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Multifractal products of cylindrical pulses

Julien Barral� and Benoit B. Mandelbrot��

August 4, 2000

Abstract

A new class of random multiplicative and statistically self-similar measures is de�ned on
R. It is the limit of measure-valued martingales constructed by multiplying random functions
attached to the points of a statistically self-similar Poisson point process in a strip of the plane.
Several fundamental problems are solved, including the non-degeneracy and the distribution of
the limit measure, �; the �nitness of the (positive and negative) moments of the total mass of
� restricted to bounded intervals.

Compared to the familiar canonical multifractals generated by multiplicative cascades, the
new measures and their multifractal analysis exhibit strikingly novel features which are discussed
in detail.

�D�epartement de Math�ematiques, case courrier 051, Universit�e Montpellier-II, 34095 Montpel-
lier cedex 5, France; barral@math.univ-montp2.fr.

��Mathematics Department, Yale University, New Haven, CT 06520-8283, U. S. A.; frac-
tal@watson.ibm.com.

Key Words. Random measures, Multifractal analysis, Continuous time martingales, Statisti-
cally self-similar Poisson point processes.

AMS Classi�cation. 28A80, 60G18, 60G44, 60G55, 60G57.

1 Introduction, and Discussion with Examples.

1.1 Introduction.

This paper deals with a new class of random multifractal measures to be called "multifractal
products of cylindrical pulses", MPCP. A broader class, "multifractals products of pulses", MPP,
was introduced in [Ma9] together with a number of heuristic arguments and conjectures, which this
paper will prove for MPCP. This introduction will de�ne the MPCP and contrast them on sev-
eral accounts with the familiar "canonical cascade multifractals", CCM, introduced in [Ma4,Ma5].
Measures obtained by either process will be denoted by �.

CCM involve a prescribed b-adic grid of intervals of [0; 1]. This basis b is arti�cial and was
motivated by an extraneous reason: to allow the conjectures in [Ma4,Ma5] to be proven [K1,P,KP]
and much extended since ([K4], [Ho-Wa], [Fa], [O1], [Mol], [Ar-Pa], [B1,B2]).

The key virtue of the MPP is that they involve no b-adic grid. Neither do the limit lognormal
multifractals introduced in [Ma2] and mentioned later in the discussion. Neither do the "fractal
sums of pulses" introduced in [Ma7], which inspired the present study. The absence of grid creates

1



serious mathematical complications, as will be seen. However, it brings in a great increase of
realism and versatility which is very valuable for the applications. Those improvements are due to
several novelties, essential to a varying degree, that this section will discuss. It will be noted that
an irreducible part of the common role of the basis will be played by a constant Æ, called "density",
which is a more general formal replacement for 1= log b.

Denote by S = f(th; �h)g a Poisson point process in the strip f0 < � < 1g of the plane, with
the intensity

�(dtd�) =
Æ

2

dtd�

�2
:

The "cylindrical pulses" investigated in this paper are a denumerable family of functions Ph(t),
each of which is identically 1 outside of an interval [th��h; th+�h] called "trema", and identically
equal to a weight Wh within [th � �h; th + �h], where the Wh's are copies of a positive integrable
random variable W , independent of one another and independent of S. We shall write V = E(W ).

One de�nes the approximating measures �", 0 < " � 1, with density with respect to the
Lebesgue measure ` given by

d�"
d`

(t) = "Æ(V �1)
Y

(th;�h)2S; �h�"

Ph(t):

The product of the pulses, �, is de�ned as the measure obtained on the whole real line as the
weak limit (on compact subsets) of the approximating measures �".

The familiar CCM are also de�ned as products of cylindrical pulses, but on [0; 1] rather than R

and with the deterministic rather than random set S = f(k+1=2
bn ; 1

2bn ); integer n and k; n � 1; 0 �
k < bng (b � 2). The countable family of approximating measures (�n)n�1 is then given by

d�n
d`

(t) = V �n
Y

(th;�h)2S; �h�
1

2bn

Ph(t).

The normalizing factors insure that one deals with a measure-valued martingale. They are respec-
tively "Æ(V �1) and, writing b�n = ", "Æ log V .

Each pulse is represented by an address point in the "address space" H. The three parts of
Figure 1 show three sets that will be important in the sequel: in the center, for a given pulse, the
set of values of t that it "rules"; to the left, for a given value of t, the set of pulses t -is "ruled by";
and to the right, for two given values t and t0, the set of pulses t and t0 are ruled by, either singly
or together.

In this paper, a �rst open literature publication of the contents of [Ma9] is preceded by a
discussion on the properties and the relevance of MPCP by B. Mandelbrot. Next, J. Barral proves
and much strengthenes the conjectures in [Ma9] on conditions for the non-degeneracy of �, on the
�niteness of the moments of pieces of �, and on the multifractal analysis of � via the function �MPCP

written below in the discussion. Several proofs begin with a sequence of non obvious reductions,
that make it possible to use arguments or approach developped for CCM. The geometry of the
construction is statistically self-similar but very complex compared with the tree structure of the
CCM.
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(th; �h)

th � �h th + �ht t t t0

1

Figure 1 .

Section 2 tightens up the construction of the measure � and describes a self-similar property.
Section 3 studies the non-degeneracy of the process, that is conditions under which � is positive
with positive probability, and the existence of �nite moments for pieces of �. Section 4 treats the
multifractal analysis of � by performing with probability 1, the whole multifractal spectrum (as in
[B2] for CCM), and not only each of its points with probability 1. Section 5 contains basic lemmas
used in sections 1 to 4.

We end this section with the following discussion by B. Mandelbrot.

1.2 Discussion with Examples.

Motivations. The cascades behind CCM are not part of physical reality, but an arti�cial
device made up to simplify de�nitions and proofs. Their self-similarity properties are restricted to
reduction ratios of the form b�n, with integers b and n.

It is good to recall why [Ma4,Ma5] introduced the terms "microcanonical" (often replaced by
"conservative") and "canonical". These terms are a reminder of two physical ensembles in the
Gibbs statistical theory; canonical is less constrained statistically than microcanonical. The Gibbs
theory then continues by introducing "grand canonical ensembles" which are made of a Poisson
distributed number of canonical ensembles, therefore are in�nitely divisible [Ma1].

The move from CCM to MPP loosens statistical constraints in the further spirit of grand
canonical ensembles. Let us show how. The de�nition of the CCM approximating measures can be
restated as follows. Let W (t) be a function of positive t that is constant in the intervals between
successive integers and whose values in di�erent intervals are statistically independent and with
the distribution of W . Then

d�n
d`

(t) = V �n
Y

0<m�n

Wm(b
mt);

where the functions Wm(t) are statistically independent and distributed as W (t). Similarly, the
corresponding approximating measures of the limit lognormal measures of [Ma2] is a product of
statistically independent sinusoids. In his powerful advocacy of Fourier analysis, Norbert Wiener
often pointed out to sinusoids as providing the proper base for the study of stationnary phenomena.
But multifractals are not stationnary, either visually or in the usual mathematical sense (they are
conditionally stationary sporadic functions, as de�ned in chapter 10 in [Ma10]). One response is
to replace sinusoids by wavelets. The response of [Ma7] and the present paper is to use "pulses".
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Digression on a generalization. The product
Q
Wn(b

nt) remains meaningful if the base
ceases to be an integer. It is made more elegant and extended from [0; 1] to R if random phases 'n
are introduced and the multipliers replaced by Wn(b

nt+ 'n).

The multifractal function �(q). The multifractal functions �(q) and f(�) are familiar to
the reader. A source of novelty is that �(q) takes altogether di�erent forms for CCM and MPCP.
For the former, [Ma4,Ma5] obtained and [K1,P,KP] con�rmed a now classical expression that is
convenient by writing as

�CCM(q) = �1 + q[1 + logb V ]� logbE(W
q):

For the sake of symmetry with �MPCP, it is best to use Æ = 1= log b and write

�CCM(q) = �1 + q[1 + Æ log V ]� Æ logE(W q):

On the contrary, [Ma9] obtained, as this paper will con�rm, the form

�MPCP(q) = �1 + q[1 + Æ(V � 1)] � Æ(E(W q)� 1); Æ > 0: (1)

The role of � 0(1): condition of nondegeneracy and dimension of the non-degenerate

"support". Despite the change in the form of �(q), the condition for non-degeneracy of � remains
� 0(1) > 0. If so, � 0(1) is the Hausdor�-Besicovitch dimension of the "support" of the measure. For
CCM, this is shown in [Ma4,P,KP]; for MPCP this is shown in sections 3 and 4 (however, a �ne
point concerning the converse remains open).

Covariance and the role of �(2). Let " > 0, denote by �0" the density of the approximating
measure �" and consider two points t0 and t00 with r = jt0 � t00j > 2". If � is a non-degenerate
MPCP, a measure of the dependence between � at t0 and t00 is

E[�0"(t
0)�0"(t

00)] = "2Æ(V �1)Ef[�0"Ph(t
0)][�"Ph(t

00)]g;

where �0" and �00" are products of the pulses that rule t
0 and t00.

