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Nonparametric Estimation of a Multifactor

Heath-Jarrow-Morton model: An Integrated Approach

Andrew Jeffrey* Oliver Linton] Thong Nguyen? and Peter C.B. Phillips®

May 22, 2001

Abstract

We develop a nonparametric estimator for the volatility structure of the zero coupon yield
curve in the Heath-Jarrow-Morton framework. The estimator incorporates cross-sectional re-
strictions along the maturity dimension, and also allows for measurement errors, which arise

from the estimation of the yield curve from noisy data. The estimates are implemented with
daily CRSP bond data.

1 Introduction

In this paper we propose a new estimator of the volatility structure in single factor and multi-
factor models of the term structure. A well known limitation of one factor models, regardless of
whether they belong to the more traditional Markovian framework typified by Vasicek (1977) and
Cox, Ingersoll, and Ross (1985) or the more recent approach pioneered by Ho and Lee (1983) and
Heath, Jarrow and Morton (1992) (HJM hereafter) — which results in non-Markovian behavior of
the interest rates — is that they poorly capture empirical dynamics either of short rates (the most
commonly used state variable) or the whole term structure. This limitation has motivated the study
of multi-factor models, especially in practical work. T'wo factor models with a rich variety of second

factor specifications have been examined in the literature. The short term interest rate is usually the
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first factor; some frequently chosen second factors include the long rate, the spread between long rates
and short rates, inflation, central tendency (the long term mean of short term interest rates), and
volatility of short term interest rates. Examples of two factor models can be found in Balduzzi, Das,
Foresi and Sundaram (1998), Brennan and Schwartz (1979), Duffie and Singleton (1997), Knight,
Li and Yuan (1999), Litterman and Scheinkman (1991), Longstaff and Schwartz (1992), Schaefer
and Schwartz (1984), Pearson and Sun (1994), among others. More flexible three factor models and
beyond are also studied by Boudoukh, Richardson and Stanton (1998), Balduzzi, Das, Foresi and
Sundaram (1996), Chen and Scott (1993). A survey of multi-factor models can be found in Backus,
Foresi and Telmer (1998).

Recent theoretical and empirical studies of non-Markovian models inside the Heath-Jarrow-
Morton framework have also favored the multi-factor specification to enable richer dynamics, see
for example Bliss and Ritchken (1996), Buhler, Uhrig-Homburg, Walter and Weber (1999), Inui and
Kijima (1998), Jong and Santa-Clara (1999), Pearson and Zhou (1999).

Moving away from the simple one factor framework introduces extra analytical complexity. In
consequence, out of mathematical convenience, most models so far studied are affine. That is, they
have drift and diffusion functions defined as linear functions of the state variable(s), as proposed
in Vasicek (1977) and typified in the work of Cox, Ingersoll, Ross (1985). The affine structure by
itself imposes heavy restrictions on the specified dynamics, besides the fact that most affine models
impose additional restrictions because they fall short of being “maximal” in the terminology of Dai
and Singleton (1998).! Nonlinear models, such as Chan, Karoly, Longstaff and Saunder (1992) (CKLS
hereafter), and more recently, nonparametric models as in Stanton (1997), are more flexible. At a
cost of some loss in tractability, these models do capture the dynamics of the term structure better
— see CKLS for an empirical demonstration to this effect. However, there are still restrictions that
are imposed through seemingly innocuous specifications. For example, in the multi-factor Markovian
model discussed in Knight, Li and Yuan (1999), only one Brownian motion drives the dynamics of
each factor, or in the multi-factor non-Markovian model in Pearson and Zhou (1999), there is just
one Brownian motion that drives the whole forward curve, although the volatility structure depends
on more than one state variable.

In this study, we propose a flexible multi-factor generalized Heath-Jarrow-Morton model that
encompasses most HJM models proposed so far in the literature. Our model is general in various
ways. The nonparametric specification allows the functional forms to be minimally restricted. We

also allow all volatility structures associated with each Brownian motion to depend on the whole set

L “Maximal” essentially means that the researcher does not impose any implicit and/or explicit restriction on the
model beyond the affine structure. In practice, however, additional assumptions are often invoked. For instance, it is

very common to assume that factors are driven by a set of orthogonal Brownian motions.



of specified state variables, departing from a common practice of associating each Brownian motion
with a separate state variable. Most importantly, contrary to the usual approach of introducing
measurement errors as an afterthought to fix the so-called stochastic singularity that is inherent in
HJM models, our model directly incorporates measurement errors when the dynamics of the yield
curves are initially specified. To our knowledge, this is the first study to analyze estimation issues of
a multi-factor HJIM model in a rigorous fashion.

The plan of the paper is as follows. In the next section, the prototype one factor model is specified
and the estimator and its asymptotic properties is developed. We extend the methodology to cover
the multi-factor case in section 3. Section 4 is devoted to the empirical estimation of a one factor
and two factor model using US bond data. Section 5 concludes the paper. All technical derivations

are given in the appendix.

2 One factor Nonparametric HJM model

Let P(t,T) denote the price of a one dollar face value, default free, zero coupon bond at time ¢ that
will mature at time 7". The instantaneous forward rate at time ¢ for date 7', denoted f(¢,T'), is defined
by f(t,T) = —0In(P(t,T))/ 0T and the yield at time ¢ with maturity date 7', denoted y(¢,T), is
defined in terms of forward rates by y(¢,7) = —7 ftT f(t,v)dv. The HJM framework represents
the term structure in terms of forward rates. However, determining forward rates in practice via
curve fitting procedures often proves to be sensitive to the method adopted. Estimation of yields is
typically less sensitive to the method used, intuitively because yields are averages of forward rates.
Consequently, we choose to portray the term structure using yields. Within the HJM framework
where a single Wiener process W(t) introduces uncertainty into the bond market, the uncertain
evolution of each yield with fixed maturity date T is characterized by the stochastic differential

equation
dy(t,T) = ay(w,t, T)dt + y(w,t,T)dW (t),

where W (t) is a one dimensional Brownian motion, while w indicates the possible dependence on the
term structure’s realization up to time ¢t. More specifically w € F; where F; indicates all available
information just before time t generated by the term structure’s evolution. We shall restrict our

attention to volatility functions of the form

7("‘}7 t, T) = ’Y(T’(t), T— t) = ’Y(T’(t), 7—)

for some function v (.) that is smooth but otherwise of unknown functional form. This class of

models is vast, covering most of the HJM specifications proposed so far in the literature. However,
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the technique introduced later is not restricted to this chosen state variable. Our specification is
obviously nonparametric one with no restriction on the functional form, according to the usual
convention.

As shown in the original HJM paper, the no arbitrage restriction dictates that the drift function
of the forward curve evolution is just a function of the volatility structure if we are in risk neutral
world. For yield curve evolution, this no arbitrage restriction also imposes that the drift function is
a function of the yield volatility structure. specifically

ay(tv T) y(ta T) _ T(t)
or * T

1
O‘y(w7t7 7—) = + 5 T 7((")77577-)2;

see Jeffrey, Linton, and Nguyen (1999b) for a derivation of the above equation. Together with the
knowledge of the market price of risk, the dynamics of the yield curve under the real world measure
can be recovered. A common objective is to use the above dynamics to price fixed income instruments,
however, and risk neutral martingale pricing only requires the dynamics in a risk neutral world, since
the drift is simply a function of the volatility structure in a risk neutral world (it is not necessary to
know the market price of risk in this world). So, for pricing based on an HJM model such as that
considered here, we only need to estimate the volatility structure.

Using only observations from a time series of y(.,7) with fixed 7, we can obtain an estimate of
the volatility function ~y(r(¢),7) as shown in a recent paper by Jeffrey, Linton, and Nguyen (1999b).
Their estimator was LS g A )

Ao (1)) = ST )
where Kj(-) = K(-/h)/h and K(-) is a symmetric probability density, while h, is a bandwidth

sequence. Under various regularity conditions [including that h, — 0 and nh, — oc| we have

(3,0, )2 = 4(r,7)?) =5 N (0,4 | K| 7(r,7)%)

as n — oo, where | K> = fj;o K (u)? du, while T (t,,r) is the chronological time of the process
r, a concept that will be discussed in more detail later. The estimator can be considered as an
extension to HIM models of the approach pioneered by Stanton (1977) and Jiang and Knight (1998)
for Markovian interest rate models.

In the original HJM models, a finite set of Brownian motions serve as the source of randomness
in the economy and drive the dynamics of the whole yield curves. This construction helps to make
the market complete, but at the cost of inducing stochastic singularity into the model: we can easily

find some linear combination of the dynamics of points along the yield curves that is deterministic,



i.e., without the presence of the Brownian motion shocks.? Empirical data, of course, almost surely
violate this relationship. To reconcile this internal consistency, other sources of randomness, such as
measurement errors must be introduced. Generalized models of HJM are also motivated to overcome
this undesirable inconsistency. In Kennedy (1994) and Kennedy (1997), the source of the shocks in
the economy is a Brownian sheet and random field, respectively; or in more recent work by Santa
Clara and Sornette (2000), string shocks are employed. Estimation issues with these new models
are very challenging, unfortunately, and, perhaps in consequence, empirical studies with these new
models have yet to be conducted.

In the following, we will introduce a new generalized model that is flexible enough to do away

stochastic singularity, while retaining tractability and facilitating estimation. Our model is
dy(ti, Tj) = oy(w, ti, Tj)dt + y(r (t;) , 7;)dW (t;) + odW; (L), (2)

where (W;)7_, is a family of independent standard Brownian motions, independent of the standard

J
j=1

Brownian motion W. The new family of (W;);_, will act as the extra source of shocks to the yield
curves; they can be interpreted as measurement errors, which can arise from a variety of sources, a
notable one being that the data used in the procedure were obtained from some preliminary yield
curve fitting procedure such as splines in McCulloch (1971, 1975), bootstrapping as in Fama and
Bliss (1987) or kernel smoothing as in Linton, Mammen, Nielsen and Tanggaard (1999).

In contrast to more radical approaches such as that of Kennedy (1994, 1997), where the new
source of shocks in the economy is completely different from the finite set of Brownian motions in
the original HJM papers, the model proposed above can be considered as a stochastically extended
version of the original HJM model. The model aims to incorporate measurement or observation
errors while preserving as much as possible the HJM’s shock structure. Put differently, the com-
mon Brownian motion(s) that drive the whole yield curve dynamics still provide the only source

of economic uncertainty embedded in the underlying model, while the idiosyncratic shocks to each

2For example, in the one-factor model above, we can have the following deterministic relationship for any two yield

dynamics:

dy(ta Tl)f}/(w7 ta T2) - O‘y (w7 t’ Tl)’Y(w7 ta T2) = dy(t7 TQ)’Y(wa t7 Tl) - O‘y(wa t? TQ)’Y((‘L}’ t7 Tl)dt

3Zero-coupon yield curves are not observable with traded instruments in the fixed-income markets because bonds
with time to maturity greater than 1 year are normally coupon-bearing bonds. So the (zero coupon) yield curves must
be extracted by yield curve fitting procedures such as McCulloch (1971, 1975)’s splines. In any case, the data used to
carry out these procedures do not correspond exactly to the theoretical price. Specifically, we usually observe quotes
of bid and ask prices obtained from a telephone survey of the registered bond dealers. Also, there are tax difference

and liquidity effects that can be interpreted as providing random errors in the observed bond prices.



point of the yield curves are statistical noise. The underlying economy is therefore still a complete
market, where any instrument is hedgeable, while the observed economy is not necessarily complete
any more. We thus take a half way approach between the original HIM models and that of Kennedy
(1994, 1997) and Santa Clara and Sornette (2000).

