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Cartoons of the variation of financial prices and of
Brownian motions in multifractal time

Benoit B. Mandelbrot *Yale University

+ Abstract. This article describes a versatile family of functions increas-
ingly roughened by successive interpolations. They provide models of the
variation of financial prices. More importantly, they are helpful
“cartoons” of Brownian motions in multifractal time, BMMT, which are
better models described in the next article. Ordinary Brownian motion
and two models the author proposed in the 1960s correspond to special
cartoons. More general cartoons are richer in structure but (by choice)
remain parsimonious and easily computed. Their outputs reproduce the
main features of financial prices: continually varying volatility, disconti-
nuity or concentration, and other events far outside the mildly behaving
Brownian “norm.” +

I. Introduction

A. The Challenge of Modeling the Financial Price Records.

Financial prices, such as those of securities, commodities, foreign
exchange or interest rates, are largely unpredictable but one can evaluate
the odds for or against some desired or feared outcomes, the most extreme
being “ruin.” Those odds are essential to the scientist who seeks to under-
stand the financial markets and other aspects of the economy. They must
also be used as inputs for decisions concerning economic policy or institu-
tional arrangements. To handle all those issues, the first step - but far
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from the last! — is to represent different prices' variation by suitable
random processes.

This article and the next contribute in diverse ways to the
“multifractal” approach to finance put forward in Mandelbrot (1997), espe-
cially in Chapter 6. The theme must be stated cautiously because not all
prices have been investigated. This being granted, the variation in time of
a variety of financial prices is well accounted for by choosing suitably
within an altogether new random processes called “Brownian motions
(Wiener or fractional) in multifractal time.” Those processes will be
referred to as BMMT and the Brownian motions in the ordinary clock time
will be WBM and FBM, respectively.

The key terms, “fractional” and “multifractal,” are nonclassical but do
not belong to esoteric mathematics, and their practical consequences for
finance and economic policy are numerous and important. Those terms,
and “fractal” itself, will be explained. To bring this article and the next
closer to being self-contained, both incorporate substantial background
material, improved over the exposition in Mandelbrot (1997).

This paper's ambition is to present original material and results and
help understanding while holding mathematics to a minimum. The
underlying conceptual ideas will be motivated, explained in detail and
illustrated graphically. An extensive mathematical basis already exists for
multifractals, for example, in Mandelbrot (1999). However, for intrinsic
reasons made more serious by raw novelty, BMMT is delicate and hard to
grasp fully. But the fear that fractals/multifractals are far removed from
clumsy and confused reality would be unwarranted because their math-
ematics strikes close to the main features of the underlying phenomena.

It is true that, without mastering the formulas and diagrams, the
claims and contributions concerning multifractals cannot be fully under-
stood and appreciated. It is also true that much of the underlying math-
ematics, without being at all difficult, is not widely familiar. However, in
order to make the central point of this text, the best procedure is to draw
pictures. To be sure, in many cases pictures lie as effectively as words,
statistics and opaque formulas. But in the present case, the message is
crystal clear, as the reader will see.

B. Legitimate a Priori Reservations Against Fractals/Multifractals in Finance.

Fractals (Mandelbrot 1982) are endlessly repeated geometric figures.
They are best known for describing the shapes of coastlines and clouds
and the distribution of galaxies, and on a more abstract level for having
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led to the Mandelbrot set. As an extension of fractals, I introduced
multifractals in papers on turbulence from the early 1970s. These are
reproduced and discussed in Mandelbrot (1999). Because of those origins,
the notion that related thoughts also describe financial prices may seem
driven by mere imitation, therefore unpromising. In fact, the historical
sequence went the other way, the build up towards fractal geometry
having begun in my work in finance. But history does not matter here,
only the fact that fractals and multifractals will not become accepted until
several conditions have been met.

Good and parsimonious fit to the evidence is the ultimate condition.
But diverse a priori reservations must be acknowledged. Therefore, this
paper's first task will be to try and create a certain level of a priori good-
will or receptivity, or at least to preempt certain common objections. This
will take some time and the “working part” of this paper will not begin
until Section VI.

A preliminary obstacle to good will is that coin-tossing and some sta-
tistical distributions, such as the Gaussian and Poisson lognormal, are
near-unanimously viewed as “natural” and “normal.” Therefore, new
uses are often “waved by” and used without fresh justifying argument. In
sharp contrast, fractals/multifractals are largely unfamiliar to economic
statisticians, consequently viewed as “artificial” or “contrived” and in need
of a higher level of justification. Besides, they are inconvenient insofar as
they fail to involve a large family of explicit analytic expressions that have
many parameters and hence can be bent for many purposes. That is, they
do not fall into the Carl Pearson pattern made familiar and accepted a
century ago.

Precisely contrary views are defended in this paper. Firstly, it argues
that in finance the Gaussian is, in fact, not “normal” at all. As recalled in
Section II, departures from the Gaussian fill the newspaper headlines. The
usual reaction was to call them “outliers,” namely, “exceptions that
confirm the rule” and do not deny the primacy of the Gaussian as the
“norm.” 1 challenged that reaction forty years ago and advanced substi-
tute new “rules,” now improved upon using multifractals.

Secondly, this paper argues that notwithstanding their acknowledged
negatives, fractals/multifractals are absolutely compelling and near-
unavoidable in finance among many other fields. The main fact is that
fractal/ multifractal techniques are by no means specific to the fields where
they arose. To the contrary, they are the long-sought tool to tackle two
universal concerns.
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Roughness will be faced in Section II and Sections IV and V will be
concerned with hierarchies. As to Sections VI to X, they hope to prepare
thé reader for multifractals, in particular to study BMMT in the next
paper, by describing a rich family of easier-to-handle processes one can
view as approximants or “cartoons” of BMMT.

C. The Usefulness of Simple Cartoons.

Given the cartoons' importance, it is useful to sketch their role without
delay. The most widely used price variation model originated with
Bachelier in 1900 and will be described in Section HA. It is WBM, the
“ordinary” Wiener Brownian motion in continuous clock time. That
process is very familiar, yet exhibits very serious complications and
remains best understood when studied in parallel with the discrete coin-
tossing and random walk. These processes can be viewed as cartoons of
the increments of WBM and WBM itself.

The random walk has no direct counterpart in the case of BMMT but
splendid cartoons in a very different style were developed and sketched in
Mandelbrot (1997). They are limits of discrete-parameter sequences of suc-
cessive interpolations drawn on a continually refined temporal grid. This
paper illustrates the power those interpolative cartoons preserve even
when restricted to a very special family.

By design, this family is as simple as can reasonably be expected. As
will be recalled, reality combines very long-tailed marginal distributions
and long dependence, and one can expect the representation of each of
those features to require at least one parameter. Indeed, the cartoons to be
investigated involve only two parameters, which can be chosen to be the
coordinates of a point in a square map called “phase diagram.” Also by
design, our family of cartoons is not simple to excess. Indeed we shall
single out special behaviors associated with suitable special regions or
“loci” in that square phase diagram and show that those loci yield car-
toons of three existing models and thereby throw fresh light on those
models' nature. Therefore, this article fulfills a third role, that of relating
BMMT to a segment of the literature.

A single extremely special cartoon in this family, described as
“Fickian,” is a deep but non-destructive simplification of the “coin-
tossing” model of financial prices, therefore of the Bachelier and Wiener
form of Brownian motion.

Two less narrowly constrained special cartoons are, again, deep but
non-destructive simplifications of my two early models of price variation.
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One, first proposed in Mandelbrot (1963), used Lévy stable random proc-
esses to tackle long-tailedness; it is discussed in the second half of
Mandelbrot (1997). The other, first sketched in Mandelbrot (1965), intro-
duced fractional Brownian motions to tackle global memory, also called
infinite memory or dependence; it is discussed in many papers collected
in Mandelbrot (2000), which devotes a chapter to finance. Within the
current wider conceptual framework, those early models are classified as
“mesofractal” and “unifractal,” respectively. Once again, multifractality
was introduced into finance in the first half of Mandelbrot (1997) and is
being developed in this paper and the next. This article also. hopes to
make plain the relations between all those different old and new “flavors”
of fractality.

IL. Large Financial Price Movements and Their High Odds;
“Normality ” of Coin-Tossing, Compared to the Reality

A. The Brownian Motion as “Universal” Model or the Variation of Every Kind of
Financial Price.

Reliance on illustrations has many advantages and in this instance pre-
sents none of the usual risks, since every statement can be buttressed by
full mathematical developments, including those reported in the next
paper. By design, Figures 1 and 2 mix in identical styles some actual and
some model price series. The actual series may concern security, com-
modity, foreign exchange or interest rate prices. The model series are old
or new. For the actual prices, the abscissa is time and the ordinate is
either a price P(t) - as in Figure 1, or its increment AP(t) = P(t) — P(t - 1) -
as in Figure 2.

