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Abstract

This paper investigates a generalized method of moments (GMM) approach to
the estimation of autoregressive roots near unity with panel data. The two moment
conditions studied are obtained by constructing bias correctionsto the score functions
under OLS and GLS detrending, respectively. It is shown that the moment condition
under GLSdetrending correspondsto taking the projected score on the Bhattacharya
basis, linking the approach to recent work on projected score methods for modelswith
ingnite numbers of nuisance parameters (Waterman and Lindsay, 1998). Assuming
that thelocalizing parameter takes a nonpositve value, we establish consistency of the
GMM estimator and gnd its limiting distribution. A notable new gnding isthat the
GMM estimator has convergence rate n'/¢, slower than /n, when the true localizing
parameter is zero (i.e., when thereis a panel unit root) and the deterministic trends
in the panel are linear. These results, which rely on boundary point asymptotics,
point to the continued die culty of distinguishing unit roots from local alternatives,
even when there is an ingnity of additional data.

JEL Classigcation: C22 & C23
Keywords and Phrases: Bias, boundary point asymptotics, GMM estimation, local

to unity, moment conditions, nuisance parameters, panel data, pooled regression,
projected score.

1 Introduction

Recent years have seen the introduction of several important panel data sets where the
cross sectional dimension (say, n) and the time series dimension (say, T') are comparable

*The authors thank J. Owens for excellent research assistance, J. Hahn for helpful discussions, and
R. Waterman for sharing with us his recent joint papers with B. Lindsay. Moon thanks the Academic
Research Committee of UCSB for research support and Phillips thanks the NSF for research support
under NSF Grant No. SBR 97-30295.



in magnitude. Some of these panel data sets, like the Penn World Tables, have time series
components that are nonstationary. These features distinguish the new data from the
characteristics that are conventionally assumed in the analysis of panel data.

Since the beginning of the 1990’s, there has been ongoing theoretical and applied
research on the use of large n and T panels allowing for nonstationarity in the data over
time. The theoretical research includes the study of panel unit root tests (e.g., Quah,
1994, Levin and Lin, 1993, Im et al, 1996, Maddala and Wu, 1997, and Choi, 1999), panel
cointegration tests (e.g., Pedroni, 1999, Binder et al), and the development of linear
regression theories for panel estimators under nonstationarity (e.g., Pesaran and Smith,
1995, and Phillips and Moon, 1999). Applied research includes tests of growth convergence
theories (Bernard and Jones, 1996), purchasing power parity relations (MacDonald, 1996,
Oh, 1996, Pedroni, 1996, Wu, 1996, and Wu, 1997), and studies of the international links
between savings and investment (Coakley et al, 1996 and Moon and Phillips, 1998).

Two recent papers by the authors (Moon and Phillips, 1999a & b) study panel re-
gression models that allow for both deterministic trends and stochastic trends. When the
deterministic trends in the nonstationary panel data are heterogeneous across individuals,
Moon and Phillips (1999a) show that the maximum likelihood estimator (MLE) of the lo-
cal to unity parameter in the stochastic trend is inconsistent. They call this phenomenon,
which arises because of the presence of an infinite number of nuisance parameters, an
incidental trend problem because it is analogous to the well-known incidental parame-
ter problem in dynamic panels when T is fixed'. To solve the incidental trend problem,
Moon and Phillips (1999b) propose various methods, including an iterative ordinary least
squares (OLS) procedure and a double bias corrected estimator, and establish limit the-
ories for these consistent estimators that can be used for statistical inference about the
localizing parameter.

As a continuation of the two studies just mentioned, the present paper investigates
a generalized method of moments (GMM) estimator of autoregressive roots near unity
with panel data. We establish two moment conditions that form the basis for inference.
The first moment condition is obtained by adjusting for the bias of the score function
after conventional OLS detrending. The second moment condition is constructed by
adjusting for the bias of the score function following GLS (or quasi-difference - QD)
detrending. Interestingly, the second moment condition is shown to correspond to the
Gaussian projected score, where the projection is taken on the so-called Bhattacharya
basis that has been studied recently in the conventional incidental parameter problem by
Waterman and Lindsay (1996, 1998) and Hahn and Kuersteiner (2000).

Consistency of the GMM estimator is proved under the assumption that the local-
izing parameter takes a nonpositive value. This condition is not too restrictive because
most econometric models consider non-explosive autoregressive regression models. Nev-
ertheless, the restriction does matter in deriving the limiting distribution of the estimator
because it is possible that the true parameter lies on the boundary of the parameter set.
The most interesting case is, of course, the pure unit root case where the true localizing
parameter is zero. In this case, in establishing the limiting distribution we cannot use
the conventional approach that approximates the first order condition because the true
parameter could be on the boundary of the parameter set. To avoid this difficulty, we use
the approach that takes a quadratic approximation of the nonlinear objective function
and optimize it on the parameter set (c.f. Andrews, 1999, for some recent developments
of estimation and inference in boundary problems).

One of the most interesting findings in the present paper is that the GMM estimator
has slower convergence rate than \/n when the time series components in the panel have
unit roots (i.e., the true localizing parameter is zero), and the deterministic trends are

ILancaster(1998) provides a recent general survey of the incidental parameter problem in econometrics.



linear. In this case the convergence rate is actually O(n!/6) rather than O(y/n). This
slow convergence rate arises because of lack of information in the moment conditions
when there is a unit root, i.e., at the point ¢ = 0 in the space of the localizing parameter.
It points to the continued difficulty of distinguishing unit roots from local alternatives in
the presence of deterministic trends even when there is an infinity of additional data from
a cross section.

The paper is organized as follows. Section 2 lays out the model and gives the ba-
sic assumptions that are maintained thought the paper. In section 3 we introduce two
moment conditions and prove that the second moment condition corresponds to a Gaus-
sian projected score on the Bhattacharya basis. In Section 4 we establish consistency of
the GMM estimator and obtain the limiting distributions of the GMM estimator when
the true parameter is less than zero and equal to zero. The appendix contains technical
derivations and proofs of the results in the main text.

2 Model and Assumptions
The model considered here is the panel system written in components form

Zit = ﬁ;gpt+yit (1)
Yit = PYit—1 T Eit,

where the autoregressive coeflicient

o (7)~1+7
= exX — | ~ —
P P\T T

is local to unity and the deterministic trend
gpt = (t,..,t*)" = (p x 1) polynomial trend vector.

Let 8,0 and py = 1 + 7% denote the true parameters. The main focus of the paper is on
consistent estimation of the localizing parameter cg. A case of special interest is the panel
unit root model where ¢y = 0.

In the model (1) the time series component of the panel z; has both a deterministic
trend, ,ngpt, and a stochastic trend, y;;. The deterministic trends are assumed to be
heterogeneous across individuals, thereby capturing systematic individual trend effects
in the panel. The stochastic trend is assumed be generated by a local to unity process
with a common parameter, ¢, and errors that may be cross-sectionally heterogenous.
This set up implies that the systematic element governing the formation of the stochastic
trend is common over individuals, although the individual components, &;;,comprising
the stochastic trend may be heterogeneous. In consequence, each trend component y;;
is nearly integrated but will have very different behavior across individuals because the
constituent shocks are heterogeneous.

This type of model approximates situations where for a group of economic time series
the long run autogressive (AR) coefficient is close to unity in each case but the formative
shocks underlying the trends are heterogeneous across individuals. One advantage of near
unit root formulations like (1) is that the probabilistic properties of the time series of
y;¢ are continuous with respect to the parameter ¢ even in the limit, while allowing for
the three different cases p < 1 (¢ < 0), p =1 (¢=0), and p > 1 (¢ > 0). The limiting
continuity arises because for large T,

Yit

VT

= J.(r) with [Tr] =t,



where J. (r) = [ e?""*)dW(s) is a linear diffusion and W (s) is a Brownian motion, so
the limiting form of -9\/1—% is continuous in ¢, as is well known (e.g., Phillips, 1987). The
continuity in ¢ has certain advantages, one being that it is possible to construct confidence
intervals for the AR coefficient p, and bounds procedures like those in the literature? may
be avoided when consistent estimates of ¢ are available.

In practice, the most widely used trend in empirical applications is the linear trend,
when g1, = tin (1). In later sections of the paper as part of the asymptotic development we
need to verify some properties of complicated nonlinear functions of ¢ that depend on the
trend gp;. These functions are so complicated that it is very difficult to establish general
analytic results under the set up of the general polynomial trend function g,; = (¢, ..., t* )/ .
Instead, we rely on numerical methods for this part of the analysis. And to assist the
analytic development, we restrict our attention to the following two cases: (i) g14 = ¢ and

(ii) g2t = (t, tQ)/ . The set up is formalized as follows:

Assumption 1 (Trend Formulation)

The polynomial trend in model (1) is either (i) g1z =1t or (i) gor = (t,tz)/.
Assumption 2 (Error Condition) e, are linear processes satisfying the following condi-
tions.

(a) eix = Z;io Cijuj, where uy are iid across i over t with Euy = 0, Bu?, = 1,
and Eu}, = 0,4 < 0. ~ ~

(b) C;; are sequence of real numbers with C; = sup;|C;;| < oo and Z;iojbcj < o0
for some b > 2.

Assumption 3 (Initial Condition)
(a) yio = zio for alli
(b) Esup; |yio|” < oo for some K > 4.

Assumption 4 (Parameter Set)

(a) The localizing parameter c takes a value in a compact subset C=[¢,0] C R,
where ¢ < 0.

(b) The true localizing parameter cq is in the set Co = ( ¢, 0 ].

Assumption 4(a) restricts the parameter set C =] ¢ , 0 | to be non-positive. This
restriction is made because in most econometrics application, |p| < 1 or p = 0 is of most
interest. When the true parameter ¢y = 0, the model becomes nonstandard in the sense
that the true parameter is on the boundary of the parameter set. Section 5 explores the
implications of the boundary point aspect of this case.

Let Cz = Z]Oio Cija Qz = CZQ, and Az = Z]Oil Ciocij. Qz and Az are the long—run
variance and the one-sided covariance of the error process e, respectively. The next
assumption is about the limits of the averages of the individual long-run variances and
covariances.

Assumption 5 (Long Run Variances)
(a) inf; Q; >0
(b) @ = lim, % Yo, Q; is finite.
(c) U2 = lim, % S Q2 is finite.
(d) A =1lim, % Som A s finite.

2|n nonstationary time series as distinct from panels, a consistent estimate of c is not available. In
this case, Stock (1991) proposes the use of Bonferroni-type congdence intervals.



In most applications, the long-run variances €; and A; are not known and consistent
estimates of 2; and A; are required. A widely used method is to employ a kernel estimation
approach (c.f., Park and Phillips, 1988). Once we obtain consistent estimates of €2; and
A;, we can average them to produce consistent estimates of the quantities A and .
Specifically, suppose that &; is a regression residual of model (1) or model (4). Define
the sample covariances fz(j) = % > &itéit+j, where the summation is defined over 1 <

t,t + j <T. Then, the kernel estimators for IAXZ and Qz are:
—~ [
A; = <) 1y() 2
> (%) R0 @

Q )

\
M=
g
VR
N|m.
N——
ﬁ)
<

where w(-) is a kernel function with w(0) = 1 and K is a lag truncation parameter.

Truncation occurs when w (&) = 0 for |j| > K. Averaging over cross section observations

now leads to consistent estimators of A and €, viz.,

A=l hamda-1ya,

i=1 i=1

We assume that the estimates A; and ©; have the following desirable properties. Examples
of such estimates A; and €2; are found in Moon and Phillips (1999b), and we will not pursue
this aspect of the theory further here.

Assumption 6 (Long Run Variance Estimation) Assume® that as (n, T — c0) with 2 —

0,
1 & s A
_ZAZ*AZ Qlfﬂz :Op(l)
=

1 n
and ﬁ;

3 Moment Conditions

This section develops two moment conditions that will be used in GMM estimation of ¢g.
The central idea is to correct for the biases in the OLS detrended regression and in GLS
detrended regression, a process that leads to two different moment conditions. It turns
out that the second moment condition is equivalent to a particular form of projected score
in the Gaussian version of model (1) . The projection is on the Bhattarcharya basis (Bhat-
tacharyya, 1946 and Waterman and Lindsay, 1996) and this correspondence is explored
in the final part of this section.

3.1 The First Moment Condition
We start by writing Model (1) in augmented regression format as

Zit = PoZit—1 + Gio + Vio9pt + Eit (4)

SUsually, the lag truncation parameter K in (2) and 3 tends to ingnity as n,7" increase to ingnity
together, under a certain regularity condition. For example, Moon and Phillips (1999b) impose the con-
dition that % —0 as (n, T — oo) with 7z — 0. Thisregularity condition isrequired for the asymptotics
underlying Assumption 6.



where
dio
Yio
tp
Y1 (co)

Poﬁgobpv
BTt (co)

(112, (—1)1’)'

(p X p) matrix dedending on ¢y and T.

The augmented format (4) has the drawback that linear regression leads to inefficient
trend elimination, but it has the advantage that the detrended data is invariant to the
trend parameters in (1). The first moment condition uses the augmented formation (4)
and the second moment condition uses model (1).