The familiar homoskedastic orthogonal measurement error structure can be readily justified as an
econometrically convenient device that is widely used, although relaxing this simple structure is quite
feasible for our technique. This structure can also arise from the asymptotic properties established
in LMNT (1999), that is, the error term is assumed to come from the kernel estimation procedure
used in that paper. The error variance is small, and goes to zero as the number of observations used
in extracting the single period term structure goes to infinity. The uncorrelatedness assumption is
justified provided the grid of maturity points is either fixed or increases but at a slow enough rate so
that the underlying kernel estimators are independent. We suppose that the grid {7; }‘jle becomes

dense on the maturity interval as J is assumed to increase at a certain rate.

3 Estimation Method

In this section we introduce our estimation techniques based on the yield curve evolution. As argued
in Jeffrey, Linton, Nguyen (1999b), we prefer to use yields instead of forwards since the former,
which is an average of the latter, are easier to estimate. However, the estimator developed here can
be adapted for forward curve evolution with minor modification.

Suppose we observe the yield curves at n points in time ¢;, i = 1,...,n. At any time t;, we
observe a random number, J;, of points along the yield curve {y(¢;,11),...,y(t;,Ty,)}, where T; is
the time to maturity. For ease of notation, we will use the Musiela parameterization 7 = T — ¢;
we will also drop the subscript ¢ in J; and assume for simplicity that we observe the yield curve
at the same maturities for each time point. We shall further suppose that the observed maturities
T1,...,Ts can be thought of as being random draws from some continuous density function p. Let
Ay(ti, 7) = y(tiy1,7) — y(t;, 7). For simplicity it is also assumed that all time intervals ¢; to ¢;,; are
equally spaced, that is, At; = t; .1 —t; = At for all ¢ and consequently t, = nAt.

It is straightforward to see from the characteristics of the driving Brownian motion that

Y(r (), 75)y(r (t), Te)dt if j #k
E(dy(t,T;)dy(t, Ty,) | Fi) =
[y(r (t),7;)? +02)dt  if j =E.

We will use these restrictions to generate estimating equations for the unknown volatility function



~. Stacking all the cross-yield restrictions together we have at any time ¢

Ay(t7 Tl)2 Ay(t7 Tl)Ay(t7 7—2)
1 Ay(ta Tl)Ay(tv T2) Ay(tv 7-2>2
—F
A, : : :
Ay(tuTl)Ay<tluTJ) Ay(tuTQ)Ay(tluTJ) U Ay<t77—J)2

V2 (r, 1) 402 y(r, T)y(r, T2)
_ 7(7’771):7(7”772) ot (7’77:2) +0: ()
Y TN, Tr) ()Y Ty) e AR T) 4 o

for a given set of maturity points 71, ..., 7. Letting J — oo we obtain a population criterion function

2

that the volatility structure (r, 7) and measurement error variance o

must satisfy, namely

/ E[Ay(t, T)Ay(t, ) = (1), 1)y (1), 7)A] p(r)p(r')dr'dr, (4)

where p (.) is the marginal density distribution of maturity times. A modified sample version of this

function, which ignores information along the diagonal, is proportional to

J J
Z D (DYt 7)) Ay(ts, i) — 3 (r (8, 7))y (r (8) i) Al (5)

which depends on the function v but not on 2. We deliberately do not use the diagonal restriction
to avoid the need of estimating o2 in this sample version. So, contrary to the approach in a related
study, Jeffrey, Linton, Nguyen (1999b), where only information along the diagonal of the moment
condition matrix is used, we here use only information from the off-diagonal elements. However, the
resulting volatility structure estimate may be used together with the diagonal information afterwards
to back out or make inference about o2.

It is instructive to digress here for a discussion on the (probably implicit) difference between
the Markovian and non-Markovian approach with regards to measurement errors. In the former
approach, it is often the case that structural parameters controlling the dynamics of the short term
interest rates (the often used state variables) are estimated, with the (implicit) assumptions that the
short rates are observed without errors. Then, to reconcile the fact that other observed yields with
maturity longer than zero are not perfectly correlated, which they should be, due to being driven by
the same state variables, it is necessary to introduce observation errors for other yields. So in effect,
we would “shift” all observation errors toward other yield levels, and make a (perhaps unrealistic or

unreasonable) assumption that we could observe the short rate with utmost accuracy.
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In the HJIM framework, there is also an inevitable need to introduce observation errors if we are
to reconcile for the less than perfect correlation observed in yield data across maturity dimension.*
It is interesting to point out the fact that from our analysis, provided our specification is reasonably
correct, one can see the potentially severe deficiency of not using the cross-sectional restriction along
the maturity dimension in estimating an HJM model: the estimates thus may be severely biased due
to the presence of the measurement errors.’

The localized version of the above criterion function is

J J

/ Z SO Ayt ) Ayt 7i) — 17 TV T ) ARl K, (ri—73) K, (75—75) K, (7= 7) diid7 7,

i=1 j=1 k=1
k#j

which is to be minimized with respect to functions v. We will use the delta method to solve for the

*One possible approach, which is somewhat comparable to the common approach in the Markovian literature (see
Duffie and Singleton (1997), among others), is to assume that we can observe a carefully-chosen number of points
along the yield curves without measurement errors. For instance, for a two-factor HJM model, assume that we can
observe 3 points with different maturities along the yield curves which we will conveniently assume to be observed

without measument errors. Second-moment restriction on the dynamics of forward rates and cross-restrictions are:

Eldf ,T0)’] = n(r(®),1@),7)+40(1),1(), T1)* = Yau

Eldf (L To)"] = nr(®),0(8), 1) +5(r (1), (1), 12)* = Y

Eldf (,T5)°] = n(r(0),1(6),T5)* +(r (1),1(2), Ty)* = Vi
Bldf (6 1) df (1 T)) = n(r(8),1(8), Tn(r (6),1(8), T2) +(r (8) 1(6) T (r (1), 1(1) T) = Yo
Bldf (6T df (1 T9)] = n(r(8),1(8), Tn(r (6),1(8) 1) +(r (8) ,1(6) , T (1), 1(1)  Ts) = Yis
Bldf (6 ) df (1 T5)] = n(r(8),1(8), T)n(r (1), 1(8) Ta) +1(r (8),1(8), Ty (r (1), 1(1)  Ts) = Yas

The intuition here is that we have 6 functions of 7)(r (¢),1(t) ,7;) and ¥(r (t) ,1(t),T}),5 = 1,2, 3, so we need 6 moment
conditions to exactly identify these functions. In general, if we have an M —factor model, we would need (at least)
N points along the yield curves to generate N + N« (N —1) /2= N (N +1)/2 > M % N moment conditions so the
model will be exactly (or over) identified (M * N will be the number of unknown), i.e. N =2M — 1. For a possible
empricial implementation, since three factor models are well-documented to be able to capture the empirical behavior
of the US bond market, the number of points we would look at will be 2 %3 — 1 = 5 for exact identification.

This approach is similar to that of the Markovian literature, in the sense that we assume that there are some
“special” points which are observed without errors, and “shift” all observation errors to other points. The approach is

however not very appealing for a number of reasons, one being that there is no natural candidate for these N points.
"For example, in our previous paper, if the new model with measurement errors is more appropriate, then the

previous estimator, which effectively use only information along the diagonal, will have the asymptotics as

2 (32 (1) 7)) y
Tt L @) O €)> |

It is apparent that the bias can be severe if the variance of the measurement errors is relatively large.

(GO @), 7?) ~ (v (), 1) +02)} L N (o, .
Ap ot
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functional solution, 7(r, 7). The first order condition, obtained by differentiation with respect to the

function 7(.,.) as shown in the appendix, is

J J
0 = J? < ZZ Ay(ti77j)Ay(ti,Tk)Kh,,(7’i—7”)

Y [Km (= 73) [ 3l s = m)ds + Ko (r = ma) [ 3lr ) (s - mds}

5> DD AT (r—m) (6)
J2 = 4

« lKhT (r =) / 5(r, 82K (s — e)ds + K. (7 — 1) / 5(r, 5)2K (s — Tj)ds} A,

The function 4 = 0 is always a solution to (6). The solution 7(r,7) can also be written (assuming

0/0 = 0 in the pathological case) as

[ Hi(r,7,5)3(r, s)ds

y rT)= = ) 7
V(r7) | H, (7“,’7‘,8)572(7“, s)ds ()
where
R =
Hl (TvTa S) = ﬁz ZZ Ay tzaT] Ay tuTk:)Kh ( T)
i=1 j=1 k=1
k#j
X [Kp (T —7;)Kp, (s — Tk) + Kn (T — 7)) K, (s — 75)]
and
R 1 n—1 J J
Hﬂnﬂ@:iﬁamﬁlggggkg i — 1) [Kn (7 —75)Kn, (s — 7%) + Kn, (T — 70) Kn, (s — 75)] -

The expression (7) is a nonlinear integral equation involving the linear operators H 1 and ﬁg. These
quantities depend only on observed data and indeed are just kernel weighted sample averages. Re-

lation (7) suggests the following iteration for the calculation of ¥(r,7) :

7). = (r7)

f ﬁl (7’, T, S) ,/y\[(l] (7”, S)dS

~ 2 ’
J B (r,75) (37(r,5)) " ds

~la+1] (

Flattl( a=0,1,...,

T, T)

for some given starting value 7. The integrations in 7 r,7) are unidimensional and can be com-

puted numerically. We discuss this further in the application section below.

9



Our iterative method is called successive approximation. For a detailed discussion we refer the
reader to Kantorovich and Akilov (1964) and Luenberger (1969). See also Hastie and Tibshirani
(1990), Mammen, Linton, and Nielsen (1999) and Linton, Mammen, Nielsen, and Tanggaard (2000)

for related computations.

4 Asymptotic Properties in the Single Factor Case

Before proceeding with the development of the asymptotic distributions of the estimator defined
above, we first introduce some notation and assumptions. Consider a semi-martingale defined as

follows
dr (t) = p(r (t))dt + o (r(t)) dW (1), (8)

where sufficient regularity conditions are assumed to ensure the above stochastic differential equation
has a strong solution.
Definition (Chronological Local Time. See Phillips and Park (1998)). The chronological local

time of the semi-martingale r defined by (8) at point a over the time interval [0,t] is defined as

— 1 1

t
_ f 2
L(t7 CL) - 0_2(@) lli% % /(; l\r(s)fa\<€o-(r(s)) ds

1
= 02—@L<t7 CL),

where L(t,a) is the local time of r at point a over the time interval [0,t)].