Present in both figures is Bachelier's WBM B(t) and the sequence of its
increments, called “white Gaussian noise” B(t) is the continuous-time
version of the “coin-tossing model” which assumes that all financial price
continually moves either up a bit or down a bit following the toss of a
coin.

It was soon observed that plain coin-tossing would eventually lead to
negative prices. This is avoided and the overall logic is improved by
assuming that, instead of the prices, the coin-tossing process rules the log-
arithm of price. (Observe that records of interest rates followed as func-
tion of time require a different transformation, since a daily interest rate is
itself roughly a difference between two logarithms: that of the reimburse-
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ment tomorrow and that of the loan today.) In this paper, transformations
made to avoid negative values will be disregarded because the compli-
cations they create do not affect the basic points to be made.

WBM is the oldest and by far the easiest model of price variation.
Part of its extreme simplicity follows from the fact that it includes a bold
“assumption of universality.” Rarely stressed as strongly as it should be,
this assumption expresses that, except for one parameter - a scale factor
that measures volatility, all prices follow a single universally valid process.
Invoking roughness, a notion to which we shall return, the assumption is
that all price charts are equally rough.

On the basis of Figure 1, the universality assumption is actually almost
believable, since the intermixed real and forged records look alike. This
impression is confirmed by analogous diagrams in the financial press and
books devoted to the mathematics of finance. The optimist will rush to
conclude that coin-tossing is perfectly acceptable.

B. The Irredeemable Lack of Fit of the Brownian Model.

Unfortunately, the mutual resemblance between the curves in Figure 1
is nothing but an artefact of plotting and completely vanishes in Figure 2.
On that figure, the would-be “universal,” namely white Gaussian noise, is
plotted on line 1 from the top and actual price series mingle among the
bottom five lines.

The white Gaussian noise line is extremely monotonous and reduces
to a static background of small price changes, analogous to the static noise
from a radio. Volatility stays uniform with no sudden jumps. In a histor-
ical record of this kind, daily chapters would vary from one another, but
all the monthly chapters would read very much alike. A look at line 1
makes obvious that coin-tossing and financial reality are in sharp qualita-
tive disagreement.

In other words, important differences are not enhanced on Figure 1,
but instead are hidden. That is, plots of prices themselves are a very mis-
leading way of presenting information. As known to students of the psy-
chology of visual perception, position (Figure 1) is perceived less
accurately than change (Figure 2).

In any event, qualitative impressions must be buttressed
quantitatively. In the Gaussian distribution used to draw line 1 of Figure
2, it is true that 95% of all cases fall into the range between —20 and 20.
However, all the major events that matter fall into the remaining 5%. In
actual data, to the contrary, large fluctuations often exceed 100. Under
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the Gaussian assumption, the corresponding probability is of a few mil-
lionths of a millionth of a millionth of a millionth, that is, approximately
the equivalent of one day out of ten million million million years. Such
exquisitely tiny risks would indeed be truly negligible, not worth even a
passing thought. Unfortunately, this tiny value grossly contradicts the evi-
dence. In the real world of finance, “ten sigma” events are not freakish
but occur on a regular basis. The actual value of their probability should
be expected to be a few thousandths or even hundredths, a substantial
part of the 5% not accounted for in coin-tossing.

Let us continue scanning Figure 2. Lines 2 and 3 also differ from
reality. It will be seen in Sections VIII and IX that they correspond to my
two early models, respectively, the M 1963 mesofractal model involving
infinite variance, and the M 1965 unifractal model involving infinite
dependence.

Lines 4 to 8 in Figure 2 intermix actual prices and models based on
multifractals. The reason for intermixing is to emphasize that those lines
are remarkably alike hence difficult to identify.

All exhibit a constant background of small up and down price move-
ments. Invariably, however, a more striking aspect resides in a substantial
number of sudden large changes. On the chart they appear as spikes that
shoot up and down and stand out from the background of the moderate
perturbations. In addition, their times of occurrence are not independent
of one another but strikingly clustered. Moreover, defining volatility,
generically as the rough order of magnitude of the smallish price move-
ments, it is typical for it to remain roughly constant for a short or
extended period and then - suddenly and unpredictably - change to
assume a different value for another short or extended period.

All those “real-looking” model price changes were obtained using
BMMT, that is, Brownian motion in multifractal time. In BMMT, the very
long tails of the M 1963 model and the infinite dependence are of the M
1965 model harmoniously combined. This, and the next paper, proposes
to explain how this goal is achieved.

C. Financial Hurricanes and the Difference — not in Degree but in Kind — -
Between “Mild” and “Wild” Randomness. The Need for Versatility Among Pro-
posed Substitutes for the Brownian Motion.

An important distinction must now be mentioned, but only in passing.
The coin-tossing model exemplifies a form of randomness (a “state of
randomness”) that Mandelbrot (1997, Chapter E5) proposed to call “mild.”
In physics, mildness characterizes a gas that reached equilibrium after
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FIGURE H1-1. A collection of diagrams, illustrating - in no particular order - the
behavior in time of at least one actual financial price and of at least one math-
ematical model of this behavior. It would be difficult to identify the models.
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FIGURE H1-2. A stack of diagrams, illustrating the successive “daily” differences
in at least one actual financial price and some mathematical models. Obvi-
ously, the top three lines do not report on data but on models; to the contrary,
to identify the models among the lower five lines is difficult.
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sitting for a long time at constant temperature and pressure. The behavior
of turbulent gases is very different, fiot only in degree but in kind, and the
behavior of the atmosphere is characterized by storms and hurricanes. I
think financial prices bear no resemblance to gases in equilibrium. It is
best to view the financial system as being violently turbulent and charac-
terized by financial hurricanes.

Every “flavor” of fractal models, mesofractal, unifractal and multifractal,
as well as the multifractal model of turbulence (see Mandelbrot 1999) are
described in Mandelbrot (1997, Chapter E5) as not mildly, but “wildly”
variable.

D. Alternatives to Brownian Motion. The Contrast Between two General
Approaches to Science: Micro- versus Macromodeling.

Some scientific models are rightly viewed as “micromanaged” and, in
the worst scenario, reduce to eclectic statistical summaries of the data.
Other models are “macromanaged” and properly constructed from a small
number of organizing principles. The terms micro and macro are familiar
in economics but the nuance used in in this paper comes directly from
physics. The study of financial prices appears to be dominated by the
former, except for my work and its (by now, numerous) follow-ups.

A collection of moments is not in itself a model, only a summary of
the data. For random variables, the same is true of a collection of best-
fitted parameters relative to a prescribed combination of a statistical crite-
rion of fit and a family of statistical distributions. A standard example is
the already mentioned Pearson system and a new example is the so-called
“generalized hyperbolic distributions.” For random sequences the same
comment applies to representations in terms of trigonometric functions or
wavelets in terms of ARMA or even in terms of FARIMA, which are
ARMAEs artificially generalized to include global dependence.

Micromanaged approaches typically proceed through a series of
“fixes.” Each fix puts a “patch” on a perceived defect of coin-tossing, inde-
pendently of other defects and the corresponding patches. The number of
parameters rapidly becomes large and no property is present that was not
knowingly incorporated in the construction.

In my mind at least, experience of successful modeling in other fields
has fostered a priori doubts about the prospects of micromanaged mod-
eling in finance. But personal prejudices would not matter if, a posteriori,
the micromanaged modeling had proven effective. I think it has not. This
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may be one reason why it keeps being challenged by a strong extremely
bearish attitude, namely, the claim a priori that large market swings are
individual “acts of God” that could not conceivably present any statistical
regularity.

My own work over many years views a priori bearishness as unwar-
ranted and micromanaged modeling as ineffective. Taking a decidedly
bullish position, 1 have long been arguing that the variation of financial
prices can be accounted for by a model one can call “macromanaged,”
because it is guided globally by a principle of fractal invariance to which
we shall come soon.

I1I. Roughness, an Ill-Defined but Fundamental Issue
in Many Sciences, First Faced and Quantified by Fractals

Many sciences arose directly from the desire to describe and under-
stand some combination of basic messages the brain receives from the
senses. Visual signals led to the notions of bulk and shape and of bright-
ness and color, hence to geometry and optics. The sense of heavy versus
light led to mechanics and the sense of hot versus cold led to the theory of
heat. Other signals (for example, auditory) require no comment. Proper
measures of mass and size go back to prehistory and temperature, a
proper measure of hotness, dates back to Galileo.

Against this background, the sense of smooth versus rough suffered
from a level of neglect that is noteworthy - the more so far being seldom,
if ever, pointed out. Roughness is ubiquitous, always concretely relevant,
and often essential. Yet, not only the theory of heat has no parallel in a
theory of roughness, common, but temperature itself had no parallel
concept until the advent of fractal geometry.

