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Abstract

A seller wishes to sell an object to one of multiple bidders. The valuations of the bidders

are privately known. We consider the joint design problem in which the seller can decide the

accuracy by which bidders learn their valuation and to whom to sell at what price. We establish

that optimal information structures in an optimal auction exhibit a number of properties: (i)

information structures can be represented by monotone partitions, (ii) the cardinality of each

partition is finite, (iii) the partitions are asymmetric across agents. These properties imply that

the optimal selling strategy of a seller can be implemented by a sequence of exclusive take-it or

leave-it offers.

Keywords: Optimal Auction, Private Values, Information Structures, Partitions.

Jel Classification: C72, D44, D82, D83.

∗The authors thank Nicolas Hengartner, Bill Sudderth, Marten Wegkamp and Steve Williams for several helpful

discussions. We thank participants at a seminar at the University of Illinois for useful comments. Financial support

from NSF Grant SES 0095321 and a Sloan Research Fellwoship, and NSF Grant SES 9811134, respectively, is gratefully

acknowledged.
†Department of Economics, Yale University, New Haven, CT 06511, dirk.bergemann@yale.edu.
‡Department of Economics, Yale University, New Haven, CT 06511, martin.pesendorfer@yale.edu.

1



1 Introduction

The optimal design of an auction has received considerable attention in the economics literature.

Applications of the literature arise in variety of settings including the sale of publicly and privately

owned companies and the sale of radio spectrum licenses. Myerson (1981) constitutes the seminal

paper in the field. Myerson shows which auction rules achieve the largest revenues to the seller

in a single object auction. Most of the subsequent literature on mechanism design maintains the

assumption that the information held by market participants is given as exogenous. Little is known

about optimal mechanisms when the information of the participants is allowed to be endogenous.

This paper considers the optimal auction design problem when the seller can decide how much

information is revealed to individual bidders. Examples in which the amount of information available

to the buyers is determined by the seller are numerous. The sale of a company in which the

selling party may release proprietary financial or product information to one or more bidders is one

prominent example. In these auctions the nature of the information released to the bidders may

differ across bidders. The sale of a real estate property in which the seller shows the property to the

buyers individually is another example. The seller can then decide which attributes of the house to

emphasize during a showing, and which parts to de-emphasize. What is common in these examples

is that the seller chooses the accuracy of the buyers information.

We consider a problem in which a seller offers a single object to a number of risk neutral bidders.

The seller wishes to maximize revenues from the sale. Bidders’ valuations for the object are private

and not known prior to the bidding. The seller controls the bidders’ information structures which

generate the bidders’ private information. The information structure determines the accuracy with

which buyers learn their valuations prior to the auction. The seller may assign an information

structure that informs a bidder perfectly or an information structure that gives the bidder only a

rough guess about her true value for the object.

The role of the information structure is easily illustrated with the sale of a company. Suppose

the primary value of the company, the target company, to be sold is its client list. The value of the

target to each bidding firm is determined by the match of its own client list with the one of the

target company. The bidding company may value new clients which would be added to its existing

list of clients, or it may value clients appearing on both lists for the purpose of cross-selling. The

bidding firm can improve its estimate about the value of the target company if it receives a detailed

description of the client list of the target company. Thus, the selling party can influence the quality

of the estimate of the bidders by releasing more or less detailed information about the client list.

However, the selling party, despite the perfect control it has over the release of information, will

2



never know the private value the bidding company eventually attaches to the target company, as

the seller doesn’t observe the bidding company’s client list. In other words, the seller selects the

information structure for the bidder, but does not observe the private value realization of the bidder.

In general terms our model encompasses all situations where the preferences of the bidders are

privately known to the bidders and the characteristics of the object are proprietary information of

the seller. The proprietary information can be released more or less complete by the seller. Provided

the characteristics of the object matter for the bidders’ valuations the choice of information structure

will influence how the preferences are mapped into valuations for the object.

After the choice of information structure by the seller, the bidders then report their value es-

timate to a revelation mechanism which determines the probability of winning the object and a

transfer payment for every bidder. We study information structures and revelation mechanisms that

maximize the seller’s revenues. The solution in Myerson (1981) arises in our model as a special case

when the seller informs the bidders perfectly.

Milgrom & Weber (1982) consider a related problem in which the seller can decide whether to re-

lease information publicly. They consider an informational environment in which bidders valuations

are affiliated with a single object in first price, second price and English auctions. They show that

the seller’s revenues can only increase by releasing information to all bidders, which is the so-called

linkage principle. The intuition is that losing bids underestimate other bidders’ signals. Losing bids

rise on average (and therefore so too do revenues) when the seller reveals his information. Perry &

Reny (1999) show that the linkage principle may fail in other auctions.

In contrast to the problem analyzed by Milgrom and Weber we consider an independent private

valuations framework. We assume that the seller can choose the accuracy of the buyers information

without knowing the information of the buyers. Thus, the seller’s choice can affect buyers differ-

entially. In contrast, in the Milgrom and Weber model information is released publicly and affects

buyers symmetrically.

The endogenous acquisition of information in principal agent problems has been studied by a

number of authors: Cremer & Khalil (1992), Sobel (1993), Lewis & Sappington (1993), Cremer

& Rochet (1998a), Cremer & Rochet (1998b) study incentive contracts in which the precision of

private information by the agent is endogenous. In these single agent models, the agent rather

than the principal controls the acquisition of information. The role of endogenous information in

many agents models has been investigated in the private values setting by Tan (1992) and Stegeman

(1996). Again, the focus in these papers is on the decisions of the agents rather than the principal’s

control.1

1As for interdependent and common value auctions, Matthews, (1977) and (1984), considers endogenous informa-
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The endogenous choice of the precision of information in revenue maximizing auctions is moti-

vated by two opposing effects of information: First, more information increases the efficiency of the

auction and thus seller’s revenues. Second, more information increases the rents of the bidders in

form of information rents which lower the seller’s revenues. We analyze this trade-off and charac-

terize the properties of optimal information structures under mild regularity assumptions on initial

informational priors.

Our paper is organized as follows: Section 2 describes the model. Section 3 considers two

examples. The first example illustrates the (special and perhaps trivial) case of an auction with one

bidder. The second example considers an auction with two bidders in which valuations are drawn

from the uniform distribution function. We illustrate that the optimal information structure involves

at most a binary partition and is asymmetric. It has the feature that one bidder learns whether her

valuation is high or low and the other bidder does not learn anything about her valuation. We then

briefly argue how the insights of these examples generalize to auctions with many bidders.

Section 4 establishes that the revenues of the seller are maximized with discrete information

structures. Locally, for any bidder and for any point of continuity in the distribution function of

the bidder, there is a benefit of introducing a mass point into the distribution function. There are

two opposing effects: First, truthful type reports are more costly with continuous than with discrete

probability distributions of types. Second, discrete signals about valuations are inaccurate and there

will be a loss in revenues due to the induced efficiency loss. We show that locally the first effect

dominates.

Section 5 first summarizes results of the optimal auction design problem when types are drawn

from a discrete probability distribution function. Based on these results we then study the optimal

information structure in an optimal auction. We show the following results: (i) optimal information

structure are partitions where each partition can be represented by a countable collection of disjoint

intervals that cover the space of valuations, (ii) the number of partitions is finite, (iii) optimal

partitions exist.

Section 6 establishes additional results. We show that the number of elements in the partition

increases as the number of bidder increases. Finally, we point out that the optimal auction under

the optimal information structure can be implemented by a sequence of take-it or leave-it offers.

The auctioneer starts at a high price and asks the first bidder whether she is willing to buy the

object. If the offer is rejected the auctioneer moves on to the next bidder and lowers the asking

tion acquisition in a pure common values auctions. Persico (2000) compares the equilibrium incentives of the bidders

to acquire information in first and second price auctions within a model of affiliated values. Finally, Bergemann &

Valimaki (forthcoming) consider information acquisition in a general efficient mechanism design setting.
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price. After all the bidders have been asked, the auctioneer returns to the first bidder, but with a

lower asking price and the process repeats. The maximal number of take it or leave it offers is finite.

The implementation result follows from two properties of optimal partitions: First, optimal virtual

utilities are strictly increasing for any initial informational distribution. Second, optimal partitions

induce finite and asymmetric partitions for bidders although initial prior distributions are permitted

to be symmetric. Section 7 concludes.

2 Model

Subsection 2.1 specifies the auction environment. Subsection 2.2 introduces in some detail the

notion of an information structure and related concepts. Finally, Subsection 2.3 defines the notion

of a direct revelation mechanism and associated constraints.

2.1 Utility

A seller has a single object for sale. There are I potential bidders for the auction, indexed by

i ∈ {1, ...., I}. Each agent i has a compact set Vi = [0, 1] of possible valuations for the object, where
a generic element is denoted by vi ∈ Vi, and

V =
I×
i=1
Vi = [0, 1]

I .

We occasionally adopt the notation v = (vi, v−i). The valuation vi is independently distributed with

prior distribution function Fi (vi). The prior distribution function Fi (vi) is common knowledge. The

associated density function fi (vi) is positive and differentiable on Vi. The utility of the agent is

quasilinear and given by

ui (vi, ti) = vi − ti,

where ti is a monetary transfer.

2.2 Information Structure

The signal space Si is compact and without loss of generality Si ⊆ Vi. The space Si can either be
countable, finite or infinite, or uncountable. Let (Vi × Si,B (Vi × Si)) be a measurable space, where
B (Vi × Si) is the class of Borel sets of Vi × Si. An information structure for agent i is given by a
pair hSi, Fi (vi, si)i, where Si is the space of signal realizations and F (vi, si) is a joint probability
distribution over the space of valuations Vi and the space of signals Si. The joint probability
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distribution is defined in the usual way by

Fi (vi, si) = Pr (v ≤ vi, s ≤ si) .

The marginal distributions of Fi (vi, si) are denoted with minor abuse of notation by Fi (vi) and

Fi (si) respectively. For Fi (vi, si) to be part of an information structure requires that the marginal

distribution with respect to vi equals the prior distribution over vi. The conditional distribution

functions derived from joint distribution function are defined in the usual way by:

Fi (vi |si ) ,
R vi
0 dFi (·, si)R 1
0
dFi (·, si)

and similarly,

Fi (si |vi ) ,
R si
0
dFi (vi, ·)R 1

0
dFi (vi, ·)

.

The auctioneer can choose an arbitrary information structure hSi, Fi (vi, si)i for every bidder i
subject only to the restriction that the marginal distribution equals the prior distribution of vi. The

cost of every information structure is identical and set equal to zero. The choice of hSi, Fi (vi, si)i is
common knowledge among the bidders. At the interim stage every agent observes privately a signal

si rather than her true valuation vi of the object. Given the signal si and the information structure

hSi, Fi (vi, si)i each bidder forms an estimate about her true valuation of the object. The expected
value of vi conditional on observing si is given by

E [vi |si ] =
Z 1

0

vidFi (vi |si ) ,

and to distinguish the posterior realizations of expected values from the prior values, we denote

wi(si) , E [vi |si ] .