Lemma (The Occupation Time Formula. See Revuz and Yor (1999)). For the semi-martingale

r defined by (8) with quadratic variation process (r,r)_, and for every Borel function f of r

s’

—+00

[ reenain, = [ s@reod.

where L(t,a) is the local time of r at point a over the time interval [0,t].
Direct applications of the Occupation Time Formula along with the definition of Chronological

Local Time provide the following two results, which will be used repeatedly in our proofs

ST, ©)

0 0%(r(s))
+o0 —
= fla)L(t,a)da

—00

/ F(r(s))ds =

and further, for any kernel function K () and continuous bounded function f(-),

lim — /OtK <$_TT(S)) f(r(s)ds = imt [k (‘” ; “) p(a)L(t,a)da (10)

hl0 h hlo h J_o

10



+oo o
= lm K(g)p(z + hq)L(t, x + hq)dq

— L(t,2) f(x) = Oas (Lo(t,7)) .

Assumptions that must be imposed to study the asymptotic distribution of the estimator are the
following:

AssuMPTION Al. (Recurrence). The process {r(t);t > 0} defined in (8) is recurrent; that is for
every point a on the support of this process the chronological local time L (t,a) — oo as t — oo.

AssumPTION A2. (Boundedness). The drift and diffusion functions are (locally) bounded

o (w ti) = alw, 85) [ + |n(r(t:)) = n(r(t;))] < Cly (8:) = y(t;)] (11)
for constants C, and there exists some 0 < v < 1/2 such that

(An)”

f(m)/o Kn(r — 7 (s))alw, s)ds| = O (1). (12)

AssumMPTION A3. (Sampling Conditions along the time dimension). Let both the discretization
width At and bandwidth for the kernel estimators h depend on the sample size n which grows to
infinity. To indicate this we will hereafter denote these quantities as A, and h, respectively. The
sample frequency A, — 0 as n — oo, which is referred to as the ‘“infill assumption’. The time span of
observations t,., = nl, — oo as n — oo, referred to as the ‘long span assumption’.S The bandwidth
parameter h, | 0 in such a way that h,/A, — oo and (An)ﬂ %f(t, a) =0(1) forall 0 < § < % and
every point a on the support of the process {r(t);t > 0} defined in (8); L(t,a) is the chronological
local time of the process {r(t);t = 0}.

AssSuMPTION A4. The kernel K has compact support( [—C1,C1], say), is symmetric about zero,

and is continuously differentiable.

As shown in the appendix, the estimator 7(r, 7) will have the asymptotic behavior stated formally
in the following theorem:

Theorem 1. Suppose that assumptions A.1-A4 hold. Then,

heh, L (t,,)
A,

4 ’}/(7“, 7_)2 f 7(7“’ 3)4]9 (3> dS) .
p(r) ([ y(r,s)?p(s)ds)*

REMARK 1. Our approach is based on a combination of some recent advances in the nonparametric

F(r,m) —(r, 1) S N (0, 2| K|

literature. Along the maturity dimension, we draw on the approach put forward by Linton, Mammen,

Nielsen, and Tanggaard (1999), while information from the evolution of interest rates over time is

6This assumption can be dropped for the diffusion coefficient estimator provided in Theorem 1.

11



used in a fashion similar to the nonparametric estimations of stochastic diffusion processes proposed
by Florens-Zmirou (1993), Stanton (1997), Jiang and Knight (1998), and Bandi and Phillips (1999).

REMARK 2. This model will cover all one factor HIM models that have been employed in the past
literature, such as the one factor model in our previous paper, Jeffrey, Linton, and Nguyen (1999b).
To cover the HIM model proposed in Pearson and Zhou (2000), we simply need to replace the kernel
function K, (r; —7;) that we use above by a two dimensional kernel K}, ((r;, s;) — (74, 5;)). Note that,
in contrast to the multi-factor model discussed in the next section, their model is very restrictive in
the sense that the randomness is introduced into the model by just one Brownian motion, although
the volatility is extended to a function of two variables. Their model can also be thought of as a
special case of our two factor model, where the volatility structure on the second Brownian motion

is simply zero.

5 Multi-Factor Models

Multi-factor models, both path independent and path dependent, have been widely studied in the
literature, in an attempt to improve the fit of the model when measured against empirical data, for
instance capturing dynamics of the observed short term interest rate.” Balancing between the flexi-
bility provided by more factors and potential overfitting problems plus losing analytical tractability
associated with more factors, researchers have commonly proposed two/three factor models, as cited
earlier.®

The above approach could be extended to the multi-factor case in a straightforward fashion, at
least for the step of setting up the criteria function. Derivation of the solution will quickly become
very burdensome and tedious, as demonstrated for the two factor case later, although the basic idea
is rather straightforward. However, complications that are introduced into the estimation procedures
are not in any sense trivial and will have consequences on asymptotic behavior. The most difficult

hurdle, in principle, arises from the non existence of local time in high dimensional cases for Brownian

"The practical implication of this particular limitation on pricing fixed-income assets is arguably debatable. Failure
to capture the dynamics of the short rates accurately does not necessarily impair the ability to price fixed-income
assets. For instance, Buser, Hendershott and Sanders (1990), Hull and White (1990) claim that one-factor interest
rate models with flexible specification can generate interest-rate derivatives prices similar to those of 2-factor models.
Nevertheless, even if their thesis is valid, the search for models that fit empirical dynamics of the underlying consensus

is still of great interests, at least for internal consistency.
8More radical alternative aimed at accomodating more complex behaviors of the term structure’s dynamics is to

resort to stochastic processes different from Brownian motions to present shocks to the underlying economy. Among
them, Levy process, fractional Brownian motion, and in particular, jump-diffusion process have become favorite

candidates in many studies.
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motion. In particular, for a d-dimensional Brownian motion with d > 3, local time does not exist
and this makes a general solution using our approach challenging if not impossible. For the case
of d = 2, although the local time does exist, its nonparametric estimate converges at a log(n) rate,
which is too slow for reliable inference. In general, no parametric estimates have been proposed for a
general diffusion process with d > 2, and most cases that are considered in the literature are severely
restrictive — see Brugiere (1991) and Knight, Li and Yuan (1999) for related studies.

To proceed in light of these considerations, our strategy here is to make some additional assump-
tions. First we will be content that our volatility functions are of multiplicatively separable form,

’7(“]7 t, T) = 7(“}’ t,T — t) = H ’Y(xm (t) 77->

where the set of x,,,m = 1,..., M are the state variables. We also assume that the local time can
be decomposed into Ny

L (tn, (wm,m=1,...,M)) = [[ T (tn, xm) ,

m=1

and since the one dimensional process z,, (t) can be fairly assumed to be recurrent, L (t,, z,,) ,m =

1,..., M is well defined in this case, and thus the existence of L (t,, (x,,,m = 1,..., M)) becomes

viable. Convergence properties can be established under these extra assumptions, as shown below.

We can now develop an estimate for a volatility structure of any m-factor HJM model, although the

algebra will become excruciatingly involved, as evident from the calculations below, while the curse
of dimensionality is likely to make convergence issue of any model with m > 2 problematic.

For concreteness with consideration of expositional ease, we will analyze a two factor HIM model

in the following. The model, similar to the above setup, is

dy(t;) = dy(t;, T) = oy (w, i, Tj)dt +y(w, t;, T)dWi (t) + n(w, ti, T;)dWs(t:) + o.dWj (), (13)

where again (1) 3-7:1 is a family of independent standard Brownian motions serving as measurement
errors or statistical noise, independent of the standard Brownian motions W; and W5, which serve

as the stochastic shocks to the yield curves. We shall also restrict the volatility function to the form:

7(w7t7T) = 7(T<t)7l(t)7T
n(wvtaT) = 77(7“(75>al(t):T

t) =~(r@),1(t),7)
n

where the new extra state variables [ (¢), can be the long term rate [(¢) along the line of Brennan and

Schwarz; the forward rate itself f(¢,7); or the spread between long term rate and short term rate,

L(t) —r(t).
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As mentioned earlier, the analysis in Dai and Singleton (1999) demonstrates that almost all
(Markovian) affine models examined in the literature implicitly or explicitly impose some overiden-
tifying restrictions on an underlying “maximal” model. This practice is also applicable to non affine
models and non-Markovian models as well. For instance, Knight, Li and Yuan (1999)’s multi-factor
model has severe restriction embedded in their specification. In our model, we have retained gener-
ality as far as possible, by allowing all volatility structures to be function of all state variables (albeit

we still invoke independence of the Brownian motions), rather than simpler specifications such as

'7(("}7 2 T) = V(T(t% ! (t) I — t) = V(T(t% T),
77((")7 2 T) = TI(T’(t)7 ! (t) I — t) = U(l(t)7 T),

where each volatility depends on just a single state variable.

The moment conditions can be derived are

E(dy(thj>dy(tv Tk) “Ft—)
y(r (), 0@) ,73)y(r (8) L (@) i) +n(r (@) 1(8) , 7)n(r (), L() ,7e)] dE if j # K

(Y(r (&), L (&), 75)* +n(r(t),1(t),7;)*+ o] dt if j = k.
We will incorporate the off-diagonal information based on these restrictions into the following local-

ized criterion function

n—1

Q) = Y [ 8ot mauttm) = (4B 77 + 0l B 70l D) A

1 k=1
k#j
XKhr(Ti — E)Khr(lz — li)KhT (Tj — ’%j)KhT(Tk: — ?Hdﬁdlzd?]ﬁk

=1 j=

Again, similar to the one factor case above, to avoid the need to estimate the measurement errors,
we use only off-diagonal moment restrictions to estimate the object of interest, namely the volatility

structures 7(.) and 7(.).

Proceeding as in the one factor case, using the delta method, we obtain the following representa-

tion for the multifactor estimator

Pw,ﬂ] [ [ Hy (r,7,8)3(r, 5)2ds [ s (r7,5) 31, )i(r, 5)ds ]1 [ [ (7, 8)3(r,5)ds
n(r,1,7) [ Hy (r,7,8)3(r, s)ij(r,s)ds [ Hy (r,7,5)7(r, s)ds [ Hy (r,7,5)7(r,s)ds]’
where

N n—1 J J

H, = Z Ay(t;, 7)) Ay(ts, i) Kn, (ri — 1)Ky, (I; = 1)

-y
X [Kp (T = 75)Kn, (5 = 1) + Kn, (T — 71) K, (s — 75)],
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and

X [Kp (T —7;) K, (s — Tk) + K, (T — 71) K, (s — 75)] -

This representation suggests an iterative solution as

-1

;Y\[a+1] (r,1,7) B I ]’_]-2 (r,7, ) /7\[a](7,7 s)2ds | ﬁz (r,7,s) ;}7[(1} (r, S)ﬁ[al(r, s)ds
[ﬁ[‘”” (r.1, T)] N [ [Hy (r7, )3 (0,85 (r, s)ds [ Hy (r,7,5)7(r, 5)2ds

J H, (r,7, )79 (r, s)ds

{f H, (r,7,s) n[a](r, s)ds]’ 6=0:2. -,

starting from some given initial condition.
Similar to the one factor case, the asymptotics for this two factor estimator can be derived under
the previously invoked assumptions of a mutiplicatively separable form of the volatility structure

and the local time. As shown in the Appendix, under these assumptions, the estimates follow mixed

)

Ty = 4[y(rl,7)*+n(rl 1) / [v(r,1,8)* + n(r,1,8)%] [y(r,1,8)Gs — n(r,1,5)G3] p(s)ds

normal asymptotics again.