The following notation is defined to assist with the analysis of the trend function
asymptotics and it will be used subsequently throughout the paper. Let

;?iO - (6i07 7;0)/ )
~ / ~ /
Ipt = (1’g1/7t) ’ 9p (T) = (Tv "'7Tp)/’ 9p (T) = (1’gp (T)/) ’
/ !/ ~ ~ ~ /
GpT = (g;ﬂv 7g;)T) ) GpT,—l = (92;07 "'7g;)T—1) ) GpT = (g;;la 7g;;T) y
~ ~ ~ ~ -1 .
Myr = Ir— GpT (G;TGPT) ;)Tv
Dyr = diag(T,...,T?), Dyr = diag (1, D7),
1 & o
hyr (t,5) = D, gy, (T > D%gptg;tDpTl) 9ps D1
t=1

’ -1
hpr (t,58) = pTgpt< Z gptgpt ) gpsD;%’

-1

o = a0 /Olgpmgp(r)’dr) 00 (5),

hp(r,s) = g, (r) ( /0 1 ~p<r)§p<r)’dr) Jp (5) -

Write Z; = (Zih ---7ZiT)/, Zi,—l = (ZZ‘(), ceey ZZ‘T_1)/, and E; = (Eﬂ, ceey

Z = MpTZi7§ = MpTEiv z = MpTZi —1-
. . —

A A iy—

Then, it is straightforward to show that

=y and z =Yy
i 4 i,—1 T4,—1

N

where

y‘:MpTyiay' = Mp1Yi, 1,

A 1,—

vi = (Y1, "'7yT)/a and y; 1 = (Yo, -~-7IUT71)/- For t > 2 we let

be the t*" element of z , and assume <g > = 2;0 = Y:0-

EiT)/-

Let



One straightforward procedure of estimating ¢y (equivalently pg) is to first eliminate
the unknown trends ;0 + v,og: by taking OLS regression residuals and then apply pooled
least squares with an appropriate bias correction for the serial correlation of €;, calling
this method iterative OLS. However, as noted by Moon and Phillips (1999b), this iterative
OLS procedure yields inconsistent estimation of ¢y due to a nondegenerating asymptotic
bias between the detrended regressor and the detrended error term.

The first moment condition is obtained simply by subtraction of this asymptotic bias
term in an iterative OLS procedure. More specifically, we write Model (4) in vector
notation as B

zi = pozi,—1 + Gpr¥io + &i-

Multiplying M, »r to the both sides of the equation, we have

2 7,—1 [
where z ,z , and € are OLS detrended versions of z;, z;_1, and ¢;, respectively. In
i =1 i
general, the detrended regressor vector z and the detrended error vector € are corre-
i,—1 i
lated.
The first moment condition is found by correcting for the bias due to the correlation
between z and 5 . We will use m, ZT( ) to denote the data moment that appears in
7,—1
the first moment condltlon It is defined as follows:
1 c !
myir(c) = =(z — (1 + —> z 2 —Qwir (o) — Ay ()
T\ T) ~i—1 i—1
Loy ( ) Ly oy Qiwrr (¢) — A
= =£& —(C—C)) /= —3;wWiT \C) — 1)\
T %‘%’,—1 T2 %, 1751 ! ’
1 I 2
-1 zy S et (5) — (e e) S <:g/{ )
=1 s=1 =1 \ b1/
—Qiwir (¢) — Ay,
where
A
wir (¢) = —ﬁz (57 )chpT (t,s),
t=2 s=1

it 7 7,—1

)

ande and < ) are the t'" elements of ¢ andy | respectively. The terms Qiwir (¢)
i,—1 3

and A; correct for the asymptotic bias that arises from the correlation between ¢ and

it
Ti,—1 ¢

Since the bias correction terms (;wir (¢) and A; are approximations of the mean of

% €'y, E(mir(co)) is not exactly zero but it is asymptotically zero, in general.
ii—1

However, m4 ;7 (c) has a simple limiting form that delivers an exact moment condition.
When T is large, it is easy to find that the distribution of my ;7 (¢) is close to that of

2 </01 Jco,i (T)dWi(T)—(C—Co)/OI Jco,i (T)er—w1(0)>,

where Jg, ; (1) = f " eco(r— S)dW (s) is a diffusion, W; (r) is standard Brownian Motion,
J (1) = Jegi( fo wo.i (8) by (7,8) ds, and wy (¢) = —fol o e©t=*)h, (r, s) dsdr.

co,t



Since 5 </01 7 (r) W (r)> = w1 (o) ,

it follows that when ¢ = ¢g

E<Qi(AlJ%JUﬁ”ﬂ@ﬁ—(c—%XAlJ%Jder—w1@0>

giving the moment condition directly for this limiting form of my ;1 (co) .

3.2 The Second Moment Condition

Before we discuss the second moment condition, we introduce the following notation. Let

A, = (1 — (1 + %) L) , where L is the lag operator,
. _ 1 —
For = diag (1,T, Y 1) = Dy, Acgpt = FpT Acgpt
. d B . )
%m::;%m:@wwwww, Gpe (r) =gp (r) = cgp (1),
— 1 . . ,
zw@::—ZmW&w, Ap©) = [ e (1) 0y ) .
0
1 £l _— 1 L. /
Bir(e) = 7Y BettpaDpt By(©)= [ 0 (g ()
t=1

The second moment condition is obtained from the efficiently detrended regression equa-
tion. According to Canjels and Watson (1997) and Phillips and Lee (1996), the trend
coefficient in the model (1) can be efficiently estimated in the time domain by employing
a GLS procedure that amounts to quasi-differencing the data with the operator A.. That
is, when the localizing parameter c is known, the asymptotically efficient estimator of (3,

in (1) is )
T - T
/81' (C) = (Z AcgptAcg;t) (Z AcgptAcZit> .
t=1 t=1

Denoting vi: (8;) = zit — Bigpt, We now write

t=1 t=1

T LT
B; (¢) = Bio + (Z AcgptAcg;t) (Z Acgptyit (51‘0)) .

Define Eit (Ca /810) - Aczit - BgAcgpt-
The second moment function mo ;7 (c) is defined as

mair ( TZ% (¢ 3:@) w1 (B: (@) = Qe (0) = s

where

19

T t—1
11 —_—
AT (C) = —tr ( C 1 ﬁ ZZe cgptAcgps ) .

t=2 s=1



Notice that y;;—1 (BZ (c)) is the GLS regression residual of the regression equation z;; =

Bigi+yi and e (c, @ (c)) is the OLS regression residual of the quasi-differenced equation
Aczit = B;Acgpt + Acyir. In the second moment function mg 1 (c) we correct for the
asymptotic bias of 4 Zthl Eit (c, B, (c)) Yit—1 (BI (c)) by substracting off the estimates

Qi)\T (C) and AZ

Recently, Moon and Phillips (1999a) showed that the Gaussian MLE of the panel
regression model (2) with linear incidental trends is inconsistent. The main reason for
inconsistency of the MLE is that the concentrated score of the (standardized) Gaussian

likelihood function, - >°% | 4 ZtT:l Eit (c, B (c)) Yit—1 (31 (c)) , has non-zero mean in the
limit. In the second moment formulation of ms ;7 (¢), by subtracting off the estimates

Qi1 (c¢) and Ai, we eliminate the asymptotic bias of the concentrated Gaussian score
function.

3.3 TheRelationship between the Second M oment Condition and
the Projected Score

This section shows that the second moment function mg ;1 (c) is a projected score of the
panel regression model (1) with Gaussian errors. Suppose that the error process e, in
the model (1) is an iid standard normal process across i and over t. For convenience we
assume that z;9g = y;,0 = 0 for all 4.

Under general regularity conditions, it is well known that the asymptotic properties of
the MLE, and most notably its consistency, are closely related to the unbiasedness of the
score function at the true parameter. However, it is also well known that in dynamic panel
regression models with incidental parameters the MLE is not consistent (e.g., see Neyman
and Scott, 1948, and Nickel, 1981) as n — oo with T fixed. Recently, Moon and Phillips
(1999b) found that this incidental parameter problem also arises in the nonstationary
panel regression models with incidental trends when both n — o0 and T' — oo, to wit in
models such as (1).

The main reason for the inconsistency of the MLE is that the score function in an
incidental trend model has a bias at the true parameter. Therefore, in order to obtain a
consistent estimate, one needs to correct for the bias in the score function. One recently
investigated method to correct for this bias is to use a projected score function, where
the projection is taken onto the so-called Bhattacharyya basis. The resulting approach is
called “a projected score method”.

To define a projected score in the present case, we introduce the following notation.
Let

. _ (LY 15~ (a ' Agp)’ 7
fi(zise,8;) = <ﬁ> €xp *52( cZit — B cgpt) (7)

the joint density of z;,

Ui = %/80, Vii =

ol fi
a5,05, , Ofi 0f: Vi — Vi
fi osiog; '\ Dyvecha )

where Djf = (D;,Dp)_1 D, and D, is the duplication matrix. In the statistics literature,

Vi; and Va; are known as the Bhattacharyya basis of order 1 and 2, respectively (e.g.,

9fi/98;
fi

Voy =




Bhattacharyya, 1946 and Waterman and Lindsay, 1996). The projected score Usy; is
defined as the residual in the Lo— projection of Uy; on the closed linear space spanned by
Vli and ‘/in i.e.,

Usi = Ui — &1 Vi — 4D (vecVs;) . (8)

Recently, using the projected score method, Waterman and Lindsay (1998) and Hahn
(1998) were able to solve similar nuisance parameter problems in the classical Neyman
and Scott panel regression model and in a simple dynamic panel regression model with
fixed effects, respectively.

When the joint density of z; is given in (7), Uy, V34, and Vs, are found to be

T
Ui (e, B;) = % Z5i,t (¢, 8:) yit—1 (Bi)
t=1

T
Vii (e, 8;) = Zﬁi,t (¢, B;) Dcgpt,
=1

T T !
Vai (C, ﬁz) = - Z AcgptAcg:/pt + <Z Eit (C, ﬁz cgpt> (Z izt C ﬁ cht) '
t=1

t=1
After some algebra, we obtain
E (Vi; @ vecVa;) =0

and
EV;U =0.

So, the two Lo— projection coefficients ¢; and &, in (8) are given by
& = [EViV)| " VAU =0,

and
&y = [D;‘E (vecVa;) (vecVQi)/ D;"] -t D;E (vecVa;) Uy;.

Also, after some lengthy calculation, we find that

E (vecVs;) (vechi)/

T T
Z Z ( cgptAcgpt Y Acgps cgps + Z Z (AcgptAcg;s & AcgpsAcg;yt) ’

t=1 s=1 t=1 s=1
and
E (vecVQi) Uh’
1 T t—1 et
T Z Z [Acgpt 0y Acgps + Acgps & Acgpt] 6( r )c'
t=2 s=1

Therefore, the projected score Uy; (¢, ;) is

Uai (¢, B
T T

= T E za yzt 1 +£2D+ E cgpt (X)Acgpt)
=1 =1

T
7€2D+ (Z Ezt cgpt> (Z Ez,s 7 cgps) )
s=1

10



T T -1
= Z Z D;_ {(AcgptAcg;)t Y AcgpsAcg;)s) + (AcgptAcg;)s Y AcgpsAcg;)t)} (D;)/]

t—

T
1 t—s—1 c
T Z Z D;_ cYpt Y Acgps + Acgps [ Acgpt] ( T ) .
t=2 s=1

Ju

Since (3, in Uy; is unknown, we replace it with the estimate

T L
Bi (C) = <Z AcgptAcg;/)t> <Z AcgptAcZit> .

t=1 t=1

Then, we have the following concentrated projected score

o (65 00) = -3 e (31 60.0) s (3160) + €10 Y- Bt )

T .
because Y, ;¢ (c, B (c)) Acgpe = 0.

Now, when the error process e;; is iid(0,1) across ¢ and over ¢, the second moment
function mg ;1 (c) is

ma i ( Z&t (C ﬁ ) Yit—1 (BZ (C)) —Ar(c).

The following lemma states that the bias correction term —Ay (c) in mg i1 (¢) is equiva-

lent to §’2D; Zle (Acgpt @ Acgpe) . Thus, we conclude that the second moment function
actually corresponds to the concentrated projected score function of the Gaussian model.

Lemma 1 (Equivalence) Suppose that the errors in model 1 are iid normal with mean
zero and variance 1 across i and over t and y;0 = zio = 0 for all i. Then, the sec-
ond moment condition ma ;7 (c) is equivalent to the concentrated projected score function

Us; (c, BZ (c)) .

4 GMM Estimation and Asymptotics

This section investigates the asymptotic properties of a GMM estimator of ¢ that is based
on the two moment conditions introduced in the previous section. Let

c) = % ZmiT (c)

]

ma,qi1 (c)

where

and where my 7 (¢) and mg 7 (¢) are defined in (5) and (6), respectively. Let W be a
(2 x 2) random weight matrix and B, be a sequence of real numbers that converges to

11



infinity as (n,T — o0). The GMM estimator ¢ for the unknown parameter ¢y in (1) is
defined as the extremum estimator for which

Zur (¢) < min Zur () + 0p (Bo7) (10)

where .
Znr (¢) = My (¢) WM,p (c) .

Since the objective function Z,r (¢) is continuous in ¢ and the parameter set C assumed
to be compact, it is possible to find a global minimum of Z,,7 (¢) over the parameter set C.
The main purpose in allowing for an o, (B ) deviation bound from the global minimum
Hg(g Znr (¢) is to reduce the computational burden and allow for potential numerical

computational errors within a range of o, (B ) Later in this paper, depending on the
convergence order of ¢ to ¢y, we will determine the sequence B,,r.