Every information structure hSi, Fi (vi, si)i generates a distribution function Gi (wi) over posterior
expectations, which is given by

Gi (wi) =

Z
{si:wi(si)≤wi}

dFi (si) .

We denote byWi the support of the distribution function Gi (·). We impose the following regularity
conditions: (i)Gi (wi) can be represented by a convex combination of an absolute continuous function

(with respect to the Lebesgue measure) and a discrete function; (ii) the density gi (wi) in the absolute

continuous part is once differentiable.2

2The regularity conditions are used only in the proof of Theorem 2. Theorem 7, which shows the optimality

of a finite information structure, does not rely on these regularity assumptions. The proof of Theorem 7 could be

extended to give a separate proof of Theorem 2 without the regularity conditions, in particular, the continuity and

differentiability assumptions.
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Observe that the prior distribution Fi (·) and the posterior distribution over expected values
Gi (·) need not to coincide. For future discussions it is helpful to illustrate some specific information
structures. The information structure hSi, Fi (vi, si)i yields perfect information if Fi (vi) = Gi (vi)
for all vi ∈ Vi. In this case, the conditional distribution F (si |vi ) has to satisfy

F (si |vi ) =
 0 if si < s (vi) ,

1 if si ≥ s (vi) ,
(1)

where s (vi) is an invertible function. An information structure which satisfies (1) without necessarily

satisfying the invertibility condition is called partitional.3 An information structure is called discrete

if Si is countable and finite if Si is finite.

After the choice of the information structures hSi, Fi (vi, si)i by the auctioneer, the induced
distribution of the agents valuation is given by Gi (wi) rather than Fi (vi). The signal si and the

corresponding expected valuation wi (si) remain private signals for every agent i and the auctioneer

still has to elicit information by respecting the truthtelling conditions.

2.3 Mechanism

The seller selects the information structures of the bidders and a revelation mechanism. By the

revelation principle we may restrict attention to direct revelation mechanism. A direct revelation

mechanism consists of a tuple (Wi, ti, qi)
I
i=1 with the transfer payment of bidder i:

ti :
I×
i=1
Wi → R,

and the probability of winning the object for bidder i:

qi :
I×
i=1
Wi → [0, 1].

We sometimes write Ti(wi) for the expected transfer payment,

Ti(wi) , Ew−iti(wi, ·),

where the expectation is taken over w−i = (w1, ..., wi−1, wi+1, ..., wI). Similarly, Qi(wi) denotes the

expected probability of winning,

Qi(wi) , Ew−iqi(wi, ·).
3A common and equivalent representation of information structures, see Laffont (1989), Chapter 4, is to start with

a prior distribution over Vi and then specify the conditional probability distribution over signals by a mapping φi,

where φi : Vi → ∆ (Si). A partitional information structure or information structure without noise in this framework

is given by a mapping φi : Vi → Si. This and our approach are equivalent since the joint probability distribution

defines a conditional distribution and conversely every conditional distribution together with a marginal distribution

induces a joint distribution.
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The interim utility of bidder i with an expected valuation wi and announced valuation bwi is:
Ui (wi, bwi) = wiQi( bwi)− Ti( bwi).

The mechanism has to satisfy the participation constraints:

Ui (wi, wi) ≥ 0, for all wi ∈Wi,

and the incentive compatibility constraints:

Ui (wi, wi) ≥ Ui (wi, bwi) , for all wi, bwi ∈Wi.

3 Examples

This section illustrates properties of optimal information structures for some special cases. First,

we look at a single bidder auction. Second, we discuss properties of optimal information structures

in an auction with two bidders. Third, we depict properties of the numerical solution to an auction

with many bidders when the valuations are drawn from the uniform distribution. These examples

illustrate that the seller prefers to reveal sparse information and treat bidders asymmetrically.

Consider first the case with a single bidder. The information structure in which the seller reveals

all the information to the bidder is analyzed in Myerson (1981). Suppose for simplicity that the

seller values the object at zero. Myerson establishes that the seller can extract at most the virtual

valuations in any incentive compatible selling mechanism. The virtual valuation of a bidder of type

v equals the type of the bidder minus the incentive cost,

v − 1− F (v)
f(v)

Notice, that the incentive cost is positive for and remains positive even if the seller reveals information

only partially.

In contrast consider the situation in which the seller chooses to reveal no information at all to

the buyer. Without any information a bidder is willing to pay up to the ex ante expected valuation

of the bidder to receive the object. In this case, the seller can extract all the expected surplus. It is

therefore immediate that revealing no information is optimal in a single bidder auction. The seller

can post a price equal to the ex ante expected valuation. This posted price scheme extracts the

total surplus and is efficient. Moreover, if the seller were to reveal some information to the bidder,

the seller would be worse off because he incurs an incentive cost expressed by the virtual utility.

Next, suppose we add a second bidder with an identical prior distribution to the auction. The

policy to disclose no information does not remain optimal with two bidders. To see this, notice that
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revealing no information extracts at most the ex ante expected valuation of the winning bidder. But

with symmetric bidders, the revenue for the auctioneer would then be the same as in the case of a

single bidder. In a two bidder auction there is a simple scheme that achieves more rent by exploiting

the increase in the number of bidders. The scheme has the following feature: The seller discloses

no information to the first bidder as in the case of a single bidder auction, but assigns a binary

information structure to the second bidder. A binary information structure permits the bidder to

determine whether the valuation is above or below a certain threshold. The optimal threshold equals

the ex-ante expected value of the object. The scheme then works as follows: Initially, the seller offers

the object to the second bidder at a price equal to the conditional expected valuation in the event

that the valuation is above the threshold. If the second bidder rejects the offer, then the seller offers

the object to the first bidder at a price equal to the ex ante expected valuation. The total revenues

to the seller under this scheme exceed the ex ante expected valuation of a bidder. Thus, the revenues

under this scheme are higher than under a scheme in which the seller reveals no information. We

observe that as before the seller leaves no informational rent to the bidders. However, the allocation

is not necessarily efficient anymore, as it could be that the first bidder has a higher valuation for the

object than the second bidder. The coarseness of the information structure may prevent the seller

to make the efficient choice.

In fact, it can be shown that the described information structure maximizes the revenues to the

seller with two bidder and uniformly distributed valuations. If attention is restricted to the class

of information structures with finite partitions, then this result follows immediately from the first

and second order conditions for optimally chosen partitions. Our results in the subsequent sections

establish that the described scheme with two bidders is indeed optimal for the uniform distribution

under general information structures even permitting non-finite and non-partitional information

structures.

The scheme with two bidders has a number of features that are worth emphasizing: First,

even if bidders have initially symmetric prior distributions of valuations, they are optimally assigned

asymmetric information structures. The first bidder receives no information, while the second bidder

learns wether the valuation is above or below the ex-ante mean. Second, the seller does not give

an informational rent to buyers. Both bidders are offered the object at a fixed price that they can

accept or reject. Third, the information structure can be implemented by a sequence of take-it or

leave-it offers.

A natural question is whether the features of the optimal information structure for two bidders

with uniformly distributed valuations extend to more general settings. We address this question

in the subsequent sections. Before we start our formal analysis we illustrate graphically optimal
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information structures with many bidders and uniform distributed valuations. The following figures

depict properties of optimal information structures as we vary the number of bidders.

Insert Figure 1 about here

Figure 1 depicts the optimal partition structure for the bidder with the highest virtual valuation.

As can be seen in the figure the number of partitional elements increases monotone with the number

of bidders participating in the auction. However, the increase is only very gradual. We count three

partitions with three to six bidders, four partitions with seven to fifteen bidders and five partitions

with sixteen or more bidders.

Insert Figure 2 about here

Figure 2 depicts the positive virtual valuations for the bidder with partitions depicted in Figure 1.

The figure illustrates that the highest virtual valuation increases, as the number of bidders increases.

The number of virtual valuations depicted in the figure corresponds to the number of partitions in

Figure 1 minus one. The figures illustrate further that in general it is not the case that the seller

leaves no informational rent to the bidder. With three or more bidders binary partitions are no

longer optimal and as the auctioneer has to reward agents to report truthfully, he will have to incur

incentive costs. As the number of bidders increases, the information structure becomes finer. The

intuition is that with more competition the incentive costs due the informational rents are lower

and the revenue gains from improving allocative efficiency due to more information become more

important, as the number of bidders increases.

Insert Figure 3 about here

Figure 3 depicts the revenues stemming from the optimal information structure. Clearly the revenues

increase with the number of bidders and approach the feasible maximum which is represented by the

expected social welfare. In comparison, the dashed line represents the revenues for the auctioneer

when all bidders have perfect information. We simply refer to it as the Myerson auction.

Insert Figure 4 about here

Finally, Figure 4 depicts the relative revenue losses of the Myerson auction and the relative revenue

losses of the optimal information structure, as the number of bidders increases. Relative revenue

losses are calculated as the difference between the total surplus and the optimal auction divided

by the social surplus. The revenue loss for the optimal information structure increase initially

and then decrease, as the number of bidders increase. Revenue losses under the Myerson auction
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always decrease, as the number of bidders increases. The optimal information structure extracts

considerably more surplus than the Myerson auction.

4 Discrete Information Structures

We begin our formal analysis with a local argument regarding the suboptimality of information

structures which allow for an uncountable number of signals and hence uncountable number of

expected valuations. The argument is local in two respects. First, the argument proceeds by

showing that the revenue of the auctioneer can always be increased by replacing an uncountable

information structure of agent i on a small interval of realizations by a single realization. Second,

the argument considers only the revenue resulting from a single bidder and leaves the allocations

of the remaining bidders unchanged when modifying the information structure of agent i. The

local comparison involves the incentive compatible revenues for the auctioneer when the distribution

Gi (wi) is composed of an absolute continuous and discrete function. As the received results in the

mechanism design literature consider either exclusively continuous or discrete distributions, we first

state a general result about the revenues of the auctioneer in the presence of both types.

4.1 Incentive Compatible Revenues

In contrast to the standard optimal mechanism literature, we consider an optimal mechanism where

a type can either have zero density, positive density or positive probability. At this stage we are

merely interested in characterizing the expected revenues of the auctioneer from bidder i. For a

given distribution of (expected) valuations denote byMi the (countable) set of mass points under

the distribution,Mi ,
©
w1i , ..., w

k
i , ...

ª
, such that for every wki ∈Mi,

gki , Gi
¡
wki
¢− lim

wi↑wki
Gi (wi) > 0,

and we denote the probability of a mass point wki by g
k
i . Next let Pi be the set which has positive

density, or

Pi , {wi |gi (wi) > 0} .

Finally, denote by Oi the maximal union of open intervals
³
wl

+

i , w
l+1−
i

´
, or

Oi ,
∞[
l=1

³
wl

+

i , w
l+1−
i

´
,

such that for all wi ∈
³
wl

+

i , w
l+1−
i

´
we have gi (wi) = 0. The set Oi is maximal if there is no

other open set, say (w0i, w
00
i ), outside of Oi such that for all wi ∈ (w0i, w00i ), gi (wi) = 0. We can now
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describe the revenues the auctioneer receives from bidder i with a given prior distribution Gi (wi)

and a given expected probability of winning Qi (wi).