Theorem 2. Suppose that assumptions A.1-A4 hold. Then,

J\/hrhlhTZ (tnv (Ta l)) [’/}/\(T, 177-) - V(Tvlﬂ_)} i N <0, HKHG

T, 0
0 Ty

An ﬁ(ra l: 7-) - 77(7°: l? 7—) 4T3p(7_>

where Y1 , To and Y3 are defined as

+27y(r, 1, 7)? /7(7“, 1,5)? [y(r,1,8)Gy — n(r,1,5)Gs] p (s) ds
+2n(r,1,7)? / n(r,1,8)? [y(r,1,8)Gy — n(r,1,5)G3] p(s) ds

+2v(r, L, m)n(r, 1, T) /7(7“, Lsn(r,l,7) [y(r,s)Gy —n(r,l,s)Gs]p(s)ds

Yo = Al L L rP] [ s 4 a7 b 9)Ga — (L s)Gal p (5)ds
L7 [ 4019 0L 5)Ga = 1l 1, 9)G p(5) ds
s Lr? [ 09 B0 5)Ga = w01 5)Gal p () ds
(L) [ AL L) b0 9)Ga — 1l 1, 9)Galp (s)ds
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Ty | [t ()ds [ ntrs)p (5)ds - { JR e ds} ] )

and Gy = [ y(r.s)?p(s)ds, Ga = [n(r,s)%p (s)ds, G = [ A(r.s)n(r, s)p (s) ds.
REMARK 3. The rate of convergence, as expected, is slowed down by a factor of h; relatively

to the case of one factor. With reasonable values of bandwidth, around 1% to 3%, as suggested by
the historical interest rates, the rate of convergence decreases by a factor of hundreds, a significant
change. This familiar curse of dimensionality would be rather detrimental to the estimation for
multi-factors, or any useful inference based on this estimate such as testing for the number of factors
necessary to depict the evolution of the empirical yield curves; parametric methods are deemed to

be more suitable in this case, with the risk of model misspecification however.

6 Empirical Implementation

We apply the above techniques to estimate the volatility structure for one factor and two factor
models from daily CRSP bond data from January 1961 to December 1998. As reasoned in Jeffrey,
Linton, and Nguyen (1999b), and consistent with the derivation done previously, we deviate from
the common practice of using the forwards for HJM model estimation and use the yield evolution
instead, in light of the fact that the yield is easier to estimate. The first step in estimating a dynamic
model of the yield curve is to extract the unobservable yield curves themselves from coupon bearing
bonds observed in the market: LMNT (2000) kernel smoothing based yield curve fitting, whose
implementation is shown in detail in Jeffrey, Linton and Nguyen (1999a), is our choice of yield curve
extraction here.

Our choice of kernels is the commonly used Gaussian K (t) = exp(—0.5t2) /+/2x, for which || K||* =
1/2y/m. Choosing an optimal bandwidth for a nonparametric estimator is still an elusive question in
the literature, there being no single scheme that is uniformly accepted although cross-validation is a
frequently used procedure ; see Hirdle (1990) and Pagan and Ullah (1999) for extensive discussion of
the proliferation of proposed schemes. The existing methods are designed, however, for the standard
regression context; for diffusion models, especially ones that allow for nonstationary processes, rules
are yet to be developed. For our estimates, similar to that of LMNT (1999), since no closed form
solutions are available, estimation of the models are computationally demanding, thus rendering
cross-validation an unattractive option. So we opt instead to use a flat bandwidth (obtained by
visual inspection) in our study and leave other bandwidth selection methods for future experiments.
For the diagnostic nature of our empirical work, this appears not to be of great material import.
Bandwidth for the time to maturity dimension is fixed at 1 year level, while that along the interest

rate dimension is fixed at 1%.
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The estimates are the solutions to the above derived first order conditions. The system of equa-
tions can be solved by minimization of the square of the first order condition. Note that we do not
need to solve the system simultaneously, which would be computationally inhibitive. The trick is to
solve for each ”slice” associated with each fixed level of 7 (or in the case of two factors, with each

fixed point of (7,1)), i.e., solve for the discrete points along the curve (r, s).

6.1 One factor

We find that to estimate our model, based on the first order condition (6), albeit iterative scheme
suggested by (7) is feasible, it is much more convenient to solve for the first order condition (6) directly
by minimization routine. This finding is consistent with the implementation procedure reported in
Jeffrey, Linton, Nguyen (1999a), where a similar but somewhat simpler first order condition for
LMNT (2000) is conducted.

The nonparametric estimates for the volatility structure of one factor HJM model using the
method developed in this paper is shown in Figure 3.1, with interest rate data from January 1961
to December 1998.The well known feature of the volatility structure reported in the literature, that
interest rates become more volatile when the level is high, is again observed here. For instance,
volatility becomes as high as 4% when the short term hits 18% (this level only observed in the “Fed-
experiment” period from 1979 to 1982). Along the maturity dimension, volatility tends to slowly
increases with time to maturity when short term rates are low, but the pattern tends to reverse
itself when interest rates drift to higher ranges. Overall, the shape of the volatility surface is rather
consistent with what have been observed in the empirical literature; see Linton, Jeffrey, and Nguyen
(1999b) for similar results.

We also experiment with different time periods, for instance, starting the data period from 1970,
1983 and from 1990 respectively. The divisions are motivated by the oil shock in the early 1970s,
the so-called “Fed-experiment” from 1979 to 1983, where interest rates were floated by the central
bank, and the relatively low and stable interest rate that prevailed in the 1990s. The volatility
structures estimated for these 3 periods are reported in Figure 3.2, 3.3 and 3.4 respectively. Note
that to avoid biasedness at the boundary and extrapolation, the volatility structures are estimated
only in the ranges that data are observed. So in the first 2 figures, where the high interest rates
period of 1979-1983 are included in the estimation procedures, the instantaneous interest rates (the
state variable) can go from 0% to 18%, while in the last 2 figures, they only go high up to around
10%. Similar consideration is built into the time to maturity dimension. For instance, if the data
period goes back as far as 1960, we only examine the yield curves with time to maturity up to 4

years, since bonds with longer maturities were rarely available then. This scale increases to 5 and 9
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years if data from later periods are used instead. For ease of comparison, however, the scale along
the volatility axis remains constant across the figures.

Comparing these figures, notwithstanding the scale differences (along the axis of short rates and
time to maturity), the remarkable differences between the graphs seem to suggest some nonstationary
behavior for interest rates. When data including the chaotic period of the Fed-experiment, as in
Figure 3.1 and Figure 3.2, interest rates not only become more volatile when interest rates are
higher, but even when interest rates are low, volatility is higher compared to later periods. After
the Fed-experiment period, the volatility surface has become much more stable, although its typical
shape is still observed; volatility increases with instantaneous interest rates and time to maturity.

In Figure 3.5, we compare the volatility surfaces obtained by different methodology, i.e., the one
developed in this paper which accounts for measurement errors, and the simpler method employed in
Pearson and Zhu (1998) and Jeffrey, Linton, and Nguyen (1999b). Yield curves from 1970 to 1980 are
chosen to conduct this experiment. The first graph shows the estimate of the volatility surface using
the new method, which uses only off diagonal information in the moment conditions developed above,
while the second one shows that of the more “naive” method, which in fact uses only information
along the diagonal of the moment conditions. Examining the two graphs, interestingly, using off
diagonal restrictions as we have in this paper does not yield an estimate whose shape is dramatically
different from that obtained using information from the diagonal alone. However, as expected, the
latter does over estimate the volatility surface (by adding the variance of the measurement errors
into its estimates; see the related footnote in section 2.1). When the short rate reaches 18% for
instance, its estimate of the volatility is around 0.051, while the new method yields an estimate of
0.034. This magnitude of difference is definitely material when one uses the volatility surface to price

fixed income instruments.

6.2 Two factor

As cautioned earlier, the variance of our estimates in this case (and in models with more factors) is
relatively large, making statistical inference based on these estimates difficult, besides being computa-
tional burdensome in view of the complexity of the model. Consequently, we can not wholeheartedly
endorse nonparametric estimation in multi-factor models for making inference and testing purposes.
However, in a search for a reasonable parametric model, nonparametric methods even of high dimen-
sion can provide a good starting point.

For illustrative purposes, we implement a two factor model here, with the data period from Janu-
ary 1970 to December 1998. As mentioned earlier, which factors to be included is commonly rather ad

hoc in the literature, with a whole array of existing specifications. In our following implementation,
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the chosen factors are the short term and the long term interest rate respectively, a rather common
choice in the related literature. The same trick used earlier, i.e., solving for curves of 7(T, 1, 7) and
v(7,1,7) at a fixed point (7,1) and different 7. Even with that, the first order condition can be difficult
to solve, since we have to solve for the 2 curves 7(7,1,7) and (7,1, 7) simultaneously.

Graphical presentation in this case is quite problematic, since n(.) and ~y(.) are functions of 3
variables — the short rate, the long rate and the maturity. So for illustration, we just report Tables
3.1 and 3.2, which contain values of 7(.) and ~(.) respectively for one level of r = 6.7%, where we
allow long rates to vary from 2.5% to 10.8%, where maturities vary from 0 to 4 years. The ranges are
chosen so empirical data can best accommodate the estimation procedure, pre-empting extrapolation
and boundary issues. Volatility is reported in 1/1000.

Casual observations suggest that values of 5(.) and ~(.) are rather close, and around n'(.)v/.5,
where n'(.) is the value of the functional estimate of the volatility function when we specify one
factor model. This expected results however still render a model capable of generating more complex
behavior for the yield curve dynamics due to the independence of the two Brownian motions.” For
each volatility, behaviors similar to the one factor case is displayed. Volatility increases with the
stochastic state variable (the long rate), while along the maturity, volatility seems to positively
correlate with time to maturity when the long rate is low, but turns to negatively correlate with time

to maturity when the long rate reaches into the higher range.

7 Conclusion

The HJM approach has revolutionized dynamic models of the fixed income market, but specification
and estimation issues in this framework remain a serious challenge.!’ In this study, we propose an
extended version of the original HJM model to incorporate measurement errors directly into the
model specification. A nonparametric estimate for the volatility structure, which is central to the
dynamics of HJM, is provided and implemented with empirical data.

The technique can be readily adapted to multi-factor models, although limitations on the ex-
istence of multidimensional local time complicate the development of a general asymptotic theory.
Under some simplifying assumptions, however, an asymptotic theory is possible. The theoretical re-
sults indicate rather slow convergence properties for nonparametric estimators, consistent with their

counterparts in nonparametric regression. While we acknowledge these difficulties, nonparametric

Intuitively, [\/3771 () dWy + 50 () dW] will be able to generate more complex shocks than a single ' (.) dW

even their total variations are the same.
19The technique has found itself aggressively migrated to the equity market too; see Bonchuner (1998) for a repre-

sentative article from this rapidly expanding literature.
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methods of the type presented here still seem to offer an attractive general tool to help researchers

find appropriate parametric specifications.