Denote by NL and NR the numbers of pulses in H \ f� � "g that only a�ect t0 and t00. The
pulses that rule only t0 or t00 but not both contribute V NL+NR in the product �0"�

00
" . The pulses in

H \ f� � "g that a�ect both t0 and t00 contribute [E(W 2)]N0 , where N0 is their number.

Since " < r=2, the subset S(t0; t00) of H whose pulses rule both t0 and t00 does not depend on
" (see Figure 1). Moreover it follows from elementary computations based on the construction
(and helped by Figure 1) that E(V NL+NR)E(V N0)2 = "�2Æ(V �1), E(V N0) = e�(S(t

0;t00))(V �1) and
E([E(W 2)]N0)
= e�(S(t

0;t00))(E(W 2)�1). Thus

E[�0"(t
0)�0"(t

00)] = e�(S(t
0;t00))f[E(W 2)�1]�2(V �1)g

which do not depend on ". The correlation of � at t0 and t00 is the limit as "! 0 of

E[�0"(t
0)�0"(t

00)]

[E(�0"(t
0))]2

� 1:
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As [E(�0"(t
0))]2 = 1 and �(S(t0; t00)) behaves like �Æ log (r=2) as r � 1=2, this correlation behaves

like r�(2)�1 as r � 1=2 (�(2) � 1 < 0 if W is not the constant 1). For r > 1=2, the correlation
vanishes.

A formally identical expression of the correlation holds for CCM, but in that case the physical
euclidean distance between t0 and t00 is replaced by the arti�cial ultrametric distance.

Upper critical power qcrit.pos and conditions under which it is �nite. For non-degenerate
CCM and MPCP, E[�([0; 1])] < 1 and if q > 1, the condition of �niteness of E[�([0; 1])q ] is
�(q) > 0. The critical power qcrit.pos was introduced in [Ma4,Ma5] for a CCM as the supremum of
fq � 0; E(�([0; 1])q) < 1g. It is also de�ned for MPCP, and when the equation �(q) = 0 has a
solution > 1, that solution is qcrit.pos.

Conditions for �niteness of qcrit.pos. These conditions brings out a third di�erence between
MPCP and CCM, and a third source of novelty.

For a CCM, qcrit.pos = 1 holds in all the elementary examples (binomial and multinomial),
and all the cases when W � bE(W ) (a condition that necessarily holds in the conservative - as
opposed to canonical - cascades). One has qcrit.pos < 1 if and only if P (fW > bE(W )g) > 0.
So the �niteness of qcrit.pos depends on b and on W having a long tail. A �nite qcrit.pos is widely
perceived as an anomaly associated, in terms of f(�), with the complication of negative H�older-like
components and negative dimensions (see [Ma8]). Indeed, the condition �(q) = 0 expresses that the
tangent of f(�) whose slope is q crosses the vertical axis of abscissa � = 0 at the point of ordinate
0. This is well-known to be the case for q = 1. But for q > 1, this cannot be the case unless the
graph of f(�) crosses into the lower left quadrant where � < 0 and f < 0.

This behavior of f(�) and the fact that qcrit.pos <1 occur in the limit lognormal multifractals
introduced in [Ma2] and made rigorous in [K2,K3]. But those fractals are not widely known. In
any event, the deep importance of the case qcrit.pos <1 is not suÆciently widely appreciated and
its frequent occurences in applications continue to be a source of surprise.

For MPCP, the contrary, a simple suÆcient condition for qcrit.pos < 1 is that max W > 1. If
so, the term E(W q) in �MPCP(q) does not vanish at 1, implying limq!1 �MPCP(q) = �1.

A guess. Consider the following sequence of multifractal processes: non-random cascades,
conservative cascades, "e�ectively conservative" cascades de�ned as having the same �(q) as a
non-random or conservative cascade, canonical cascades and MPCP. Aside from the "e�ectively
conservative" cascades, each step from one to the next eliminates some constraints on randomness
that simpli�ed the theory but were arbitrary. As a result, the following tentative conclusion deserves
careful attention. It may be that in further evolution of the models, the cases where qcrit = 1
will increasingly become "anomalous" and the cases where qcrit < 1 will increasingly become the
norm.

The concrete importance of qcrit.pos <1 and more generally of f(�) that is negative for some �
(see [Ma8]). In that case, a single sample of the process can only yield f(�) where it is positive. The
negative f(�), which can only be obtained by "supersampling" characterize the level of randomness
of the process. Therefore, if the above guess proves correct, random multifractals will prove to be
typically highly random.

Lower critical power. qcrit.neg and conditions under which it is �nite. Both CCM and
MPCP also involve a second critical power qcrit.neg = inffq; E[�([0; 1]q)] < 1g, which depends on
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W and also the arti�cial base b for CCM to the contrary, providing a fourth source of novelty: it
will be shown in section 3 that for MPCP, qcrit.neg = inffq; �MPCP(q) <1g = inffq; E(W q) <1g;
so qcrit.neg depends only on W and not on the conterpart of b provided by Æ; to the contrary, for
CCM [B1] obtained, qcrit.neg = b inffq; E(W q) <1g.

Comment. Despite the symmetry between the de�nitions, the two critical power are extremely
di�erent in nature.

The role of E(W ); CCM only depend on W=E(W ), while MPCP also depend on

E(W ); this fact is a major source of versatility. The MPCP exhibit a major �fth source of
novelty that is revealed by writing W = W1V , where W1 = W=E(W ), therefore E(W1) = 1. For
CCM, the normalization needed to de�ne � yields

�CCM(q) = �1 + q � Æ logE(W q
1 ):

That is V drops out and � is independent of V . To the contrary,

�MPCP(q) = �1 + q[1 + Æ(V � 1)]� Æ[V qE(W q
1 )� 1]

involves both W1 and V explicitely and inseparably. So does the dimension

� 0MPCP(1) = 1 + Æ[(V � 1)� V log V � V E(W1 log W1)]:

So do �(2) and the qcrit.pos. To the contrary, qcrit.neg only involves W1.

Special case 1: pulses of non random height V . They correspond to W1 � 1 yet in the MPP
case suÆce to generate an interesting random multifractal measure with a single parameter V .
This measure has no counterpart in cascades. To pinpoint the origin of this novelty, recall the
approximating measures �" obtained by pulses of width � ". For CCM, the number of pulses that
a�ect �" at a �xed t is non random and independent of t. Therefore, when W is non random, it
degenerates to a constant that is eventually renormalized to 1. For MPCP, this number is a Poisson
random variable and its randomness suÆcies to create a non-degenerate process (it may, but need
not, be useful).

Remark on a class of multidimentional Poisson random variables. Contrary to the Gaussian, the
Poisson distribution has no intrinsic multivariable version. This process provides a "natural" can-
didate.

We do not recall seting mentioned previously.

In the case of two instants t0 and t00, the values of �0" are of the form log �0(t0) = PL + P0 and
log �0(t

00
) = P0 + PR, where PL, P0, and PR are independent Poisson variables that correpond to

the three areas to the right of Figure 1. The same expressions (with Poisson replaced by Gaussian)
hold for positively correlated Gaussian variables.

Special case 2: W uniformly distributed between 0 and 2V . Fix V > 0 and assume that W 2
[0; 2V ] and W is uniformly distributed, that is

PW (dx) = 1f0�W�2V g
dx

2V

Then for every q > �1,

E(W q) =
(2V )q

q + 1
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(V = E(W )); �CCM and �MPCP are elementary functions and one can discuss explicitely the degen-
eracy of � and the �niteness of the critical values of q.

-The CCM case. This case was studied in [Ma6] with the basis b = 2. For every basis b � 2,
we have P (W � bE(W )) = 1 and, independently of V ,

�CCM(q) =

(
�1 if q � �1

�1 + q(1� logb(2)) + logb(q + 1) if q > �1
:

Thus limq!1 �CCM(q) > 0, so � 0CCM(1) > 0 hence � is non-degenerate, and qcrit.pos =1. Moreover
[B1] yields qcrit.neg = �b.

-The MPCP case. When max W � 1, we �nd either qcrit.pos <1 or qcrit.pos =1 according
to the value of Æ. In this case E(W q) vanishes at 1 and

� 0MPCP(1) = 1 + Æ(V � 1)� ÆE(W log W )

with E(W log W ) � 0. There are two cases:

1) 1=Æ � 1 � V , that is 1 + Æ(V � 1) � 0, and limq!1 �MPCP(q) > 0. Then qcrit.pos = 1.
Moreover such a Æ yields always � 0MPCP(1) > 0 as can be seen on the expression of � 0MPCP(1);

2) 1=Æ < 1 � V , that is 1 + Æ(V � 1) < 0, and limq!1 �MPCP(q) = �1. So qcrit.pos < 1. For
such a Æ, the non-degeneracy holds if and only if 1 + Æ(V � 1)� ÆE(W log W ) > 0. This yields the
following condition to be satis�ed by Æ:

1� V +E(W log W ) < 1=Æ < 1� V:

Furthermore

�MPCP(q) =

(
�1 if q � �1

�1 + q(1 + Æ(V � 1)) � Æ( (2V )q

q+1 � 1) if q > �1

and

� 0MPCP(1) = 1 + Æ(V � 1)� Æ�(V )

with �(V ) = V [log(2V )� 1=2].