Even in the inanimate objective and non controversial context of metal
fractures, roughness was generally measured by a borrowed expression:
the root mean square, rms, deviation from an interpolating plane. In other
words, the metallurgists and the economists, “volatility” were implicitly
identified with a phenomenon already solved in the textbooks. But
metallurgists viewed this measurement as suspect because different
regions of a presumably homogeneous fracture emerged as being of dif-
ferent “r.m.s. volatility.” The same was the case for different samples that
were carefully prepared and later broken following precisely identical pro-
tocols.
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To the contrary, as shown in Mandelbrot et al (1984) and confirmed by
every later study, fractals have a characteristic called the fractal dimension
D that provides, for a first time, an invariant measure of roughness. The
quantity 3—D is called “codimension” or “Hoélder exponent” by mathe-
maticians and has now come to be called “roughness exponent” by
metallurgists. -

The roles exponents play in fractal geometry will become clear in
Sections V to X. But it is good to sketch it here. The surfaces' inter-
sections by approximating orthogonal planes are formally identical to the
price charts in Figure 1. Had these functions been differentiable, they
could be studied through the derivative defined by
P'(t) =lim, . ¢ (1/&)[P(t + €) - P(t)]. For fractal functions, however, this limit
does not exist. Instead, those functions' local behavior is studied through
the parameters of a relation of the form dP ~ F(t)(dt)®. Here, F(t) is called
“prefactor” and the most important parameter is the exponent

a= lim,_ ,{ log[P(t + £) — P(1)]/ log e}.

This replacement of ratios of infinitesimals by ratios of logarithms of
infinitesimals is an important innovation. It was not directed by trial and
error but by theory. It is not a panacea but a tool that need not fear a
shortage of applications. There is an adage that, when you only own a
hammer, everything begins to look like a nail. This adage does not apply
to roughness, which is an old problem in almost every field, not a new
one marketed to find customers for a tool.

IV. A Paradoxical Contrast: Hierarchical Structure is Widespread
in the Economy and Absent from Coin-Tossing

Ultimately, once again, the replacement of coin-tossing by
fractals/multifractals must be judged by the quality of the fit a new model
provides, as balanced against its parsimony. In parsimonious models, the
parameters are few in numbers and enter intrinsicaly, not via textbook sta-
tistical procedures. Elaborating concretely on the comments in Section III,
this section seeks to create good will towards the new approach. It seeks
to introduce fractals as being a needed broadened implementation and
new application of the well-known, artificial but useful, notion of hierar-
chical structure.
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This way of introducing fractals responds to the paradoxical conflict
that exists in current thinking in economics and finance.

On the one hand, part of the extreme simplicity of coin-tossing is
traceable to its being the most unstructured process of probability theory.
It is the paradigm of the mere juxtaposition of local phenomena, devoid of
any structure. In the basic theorems of probability obeyed by coin-tossing,
the limits are paradigms of absence of structure.

On the other hand, prices strongly illustrate the general observation that
economic variability is non-periodic but cyclic. It is subjected to oscil-
lations on which rides a hierarchy of faster oscillations and which them-
selves ride on slower oscillations. As a matter of fact, almost everything
in society and economics (including industrial organization and business
geography) and finance is filled with all kinds of rich and complex struc-
tures. One kind of structure consists in seasonals, either natural (daily and
yearly) or man-made (weekly and monthly). To accommodate them, both
the Brownian and the multifractal model require adjustments. Seasonals
are very important issues but beyond this paper or the next.

The most extreme and conspicuous structures to be considered are
ordered by the highly visible hands of armies, churches or totalitarian
states. There, everything is governed by a hierarchy (or several juxtaposed
ones) wherein small units interact strongly, increasingly larger units
increasingly less so. A very geometric example that many geographers
endorse is the “central place theory,” in which the perpetuation of a hier-
archy reflects a balance between the costs of purchase and access.
Without the benefit of a central planning office, many small neighborhood
stores coexist with successive layers of increasingly few but increasingly
large stores that cater to increasingly large areas.

In more realistic cases, a hierarchy is only rough rather than extreme
and obvious. Be that as it may, if modeling of price variation had been an
unexplored field, it would have been very hard to credit the price-setting
mechanism of the financial markets as being capable of the following.
They should smother the observed hierarchical structure of society and
economics into the absence of any structure.

Turning the table around, the gross failure of coin-tossing to represent -
the evidence suggests that, when seeking improved models of price vari-
ation, it is best to look among constructions that exhibit a strict or loose
hierarchical structure. These last words are a characterization and almost
a definition of fractals and multifractals, hence a strong reason to believe
that fractals and multifractals enter inevitably in the study of finance. The
remainder of this paper is devoted to elaborating on this belief.
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V. Fractal Structures are Tightly Associated with Hierarchies,
hence Unavoidable in Finance

A. Self-similarity and Fractal Dimension: a “Canonical” Example.

By design, the strongest and most obvious hierarchical structure is
present in several constructions one can call “protofractal,” because they
were discovered before fractal geometry- itself was organized. Many
examples are described in Mandelbrot (1982). Their having a strict hierar-
chical structure unavoidably follows from the fact that they are con-
structed from the top down using recursive interpolation. Later on,
recursive interpolation will be carried out in time instead of space and
yield functions in time that can serve as “cartoons” of financial prices' var-
iability.

The protofractals include the Cantor set and the Koch snowflake
curve, but the best example pedagogically is the “Sierpinski gasket” drawn
in Figure 3 and described in its caption. In the gasket, the “whole” being
the (set-theoretical) “union” of N =3 “parts.” Each part is identical to the
whole except for a linear reduction in the ratio r=1/2 that leaves fixed
one corner of the whole. If the parts are reduced linearly in a smaller
ratio, the remainder, instead of being a connected curve, is a disconnected
dust.

The gasket and its r <1/2 variants exhibit a hierarchic geometrical
structure described as “self-similar.” To the contrary, the hierarchies of
the armies and society are abstract. Therefore, the embedding of the hier-
archy in the plane must not introduce new and irrelevant features. Con-
sider the kth level of the hierarchy. If r <1/3, any two points that lie in
the same triangle at that level are closer to one another than any two
points that lie within distinct triangles at the same level. Therefore, con-
structions with r < 1/3 avoid introducing artificial distance relationships.

Be that as it may, this subsection only seeks to provide a perspicuous
illustration. It does not seek to model society, only prepare for the vari-
ability of prices, which was already described as being hierarchic in a one-
dimensional geometric way along the time axis.

Returning to the Sierpinski gasket, everything about it follows from
the quantities N and r. By analogy with physics, they can be described as
“microscopic.” More complicated recursively constructed fractals involve
more numerous and complicated microscopic characteristics. And when
the gasket and all other recursive structures are replaced by more realistic
non-recursive structures, numerous alternative microscopic characteristics
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enter into contention. Some or all may be needed in certain problems,
both in physics and finance. But for many purposes, the details hardly
matter. The usefulness of fractal geometry can be traced to the fact that it
identified intrinsic characterizations that summarize the microscopic data.
The most important one, and the only one needed in a first-approximation
investigation, is a quantity called “fractal dimension,” which is defined as

D= logN log N* _log3
T log(1/n  log(1/rty  log2

A LG4

~1.5849....

v AR v
Ab L L6 L6664

A AA £ AN A2
A0 06040 8 6 5

FIGURE H1-3. The Sierpinski gasket, an example of “a whole that is more than the
sum of its parts.” The construction is immediately obvious. It begins with a
filled-in equilateral triangle, then divides it into four equal subtriangles and
erases the middle one. The same construction then resumes within each sub-
triangle. In the limit, one is left with a curve that includes an infinite col-
lection of non-filled-in triangles plus their limit points. In terms that will
serve in constructing price change cartoons, the original triangle is an
“initiator,” and the “generator” is made of the three triangles left after the
middle one has been erased.
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This quantity brings in a distinction that is closely related to that
between micro and macromanaged models. Indeed, D is a
fractal/multifractal measurement that is conceptually akin to a basic
“macroscopic” notion in physics, namely temperature. Compared to a
huge list of microscopic details, the macroscopic description is simplified
drastically, but not to the point of becoming useless. In physics, such
macroscopic quantities are well-known to exist and be useful for many
purposes; the novelty is that, through fractals, the same turns out to be
the case in finance. The. strength and value of the fractal measurements
will shine as we proceed to non-strict hierarchies.

B. Strict Hierarchies are Overspecified and Overly Complicated in One Way, and
Grossly Oversimplified in Another. It is Typical of Suitably Chosen Random
Fractals that Hierarchies are Perceived in the Samples but are Absent from the
Generating Mechanism.