Theorem 1 (Revenues)

The expected revenues from bidder i are given by Ri (Gi, Qi), with

Ri (Gi, Qi) =

Z
Pi
Qi (wi)

µ
wi − 1−Gi (wi)

gi (wi)

¶
gi (wi) dwi

+
∞X
k=1

Qi
¡
wki
¢
wki g

k
i (2)

−
∞X
l=1

Qi
³
wl

+

i

´³
wl+1

−
i − wl+i

´³
1−Gi

³
wl

+

i

´´
subject to Qi (·) being non-decreasing.

Proof. See appendix.

We remark that the probability Qi
³
wl

+

i

´
which appears in the final sum of expression (2)

is arbitrary in the sense that it could be replaced with any probability Qi (wi) subject to wi ∈
(wl+i , w

l+1−
i ) and the mechanism would still implement the same allocation of the object. The

probability Qi
³
wl

+

i

´
is the probability which maximizes the revenues of the auctioneer for any

given rule of probabilistic allocations {Qi}i∈I.
The revenue formula (2) becomes more transparent in some special cases of interest. First,

suppose that the distribution function has strictly positive density everywhere and no mass points.

Then the revenues can be written simply as:Z 1

0

Qi (wi)

µ
wi − 1−Gi (wi)

gi (wi)

¶
gi (wi) dwi,

where the central element is given by the familiar expression of the virtual utility:

wi − 1−Gi (wi)
gi (wi)

.

The second special case of interest is the case when the distribution function has zero density

everywhere and contains only mass points. In this case, wki = w
l−
i = wl

+

i for all k = l. Then the

revenue for the auctioneer can be written as the sum:

∞X
k=1

Qi
¡
wki
¢Ã
wki −

¡
wk+1i −wki

¢ 1−Gi ¡wki ¢
gki

!
gki .

The similarity with the case of positive density is immediate. The modification due to the discrete-

ness appears in the obvious places. The density gi (wi) is now replaced by the positive probability

gki and the local change dw = 1 is being replaced by the discrete change between w
k
i and w

k+1
i , or
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wk+1i −wki . Finally, consider the case where the density is positive everywhere, but the distribution
has mass points as well. In this case, the third term in (2) vanishes as there are no open sets with

zero density and the mass points appear without virtual costs. This formulation may appear to be

in sharp difference with the positive density case, but if we consider a mass point to be the limit

point in a distribution with positive density, then the apparent distinctiveness disappears. In the

limit, the density of mass point becomes arbitrarily large and as gi (w) → ∞, the virtual utility
converges towards the value at that point, when we hold the value of the distribution function at wi

fixed, or

wi − 1−Gi (wi)
gi (wi)

→ wi.

Thus, the behavior of the revenues at the mass point can easily be understood from the limiting

behavior of a distribution with positive density exclusively.

4.2 Informational Bundling

The representation of the expected revenues given in Theorem 1 allows us to undertake the next

step. We are going to consider the revenue the auctioneer receives from a bidder i on an arbitrarily

small interval of valuations in which the distribution function has positive density. We argue that

the revenue resulting from this interval is dominated by the revenue generated if the interval with

positive density is replaced with a single mass point. The revenue characterization in Theorem

1 allow us to perform this comparison for a single bidder and independent of the other bidders.

We consider the behavior of the revenues on a small interval [z, z + ε] by studying the marginal

behavior of the revenues, as ε is increased. We find that the marginal return at ε = 0 are positive,

as expected, and identical for the interval and its replacement in form of a mass point. However,

when we look at the second derivative, we shall observe that revenues rise faster for the mass point

than the equivalent interval. Essentially, this argument allows us to conclude that the distribution

function Gi (wi) can be suitable modified by replacing intervals with mass points, whenever such

intervals exist. Every such operation will lead to higher revenues. Thus, we show that the optimal

information structure has to be discrete.

Theorem 2 (Discreteness)

Every (non-discrete) information structure is strictly dominated by a discrete information structure.

Proof. See appendix.

As the central argument of the proof might be lost in the details, we try to give a brief account of

its structure. Consider an interval [z, z + ε] ⊂ [0, 1] on which the distribution function has positive

13



density, or gi (wi) ≥ 0. The revenues from this interval for the auctioneer are given by:

Rz (ε) ,
Z z+ε

z

Qi (wi)

µ
wi − 1−Gi (wi)

gi (wi)

¶
gi (wi) dwi. (3)

Suppose we replace the interval of valuations with a single mass point. The probability of the mass

point is given by

gz (ε) ,
Z z+ε

z

gi (wi) dwi.

The associated conditional expected value on the mass point is given by

wz (ε) ,
R z+ε
z

wigi (wi) dwiR z+ε
z

gi (wi) dwi
, (4)

and the conditional expected probability of winning is

Qz (ε) ,
R z+ε
z Qi (wi) gi (wi) dwiR z+ε

z gi (wi) dwi
. (5)

As we remove the density on the interval [z, z + ε] and replace it by a single probability mass at

wz (ε), we change the revenues locally in two ways. First, we introduce a mass point where there

was none before and, second, we introduce two intervals with zero density. We may use Theorem 1

to evaluate how these changes affect the revenues. The new revenues on the interval are:

bRz (ε) , wz (ε) pz (ε)Qz (ε)− (wz (ε)− z)Qi (z) (1−Gi (z)) (6)

− (z + ε−wz (ε))Qz (ε) (1−Gi (z + ε)) .

As we transform the interval into a single mass point, we maintain the expected probability by

which we assign the object to bidder i. While the expected probability Qz (ε) may not necessarily

constitute the optimal solution from the auctioneer’s point of view, it implies that the incentives for

all bidders except i remain unmodified and hence we concentrate without loss of generality on the

revenues resulting from bidder i. The proof then proceeds to show that 0 < R0z (0) = bR0z (0) , while
0 < R00z (0) < bR00z (0) .
As the marginal revenues increases faster for the mass point than for the interval, we conclude

that any interval with positive density when replaced by a mass point yields higher revenues for

the auctioneer. The basic trade-off can be traced back to the local revenues in (3) and (6) and

can be conceived as a trade-off between (virtual) efficiency and information rent. By bundling

all realizations in the interval [z, z + ε] the auctioneer looses the ability to vary the probability of

winning as a function of the realization in the interval [z, z + ε]. If the auctioneer were to maximize

the social utility, then this would translate into a social loss. As he only maximizes the virtual utility,
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it represents a loss in virtual utility. Yet, by changing the support of the distribution function,

the auctioneer actually changes the virtual utility. The change in the virtual utility arises as the

continuum of incentive constraints on the interval are replaced by just two (downward) incentive

constraints: (i) from wz (ε) to z and (ii) from z+ ε to wε (z). In fact, the difference between R00z (0)

and bR00z (0) can be traced to the fact that the initial loss in efficiency is dominated by the gain in
surplus due to a depression of the information rent.

Finally, we might ask whether these modifications in the distribution function Gi (wi) can be

supported and generated by an appropriate information structure, which is the primitive of our

model. As every expected value w with positive density gi (wi) > 0 must be generated by at least

one signal si, let

w−1i (Ai) , {si |wi (si) ∈ Ai } .

Since two signals si and s0i may generate the same expected value, or wi (si) = wi (s
0
i), the mapping

w−1i (·) may be a correspondence rather than a function. Suppose the set Ai is given by Ai =
[z, z + ε]. The replacement of the interval by a single mass point in the distribution function can

now be easily mirrored by changes in the information structure. Consider the signals defined by

w−1i (Ai). By replacing the entire set w−1i (Ai) by a single signal si = sAi and transferring the

original probability of the set Ai onto the signal sAi , we change the information structure such

that the resulting Gi (wi) is precisely the modified distribution used in Theorem 2. As every mass

point in the distribution Gi (wi) can be generated without loss of generality by a single signal si,

it follows that a discrete distribution function Gi (wi) can always be supported by a countable set

Si of signals. Thus, we can translate the discreteness in the distribution function into a discrete

information structure.

5 Optimal Information Structures

In this section we prove that the optimal information structure can be represented as a finite partition

for every bidder i. By the results of the preceding section, we know that the information structure

has to be discrete. Therefore, Subsection 5.1 briefly states some results regarding the optimal auction

with a countable number of types each having positive probability. Subsection 5.2 uses the revenue

structure to show that the optimal information structure has to be a countable and monotone

partition. As a by-product of the proofs we obtain several interesting results about the virtual

utilities and the structure of the optimal auction. Subsection 5.3 refines the results to conclude that

the partition for each bidder has to be finite.
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5.1 Optimal Auction with Discrete Types

This section characterizes the optimal auction when the distribution of valuations for each bidder

is given by an arbitrary probability distribution function G with countable support. We recall that

the valuations at these points are denoted by wki and without loss of generality:

0 ≤ w1i < w2i < .... < wki < .... ≤ 1.

The probability of the realization wki is denoted as before by g
k
i , and let G

k
i , Gi

¡
wki
¢
and similarly,

Qki , Qi
¡
wki
¢
.

Theorem 1 characterizes the revenues of the auctioneer from bidder i as a function of the expected

probability of winning Qi (wi) with a value wi. The interaction with the valuation of the other

bidders in the earlier formulation was represented by expectations over the valuations w−i. Now,

we disaggregate the expression and consider the dependence on the realizations of all valuations

explicitly. The revenue of the auctioneer from all bidders is given by:

R (G, q) ,
∞X
k1=1

· · ·
∞X
kI=1

"
IX
i=1

qi

³
wk11 , ..., w

kI
I

´"
wkii −

³
wki+1i −wkii

´ 1−Gkii
gkii

#
IY
i=1

gkii

#
, (7)

where qi (w) ≥ 0 and
PI
i=1 qi (w) ≤ 1. The formula (7) is based on the general expression for the

revenues in Theorem 1. Define the virtual utility with discrete types by:

γki , wki −
¡
wk+1i −wki

¢ 1−Gki
gki

.

As in Myerson (1981), the optimal allocation policy q∗ (w) = (q∗1 (w) , ..., q∗I (w)) can be determined

by pointwise optimization provided that the virtual utility γki is non-decreasing in k for every agent

i. If the virtual utilities γki for a given distribution G
k
i were not monotone, then the optimal auction

would be subject to a similar “ironing out” procedure as necessary in an optimal auction with

a continuum of types. The basic element in the former procedure is to maintain the expected

probability Qki constant over a set of types which covers the non-monotonicity. As the constant

probability essentially implies that the incentives and revenues are constant on it, the question

arises as to whether the auctioneer has any interest in distinguishing between different types in this

set. In fact, as the information structure is chosen by the auctioneer, he may wish to bundle types

to which identical allocations have to be offered in any case. In other words, when the auctioneer

can choose the information structure for the bidders, the “ironing out” of non-monotonicities in the

virtual utility may be achieved by a sufficient coarsening of the information structure rather than

through constant winning probabilities of the form: Qki = Q
k+1
i . The consequence of this argument

leads to the next result.
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Theorem 3 (Monotone Virtual Utilities)

The optimal virtual utilities are strictly increasing.