Summary of special case 2:

If � is non-degenerate, qcrit.neg = �1, a special case of the general rule.

If V > 1=2 then max W > 1 and qcrit.pos < 1 as long as � 0MPCP(1) > 0, that is 1=Æ >
1� V + �(V ).

If 0 < V � 1=2 then max W � 1, �(V ) < 0 and
1) if 1=Æ � 1� V then � 0MPCP(1) > 0 and qcrit.pos =1.

2) if 1 � V + �(V ) < 1=Æ < 1 � V then � 0MPCP(1) > 0 and qcrit.pos < 1. One can check that
1� V + �(V ) describes [1=4; 1[, so in this case Æ must be in ]1; 4[.
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3) In all other cases, � is degenerate.

Special case 3: pulses with V = 1. For them, � 0MPCP(1) takes a form familiar from the CCM case.

The general case W = W1V , with P (fW1 = 1g) < 1 and V > 0: observe that in the formula
for the codimension 1� � 0(1), every term contains V . Therefore the codimension corresponding to
W1V is not the sum of the codimensions corresponding to W1 and V taken separatly. That is, the
"typical behavior" of the intersection of "independent" sets is not applicable.

Marginal distribution of density for the approximant measures. The quantity log(d�"=d`)
is, up to the constant Æ(V �1)log ", the sum of N independent random variables of the form log W ,
where N is a Poisson random variable of expectation �Æ log ", independent of the W 's. When
W � V , log(d�"=d`) is a Poisson random variable. In all other cases, log(d�"=d`) is a very special
in�nitely divisible random variable. The early de Finetti theory, later generalized by L�evy (and
Khinchine) (see [GKo] p 68), involved the sum of this very special variable and of a Gaussian.

The Gaussian term alone is the foundation of the "limit lognormal" multifractals (LLNM)
introduced in [Ma2]. In the Gaussian context, the whole process is determined by its covariance.
In the context of our pulses, it is not the case (as will be emphasized by the more general MPP
refered to all the end of this section).

Scienti�c models are often compromises between the numbers of parameters, the ease of cal-
culation and the quality of �t. Both LLNM and MPCP with W � a constant involve a single
parameter. MPCP is far easier to calculate.

Critical density. When W is �xed, the condition � 0(1) = 0 de�nes a critical density Æcrit(1)
beyond which � = 0. For CCM, there is also a critical Æ, but a critical base is only de�ned
when exp(1=Æcrit(1)) is an integer. There is also for each q a critical density Æcrit(q) beyond which
E[�([0; 1])q ] = 1. For W1 � 1 and V < e, the function Æcrit(1) is two-to-one, that is, the same
criticality � � 0 can be achieved by a small V and a V close to e.

Generalization. A paper that follows will study the following alternative construction: W is
a measurable mapping from [0; 1] to R�+ and Ph(t) =W ( t�th+�h2�h

) within [th � �h; th + �h], E(W
q)

denotes
R
[0;1]W

q(t)dt, and under some condition we show that for the limit measure generated

above, the associated multifractal function � is again given by (1). Then a third construction
combines the two previous types of pulses, by multiplying cylindrical pulses and pulses generated
by a positive measurable function.

2 De�nitions and Notations.

2.1 Construction of the limit measure.

Let (
;B; P ) be the probability space on which the random variables (r. v.) are de�ned in this
paper.

Let W > 0 be an integrable r. v. and denote E(W ) by V ; �x Æ > 0 and de�ne on the strip
H = f0 < � < 1g the positive measure

�(dtd�) =
Æ

2

dtd�

�2
:
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Let fBkgk�1 be a partition of H such that for all k � 1, 0 < �(Bk) < 1. For every k � 1,

choose (Mk;n)n�1 a sequence of H valued r. v.'s with common law
�jBk
�(Bk)

, and Nk a Poisson variable

with parameter �(Bk). Then choose (Wk;n)k;n�1 a sequence of copies of W .

Assume that the r. v.'s Mk;n, Wk;n and Nk, k; n � 1, are independent of one another.

Then, the associated Poisson point process with intensity �, is de�ned as S = fMk;n; 1 � k; 1 �
n � Nkg.

For M = Mk;n 2 S, de�ne WM = Wk;n, IM = [tM � �M ; tM + �M ] and de�ne the cylindrical
pulse associated to M and WM as being

pM : R ! R+ ; t 7! 1 + (WM � 1)1IM (t):

For all " 2]0; 1] and t 2 R, de�ne the truncated cone C"(t) = f(t0; �) 2 H; t � � � t0 � t+ �; " �
� < 1g and

QC"(t) =
Y

M2S\C"(t)

WM .

Then for every 0 < " � 1, let �" be the measure on R with density with respect to `, the Lebesgue
measure, given by

d�"
d`

(t) = Q"(t) = "Æ(V �1)
Y

M2S\f��"g

pM(t) = "Æ(V �1)QC"(t):

and de�ne F" = � (M;WM ; M 2 S \ f� � "g) :

Remark 1 The random variables de�ned in this paper do not depend on the choice of fBkgk�1.
Because of the properties of a Poisson point process, if H1; : : : ;Hl are mutually disjoint subsets

of H, the �-algebras � (M;WM ; M 2 S \Hi), 1 � i � l, are mutually independent.

In all the text, weak convergence of measures on a locally compact Hausdor� set K means
weak�-convergence in the dual of C(K), the space of real continuous functions on K.

Theorem 1 (Existence of the limit measure) i)For every compact subset K of R, with prob-
ability one the measures �K" , 0 < " � 1, obtained by restriction to K of the measures �" converge
weakly to a measure �K as " ! 0. Moreover, given K and t0 a point of K, with probability one,
�K(ft0g) = 0:

ii) It follows from i) that with probability one, there is an unique measure �R on R such that
for all n 2 Z, �R(fng) = 0 and the restriction of �R to [n; n+ 1] is �[n;n+1].

Proof. i) By Lemma 2 in section 5, for every t 2 R, (Q1=s(t))s�1is a non negative right-continuous
martingale of mean 1 with respect to the �ltration

�
F1=s

�
s�1

. Then the conclusion follows from

an immediate extension to continuous time (right continuous) martingales of the general theory of
[K3]. ii) It is a veri�cation.

Because of the form of the intensity �; the measure �R is statistically invariant by translations
in the t-axis direction.

So, in the rest of the paper, we consider only the measure � = �[0;1].
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2.2 Other de�nitions and a principle of self-similarity.

If B is a Borel subset of H and �(B) <1, de�ne

QB =
Y

M2S\B

WM :

If I is a compact subinterval of [0; 1]; then jIj stands for its length and we de�ne (see Figure 2)

TI = f(t; �) 2 H; 0 < � < jIj; inf(I)� � � t � sup(I) + �g;

BI
 = f(t; �) 2 H; jIj � � < 1; t 2 [inf(I) + �; sup(I) + �]g;  2 f�1; 1g;

T I = f(t; �) 2 H; jIj � � < 1; t 2 [sup(I)� �; inf(I) + �]g;

BI = BI
�1 [B

I
1 and fI the aÆne transformation on R which maps inf(I) onto 0 and sup(I) onto 1.

TI

T I

BI
�1 BI

1

I0 t1

1
�

Figure 2 : basic sets in H.

Then, with the notations of section 2.1, for all 0 < " � 1 de�ne �I" the measure on I with
density with respect to the Lebesgue measure given by

d�I"
d`

(t) = "Æ(V �1)
Y

M2S\f"jIj�y<jIjg

pM (t) = "Æ(V �1)QC"jIjnCjIj(x):

Theorem 2 examines the strong similarity between the measures �" constructed on [0; 1] via the ran-
dom weights distributed in T[0;1] in section 2.1 and the measures �

I
" on I via the weights distributed

on TI . This relation is the object of the

Theorem 2 With probability one, for every non trivial compact subinterval I of [0; 1] and for all
0 < " � jIj, one has

�"(I) = jIjÆ(V �1)
Z
I
QCjIj(t)�

I
"=jIj(dt)

= jIjÆ(V �1)QT I

Z
I
QBI\CjIj(t)

�I"=jIj(dt):

Moreover, for any such interval and 0 < " � 1, for all f 2 C(I), the r.v.'s
R
I f(t) d�

I
"(t) and

jIj
R
[0;1] f Æ f

�1
I (t)�"(dt) have the same distribution.

10



With probability one (�I")0<"�1 converges weakly to a measure �I as "! 0, and for all f 2 C(I),
the r.v.'s

R
I f(t)�

I(dt) and jIj
R
[0;1] f Æ f

�1
I (t)�(dt) have the same distribution.

In particular k�I"k (resp. k�Ik ) has the same distribution as jIj k�"k (resp. jIj k�k).

Moreover, QT I and the function t 7! QBI\CjIj(t)
are independent and they are also independent

of the �I"'s and �I .

Proof . It is a consequence of the de�nitions, Theorem 1, and Proposition 1.12 of [M2] which
concludes that � is invariant by the homotheties with apex in the t-axis and positive ratio which
map H into H, and also by translations in the t-axis direction.