For the purpose of modeling empirical evidence of any kind, strict
hierarchies are brutal approximations. They are overcomplicated because
a fully specified construction algorithm may involve a large number of
steps and of parameters. Some inputs are individually important, others
become important in combination. As a result, a major unfilled need is
created. The approximation error inevitable in scientific models cannot be
assessed until the difference between truth and model can be measured
quantitatively. For hierarchies, such measures are not part of standard
statistics, but arise naturally in the theories of fractals and multifractals. In
the case of structures in space, the best known is the (already mentioned)
fractal dimension. For structures that illustrate variation in time, later
notions will show that more than one measurement is needed. Further-
more, as already mentioned, strict hierarchies are grossly oversimplified
because most physical or social hierarchies are at best not strict but loose
and even elusive.

In any event, fractals go well beyond Sierpinski-like endlessly repeated
geometrical figures. In fact, all random fractals of direct usefulness in
modeling reality are defined by procedures other than recursive interpo-
lation. For example, the BMMT process is constructed in the next paper
without resorting to recursion. This feature follows upon the fact that
fractional Brownian motion FBM is fully defined as being a Gaussian
process that satisfies a few requirements that look very unspecific and
bear absolutely no hint of strict hierarchy.



RES2000 ¢ ¢ CARTOONS OF BMMT 17

Naturally enough, no strict hierarchy is present in the outputs of FBM.
However, Mandelbrot (1982) made the striking observation that the gener-
ating rule and the generated samples differ in a very significant and unex-
pected way. When presented with samples of non-hierarchical fractal
processes, humans universally and spontaneously interpret them as
involving a loese but widely agreed-upon hierarchy.

The prime example follows from the fact that Brownian coastlines are
the source of many well-known fractal models, including the earliest
fractal models of Earth's relief (again, see Mandelbrot 1982). Strikingly,
Brownian coastlines are invariably perceived as filled with big bays and
promontories on which “ride” smaller bays and promontories, and so on
until scales become so small as to lack geographical significance.

A fact that is connected to the preceding observation (but in a rather
complicated way) may be remembered by older students of economic sta-
tistics. Long ago, Slutzky observed that the curve obtained by adding
gains and losses from coin-tossing seems to be decomposable into a hier-
archy of cycles. The curve in question is essentially a Brownian motion
and happens to be a fractal curve - an atypical one which no one has in
mind when talking of fractal models! Those “Slutzky cycles” are total
artefacts with no explanatory or predictive value whatsoever. I think it
helpful to mention them here, but they must not be misconstrued: I agree
with the general view that the cycles or economic hierarchies discussed in
Section III are not artefacts but real.

C. Hierarchy versus Fractality: Last Comments.

It becomes clear now that, compared to simple hierarchy, fractality is a
richer notion, enormously less constrained, hence amenable to far more
flexible modeling.

The next important point is the following asset of fractal measure-
ments like the dimension. They were introduced for the needs of strictly
hierarchical structures, but their scope of validity is much broader and
extends to all fractal structures. In particular, they make it possible to
carry out numerical comparisons between real data, that are loosely but
not strictly hierarchical, and fractal models whose samples are not really
hierarchical but are perceived as such by all observers.

D. “Half-time” Summary.
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The ambition of Sections IIl to V was to help sway the economists'
opinion, from viewing fractals/multifractals as strange, to viewing them as
plausible candidates for close examination and comparison with financial
reality. In swaying this opinion from plausible to unavoidable, help is
provided by the financial cartoons to which we now proceed.

V1. Example of a Cartoon Function of Time Constructed
by Recursive Interpolation

A. From Hierarchies in Space to Hierarchies in Time and From Self-Similarity to
Self-Affinity. A View of Scientific Research as a Search for Invariants.

Neglecting both seasonals and other constraints, trading must be
viewed as proceeding in continuous time. To price options, if that is the
goal, the probability distribution of the price change P(t + 6) — P(t) must be
known for all values of 6. It does not help if a model is simple for some
value of 6 - for example, 6= 1 day - but completely unwieldy for all other
values. Such is often the case but a model cannot be called “simple”
unless it is simple for all relevant values of 6. This is automatically the
case for fractals.

Let us restate the characterization of fractals as geometric shapes that
separate into parts, each of which is a reduced-scale version of the whole.
As applied to finance, this concept is not a rootless abstraction but a the-
oretical reformulation of a down-to-earth bit of market folklore. Indeed, it
is widely asserted that the charts of the price of a stock or currency all
look alike when a market chart is enlarged or reduced so that it fits some
prescribed time and price scales. This implies that an observer cannot tell
which data concern prices change from week to week, day to day, or hour
to hour. This property defines the charts as fractal curves and many pow-
erful tools of mathematical and computer analysis become available.

The technical term for this form of close resemblance between the
parts and -the whole is self-affinity. This concept is related to the better-
known property of self-similarity, which Section VA described as character-
istic of the Sierpinski gasket. However, like all records of functions,
financial market charts cannot be self-similar. If we simply focus on a
detail of a graph, the features become increasingly higher than they are
wide - as are the individual up-and-down price ticks of a stock. Hence,
the shrinkage ratio from the whole to the parts must be larger along the
time scale (the horizontal axis) than along the price scale (the vertical axis).
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This is the kind of reduction performed by copiers using lasers. The
geometric relation of the whole to its parts is said to be one of self-affinity.

Unchanging properties are not given much weight by most economists
and statisticians. But they are beloved of physicists and mathematicians
like myself, who call them invariances and are happiest with models that
present an attractive invariance property. A good idea of what I mean is
provided by a simple chart that uses recursion to insert (interpolate) price
changes from time 0 to a later time 1 in successive steps. The intervals
themselves can be interpreted at will; they may represent a second, an
hour, a day or a year.

B. The Process of Recursion in an Increasingly Refined Grid.

We begin with price variation reduced to a “trend,” that is, repres-
ented by a straight line called the “initiator,” as shown in the top panel of
Figure 4. Next, a broken line called the “generator” replaces the trend-
initiator with a relatively slow up-down-and-up price oscillation. In the
next stage, each of the generator's three pieces is interpolated by three
shorter ones. One must squeeze the horizontal axis (time scale) and the
vertical axis (price scale) to fit the horizontal and vertical boundaries of
each piece of the generator. Repeating these steps reproduces the gener-
ator at increasingly compressed scales.

Only four construction stages are shown in Figure 4, but the same
process continues. In theory, it has no end, but in practice, it makes no
sense to interpolate down to time intervals shorter than those between
trading transactions, which may be of the order of a minute. Each piece
ends up with a shape like the whole, expressing scale invariance that is
present simply because it was built in.

C. The Novelty and Surprising Creative Power of Simple Forms of Recursion.

The resulting very simply defined self-affine fractal curves can exhibit
a wealth of structure. This finding exemplifies one of the most compelling
features of fractal geometry. For this feature to be present and surprising, -
it is essential for the number and exact positions of the pieces of the gener-
ator to be completely specified and kept fixed. But those assumed micro-
scopic properties do not amount to micromanaged representations in
which everything of interest must be inputed separately. To the contrary,
all that matters is some macromanaged features of the instructions.
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Yet, as already mentioned, the construction's outcome, if plotted as in
Figure 2, may be extremely sensitive to the exact shape of the generator.
Indeed, Sections VII to X will show that generators that might seem close
to one another may generate qualitatively distinct “price” behaviors. It will
be necessary to construct a phase diagram in which different parts or
“loci” lead to different behaviors. Being sensitive, the construction is also
very versatile: it is general enough to range from the coin-tossing model's
“mildness” to the “wild” and tumultuous real markets - and even beyond.

If, to the contrary, the generator fails to be exactly specified or if
(worse!) one allows oneself the right to fiddle with the generator during
the construction, no prediction could be made.

An analogous construction with a two-piece generator could serve
diverse purposes but could not simulate a price that moves up and down.
When the generator consists of many more than three pieces, it involves
many parameters and creates the impression of micromanagement. Even
if no accusation is made, the surprise provoked by the versatility of the
procedure is psychologically dampened.

D. Randomly Shuffled Grid-bound Cartoons.

The recursion described in the preceding sections is called “grid-
bound,” because each recursion stage divides a time interval into three.
This fixed pattern was chosen for its unbeatable simplicity and is clearly
not part of the economic reality. Unfortunately, it remains visible even
after many iterations, especially when the generator is symmetric, as in
this paper. This artificiality is the main reason for referring to the
resulting constructions as “cartoons.” To achieve a higher level of realism,
the next easiest step is to inject randomness. This is best done in two
stages.