Proof. See appendix.

We can now readily describe the optimal auction mechanism when the virtual utilities are mono-

tone. The characterization is the exact discrete type analog to the celebrated optimal auction result

for ‘regular environments’ by Myerson (1981) with a continuum of types.

Corollary 1

Suppose the virtual utilities are increasing for every agent. The optimal auction is described by:

1. qi
³
wk11 , ..., w

kI
I

´
> 0⇒ γkii ≥ 0 ∧ γkii ≥ γkjj , ∀j;

2. max
n
γk11 , ...., γ

kI
I

o
> 0⇒PI

i=1 qi

³
wk11 , ..., w

kI
I

´
= 1.

Proof. See appendix.

By Theorem 3, we can describe the set of virtual utilities for bidder i by an ordered set Γi =©
γ1i , ..., γ

k
i , ...

ª
, with γ1i < γ

2
i < ... < γ

k
i < .... .

As we argued earlier that additional valuations are associated with additional incentive con-

straints, the optimal information structure strikes a balance between allocational efficiency and

informational rent. This has some immediate implications for the structure of the set of virtual util-

ities Γi. Consider two adjacent and positive virtual utilities by agent i, say γki and γ
k+1
i . According

to Corollary 1 they will receive different winning probabilities if and only if they bracket the virtual

utility of some other agents. By contrast, γki and γ
k+1
i receive the same winning probability if they

do not bracket any other virtual utility realization. In the later case, the realizations wki and w
k+1
i

have to satisfy the same incentive constraints and assignment rule. Thus, they can be joined to a

single realization with an expected value of

w̄ki ,
wki g

k
i +w

k+1
i gk+1i

gki + g
k+1
i

.

This replacement does not reduce (virtual) efficiency. However, revenues increase due to lower

information rents associated with fewer incentive constraints.

Theorem 4 (Adjacent and Asymmetric Virtual Utilities)

1. For every γki :
©
γkj
¯̄
γki < γ

k
j < γ

k+1
i

ª 6= ∅.
2. ∃i, j such that Γi 6= Γj.
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Proof. See appendix.

A direct consequence of the alternating structure of the virtual utilities is the asymmetry of the

virtual utilities indicated by the second part of Theorem 4. With two bidders, the same argument

leads immediately to a stronger result, namely that Γi ∩ Γj = ∅. With more than two bidders, our
argument does not preclude the possibility that some bidders may have virtual utilities in common.

We conjecture that this will not occur under an optimal information structure.

With Theorem 4 in place we may suppose without loss of generality that the virtual utilities

across bidders are ordered as follows:

γ11 ≤ γ12 ≤ ... ≤ γ1I < γ21 ≤ γ22 ≤ .... ≤ γkI−1 ≤ γkI < γk+11 ≤ ... (8)

While some virtual utilities in (8) may not be generated by the optimal information structure, we

can always pretend they existed nonetheless and set gki = 0. We can now write the revenues of

an optimal auction, where the virtual utilities generated by the distribution functions G= {Gi}Ii=1
satisfy the properties derived in Theorem 3 and 4, as follows:

R (G) =
IX
i=1

∞X
k=1

max©γki , 0ª gki Y
j 6=i
G
k(i)
j

 ,
where Gk(i)j is defined by:

G
k(i)
j =

 Gkj , if j < i,

Gk−1j , if j > i.
(9)

As the expected winning probabilities Qki in the optimal auction are given by:

Qki ,
Y
j 6=i
G
k(i)
j ,

we can write the revenues to be:

R (G) =
IX
i=1

∞X
k=1

¡
max

©
γki , 0

ª
gki Q

k
i

¢
. (10)

5.2 Monotone Partitions

The local analysis in the previous section allowed us to conclude that the optimal information

structure will have a countable signal space Si. The countable support result for the marginal

distribution of the signals however doesn’t permit any further inferences about the joint distribution

or the conditional distribution of signals. Now, we extend the local to a global analysis taking

into account explicitly the interaction among bidders. We have shown earlier that the optimal
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information structure has to be contained in the class of discrete information structures. Thus,

the global analysis can be performed directly on the optimal auction for discrete types which we

characterized above.

A partitional information structure can be represented without recourse to a joint distribution

over the space of valuations and signals by a partition of the original space Vi. A partition is a

collection of subsets Si =
©
Ski
ª
such that for all k, k0 we have Sk

0
i ∩ Ski = ∅ and

∞[
k=1

Ski = Vi.

The properties of monotonicity and finiteness can then be simply be restated on the space of valu-

ations. The partition is monotone if for any vi, v0i ∈ Ski , λvi + (1− λ) v0i ∈ Ski for all λ ∈ [0, 1]. The
partition is finite if the collection of subsets has a finite cardinality.

Theorem 5 (Monotone Partition)

1. The optimal information structure is a partition.

2. The optimal partition is monotone.

Proof. See appendix.

The monotonicity of the partition as well as the optimality of the partition itself result from

the same basic argument. In fact, the partitional result can be viewed as a mere complication

arising from additional noise in the information structure. Therefore, we content ourselves to give

a brief outline of the proof of the monotonicity property here. Since, we can restrict our attention

from now on to partitions of the space of valuations, we can state all probabilities in terms of the

original distributions Fi (vi). Therefore, suppose that the information structure can be described by

a partition Si for every bidder i. The probability fki of the event Ski ∈ Si is given by

fki ,
Z
vi∈Ski

fi (vi) dvi.

The realization of the event Ski leads agent i to adopt a conditional expectation

wki ,
R
vi∈Ski vifi (vi) dviR
vi∈Ski fi (vi) dvi

.

A point z is called a partitional point of Ski and S
l
i if for every neighborhood of z, or for all ε > 0

and Bε (z), there exists vi, v0i ∈ Bε (z) such that vi ∈ Ski and v0i ∈ Sli. We denote by zi the vector
of all partitional points between any two (or multiple) partitions of bidder i and by z =(z1, ..., zI)

the vector of all partitional points. The revenues of the auctioneer in the optimal auction can be
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described as a function of the partitional points z, or R (z). The idea of the proof can now be

described as follows. Consider an arbitrary point vi which may be either allocated to the partitional

element Sik or S
i
l . The difference in the marginal revenue of this assignment to either of the partitional

elements k and l can be written as follows:

ak,li +
¡
bli − bki

¢
vi,

where the parameters ak,li , b
k
i and b

l
i are determined by the size and winning probabilities of the

given partitional elements Sik and S
i
l . It follows that every partitional point zi between S

k
i and S

l
i

must satisfy at the optimum

∂R (z)

∂zi
= ak,li +

¡
bli − bki

¢
zi = 0. (11)

In other words, the first order conditions can be described at the optimum as linear functions of

the partitional points, where the values of the parameters are given by the partitions which are

separated by the point zi. By the strict single crossing property of the linear functions, it follows

that every two elements of the partition can have at most one partitional point in common (provided

that ak,li = bli = b
k
i = 0 can be excluded from our considerations). Moreover, as the slope parameters

in (11) depend additively on the elements Ski and S
l
i, it follows from the linearity of the first order

conditions that only adjacent partitional elements can have partitional points, or l = k + 1. This

argument establishes the monotonicity of the partition.

The partitional property of the optimal information structure is reminiscent of the partitional

structure of the strategies in the cheap talk games investigated by Crawford & Sobel (1982). While

the partitions are endogenous and lead to coarse decision making in both settings, the reasons

why partitions emerge are very different. In Crawford & Sobel (1982) the principal cannot offer

monetary transfers to align the incentives of the agent with his own. The partial alignment can

only arise through the actions which are contingent on the message sent by the agent. By allowing

the messages to be sufficiently coarse, both, agent and principal, prefer the action chosen based on

limited information to any of the other, few and sufficiently distinct, equilibrium actions. In our

setting the principal can use monetary transfers to align the preferences of the agent. However, the

arguments showed that it is too costly for him to obtain alignment for all possible signals, and he

prefers to adopt a coarser decision rule to limit the costs of aligning the incentives. The principal

achieves this formally by allowing fewer signals and, therefore, fewer incentive constraints.
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5.3 Finiteness

We may summarize the results obtained up to this point as follows. Theorem 2 shows that every

continuous information structure is dominated by a discrete information structure. In addition,

Theorem 5 shows that the information structure has the form of a monotone partition. We further

demonstrated that the induced virtual utilities are monotone for each bidder (Theorem 3) and

asymmetric in the sense that the virtual utilities are distinct across bidders (Theorem 4). What

is yet missing in the description of the optimal information structure is the determination as to

whether an optimal information structure exists and whether it is finite or rather infinite.

By Theorem 5, we can describe the set Zi of partitional points of bidder i by:

Zi =
©
0, z1i , z

2
i , ..., z

k
i , ...

ª
and an element Ski of the partition as an interval S

k
i = [z

k−1
i , zki ). We start the remaining investiga-

tion by considering finite partitions. Denote by K the maximal number of elements in the partition

of every agent i.

Theorem 6 (Finite Partitions) For every fixed K <∞, an optimal partition exists.

Proof. See appendix.

Theorem 6 establishes the existence of an optimal partition if we restrict the maximal number

of elements in every partition to be K. Next, we consider properties of the optimal partition as

a function of K. Suppose for an increasing sequence of K, the restriction on K would remain a

binding constraint in the sense that at least for some agent i, the optimal partition contains exactly

K elements. It would then follow that there are at least two adjoining intervals in the partition of

an agent i which will become arbitrarily small as K becomes arbitrarily large. We investigate the

implication for the first order conditions and the associated expected winning probabilities of agent

i, if two adjoining intervals become arbitrarily small.

Proposition 1 (Winning Probabilities)

For every ε > 0, there exists δ (ε) > 0 such that for all i and k:

zki − zk−1i ≤ δ (ε) and zk+1i − zki ≤ δ (ε) ,

implies ¯̄̄̄
¯Qki −Qk−1i

Qk+1i −Qki
− 1
¯̄̄̄
¯ ≤ ε.
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Proof. See appendix.

Proposition 1 allows us to conclude that as long as the intervals become sufficiently small, the

winning probability Qki has to increase proportionally, independently of the relative size of the

intervals [zk−1i , zki ) and [z
k
i , z

k+1
i ). This property plays an essential role in the next argument,

in which we extend the earlier result on the optimality of discrete versus continuous information

structures (Theorem 2) to show that the discrete information structure cannot be too fine either.

Suppose we join two adjacent intervals to form a single interval. The expected value on the interval

is now given by:

w̄ki ,
wki f

k
i +w

k+1
i fk+1i

fki + f
k+1
i

.