Now de�ne Y = k�k = k�[0;1]k and for all s � 1, Ys = k�
[0;1]
1=s k. A simple computation using

Lemma 2 shows that (Ys; F1=s)s�1 is a right-continuous martingale of mean 1. If I is a non trivial

compact subinterval of [0; 1], de�ne YI =
1
jIjk�

Ik and for all s � 1, Ys;I =
1
jIjk�

I
1=sk.

The measure � will be represented as the image of a measure on an homogeneous tree.

2.3 Measure on a tree associated to �.

Each time we �x an integer b � 2, for every integer m � 0 we denote by Am the set of �nite
words of length m on the alphabet f0; : : : ; b � 1g (A0 = f�g). Then for a 2 Am, jaj = m and we
denote by Ia the closed b-adic subinterval of [0; 1] naturally encoded by a.

We denote
S1
m=0Am by A and f0; : : : ; b�1gN by @A; A[@A is equipped with the concatenation

operation and for every a 2 A; Ca denotes a@A; the cylinder generated by a; A denotes the �-�eld
generated by the Ca's in @A:

We denote by � the mapping from @A to [0; 1] de�ned by t = t1 : : : ti � � � 7!
P

i�1 ti=b
i.

~̀ is the measure on (@A;A) such that for all a 2 A, ~̀(Ca) = b�jaj.

Now if � is a non negative measure on (@A;A), for n � 1 de�ne Dn:� the measure with density
with respect to ~̀ equal to

d(Dn:�)

d�
(t) = Dn(t) = b�nÆ(V�1)QCb�n (�(t))

:

By the same arguments as for Theorem 1, with probability one, the sequence (Dn:�)n�1 converges
weakly to a non-negative random measure D:�. Moreover by [K3], the operator L : � 7! E(D:�)
on non negative measures possesses the important property to be a projection (by de�nition if
f 2 C(@T ) then

R
@A f(t)E(D:�)(dt) = E(

R
@A f(t)D:�(dt))).

We de�ne ~� = D:~̀and ~�n = Dn:~̀ for all n � 1. By construction � = ~�Æ��1 and �b�n = ~�nÆ�
�1

for n � 1.

We end this section by three relations, (2), (3), (4) that will prove to be fundamental.

By Theorem 2 for all n > m > 1

Ybn =
X
a2Am

�b�n(Ia) = b�mÆ(V �1)
X
a2Am

QT Ia

Z
Ia

QBIa\Cb�m (t) �
Ia
bm�n(dt) (2)

11



and for all m � 1 and a 2 Am

~�(Ca) = b�mÆ(V �1)QT Ia

Z
Ia

QBIa\Cb�m (t) �
Ia(dt) (3)

(indeed ~�(Ca) = limn!1 ~�n(Ca) since the space @A is totaly disconnected and for all n � 1 and
a 2 T , ~�n(Ca) = �b�n(Ia)). So for all m � 1;

Y =
X
a2Am

~�(Ca) = b�mÆ(V �1)
X
a2Am

QT Ia

Z
Ia

QBIa\Cb�m (t) �
Ia(dt): (4)

3 Non-degeneracy of the process; Moments.

De�ne �(q) = �1 + q (1 + Æ(V � 1)) � Æ(E(W q) � 1) 2 R [ f�1g for q 2 R (note that � is
concave and �nite on [0; 1]). Recall that Y = k�k.

Theorem 3 (Non degeneracy) i) If � 0(1�) > 0 then P (� 6= 0) = 1 and E(Y ) = 1.

ii) If P (� 6= 0) > 0 then P (� 6= 0) = 1, E(Y ) = 1 and � 0(1�) � 0: If moreover E((1 +
W )j log W j2+) <1 for some  > 0 then � 0(1�) > 0.

Theorem 4 (Moments of positive orders) Let h > 1:
i) If �(h) > 0 then 0 < E(Y h) <1. ii) If 0 < E(Y h) <1 then �(h) � 0:

Theorem 5 (Moments of negative orders) When Y is not degenerate and a > 0, E(Y �a) <
1 if and only if E(W�a) <1.

Remark 2 The alternatives for non-degeneracy and moments of positive orders are the same as
for CCM. But we have not yet obtained the necessity of the suÆcient conditions excepted for the
non-degeneracy under the additional condition of Theorem 3ii), and for moments in the case where
h = 2. [Ma9] conjectures that the equivalence holds in each case.

Proof of Theorem 3. Fix an integer b � 2.

i) De�ne c = E(Y ) (� 1). By the invariance properties of � (proof of Theorem 2) and the
relation (4), E(~�(Ca)) = cb�jaj = c~̀(Ca) for every a 2 A. Thus with the notations of section 2.3,
as ~� = D:~̀, we have L(~̀) = c~̀. So as the operator L is a projection, we have c2 = c.

Moreover as W > 0, we see on (4) by the independences between r. v.'s that fY = 0g is a tail
event; this, together with the relation c2 = c, implies that we only have to prove that P (Y > 0) > 0
to establish i). For, the approach in [KP] to study the non-degeneracy of multiplicative cascades
can be adapted, only after some (delicate) operations on the equation (2).

Fix n > m > 1 two integers. By Lemma C of [KP], if h < 1 is large enough, our expression (2)
yields

Y h
bn �

X
a2Am

�hb�n(Ia)� (1� h)
X

a 6=a02Am

�
h
2

b�n
(Ia)�

h
2

b�n
(Ia0):

Moreover Theorem 2 and the Jensen inequality yield �hbn(Ia) � fa;n;m(h) with

12



fa;n;m(h) = b�mhÆ(V �1)Y h�1
bn�m;Ia

b�m(h�1)

Z
Ia

Qh
Cb�m (t) �

Ia
bm�n(dt)

So by writing
E(Y h

bn )�
P

a2Am
fa;n;m(h)

h�1 �
P

a 6=a02Am
E

�
�
h
2

b�n
(Ia)�

h
2

b�n
(Ia0)

�
and letting h tend to 0,

by using the fact that E(Ybn) =
P

a2Am
fa;n;m(1) = 1 and Lemma 5i) one obtains

m log (b) � 0(1�) +E(Ybn log Ybn) �E(Ybn�m log Ybn�m)

�
X

a6=a02Am

E(�
1
2

b�n
(Ia)�

1
2

b�n
(Ia0)):

As (Ybn)n�1 is a martingale, E(Ybn log Ybn)�E(Ybn�m log Ybn�m) is non negative som log (b) � 0(1�) �P
a 6=a02Am

E

�
�

1
2

b�n
(Ia)�

1
2

b�n
(Ia0)

�
.

Now a geometrical remark shows that given a 2 Am, there are at least two and at most four

a0 6= a in Am such that TIa \ TIa0 6= ;, and then E(Y
1
2

bn�m;Ia
Y

1
2

bn�m;Ia0
) � 1 by the Cauchy-Schwarz

inequality; if a0 2 Am and TIa \ TIa0 = ; then Ybn�m;Ia and Ybn�m;Ia0 are independent copies of

Ybn�m , so E(Y
1
2

bn�m;Ia
Y

1
2

bn�m;Ia0
) = (E(Y

1
2

bn�m
))2: This with Lemma 5ii) yield C > 0, independent of

m such that

X
a 6=a02Am

E

�
�

1
2

b�n
(Ia)�

1
2

b�n
(Ia0)

�
� 4bm:Cb�m + b2m:Cb�m(E(Y

1
2

bn�m
))2:

Som log (b) � 0(1�)�4C � Cbm(E(Y
1
2

bn�m
))2 and as � 0(1�) > 0, we can choosem to havem log (b) � 0(1�)�

4C > 0, which yields C 0 > 0 such that for all n > 1; E(Y
1
2
bn) � C 0. As (Y

1
2
bn)n�1 is uniformly inte-

grable since E(Ybn) = 1, we have E(Y
1
2 ) > 0 and so P (Y > 0) > 0:

ii) That P (� 6= 0) > 0 implies P (� 6= 0) = 1 = E(Y ) is proved in i).

Fix h 2]0; 1[: For all m > 1, one has Y h �
P

a2Am
~�h(Ca) by (4) and by Lemma 4.ii), there

exists C > 0 such that E(Y h) � C:b�m�(h)E(Y h) for all m > 1: Since �(1) = 0; if Y is not
degenerate, it is necessary to have �(h) � 0 in a left neighbourhood of 1, so � 0(1�) � 0.

Now we assume that E((1+W )j log W j2+) <1 and � 0(1�) = 0 and show that P (Y = 0) = 1:

For every n � 1, de�ne �Pn the probability measure on (
; Fb�n) with density with respect to
P equal to Ybn , and let �P be the Kolmogorov extension of the �Pn's on (
; F1 =

S
n�1 Fb�n). By

Theorem 2.5.20 of [D-CDu], Ybn = d �Pn
dP converges 1

2(P + �P )-almost surely (a. s.) to a r. v. Y1 in
R+ [ f1g and if �P (Y1 = 1) = 1 then P (Y1 = 0) = 1. As Y = Y1 P -a. s., it is so enough to
show that �P (lim supn!1 Ybn =1) = 1 to have the conclusion.