The first stage consists in randomizing the grids by shuffling the
sequence of the generator's intervals before each use. Altogether, the fact
that there are three intervals allow the following six permutations:

1,2,3; 1,3,2; 21,3; 2,3,1; 3,1,2 and 3,2,1.

Conveniently, a die has six sides; imagine that each bears the image of one
of the six permutations. Before each interpolation, the die is thrown and
the permutation that comes up is selected. When the generator is sym-
metric, there are only three distinct permutations and their effect is lesser.
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INITIATOR AND GENERATOR
INITIATOR

2/3 =

GENERATOR
PART 1 PART 2 PART 3 3 -

TREND LINE 4{9 5/[9

GENERATOR INTERPOLATED ONCE

GENERATOR INTERPOLATED TWICE

GENERATOR INTERPOLATED THRICE

FIGURE H1-4. Constructing a “Fickian cartoon” of the idealized coin-tossing
model that underlies modern portfolio theory. The construction starts with a
linear trend (“the initiator”) and breaks it repeatedly by following a prescribed
“generator.” The interpolated generator is inverted for each descending piece.
In terms of Figure 1, the pattern that emerges increasingly resembles market
price oscillation. However, this resemblance is misleading. The record of the
increments of this pattern is thoroughly unrealistic because it is close to the
top line of the more demanding Figure 2.
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E. The Most Desirable Proper Randomization.

Shuffled cartoons have many virtues; however, the shuffled versions
of all the cartoons we shall examine in sequence (Fickian, unifractal,
mesofractal and multifractal) are grid-bound, therefore unrealistic. - Fortu-
nately, we shall see that each major category of cartoons was designed to
fit a natural random and grid-free counterpart.

VII. Cartoons of Brownian Motion, Fickian and Beyond; Variance
and Additional - Fuller and More Demanding -
Measurements of “Volatility”

A. The “Fickian” Square-root Rule.

Moving from qualitative to quantitative examination, the non-shuffled
Figure 4 uses a three-piece generator that is very special. Indeed, let the
initiator-trend have one time unit as width and one price unit as height.
This being granted, the generator intervals in Figure 4 are such that the
heights of each - namely, 2/3, 1/3 or 2/3 - are the square-roots of the cor-
responding width - namely, 4/9, 1/9 or 4/9.

An integer-time form of this “square-root rule” is familiar in elemen-
tary statistics. Indeed, the standard deviation of the sum of N inde-
pendent and identical random variables is the product of the standard
deviation of each addend by \fl\_f . Therefore, the sum is said to “disperse”
like yN.

In continuous grid-free time the square-root rule is called “Fickian”
and characterizes the Wiener Brownian motion and “simple diffusion.”

In our grid-bound interpolation, the square-root rule is strengthened
by becoming non-random and weakened by holding only for the time
intervals that belong to the recursive generating grid. The result is a
behavior that is only pseudo-Brownian: it is, close, without being iden-
tical, to the continuous-time WBM.

Fickian diffusion is extraordinarily important in innumerable fields,
but for financial prices it is not applicable. Fortunately, mildness is not a
consequence of the recursive character of our construction, only of the
special square-root rule imposed on the generator.
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B. Symmetric 3-Interval Generators Beyond the Fickian Case. Their Basic “Phase
Diagram.” '

Indeed, let us show how one can preserve the idea behind Figure 4
but modify it to allow for a wealth of behavior that differs greatly from
the Brownian and from one another. We argued early in this paper that it
is essential to keep those generalizations as simple as possible and capable
of being followed on a simple two-dimensional diagram. It will suffice to
preserve two features of Figure 4. Its generator includes 3 intervals and is
symmetric with respect to the center of the original box.

Hence the coordinates of its first break determine those of the second
break by taking complements to 1. It follows that a 3-interval symmetric
generator is fully determined by the position of its first break. The
resulting “phase diagram” is drawn as Figure 5. The point P will be
called its “function address” in the “address space” defined as the left half
of the unit square in Figure 5. Since we wish the construction to yield
curves that oscillate up and down, all the possibilities will be covered by
allowing the address to range over the top left quarter of the unit square.
The bottom left quarter is also interesting but yields nondecreasing meas-
ures rather than oscillating functions. Many of those measures will turn
up in a later section.

Active actual experimentation is very valuable at this stage and is
accessible to the reader with a moderate knowledge of computer program-
ming. Playing “hands-on,” that reader will encounter a variety of behav-
iors that are extremely versatile, hence justify concentrating on 3-interval
symmetric generators. Section VIIC lists rapidly the possibilities that will
be discussed later in this paper.

C. Two Fundamental but Very Special Loci, Called “Unifractal” and
“Mesofractal,” and the “Multifractal” Remainder of the Phase Diagram.

The terms describing the simplest loci in Figure 5 are new but I have
explored the underlying concepts in the 1960s.

Indeed, it will be seen in Section IX that the mesofractal cartoons cor-
respond to my earliest partial improvement on Bachelier's work, namely
the “M 1963” model built in Mandelbrot (1963) the stable random proc-
esses of Cauchy and Lévy. Price increments according to that model are
illustrated by the rather simple second line of Figure 2. Compared to line
1 which reports on Bachelier, line 2 is less unrealistic, because it shows
many spikes; however, these are isolated against an unchanging back-
ground in which the overall variability of prices remains constant.
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As to the unifractal cartoons, they will be seen in Section VIII to corre-
spond to my next earliest improvement on Bachelier, namely the “M 1965”
model I built in Mandelbrot (1965) while introducing fractional Brownian
motion. Price increments according to that model are illustrated by the
third line of Figure 2. Compared to the M 1963 model, the strengths and
failings were interchanged because it lacks any precipitous jumps.

The mesofractal and unifractal substitutes for coin-tossing deserved
investigation but remain inadequate, except under ceftain special market
conditions.

After examining those special regions, we shall proceed to the dia-
gram's remainder. It consists of the multifractal cartoons which corre-
spond to my current model of financial price variation, the “M1972/97
model” of fractional Brownian motion in multifractal trading time.

D. The “Special Root-mean-square” Definition of Volatility and Beyond.

The coin-tossing economics illustrated on the top line of Figure 2 has a
single parameter, the root-mean square standard deviation 0" and volatility
is necessarily 0" or perhaps an increasing function of 0. A strip of total
width from -20" to 20 contains 95% of all price changes. If only implicitly,
volatility is a relative concept: it concerns the comparison of the observed
fluctuations to an ideal economy that achieved equilibrium and involves
no fluctuation at all.

This implicit reference to equilibrium must be elaborated upon. Eco-
nomics is clearly more complex than physics but the precise contrary
would have been the case if the Brownian model were universally appli-
cable. For example, the physical theory closest to coin-tossing finance is
that of a gas in thermodynamical equilibrium, but such a system also
depends on either volume or pressure. This is more .complicated than
coin-tossing which reduces to the parameter metaphorically closest to tem-
perature.

The unifractal model illustrated on line 3 of Figure 2 and discussed in
Section VIII is specified by 0" and an exponent H. This H measures how
far and how fast a constant-width “snake” oscillates along the time axis. H
must be included in order to specify intuitive volatility quantitatively.

In the mesofractal model illustrated on line 2 of Figure 2 and dis-
cussed in Section IX, the standard deviation diverges. But the equally
classical notion of percentiles remains meaningful. Hence volatility can be
defined as including the two parameters that determine the process. One
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FIGURE H1-5. The “fundamental phase diagram” for the symmetric three-interval

generator is drawn on the top left quarter of the unit square. Being restricted
to 3 intervals, the generator is determined by the bottom left and top right
corner of the square, plus two other points. Symmetry implies that those
points are symmetric with respect to the center of the square. If the generated
function is to be oscillating, the generator is determined by a point in the top’
left quarter, including its boundary to the right. This diagram is explored in
four successive stages: first the “Fickian” dot, then the curved “unifractal
locus” and the straight “mesofractal locus,” drawn in thicker lines starting at
the center of the square. The final and most important stage of exploration
tackles the remaining points in the upper left quarter; they form the
“multifractal” locus, which is not a point or a curve but a domain. See also
Figure 9.
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is the width of the horizontal strip containing 95% of “price” changes.
The second specifies the variability of the remaining 5% of large changes,
which is ruled by an exponent a or its inverse, H=1/a.

VIIIL Unifractals, Non-Periodic but Cyclic Behavior and Globality

A. The Exponent H and Equations that Characterize Unifractality.

Logically, if not quite so historically, cartoons that deserve to be called
“unifractal” come immediately after the Fickian ones. Indeed, define the
quantitative

log( height of the kth generator interval ) _
Tog( width of the kth generator interval )

ko

Given a single exponent that satisfies 0 < H <1, unifractality is defined
by the condition that, H, = H for every k. The uniqueness of H is a major
reason for the term “unifractal.” The example of the Fickian “square-root”
rule shows that the unifractality conditions can be implemented when
H=1/2. For other prescribed values of H, those conditions yield two
“unifractality equations” y= Mand2y-1=(1- 20", In particular, x is
the root of the “generating equation” 22— 1= -20" Solved numer-
ically, as it must, this equation yields a single x, therefore a single y =i
That is, just as in the case H =%, each allowable value of H is achieved by
choosing for the function address P a single specified point in the address
quarter square.