4.1 Consistency of the GMM Estimator

Define %
o mq (C
e =(mid ).
where
my (¢) = w1 (¢p) — w1 (¢) — (¢ — ¢p) wa (co)
wi(e) = / / e h, (r, s) dsdr,
1 200
wo (CO) = *2—00 1 + 2_00 (1 € )
1,1
1 .
o co(r+s) _~ _ ,—2co(rANs)
/0 /0 e 5eq (1 e )hp (r,s)dsdr,
and

1
= (c—co < g2co(r— s)dsdr>
0 0

(c—co / / geo(rts—2v) Qpc (s)/ A, (0)71 Qpc (r) dvdsdr
0 0
1
(c— co / =) gpe (1) Ap ()" gp (s) dsdr
0
1
(e=co / =) g (s) Ay (e) gy (r) dsdr
0

1

M

C—CO /
0

1
C*CO/
0

1
0/
0

/ et 2 o () Ay ()7 gy (r) dudsdr
0
e0(r=) gpc (r )/Ap (C)_l By (c) Ay (C)_l gpc (s) dsdr

C—C

e0(r=s) gpc (s )/Ap (0)71 By (C)/ Ap (6)71 gpc (r) dsdr

12



1 1 TAS . .
+(c—c)” / / / e0(rts=20) g (s)" A, ()" By (¢) Ap (¢) " Gpe (1) dvdsdr
0 0 0
1 r . .
_/ / e0(r=2) Ipe (S)/ Ap (C)il Ipe (T) dsdr
0 0
1 T . .
+/ / =) Ipe (s) Ap (C)_l pe (r) dsdr.
o Jo

The following lemma shows that the sample moment condition M,,7 (¢) has a uniform
limit in c.
Lemma 2 (Uniform Convergence) Under Assumptions 1-0,
M7 (¢) —p QM (e, co) uniformly in ¢
as (n,T — 00).
Assumption 7 As (n,T — c0), W —p W, where W is positive definite.

Notice by inspection that the uniform limit function M (¢, ¢p) is continuous on the
compact parameter set C. Also, notice that M (¢, cg) = 0 at the true parameter ¢ = cq.
In Appendix F, we prove numerically that M (¢, cp) = 0 only when ¢ = ¢g. Then, by a
standard result (e.g., theorem 2.1 of Newey and McFadden (1994), the GMM estimator &
is consistent for the true parameter ¢y. Summarizing, we have the following theorem.

Theorem 1 (Consistency) Suppose that Assumptions 1-6 and Assumption 7 hold. Then,
as (n, T — 00),
¢ —p Cg.

4.2 Limiting Distribution of the GMM Estimator when ¢y <0

By inspection the objective function Z,r (c) is differentiable in ¢ on the region ¢ € (¢, 0),
and it has right and left derivatives at ¢ = ¢ and 0, respectively. To derive the limit dis-
tribution of the GMM estimator, we employ an approach that approximates the objective
function Z,r (¢) uniformly in terms of a quadratic function in a shrinking neighborhood
of the true parameter.

For this purpose, we define

1 n
My () = — > dmir (c),
=1

where dm;7 (¢) denotes the derivative of m;r (¢) with respect to ¢ when ¢ € (G, 0) and
the right and left derivatives when ¢ = € and 0, respectively. By the mean value theorem,
for ¢ # ¢,

myr (¢) = myr (co) + dmyr (co) (¢ — co) + i1 (¢, o) (¢ — ¢o)
where

?"iT(C,Co) = (ﬁiT(C,Co),TQiT(C,CO))/a

Tir (¢, c0) =  dmpgr (CZ) — dmyr (co)

and c'k" lies between ¢ and ¢g for k£ =1, 2.

13



Define A
Sur = dM,1 (co) WM, (co)

and .
Hopr = dM,1 (co) WdM,,r (co) .

Then, we can write

Zpyr (€)= Myur (co) WMur (co) + 2 (c — co) Spr + (¢ — o) Hyr
+ (¢ —co) Rint (¢,c0) + (¢ — Co)2 Ront (¢, o),

where
Rint (¢, c0) = 2M, (co)’ ( Z?"ZT ¢, Co )

and

Raont (¢,¢0) = 2dMpur (co)’ ( ZTZT c Co)
/ 1 n
( ZT’ZT ¢, co > (ﬁ Z”T (e, Co)) .

= i=1

We now give some asymptotic results that are useful in establishing the limit distri-
bution of é.

Lemma 3 Suppose that Assumptions 1-6 hold. When the true parameter is cg,

dM1 (C, Co)

dM,q (¢) —p QdM (¢, c0) = Q < dM; (c, co)

> uniformly in ¢ as (n,T — o0)
for some continuous function dM (c) with

1 r
dM; (cg,co) = —wa (cg) + / / eco(r—s) (r —s) hy (r, s) dsdr,
o Jo
and

d]\/fg Co, Co)

= / / e2¢0(r=5) g sy
/ / / ecolrts2e) gPCO (S)IAP (00)71 gpco (T) dvdsdr

) g, (1) Ap (co) ™ gp (s) dsdr

) Gy, (5) Ay (o) ™" gp (r) dsdr

=) gue, (5) Ap (co) ™" By (o)’ Ap (co) ™" Ipeo (1) dsdr

(r —s) eco(r—3) QPCU (7’)/ A, (00)71 QPCU (s) dsdr.

L
[1-
_/0 /0 =) g (1) Ay (co) L By (co) Ay (co) L Gpey () dsdlr
Iy
b

14



Now we set B, = \/n.

Lemma 4 Suppose that Assumptions 1-6 hold. Then, as (n,T — oo) with % — 0,

BnrMyr (co) = —=

n

K2

1 n
mar (co) = N (0,92 J'® (co) J),
=1

and @ is defined in (45).

1 -1 0 0 oY
whereJ-(l 0 -1 11)

Remarks

(a) The proof is similar to that of Lemma 2 and is omitted.

(b) Figures (3) and (4) plot the graphs of dMj (cg, co) in the cases of g1 = (1,t)" and
g = (1,1, t2)/ , respectively. What we verify from the graphs is that dM; (co, o) < 0
for ¢g < 0. Therefore, H,,7 > 0 for ¢ < 0.

-0.002
-0.004
-0.006
-0.008
-0.01

-0.012
-0.014
-0.016

Figure 3. Graph of dM (co,co) when gy, = (1,t)".

5 -4 3 ° 2 -1

0

-0.002

-0.004

-0.006

-0.008

Figure 4. Graph of dM; (cg, cp) when goy = (1, t, tQ)/ )

(¢) According to Moon and Phillips (1999b), when c¢g = 0, it always holds that dM; (co, co) =
0 for all polynomial trends g, = (1, ...,t? ). Also, for ¢g = 0, direct calculations show
that dMas (co,co) = 0 for g1¢ =t and dMas (cg,co) = 0 for gor = (t,tQ)/. Therefore,
Hpr —p 0 when cg =0, g1 =t, and goy = (t,tz)/.

Notice from Lemma 3 and the following remarks and by Assumption 7, that H,r has
a positive limit as (n, T — c0) when ¢y < 0. Thus, H, 7 = O, (1). Then, we can write

BELTZTLT (C)
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(BnTSnT)2

= Mur (co) WMz (co) — 7
nT
BrSnr\ 2
+Hnr <BnT (c—co) — #>
H'rLT
+Byr (¢ — ¢0) BurRanz (¢, ¢0) + (Bur (¢ — ¢0))? Ranr (¢, o) - (11)

Lemma 5 Under Assumptions 1-6 and Assumption 7, for every sequence vy, — 0, we
have

(a)
sup ‘BnThaT (Ca CO)| = 0p (1)
ceCilc—co| <V,

and
(b)

sup [Rant (¢, c0)| = 0p (1) .
ceC:le—co| <7,

Theorem 2 Suppose that Assumptions 1-6 and Assumption 7 hold. Then,
BnT (é - Co) = Op (1) .

Lemma 5 establishes that two remainder terms B, 7R1,7 (¢, co) and Ranr (¢, cg) con-
verge in probability to zero uniformly in the shrinking neighborhood of the true parame-
ter. Also, Theorem 2 shows that the GMM estimator is B, ( = y/n) — consistent. This
implies that in the shrinking neighborhood of the true parameter, the scaled objective
function B2,.Z,r (c) is uniformly approximated by the following quadratic function

B?zTZ ,nT (c)

(BnTSnT)2

. BurSur )
= MnT (Co)/ W]\/[nT (Co) — H . #) .

+Hur <BnT (c—co) — Hor

The heuristic ideas of the limit theory are as follows. Let B,,r (¢, — ¢p) =arg max B’?ITqunT (c).
ceC
Then, we may expect that a maximizer of B2,.Z,r (c) will be close to the maximizer of

B2, Z, 1 (c), suggesting that the GMM estimator B,z (¢ — ¢g) will be close to

R BorSnr . _ B, 1S,
Bur (g —co) = HTiTT if {BnT (C—co) < HTiTT < BnTCO}
B, 1S,
= BnT(fJ*C()) if {BnT(ECO)>#}
H'rLT

B
= 7BnTCO if {LS”T > BnTCO} .
HnT

Notice that E%LSIM = 0, (1) and recall that it is assumed that the true parameter ¢

< ¢p < 0. In this case, the probabilities of the events {BnT (€ —co) > %} and

{ﬁg—ﬁiﬂ > —BnTco} will be very small and the scaled and centred estimator B, (¢, — ¢o)
will therefore be close with high probability to the random variable

BnTSnT

AnT =
T H'rLT
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In view of Lemmas 3 and 4 and Assumption 7,
BurSur = S £ N (0,922 [dM (co, co) WI'® (co) JWdM (co, ¢0)])

and
Hor —p H = Q2dM (co, o) WdM (cg,co) > 0

as (n,T — oo) with % — 0. Thus, when co € Co/ {0},
dr > AL HISE 2,
The proof of the following theorem verifies the heuristic arguments given above.

Theorem 3 Suppose that Assumptions 1-6 and Assumption 7 hold. Suppose that cg €
Co/ {0} and ¢ be the GMM estimator defined in (10). Then, as (n,T — o) with 7 — 0,

ﬁ (é - CO) = Za
where
zd N W2 dM (cg, co) WJI'® (o) JWdM (co, co)
Rl [dM (co, co) WdM (Co,co)]2 .
Remarks

(a) When ¢y € Co/ {0} and J'® (¢o) J is invertible, the optimal weight matrix is found
as
Wope = (J'® () J) .

The limiting distribution of \/n (¢ — ¢g) is then

. Zopth 0 P2 ) 2
Vi (é—co) = ( 0?2 [dM(CO,CO)/WdM(CO’CO)]Q) "

(b) In Figures 5-6, we plot the graphs of the minimum eigenvalues of J'® (¢g) J as

functions of ¢y when g1 = ¢t and g9y = (t,tz)/. As we see through the graphs,
J'® (cg) J is positive definite except for the case of ¢y = 0 with g1, =¢.

17



-10 -8 -6 -4 -2 0
Co

Figure 6. Graph of the Minimum Eigenvalue of J'® (co) J When go; = (¢, tz)/ .

4.3 Limiting Distribution of the GMM Estimator when ¢y =0

An important special case of model 1 is when ¢y = 0. In this case, the time series compo-
nents of y;; in (1) have a unit root (i.e., py = 1) for all ¢. This section develops asymptotics
for the GMM estimator when the true localizing parameter is zero, so throughout this
section we set ¢g = 0. In this case, according to the Remark (c) below Lemma 4, the
information from the moment conditions is zero because H,,; —, 0. We cannot then use
a conventional quadratic approximation approach, as in the previous section, and need
instead to employ a higher order approximation.
The model considered is

Zit = /61'1t + Vit (13)
Yit PoYit—1 t Eit, (14)

where
po=1, t.e, cg=0.

In model (13)-(14) the panel data z;; is generated by a heterogeneous deterministic trend,
B,1t, and has a nonstationary time series component y;; with a unit root. The analysis
here is restricted to the linear trend case because it is the most widely used deterministic
specification in empirical application and it facilitates what a complex series of calcula-
tions. Assumptions 2, 3, 4(a), 5, 6, and 7 are taken to hold.

18
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Lemma 6 Under the assumptions stated above, the following hold as (n,T — o) with

13
7= — 0.

(a) /aMipr (0) = N (0, %) = /¥ 2 where Z=N(0,1),

(b) vndMint (0) = Op (1),

(0) /i Minz (0) = 0 (1),

(d) d*Mynr (¢) —p d® My (c,0) uniformly in c with d*My (0,0) = —=5, where d* My, (c)
is the k" left derivative of My,7 (c), and d> M (c,0) is the third left derivative of M (c,0),

the probability limit of My, (c).

The next lemma finds the limits of the second moment condition and its higher order
derivatives at ¢ = 0. As we will show in the appendix, the asymptotics of My, 1 (0) depend
on the limiting behavior of £ 3" | 4 Zthl (é?t —¢%) , which relies on how we estimate
the model and define the residual &;;. The residual &;; that will be used here is obtained
from a modifiws least squares estimation of model (4) . In particular, we define

s i () (15)
t

it 7,—1

)

where

i— 7,—1 ,—1 o i 4,—1

prt = (i 7z )1 (i (g’g —TA; — TQiwrr (0))) : (16)

Then, we have the following lemma.