8 Appendix

For two random variables X,,,Y,,, we say that X,, ~ Y, whenever X, =Y, (1+ 0,(1)) as n — 0.

8.1 Proof of Theorem 1

We first establish the first order condition defining the estimator. Let 6,.,(.,.) be the bivariate Dirac
delta function at (r, 7). Defining

n—1

Zi/// [Ay(ti, 7)) Ay(ts, ) — 775, 75)A (75 Tr) A

=1 j: k::l

X (6 (ﬁ-,'ﬂ) V(T Tr) + 6 (73, Te) V(T3,75)) DA K, (15 — 73) Ky, (75 — T) Ko (T) — T )drdT ;dT.
For the first terms, we have
/// (72, 7)) Y(Fiy T ) K, (ri — 72) K, (T — T5) K, (T — Tr)dT3dT dTy,
= Ky (r—r)K (1 —1,) /:y\(r, $)Kp, (s — Tk)ds
and similarly
[ [ [ 66 FR T K (= T 5 = F) o (70— T
= Kp.(r—r)Kp (1—1k) /ﬁ(r, s) K, (s — 7;)ds.
As for the second terms
[ [ [ 36 FRG 706 (.70 3G T (= T (7 = 75) K, (s — P dFadi

= Ky, (r—r)Ky (1 —1)7(r,7) /:y\(r, $)2 K, (s — Tr)ds

/ / / A T3 T8 (o) AT T K (11 — T Ko (1) — 7 K (s — ) dFdyd

= Kp.(r—r)Kp (1 —716)7(r,7) /?(r, $) 2Ky, (s — 7;)ds.
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We now turn to the asymptotics of the procedure. In the sequel we will extensively use the

following well established results:

/g(., $)Kp, (s — Tk)ds — g(., k)

b [ 90K (s = ma)ds = gm0 K
which hold for any bounded continuous functions g. Note that the above integrals are already in
state space, not in time domain. These results will be useful when we integrate along the maturity

dimension. We also use the following results, with the understanding that the initial integrals are in

the time domain:

[otomnt—renis — [ g, (“‘T>Z<tn,a>da

. h,
— g(7)L(tn,7)

h,,/g(.,s)KiT(r—r(s))ds — h,,/_(:g(.,a) K; <%)f(tn,a) da
= g ()L (ta,r) 1K

We first analyze the quantity Ay(t;, 7,)Ay(t;, ), which turns out to be central to the fundamental

source of uncertainty driving the asymptotics. We have

Ay(ts, 7)) Ay(ts, i) = [y(tiv1,75) =y, 75)] [y (i, 7o) — y (i, Tr)]

= [y(tigr, 75)y (tigr, ) — y(ti, 75)y (ti, Tr)) —
y (tis Th) [Y(tivr, 75) — y(ta, 75)] — y(ti, 75) [y (tiga, 7o) — y (8 Te)]
where

ti+An ti+An ti+An
Y(tiz1, 75) —y(ts, 75) = / a(s,7;)ds —i—/ y(r(s), 7;)dW (s) + O'?/ dW;(s)
t; t; t;

ti+An ti+An ti+An
yltnr) —yltom) = [ atrds+ [ 0@ maw(s) wot [ aws),
t; t; t;
By the Multivariate It6 lemma [Theorem 4.2.1 of Oksendal (1998)], we have
(tv Tj)dy (ta Tk:) + Yy (tv Tk) dy(ta Tj) + dy (ta Tk:) dy(tv Tj)
(t, 1) [a(t, Tr)dt + y(r (t) , 7i)dW () + o2dWi(t)]
+y (t,75) [a(t, 75)dt +(r (), 7;)dW () + o2dW;(t)]
+y(r (8) , 75)v(r (8), T)dt,

d(y(t,7;)-y(t,7e)) = y
y
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because the processes dW;(t) and dW(t) are orthogonal. This implies that

[y (tiv1, 75)y (tivr, k) — y (ti, 7)) y (ti, Ti)]
t2+An t7,+An
- / y(s.7)a(s, To)ds + / y(s, 7)1 (s), 7 WV (5)
ti t;
ti+An, ti+An
sot [T s mamis + [ (s m)ats s
t; t;

ti+An ti+An
i / y (5, 70) A(r(s),73)dW () + o / y(5,7)dW; (5)
t; t;

n /t T (), 7)1 (r (), 7 ) ds.

Therefore,
Mattr)duttar) = [ o) =t ot
# [ ) = vttt )
vt [ ) =l Wi
# [ o) =y G mas
# [ o)~y malateto) s
vt [ s =t ml a9
w7 e o) s
We have |

E [Ay(ti, Tj>Ay(tia Tk:)’}—ti] ~ 27(ry, Tj)W(Tu Tr) Ay,

where r; = r(t;), and

E [Ay(tiu Tj)2Ay(ti7 Tk)2|‘7}/2:| = 47(”? Tj)27<ri7 Tk)zAi-

We next establish the asymptotic properties of our estimators.
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8.1.1 Consistency

We will restrict our attention to the class of Sobolev functions which we now define. For any vector

a = (a,...,qa)" and function g : R — R, let

82?:1 o‘ig(m)
oxft -+ Ozt

D%g(x) =

Define the following seminorm on the class of real-valued functions with domain X’

lgllZ, = EjA r,

lal<q

where ¢ is an integer and Xy C X is a compact set, and let ||g||3 = ||g|[§» denote the usual Ly norm.
Finally, define ' = {7 : R* = R : [|7|2, < C} for some large C' < oo, and let Iy denote the subset
of I' that excludes an e-neighborhood of the zero function. We take ¢ =1 and d = 2.

Let

Gul)(r7) =1(r7) [ Balr7.9)22(rs)ds — [ Fy(r7.9)2(r,5)ds
for any function 7(.), and define

Qn(7) = [IGn(V)ll2-
We use the following lemma of Newey and Powell (2000, Lemma A2).

LEMMA. Suppose that (i) There exists some deterministic function Q() with a unique minimum
on the parameter space 'o; (ii) Q, and Q are continuous, I'y is compact, and sup,cr |Qn(7)—Q(7)| =

op(1); (i) T are subsets of Ty such that for any v € Ty there exists ¥ € I such that ¥ — ~. Then
~ = argmin,er Qn () = 7,

The proof of this lemma is given in Newey and Powell (2000). We next verify its main conditions
in our case. We first calculate the limit function G(v) and hence Q(7) = ||G(7)||2- In the limit, when

the bandwidth of all kernels approach zero, h — 0, and number of observations approach infinity,

n — oo and J — oo, observing that for any twice continuously differentiable function ~
/’y(r, $)K (s — 71)ds = y(r, 7)) + O(R?),

and scaling the whole equation by J~2, we have the first term’s first component

n—1

J J
% Z ZZ Ay(ti, 7;) Ay(ts, 1) Kn, (ri — 1)
1 k=1

=1 j=1 k=
k#j

« lKhT (r =) / (1, 8) K (5 — 7)ds + Ko (7 — 74) / (r, $) K (s — 75)ds
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12

I
—

1M
B

N
Il

n

- Ayt Tyt T Ko (s = 1) (K (7 = 73)3(7,72) + Ko (7 = 7227, 7)]

7 1

| Il
—
=
e
<

MK
M)~

n

= K, (s — 1) Ko, (7 — 7,)7(r, 78) + Ko (7 — 7)7(r,75)

>
I

% 1

Ly

I
T =

i
ti+An A,
X {/t [y(s,7;) — y(ts, 75)] (s, Ti)ds +/ti [y(s,7;) — y(ti, )] Yo(r(s), T )dW (s)

ti+An, ti+An
+0§ /t [y(s, ;) — y(ti, ;)] dWi(s) + 0? /t [y(s,Tk) — y(ti, 7x)] AW;(s)
ti;An zi+An
" / ly (5,75) — v (t, 7)) oo, 75)ds + / y (5,7%) — y (t 7)) 7o (r(s), 75 dV (5)

+ /:*A” Yo(r(8), 75)70(r(s), Tk;)ds} ‘

The first six terms are of smaller order in probability and by a law of large numbers, we have

12

12

12

12

~

% z_: Do 0T ) vo(ris TE) K, (ri = 7) [Kn, (7 = 75)3(r,74) + K, (7 = 1)y (7, 75)]

i=1 j=1 k=1
ki
A n—1 J 1 J
7n Z%(TMJ')K}LT(?‘@' — 1)K, (T — Tj)j Z Yo(rs, )y (rs i)
=1 j=1 k,k#£j
A n—1 J 1 J
+7n > Yo(ris k) K, (ri = 1) Ko, (1 = )= > 7o (ri, 77, 75)
i=1 kktj j
A n—1 J
S el (= ) (7= ) [l (5) ds
i—1 j=1
A n—1 J
+7n Yo7, Ti) K, (ri — 1) K, (T — Tk)/’Yo(Ti,S)V(Ty s)p (s)ds
i=1 k]
n—1
28, 3 2alris TV (1= P (7) [ s () (5) s
=1

2L (tn, ) p (T) 70(r, 7) / Yolr, 8)v(r, 8)p (s) ds,

and the second term
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X [KhT(T —7;) /7(7“, $)2 K, (s — 1p)ds + K, (T — T) /7(7“’ s)° K- (s — 7;)ds

n-1 J J
1
~ AT DD Kl =) (K (= 7))+ Ko = ()] A
i=1 j=1 k=1
k#j

12

2Emmmvwmﬂ/5m@%@Ms

In conclusion, G,(y) —* G(v), where

Gwmn»:%mﬂjﬁwwwm@M$@—vmﬂ/Hmﬁ%@Ms

The convergence of G,, to G is uniform in v € 'y because of the polynomial nature of the criterion
function and the boundedness assumptions.
The equation G(v)(r, 7) = 0 has solution v(r, 7) = 7,(r, 7) on I'g. For uniqueness, we will examine

the Gateaux derivatives of both sides of the following equation

) = Yo(r,7) [ v0(rs 8)v(r, 8)p (s) ds
7 J(r, )% (s)ds ’

which is from the first order condition above. Expand v(r, s) around the above solution 7,(r, s) as

’Y(Ta S) = 70(T7 S) + €g (S) .
The above equation can then be written as

[Yo(r, 7) + €g (T)] [ 7o(r; 8) [vo(r, 8) + €9 (s)] p (s) ds
[ ro(r.7) +eg (7)) f (s) ds

_ 2% 7) [0(r,8)°p(s) ds + eyo(r,7) [ 1o(r,s)g (s) p(s) ds +o(e)
J 100, () ds [ 1+ 2e e

Yo(r,7) +eg (1) =

_ . _67()(7’7 7) [ o(r,s)g (s)p(s)ds ole
= Y(r,7) Ta(r 5% () ds +o(e).