When lumped together, the points P form a “locus of unifractality”
that takes the form of the only curve seen on Figure 5. This curve is of
course far more restrictive than the whole allowable address space, which
is a quarter square. The unifractality locus contains the unique Brownian
address (4/9, 2/3) but is far less restrictive.

We proceed to restate the unifractality condition in an alternative form
and then in terms of a new quantity 6 that will become essential in the
multifractal case. The unifractality conditions can be rewritten as
Qy-1D"#=1-2xand x= y'/H;  eliminating x, these combine into
y7H 4y - DVH 4y MH 21,

This expresses that the sums of the intervals' absolute heights becomes
1 after each absolute height is raised to the same power. It follows that
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one can define the quantities 4,0 =y"", 4,0 =2y - 1)"¥, and A,0=y'%,
which satisfy A,0 + 4,0 +A,0=1.

The auxiliary address point of coordinates x and y = A6 will be called
the generator's “time address.” This unifractal case yields A 6 =x, there-
fore the time address is located on the bisector of our diagram, between
(1/2, 1/2) and the H =0 point (J2—— 1, \/5_ -~ 1) explained in the next para-
graph. The time address of a generator fully determines its function
address.

B. Persistence and Cyclic but non-Periodic Behavior.

Let us begin by extreme cases not included in the locus of
unifractality.

The limit H-—0. It corresponds to y=1-e~exp(—¢), and
2y —1~exp(—2¢) ~ yz. Hence the generating equation written in terms of
y H < x becomes x* + 2x —1=0, yielding x=‘/§-1.

Combining this x and y=1, the 3 intervals of the generator have
heights Af=1,Af=—1and Af=1. In order to add to 1, the correlations
between those three increments' are negative and as strong as can be. The
limit is degenerate. But after an arbitrary number of recursions, each step
in the approximation is equal in absolute value to 1, which is the incre-
ment of the function between any two points in the construction grid.
This property is extreme but will be worth remembering when Section IXB
discusses asymptotic negligibility. '

The limit H=1. It corresponds to a vanishing middle interval, there-
fore to a straight generator and a straight interpolated curve. In this disal-
lowed limit case, price would be totally ruled by “inertia” and “persist”
forever in its motion.

The Fickian H=1/2. It represents a total absence of persistence.

In the 0 < H < 1/2 part of the unifractal locus, there is a negative per-
sistence or antipersistence.

In the more important 1/2 < H <1 part of the unifractal locus, persist-
ence is positive and increases as H moves from 1/2 to 1. It deserves close
attention.

Let us now relate cyclic behavior and globality in graphs of a function
fit) rather than of increments. The phenomenon of persistence manifests

itself in patterns of change that are not periodic but perceived by everyone
as “cyclic.” As already mentioned, it was observed long ago by Slutzky
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that the eye decomposes Brownian motion spontaneously into many cycles
of periods ranging from very short to quite long. As the total duration of
the sample is increased, new cycles appear without end. They correspond
to nothing real, only the mere juxtaposition of random changes. To appre-
ciate this fact, one should rethink the positive overall trend that is highly
visible on Figure 4. Over a time space much shorter than the total space
1, the trend becomes negligible in comparison with local fluctuations.
Hence, the up-down-up oscillation represented by the generator will be
interpreted as a slow cycle.

As H increases above 1/2, so does the relative intensity of this longest
period cycle. It also ceases to be meaningless (a la Slutzky) and becomes
increasingly real. While it does not promise the continuation of a periodic
motion, it allows a certain degree of prediction. A nice illustration of
what is happening is provided in a closely related context by Plates 264
and 265 of M 1982F{FGN}. This is one aspect of the following property
common to all values H#=1/2: the successive movement of f{f) are not
simply juxtaposed. In effect, they interact, their interdependence not being
short, but long-range, or “global.”

In any event, unifractal cartoons fail to generate either a variable
volatility or the large spikes of variation that Figure 2 shows to be charac-
teristic of finance. Therefore, the generalization of Fickian square-root
must go beyond unifractality.

C. The Rule of “Three Cycles in Every Sample,” and the Kondriateff Long Cycles
of the Economy.

When H is about 3/4, as is often the case, I found that the eye sees
“about three cycles in a sample.” This “three cycle” rule is a remarkable
observation that cannot be elaborated here. It may perhaps help, or even
suffice, to explain the celebrated but highly controversial slow cycles of
the economy. Kondriateff, to whom they are credited, had a century
worth of data and the slow thirty-odd years long cycles that he saw.

IX. Mesofractals and Price Discontinuity

A. The Locus of Discontinuous Behavior and the Distribution of the Discontinui-
ties.
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In the square that bounds the phase diagrams in Figure 5, discontin-
uous functions are associated with the unit length interval characterized
by x=1/2 and 0<y<1. Aside from the Fickian point, this locus is the
simplest and has the oldest roots in finance, insofar as the portion
1/2 <y=<1/{2 will soon be linked with the M 1963 model of price vari-
ation (Mandelbrot 1963, 1997).

Recall the quantities

log( height of the kth generator interval ) _
log( width of the kth generator interval )

k-

For x=1/2, the middle interval satisfies H, =0 and for the side inter-
vals - by definition of H - satisfy H, = H =log y/ log(1/2). The presence of
two, not one, separate fractal exponents implies that the present con-
struction no longer qualifies as unifractal. It is useful to define the inter-
mediate category of mesofractality by the condition that H, =0 for at least
one value of k and H,=H when H,#0. For reasons to be explained
momentarily, one should denote l/H as a. In the present very special
generator, the exponents H and H are both functions of y, hence of each
other, but this very peculiar feature disappears for more general cartoons.

To understand the role of our interval of overall length 1 and abscissa
x=1/2 as the locus of discontinuous behavior, let us continue the recur-
sive repetition of the generator. The next iteration adds two smaller dis-
continuities of size —y(2y — 1). Further 1teratxons keep adding increasingly
high numbers (4, 8, 16 and higher powers of 2 to infinity) of increasingly
smaller discontinuities of size A =— yk 2y - 1). Altogether, the number of
discontinuities of absolute size > A is easily seen to become, for small A,
proportional to A™% Depending on the exponent a, the discontinuity
locus splits into three portions to be handled separately.

The portion from 0 <y <y =1/2, that is 0 <a <1, corresponds to posi-
tive discontinuities hence to increasing functions. They generate a fractal
trading time that is better discussed later, as a special case of the
multifractal trading time.

The portion 1/2 <y <1, that is a > 1, corresponds to negative disconti-
nuities, hence to oscillating functions.

The notation o was adopted because when a <2, the above-written
distribution of the discontinuities is the same as in the L-stable processes
used in the M 1963 model. More precisely, all the jumps are negative
here, while in the M 1963 model of price variation they can take either
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sign. A distribution with two long tails can be achieved by using genera-
tors that include a positive and a negative discontinuity; this requires
~more than 3 intervals.

We digress on two technical questions that must be mentioned but can
only be sketched. Firstly, why is the L-stable exponent a bounded by 2?
The issue arises during attempted randomization of the mesofractal car-
toons. Randomization involves the replacement of fixed numbers of dis-
continuities by random (Poisson) numbers. When a <2, this replacement
introduces convergent integrals, but when a > 2, it would introduce diver-
gent integrals one cannot “renormalize.”

Secondly, consider the quantity H defined as in the unifractal case by
the previously used generating equation ¥ (interval height) /¥ =1, which
will become essential in the multifractal case. When the vertical interval is
excluded, the equation becomes 2y” H_1. Its solution is H=1/0. When
the vertical interval is not excluded, the solution is different from H. The
difference expresses that approximation the address point P with x=1/2
from the left by the sequence of address points P, is a singular process.
This term means that the properties of the fit) corresponding to the point
P are not the limits of the properties of the fi(t) corresponding to the point
P,

B. Asymptotic non-Negligibility, the Mesofractal form of Concentration and an
Additional Aspect of Globality.

The notion of concentration is most familiar in the context where it
arose: firm sizes. Even in an industry that contains a large number of
firms, concentration expresses that the largest firm's size is typically far
larger than the average or median size. In highly concentrated industries,
the largest firm's size may approach or exceed the size of all of the other
firms taken together. The same is true of populations of cities.