Lemma 7 Suppose that the assumptions in Lemma 6 hold. Assume that the residual &;
in (15) is used in calculating € and A; in Assumption 6. Then, when (n,T — oo) with

70,

(a) VnManr (0) = 0, (1),

(b) \/rd Mz (0) = O (1),

(0) /R My (0) = 0y (1)

(d) d3May (c) —p d®Ms (¢, 0) uniformly in c with d®Ms (0,0) = f%, where d* Moy, (0)
is the k" left derivative of Manr () at ¢ =0, and d*Ms (0,0) is the third left derivative

of d*Msz (c,0) at ¢ =0.

Remarks. Since the higher order derivatives of May,7 (0) are complicated and involve
very lengthy expressions, we omit the details of their derivation in the appendix. Instead,
we give a sketch of the proof in the appendix and here provide some simulation evidence
relating to the various parts of Lemmas 6 and 7. Using simulated data for z;; in (13) with
git ~ iid N (0,1) and y;0 = 0, we estimate the means and the variances of \/nd* Mj,,r (0),
k=0,..,2; j=1,2 and the means of d*M;,r (0), j = 1,2. Table 1 reports the results.
The numbers in the table are consistent with the theoretical results in the lemmas. No-
ticeably, the variance estimates of /nMi,7 (0), /RdMy,7 (0), and /ndMa,7 (0) are all
small. This is because their theoretical limit variances are small but not zero. In fact, a
long calculation shows that the theoretical limit variances of \/nMy,r (0), /ndMi,7 (0),

and v/ndMayr (0) are and L, respectively when e;; ~ iid N (0,1).

111 L
60’ 6300 45>

Table 14

“Notice that the second and the third derivatives of Mi,r (c) are deterministic.

19



VaMinr (0)  /ndMy,r (0)  /nd?My,r (0)  d®Mynr (c)

Mean —0.0019 —0.0003 7.96 x 107 —0.0169
Variance 0.018 —0.0017 0 0

ViiMonr (0 /mdManr (0)  /nd®Mayr (0)  d3Mayr (c)

Mean 94 x 1075 —0.0001 —2.88 x 10~ —0.06
Variance 0.0012 0.022 4.85 x 1076 4.039

Using the left derivatives of the moment condition m;r (¢) at ¢ = 0, we approximate
myr (¢) around the true parameter cop = 0 with a third order polynomial as follows,

my;r (C) = myT (0) +c (dsz (0)) + 102 (dzmiT (0)) + 163 (d3miT (0)) + C3fiT (C, 0) s

2 6
where
Fir (¢,0) = (Frir (¢,0), 7o (¢,0)),
Frir (¢,0) = d®mypir (¢f) — d®mpir (0), k=1 and 2.
Then,
ZnT (C) = MnT (C)/ WMnT (C)
6
- Z CkAk,nT + NnT (Ca 0) ;
k=0
where
AO,nT - MnT (0)/ WMnT (0) )
Alwr = 2Myup (0 WdM,7 (0),
Aoy = Myup (0 Wd?M,p (0) + dM,,z (0) Wd M,z (0),
1 . .
Az nr = gMnT (0) Wd3 M, (0) + dM,r (0) Wd2M,1 (0),
1 . 1 .
Agnr = 3 Mot (0) Wd3 M, (0) + Zd?MnT (0) Wd? M, (0),
1 ~
Asor = ngMnT (0) Wd3 M, (0),
1 ~
Aoy = %dSMnT (0) Wd3 M, (0),
and

6

NnT (C, 0) - Z Cka,nT (Ca O) 5
k=3
(1
Ninr (¢,0) = 2d* 3 M, (0) W (Z > (e, 0)) for k = 3,4,5,°

./\/‘GynT (C, 0) = 2d3MnT (0)’ W <% ifﬂ“ (C, 0)) + (% ‘n T (C, 0)) W <% ifﬂ“ (C, 0)) .

i=1 =1



In view of Lemmas 6 and 7, it is easy to find that as (n,T" — oo) with % — 0,

0O A = 0y (1), (17)

WP Ayur = 0p(1), (18)

n1/3-’44,nT = Op (1) ) (19)

A5 e = 0,(1), (20)
and 0 (Wi 2Wi W
11 12 22

n or 3 21

Asnt 2 35 <4900 1050 225) >0 1)

n2Ay . = AsZ, (22)

nAonr = Ao 22, (23)

where Z = N (0,1) and A3 = —% (V—%L + V—‘{g‘) 1/%’—3 and Ay = Wn\g—g.
Also, using Lemmas 6 and 7 and following similar lines of proof to Lemma 5, we can
show that
sup n(Gik)/GNk,nT (c, 0)) =0, (1), (24)
ceC:lc|<v,,r
for any sequence +,,;- tending to zero as (n,T — oc). Then, we have the following limit
theory for ¢ at the origin.

Theorem 4 Under the assumptions in Lemmas 6 and 7, as (n,T — o0o) with & — 0,
nt/6 (e —co) =0p(1),
where cqg = 0.

So, when the true localizing parameter is ¢ = 0, the GMM estimator ¢ is n'/6—
consistent, which is slower than the regular case of y/n that applies for ¢y < 0 as shown
in Section 4.

Next, we find the limiting distribution of the GMM estimator ¢. The argument here
is similar to that of the previous section. So, the proof is omitted and we give only the
final result in Theorem 5 below.

In view of (17) — (23) and (24), the standardized objective function nZ, (c) is ap-
proximated by

Zgnr (¢) = Aot + <n1/60)3 VA3 nr + (n1/60>6 Ap -

Notice that the probability limit of Ag ,,7 is positive, as shown in (21). Then, it is easy to
see that the approximate objective function Z, .1 (c) is minimized at

1/3
nl/ﬁéq = — <7\/EA3’”T> if {n1/65< —7\/5A3’HT < O}

2A6 1 246 e T
. \/E.Ag, nT
f O f _—— O
' { 2A6,nT ”
1/3 \/ﬁA
_ 1/6 (= . 1/65 <« _ 3,nT
(n ( c)) if {n ¢ > —2A6,nT }
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Using arguments similar to those in the proof of Theorem 3, we can prove that the starn-
dardized GMM estimator n'/%¢ is approximated by n!/ 6¢,, the minimizer of Z, 1 (c),
that is,

nt/%e =n'/%¢, + o, (1),

and the estimator n!/ 6¢, is approximated by

[N VA3 1/31 7\/ﬁ~/43,nT<0
" 2A6 n1 260

where 1{A} is the indicator of A. In view of (22) and (21), as (n,T — oo) with % — 0,
it follows by the continuous mapping theorem that

Mr = — (=20)*1{2y <0},

where
Zy = VoZ, (25)
W, W
- vl () S (26)
0o = 5 W 2. W
Q %(49(116 + Tos0 T 22252)

and we have the following theorem.

Theorem 5 Under the assumptions in Lemmas 6 and 7, as (n,T — o0o) with % — 0,
n'/e = — (—2y)'/*1{2Z, <0},

where Zqy is defined in (25) .

Remarks

(a) Theorem 4 shows that when the true parameter ¢g = 0, i.e., in the case of a panel
unit root, the GMM estimator is n'/%-consistent and that its limit distribution is
nonstandard, involving the cube root of a truncated normal. The truncation in the
limiting distribution arises because the true parameter is on the boundary of the
parameter set.

(b) The reason for the slower convergence rate in the panel unit root case is that first
order information in the moment condition (from the first derivative of the mo-
ment condition) is aymptotically zero at the true parameter. In order to obtain
nonneglible information from the moment condition, we need to pass to third order
derivatives of the moment condition. Taking the higher order approximation slows
down the convergence rate because the rate at which information in the moment
condition is passed to the estimator is slowed down at the origin because of the zero
lower derivatives.

(c) Inview of Lemmas 6(a) and 7(a), we find that \/nMa,1 (0) = o, (1), while \/nMj,,r (0)
converges in distribution to a normal random variable with positive variance. Be-
cause of the convergence rate difference between \/nMa,7 (0) and /nMi,7 (0), we
have only Wi; and Wio but not Way in the limiting scale Vg of (26). In this case,
setting Wy = Wig = 0, i.e. not considering the first moment condition, causes
the variance of the limit variate Zy to vanish, from which one might expect that
the GMM estimator from the second moment condition alone would have a faster
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convergence rate than n'/. In fact, under the assumptions in Lemma 7, it is pos-
sible to show that nMa,r (0) = 0, (1) as (n,T — oo) with % — oo and the GMM
estimator from the second moment condition only could be n!/4-consistent, which
is faster than the GMM estimator defined by the two moment condition. However,
the reason for using the first moment condition is to identify the true parameter
when ¢y < 0. As we discuss in Appendix F, the second moment condition cannot
identify the true parameter unless it is zero.

(d) When ¢g =0, in view of Lemma 7(b) and (c), one can explore higher derivatives as
moment conditions. If these higher derivative moment conditions are satisfied only
at ¢g = 0, then it will be possible to use those moment conditions to distinguish the
presence of a unit root in the panel from local alternatives, an issue which is being
studied by the authors.

5 Monte Carlo Simulations

The purpose of this section is to compare the quantile dispersion of the GMM estimators
in a simple simulation design. The main focus is to compare the panel unit root model
with incidental trends with near unit root with incidental trends and panel unit root
without the incidental trends.

The panel data z;; is generated by the system

zig = Bt + Y, Bio = iid Uni form[0, 3] (27)
vy = (1+ %)yitq + &t co € {—20,-10,-5,0},

where the e;; are iid N (0,1) across ¢ and over ¢, and the initial values of y;o are zeros.
The sample size is (n,T') = (100,200) . The autoregressive coefficients in the error process
for y;; are taken to be 0.9, 0.95, 0.975, and 1. To calculate the GMM estimators we use
an identity weight matrix. This choice makes the estimation procedure for the ¢y < 0
case comparable with the ¢y = 0 case, whereas the optimal weight matrix when ¢y = 0
is to use only the second moment condition in which case we can not identify the true
parameter when cg < 0. The simulation employs 1000 repetitions each using grid search
optimization with the grid length of 0.02.

The simulation results are reported in Table 2. First, the median bias of the GMM
estimator ¢ becomes larger as the true ¢y becomes larger. When ¢y = 0, the GMM
estimator of Model (27) has median bias of -0.26, which is much larger than other cases.
Also, when ¢y = 0, the GMM estimator is much more dispersed than the other cases. Both
results are to be expected from the asymptotic theory because of the slower convergence
rate and one sided limit distributin in the ¢y = 0 case.

Table 2 compares the GMM estimator in the panel unit root model with incidental
trends with the truncated pooled OLS estimator of the panel unit root model without the
trends. For this we calculate

Z?=1 23;1 ZitZit—1 22;1 Zz;l ZitZit—1
n T 2 1 n T 2 < 0 ’
Dim1 Dt=1 i1 Die1 Dot=1 i1

where z;; is generated by Model (27) with ¢ = 0 and (,, = 0. Then, the limting distri-
bution of ¢ is

é:

Vné = V221{Z <0},
Z N(0,1),
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as (n,T — o0), and so ¢ is \/n- consistent and has a normal limiting distribution. The
quantiles of ¢ when n = 100 and 7' = 200 are reported in the last row of Table 2.
Comparing these outcomes with the GMM estimator ¢ of Model (27) where incidental
trends are present, ¢ is much more concentrated on the true value and the median bias
of ¢ is much smaller than that of ¢. This comparison highlights the delimiting effects of
incidental trends on the estimation of roots near unity even in cases where there are long
stretches of time series and cross section data in the panel.

Table 2. Quantiles of the Centered GMM Estimators of Model (27)

co (po) 5% 10%  20%  30%  40%  50% 60% 70% 80%
20 (0.9) -1.38 -1.14 -082 -0.60 -038 -022 0 0.18 0.36

-10 (0.95) -1.1 -0.86 -0.62 -044 -0.30 -0.16 0 0.16 0.34
-5 (0.975) -092 -0.74 -0.52 -0.38 -024 -0.12 0 0.14 0.30
0 (1) -164 -134 -096 -0.66 -042 -0.26 -0.1 0 0
0(1) -0.266 -0.197 -0.123 -0.075 -0.037 -0.003 O 0 0

No Trend

6 Conclusion

Part of the richness of panel data is that it can provide information about features of a
model on which time series and cross section data are uninformative when they are used on
their own. In the context of nonstationary panels with near unit roots, an interesting new
example of this ‘added information’ feature of panel data is that consistent estimation of
the common local to unity coefficient becomes possible. This means that panel data help
to sharpen our capacity to learn from data about the precise form of nonstationarity where
time series data alone are insufficient to do so. However, as the authors have shown in
earlier work, the presence of individual deterministic trends in a panel model introduces a
serious complication in this nice result on the consistent estimation of a root local to unity.
The complication is that individual trends produce an incidental parameter problem as
n — oo that does not disappear as T' — oo. The outcome is that common procedures
like pooled least squares and maximum likelihood are inconsistent. Thus, the presence
of deterministic trends continues to confabulate inference about stochastic trends even in
the panel data case.

One option is to adjust procedures like maximum likelihood to deal with the bias. The
present paper shows how to make these adjustments. The theory is cast in the context
of moment formulae that lead naturally to GMM based estimation. The paper has two
important findings.

The first is that bias correction in the moment formulae arising from GLS estima-
tion of the trend coefficients corresponds to taking the projected score (under Gaussian
assumptions) on the Bhattacharya basis. This correspondence relates the approach we
take here to recent work on projected score methods by Waterman and Lindsay (1998)
that deals with models that have infinite numbers of nuisance parameters like the original
incidental parameters problem.