We adapt the approach used in [Wa-Wi] for multiplicative cascades (here again this requires
new ideas, see Lemma 6): for every t 2 [0; 1] and n � 1; de�ne the measure Pt;n on Fbn by

dPt;n
dP

(!) = Qb�n(t)(!):
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By Lemma 2 (Qb�n(t); Fb�n)n�1 is a martingale with mean one, so (Pt;n)n�1 is a consistent family
of probability measures. Let Pt denote the Kolmogorov extension of the Pt;n to F1. Then for every
n � 1 de�ne on (
� [0; 1]; Fb�n 
 B([0; 1])) the probability measure Qn(d! � dt) = Pt;n(d!)`(dt),
and de�ne Q on (
� [0; 1]; F1 
 B([0; 1])), the Kolmogorov extension of (Qn)n�1.

Let �
 be the �rst coordinate projection map on 
� [0; 1]. By construction, for every n � 1,
�Pn = Qn Æ �

�1

 and so �P = Q Æ ��1
 . Moreover Q(d! � dt) = Pt(d!)`(dt), and by Lemma 6,

Pt(lim supn!1 Ybn =1) = 1 for every t 2 [0; 1]. So �P (limsupn!1 Ybn =1) = 1.

Proof of Theorem 4. i) It is enough to show that (Ybn)n�1 is bounded in Lh norm for some
integer b � 2. Fix b = 3 and m > 1: After some reductions we use computations similar to those of
[KP] (Th. 2).

Number the intervals Ia, a 2 Am, as they follow one another from 0 on the real line, and write
fIa; a 2 Amg = fJi; 0 � i < 3mg. Then, for i 2 f0; 1; 2g and n > m de�ne

Zi;n =
X

0�3k+i<3m

�3�n(J3k+i).

By the invariance properties of the intensity �, the Zi;n's are identically distributed, so E(Y h
3n) �

3hE(Zh
0;n).

Let ~h be the integer such that ~h < h � ~h+ 1 and use the subadditivity of x 7! xh=(
~h+1) on R+

to write

Zh
0;n � [

X
0�3k+i<3m

�
h=(~h+1)
3�n

(J3k)]
~h+1:

Then

E(Zh
0;n) �

X
0�k<3m�1

E(�h3�n(J3k)) +
X

�j0:::j3m�1�1
E(

Y
0�k<3m�1

�
jk

h
~h+1

3�n
(J3k))

where in the last sum the ji's are � ~h, j0 + � � � + j3m�1�1 = ~h + 1, ji � 0 and
P
�j0:::j3m�1�1

=

3(m�1)(
~h+1) � 3m�1 = Cm;~h. With the notations of Lemma 4

Y
0�k<3m�1

�
jk

h
~h+1

3�n
(J3k) �

Y
0�k<3m�1

(w1(J3k))
jk

h
~h+1

Y
0�k<3m�1

Y
jk

h
~h+1

3n�m;J3k
:

By construction, for all 0 < k 6= k0 < 3m�1, TJ3k \ TJ3k0 = ;, so the Y3n�m;J3k 's are i.i.d. They are

also independent of
Q

0�k<3m�1(w1(J3k))
jk

h
~h+1 , where the w1(J3k)'s have the same distribution. So

by applying the generalized H�older inequality to
Q

0�k<3m�1(w(J3k ; 1))
jk

h
~h+1 , Lemma 4i)a) to the

w1(J3k)'s and by bounding E(Y
jk

h
~h+1

3n�m;J3k
) by E(Y

~h
3n�m)

jkh
~h(~h+1) since jkh

~h(~h+1)
� 1, we obtain Ch > 0

(independent of m) such that

E(
Y

0�k<3m�1

�
jk

h
~h+1

3�n
(J3k)) � Ch3

�m(�(h)+1)E(Y
~h
3n�m)

h=~h:

14



Moreover Lemma 4i)b) gives E(
P

0�k<3m�1 �h3�n(J3k)) � 3�1Ch3
�m�(h)E(Y h

3n�m). Thus

E(Y h
3n) � 3h�1Ch3

�m�(h)E(Y h
3n�m) + 3hCm;~hCh3

�m(�(h)+1)E(Y
~h
3n�m)

h=~h

and since E(Y h
3n�m) � E(Y h

3n) ((Y
h
3n)n�1 is a submartingale) and �(h) > 0, we can choose m such

that 3h�1Ch3
�m�(h) < 1 and

E(Y h
3n)(1 � 3h�1Ch3

�m�(h)) � 3hCm;~hCh3
�m(�(h)+1) sup

n�1
E(Y

~h
3n)

h=~h:

As supn�1E(Y3n) = 1 < 1, we have the conclusion for h 2]1; 2] (~h = 1); then, as �(1) = 0 and �
is concave, if h > 2 and �(h) > 0 then �(p) > 0 for all integer p 2 [2; h], so supn�1E(Y

h
3n) <1 by

induction on ~h.

ii) Fix b an integer � 2 and m � 1. Letting n tend to 1 in Lemma 4i)c) yields E(Y h) �

b�m�(h)e
1
2
(1�b�m)(C(V �E(Wh))E(Y h). So b�m�(h) must be bounded.

Proof of Theorem 5. If E(W�a) <1 then E(Y �a) <1 : by (4) written with b = 4 and m = 1

Y � B0YI0 +B3YI3

where for i 2 f0; 3g, Bi = 4�Æ(V �1)�1QT IimBIi ;Ii
(with the notations of Lemma 3). B0 and B3

have the same distribution, the random variables YI0 and YI3 are independent copies of Y (because
TI0 \ TI3 = ;) and they are independent of B0 and B3. So the previous inequality yields for t � 0

E(e�tY ) = �(t) � E[�(B0t)�(B3t)]: (5)

Moreover E(B�a
0 ) < 1 (use Lemma 1 and 3). Then (5) makes possible to use the approach of

[Mol] for multiplicative cascades, and E(Y �a) <1:

If E(Y �a) < 1 then E(W�a) < 1: we use again the notations of Lemma 3, (4) with b = 2
and m = 1 and write

Y � 2�Æ(V �1)(QT I0MBI0 ;I0
2�1YI0 +QT I1MBI1 ;I1

2�1YI1)

� 2�Æ(V �1)QT I0\T I1 [QT I0nT I1MBI0 ;I0
+QT I1nT I0MBI1 ;I1

](YI0 + YI1)

with QT I0\T I1 independent of [QT I0nT I1MBI0 ;I0
+QT I1nT I0MBI1 ;I1

] and these two r.v.'s independent

of YI0 + YI1 : So E(Y
�a) < 1 yields E[(QT I0\T I1 )

�a] < 1 and as �(T I0 \ T I1) > 0, Lemma 1i)
gives the conclusion.

4 Multifractal analysis of �.

For t 2 [0; 1] and r > 0, denote [0; 1] \ [t� r
2 ; t+

r
2 ] by Ir(t).

Given f a mapping from R to R [ f�1g, one de�nes its Legendre-transform f� from R to
R [ f�1;1g by f� : �7! infq2R �q � f(q).

For � > 0, de�ne
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E� = ft 2 [0; 1]; lim
r!0+

log �(Ir(t))

log r
= �g:

Here, by the multifractal analysis of �, we mean the computation, on a largest as possible interval,
of the mapping � 7! dimH E�, where dimH denotes the Hausdor� dimension.

Our study has points in common with the one made in [B2] for generalized CCM. However, as
announced in the introduction, the geometry of � does not depend on a particular b-ary tree. Hence
the logarithmic density, in the de�nition of the E�'s is not expressed via b-adic intervals converging
to ftg, but via the intervals centered at t; this gives rise to a di�erent geometrical approach.
Moreover, it is easily deduced from our study that for every integer b � 2, the multifractal analysis
of � in the sense of [B2] is deduced from the one of � in the sense considered here.

The following result is an immediate consequence of Theorem 7 and 8 and Proposition 1 (recall
that � is de�ned in section 3):

Theorem 6 (Multifractal analysis) Assume that � is �nite on an interval J containing a neigh-
bourhood of [0; 1]; and that � 0(1) > 0.

De�ne J 0 = fq 2Int(J); � 0(q)q � �(q) > 0g, I 0 = f� 0(q); q 2 J 0g, �inf = inf(I 0) and �sup =
sup(I 0) ([0; 1] � J 0; I 0 �]0;1[, �inf > 0).

Then with probability one:
i) for all � 2 I 0, dimH E� = ��(�);
ii) If ��(�inf) = 0 then for all � 2]0; �inf [, E� = ;. If �sup < 1 and ��(�sup) = 0 then for all

� 2]�sup;1[, E� = ;.

4.1 Lower bounds for dimensions

For q 2 J 0; let �q be the measure constructed on [0; 1] as �; but this time with the random
variables Wq;M = W q

M . A veri�cation shows that the condition � 0(q)q � �(q) > 0 is equivalent to
the suÆcient condition for the non-degeneracy of �q obtained in Theorem 3.

Theorem 7 i)With probability one the measures �q, q 2 J
0, are de�ned simultaneously and have

[0; 1] as support.
ii)a) With probability one, for every q 2 J 0, for �q-almost every t 2 [0; 1];

lim inf
r!0

log �q(Ir(t))

log r
� ��(� 0(q)) and lim

r!0

log �(Ir(t))

log r
= � 0(q);

so for every � 2 I 0, dimH E� � ��(�).
b) The smallest Hausdor� dimension of a Borel set carrying a piece of � is � 0(1).