We compare the revenue for the auctioneer under the original and the modified partition. The

comparison proceeds by maintaining the winning probabilities Qki of the original partition even

when computing the revenues associated with the modified partition. This allows us to compare

the revenue across the two partitions by simply analyzing the revenue resulting from the partitional

elements [zk−2i , zk−1i ), [zk−1i , zki ) and [z
k
i , z

k+1
i ). Correspondingly, we denote the revenue difference

between the modified and the original segment k by Dki . The modified partition displays different

virtual utilities, denoted by γ̄ki , where the modification arises locally due to the combination of w
k
i

and wk+1i , namely

γ̄k−1i , wik−1 −
¡
w̄ki −wk−1i

¢ 1− F k−1i

fk−1i

,

and

γ̄ki = γ̄
k+1
i , w̄ki −

¡
wk+2i − w̄ki

¢ 1− F k+1i

fki + f
k+1
i

.

The difference in revenues in segment k is then defined formally by Dk
i ,

¡
γ̄ki − γki

¢
fki .

Proposition 2 (Pairwise Coarsening)

There exists ε̄ > 0 such that for all ε ∈ (0, ε̄), for all i and k,

zki − zk−1i ≤ ε and zk+1i − zki ≤ ε,

implies

Dk−1i Qk−1i +DkiQ
k
i +D

k+1
i Qk+1i > 0.

Proof. See appendix.

The proof of this result is substantially more involved than the earlier result regarding the

suboptimality of continuous information structures. The cause of the complication is that it is
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not sufficient anymore to look at small intervals for increasing, but otherwise arbitrary, winning

probabilities Qki . In fact, without the equilibrium bounds on the winning probabilities established

in Proposition 1, the result is false if the intervals were to be decreasing too rapidly in size.

Theorem 7 (Finite Partition)

The optimal information structure exists and is a finite and monotone partition.

Proof. See appendix.

Theorem 7 shows that the optimal information structure in the class of discrete information

structures is finite (and can be represented by a monotone partition). The proof of Theorem 7 could

be easily extended to encompass uncountable and in particular a continuum of signals. Since the

proof doesn’t rely on any continuity or differentiability properties of the density gi (wi), it shows the

dispensability of the regularity assumption made earlier to permit a ‘local’ proof of the discreteness

of the information structure.

At this point, we might recall the earlier example with a uniform density and the resulting

optimal partition. The structure of the partition in the example may illustrate that the finiteness

result is rather strong, as the cardinality of the partition is very small and increases only slowly in

the number of bidders. Yet, we may expect that, as the number of bidders increases, the information

rents become less important in the calculus of the seller and the incentives to compress information

into partitions becomes less influential in the design problem. Therefore, we complete the analysis

by a limiting results on the number of bidders.

6 Many Bidders and Sequential Sale

In this section we derive some further implications for the auction mechanism under the optimal

information structure. Subsection 6.1 shows that, as the number of bidders participating in the

auction increases, many bidder will be assigned arbitrarily fine partitions. Subsection 6.2 shows that

the revenue of the optimal direct mechanism can be achieved by a sequential mechanism in which

the seller makes a series of take-it-or-leave-it offers.

6.1 Many Bidders

Next, we show that, as the number of bidders increases, the information structure becomes finer.

Theorem 7 establishes that information structures consist of finitely many intervals. Now, we assume

that intervals cannot be smaller than of length ε. We show that eventually, as the number of agents

increases, there are agents that adopt the finest information structure. We assume that interval
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points have to be multiples of ε, that is, zki = k ·ε. Furthermore, an ε-partition denotes the partition
{[(k − 1) · ε, k · ε)}Kk=1 with K = 1

ε . It is a partition that consists of intervals of length ε.

Theorem 8

For any ε > 0 there exists a subset of bidders I1 ⊂ I such that as, I →∞, the subsequence, I1 →∞,
and all i ∈ I1 have an ε-partition.

Proof. See appendix.

The theorem considers the calculus of allocative efficiency versus informational rents as the

number of bidders increases. The theorem shows that as the number of bidder increases, the motive

of allocative efficiency eventually comes to dominate the suppression of the informational rents with

coarse information. With many bidders, competitive forces eliminate the informational rents of

the bidders anyhow and, thus, the need to reduce the informational rents through coarse private

information disappears. The proof assumes that the bidders are symmetric and have the same prior

distribution F . This restriction is made to simplify the exposition of the proof and is not required.

The proof could be easily extended to cover the case of replicating a given set of bidders, with

possible asymmetries among the initial set of bidders.

The proof proceeds by induction. The main idea of the proof is the following: First, we show that

there exists a subsequence of bidders that have the interval [1− ε, 1] in their partition. We obtain
this property by establishing a contradiction. If the property holds, then the revenues approach

1 − ε
2 , as the number of bidders increases, since the probability that at least on bidder will obtain

a valuation contained in the highest interval approaches one. Suppose that the property does not

hold and at most finitely many bidders have a partition on the top. The highest valuation of the

remaining bidders equals at most 1 − ε and, therefore, there exists a δ > 0 such that revenues are
less than 1− ε

2 −δ. Now, eventually, as the number of bidders increases, the revenues are dominated
by the scheme that approaches revenues of 1− ε

2 . This contradiction establishes the first part.

The induction argument proceeds by looking at lower intervals and uses our earlier results on

the structure of the optimal revenues. These results permit us to decompose the optimal revenues

into revenues obtained from virtual valuations exceeding a certain threshold and revenues below

the threshold. In order to study the seller’s maximized revenues, we can look at the revenues

below the threshold independent of the revenues above the threshold. We show that there must

be a subsequence of bidders that have the highest possible virtual valuation conditional on virtual

valuations being below the threshold. The argument is similar to the above described argument and

we omit it in this discussion. Since, the number of intervals in the partition are finite, we have shown

that there must be a subsequence of bidders I1 →∞ each having an ε-partition, as the number of
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bidders gets large, I →∞.

6.2 Sequential Sale

A remarkable feature of the optimal information structure is the fact that the set of virtual utilities

is distinct for every agent i. As shown in Theorem 4, the asymmetry in the virtual utilities extends

to environment where the bidders, which are characterized by their prior distribution Fi (vi), are

initial symmetric, or Fi (vi) = F (vi) for all i. Moreover, the set of virtual utilities is formed such

that two adjacent virtual utilities are never generated by the same bidder. Therefore, the finiteness

and asymmetry of the virtual utilities permit a very simple implementation of the optimal auction

in the form of a sequential posted price mechanism rather than simultaneous bidding mechanism.

Given the information structure, the auctioneer can device a sequential mechanism in which he

successively asks individual bidders whether they would like to receive the object at a fixed price.

Theorem 9

The revenue of optimal direct revelation mechanism can be realized by the following sequential and

indirect mechanism: The auctioneer makes exclusive take-it-or-leave-it offers, in which no bidder

receives two subsequent offers.

Proof. See appendix.

In the current setting, the sequential selling mechanism only allows the auctioneer to achieve the

same expected revenue as the optimal simultaneous auction. However, if we were to add costs to the

provision and/or assignment of information structures, then the sequential mechanism would come

to strictly dominate the simultaneous mechanism as it would economize on the cost of information.

7 Conclusion

This paper reconsidered the design of the optimal auction by making the information structure an

integral part of the design problem. Notable features of the optimal information structure were the

partitional character, the finiteness of the partition and, therefore, private types, and the asymmetry

of the information structures.

While the characterization of the qualitative features of the optimal information structure was

reasonably complete, several additional results might be obtainable. First, it would seem that the

fineness of the partition should be a monotone function of the number of participating bidders.

Second, it would be interesting to obtain a rate of convergence result for the optimal information

structure towards the perfect information structure as the number of bidders increases. Third,
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it would be interesting to know how fast the revenues of the auctioneer converge to full surplus

extraction with the optimal information structure vis-a-vis the perfect information structure. The

opening example with the uniform density suggests that these questions are well defined and might

allow for clear answers, but we have not yet pursued these questions in sufficient detail.

The basic allocation problem considered in this paper is the assignment of a single unit to one

among many bidders. The complete characterization of the optimal mechanism for any arbitrary

information structure facilitated the task of finding the optimal information structure. However, the

basic arguments and results seem to be robust to general mechanism design problems. Therefore,

it may be possible to generalize the results here beyond the auction environment. Adverse selection

problems with a single agent, as in regulation and procurement environments, may present more

difficult allocation problems, due to nonlinearity of the optimal solution, but at the same time, the

endogeneity of the information structure may particularly relevant for contracting purposes in this

environment.

Finally, we observe that our results do not bear directly on the linkage principle (Milgrom &

Weber (1982)). In our set-up, the auctioneer influences the informativeness of every signal received

by the bidders, yet he never observe the signal realization, which remains private information for

the agent. Thus, if the auctioneer provides a bidder with a more informative signal, he increases the

amount of private information to which the agent has access to, and thus the informational rent of

the bidder.
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8 Appendix

The appendix contains the proofs to all proposition and theorem in the text as well as some auxiliary

results and proofs.

Proof of Theorem 1. We consider the revenue resulting from a single bidder i and therefore

restrict attention to the elements in the mechanism which affect bidder i. It is well known, see

Mas-Collel, Whinston & Green (1995), Proposition 23.D.2, that the allocation {Qi (wi) , Ti (wi)} is
Bayesian incentive compatible if and only if:

1. Qi (wi) is nondecreasing,

2. the equilibrium utility satisfies:

Ui (wi) = Ui (0) +

Z wi

0

Qi (ui) dui.

Notice, that the equilibrium utility of the agent is increasing in Qi (ui). Next, consider the set

Oi of open intervals which have zero density everywhere. The probability Qi (wi) with which bidder
i receives the object for all wi ∈ Oi affects the utility of the bidder (and, thus, the revenues to the
auctioneer) only through its appearance in the equilibrium utility of the agent. Clearly, in order to

maximize revenues the auctioneer would like to minimize Qi (wi) for all wi ∈ Oi. Since Qi (wi) is
restricted to be nondecreasing, we can set Qi (wi) = Qi

³
wl

+

i

´
for wi ∈ (wl+i , wl+1

−
i ). We can write

the equilibrium utility of the agent for wi /∈ Oi as

Ui (wi) = Ui (0) +

l(wi)X
l=1

Z wl
+

i

wl
−
i

Qi (ui) dui +

l(wi)X
l=1

Qi
³
wl

+

i

´³
wl+1

−
i −wl+i

´
+

Z wi

wl(wi)+1
−
Qi (ui) dui,

where l (wi) = max
n
l
¯̄̄
wl

+

i ≤ wi
o
and w1

−
i = 0. The revenues of the auctioneer can then be written

as:

Ri (Gi, Qi) =

Z 1

0

[Qi (wi)wi − Ui (wi)] gi (wi) dwi +
∞X
k=1

£
Qi
¡
wki
¢
wki − Ui

¡
wki
¢¤
gki .

Integration by parts and the equivalent thereof for the discrete probabilities leads us to the formula

in (2).¥
The following lemma delivers auxiliary calculations for the proof of Theorem 2.