Formulas simplify if one begins by ordering all firms by decreasing
size within their industry, then reducing all firm sizes by division through
their sums. Let S, be the reduced size of the firm of rank r in the order by
decreasing size. One has IS = 1. For the present purposes, let us say that
if 5, is small the industry is called non-concentrated. The higher S, the
higher the concentration. High levels of concentration are well known for
individuals' wealth or firm sizes. To represent those quantities, the
Gaussian distributor is not inappropriate in degree, but in kind: it resides
in a totally wrong “ballpark.”
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Fractals/multifractals clarify the notion of concentration and intro-
duces it to the study of finance under two successive temporal versions, to
be called meso- and multifractal. These versions help clarify the proper-
ties of the mesofractal and multifractal models and give fresh scope to a
central issue of economics, namely, inequality.

While firm sizes are positive, price changes are not. To extend to
them the notion of concentration, the simplest is to replace price changes
by their squares.

For the sake of background and contrast, begin with coin-tossing.
Every day's contribution could be + 1, and its square contribution would
be 1. Over N days, each day's relative contribution to the sum is simply
1/N, hence every contribution rapidly becomes negligible. Continue with
the Brownian model. Its theoretical daily volatility is the expectation of
the quantity [P(t+ day )—P(H)>. Its empirical volatility is the sample
average of the same quantity. This sample average rapidly converges to
the expectation so that after N days the relative contribution of the wildest
day is of the order of 1/N except for a negligible logarithmic factor.

The preceding property is called “asymptotic negligibility” of every
individual contribution. It extends to the Fickian and other unifractal
recursive cartoons. A heuristic argument proceeds as follows. Instead of
pursuing the recursive contribution for the same number of steps
throughout, prescribe & >0 and stop the recursion as soon as the width of
the intervals of the approximation becomes <¢. The remaining intervals'
widths Ax will range from &(1 — 2x) to ¢, where x as usual, is the abscissa
of the function address P. Each of the remaining intervals contributes to
A# the amount +(AHY; all those amounts become negligible as ¢ — 0.

Asymptotic negligibility is a wonderful notion in pure probability and
in the study of many random phenomena. But it fails to account for
important features in finance. As an example, consider a well diversified
portfolio following the Standard & Poor 500 Index. Of the portfolio's posi-
tive returns over the 1980s, fully 40% was earned during ten days, about
0.5% of the number of trading days in a decade.

In the Brownian model, such a high level of concentration is not
strictly impossible, but its probability is so minute that it should never
happen. Unfortunately, by and large, it happens every decade.

Mesofractal cartoons behave in a totally different fashion: asymptotic
negligibility is completely invalid and concentration prevails just as for
firm sizes. Postponing the proof to the next paragraph, the conclusion can
be stated in two approximations.
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In a first approximation, mesofractality brings the variation of financial
prices within a conceptual framework that is sufficiently broad to also
accommodate the distributions of wealth and firm sizes. In a second
approximation, however, we see that mesofractality goes too far and pre-
dicts a level of concentration that exceeds what is observed. This qualita-
tive “mismatch” (which my earlier publication did not recognize
sufficiently) is very important. It is one of many reasons why it is neces-
sary to proceed beyond mesofractality to multifractality.

Proof of concentration for the above special mesofractal cartoon. Observe
that after k iterations, the variation of fi(t) consists in 22F-1 intervals,
alternatively inclined up and vertical down. Adding an arbitrarily small
step down leaves 2* “two-steps,” each defined as made of a step up
increasingly short and steeply inclined, and a vertical step down.

The largest two-step’s length is — (2y ~ 1), plus a quantity that is posi-
tive but small when k is large. Therefore (aside from its sign), the largest
two-step is of the same order of magnitude as the total of all the two-steps,
which is equal to one. The same - a fortiori ~ is true of the squares of the
step.

I propose to call this property “mesofractal - or simply fractal —
concentration,” to distinguish it from the more general and in a way less
extreme “multifractal concentration” examined in Section XF.

X. Multifractals: Cartoons and Trading Time Functions

A. Variable Volatility, Revisited.

In the state diagram in Figure 5, the address points left to be examined
belong to the top left quarter of the square but to neither the unifractal nor
the mesofractal locus. For reasons that will transpire soon, those points
will be called “multifractal.”

Back to Figure 2, focus on the five bottom lines. It was said that they
intermix actual data with the best-fitting multifractal model. Asked to
analyze any of those lines without being informed of “which is which,” a
coin-tossing economist would begin by identifying short pieces here and
there that vary sufficiently mildly to be approximated by suitable pieces of
white Gaussian noise. These are pieces extracted from the first line, then
widened or narrowed by being multiplied by a suitable r.m.s. volatility 0.
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Those irregular records might have been increments of a non-
stationary Brownian motion, a motion whose volatility varies in time.
Furthermore, it is tempting to associate those changes in volatility to
changes in market activity. Less mathematically-oriented observers
describe the diverse lines at the bottom of Figure 2 (both the real data and
forgeries) as corresponding to markets that proceed at different “speeds”
at different times. This description remains purely qualitative until
“speed” and the process that controls the variation of speed are quantified.

A similar situation occurring in physics should serve as warning. It
concerns the notion of variable temperature. This is a forbiddingly messy
and complicated problem and the best approaches are ad-hoc and not
notable for being attractive or effective. The totally distinct approach that
I took and to which we now proceed, consists in “leap-frogging” over
nonuniform gases, all the way to turbulent fluids.

B. The Versatility of Multifractal Variation. In a Non-Gaussian Process, the
Absence of Correlation is Compatible with a Great Amount of Structure; this
Fact Reveals a Blind-spot of Correlation and Spectral Analysis.

Figure 6 illustrates a stack of multifractal cartoons that are shuffled at
random before each use. In all cases, the ordinate of P is 2/3, therefore
H=1/2. The column to the left is a stack of generators, the middle
column, the stack of processes obtained as in Figure 4 but with shuffled
generators, and the column to the right, the stack of the corresponding
increments over identical time-increments At.

The line marked by a star (%) is the shuffled form of Figure 4. The
middle column is a cartoon of Brownian motion and its increments (right
column) are a cartoon of white Gaussian noise and look like one, as
expected. But what is quite unexpected is that the increments plotted on
all the other lines in this stack are also uncorrelated to one another, that is,
“spectrally white.” As one moves up or down the stack, one encounters
charts that diverge increasingly from the pseudo-Brownian model.
Increasingly, they exhibit the combination of sharp, spiky price jumps and
persistently large movements that characterize financial prices. The exist-
ence of such sharply non-Gaussian white noises proves that spectral
whiteness, which is highly significant for Gaussian processes, is otherwise
a rather weak constraint.

Figure 6 brings to this old-timer's mind an old episode that deserves
to be revived because it carries a serious warning. After Fast Fourier
Transform emerged, the newly-practical spectral analysis was promptly



34 CARTOONS OF BMMT ¢ ¢ RES2000

applied to price change records. An approximately white spectrum
emerged, and received varied interpretations. It was widely known that
whiteness does not express statistical independence, only absence of corre-
lation. But the temptation existed to view that distinction as mathematical
nit-picking. Numerous scholars went on to list spectral whiteness as an
experimental argument in favor of the Brownian motion or coin-tossing
model. Other scholars, to the contrary, apparently recognized that data
was in fact qualitatively incompatible with independence. Finding spec-
tral whiteness to be incomprehensible, they dropped the spectral tool alto-
gether as being unmanageable.

The hasty assimilation of spectral whiteness to independence was
understandable but is clearly untenable. Figure 6 exhibits a variety of
white noises whose high level of dependence is not a mathematical oddity
but the inevitable result of self-affinity with the multifractal cartoons. By
and large, points P close to the Fickian locus of Figure 5 will “tend” to
produce wiggles that resemble those of financial markets. As one moves
farther from the center, the resemblance tends to decrease then the chart
becomes more extreme than any observed reality.

C. A Fundamental Representation Called “Baby Theorem.”

Irresistibly, the question arises, can the overwhelming variety of white
or non-white multifractal cartoons f be organized usefully? Most fortu-
nately, it can, thanks to a remarkable representation that I discovered and
facetiously called “baby theorem.” It begins by classifying the generator
by the values of H or equivalently of y.

On Figure 7, the small “window” near the top left shows the genera-
tors of two functions f,(f) and f, (). One is unifractal with an address
having the coordinates x=x,= 0.457 and y = 0.603, hence H=0.646. The
other's address coordinates are the same y and H, but x=x, =0.131. This
x, is so small that the function f, () it generates is very unrealistic in the
study of finance; but an extreme x, was needed for Figure 7 to be legible.
To transform a unifractal into a multifractal generator, the vertical axis is
left untouched but the right and left intervals of the symmetric unifractal
cartoons are shortened horizontally thus providing room for a horizontal
lengthening of the middle piece.