Differentiating both sides with respect to e, and evaluating them at ¢ = 0 yields the following

condition for g (.)
70(70, T) f 70(7“’ S)g(?“, S)p(S)dS

90 = = Pl

which has only one solution that g(r, s) = 0. Uniqueness is thus proved with v(r, s) = v,(r, s) as the

only solution. Consistency is therefore achieved. [ |
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8.1.2 Asymptotic Distribution

It will be convenient to use the representation in (7). First order Taylor expansion of the right hand

side with respect to 7 (.) around ~,(.) yields

JH (r,7,5)3(r,8)ds [ Hy(r,7,5)70(r, s)ds
[ Hy(r,7,8)3%(r,5)ds [ Ha(r,7,8)73(r, s)ds

/”)7<7’, T) - 70(7’, 7—) =

[[Hy (r,7,8) — Hy (r,7,8)]70(r, 8)ds

[ Hy (r,7,5)73(r, s)ds
f[ﬁg (r,7,8) — Hy (r,7,8)]v(r, 8)ds

[ Hy (r,7,8)73(r, s)ds
(7. ((r,) — 300 8))ds J Ha r,7.,5) 30 s)ds

[[ Hy(r,7,5)~3(r,s)ds] ?
S Hi(r,7,8) yo(r, 8)ds [ Hy (r,7,8) 29,(r, 8) (7, 8) — 7o(r, 8)] ds
[[ Hy (r,7,8)73(r, s)ds}2

+0 (I1H = Hi|P + (1> — [ + |15 = 11)

~Yo(r 7)

where fH ( oo (. 5)d
r,T,S) (7, s)ds
0lr7) = g

2 (7”, T, S) 70(r7 S)dS

T(o() = / L, (7. 8) vo(r 8)ds

J J

_ i Z Z Ay(t;, 7)) Ay(ti, i) Kn, (r; — 1)

i=1 j=1 k=1
k#j

X |:KhT(’7' —Tj) /70(7“, S)Kp (s — Tk)ds + Ky, (T — Tg) /70(7“, s)Kp, (s —7;)ds| ,

3(1()) = / L, (.7, 8) 3, 5)ds

X {KhT(T —Tj) /vg(r, S)Kp, (s — Tk)ds + Ky, (T — Tg) /vg(r, s)Kp, (s — 7;)ds
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and
E(v().70) = / (r,7.8)[¥(r,s) —vo(r, s) dS/Hz r,T,8) vg(r, s)ds

H
/ (ry7,8)vo(r, s dS/H2 T, T, 8) 27,(r, 8) [Y(r,8) — Yo(r, s)] ds

n—1

J
— ZZA%% Ay(ti, 7)) K, (r; — 1)
i=1 j=1 k=1
k#j

(K (7 — 1) / A 5) — ol 8)) K. (s — mi)ds

E (= 7a) [ 23009 lr,5) = 30(r.5)] Ko (5 = 73)ds} x B (30

DA, SN K (r—m)[Kn (1 — 7))
=1 j I;él; 1
< / 210(r,8) (51, 8) — 7 (r, 8)] K, (5 — 5)ds

H (= 7a) [ 23009 Fr8) = (0, 5)) Ko (5 = 7)),
which then allow us to rewrite the above Taylor expansion as

fﬁ1 (r,7,8)3(r,s)ds  ¥(y) E7HF,7)
[ Hy(r,7,5)3%(r,s)ds  ®(v) * (1) (16)

First consider ¥(~(.)). As shown in the consistency part above, when scaled by J~2, it converges

to
OT (£, ) p(r)1(r,7) / (. 5)°p (5) ds.

Its stochastic part, which can be written as follows, due to (14)

Z Z Z K, (r; — ) [Kn, (T = 7)y(r, ) + Kn (7 — 71)7(r, 75)]

i=1 j=1 k=1
k#j

X l/tl n[y(S,Tj) _y(ti,Tj)]fy(MS)ka)dW(s) —|-/t.i n[y (577—]“) _y(tink)]’Y(T(S),Tj)dW(s) .

Denote

i =

1

g
ZZ K, (ri = r)[Kn, (1 = 75)v(r, Th) + Kp, (7 — 70)v(7, 75)]

7j=1 k=1
k#j

fna]
2

TL
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ti+An

>«[ (s, 75) — y(te, ) (s), T)dW (5)
tli‘f‘An

+[) [y (5,7) — 9 (s, )y (r(5), 75)dW (5) ).

Since U, (x) is a continuous martingale, by the strong law of large numbers for martingale difference
sequences with finite second moment (Hall and Heyde (1986)), U,, (x) converges to zero almost surely,
with the rate of convergence can be found from Knight’s embedding theorem. Its quadratic variation

process [U,], is

[nz]-1 g J ti+A
1 1 i n
Unl, = Zhehere > D> {ly(s,75) = ylts, 7)1y (r(s), 7a)?ds +
J An i=1 j=1 k=1 Yt

k#j
[y (Sa7k> _y(tuTk> 27( ( ) )2d3

+2[y(s,75) — y(ts, 75)] [y (s, 7) — y (i, 7o) v (r(8), 75)v(r(s), Tk )ds
X K, (ri — 1) [Kn, (1 — 75)9(r, 1) + K, (1 = 71)7(r, 75))

[nz]-1 J

= 4A hyh- Z 227 rl,Tj n,m)z

=1 j=1 k=1
k#j

x K, (r; — 1) [Kp, (T — )7 (r, 7) + K, (T — )y (r, 75))

J J

= 4hh/0 YD A(s), ) () h)?

7=1 k=1
k#j

x K, (ri — 7“>2 [Kn, (T —75)v(r, 7) + Kn, (T — T1)7(r, Tj)]2 ds

oo J
= 4h h, / ZZ a,7;)*v(a,71) L (zt,, a)

7=1 k=1
k#j

x K, (a — 7”)2 [Kn, (7 — 75)7(r, 7)) + K, (7 — T72)7(r, Tj)]2 da

oo J
= 4h / Z Z T+ heq, 75)2Y(r + heq, 71)?L (atn, 7 + heq)

=1 k=1
ki

XK(Q)2 [Kn, (T —75)v(r, 7) + Kn, (T — T1)7(r, Tj>]2 dgq
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This is

~ 4h, |K|? = ZZ r, 7))y (r, 1)L (wt, 1) X [Kn (7 — 7)7(r, 7r) + K (17— 76)7(r, 75))

7=1 k=1
k#j

J o
= 4||K|*L (xtn,r) {JZhTZZVrT] Y(r, k) K, (T — 75)*y(r, 71)?

J= =1
#J
1 J g
+ﬁh7 Z Z Y(r, 7))y (r, 71) K, (7 — 1) >y (r, 75)?
j=1 k=1
ki
1 J J
+zhe SN A7)y TR K (7 — 7)) Kn (T — 1)}
j=1 k=1
ki

12

8|1 K° L (wtn,r) {7(7” T)°p (7)/7(7’7 s)'p(s) ds | K||” + hep(m)y(r, 7)6}

12

SIKIT (et ) p ()27 [ 4(08)'p (5)ds
We thus have

0, ()4 N (08 IKT T ) (21?2090 () ).

Next consider ®(~(.)). After scaling by J~2

n J J
500) = ZY SN Kb )

X[ Kp, (T —T5) /y(r, $)? Ky, (s — 7)ds + Ky (T — 74) /fy(r, 52Ky, (s — 7;)ds]

An n-1 J J
~ =YY K (r = il K (7 = )y () + K (7= i)y (7))
i=1 j=1 k=1
k#j
N = J 1
~ —= ) Kn(r—m) > K (r i) > e )
i=1 j=1 k,k#j
A n—1 J 1 J
=D K (r = 11) > Ky (r- )5 > (7))
=1 k,k#£j j=1
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12

12

Ky, (r n)ZKhT(T Tj)/”)/(T’, 5)%p (s)ds
i= j= ;
Ko (=10 S Ko r =) [ 2057 (5)ds

J
- : ZZ Ay(ti, 75)Ay(ti, 1) K, (ri — 7“)%@(7) X

1 1 n J J
AN SN K (=)
© e

< [Fn (r — 1) / 29(r,5) [3(r, 5) — (r, )] K. (s — 74)ds
K — ) / 29(r, 8) B(r, 8) — A(r, 8)] K. (s — 7;)ds]

J J
- 2 s Z Z 2(r, 7))y (1, Tr) An K, (i — 7“)}%@(7())

AU OO SN Kb — )i (7 )
R

x / 29(r, 5) [(r, 5) — A(r, 8)] K. (5 — 74)ds

G (T — ) / 29(r, 5) (. ) — 4(r, 8)] K, (s — 7;)ds]},

where the second equation follows (14). It is apparent that the two components are perfectly corre-

lated, where the variation comes from 7(r, s) — ~(r, s).
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Its first component approaches

n—1 J

J2? £ Z 2(r, 7))y (1, Tr) An K, (1 )(]2@(7('))

{En, (1= 75) B, mr) = (r, mi)] + K (7 = 78) [F(1,75) —A(r, 7)1}

= 29(r, 1)L (b ) p () / A(r,5) A(r, 5) — 4(r, )] p (s) ds

%9 (0, 7) p (7) 7(r, 7) / o(r,5)°p (s) ds

= AT (1) p (1) (7 / A(r, 5)p (5) ds / A1, 8) B(r 8) — 7(r 8)] p (5) ds.

The second component also approaches

—szA {ZZZKh r— 1) ﬂ T(~(.))

i=1 j=1 k=1
k#j

X[Kn, (T = 75)7(r,7e) [V(1, 7k) = y(r, Th)] + K, (7 — o)y (r, 75) [V (r, 75) — v(r, 75)]]}
= %7V (tarr) p (7) / A1, 8) B, 8) — 7(r,8)] p () ds x 2 (b, 7) p (7) 7(r, ) / A(r,5)p (s) ds

= AT (1) p (1) (1) / A(r,5)°f (s) ds / A(r,8) Bi(r, ) — 4(r, )] p (5) ds

so they are cancelled out, which means that the variation of the right hand side will be driven by

U ()/@(7)-
From (16), (17) and (18), we obtain

l\/hrh1 ! —[7(:7) = +(0.7)

VIl [0 ()
-2 [cw (7
d ! ‘T 2 r,s)*p (s)ds
e s (R T e [2e @),
hehr L (tn,7) d y(r, )2 [(r,s) 4p (s) ds)
J\| —————= [y, 1) —y(r,7)] = N[ 0,2 || K 5
A D)= < I H () (1 (r. )% (5) d5)
the results stated in Theorem 1. [ |
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8.2 Proof of Theorem 2

The multiplicative separability assumptions that we invoke for the volatility structures and the local
time allow us to have the following formula, which is central to our derivations, as in the one-factor
case. For the two-variable case, for any multiplicatively separable kernel function K (-) and continuous

bounded multiplicatively separable function f(-),

1&?8% K <(T’ h— (2(3)’1('9))) F(r(s),1(s)) ds

~ | /_;mK(T,;“)fxa)mt,a)da] [%%‘fah%/_jf(c_“)ﬁ() (t.a)da
d =

- {hm K(a)fy(x+ hya) T (6.2 + o) q} bﬁﬂ K(q)ﬁ(m+hlq>z<t,x+mq>dq}

—00

- Zr(tv r)f?‘(r)fl<t7 7ﬁ)fl(l) = L<t7 (7”, l))f(T’, l)

The result is essentially identical to the one dimensional case.
We first derive the first order condition for the two factor model. Differentiate the sample criteria

function with respect to n(.) we have

S / Ay(ti ) Ayt m4) — (3 L)AL Fe) + 3L 1.7 ) A

i=1 j=1 k=1
k#j

% (8 (7B 7)) A6 B ) + 6 (7B 7 ) 3 T 7))
X A K, (r; — 73) K, (I — L) K, (15 — 73) K, (75, — T)dFsdld7 ;d7
and with respect to 7y (.)