The second is that our limit theory validates GMM-based inference about the localizing
coefficient in near unit root panels. A notable new result is that the GMM estimator has
a convergence rate slower than y/n when the true localizing parameter is zero (i.e., when
there is a panel unit root) and the deterministic trends in the panel are linear. The
asymptotic theory in this case provides a new example of limit theory on the boundary
of a parameter space. The results point to the continued difficulty of distinguishing unit
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roots from local alternatives when there are deterministic trends in the data even when
time series data is coupled with an infinity of additional data from a cross section.

The model considered in the paper asssumes a common localizing parameter for the
stochastic trends, an assumption that may be regarded as restrictive in empirical applica-
tions, although it is mitigated in part by heterogeneity over individuals in the component
elements that constitute the stochastic trend. Extension of our analysis to cases where
there is also heterogeneity in the localizing coefficient present further difficulties which
are under investigation by the authors.

7 Appendix
7.1 Appendix A:

Before we start the proof of Lemma 1, we give some useful background results.

Lemma 8 Let K,,, denote the (m x m) commutation matriz, D, denote the m*xim (m + 1)
duplication matriz, and set D}, = (D!, Dy,) ' D.,. Also, assume that x and y are m —
vectors and A is an (m x m) invertible matriz. Then the following hold.

(a) zy’ @ yx' = K, (yy’ © z2’).

(b) (I + Km) (z 00 y) + (y 0 7)) = 2(x 0y) +2(y 0 ).

(¢) DDy = Iip1 4.

(d)D Df =35 (I, +K,).

(¢) (Df (A A)D,)”" = Dif (A=' % A=) D
Proof

Parts (c), (d), and (e) are standard results (e.g., Magnus and Neudecker, 1988, pp.
49-50). Part (a) holds because

vy vy = (zy) (Y ©) = vee(yz') (vee (zy'))
= (Knvee(ay)) (vee(zy)) = K (y 20 2) (y 20 z)’
= Kp(yy ©aa').
Part (b) holds because

(f + Kon) (20 y) + (y ® 2))
= (z®y)+ (y®z)+ Kyvee(yr') + Kpvee (zy')
= (:E(}Z)y) + (y ® x) + vec (zy') + vec (yz')
= 2@z®y)+2@ywz). B
Proof of Lemma 1

In this proof we omit the subscript p that denotes the order of the polynomial trends
for notational simplicity. To complete the proof, it is enough to show that —Ar (¢) in

ma,;7 (¢) is equivalent to f’QD}T Zle (Acgr ® Acgr) in Uy (c, BZ (c)) . First, we define

T t—1
~ 1 1 — — — e t—s— c
Ar = ?Zf D |: cgt(X)Acgs‘f’Acgs(X)Acgt} ( T 1) )
=2 s=1
~ 1 T 1 T —_— —_—— ) —_— —_—— + /
A2T - T Z T ZD {( cgtAcgt ® AcgsAcgs ) =+ (AcgtAcgs by AcgsAcgt ) } (Dp ) ;
t=1 s=1
~ 1 T — —
Asr = D;FT Z (Acgt ® AcQt)

~
Il

1
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Then, by definition, we write
T ~ ~ ~
&D;F Z c9t © Dcgr) = AipAyy Agr.
t=1
Notice by Lemma 8(a), (d), and (c) that

Ay
1

T
— 2p¢D,D} (%
s
-l

By Lemma 8(e),

LS (&l o 5asa) (0))

s=

T
—— 1 —_——
AcgtAcgt/) ® (T ZAcgsAcg‘S/)] (D;Ji_)/

s=1

1 T —_—
(T ZAcgsAcgs >‘| (D;_)/

=1

( ZAcgs cgs> ](D;Dp)l-

M=

— Df (I, +K,)

[y

M= L

~
Il

1

vv

1
- 9 (D/ Dp) D;f

t=1 s=1

T -1 !
1 —_— ——
(T Z AcgtAcgt ) (T Z Acgs cOs > Dp

-1

" -1
( ZAcgt cgt> (%Z@@j

s=1

= —D’ D,.

Again, from Lemma 8(d) and (b), we have
Ay

i

lez

’ﬂl'—‘ Sl
M

HIH ﬁm

|: <Gt (}Q Ach + Ach (}Q Acgt:| e( T—l)c (D;)/

V)
Il
=

—1 T —1
1 —_ 1 — )
ZAcgtAcgt> by (T ;AcgsAcgs ) Dp

t=1
1< —
XD;? Z (Acgt ® Acgt)
1 T 1 — — — — —— t—s—1
Z Z |:Acgt 0y Acgs + Acgs by Acgt:| 6( i )C (Ip + Kp)

]_ r —_—— - 1 T — -

T Ac Ac 60 T Ac sAc S

T; 9t gt> (TE 9589 ) }
%Z ( Gt 0y Acgt)]

t=1

X
| ——

x (Ip + Kp)
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t—1

P (S S B o K] o

Il
[N
Nl =
7~

L t=2 s=1
[ 1 T — - 1 T —_— -
— Ac Ac X T Ac sAc S
X (T; 90 gt> ® (T; 9589 )

X
TN
Mﬂ

( cgt ® Acgt)} . (28)

o~
Il

1

Expanding (28) yields

]_ L ]_ =1 ]_ z —/ —
T Z T Z T Z € [ cOs ApTAcgp} [Acgp A;TIAcgt
t=2 s=1 p=1
T t—1
1 1 71) — 71/\
= = Z = 6 CAcgs A TAcgt
T t=2 T s=1 g
T t—1
]. ]. —_—
= tr (AP%T Ze cgtAch>
t=2 s:l
= —Ar(c). N

7.2 Appendix B: Useful Results for Joint Asymptotic Theories

This section consists of two subsections. The first subsection introduces some useful results
for joint asymptotic theories. Many of these are modified versions of results developed
in Phillips and Moon (1999) so we report them only briefly here. The second subsection
introduces some useful results which will be used repeatedly in the following sections of
the proofs for the results in the main text.

7.2.1 Appendix Bl

The following two theorems provide convenient conditions to find the joint probability
limit of double indexed processes.

Theorem 6 (Joint Probability Limits) Suppose the (m x 1) random vectors Y are
independent across i = 1,...,n for all T and integrable. Assume that Y;r = Y; as T — oo
for alli. Let X,,7 = % S Yir and X,, = % S Y

(a) Let the following hold:
(i) limsup, 7 5+ 32 Bl|Yir|| < oo,
(i) timsup, ;4 0, || EYir — EY;]| =0,
(i) limsup, ;= > E||[Yir|[1{||Yir]| > ne} = 0 Ve > 0,and
(iv) limsup, 2 3" | E[)Y;]| 1{||Yi|| > ne} =0 Ve > 0.

(b) If limn_,ooizzzzl EY; (:= fix) exists and X,, —p fix as n — oo, then Xpr
—p fix as (n,T — 00).

Theorem 7 Suppose that Yir = C;Q;r, where the (m X 1) random vectors Q;r are iid
acrossi =1,...,n for all T, and the C; are (m x m) nonrandom matrices for all i. Assume
that
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(i) Qir = Qi as T — oo for all i as (n,T — ),
(ii) ||Qsr|| is uniformly integrable in T for all i°.
(i) sup; [|Ci|| < oo, inf; ||C;|| > 0, and C = lim, 1 Y" | C;.
Then %Zyzl Yir —p CE(Q;) as (n,T — 00).
Theorem 8 (Joint Limit CLT for Scaled Variates) Suppose that Yir = C;Qir,

where the (m x 1) random vectors Q;r are iid(0,Xr) across i =1,...,n for all T and the
C; are (m x m) nonzero and nonrandom matrices. Assume the following conditions hold:

(i) Let 02 = Apin(S1) and liminfr 02 > 0,

.. max; <, ||Ci ||2 _ 1
(ii) —/\mm({?:l (,:,ic,;) = O(;) as n — oo,

(iii) ||Qir|?* are uniformly integrable in T,
(iv) lim, 7 230 G Y, CL =0 > 0.
Then,
Xor = ﬁ iYiT = N(0,9Q) as n,T — oc.
i=1
7.2.2 Appendix B2

Suppose that the panel process y;; is generated by

co
Yit = €Xp (T) Yit—1 T Eit,

where ¢;; satisfies Assumptions (2)-(5). Again, for notational simplicity, we omit the
indices n and T in the notation ;.

(a) A particularly useful tool in treating the linear process e;; is the BN decomposition
which decomposes the linear filter into long-run and transitory elements. Phillips
and Solo (1992) give details of how this method can be used to derive a large number
of limit results. Under Assumption 2, the linear process ¢; ¢ is decomposed as

git = City + Eqt—1 — Eat, (29)

where &;; = Z;io é’ijuit_j, and é’ij = ZZ‘;J +1 Cik. Under the summability condi-
tion (c) in Assumption 2,

=0
and - -
E&, < (Y iC)? < (3 5°Cy)? < o0, (31)

—_— <
Il
<)
<.
Il
o

where b > 1 and C; = sup, |C;| (see Phillips and Solo, 1992).

6T hat is,
sup B Qi {llQir|l > M} —0

as M — oo.
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(b) Next, recall that

T —1
hpT(taS) = pTgpt ( ZD Tgptgpt pT) gpstT

Tt is easy to see that when ¢ = [Tr] and s = [Tv], as T — o0

har(t,s) — (1) ( / gpg;)_lgpw) — hy(r,v)

uniformly in (r,p) € [0,1] x [0, 1]. The following limit also holds
sup  hyr(t,s) — sup  hy(r,v). (32)
1<t,s<T 0<r,v<1

(¢) Using the BN decomposition of ¢;;, we can decompose y;; into two terms - a long-run
component of y;; and a transitory component. By virtue of the definition of y;,

: (t —s) t
Yir = ZQXP o~ €is + &Xp | Co7 | Yio-

s=1

Using the BN decomposition (29) of e;;, we can decompose y;; as
Yir = Cizit + Rz, (33)
where

- (t—s)
Ty = ZGXP COT U

s=1

t—1
and R;; = exp <co( T )><§i0git

o3 (oY et (1 () oo (0 o

For notational simplicity we also omit the indices n and T in x;; and R;;. Let ;0 =0
for all 4.

Next we introduce bounds for the moments of some random variables that will be
frequently used in the following proofs. Throughout the paper we use K as a generic
constant independent of the localizing parameter c,9. Let t = [Tr]. As (n,T — o0)

2 t g
x5 1 t—s _ =
E <—> = = E_l exp (200 > — /0 exp ((r — s)2¢0) ds < K, (34)

T T 1
1 2 1 1 t—s i 2 _
— E —”) = = — exp <200 > — / (/ e(rs)2c0d5> dr < K,
T Z < T T T Z T 0 0

(35)

lim sup sup ERZ
T 1<i<n 1<t<T
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exp (2(:0 =1) sup, EZ% + sup, E&2,
2 S
< hlf%l sup sup 4 1 — exp TO)) ZU 1 ZS 1 €Xp (cot 1 ”) exp (cotfi}fs) sup; E(&;s&iv)
1<i<n 1<t<T Fexp (2c0%) sup; By,
N2
xp (2c0%74) +1) (2520565 )
2 2t—2—v—
< lmpd sup sup { +(1-ex T“)) (o0 S0 o0 &P (20 S5772))
x (Thm Xy supy [ Bt )
+1lim4 sup exp (2CO—> sup Eylo
T 1<t<T T
< SUpy <4< (exp (200 = ) + 1)
~ 2

n, T 1<¢<T
2

< 4 ch_'j {2+ %3} —|—4sqpaz20, because C = [¢ , 0]

t
+41lim sup exp (200 f) sup 0120

< K,
where 0% = E (y%)) -

Lemma 9 Assume that, for k =1, ..., K, hi (¢, €) is a real-valued continuous function on
the product of the parameter set C x C with hy, (c,¢) =0, and Iy, (x,y) is a real-valued con-
tinuous function on [0,1] x [0,1]. Also, assume that f (z,c) and g(x,c) are continuously
differentiable functions from [0,1] x C to R such that f(z,¢)g(y,c) — f(z,¢) g(y,¢) =
Zle hi (¢,é) U (x,y) . Suppose that y;; = exp ( ) Yit—1 + €54, where g5 follows Assump-
tion 2. Assume that Assumption 3 holds for the initial condition y;o and Assumption 5

holds for the cross sectional limit of the long-run variances. Then, as (n,T — 00), the
following hold.

n 17 2¢q(r—s
(a) % D i1 % ZtT=1 yiQt—l —p Qfo fo 20 (r=2) dsdr.

-é' 1-
j;]j ! ;I%l{ +7? (1 — exp (%))2 (SUpP; <6< €xP (co M A28 )Y Sup <o AT

}

(0) 150, (Fr St eied (:0)) (757 St viemrg (£,0)) = Qg fy e =)g(r,c) (s, c)dsdr

uniformly in c.
() 50 (7 St 1S () (727 S vie 19 (5,0))
—p Qfol fol flr,c)g(s,c) fOMS e (r+s=29) qudsdr uniformly in c.
(@20, (Fr Slieief (4:0)) (Fr Siicug (£:0)) = @y fy Frc)g(s. )dsdr

uniformly in c.