Proof. i) It is a direct consequence of Lemma 7i) since �q = ~�q Æ �
�1.

ii) Assume the results on the logarithmic densities. Then, by a Billinglsey Lemma ([Bil], pp 136-

145) and the result on lim infr!0
log �q(Ir(t))

log r , a. s. for every q 2 J 0 the smallest Hausdor� dimension

of a Borel set carrying a piece of �q is �
�(� 0(q)). Moreover by the result on limr!0

log �(Ir(t))
log r , a. s.

for every q 2 J 0 the measure �q is carried by E� 0(q). So a. s. for every � 2 I 0, dimH E� � ��(�).
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The case q = 1, that is �q = �, yields b) (one can show that it is not necessary that E(W�a) <1
for some a > 0).

The result on lim infr!0
log �q(Ir(t))

log r is a consequence of Lemma 7ii). Indeed, �x an integer b � 2

and for " > 0, q 2 J 0 and n � 1 de�ne

Fq;n;" = ft 2 [0; 1];
log �q(Ib�n(t))

log b�n
� ��(� 0(q)) � "g:

It is enough to show the assertion: (A1) for every compact subinterval K of J 0 and " > 0, a. s. for
every q 2 K,

P
n�1 �q(Fq;n;") <1.

>From the covering
S
t2Fq;n;"

Ib�n(t) of Fq;n;" one can extract a �nite subcovering with the
property that it can be divided itself in two �nite union of intervals with at most one point in
common,

S
i Ji and

S
j J

0
j , each of them being covered by at most two adjascent b-adic intervals of

length b�n. Moreover by de�nition of Fq;n;", 1 � ��q(I)bn�(�
�(� 0(q))�") for I 2 fJi;J

0
jg and � > 0. So

as �q(Fq;n;") �
P

i �q(Ji) +
P

j �q(J
0
j), we have

�q(Fq;n;") �
X
i

�1+�q (Ji)b
n�(��(� 0(q))�") +

X
j

�1+�q (J 0j)b
n�(��(� 0(q))�"):

For every I 2 fJi; J
0
j ; i; jg we have I � Ia [ Ia0 for some a and a0 2 An and so �1+�q (I) �

2�(�1+�q (Ia) + �1+�q (Ia0)). Hence, if � � 1

�(Fq;n;") � 8
X
a2An

�1+�q (Ia)b
n�(��(� 0(q))�").

But the relation �q = ~�q Æ�
�1 and the fact that a. s. ~�q as no atoms by Lemma 7ii) (�

�(� 0(q)) > 0)
imply that a. s. �q(Ia) = ~�q(Ca) for every a 2 A. So the proof of Lemma 7ii) yields (A1).

Now we indicate how to obtain that a. s. for every q 2 J 0, for �q-almost every t 2 [0; 1],

lim inf
r!0

log �(Ir(t))

log r
� � 0(q) and lim sup

r!0

log �(Ir(t))

log r
� � 0(q):

We de�ne the sets F
�1

q;n;" = ft 2 [0; 1];
log �(Ib�n (t))

�n log b � � 0(q)+"g and F 1
q;n;" = ft 2 [0; 1];

log �(Ib�n (t))
�n log b �

� 0(q) � "g, and we have to show the assertion: (A2) a. s. for every q 2 J 0,
P

n�1 �q(F
�1
q;n;") +

�q(F
1
q;n;") <1.

The sets F�1
q;n;" and F 1

q;n;" admit the same kind of covering that Fq;n;", but now if � > 0,

 2 f�1; 1g and I 2 fJi; J
0
j ; i; jg (the covering of F


q;n;") then 1 � ��(I)bn�(�

0(q)�") and so

�q(F

q;n;") �

X
i

�q(Ji)�
�(Ji)b

n�(� 0(q)�") +
X
j

�q(J
0
j)�

�(J 0j)b
n�(� 0(q)�"):

By using the fact that for every I 2 fJi; J
0
j ; i; jg we have I � Ia [ Ia0 where a and a

0 are in An and
Ia and Ia0 have one point in common, by de�ning Sa = fc 2 Ajaj; Ia \ Ic 6= ;g (#Sa � 3) we obtain
for � 2]0; 1[

�q(F
1
q;n;") � 4bn�(�

0(q)�")
X
a2An

�q(Ia)
X
c2Sa

��(Ic);
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since I contains an interval Ia00 with a" 2 An+1, and Ia00 � Ia or Ia00 � Ia0 , by writing �Sa00 for the
set of the c's 2 An+1 such that the father �c of c in An is such that I�c \I�a 6= ; (#�Sa00 � 6), we
obtain

�q(F
�1
q;n;") � 2b�n�(�

0(q)+")
X

a"2An+1

���(Ia)
X
c2 �Sa00

�q(Ic):

(A2) comes from computations very similar to those of the proof of Lemma 7ii), using the fact that
�(T Ia )

�(T Ia\T Ic )
, c 2 Sa, and

�(T Ia00 )

�(T Ia00\T Ic)
, c 2 �Sa00 , tend to 1 as jaj and ja00j tend to 1, and for � small

enough E(Y ��) <1.

4.2 Upper bounds for dimensions

Proposition 1 is standard and deduced from [BMP] and [O2] (for another multifractal formalism
eliminating a prescribed grid, see [R]).

Proposition 1 Let b be an integer � 2:For (q; t) 2 R2 ; de�ne

Cb(q; t) = limsupn!1Cb;n(q; t) =
P

a2An
�q(Ia)jIaj

tand

C(q; t) = limÆ!0 inff
P

i�1 �
q(Ii)jIij

t; [0; 1] �
S
i�1 Iri(ti); ti 2 [0; 1]; jrij � Æg:

i) For all q 2 R; 'b(q) = infft 2 R; Cb(q; t) = 0g and '(q) = infft 2 R; C(q; t) = 0g are
de�ned, the function 'b is convex and ' � 'b.

ii)Fix � > 0. If (�')�(�) � 0 then dimH E� � (�')�(�) else E� = ;:

Then

Theorem 8 With probability one
i) '(q) � ��(q) for every q 2 J such that E(Y q) <1.
ii) (�')�(�) � ��(�) for every � > 0 such that � = � 0(q) with q 2 J and E(Y q) <1.
iii) dimH E� � ��(�) for all � 2 I 0.

Proof. i) Fix (q; t) 2 J � R:Lemma 4ii)b) can be applied with � instead of ~� since now we know
that � has no atoms. Hence there exists Cq > 0 such that for all n � 1

E(Cb;n(q; t)) � Cq:b
n(��(q)�t):E(Y q): (6)

By (6) if E(Y q) < 1 and t > ��(q) then a. s.
P

n�1Cb;n(q; t) < 1 and so Cb(q; t) = 0 and
'b(q) � t. Thus if q 2 J and E(Y q) < 1 then a. s. 'b(q) � ��(q). As 'b and � are continuous,
this holds a. s. for every q 2 J such that E(Y q) <1. We conclude with Propoition 1.
ii) By de�nition of the Legendre transform.
iii) Use Proposition 1 and ii) after proving that E(Y q) < 1 for every q 2 J 0: if q < 0 it is the
case by Theorem 5. If 0 � q � 1, it is true by de�nition of Y . If q > 1; it is insured by Theorem 4
and the fact that by the concavity of � , �(1) = 0 and � 0(q)q � �(q) > 0 imply �(q) > 0.
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5 Basic Lemmas.

Lemma 1 Fix B is a Borel subset of H such that �(B) < 1, q 2 R and � > 0. Then (in
R [ f�1;1g)

i) E(Qq
B) = e�(B)(E(W q)�1);

ii) E(Qq
B log QB) = �(B)E(W q log W )e�(B)(E(W q)�1);

iii) E(Qq
B j log QB j) � �(B)E(W qj log W j)e�(B)(E(W q)�1);

iv) Denote by �� the integer such that �� � � < �� + 1. There exists a constant C� > 0,
independent of B such that

E(QB j log QB j
�) � C�(1 + �(B))

��+3(V )
��+2E(W j log W j�)e�(B)(V �1):

Proof. We prove only iv) because the other points are obtained by similar computations: con-
ditionally to #S \ B = k � 1, QB =

Qk
i=1Wi where the Wi's are independent copies of W .

So

E(QB j log QB j
�j#S \B = k) � E(

kY
i=1

Wi[

kX
i=1

j log Wij]
�)

� k�+1E(W j log W j�)(V )k�1:

Thus as P (#S \B = k) = e��(B) (�(B))k

k! , we have

E(QB j log QBj
�) � E(W j log W j�)

X
k�1

e��(B) (�(B))
k

k!
k
��+2(V )k�1

and standard estimates give the conclusion.

Lemma 2 Fix t 2 R. For every s � 1; �(C1=s(t)) = C log s, and (Q1=s(t))s�1 is a right continuous
martingale with respect to (F1=s)s�1, with expectation 1.