Lemma 1 The conditional means wz (ε) and Qz (ε), as defined in (4) and (5), satisfy:

w0z (0) =
1

2
,
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and

Q0z (0) =
1

2
Q0i (z) .

Proof. Using the definition of the conditional mean, we have

w0z (ε) =
(z + ε) gi (z + ε)

R z+ε
z

gi (wi) dwi −
R z+ε
z

wigi (wi) dwigi (z + ε)³R z+ε
z gi (wi) dwi

´2 .

As numerator and denominator converge to zero as ε → 0, we can use l’Hopital to obtain the

following expression:

lim
ε→0w

0
z (ε) = gi (z + ε)× lim

ε→0

R z+ε
z

gi (wi) dwi

2
R z+ε
z

gi (wi) dwigi (z + ε)
=
1

2
.

Consider next the derivative of Q0z (ε)

Q0z (ε) =
Qi (z + ε) gi (z + ε)

R z+ε
z

gi (wi) dwi −
R z+ε
z

Qi (wi) gi (wi) dwigi (z + ε)³R z+ε
z gi (wi) dwi

´2 ,

which we may rewrite to obtain:

(Qi (z + ε)−Qz (ε)) gi (z + ε)R z+ε
z gi (wi) dwi

.

By l’Hopital we get for ε = 0, the following result:

Q0z (0) = gi (z + ε)× lim
ε→0

Q0i (z + ε)−Q0z (ε)
gi (z + ε)

,

which leads to

Q0z (0) = Q
0
i (z)−Q0z (0) ,

or

Q0z (0) =
1

2
Q0i (z) ,

which completes the proof. The (almost everywhere) differentiability of Qi (z) is guaranteed by the

differentiability of gi (wi) .

Proof of Theorem 2. The proof is by contradiction. Suppose therefore that the information

structure has a positive density and no mass points over some interval [z, z + ε] for some agent i.

We show that if replace the random variable wi on the interval [z, z + ε] by the expected value of

wi conditional on wi ∈ [z, z + ε], then we can increase the payoff of the auctioneer. Differentiating
Rz (ε), as defined in (3), once we get:

R0z (ε) =
µ
z + ε− 1−Gi (z + ε)

gi (z + ε)

¶
gi (z + ε)Qi (z + ε) ,
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and evaluated at ε = 0,

R0z (0) =
µ
z − 1−Gi (z)

gi (z)

¶
gi (z)Qi (z) .

The first derivative of R̂z (ε), where the later is defined in (6), is given by:

R̂0z (ε) = (w0z (ε) (1−Gi (z))− (1−Gi (z + ε)) + (z + ε) gi (z + ε))Qz (ε)
+ (wz (ε) (1−Gi (z))− (z + ε) (1−Gi (z + ε)))Q0z (ε)
−w0z (ε) ((1−Gi (z))Qi (z)) ,

and evaluated at ε = 0 after using Lemma 1:

R̂0z (0) =

µ
1

2
(1−Gi (z))− (1−Gi (z)) + zgi (z)

¶
Qi (z)

+ (z (1−Gi (z))− z (1−Gi (z))) 1
2
Qi (z)

−1
2
((1−Gi (z))Qi (z)) ,

which after some cancellations is equivalent to R0z (0). Consider next the second derivative of Rz (ε):

R00z (ε) = (2gi (z + ε) + (z + ε) g
0
i (z + ε))Qi (z + ε)

+ ((z + ε) gi (z + ε)− 1 +Gi (z + ε))Q0i (z + ε) ,

and evaluating at ε = 0, we get

R00z (0) = (2gi (z) + zg
0
i (z))Qi (z) + (zgi (z)− (1−Gi (z)))Q0i (z) .

In contrast, the second derivative of R̂z (ε) is:

R̂00z (ε) = (w00z (ε) (1−Gi (z)) + 2gi (z + ε) + (z + ε) g0i (z + ε))Qz (ε)
+2 (w0z (ε) (1−Gi (z)) + (z + ε) gi (z + ε)− (1−Gi (z + ε)))Q0z (ε)
+ (wz (ε) (1−Gi (z))− (z + ε) (1−Gi (z + ε)))Q00z (ε)
−w00z (ε) (1−Gi (z))Qi (z) ,

and evaluating at ε = 0:

R̂00z (ε) = (2gi (z) + zg
0
i (z))Qi (z) +

µ
zgi (z)− 1

2
(1−Gi (z))

¶
Q0i (z) ,

and since Q0i (z) > 0, this shows that

R̂00z (0)−R00z (0) > 0.
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Finally, observe that the countable set of mass points might be dense in Wi in which case there

does not exist a small interval without a mass point and hence our initial hypothesis may never be

satisfied. However, in this case, we can infer from Theorem 1 that the probability of Qi (z) to the

right of every mass point wki , must by equal to Qi
¡
wki
¢
, or Qi (z) = Qi

¡
wki
¢
for all z ∈ (wki , wki +εk]

and εk > 0 sufficiently small. But as the mass points are dense in Wi by hypothesis it follows that

all points z with positive density belong to some interval of the form (wki , w
k
i + ε

k]. Finally, notice

that if the probability of receiving the object is identical for two realizations, then their virtual costs

are identical, and hence it is optimal to bundle the realizations and represent them by their expected

value. It thus follow that if the mass points were dense in Wi, it would be optimal to eliminate all

realizations with positive density and bundle them with the (left-)adjacent mass point.¥
The proof of Theorem 3 uses the following two auxiliary results.

Lemma 2 (Constant Winning Probabilities (I))

The optimal mechanism satisfies for all γki , γ
k+1
i with γki ≥ γk+1i : Qki = Q

k+1
i .

Proof. Suppose to the contrary (and by Theorem 1) that Qki < Q
k+1
i . Then there must exist

w−i such that qi
¡
wki , w−i

¢
< qi

¡
wk+1i , w−i

¢
. The incentive compatibility conditions of all agents

except i, and in particular their expected winning probabilities remain constant under qi (·) and a
modified probability assignment bqi (·) as long as

fki qi
¡
wki , w−i

¢
+ fk+1i qi

¡
wk+1i , w−i

¢
= fki bqi ¡wki , w−i¢+ fk+1i bqi ¡wk+1i , w−i

¢
. (12)

Next observe that by the assumption of γki ≥ γk+1i , any q̂i (·) such that (12) is maintained and
displays qi

¡
wki , w−i

¢
< bqi ¡wki , w−i¢ must (weakly) increase the revenues of the auctioneer, which

delivers the contradiction.

In the next lemma we compare the revenues arising from two different partitions. To this end, we

start with a given initial partition and then generate a second and modified partition by combining

two adjacent partitional elements, k and k+1, of agent i into a single element.4 The partitions are

otherwise identical. The conditional expected value of the newly created element is given by:

wki f
k
i +w

k+1
i fk+1i

fki + f
k+1
i

. (13)

To better match up the original with the modified partition, it is convenient to keep the same number

of partitional elements in the modified as in the original partition. We do this by simply assigning

4For the benefit of the reader, the same construction is also presented in the main body of the text, however there

it appears in connection with Proposition 2 leading to Theorem 7.
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the same conditional expected value (13) to element k and k + 1, or

w̄ki = w̄
k+1
i , wki f

k
i +w

k+1
i fk+1i

fki + f
k+1
i

, (14)

where the upper bar always refers to values of the modified partition. The probability that the

conditional expectation w̄ki = w̄
k+1
i is realized in the modified partition is given by fki + f

k+1
i . We

then compare the revenue for the auctioneer under the original and the modified partition. As an

aside, observe that we do not re-optimize the mechanism under the new information structure (by

changing the probabilities of winning Qk−1i ,Qki and Q
k+1
i ). The modified partition displays different

virtual utilities only in the segments k − 1, k, and k + 1, where the local modification arises due to
the combination of wki and w

k+1
i , namely

γ̄k−1i , wik−1 −
¡
w̄ki −wk−1i

¢ 1− F k−1i

fk−1i

, (15)

and

γ̄ki = γ̄
k+1
i , w̄ki −

¡
wk+2i − w̄ki

¢ 1− F k+1i

fki + f
k+1
i

. (16)

The difference in the revenues on any segment k is defined by

Dki ,
¡
γ̄ki − γki

¢
fki . (17)

Lemma 3 (Constant Winning Probabilities (II))

For all wk−1i ≤ wki ≤ wk+1i ≤ wk+2i and Qk−1i = Qki = Q
k+1
i > 0 :

Dk−1i Qk−1i +DkiQ
k
i +D

k+1
i Qki = 0. (18)

Proof. We first modify an arbitrary partition by joining two adjacent elements of the partition

as suggested earlier in (13). The terms Dk−1i ,Dki and D
k+1
i are defined in (15)-(17), and can be

written more explicitly after some cancellations as

Dk−1i =
¡
wki − w̄ki

¢ ¡
1− F k−1i

¢
,

Dki =
¡
w̄ki −wki

¢ ¡
1− F k−1i

¢
+
¡
wk+2i − w̄ki

¢ ¡1− F k−1i

¢
fk+1i

fki + f
k+1
i

+
¡
wk+1i −wk+2i

¢ ¡
1− F ki

¢
,

and

Dk+1i =
¡
w̄ki −wk+1i

¢ ¡
1− F ki

¢
+
¡
wk+2i − w̄ki

¢ ¡1− F k+1i

¢
fki

fki + f
k+1
i

.

The equality in (18) now follows directly after some elementary cancellations and using the decom-

position of w̄ki given in (14).
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Proof of Theorem 3. Suppose to the contrary and hence that there exists γki and γ
k+1
i such that

γki ≥ γk+1i . By Theorem 1, Qki has to be nondecreasing. By Lemma 2, the winning probabilities

qi
¡· · · , wki , · · · ¢ = qi

¡· · · , wk+1i , · · · ¢ have to be identical for γki ≥ γk+1i . It thus follows that

Qki = Q
k+1
i . By Lemma 3, the revenue for the auctioneer remains unchanged when the mass point

wki and w
k+1
i are merged, provided that Qk−1i = Qki = Qk+1i . Moreover as Dk−1i < 0, it follows

that the revenues are strictly improved if Qk−1i < Qki . Thus it follows that every auction with

non-monotone virtual utilities is (weakly) dominated by one with monotone virtual utilities.¥

Proof of Corollary 1. The characterization follows immediately from pointwise optimization of

the objective function (7) for any realization of values w =
³
wk11 , ..., w

kI
I

´
.¥

Proof of Theorem 4. (1.) Suppose to the contrary. Then there exist γki such that©
γkj
¯̄
γki < γ

k
j < γ

k+1
i

ª
= ∅.

Observe next that if two adjacent virtual utilities belong to bidder i then the probability of receiving

the good has to be identical on both intervals, Qki = Q
k+1
i by Theorem 3 and Corollary 1. But by

the same argument as Theorem 3, we may then join the mass points wki and w
k+1
i and the expected

revenues for the auctioneer will strictly increase. A contradiction.