Proof
Part (a) From the decomposition (33), we write

T

11
;Zﬁzy?tq

T
= Z j:'l'Q szt 1+ 2= ZCTQZJCzt 1R+ — ZTQZRZQt 1+ %20

TQ

= I, " 2Ha + IIIa + IV, say.
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Since sup; Ey%, < oo, IV, — 0 as (n,T — o00). In what follows we show that I, —,
Qfol o €2 =) dsdr and I1,, 111, —, 0as (n,T — 00).

For I,, recall that
T

-1y clya,
t=2

=1

Define Q1 = % Zthz x%_,. Note that {Q;r}i=1,.. . areiid across i. Since
T 2ay = Jeoi(r) = / e« =) qW; (s) (37)
0

as T — oo (see Phillips, 1987), where W; is standard Brownian motion, we have by the
continuous mapping theorem as (n,T — 00),

1
Qir = Q; = /0 J2 s(r)dr. (38)

Also, as T' — oo for fixed n,
1
QiT = QZ = / anoyi(r)dr. (39)
0

Notice that EQ; = fol Iy e20(r=3) dsdr.

We will claim I, —, Qfol Jy €2("=*)dsdr in joint limits as (n,T — oo) by verifying
conditions (i) - (iii) in Theorem 7. Condition (iv) holds because it is assumed in As-
sumption 2 that lim,, 1 3% | €2 = Q and inf; |C;| > 0, and under Assumption 2, it holds
sup; |C;| < oo. Condition (i) is obvious in view of (38) and (39) . For condition (ii), observe
that

Bar = 235 ew (75
I3 = — — X C
! Tt 2Ts=1 " T ’

1 r
— / / e(r=8)2¢0 dsdr = EQ, as (n, T — 00).
0 JO

Since Q;r (> 0) = Q; with EQ;r+ — EQ;as (n,T — o), {Qir}r are uniformly inte-
grable in T' by Theorem 5.4 in Billingsley (1968).
Next, we prove that

n

T
1 1
11, = m E Oiﬁ E Tig—1Ri—1 —p 0,
=1 =

and

n T
1 1
I, = — ;:1 73 ;:2 R%_, —,0asn,T — oo,
by showing that E |I1,|,E |[II1,| — 0 asn,T — oo.

First, we have

1en, 1 o
- > Cirg > @i 1R

T
1
= E Tit—1Rir—1

E|Il,] = E

IN
SN
—
Q
=

T
1
T2 E i1 41
i—2

1<
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Observe that

2 E Lit— let 1

t=2
1 11 |z
< —=N"=N"E|ZER,
n T 2
11 1 Tit—1 2 1
< — N2 E E|Ry_1|? = O(—=),
>~ ﬁn;T;\/ \/T | t1| (\/T)

where the equality holds by (35) and (36). Similarly, we can show that II1I, —, 0 as
(n,T — o0) by proving that E|III,|] — 0 as (n,T — o0). Therefore we have all the
required results to complete the proof of part (a). B

Part (b) Using the BN-decomposition in (33), we write

5 (e () (e o)

= L+IL,+ 111+ 1V,

oo (e )(bff; /(5)
iR Ee wr(5) (rEees )
=5 (G >> (e »(5))
e (e () (e e ()

We will show that
1 r
Iy —, Q/ / e« (=% g(r. ¢) f (s, ¢)dsdr uniformly in ¢
0o Jo

and
11y, 111y, IVy — 0 uniformly in ¢

as (n,T — 00).
First, we establish Part (b) for fixed ¢ (pointwise convergence). Now, as in Part (a),
we apply Theorem 7. Let

Qir (c) = (%éuitf <%,C>> (%ixitlg <%,C>),
wa Qi = ([ feami@) ([ otom0a).
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Using (37) and the continuous mapping theorem, we can show that

Qir (¢) = Qi (c) (40)

as T' — oo for fixed n and ¢, which verifies condition (i) in Theorem 7. Condition (ii) holds
because it is assumed in Assumption 2 that lim,, % Z?:l Q; (: Cf) = Q and inf; |C;| > 0,
and under Assumption 2, it holds sup; |C;| < co. Condition (iii) holds for fixed ¢ if

Quir (c) = (% guitf <%7C>>2

and
2
QQZT ( Z:Ezt 19 ( ))
2
are uniformly integrable in T for fixed c. Notice that Q1,7 (¢) = Q14 (c ( fo r,e)dW; ( )) >
0, and EQqir (c) = 5 Z;‘F:l f (%, ) — fo *dr = EQq; (¢) as T — oo for all 4. By

Theorem 5.4 in Billingsley (1968) it follows that Q1.7 (¢) are uniformly integrable in T
for fixed c. In a similar fashion, Qg;7 (¢) is also uniformly integrable in T for fixed c.
Therfore, as (n,T — o0),

1 I
Iy —p Q/ / e (") g(r, ¢) f (s, ¢)dsdr for fixed c.
0o Jo

Next, define X,z (¢) = L 37" | Q1 (c) . To complete the proof, we need to show that
X1 (¢) is stochastically equicontinuous. That is, for given € > 0 and 1 > 0, there exists
6 > 0 such that

limsup P sup | Xt () = Xpr (8)] > € p <.
(n,T—o0) le—¢|<é,c,ceC

Then, since the parameter set C is compact, the pointwise convergence of X, (¢) and
the stochastic equicontinuity of X7 (¢) imply uniform convergence.
Now we show the stochastic equicontinuity of X,,r (¢). First, notice that

sup | X1 (¢) = Xz (0)]
|e—é|<8,c,ceC
n

i;;zii“it% 1{f<t > ,c>f<

|e— c\<5 c,eeC

N[ =
(9}
N———
Q
—
N o
(9}
~
v

t=1 s=1
T T K
1 "1 (t s>
= Uit Tis—1 i (e, &) Ui | s 7
|e— c\<§cc€(C TLZ 1T2;; {; T
1 n T T K PR
< sup sup | (¢, €) Uit Tis—1 Uk (_a _> .
1<k<K |c—8|<8,c,66C n ; 72 ;; o ,; rr

Since hy (¢, €) is continuous on the compact set with hy (¢,c) = 0 for all &k = 1,.., K,
we can make SUDP; << SUP|._g|<s,c,zec |k (¢, €)| arbitrarily small by choosing a small
6 > 0. Also, under the assumptions in the lemma, it is not difficult to show that

1 Z? 1 % ZZ 1 ZST 1 Wit Tis—1 {ZkK 1k (%, %) }‘ = O, (1) . Therefore, X, (c) is stochas-

tically equicontinuous, and I, —,, Qfo " eco(r— S)g(r, ¢) f(s, ¢)dsdr uniformly in c.
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Next, for I, notice that

ﬂ"‘
]~
—
me
‘;

L
|
me
&
N—
Kﬁ

VoSN

’ﬂlﬂ

)
) ) (i)

T—1 (Lt
B f(5e) = F(g:e) < > _ Ll .
B VT t=1 Zt T \/_EZOf \/TEZTf (o).

For II, —, 0 uniformly in c if we show that Esup,cc |[[Iy] — 0 as (n,T — c0). Let

sup; C; = C. Under Assumption 2, C is finite. Now

Esup |11
ceC
1 & t 1 & t
< CsupFEsu Sit—1 — &4 —.cl|||—= Ti— —,c
< P Ceg th:;( 1 t)f(T ) T\/T; t 19<T >
-1 t+1 t T
1 . f(—"'—,c)—f(—,c) 1 t
< CsupEsup|—= g T T Ti_19 | =, ¢
i eeC T\/T; ’ 1 T\/T; AT
T
1 1 1 t
+C'sup E sup | — —.c|||=—= Tt —=.,c
wes| oo (79) |7 7o 0 (7
1 a t
+C'sup E sup | —=5&; ,0)| |——= Tip— —.cl|. 41
zp cep ﬁ T.f ) T\/T; t lg(T > ( )

The first term on the RHS of (41) is less than or equal to

sup
1<t<T
ceC

t
o(5)
X | sup E LTZA\E| Li\a} |

ip VT =1 ! VT =1 o .

Since f (z,c) and g(x,c) are continuously differentiable functions on the compact set

F(H )1 ()
T

[0,1] x C, supi<i<r
_ ceC
say K, that is independent of ¢. Also,

and supi<¢<7T |g (%, c)’ are bounded by a constant,
ceC

T—1 2 T 2

< LapyB (2 En E 12\ || by Cauchy-Schwarz inequalit
< —=sup — Eit —— Y |zp—a y Cauchy-Schwarz inequality

T i T t=1 VT t=1

T—1 T

1 1 ~ 1 Lit—1
< ——=sup,| = EZ. | = E( >

AT & TR T

K :
< \/_T for some constant K independent of ¢ by (31) and (35)
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K

Similarly, we can show that the other terms in the RHS of (41) are less than equal to N

for some constant K independent of ¢. Therefore

K _
Esup|II,| < — for some constant K independent of ¢, (42)
ceC \/T
and so I, —, 0 uniformly in c.
In a similar fashion, it is possible to show that

K _
Esup|lIly|, Esup|IVy| < —= for some constant K independent of c, (43)
ceC ceC

VT

which leads to I11,, IV}, —, 0 uniformly in c. We omit the details of the argument here.
|

Part (c) and Part (d) The proofs of Parts (c) and (d) are similar to that of Part (b)
and they are omitted. H

The following lemma is important in establishing asymptotic normality of the GMM
estimator ¢. To simplify notation, let

Lyt (6,5,0) = Dogyr Apr () Augps
byt (£:5,0) = Begpe Ay (€)' gpua D7
bt (£.5,0) = Bagpr Ay ()7 By (@) Ayr ()" Bagpe,
and
Ly (rs,¢) = Gpe () Ap ()" pe (9)
lp (r5.¢) = Gpe (1) Ay () g (5)

lap (r,8,¢) = Ype (7")/ Ap (C)il By(c) Ay (C)il gpc (s)

b = [ o0l

Lemma 10 Suppose that x;; = exp (%0) ZTit—1 + Wi, where uy are 4id (0,1) with finite
fourth moments and x;0 = 0 for all i. Then, as (n,T — o0), the following hold.
Let

1
QliT = T;%’tquit
1 & 1 & -
Qoir = Wi ; TJT ;uit%’sqhﬂ (t,8) +wir (co)
1 & 1 &
Qzir = T ; TIT ;uitl‘is—lllpT (t,s,¢0) + A (co)

T
1 1 _
Qur = —T Z ﬁ ;uituiSZQPT (t, S, CO) —tr (ApT (CO) ! Bp (CO))

T
1 1 -
Qsir = Wia > Wis > wiuislspr (¢, 5, co) — tr (ApT (co)™" By (Co))
t=1 s=1
and Qir = (Quir, Q2ir, Qzirs Quir, Qsir) - (44)
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Then, as (n,T — o),

where
D1y (co) Pi2(co) Pi3(co) Pia(co) Pis(co)
D15 (co) Poz(co) Paz(co) Pos(co) Pos(co)
D (co) = | P13(co) Paz(co) Paz(co) P3a(co) P35(co) (45)
D14 (co) Pas(co) P34(co) Paa(co) Pus(co)
D15 (co) Pas(co) P35(co) Pas(co) Pss(co)
and

1 r
Py (co):/ / e2e0(r=5) dsdr,
o Jo
1 1 rAS N 1 r s N
D15 (co) :/ / / e a2V (1, s) dvdsdr—i—/ / / e h, (v, r) dvdsdr,
0 0 0
1 r s
D5 (co):/ / / eco(r_”)llp (r,v,co dvdserr/ / / eCo(r+s—2v) lp1 (r,s,co) dvdsdr,
0 0 0
1 r
<I>14(Co):/ / €C°(T_S)12p(7"75700)d5d7’+/ / =)y, (5,7, ¢o) dsdr,
0 0 0 0
1 T 1 T
<I>15(Co):/ / 660(7’78)13;0(7"75,00)615617’+/ / e =)g, (5,7, c) dsdr,
o Jo o Jo

Dy (co) / / / erolrta” QU)h (r,5) dvdsdr
/ / / / co(r—v) C(J s—q iL ( ) (5 ’U) dqdvdsdr,

D3 (co) / / / / e (Hv=20 ] (1 8) Iy, (7, 0, co) dgdvdsdr
+/ / / / ecO(T_”)eCO(S_q)in (r,q) lip (s, v, co) dgdvdsdr,
o Jo Jo JO

Doy (co) / / / eCo(r= S)h (r,v)lop (v, s, co) dudsdr
+/ / / e =3 (r,0) Iy (s, v, ¢o) dvdsdr,
0 0 0

o5 (co) / / / =3, (r,v) I3, (v, 5, co) dvdsdr
+/ / / e = (r,0) I3, (5,0, co) dudsdr,
0o Jo Jo
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33 (co) / / / goo(rts—2v) l1p (r,s,co) dvdsdr
+/ / / / ecor=v)ecols=al, (g co)ly, (5,0, o) dgdudsdr,
o Jo Jo Jo

1 T 1 T
a4 (co) = / / e =2)ly,, (1, 5, co) dsdr + / / e0 =21y, (r, 5, co) dsdr,
0 0 0 0
1 T 1 T
35 (co) :/ / e (=2, (T7S,Co)d5d7’+/ / e =)g, (5,7, c) dsdr,
0 0 0 0

Dyy () = (vecAp (co)_l)/ vecly (co) + tr (Ap (co)_1 B, (co)' A, (co)_1 B, (co)> ,
P (co) = tr (Ap (co)™" By (c0) Ap (c0) ™" By (co)' ) +tr (4p (co) ™ By (c0) Ap (c0) ™" By (co))
D55 (co) = tr (Ap (co)™" By (c0) Ap (c0) ™" By (co)')+tr (4p (co) ™ By (c0) Ap (c0) ™" By (co) )

Proof

The proof uses Theorem 8, and we sketch the proof here. First, a direct calculation
shows that EQ;r = 0. Let ®,,1 (co) = EQirQ’p. Notice that Q;r are iid (0, @, (co))
across i. As T — oo,

Qir = Qi,

where

Qi = (Qui,Q2i,Q3i, Qui, Qsi)

Qu = /JCO,<>dW<>

Q2i = // co,i (1) hyp (1, 8) AW (s) dr

Qu = // r.s.c0) Wi (r) dWi () — A (co)

T A dW()sz‘(S)—”(Ap(co)_pr(CO))

Qsi = / / Iy (1,5, c0) AW, (1) dW; () = tr (A, (co) ™ By (o))
Also, a direct calculation shows that as T — oo,

Q.7 (c0) = EQirQir — EQiQ; = P (co) .