J J

- YT [ (3wt mpduttme) = (36T 7)3 B0 + (6570 L)) Ad]
i=1 j=1 k=1
k#j

x (8 (7B 7 ) s o 7) + 8 (7B 7 ) 107, s 7))
X A K (r; — 73) K, (I — L) K (15 — 75) Kn, (T — T2 )dFsdlid7d7 .

The first order condition stated in the body of the paper is obtained through the following manip-

ulation, for representative terms, which are
[ ST TG T K 13 = FO K (s = T) K (75 = ) (i = Tl
= K (r— )y (L~ 1)K, (7 — ;) / A1, 8) K (s — mi)ds
+Kp (T —Tk) /?(r, l,$)Kp, (s — 7;)ds],
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/ (TlallyTj 7 rly ZaTk: TlalHTj)’Y(ﬁyfl;a%{k)

X K, (r; — T3) K, (Ii — 1) Ko (75 — 75) K, (T — T4)dridld7
= A L) Ky (r—r) Ky (1 —1;)

<K (r —175) / 31, 812K (5 — m)ds + K. (7 — 74) / 5(r, 1, 8)* K (s — 75)ds)

L[]8 () 36T 7t b7 5

XK, (i = F) K, (1 = 1) K, (75 = T5) Ko, (7 — T4 dridl 7,
= nr, 7)) Ky, (r —ri) K. (I —1;)

X {KhT(T—Tj)/ n(r, 1, s)y (r,l,t)KhT(s—Tk)dt—l—KhT(T—Tk)/ n(r, L, s)y(r, 1, s) Ky, (s — 7;)dt| .
Therefore, we have for 7(.)
J
j=
751

{Km = 1) [ AL )i s = s + K (7 = 72) [ A0L5) K (s mds]

n—

[aay

M“

n

Ay tl,Tj Ay(tl,Tk)KhT< —T’)Km(li — l) X

=1

=
Il

1

—_

i

J

Z (r, 1, 7) K, (1 — 73) K, (1 — 1),
1 k=1

k#j

« lKhT (r =7} / (1, 8)2Kn (s — 7)ds + Ko (7 — 1) / 5,1, 8)* K (s — Tj)ds}

s
Il
A

[aay

M“

J

> A L) K, (r = i) K, (1= 1) A,
k=1

#J

X |:Kh7_(7_—7—j>/ n(r, 1, s)y(r, 1, $)Kp, (s — mx)ds + Kp,. (7——Tk;)/ﬁ(r,l,3>:)/\(7”,l,3)KhT(t—Tj)d3:| ,

7

1y

Il
T =

and similarly for 7(.)

[aay

n—

J o
ZZ Ay(t;, 7)) Ay(ts, i) Kn, (ri — ) Ky, (I; = 1)

1 j=1 k=1
k#j

x [KT(T — 7)) / Ai(r 1, 8)Kn, (s — mi)ds + Ky (7 — 74) / (e 1, 8) K, (s — 7;)ds

%
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J J
ZZ (r, 1, 7) K, (r — 1) K, (1= 1) A

X
3 —
5
=

|

\]

<
S~—
—
=
\‘Cm
S~—
&
—~
Va)

|

\]
Eo
S~—
ISH
Va)
_l’_
=
—~
\]

|

\]
N
—
=
&
=
»

|

\]
>
QL
ILI

J J
ZZ TalvT Kh Ti)Khr(l _lz>An

X [KhT(T—Tj>/ n(r, 1, s)y(r, 1, $)Kp, (s — Tx)ds + Kp, (T—Tk)/ﬁ(r,l,s):y\(r,l,s)KhT(s—Tj)ds} i

Similar to the one-factor case above, we will derive the asymptotics for our estimate by examining
the first order condition in the limit. For the interest of brevity, we will skip steps that should be
familiar now via the proof of the one-factor case done in details earlier. When h — 0, n — oo,

J — 00, observing that
/ﬁ(r’l’S)KhT(t_Tj)dS — 7(r,l,75)
/ﬁ(r’l’S)ZKhT(t—Tj)dS — 7(r, 1, 15)?

/ Ar, L )30, 1, $) K (¢ — 73)ds — 7(r, 47,3, L, 7))

s

and similarly for the alike terms. The analogue to (14) is

ti+Ap
Byltm)Byttsm) = [ i) =yt als mds

ti+An
/ ly (5,75) — y (ti )] 2 (), 1(5) , 7o) AW (s)

t; +An

+ —y (L, 75)In(r(s), 1(s), Tk )dW2 () (19)

t; +An

_l_

—y (ti, )] s, 75)ds

_l_

t; +An

S Tk
(8,7k) =y (ti, 7)Y (r(5), L (5) , 75)dW1 (8)
+ (8, Tk)

5

/ A
/t it An
/ —y ()] n(r(s), L (5) , 75)dWa (5)

ti+An
+l v(r(s), L(s) s 7))y (r(s), 7o) + n(r(s), L (s) , 75)n(r(s), L (s) , 7x)] ds.

The above term has quadratic variation as
[Ay(ti, ) Ay(ti, 7)) =2 [y(r(ta), Ut:), 7o) +0(r(t), 1), 7)*] AT
2 [y (r(t:), U(t:), 7))y (r (), L), 7) 4+ n(r(t), 1(E:), 75)m(r(8:), 1(E:), 74)]* A2
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Another useful approximation can also be derived from (19)

Ay(ts, 75) Ay(ts, i) = 2 [y (s, Ly 75)y (1, iy 7o) 4+ 17, Ly T5)0(r3, b, Tr)| A

For the first term in the first order condition , using (19) and ignoring small terms (terms bounded

by assumption 2) as done in the one-factor case, we have (scaled by J~2)

12

12

12

12

J J
e SN Ayt ) Ay(ti, i) K, (ri — 1)Ko, (1 — 1)

n—1 J J
55 30 S Ayl ) Ayl T K (s — 1)K (1~ 1)
T
X [Kh (T_Tj>:)7(rvla7—k> +Kh7.(7-—7'k>:)7(7°,l,7'j>]
n-1 J J  4A,
SN [ R 1) ) ) (), 16) (), 5) s
i=1 j=1 k=1 Yl
ki

x K, (ri = 1)K, (li = 1) [Kn, (7 — 75)7(r, [, 71) + K, (T — 76)7(r, 1, 75)]

A, L L
T2 Z Z Z [y (ris by 73) 7y (ris iy 7)) + (s, Ly 75)m(ris b, )]

i=1 j=1 k=1
ki
x K, (ri — ) K, (li = 1) [Kn, (7 — 75)7(r, [, 71) + K (T — 76)7(r, 1, 75)]

2L (tn, (r, 1)) p (1) {7(7’,[,7’)/y(r,l,s)ﬁ(r,l,s)p(s) ds—1-77(7’,1,7')/n(r,l,s)ﬁ(r,l,s)p (s) ds} .

For the second term

% Z Z Z N, L) Ky, (1 — 1) K, (1 — 1)

« lKhT (r =) / 5.1, 82 K (5 — m)dt + K (7 — 75) / (1, )2 K (5 — Tj)dt}

12

An/\ n J J
F’Y(ru l7 T) Z Z Kh,,(r — Ti)Khra — ll)

X [th— (T - Tj)/’y\(T? lu Tk:)2 + Kh-r (T - Tk)a(h l7 Tj)2:|

2L (tn, ) p (T)A(r,1,7) | A(r,1,5)*p(s) ds.

12
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And for the last term, similarly

% Z Z Z /ﬁ(T, L T)Khr(r - ri)Khr(l - l’)

i=1 j=1 k=1
k#j

X |:Kh_r(7'—7'j)/ n(r, L, s)y(r, 1, 8)Kp (s — mx)ds + Kj. (T—Tk)/ n(r, 1, s)y(r, 1, s) Ky, (s — 7;)ds

Jz"““ZZZKh ri) K, (I = 1;)

i=1 j=1 k=1
k#j
X [Kh-r (7— - Tj)ﬁ(?”, l: Tk);}/\(r, l? Tk) + Kh-r (7— - Tk)ﬁ(?”, l: Tj);}/\(r, l: Tj)]
2L (b0, ) (L) [ L 530 L 5)p () .
So in the limit, the first order condition is

0 = [7(7“,1,7’)/ (r,1, 8)7(r, 1, s)p ()ds—{—n(r,l,T)/n(r,l,s)?(r,l,s)p(s)ds}
—ﬁ(r,lm)/ﬁ(r,l,sﬁp(s) ds—ﬁ(r,l,T)/ n(r, 1, s)y(r, 1, s)p(s)ds,

and similarly, the second first order condition is
0 = |atrter) [t L (6)ds o(0d.7) [ 201 ) (5
—ﬁ(hl,T)/ﬁ(hl,S)zp(S) ds—%ﬁlﬁ)/ A(r, L s)n(r, 1, s)p (s) ds,

which has a solution 7(r,l,7) = n(r,l,7) and §(r,l,7) = ~(r,l, 7). Uniqueness can be proved using

arguments as in the one-factor case.

12

12

We now discuss the asymptotic distribution. Re-write the first order condition as

[j(r, 1,7)} _ 1
n(r, 1, 7) fﬁg (r,7,s)7(r, S>2d8fﬁ2 (r,7,8)7(r, s)2ds — [f H, (r,7,8)7(r, s)ﬁ(r,s)ds}
y [ fﬁzA(r,T,s) 7(r, s)%ds —[ﬁz (r,7,8)(r, s)n(r, s)ds ]
— [ Hy(r,7,8)(r,s)0(r,s)ds [ H (r,7,5)75(r, s)*ds

[ Hy (r,7,5)3(r, s)ds
% [f H, (r,7,5)n(r, s)ds]'
Using first-order Taylor expansion, we can show that the variation, similar to the 1-factor case, comes
only from the following term
1

fﬁg (r,7,5)y(r, s)2ds fﬁg (r,7,s)n(r,s)2ds — [f H, (r,7,8)y(r, s)n(r, s)ds

2
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[ ng r,7,5)n(r, s)ds _iﬁZ (ry71,s)y(r,s)n(r,s)ds ] {f I:i:'l (r,7,8)y(r,s)ds
[ Hy (r,7,8)y(r, s)n(r,s)ds [ Hy (r,7,5)~(r,s)2ds [ Hy(r,7,8)n(r,s)ds]

For the rate of convergence of 4(r, [, 7), consider the following quantity

1 1 1 R A
@n:_hrhT L H” 72d/H;7 ;d
J\/_,/AnQL(t'r”(r,l))p(T)X[/ 2(TTS>77(T S) S 1(7‘7—3)7(7‘ S) S
‘/ s (r,7,5) 1 (r, ), )ds / Hy (r,, ) (1, 5)ds),
which is
1 1] LA
h.h Ay(ts, ) Ay(ts, 71) Kn, (s — 1) K, (I; — 1
Jﬁ /—Anlﬁjzg y(ti, 75) Ay(ti, ) K, (1i — 1) K, ( )
k#j
X{/ 7 eVp (0) 4ol (r =) /7(7” L 8)Kn. (s — k) ds + K, (T — ) /7(7”, $)Kp, (s — 7;)ds]

/ (. 8)1(r, $)p (3) ds[n, (r — 7) / 01, ) Ky (s — 70)ds

+ Ky (T —Tk) /n(r, s) K, (s —7;)ds]}

n—1 J
1
= h.h Ay(t;, 7)) Ay(t;, 7)) K —r) Ky, (I; — 1
\/ l\/A_n”;; Ay (ti, 7r) K, (ri — 1) Kp, (I — 1)
k#j

A6, (=) [0 [ 0082 (9)ds =1, m) [ 2089l ()
#0207 [0t Po () s =) [ 2Lt () s,

where we have used the fact that

n—1 J

J
1 ~ 1
ﬁ/Hg (r,7,8)n(r,s)’ds = Anﬁ g g g Ky, (ri =) Ky, (I; = 1) X
i=

i=1 k: 1
#j
[Kp, (T /77 r,1,5)Kp (s — Tp)ds

+Kp ( T—Tk>/77 7;)ds]
J

> K (ri — 1)Ky, (I — 1)

’175] 1
X [KhT(T —7in(r, 1, Tk)2 + K, (1 — 71)n(r, Tj)2]

2L (b, (D) (7) [ 0l (5)ds.