(2.) Suppose to the contrary and thus Γi = Γj for all i, j. Then there exists an optimal auction

such that for some i and some k, Qki = Q
k+1
i . We can now appeal to the same argument as in (1.)

to conclude that the revenues of the auctioneers are strictly increased by joining the mass points wki

and wk+1i , which destroys the symmetry in the virtual utilities.¥

Proof of Theorem 5. First, we show that if the information structure is a partition, then the

optimal information structure is a monotone partition. Consider a partitional point zi separating

Ski and S
l
i , where without loss of generality, w

k
i < w

l
i. A necessary condition for the optimality of z

is

∂R (z)

∂zi
= 0.

The first order condition can be written more explicitly as

0 =
∂γk−1i

∂zi
fk−1i Qk−1i +

∂γki
∂zi

fki Q
k
i +

∂γl−1i

∂zi
f l−1i Ql−1i +

∂γli
∂zi

f liQ
l
i

+γki fi (zi)Q
k
i − γlifi (zi)Qli (19)

+
X

{γkj |γki<γkj<γli }
γkjf

k
j

Y
m6=i,j

Pr
¡
γm < γ

k
j

¢
fi (zi) .
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Using the composition of the virtual utility, γki , we can write (19) more explicitly as

0 = −
Ã¡
zi −wki

¢ ¡
1− F k−1i

¢
fki

!
Qk−1i +

Ã¡¡
zi −wki

¢
+
¡
wk+1i −wki

¢¢Ã1− Fk−1i

fki

!!
Qki

+
¡
wk+2i −wk+1i

¢
Qk+1i + ...+

¡
wl−1i −wl−2i

¢
Ql−2i +

+

Ã¡
zi −wli

¢ ¡
1− F l−1i

¢
f li

+
¡
wli −wl−1i

¢!
Ql−1i +

Ã¡− ¡zi −wli¢+ ¡wil+1 −wli¢¢
Ã
1− F l−1i

f li

!!
Qli

+γkiQ
k
i − γliQli +

X
{γkj |γki<γkj<γli }

γkj f
k
j

Y
m6=i,j

Pr
¡
γm < γ

k
j

¢
.

We observe that we can rewrite the first order conditions as follows

ak,li +
¡
bli − bki

¢
zi = 0, (20)

where

bki =

¡
Qki −Qk−1i

¢ ¡
1− F k−1i

¢
fki

, (21)

and

bli =

¡
Qli −Ql−1i

¢ ¡
1− F l−1i

¢
f li

. (22)

We now derive from (20)-(22) that the optimal partition must be monotone. First, we observe that

bki ≤ bk+1i for all k. By way of contradiction, suppose not. As wki < w
k+1
i , there exist points vi ∈ Ski

and v0i ∈ Sk+1i such that vi < v0i. By the optimality conditions it has to be that

ak,k+1i +
¡
bk+1i − bki

¢
vi ≤ 0 and ak,k+1i +

¡
bk+1i − bki

¢
v0i ≥ 0,

but this implies that bk+1i ≥ bki . Suppose for the moment then that b
k
i < bk+1i holds as a strict

inequality for all k. We can now view the (pairwise) first order conditions as a linear function of zi

as in (20), and it follows from the single crossing property of linear functions, that each element of

the partition must consist of a single interval.

Finally, we observe that the argument above does not show that the partition must be monotone

for bki = bk+1i . However, if bki = bk+1i , then a partition which is monotone must also be optimal

(among possibly others). To see this, consider how the elements wki and w
k+1
i appear in the revenue

function of the auctioneer (see (10)):

wki
¡
1− F k−1i

¢ ¡
Qki −Qk−1i

¢
+wk+1i

¡
1− F ki

¢ ¡
Qk+1i −Qki

¢
,
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or Z
Ski

vif (vi) dvi

¡
1− F k−1i

¢
fki

¡
Qki −Qk−1i

¢
+

Z
Sk+1

vif (vi) dvi

¡
1− F ki

¢
fk+1i

¡
Qk+1i −Qki

¢
. (23)

But by assumption of bki = b
k+1
i , it follows that¡

1− F k−1i

¢
fki

¡
Qki −Qk−1i

¢
=

¡
1− F ki

¢
fk+1i

¡
Qk+1i −Qki

¢
.

Thus we can infer from (23) that any distribution of points across Ski and S
k+1
i delivers the same

value to the auctioneer provided that the density under Ski and S
k+1
i integrates up to fki and f

k+1
i ,

respectively. But clearly one possible allocation is represented by a monotone partition such that

vi ∈ Ski , v0i ∈ Sk+1i implies that vi < v0i.

Finally observe that the above argument immediately shows that the optimal information struc-

ture must be a partition rather than a noisy information structure. A noisy information structure

would allocate the density of (at least) some realizations vi across different signals ski and associated

expected valuations wki . But from the single crossing properties of the first order conditions above,

we can conclude that for all adjacent expected values, wik and w
i
k+1, at most one realization vi

can optimally belong to either wki and w
k+1
i . But this implies that with probability 1, a value vi

generates a single signal ski and hence that the information structure is a partition.¥

Proof of Theorem 6. Every monotone partition with at most K elements can be characterized as

a K+1 dimensional vector, where each entry specifies a partitional point. The objective function of

the auctioneer is continuous in the location of each partitional point. The space of possible locations

for each partitional point is compact and hence by Weierstrass an optimal partition is guaranteed

to exist.¥

The proof of Proposition 1 uses the following auxiliary result for the behavior of the ratio

wk+1i

³
1−Fk+1

i

Fk+1
i −Fk

i

´
− z

³
1−Fk

i

Fk+1
i −Fk

i

´
¡
z −wki

¢ ³ 1−Fk−1
i

Fk
i −Fk−1

i

´ ,

which is central to the first order conditions for adjacent partitional elements. For a given parti-

tional point z, consider adjacent elements of the partition described by [zk−1i , zki ) , [z − εk, z) and
[zki , z

k+1
i ) , [z, z + εk+1). We are interested in the behavior of the ratio as εk, εk+1 → 0.

Lemma 4 (Limit Ratio) For any z ∈ (0, 1), the limit is given by:

lim
εk,εk+1→0

wk+1i

³
1−Fk+1

i

Fk+1
i −Fk

i

´
− z

³
1−Fk

i

Fk+1
i −Fk

i

´
¡
z −wki

¢ ³ 1−Fk−1
i

Fk
i −Fk−1

i

´ =

1
2
1−Fi(z)
fi(z)

− z
−1
2
1−Fi(z)
fi(z)

. (24)
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Proof. The first term in (24) can be written more explicitly as
R
z+εk+1

z
vifi(vi)dviR z+εk+1

z
fi(vi)dvi

µ
1−R z+εk+1

0
fi(vi)dviR z+εk+1

z
fi(vi)dvi

¶
− z

µ
1−R z

0
fi(vi)dviR z+εk+1

z
fi(vi)dvi

¶
µ
z −

R z
z−εk vifi(vi)dviR z
z−εk fi(vi)dvi

¶µ
1−R z−εk

0
fi(vi)dviR z

z−εk fi(vi)dvi

¶ .

We first consider the limit as εk, εk+1 → 0. Consider first the numerator:

lim
εk+1→0

R z+εk+1z vifi (vi) dviR z+εk+1
z

fi (vi) dvi

1− R z+εk+10 fi (vi) dviR z+εk+1
z

fi (vi) dvi

− zÃ 1− R z0 fi (vi) dviR z+εk+1
z

fi (vi) dvi

! ,
or equivalently

lim
εk+1→0

R z+εk+1z vifi (vi) dviR z+εk+1
z

fi (vi) dvi
− z
Ã 1− R z0 fi (vi) dviR z+εk+1

z
fi (vi) dvi

!
− z
 .

As the left hand side of the first term converges to zero and the right hand side to infinity, we have

to apply l’Hopital and evaluating the derivatives at εk+1 = 0 we get

1

2

1− Fi (z)
fi (z)

.

Consider next the denominator, where we have

lim
εk→0

Ã
z −

R z
z−εk vifi (vi) dviR z
z−εk fi (vi) dvi

!1− R z−εk0
fi (vi) dviR z

z−εk fi (vi) dvi

 ,
and similarly applying l’Hopital and evaluating the derivatives at εk = 0 we get:

1

2

1− Fi (z)
fi (z)

. (25)

which concludes the proof.

Proof of Proposition 1. As in Lemma 4, fix a partitional point z, and consider adjacent elements

of the partition described by [zk−1i , zki ) , [z − εk, z) and [zki , zk+1i ) , [z, z + εk+1). Consider the

first-order conditions derived for Theorem 5 in equation (19), when specialized to the case of two

adjacent partitional elements, or l = k + 1:

0 =
∂γk−1i

∂zki
fk−1i Qk−1i +

∂γki
∂zki

fki Q
k
i +

∂γk+1i

∂zki
fk+1i Qk+1i +

+γki fi (z)Q
k
i − γk+1i fi (z)Q

k+1
i (26)

+
X

{γkj |γki<γkj<γk+1i }
γkj f

k
j

Y
m6=i,j

Pr
³
γm < γ

j
k

´
fi (z) .

We observe initially that X
{γkj |γki<γkj<γk+1i }

fkj
Y
m6=i,j

Pr
¡
γm < γ

k
j

¢
= Qk+1i −Qki .

35



We therefore have X
{γkj |γki<γkj<γk+1i }

γkj f
k
j

Y
m6=i,j

Pr
¡
γm < γ

k
j

¢
fi (z) = γ̄

k
i

¡
Qk+1i −Qki

¢
fi (z) .

for some γ̄ki satisfying γ
k
i < γ̄ki < γk+1i . Consider next the remaining terms in (26). The partial

derivatives can be computed explicitly and after combining terms, we can rewrite the first order

conditions to collect the winning probabilities and get

Qki −Qk−1i

Qk+1i −Qki
=
wk+1i

1−Fk+1
i

fk+1i

− z 1−Fk
i

fk+1i

− γ̄ki¡
z −wki

¢ 1−Fk−1
i

fki

.

The first-order condition has to hold for every (optimal) partition. Next we consider what happens

to the term on the right hand side in the limit as εk, εk+1 → 0, or

lim
εk,εk+1→0

wk+1i
1−Fk+1

i

fk+1i

− z 1−Fk
i

fk+1i

− γ̄ki¡
z −wki

¢ 1−Fk−1
i

fki

. (27)

The term γ̄k then converges to γ
k
i by a Sandwich argument and as

lim
εk,εk+1→0

γki = z −
1− Fi (z)
fi (z)

,

we obtain from (27) that

lim
εk,εk+1→0

wk+1i
1−Fk+1

i

fk+1i

− z 1−Fk
i

fk+1i

− γ̄ki¡
z −wki

¢ 1−Fk−1
i

fki

= 1.