Let ! be any (5 x 1) vector with ||I|| = 1. We consider two cases.

Case 1: If I'® (o)l > 0.

To establish the desired result with a joint limit, we apply Theorem 7. Condition
(i) holds because it is assumed that I’® (cg) ! > 0. Conditions (ii) and (iv) hold because
lim,, £ L3 1 = Q> 0. Finally condition (iii), viz.

(l’QiT)2 are uniformly integrable in T,
holds because (I’ QiT)2 = (I Qi)2 as T — oo by the continuous mapping theorem with

E('Qir)* = I'®yyr(co)l — I'®(c)l = E('Q:)*, and by applying Theorem 5.4 of
Billingsley (1968).
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Case 2: If '@ (¢)l = 0. Since I'®@,,p (co)l — P (cp) I =0,
— 2\
(7; (' Qir) ) = (E;Q> U@, (co)l — 0,
which leads to
1 n
— > Qi (I'Qir) = 0
=

Therefore, by the Cramér-Wold device, it follows that
1 mn
— > Qs N (0, 72® .|
Vi & i = N0 )

7.3 Appendix C: Proofs of Section 4

Proof of Lemma 2.
We show separately the following

n

U3 (i (€) — Qama () .0, (46)

=1

and .
=3 (i (€)= Quma (0) = 0, )

uniformly in c.
First, by definition and the triangle inequality, we have

n

Z (mair (¢) — Qima (c))

S|

n (% Z;le EitYit—1 — Ai) + (—% Zthl Zzzl 5ityis—1ﬁpT (t,s) — Qiwn (Co)>

- % £ — 0 (wir () — w1 (€) — (¢ — co) (% Y <yl>j — Qiws (00>>
' %g(a Q)| rr (e %;( 4)
(e
%;( %ig_;gy o (8 5) — R <co>)'
+le—cl i(TQZ . j—QM“@)‘

R MCELY

=1

( ZQ) |lwir (€) — w1 (

= I+ IT+1II14+1V4+V+VI, say.




Notice that two terms I and I1 are independent of ¢, and by Lemma 9 of Moon and

Phillips (1999b), I,II —, 0 as (n,T — oo). Next, II] —, 0 uniformly in ¢ because
2

IS |2 Zt 1 <~ ) — Qs (co) || in term ITT is independent of ¢ and also by
=1/ ¢

Lemma 9 of Moon and Phillips (1999b), it converges in probability to zero as (n,T — 00) ,

and |c¢ —¢p| is a continuous function on the compact parameter set C. Finally, since

|wiT (€) — w1 (¢)| — 0 uniformly in ¢ (by pointwise convergence and continuity on the com-

pact set) and £ 3" | Q; converges, IV — 0 uniformly in c. Also, since £ Y% | (Qz - Qz> ,

PP ([XZ - Ai) = 0p (1), and sup,cc wir (¢) < K for some finite K, terms V and VI

converges in probability to zero uniformly in c. Therefore, 2 37 | (my;r (¢) — Qimq (¢)) —,
0 uniformly in c as (n,T — c0) .
Next, to prove (47), we write by definition

_ZmZzT
11 & 1.1 &
= Ez<fz€it?ﬁt—1 C*Co n;ﬁ;yt 1

=1

n T
1 1 1
- Ac it A c i
n ;:1 (\/T E GptEit pT (C (T\/_ §: IptYit— 1)

t=

>

[y

>

T /
1 —
WTZ cgptyit—1> ApT ( ZAcgptyzt 1)

APT(C)_ (\/— ngt 1DpT51t)

~
Il
—

:‘H
M:
A
H p—
Mﬂ
Y
T
o
\l/\

!/ T T

1
Acgptyit—1> ApT (C)_1 ( — § gpt—lD_%Eit)
T t=1 ? ]

+
?
:
S|
™
/\ /\I
3
—_
3
i\g

1
1 / 1 « _
— A/c\si Apr ()7 | == 1Dy
\/TZ pt t) 1 (€) (T\/T;gpt 1Yt 1)

n T ! T
1 1 — _ 1 -
*(0*00)25 ‘ <—T\/T E Acgptyit1> Apr (c) ! <—\/— E gpt1Dp%yit1>

n T
Jr% Z ( 1T ZA/CEE”> APT( ) BPT( )APT (\/— ZAcgptht)

T
@\H
Pﬂ>ﬂ

VT

~

=1
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! T
_ - 1 —
Acgptyit1> ApT (C) ! BpT (C) ApT (C) ! <_ Z Acgptgit
t=1

1
1 / 1
ﬁ Z Acgptgit) ApT (C)il BpT (C) ApT (T T Z Acgptyzt 1

)

j




n T !
+ (C - CO)2 % Z (ﬁ Z A/cg\ptyitl) ApT (C)_l BpT (C) ApT ( Z Acgptyzt 1)
~(FEe) m-1 3 (B-0)re 23 (-4
i i=1 i=1

Since each element in A/cg\pt and gp;— 1D 1 satisfies the conditions for f (z,c) and g (z,c) in

Lemma 9, the desired result in (47) follows by Lemma 9, —1 Y™ (Q —Q; ) =S (A —A; )

op (1) and boundedness of Ar (c) over the parameter set C. H

Proof of Lemma 3.
The proof is similar to that of Lemma 2 is omitted. l

Proof of Lemma 4.
Here we give only a sketch of the proof. The details of the calculation are quite similar
to the proof of Lemma 9(b) with a replacement of the standardizing factor % by ﬁ and

the proof of Theorem 14 of Moon and Phillips (1999b).
First, using the BN decomposition of €;; in (29) and of y;; in (33), we write

% > mir (e
= Z (Quir — Qair) + —= ZRlzT + 0, (1) (43)

and
LS mair o
e ma;T (Co
Vi &
1 <& 1 <
= ﬁ Z Q; (QliT — Q3ir — Quir + QsiT) + % ZR%T + op (1) )
=1 =1

where Ry;7 and Ro;r are relevant remainder terms generated by the BN decompositions
Yit—1 and €5. The op (1) terms above hold because it is assumed that

%g(@i—ﬂa,%g(&—/\i)—op(l),

Using similar arguments to those in the proof of Theorem 14 of Moon and Phillips
(1999b), it is possible to show that

% ZZ::RMT =0p (%) =o0p(1), (49)

and by applying arguments similar to those in the proof of (42) and (43), it is also possible

to show that
! iR 0 (”) (1)
- 2T = Up |\ 5] = Op .
Vi T
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Then, it follows that

IZ( ZZ? (co) ) =7 (%EQQT> J+0,(1).

Finally, applying Lemma 4 with c¢,9 = ¢g (i.e., £ = 0), we obtain the desired result. H

Proof of Lemma 5.
Part (a).
By definition and by the Cauchy-Schwarz inequality,

sup |BnTR1nT (C, CO)'
c€Cile—col <y

sup
c€C:le—col <y

< 2| BurMur (o) ”W

1 n
E ; riT (Cv CO)

By Lemma 4 and Assumption 7, 2 || By M1 (co)] ”W” = O, (1) . Thus, to complete the

proof, it is enough to show that Sup.cc.|c—cy|<+ ., |30 rar (e, co)|| = op (1) . Notice by
definition and the triangle inequality that

l ZHT (C, CO)

n <
=1

sup
c€C:le—col|<v,r

1 n
< sup — (dmiT (¢) — dmyr (co))
n 1 n
< . — . —_ Q.
< igg - Zl dmyp (¢) — Qidm () - ; (dmyr (co) — Qidm (co)) ”

sup |[dm (c) — dm (co)|| - (50)

c€Cile—col <y

1 n

Then, the first and the second terms in (50) are o, (1) by Lemma 3 and the last term
in (50) is also o, (1) because dm (c) is continuous in ¢ and £ 37"  €); has a finite limit.
Therefore Sup.cc.|c—co|<v,., |2 >0 rir (e,co)|| = 0p (1), as required.
Part (b).

The proof of Part (b) is similar to that of Part (a) and is omitted. B

Proof of Theorem 2.

The proof is similar to the proof of Theorem 1 of Andrews (1999). Define &,y =
BnT (é — Co) . Then,

op (1)

IN

Big (Znr (c0) = Zn (2))
- 7HHTI%721/T + QHTLT (BnTSnT) /%nT
—fnr BurRint (6, c0) — Ry Rant (€, c0) ©
>From Lemmas 3 and 4 and Assumption 7, we have H,r, H, 7 = O, (1) and positive
with probability one and B,7S,7 = O, (1) . Also, by Lemma 5, B,rRint (¢, ¢o) = 0p (1)
and Ront (&,¢9) = 0p (1) . Then,

0p (1) < = [Rr|* +20, (1) [z + |Rur| 0p (1) + [z | 0, (1),
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which is rearranged as
|z [* <20, (1) Rz | + 0p (1)
Then, the required result
Rnr = Op (1)
follows by relation (7.4) in Andrews (1999), page 1377. B

Proof of Theorem 3.
To complete the proof, it is enough to show (a) B,r (é — co) = Bur (64 — co) + 0p (1)

and (b) Bur (& — co) = Anr + 0, (1)
Part (a). Recall that BHTislT = Op (1) by Lemmas 3 and 4 and Assumption 7. Then,

it follows by the definition of By (éq — ¢o) that

BnTSnT 2 BnTSnT 2
< = 1
HnT > _< HnT > Op( )’
BnTSnT

Byt (g — co) = THT +0p (1) =0, (1).

So, we find that ¢, is also B,r ( = \/n) — consistent. Then, by definition, we have
op(1) < BigZur (&) — BarZnr (¢)

A BurSar\ A BurSar\”
= (BnT (Cq — C()) — HT7TT> - (BnT (C - C()) - HT7TT> + Op (1)

(BnT (Eq — o) —

which leads to

< op(1),
where the o, (1) in the second line holds because Byr (¢4 — ¢o), Bnr (6 —co) = Op (1).

So,
. BurSur\” ) BurSur\?
<BnT(cq_co)_#> _<BnT(C_CO)_#>

i o —o0,(1). (51

Now, for given § > 0, set ¢ = 6. Then, since B, (éq — co) achieves the minimum of the

2
quadratic function f (A) = ()\ — BHTi'iT> on the closed interval {\ : B, (€ —¢p) <A< —Bpreg},
it follows that |By,r (¢ — co) — By (& — co)| > ¢ implies

. BurSnr\” . BnrSnr \?
(BHT(CQCO)#> _ (BHT(CCO)#>

> €.
HnT HnT

Therefore

P{‘BnT (é* Co) — BnT (éq — Co)‘ > 6}

. BurSur\? . BurSar\
< P{ (BnT (Cq —co) — HT—TT> - (BnT (¢ —co) — HT—TT>
— 0,

>€}

where the last convergence holds by (51), and we have completed the proof of Part (a).
Part (b). First we consider the case ¢y € Cy/ {0} . For any ¢ > 0,

>5}

<BnT(§—00)}+P{

P{‘BHT (&= co) = Anr

BnTSnT
pl=—-
{ HnT

BnTSnT

<
HnT

> _BnTCO} .
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Since Eﬁu = 0, (1), for given ¢ > 0, we can choose K and (ng, Tp) such that

P { ‘ BnTSnT

HnT

>K}<5foralln2n0andT2T0.

co—C Co

2 2
Choose nqy = max {( K ) , (5) ,no} . Then, whenever n > n; and T > Tj,

BhrSy, B,rS,
P —ndond < Bpr (Q — Co) + P =l St > —B,rco
HnT HnT

and therefore,

P {)BnT (& — o) — Aot

>6} < 2e,

as required. W

7.4 Appendix D: Proofs of Section 5

Proof of Lemma 6
Part (a).

Part (a) holds by Lemma 4 with ¢y = 0 and by considering the marginal limiting
distribution distribution of \/nMi,7 (0). B
Part (b).