Proof . The right continuity is a consequence of the de�nition and the martingale property comes
from the independences between the copies ofW and Lemma 1i) applied with B = C1=s(t)nC1=s0(x)
for 1 � s0 � s.

Now if B � H and I is a nontrivial compact subinterval of [0; 1] we de�ne

mB;I = inf
u2I

QB\CjIj(u) and MB;I = sup
u2I

QB\CjIj(u).

Lemma 3 i) For every non trivial compact subinterval I of [0; 1]
a) �(T I) = C(log 1

jIj �
1
2(1� jIj)); b) �(BI) = C(1� jIj).

ii) Fix � > 0. There exists C� > 0 such that for every non trivial compact subinterval I of [0; 1]
and t 2 I,

E

"
QjIj(t)

����log jIj�1
Z
I
QBI\CjIj(u)

du

����
�
#
� C�.
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iii) For every non trivial compact subinterval I of [0; 1]:
a) E(MBI ;I) � eÆ(E(max(1;W ))�1);
b) for q 2 R de�ne I(q) = 1fq<0gm

q
BI ;I

+ 1fq�0gM
q
BI ;I

. For every compact subinterval K of
R,

E(sup
q2K

I(q)) � eÆ(E(max(1;W inf(K)+W sup(K)))�1):

Proof. i) The veri�cation is left to the reader.
ii) De�ne

T1 =

����log jIj�1
Z
I
QBI\CjIj(t)\CjIj(u)

Q(BInCjIj(t))\CjIj(u)
du

����
�

:

One checks that T1 � 2�
P

"2f�1;1g(T2;" + T3;") where

T2;" = j log mBI
"\CjIj(t)

j� + j log MBI
"\CjIj(t)

j� and

T3;" = j log mBI
"nCjIj(t)

j� + j log MBI
"nCjIj(t)

j�. So as

T = QjIj(t)

����log jIj�1
Z
I
QBI\CjIj(u)

du

����
�

= jIjÆ(V �1)QCjIj(t)nBIQBI\CjIj(t)
T1;

by taking account of the independences between variables and by the identity jIjÆ(V �1)E(QCjIj(t)) =
1 we obtain

E(T ) � 2� [
1

E(QBI )
E(QBI\CjIj(t)

(T2;�1 + T2;1)) +E(T3;�1 + T3;1)]

where (E(QBI ))�1 = e�Æ(1�jIj)(V �1) is bounded independently of I by i)a).

It remains to show that E(QBI\CjIj(t)
T2;") and E(T3;") are bounded independently of I and

t 2 I for " 2 f�1; 1g.

We estimate E(QBI\CjIj(t)
T2;�1): conditionally to #S \B

I \CjIj(t) = k � 1, S \BI \CjIj(t) =

fN1; : : : Nkg, and conditionally to #S \ BI
�1 \ CjIj(t) = 1 � l � k (if k or l = 0 then T2;�1 = 0),

we can assume that N1; : : : Nl 2 BI
�1 and tN1 � � � � � tNl

. Then for every u 2 I we have

QBI
�1\CjIj(t)\CjIj(u)

2 f
Qj

i=1WNi ; 0 � j � l g, so T2;�1 � 2k�
Pk

i=1 j log WNi j
� .

Thus for " 2 f�1; 1g and k � 1

E(QBI\CjIj(t)
T2;"j#S \B

I \ CjIj(t) = k) � 2k�(
kY

j=1

WNj )
kX

j=1

j log WNj j
�

� 2k�+1E(W j log W j�)(V )k�1:

Similarly we obtain E(T3;"j#S \ B
I n CjIj(t) = k)) � 2k�+1E(j log W j�), and conclude as for

Lemma 1iv) and by using the fact that �(BInCjIj(t)) and �(B
I\CjIj(t)) are bounded independently

of I and t 2 I.

iii)a) We obtain E(MBI ;I) � (e�(B
I
1 )(E(max(1;W ))�1))2 by using computations similar to those

used in ii) and the fact that MBI ;I �MBI
�1;I

:MBI
1 ;I

and E(MBI
�1;I

:MBI
1 ;I
) = (E(MBI

1 ;I
))2.

iii)b) The veri�cation is left to the reader.
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Lemma 4 Fix b an integer � 2 and q 2 R such that E(W q) <1. There exists Cq = Cq(W ) > 0
such that for n > m � 1

i)a) �q
b�n

(Ia) � wq(Ia)Y
q
bn�m;Ia

with wq(Ia) = b�mq[1+Æ(V �1)]Qq
T Ia

Ia(q) and E(wq(Ia)) �

Cqb
�m(�(q)+1) for every a 2 Am;

b)
P

a2Am
E(�q

b�n
(Ia)) � Cqb

�m�(q)E(Y q
bn�m

);

c) if q � 1 then E(Y q
bn) � b�m�(h)e

1
2
(1�b�m)(Æ(V �E(W q))E(Y q

bn�m
).

ii)a) ~�q(Ca) � wq(Ia)Y
q
Ia

for every a 2 Am;

b)
P

a2Am
E(~�q(Ca)) � Cqb

�m�(q)E(Y q):

We leave the proof to the reader which will use Theorem 2, Lemma 1 and 3, and for i)c) the su-
peradditivity of x � 0 7! xq in (2) and the Jensen inequality inE([

R
Ia
QBIa\Cb�m (t)�

Ia
bm�n(dt)]

qj[0<"�b�n

F").

Lemma 5 With the notations of the proof of Theorem 3i)
i) E(f 0a;n;m(1

�)) = b�m (�m log (b) � 0(1�) +E(Ybn�m log Ybn�m)) :
ii) There exists C independent of m such that for a and a0 in Am

E

�
�

1
2

b�n
(Ia)�

1
2

b�n
(Ia0)

�
� C :b�mE(Y

1
2

bn�m;Ia
Y

1
2

bn�m;Ia0
).

Proof. i) Di�erentiate fa;n;m at 1� yields E(f 0a;n;m(1
�)) = T1 + T2 + T3 with

T1 = �m log (b)[Æ(V � 1)]E(fa;n;m(1)) = �b�mm log (b)Æ(V � 1),

T2 = b�mÆ(V �1)E(

Z
Ia

E(QCb�m (t) log (QCb�m (t)))�bm�n;Ia(dt))

= b�mm log (b)ÆE(W log W )

by Lemma 1ii), and

T3 = b�mÆ(V �1)E([log (Ybn�m;Ia)�m log (b)]

Z
Ia

E(QCb�m (t))�bm�n;Ia(dt))

= b�m[E(Ybn�m log Ybn�m)�m log (b)]:

As � 0(1) = 1 + Æ(V � 1)� ÆE(W log W ), we have the conclusion.

ii) Consequence of Lemma 4i)a) and the Cauchy-Schwarz inequality.

Lemma 6 Under the assumptions made in the proof of Theorem 3ii) for every t 2 [0; 1],
Pt(lim supn!1 Ybn =1) = 1.

Proof. For n � 1, denote by In(t) the b-adic subinterval of [0; 1] of the n
th generation which contains

t. One has Ybn = k�b�nk � �b�n(In(t)) so it is enough to show that Pt(lim supn!1 �b�n(In(t)) =
1) = 1.

De�ne R1;n(t) = � log QCb�n (t)nT
In(t) and

R2;n(t) = log bn
Z
In(t)

QBIn(t)\Cb�n (u)
du:
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We have

log �n(In(t)) = log Qb�n(t) � n log (b) +R1;n(t) +R2;n(t)

so the conclusion will be immediate after showing that

1) Pt(lim supn!1
log Qb�n (t)�n log (b)

(n log log n)1=2
> 0) = 1: for k � 1 de�neXk(!) = log (Qb�k(t)=Qb�(k�1)(t))�

log (b). By construction the Xk's are i.i.d. with respect to Pt and by Lemma 1i)ii)iv)(q = 1; � = 2)
applied with B = Cb�1(t)

EPt(Xk) = EPt(X1) = E(Qb�1(t) log Qb�1(t))� log (b) = � log(b)� 0(1�) = 0

and EPt(X
2
k) < 1. Moreover EPt(X

2
k) > 0, otherwise P (QCb�1 (t) = 1) = 1, so W = 1 a. s. and

this contradicts � 0(1�) = 0. So the result is a consequence of the law of the iterated logarithm.

2)Pt(limn!1
jR1;n(t)j+jR2;n(t)j

(n log log n)1=2
= 0) = 1: it is easily seen that it is enough to prove that for

i 2 f1; 2g, supn�1EPt(jRi;n(t)j
2+) <1.

EPt(jR1;n(t)j
2+) = E(Qb�n(t)j log QCb�n (t)nT

In(t) j
2+)

= b�nÆ(V�1)E(QT In(t))

:E(QCb�n (t)nT
In(t) j log QCb�n (t)nT

In(t) j
2+)

and EPt(jR2;n(t)j
2+) = E(Qb�n(t)j log b

n
R
In(t)

QBIn(t)\Cb�n (u)
duj2+).

So by Lemma 1i) and 1iv) applied respectively with B = T In(t) and B = Cb�n(t) n T
In(t) and

Lemma 3ii), these expectations are uniformly bounded over N� .

Now we are under the assumptions and notations of Theorem 6.

