) 52 1 1 > _ _
/2 _

G =, /ﬁ Ao, ) (LX(T,x—&—sn,Tu) — Lx(T, m)) du. (7.22)
C, T . AT
where A(¢p,u) [ ) Liju—gc|<1} (u — ¢c) dc. Now, we note that < e\ 18 0as. 6?

D M K< e )

Then, defining the overall estimation error as
A, T C.7 B, 7(1)

E=B+

AT S K Xia, 7% AT n K R AT K Xia, 5=
h, 7 =1 hoT b,z =1 ho T by, =1 hoT

En,T

and scaling by , /===, we have

A”’T7
g = ”Tzz 1K( T )&iT(XiAnT)
n,T n T n T ’ ) . 0—2 (x)
A = —z
n,T ,n, 1 ZZ 1 K < ”’T )
e, = A =
- o, <h3/2>—|—oas ( AHT>+O T 10, (hfﬁ>
A, ’ EnTT :
A = B (1
0q.s. ( — "_T> +0, (ef/%) +— "’T(Q_A —
mt hnTT > K (ﬁ)
4
~ M (0,22
Lx(T :U)

4 4

ST _ _ €T _ _
from (7.19), for choices of e, 7 such that e 0 and h, 7 = ole, 7). If As 0 and h, 7 = O(c,, 7)
with %, 7 /¢, 7 — ¢ > 0, then

n T nT T\ =2 _ .
9 T n T Zl 1 K ( h’n T ) O-n7T(XZAn"T) 2 294)0— ( )
A ) 0, =27 1

174 143 -z L Tx
RIS K (25 ) <)

from (7.20), where 64 = 5 [*_ [ :Jrll)//(;f [((:+11) //(f K(a)K(e)dzdade. Finally, provided ’j IT — 00 and h, 7 =

o(e,, 7), then the A = term dominates, leading to
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from (7.21), where "¢ = 2 fooo fooo (%1{‘a‘§1}a) (%1{|b‘§1}b) min(a,b)dadb. Under the same conditions, but
when h,, 1 = O(e,,r) with by, p/en,r — ¢ > 0, we have

1 A, 7 B(1
- Op T + ( ) + 045, (A T1/2_5>
83/2 EnT A - " Xin ——= n,
R
A = , 2 * 9 3 6 ~
+ T = MN | 0,16 <(r (x)) G +_¢ L ¢¢ )
Lx (Ta :U)

nl ZZ 1K< ,’T )

) (@)
< MN | 0,16p"d K 7
LX (T, :U)

?

from (7.17) and (7.22), where

o / / 6, b) min(a, b)dadb
_1 / / A($,a)A(¢, b) max(a, b)dadb

/°° 1/ (/ K (¢) 1{ja—ge|<1} (@ — ¢c)d ) </ K (€) L(p—pe|<1) (b_¢c)dc) min(a, b)dadb
__/ / </ K (¢) Lja—gel<1y (a = dc)d > (/ K (c) 1(p—gpej<1y (b — ) dc> max(a, b)dadb

and

@ / / aK(a b) min(¢a, b)dadb
-3 '/700 '/700 aK(a)A(¢,b) max(¢a,b)dadb
% '/0.(>O '/0'00 aK(a) </—Z K (¢) 1fjp—gcj<1y (b — o) dc) min(¢a, b)dadb
= | /OOO | /'000 K(a) ( /‘: K (6) L_ouiery (b 60) dc> max(ga, b)dadb.

This concludes the proof of the stated result.

PROOF OF COROLLARY 2: Immediate after noticing that under stationarity (or positive recurrence)

fX(Tyy .I) a.s.
— 7T f(),
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and

IX (T, m) = Oa.s. (T),

7 ’

(@) S@)/s0) _f
@ s@/s®) T

where f(x) is the time invariant density of the process at .

PrOOF OF COROLLARY 3: C.f. the proof of corollary 2.

APPENDIX B: NOTATION

0a.5.(1)
Ou.5.(1)

AIT-SAHALIA, Y. (1996a): “Nonparametric Pricing of Interest Rate Derivative Securities,” Econo-

metrica, 64, 527-560.

AIT-SAHALIA, Y. (1996b): “Testing Continuous-Time Models of the Spot Interest Rate,” The

almost sure convergence
convergence in probability
weak convergence

definitional equality

tends to zero in probability
bounded in probability

tends to zero almost surely
bounded almost surely
distributional equivalence
asymptotically distributed as
mixed normal distribution with variance V'
indicator function for the set A
max {a, b}

constants
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