1n71 J
- ngzZ

=1 j

12
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J

J
1 [ = 1
7 [ Belrrotrsnrs)ds = A, JzZZ K,
1

i=1 j=1 k=1

i — 1)Ky (I = 1)
1
k#j
X[KhT(T—T]‘)/’)/ ys)n(r, s) Ky, (s — Tx)ds

(r,s)n
+ Ky, (T — Tk) /7(7” s)n(r, s)Kp, (s — 7;)ds]

J J

- n}2ZZZKh s =) (L~ 1)

=1 j=1 k=1
k#j

X [Kp, (T — Tj)V(Ty TE)n(r, k) + Kp, (T — 78)y(r, Tj)n(ra Tj)]
~ 9T (b, (1)) p () / A, sl 3)p () ds.

For the stochastic part of ©, note that it is driven by the following terms belong to Ay(t;, 7,;) Ay (t;, Tx)

tit+An
Ay(ti, 75)Ay(ti, ) = / [y (s,75) =y (ti, 7)] y(r(s), L (s) , Ti)dW1 (s)

t; +An

+ y (b, 7)1 n(r(s), L (s), 7 )dW2 (s)

_l_

t; +An

+

s +An
/ (s,7k) —y (tiy k)] ¥(r(8),L(s), 75)dWi (s)
/ (s,7k) —y (tis )| m(r(s),1(5), 7;)dWa(s).

The quadratic variation of ©,, is

J J

€. = —h Phuhs Anz > 2k 73)% 4 (), 1(t:), 75)°]

i=1 j=1 k=1
k#j

<[y(r(t:), 1(ts), 7o) + 0 (r(ta), U(t:), 7r)’]
20y (r(ta), Ut:), 75) v (r(ta), Uts), 7o) + n(r(ta), Uta), 75)n(r (), 1(t:), 7))}
XKh (7‘1 — 7‘ 2Kh l — l)

A6, (7 = 15) o) [t (6)ds = () [ 20t (5) 5

+ K, (T —7k) [V(T,Z,Tﬂ/n(r s)°p(s)ds — n(r,lﬁj)/7(%@8)77(738)1? (s) dS] ¥

J J
—h by A, ZZ 2h( (i) a(r(ts), U(t:), 75)°)

1 k=1
k#j

12

=1 j=

38



X[y (r(ta), 1(t:), 7 ) n(r(ts), 1(t:), 75)°]

F2[y(r(t:), U(ta), Ti)v(r(t), Ut:) Tk)+77( (t:), L(ts), 75)n(r(t:), 1(t:), 1) *}
X{ K, (1 —7j)[v r,l,m)/n( s)ds — (r,l,m)/v(r,l,s)n(r, s)p(s) ds]
+ K (1 — 1) [y(r, 1, 75) /77 n(r,l,q)/v(r,l,s)n(r, s)p (s) ds]}?

Let Gy = [v(r,s)*p(s)ds, G2 = [n(r,s)*p(s)ds, Gz = [~(r,s)n(r,s)p(s)ds. Then the quadratic

variation of ©,, is
0. = KL (tn,r)p(7)
<{4 [y(r, 1, 7)* +n(r, 1, 7)?] / [v(r,1,8)> +0(r, 1, 8)*] [Y(r,1,8)Ga = n(r, 1, 5)G3] p (s) ds

r,l,s [v(r,1,8)Go — n(r,1,s)G3]p(s)ds

-
+2v(r, 1, 7) /7 r,1,8)% [y(r,1,8) Gy —n(r,1,8)Gs]p(s)ds
+2n(r, 1, 1) /

+2v(r, L, )n(r,1,7) /y(r, Ls)n(r,l, 1) [y(r,l,8)Gy — n(r, 1, $)G3] p (s) ds}

The last term we need to calculate to find the asymptotic distribution of our estimators is
1

fﬁQ (r, T, S)’Y(T,S>2d8fﬁ2 (r,7,8)n(r, s)2ds — [f H, (r,7,8)y(r, s)n(r, s)dsr‘

The denominator, scaled by J~2 , as shown in earlier approach, is

LT ) p(0) [ 2sPp6)ds| [T tr0)p () [t (s) s
4Tl (r0)p(7) [0l (515 2
= A 6@ | 2l ()5 [ ntrs7p(s)ds - { [t ) ds} ] ,

giving the results reported in Theorem 2. [ |
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Figure 3.1: Volatility structure of the yield curves is estimated nonparametrically from CRSP

daily bond data from Jan 1961 to December 1998. Maturity ranges from 0 to 4 years, and the short
rate is from 0% to 18%.
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Figure 3.2: Volatility structure of the yield curves is estimated nonparametrically from CRSP

daily bond data from Jan 1970 to December 1998. Maturity ranges from 0 to 5 years, and the short
rate is from 0% to 18%.

43



Volatility structure of the yield curves is estimated nonparametrically from CRSP

Figure 3.3

daily bond data from Jan 1983 to December 1998. Maturity ranges from 0 to 9 years, and the short

rate is from 0% to 10%.

700 £00 200

Volatility structure of the yield curves is estimated nonparametrically from CRSP

Figure 3.4

daily bond data from Jan 1990 to December 1998. Maturity ranges from 0 to 9 years, and the short

rate is from 0% to 8%.
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Figure 3.5: Volatility structure of the yield curves is estimated nonparametrically from CRSP
daily bond data from Jan 1983 to December 1998 where the yield curve is extracted by the Linton
et al. (1998) kernel smoothing-based method. The graph in the top is the volatility structure of the
yield curves estimated nonparametrically by the method proposed in this paper. The graph in the

bottom is obtained by the method proposed in Jeffrey-Linton and Nguyen (1999b). Maturity ranges
from 0 to 4 years, and the short rate is from 0% to 15%.
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MAT.
Lry || 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

2.51 754 |78 | 7.97 |812 |825 |838 |[846 |848 | 841

3.34 852 [ 879 [898 |9.14 |931 |946 |9.52 |9.47 |9.35

4.18 10.11 | 10.36 | 10.53 | 10.71 | 10.94 | 11.13 | 11.15 | 11.02 | 10.85
5.01 12.47 | 12.57 | 12.58 | 12.65 | 12.85 | 13.05 | 13.05 | 12.87 | 12.67
5.84 14.84 | 14.70 | 14.43 | 14.25 | 14.31 | 14.43 | 14.42 | 14.24 | 14.07
6.67 16.58 | 16.23 | 15.69 | 15.23 | 15.06 | 15.07 | 15.02 | 14.88 | 14.75
7.51 17.82 | 17.27 | 16.51 | 15.81 | 15.42 | 15.30 | 15.22 | 15.11 | 15.03
8.34 18.87 | 18.13 | 17.14 | 16.22 | 15.65 | 15.41 | 15.30 | 15.21 | 15.16
9.17 19.91 | 18.92 | 17.67 | 16.52 | 15.79 | 15.46 | 15.32 | 15.26 | 15.22
10.01 || 20.92 | 19.63 | 18.06 | 16.66 | 15.78 | 15.39 | 15.24 | 15.19 | 15.17
10.84 || 21.79 | 20.17 | 18.26 | 16.60 | 15.60 | 15.16 | 15.02 | 14.99 | 14.98

Table 3.1: Volatility structure associated with the second Brownian motion from the 2-factor
HJM model is estimated nonparametrically from CRSP daily bond data from Jan 1990 to December
1998 where the yield curve is extracted by the Linton et al. (1998) kernel smoothing-based method.
The bandwidth chosen for the volatility structure estimation is 1%. Maturity (7) ranges from 0 to
4 years, short rate is fixed at 6.67% and the long rate (LR) is from 2.51% to 10.84%. Volatility is
reported in 1/1000.

MAT.
L R || 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

2.51 7595 | 7.82 | 804 |819 |832 [844 |854 |855 |849

3.34 854 | 883 [9.06 [9.22 [9.39 953 |[9.60 |9.56 |9.44

4.18 10.14 | 10.42 | 10.62 | 10.80 | 11.03 | 11.21 | 11.24 | 11.12 | 10.94
5.01 12.52 | 12.65 | 12.68 | 12.75 | 12.95 | 13.15 | 13.15 | 12.98 | 12.78
5.84 14.91 | 14.79 | 14.54 | 14.37 | 14.42 | 14.54 | 14.53 | 14.36 | 14.18
6.67 16.67 | 16.33 | 15.81 | 15.35 | 15.18 | 15.18 | 15.14 | 15.00 | 14.87
7.51 17.91 | 17.38 | 16.64 | 15.93 | 15.54 | 15.41 | 15.33 | 15.23 | 15.14
8.34 18.97 | 18.25 | 17.27 | 16.35 | 15.77 | 15.52 | 15.41 | 15.33 | 15.28
9.17 20.02 | 19.04 | 17.80 | 16.65 | 15.91 | 15.57 | 15.44 | 15.38 | 15.34
10.01 | 21.04 | 19.75 | 18.19 | 16.79 | 15.90 | 15.50 | 15.36 | 15.31 | 15.29
10.84 | 21.91 | 20.30 | 18.40 | 16.73 | 15.72 | 15.27 | 15.13 | 15.11 | 15.10

Table 3.2: Volatility structure associated with the second Brownian motion from the 2-factor
HJM model is estimated nonparametrically from CRSP daily bond data from Jan 1990 to December
1998 where the yield curve is extracted by the Linton et al. (1998) kernel smoothing-based method.
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The bandwidth chosen for the volatility structure estimation is 1%. Maturity (7) ranges from 0 to
4 years, short rate is fixed at 6.67% and the long rate (LR) is from 2.51% to 10.84%. Volatility is
reported in 1,/1000.
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