The proof of Part (b) is similar to the proof of Lemma 4, and we give only a sketch of
the proof. By definition and by Assumption 6,

1 <& 2 1 & (t—s—1)\-
EZ Yy t—QiﬁZ T th(t,S)
t=1

= \i,—1

VndMy,r (0) = —% ; +op (1),

because of Assumption 6. Using the BN-decomposition of ¢;;, we can decompose

1 <& 1 G [t—s5—1)-
— — 0= ) har (4
T2 ; (yi:_1> T2 ; < T ) 17 ()

= QiQeir + Rir,

2

t

t .
where x3 =Y ., Uis With z,0 =0,

T T
1 1 ~
Qeir = 73 > - T3 3> @i awis 1l (t,9)

Ti::iz (@) e (4,9),

and R;r is the remainder term. The specific forms of Ry;7 can be found in the proof of
Lemma 9 in Moon and Phillips (1999b). Then, by modifying the proof of Lemma 9 in
Moon and Phillips (1999b) with the results in Appendix B2, it is possible to show that

n

%ZRUT_OP( f) =0, (1),

43



since # — 0. Also, it is not difficult to prove that Var (Qeir) — ggg as (n,T) — oo for

all i. Therefore, Part (b) holds. B
Part (c).
Notice that

Vi (M7 (0) = — (% ZQ) d?wi7 (0)
1 e [(t—s—1\%:
(ﬁ Z (T) hyr (t75)> :

From

sup  sup
t—1
IStsT 2 <r<

I
I
O
~—
—
S~—
¥
=
Y
=
=
B
=.
o+
@
&

we have
T t—1 2 1 r
1 t—s—1\"~ 9 = 1
ﬁé%(T) th(t,s)—>/0 /0 (r — 5)* B (r,5) dsdr + 0 (1).

Also, a direct calculation shows that

/Ol/or(rs)gﬁ(r,s)dsdr—o.

. oy 1 A
Therefore, since it is assumed that 7 — 0 and - S Qi —p Q,

\/ﬁ (dlenT (0)) —>p 0,

which is required. B
Part (d).
By definition,

&P Mypr(c) = — (% i91> dPwrr ()
_ (%ZQ) (% SO el (%) hur (t, s>).

Notice that d®Mjy,,r (c) is continuous on the compact parameter set. Since

= 33 (=) (%)3 har (t,5)

t=2 s=1

1 r
—  d*My(c,0) = / / =) (r — ) h (r, s) dsdr
0o Jo

and %Z?:l QZ —p Q,
d3Myr (¢) —, Qd®M;(c,0)

uniformly in ¢ € C, and we have the required result. B

Before we prove Lemma 7, we introduce the following lemma which is helpful in de-

riving the asymptotics of £ S0 A ST (23— ¢2).
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Lemma 11 Suppose that assumptions in Lemmas 6 and 7 hold. Then, as (n,T — o0)
with 7 — 0,

VAT (5% — o) = 0,(1),
where pTt is defined in (16).

Proof of Lemma 11
By definition,

1
n / T
- (Ln Z <% Z S (yi,1>t — A~ Qe (0)>) +0, (1),

where the o, (1) order holds because ﬁ S (]\Z — Ai) : ﬁ S (QZ — QZ> =0, (1),

and
1 n 1 T 2
t=1

i=1 Niy_l t

Using Lemma 9(a) and (c), it is possible to show that

T 2
1 0
" 2 :T2 (y, 1> —p o (0) = IR (52)
= i—1/¢

as (n,T — o0) . Next, notice that as (n,T — oo) with % — 0,

1 1 &
_ Z <T g' <Z~/ > — AZ — inlT (0))
n — it \"i-1/4
1 (1
= —F Z <— EitYit—1 — Ai)
n 4 T
t=1
1 (1 T -
= Z T2 Z Z citlYis—1har (t,s) + Qw17 (0)

!

t=1 s=1

-~ Z Qi (Quint — Q2int) +0p (1), (53)

where the last equality holds by (48) and (49) with ¢g = 0 and p = 1, and Q7 and
Q2inT are the same in (44) . In view of the proof of Lemma 10, the following holds

2
. 1 ¢
hIE,STup E (% ; Qi (Quint — szT)) < o0. (54)
Therefore, from (52), (53), and (54) the desired result follows. B

Proof of Lemma 7
Part (a).
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By definition, we can write

Il
N =
7N
S|
Nl
N = )
i \
o
:‘_t\')
|
Q
i‘ll\?
N—
~ T

Noticing that

1 « 1, oy 1
T ;yit—lgit A= T (yiT - Z/io) T or

.
Il
=

T T
1 t—1 T—1yir 1
—_— Ei = —_— if
\/T; T T TT UT T\/T;ytl
and
1 « Yir  Yio
= Eit — - s
TZ VT VT

the other terms in (55) equal
n T
111 s
S ONINCEED
i=1" t=1

Putting (56) and (57) together, we have

vnMapr (0)
1 &K1& 1
= amlTX )
=1 t=1
1 Sl s
= ﬂZfZ(% ex) +op (1)
=1 t=1

) oo

D

)

(55)



we write

[\
|H
3
NgE
N
B
—
o>
SN
\
o,
~
SN—
I
=

where the third line holds because —= 3" | &'y | 5" ¥y = 0,(1) and
i1

,—1 7,—1
VvaT (p** = py) = O, (1) by Lemma 11.
Notice by definition that

1< < , > /‘( SE )
] Z §§ —E&;&; Z 5zt513h1T t S )
2vnT = \"i%i (i e |

and using Lemma 9(d), it is possible to show that 2 3" | 1 Zt 1 ZS 1 eucishir(t,s) =
O, (1) . So, since # — 0,

and

and we have desired result. l

Next, we sketch proofs for Parts (b) — (d). The details of the proofs for Part (b),
(c), and (d) are similar to those of Part (b) of Lemma 6, Part (a) above, and Lemma 2,
respectively, and we omit the details.

Part (b).

Taking the first derivative of May,7 (¢) with respect to the parameter ¢, considering

Assumption 6, and rearranging terms using the relations

T
1 t Yir Yio — YiT
— i+ = it—1+ = 58
TZT“ JT T\/ Zy“ < VT > (58)
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and

it is possible to find that

1 T 2 ! T -1
—77 D 1 Vi1 T UT D i T

1 n - T - T 1\ 2
Vi (@) = <=3 || 2% (wr i e )~ 200 T ()
=1

2
1 T 1
-3 (y_T) + 50’5
+0, <,/%> +o,(1).

Using the BN decomposition of y;_1 and the results in Appendix B2 with ¢g = 0, it is
possible to show that

\/ﬁdl\/[}nT (C)

1 T 2 1 T t—1
— 77 21 Tit1 T T D1 T

1 " T T _ T _1\2
= % Z QZ +2# (T\I/T Zt=1 %xit7; o 2% Zt=1 (%) + Op <1 / %) + Op (1)
i=1 —lfzw) 41
3\ VT 3
1 n
= 7 ZQ?iT+Op(1)7
=1

where x;; = xj_1 + uj; with x;0 = 0. Then, direct calculations show that EQ;7 = 0 and
Var (Qrir) — 4=. Therefore
\/ﬁdMQnT (C) = OP (1) )

as required. W
Part (c) and Part (d).

The proof of Part (c) is similar to that of Part (b). Taking the second order derivative
of My, 7 (c) with respect to the parameter ¢, considering Assumption 6, and rearranging
terms using the relations of (58) and (59), it is possible to show that

Vnd? Mot (c) = O, <\/§> =0, (1).

The proof of Part (d) is similar to the proof of Lemma 2. After taking the third order
derivative of Ma,r (¢) with respect to ¢ and using the results in Lemma 9, it is possible
to show the required result. B

Proof of Theorem 4
Define &, 7 = n!/6¢. First, we consider the case where {|#,7| > 1}. By the definition
of the GMM estimator, we have

op (1) < 1 (Znr (0) = Znr (¢))

- 26: (nﬂ—’“/ﬁ')Ak,nT) jE 6 Rk (n<1—k/6>Nk,nT (@, 0)) .
k=1

k=3

In view of (17) — (24) and from Assumption 7, &, satisfies

Op (1)< - |’%nT|6+"%nT‘5 Op (1)+|’%HT|4OP (1)+20p (1) |’A€TLT|3‘|'|’%HT|2 Op (1) +|&nr| Op (1).

60)
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Since, |Rpr| > 1,

The right hand side of (60)
< = [Rar|® (L4 0p (1)) + 20, (1) [Rnr |

Then,
|nr|® < 20, (1) [Anr|” + 0p (1).

Following by relation (7.4) in Andrews (1999), page 1377, we can deduce that
|’%nT|3 <Op(1)+o,(1).

Therefore, when {|i, 1| > 1},

] < 0y (1), (61)
Finally, let the O, (1) random variable in (61) be &,,;. Then,
fnr| = |Rnr[1{|Anr] <1} + |Rar 1{|Rnr| > 1}
< "%nT|1{"%nT| §1}+§nT
< 1+4&6r=0,(1). W

Proof of Theorem 5
The proof of the theorem is similar to that of Theorem 3 and is omitted. B

7.5 Appendix F: Numerical Validation of the Identigcation Con-
dition of m(c)’

In this section we provide a numerical validation that the uniform limit of the moment
conditions, m (c) = (my (c),ma2 (c))" has a root only at the true parameter ¢ = cg. We
restrict the parameter set to C = [ — 10, 0]. The choice of the lower limit ¢ = —10 is made
for computational convenience, and the results hold for all finite values of ¢ < 0. All
the numerical analysis in this section is done with Mathematica and with Maple using
Scientific Workplace Version 3.0.

7.5.1 When g;; =t

The procedure we apply is to find all the roots of ms (¢) and verify whether these roots
are also the roots of m; (c) . We first notice that for given ¢g, the function ms (c) is simply
the ratio of two polynomials - the denominator and the numerator of ms (c) , say mas (c)
and myg (¢), respectively, are a fourth degree polynomial and a fifth degree polynomial
in ¢, respectively.

Case A: When ¢y #0

Step 1: Numerical Calculation of the roots of ms (c).

By a direct calculation, we find that the denominator of mg (¢), mgz (¢), equals to

4cf (2 —3c+ 3)2 when ¢y # 0. Since ¢ —3c+3 = (c— %)2 + 2 > 0, the denominator
of mg (c) has no real roots for all ¢y # 0. Thus, if we concerned with the roots of ms (c) ,
it suffices to consider only the numerator of mq (¢), my2 (¢) . By definition of ms (c), we
find that the true value ¢ = ¢ is always a root of m,z (¢). Also, by inspection, we find

that ¢ = 0 is always a root of m,,2 (¢) . Thus, we can write

M2 (¢) = c(c — cg) Mn2 (c) ,

"We are in debt to John Owens for the numerical analysis in this section.
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where My (¢) is a third degree polynomial. Using Mathematica, we solve the third degree
polynomial 7,2 (¢) and find three roots of Mmy,2 (¢) as a function of the true parameter cg.
For the numerical calculation we choose ¢ = —10, and so we assume that the parameter
set C =[—10,0]. The Figures A.1 and A.2 plot the graphs of these roots on C only when
the roots are real numbers. As we see through the graphs, for ¢y < 0, the roots of 1y (¢)
are all positive, and so 7,2 (¢) does not have a root in the parameter set C.

Step 2: Plug the bad root ¢ =0 of mg (¢) to my (¢)

We now investigate, for given ¢y € C/{0}, whether my (¢) = 0 when ¢ = 0. By
matching the given true parameter ¢y with my (0), we can define the function m; 0 (co)
of ¢g. Using Maple, we calculate

mi 0(c ):L —c3 4 48¢e° — 8eCc? — 8¢ — 24
1% 4ct | +cBe?e — 8e?¢c? 4 24ce?c — 24€%¢ — 24c )7
and plot the graph of m;_0(cp) . Figure A.3 plots my 0 (cg) on the range of ¢y € [—10,0.4]
and Figure A 4 plots the same function on the range of ¢y € [0.4,0] . Through these graphs,
we can verify that m; 0 (cp) is positive but very close to zero when the true value ¢q is
close to zero.

001 1.2e-02
1e-05
0.008
8e-06
0.006
6e-06
0.004
4e-06
0.002 2606
-10 -8 -6 -4 -2 0 -0.4 0.3 -0.2 -0.1 0
C C
Figure A.3 Graph of my_0(cp) Figure A.4 Graph of my_0(co)

To investigate further the behavior of m; 0(cg) around ¢y = 0, in Figure A.5 we plot
the graphs of the first derivatives of numerator of m; 0 (co) on the range c¢g € [—0.05,0] .

-0,05 -0,04 -0,03 -0,02 -0,01

Figure A.5. Graph of the first derivative of the Numerator of m; 0(co)

The graph shows that the first derivative of the numerator of m; 0(co) is nega-
tive around zero, and so my_0(cg) is strictly decreasing. Therefore, we conclude that
m1_0(cg) is not zero for all ¢ € Co.

Case B: When ¢y = 0.

Using Maple, we calculate mg (¢) when ¢p = 0, and plot the graph in Figures A.6 and
A.7. From these figures, it is apparent that ms (¢) = 0 only when ¢ = ¢ = 0.
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Figure A.6 Graph of mo (c) when c¢g =0 Figure A.7 Graph of ms (¢) when ¢g =0

7.5.2 When gy = (t,tz)

Although the expressions involved in mg (¢) in this case are far more complex, the analysis
is simpler. Like the case of gy; = t, we find that the denominator of mgy (c) does not
change sign over C = [—10,0], and so we focus on the numerator of msy (c). Similar to
the case of g1; = t, we numerically calculate the real roots of the numerator of ms (¢) for
cop € C =[-10,0], and we find that there exists only one root in the range of ¢y, which
implies that mg (¢) = 0 only at the true c¢y. Therefore, when gy = (t,tz) , the limit of
moment condition m (c) identifies the true parameter ¢y in C.
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Figure A.2. Graph of Roots of M,z (c)
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