Fix an integer b � 2 and for q 2 J 0 let ~�q be the measure constructed as ~� on @A; but with the
Wq;M 's: ~�q is almost surely the weak limit of (~�q;n)n�1 with

d~�q;n

d~̀
(t) = b�nÆ(E(W q)�1)Qq

Cb�n (�(t))
:

The total mass of ~�q is denoted by Yq and for every a 2 A, Yq;Ia denotes b
jajk~�Iaq k and is a copie

of Yq.

Lemma 7 i)With probability one, for all a 2 A =
S
m�0Am; the sequence of functions (q 7!

~�q;n(Ca))n�1 converges uniformly on the compact subsets of J 0 to q 7! ~�q(Ca), which is analytic
and positive.

So the measures ~�q, q 2 J 0, are de�ned with probability one simultaneously and have @A as
support.

ii) With probability one, for every q 2 J 0; for ~�q-almost every t 2 @A (with t = t1 : : : tn : : : )

lim
n!1

log ~�q(Ct1:::tn)

�n log b
� ��(� 0(q)):
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Proof. i) Fix a 2 A; jaj = m. In a deterministic complex neighbourhood of J 0; for n > m;
q 7! ~�q;n(Ca) =

P
a02An�m

~�q;n(Caa0) has the analytic extension

z 7!  n(z) =
X

a02An�m

b�nÆ(E(W z)�1)

Z
Iaa0

Qz
Cb�n (t)

dt:

Assume for instance the following assertion: (A3) for every compact subintervalK of J 0, there exists
h > 1, c < 0, C > 0 and a complex neighbourhoodU ofK such that for all n � 1; supz2U E(j n+1(z)�
 n(z)j

h) � Cbnc.

Then a similar using of the Cauchy formula than in [Bi] gives the uniform convergence of  n
on the compact subsets of U , and so the one of (q 7! ~�q;n(Ca))n�1 on the compact subsets of
J 0 to q 7! ~�q(Ca), which is analytic and non-negative. This happens simultaneously for all the
a's in A since A is countable, and so the measures ~�q are de�ned simultaneously. Moreover, the
using of the Cauchy formula yields also for every compact subinterval K of J 0 an h > 1 such that
supq2K E(k~�qk

h) + supq2K E(j
d
dqk~�qkj

h) <1.

To see that q 7! ~�q(Ca) is almost surely positive on J
0 for every a 2 A, that is the support of the

~�q's is @A, it is enough to show that it is the case on every non trivial compact subinterval [�; �]
of J 0. By Theorem 2 and equation (3), since W > 0, this is equivalent to show that q 7! Yq = k~�qk
is positive on [�; �]. For every compact subinterval K of [�; �] and a 2 A denote by NK(a)
the event f9 q 2 K; Yq;Ia = 0g. By using (4) and choosing m > 1 and (a; a0) 2 A2

m such that
TIa \ TIa0 = ;, we have NK(�) � NK(a) \NK(a

0), where NK(a) and NK(a
0) are independent and

with the same probability as NK(�). So P (NK(�)) 2 f0; 1g. Then if P (N[�;�](�)) = 1, one constructs

by dichotomy a decreasing sequence of intervals Kn of length ���
2n such that P (NKn(�)) = 1. Then

P (Nfq0g(�)) = 1 where fq0g = \n�1Kn, so P (Yq0 = 0) = 1, in contradiction with the fact that
q0 2 J

0.

Now we prove assertion (A3): �x K a compact subinterval of J 0. For every z in a complex
neighbourhood of K
 n+1(z)�  n(z) =

X
a02An�m

Z
Iaa0

b�nÆ(E(W z)�1)Qz
Cb�n (t)

[b�Æ(E(W z)�1)Qz
C
b�(n+1) (t)nCb�n (t)

� 1] dt:

We number from 0 to bn�m�1 the b-adic intervals of the nth generation that appear in the previous
sum as they appear on the real line, we denote them by the Jk's, 0 � k < bn�m, and for t 2
[b

n�m�1
k=0 Jk we denote b

�nÆ(E(W z)�1)Qz
Cb�n (t)

by un(z; t) and [b
�Æ(E(W z)�1)Qz

C
b�(n+1) (t)nCb�n (t)

�1] by

vn(z; t):Thus

 n+1(z) �  n(z) =
R
J0
�0(z; t) + �1(z; t) + �2(z; t) dt where for i 2 f0; 1; 2g and t 2 J0; �i(z; t) =P

0�3k+i<bn�m un(z; t+
3k+i
bn�m ) vn(z; t+

3k+i
bn�m ), and for h > 1, E(j n+1(z) �  n(z)j

h)

� 3h�1jJ0j
h�1

Z
J0

[E(j�0(z; t)j
h) +E(j�1(z; t)j

h) +E(j�2(z; t)j
h)] dt:

For a �xed t 2 J0, in �i(z; t), the vn(z; t+
3k+i
bn�m

)'s are mutually independent since the TJ3k+i 's are
pairwise disjoint, and by construction they are of mean 0, and are independent of the un(z; t +

23



3k+i
bn�m )'s. So, if 1 < h � 2; the complex version of a result by Von Bahr and Esseen used in [Bi] (see
[Bi] Lemma 1) yields

E(j�i(z; t)j
h) � 2h

X
0�3k+i<bn�m

E(jun(z; t+
3k + i

bn�m
)jh)E(jvn(z; t+

3k + i

bn�m
)jh):

By the invariance property of �, Lemma 1i) applied with jW zj instead of W and B = Cb�(n+1)(t) n
Cb�n(t) or Cb�n(t), and by de�ning Ch = 12hb�(m+1)(1�h) we obtain �nally

E(j n+1(z)�  n(z)j
h) � Chb

(n+1)f1�h(1+Æ[E(<(W z))�1])+Æ[E(jW z jh)�1]g:

For z = q 2 J 0, 1� h(1 + Æ[E(W q)� 1]) + Æ[E(W qh)� 1] = h�(q)� �(hq), so by the concavity of �
and the fact that on the compact K, q 7! � 0(q)q � �(q) is positive, we can choose h 2]1; 2] to have
supq2K h�(q)� �(hq) < 0 and then a complex neighbourhood U of K such that

c = sup
z2U

1� h(1 + Æ[E(<(W z))� 1]) + Æ[E(jW z jh)� 1] < 0.

ii) For q 2 J 0; " > 0 and n � 1, de�ne

Eq;n;" = ft 2 @A;
log ~�q(Ct1:::tn)

�n log b
� ��(� 0(q)) � "g:

It is enough to show that for every compact subinterval K of J 0 and " > 0, a. s. for every q 2 K,P
n�1 ~�q(Eq;n;") <1.

Fix such a K and ". For every � > 0, Eq;n;" is by de�nition the union of the Ca's, a 2 An, such
that ~��q(Ca)b

n�(��(� 0(q))�") � 1, so

~�q(Eq;n;") �
X
a2An

~�1+�q (Ca)b
n�(��(� 0(q))�") � fn;�;"(q) (7)

with (by using Lemma 4ii)a)) fn;�;"(q)

= bn�(�
�(� 0(q))�")

X
a2An

[ sup
q02K

a((1 + �)q0)] b�n(1+�)(1+Æ(E(W q )�1))Q
q(1+�)

T Ia
Y 1+�
q;Ia

:

We shall see that if � is small enough, there exist CK > 0 and C 0
K > 0 such that for every

n � 1, supq2K E(fn;�;"(q)) � CKb
�nC0

K and supq2K E(j
d
dqfn;�;"(q)j) < CKnb

�nC0
K . One checks that

this implies that the series
P

n�1 fn;�;"(q) converge uniformly on K and yields the conclusion by
(7).

De�ne

bn(q) = bn�[�
�(� 0(q))�"]�n(1+�)[1+Æ(E(W q )�1)]

and
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�a(q) = [ sup
q02K

a((1 + �)q0)]
���� + �

00
(q)� (1 + �)Æ[E(W q log W )]

��� log b:
We have

j
d

dq
fn;�;"(q)j �

X
a2An

(1 + �a(q))bn(q)

�

"
(n+ (1 + �)j log QT Ia j)Q

q(1+�)

T Ia
Y 1+�
q;Ia

+(1 + �)Q
q(1+�)

T Ia
j ddqYq;IajY

�
q;Ia

#
:

By a remark made in the proof of i), if � is small enough, supq2K E(Y
1+�
q )+supq2K E(j

d
dqYqjY

�
q ) <

1 and by Lemma 1 and 3 supq2K E(1+�a(q)), which do not depend on a, is �nite. Thus by taking

account of the independences, the invariance of �, and by using Lemma 1i)iii) with B = T Ia and
the fact that supq2K E(W

q(1+�)j log W j) <1 if � is small, we obtain for � small enough a constant
CK such that for every n � 1 and q 2 K

E(j
d

dq
fn;�;"(q)j) � CKnb

nf�[��(� 0(q))�"]��((1+�)q)+(1+�)�(q)g

and a study of function shows that if � is small enough then
supq2K �[��(� 0(q))� "]� �((1 + �)q) + (1 + �)�(q) < 0.

We leave the simpler estimate of supq2K E(fn;�;"(q)) to the reader.
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