The ratio is continuous in z for every given i, εk, and εk+1 as the density fi (z) is continuous in z

by assumption. As z is element of a compact set and there are only a finite number of bidders, it

follows that the limit result can be extended uniformly for all z and i, provided that the intervals

[zk−1i , zki ) , [z − εk, z) and [zki , zk+1i ) , [z, z + εk+1) are sufficiently small or εki , εk+1i ≤ ε for all i
and k.¥

Proof of Proposition 2. This argument is a continuation of Lemma 3. As Dk−1i < 0, it follows

that if Dk+1i ≥ 0, then

Dk−1i Qk−1i +DkiQ
k
i +D

k+1
i Qk+1i > 0, (28)

as

Qk−1i < Qki < Q
k+1
i ,
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from the optimality of the auction. Next we want to show that the inequality also holds for Dk+1i <

0. As in Proposition 1, fix a partitional point z, and consider adjacent elements of the partition

described by [zk−1i , zki ) , [z − εk, z) and [zki , zk+1i ) , [z, z + εk+1) and let εk, εk+1 → 0. By

Proposition 1,

Qki −Qk−1i

Qk+1i −Qki
→ 1.

It is therefore sufficient to show that

lim
εk,εk+1→0

Dk+1i

Dk−1i

< 1− δ,

holds for some δ > 0. In fact, we next show that

lim
εk,εk+1→0

Dk+1i

Dk−1
i

≤ 0. (29)

As the limit of the ratio may depend on the rate at which εk and εk+1 converge to zero, we have to

show that the inequality (29) holds for any sequence of εk and εk+1. To this end, define an arbitrary

smooth path,

h : [0, 1]→ R2+,

with

h : t 7−→ ¡
εk (t) , εk+1 (t)

¢
,

such that εk (0) = εk+1 (0) = 0, εk0 (0), εk+1
0
(0) > 0 and εk (t) > 0, εk+1 (t) > 0 for all t > 0. Define

also

D̂k+1i ,

¡
zk+1i − w̄ki

¢ (1−Fk+1
i )fki

fki +f
k+1
i

− ¡wk+1i − w̄ki
¢ ¡
1− F ki

¢
¡
wki − w̄ki

¢ ¡
1− F k−1i

¢ ,

where D̂k+1i differs from Dk+1i only insofar as we replaced wk+2i by zk+1i . It therefore follows that

D̂k+1i

Dk−1i

<
Dk+1i

Dk−1i

.

For a fixed path h (·), consider then the limit

lim
t→0

D̂k+1i (t)

Dk−1i (t)
.

As both terms in the ratio converge to zero, we have to apply l’Hopital, or

lim
t→0

D̂k+1i (t)

Dk−1i (t)
= lim
t→0

∂D̂k+1
i

∂εk
dεk

dt +
∂D̂k+1

i

∂εk+1
dεk+1

dt

∂Dk−1
i

∂εk
dεk

dt +
∂Dk−1

i

∂εk+1
dεk+1

dt

.
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Evaluating the partial derivatives at
¡
εk, εk+1

¢
= (0, 0), and using the limit properties of the condi-

tional means as recorded in Lemma 1, results in

lim
t→0

1
2
dεk

dt −
³
1
2
dεk

dt − 0dε
k+1

dt

´
³
0dε

k

dt − 1
2
dεk+1

dt

´ = − 0
1
2
dεk+1

dt

.

As

dεk+1

dt
> 0,

at t = 0, it follows that the limit is unique and equal to zero, which completes the proof.¥
Proof of Theorem 7. Consider first an optimal information structure for the auctioneer subject to

the restriction that the information structure forms a monotone partition with up to K elements in

every partition. Denote the resulting revenue for the auctioneer by R (K). Without loss of generality,

we may assume that the partition of each agent i has at most one element, namely ki = 1, which

has a zero probability of winning (Q1i = 0). We can make this assumption by the earlier results of

Theorem 3 and 5. The argument is now by contradiction. Suppose there doesn’t exists an optimal

finite partition. Then for every K, there must exist a K0 such that

R (K0) > R (K) with K < K0,

and in fact

R (K0) > R (K00) for all K00 < K0. (30)

Next we observe that by Lemma 2, there exists an ε̄ such that a coarser information structure (by

combining adjacent intervals smaller than ε̄) yields a higher revenue. But for every ε̄ > 0, there

exists K (ε̄) such that if the partition of agent i has K (ε̄) <∞ or more elements, there must at least

be one pair of adjacent elements, where the size of each interval is less than ε̄. But now suppose

that K0 > K (ε̄), then Lemma 2 tells us that

R (K0) < R (K0 − 1) ,

which delivers the desired contradiction. ¥
Proof of Theorem 8. We argue by induction. First, we show that, as I → ∞, there exists a
subsequence IK →∞, such that all i ∈ IK have an interval of length ε at the top. Second, we show

that if there exists a subsequence, Ik →∞, such that all i ∈ Ik have an interval at [(k − 1) · ε, k · ε),
then there exists a subsequence Ik−1 →∞ of the sequence Ik such that all i ∈ Ik−1 have an interval
at [(k − 2) · ε, (k − 1) · ε). The induction argument implies that the exists subsequence I1 →∞ with

the property that all i ∈ I1 have an ε-partition.
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First, suppose to the contrary. That is there exists a finite M such that at most M bidders

have an interval [1 − ε, 1] in their partition as I → ∞. This implies that at most M bidders have

a valuation of 1− ε
2 . Moreover, at least one of these M bidders will have a valuation of 1− ε

2 with

probability 1− F (1− ε)M . The remaining bidders have a highest valuation of at most 1− ε. Thus,
with probability F (1−ε)M the highest possible revenue equals 1−ε. We may write an upper bound
for the revenues as,

RM ≤ (1− ε
2
)[1− F (1− ε)M ] + (1− ε)F (1− ε)M ,

where the bound equals (1− ε
2) if at least one of M bidders has a valuation of (1− ε

2) which occurs

with probability 1−F (1−ε)M . Otherwise, if none of theM bidders has a valuation of (1− ε
2), then

all the remaining (virtual) valuations equal at most (1 − ε) and this event occurs with probability
F (1− ε)M .
Now, consider the revenues under the mechanism in which bidders receive the good only if their

valuation falls into the smallest possible interval at the top. Clearly, if IK bidders have a partition

with the smallest possible interval at the top, then with probability 1−F (1−ε)IK the revenue equals
1− ε

2 . The revenues under this mechanism are at least,

R ≥ (1− ε

2
)[1− F (1− ε)IK ].

Combining the above inequalities yields,

R−RM ≥ ε

2
F (1− ε)M − (1− ε

2
)[F (1− ε)IK ].

For IK sufficiently large the right hand side is positive. A contradiction. Thus it cannot be that

there exists a finite M such that at most M bidders have an interval [1− ε, 1] in their partition as
I → ∞. In other words, it has to be that IK bidders have an interval of length ε at the top with

IK →∞, as I →∞.
Second, suppose there exists a subsequence, Ik → ∞, such that all i ∈ Ik have an interval at

[(k − 1) · ε, k · ε). We argue that this implies that there exists a subsequence Ik−1 → ∞ of the

sequence Ik such that all i ∈ Ik−1 have an interval at [(k−2) ·ε, (k − 1) ·ε). The virtual valuation of
agents i ∈ Ik equals wik + (wik+1 −wik)1−F

k
i

fki
. Observe that the virtual utility depends on the length

of the interval. Clearly, the virtual valuation is maximized if the interval is small which arises if the

interval [(k−1) ·ε, k ·ε) is contained in the partition of agent i. Let γk denote this virtual valuation.
We can write the seller’s revenue as a sum of two parts: First, the revenues conditional on virtual

valuations exceeding γk or being equal to γk for i /∈ Ik and, second, the revenues conditional on
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virtual valuations being at most as large as γk,

R =
X

{γki |γki>γk, ∀i∈I, or γki=γk for i/∈Ik }

max(γki , 0)fki Y
j 6=i
F
k(i)
j

+
X

{γki |γki≤γk, ∀i∈I, or γki=γk for i/∈Ik }

max(γki , 0)fki Y
j 6=i
F
k(i)
j


where F k(i)j is defined as in (9).

To maximize the seller’s revenues it has to be that the second part in the revenues, which we

denote by R2, is maximized. In other words, revenues conditional on the event that all virtual

valuations are below γk have to be maximized. Clearly if γk ≤ 0, then the revenues are not affected
by the choice of intervals and we are done. So, suppose that γk > 0. We show that to maximize R2

there has to be a subsequence Ik−1 →∞ of the sequence Ik such that all i ∈ Ik−1 have an interval
at [(k− 2) · ε, (k − 1) · ε). Suppose to the contrary, that is there exists a finite M such that at most

M bidders have an interval [(k− 2) · ε, (k − 1) · ε) in their partition as Ik →∞. This implies that at
most M bidders have a virtual valuation of γk. Moreover, at least one of these M bidders will have

a valuation of γk with probability [[F (k · ε)− F ((k − 1) · ε)]/F (k · ε)]M . Due to the discreteness of
virtual valuations, there exists a δ > 0 such that all remaining bidders have a highest valuation of

at most γk − δ. Thus, with probability [[F (k · ε)− F ((k − 1) · ε)]/F (k · ε)]M the highest possible

revenue equals γk − δ . We may write an upper bound for the revenues as,

RM ≤ γk[1− {
F ((k − 1) · ε)
F (k · ε) }M ] + (γk − δ){

F ((k − 1) · ε)
F (k · ε) }M

Now, consider the revenues under the mechanism in which bidders receive the good only if their

valuation falls into the interval [(k − 1) · ε, k · ε). Clearly, if Ik bidders have a partition with an
interval [(k− 1) · ε, k · ε], then with probability [1− {F ((k− 1) · ε)/F (k · ε)}Ik−1 ] the revenue equals
γk. The revenues under this mechanism are at least,

R ≥ γk[1− {
F ((k + 1) · ε)
F (k · ε) }Ik−1 ]

Combining the above inequalities yields,

R−RM ≥ δ · {F ((k − 1) · ε)
F (k · ε) }M − γk[{

F ((k − 1) · ε)
F (k · ε) }Ik−1 ]

For Ik−1 sufficiently large the right hand side is positive. A contradiction. Thus, it cannot be that

there exists a finite M such that at most M bidders have an interval [(k− 2) · ε, (k − 1) · ε) in their
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partition as Ik → ∞. In other words, it has to be that Ik−1 bidders have such an interval with
Ik−1 → ∞, as Ik → ∞. By induction we have shown that there exists a sequence I1 such that all
bidders i ∈ I1 have an ε-partition.¥
Proof of Theorem 9. By Theorem 7, the set of virtual utilities is finite for every bidder i. By

Theorem 3, the virtual utilities are strictly increasing for every bidder i. Thus the auctioneer can

implement the optimal auction by offering the object according to the order of virtual utilities as

represented in (8). The exclusive offer to agent i with realization wki would carry the price T
k
i /Q

k
i .

Finally, by Theorem 4, no bidder has two adjacent utilities in (8) and hence no bidder will receive

two subsequent offers.¥
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