Before we examine this transformation theoretically, it is useful to
appreciate it intuitively. The body of Figure 7 illustrates the graphs of
f,(t) and f, () obtained by interpolation using the above two generators.
Examine them disregarding the bold portions, the dotted lines and the
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FIGURE H1-6. Stack of shuffled multifractal cartoons with y=2/3 therefore
H=1/2 and - from the top down - the following values of x: 0.2222, 0.3333,
0.3889, 0.4444 (Fickian, starred), 0.4556, 0.4667, 0.4778, and 0.4889. Unconven-
tional but true, all the increments plotted in the right colurnn are spectrally
white. But only one line in that column is near-Brownian; it is the starred
Fickian line for x =4/9.
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arrows. One observes that the unifractal curve f.(t) proceeds as already
known, in measured up and down steps, while the multifractal curve fn®
alternates periods of very fast and very slow change.

However, the fact that the two generators’ addresses have the same v
and H establishes a perfect one-to-one correspondence  between
“corresponding” pieces of two curves. This feature is emphasized by
drawing three “matched” portions of each curve more boldly. Toward the
right, between a local minimum and a local maximum, a gradual rise of
the unifractal corresponds to a much faster rise of the multifractal. In the
middle, between a local maximum and the center of the diagram, a
gradual fall of the unifractal corresponds to a very slow fall of the -
multifractal ~ largely occurring between successive “plateaux” of very

FIGURE H1-7. The small diagrams illustrate a unifractal and a multifractal gener-
ator corresponding to two address points situated on the same horizontal line
in the phase space. The large diagram illustrates the resulting functions
f, (0 and f,(t) and the one-to-one correspondence between them governed by
the change from clock to trading time.
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slow variation. Thirdly, between two local minima towards the left, a
symmetric'up and down unifractal configuration corresponds to a fast rise
of the multifracal followed by a slow fall which, once again, proceeds by
successive plateaux.

More generally, the choice of generators that share a common Yy
insures that our two curves move up or down through the same values in
the same sequence, but not at the same times. One would like to be more
specific and say that they proceed at different “speeds,” but the fractal
context presents a major complication, already mentioned near the end of
Section III.  Differential calculus teaches us that when a function
fit) increases by Af when time increases by At, the ratio Af/At has a limit
for At— 0; this limit defines the derivative, which in turn measures the
speed of variation.

Until recently, most sciences could take for granted that derivatives
exist. But our cartoons have no positive and finite derivative. This fact is
widely known to hold (almost surely, for almost all ¢ ) in the Brownian
case. From the Fickian relation Af~ yA t, it follows that, “as a rule,” Af/ At
tends to o as At — 0. ‘

But it was already mentioned at the end of Section III that not every-
thing is lost. Indeed, there exists a non-traditional expression,
log Af/ log At, that is not part of elementary differential calculus, but is
well-behaved for the WBM B(f). As At— 0, it converges (for practical pur-
poses) to a quantity called a Holder exponent which coincides with
H=1/2.

More generally, in a unifractal cartoon all the increments in time At
prove to be of the form Af(f) ~ (A", where the Holder exponent H is
identical to the constant that characterizes a unifractal.

Multifractal increments are altogether different. The theory shows that
they also take the form Af, () ~ (At)™®. However, H(#) is no longer a con-
stant but oscillates continually arid can take any of a multitude of values.
This is one of several alternative reasons for the prefix “multi-” in the term
“multifractals.”

In the present context of 3-interval symmetric generators, one has
0 <min H(t) < 1. The quantity min H(¢) approaches 0 as one tends to the -
mesofractal locus corresponding to discontinuous variation.

As to max H(t), Section IXF will reveal two possibilities. For Ps
located to the right of the unifractal locus, max H(t) cannot take a very
large value; bounded values of H(t) correspond to regions of near constant
“volatility.” of f{t). But if P is located to the left of the unifractal locus,
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max H(t) may be very large, corresponding to regions where fit) exhibits
almost no volatility. This variety of possible behaviors is a major reason
for the versatility of the multifractals. It is also, of course, a source of
complexity, but this feature must be viewed as welcome, because the data
themselves are indeed complex.

D. Compound Functions in Multifractal Trading Time.

Fortunately, this variety translates easily into the intuitive terms that
were reported when discussing variable volatility. The key idea has
already been announced: One can reasonably describe f,(f) as proceeding
in a “clock time” that obeys the relentless regularity of physics. To the
contrary, Section IXD implements the notion that £, (t) moves uniformly in
its own subjective “trading” time, which - compared to clock time - flows
slowly during some periods and fast during others.

The imlplementation generalizes the generating equation
y” Hy Qy-1) /H +y” Ho1 already written down in the unifractal case,
where it was of no special significance. Once this equation's root H has
been determined, one defines (as before) the three quantities y'/¥ =A,0;
Qy-D""=A,0 and y''¥ =A,0. Like in the unifractal case, these quanti-
ties satisfy A,6 + A,0 + A,0 =1. Moreover, Af, = (AB)" as long as A6 is an
increment of € that belongs to the hierarchy intrinsic to the generator.

The striking novelty brought by multifractality is that 9 is a function
of t that no longer reduces identically to ¢ itself. That is, the time address
(x, y” " no longer lies on an interval of the main diagonal of the phase
diagram. Instead, it lies within a horizontal rectangle that is defined by
O<x<1/2and 0<y< \/5 — 1. For given H, the rectangle reduces to a hor-
izontal line. In Figure 7, the times taken to draw the generator's first
interval are as follows: our unifractal f,(t) takes the time 0.457 and our
multifractal f, (t) takes the extraordinarily compressed time 0.131. In the
generator's middle interval, to the contrary, the multifractal is extraor-
dinarily slowed down.

An extremely special case of compounding is familiar to
econometricians. Called “subordination,” it corresponds to the case where
8(t) is a random function with independent increments. Chapter E 21 of
Mandelbrot (1997) reproduces a 1967 paper in which Taylor and I took for
6(t) a special process of independent positive increments, namely a
process of L-stable increments of exponent a/2. Brownian motion fol-
lowed in this trading time reduces to the L-stable process postulated by
the M 1963 model. More generally, independent increments in 8(¢) lead to
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a compound process that has independent increments and is called subor-
dinated. The same Chapter E 21 also reproduces critical comments I pub-
lished just after a 1973 paper by Clark. That paper selected a different
subordinator 6(t), but preserves independent increments. Therefore, it
also led to a price process with independent increments.

Many econometricians elaborated on Clark without questioning this
independence. From their viewpoint, compounding that allows depend-
ence may deserve to be called “generalized subordination.” This usage
(aside from being a bit silly) would be unfortunate because it would blur a
major distinction. Preservation of the original association of subordination
with independent price increments, clearly brands subordination as being
unable to account for the obvious dependence in price records.
Multifractal time shows one can account for dependence while preserving
the reliance upon invariances I pioneered in 1963 and extending the path
Taylor and I opened in 1967. Of course, the search for non-independent
compounding could have proceeded in more traditional fashion, but it did
not.

E. The Multifractal Behavior Af, = (AtyH®.

The theory of multifractals expresses the relation between 6 and ¢ as
A8 = (AU, therefore Af, = (A8)" = (AU = (AHHP, This decomposition
creates a “compound function,” namely an oscillating unifractal function
of exponent H, with the novelty that it proceeds in a trading time that is a
non-oscillating multifractal function of clock time. Specifically, when
H=1/2, one has a Fickian (pseudo-Brownian) function of a multifractal
time. When H=#1/2, one has a pseudo-fractional Brownian function of
multifractal time.

In the next paper, the BMMT continuous time grid-free versions of the
present cartoons will be seen to allow H and the multifractal time to be
independent random variables. On this account the cartoons are more
constrained and more complicated. In particular, the unifractal oscillation
and the multifractal time cannot be chosen independently. Indeed, the
address (x, y) of the unifractal function determines H and restricts the time
address of the multifractal time to have the ordinate y” H and an abscissa
satisfying x>0, x # y” H and x < 4. However, those constraints are not fun-
damental but a peculiar feature of 3-interval symmetric generators. As the
number of intervals in the generator increases, those constraints change; I
expect them to become less demanding.
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In any event, once again, the 3-interval symmetric generators do not
pretend to exhaust all the possibilities offered by either theory or the facts.
Their main virtue is to allow a wide range to illustrate the breadth of
properties compatible with a very simple method of construction.

F. Fine-tuning of the Intermittence; the exponent D(1) and its Role.

The next task is to confirm and quantify what Figure 7 tells us. A
fully-developed theory exists and will now be sketched.

When analyzing a mesofractal cartoon in terms of “two-steps,” the end
of Section IXB noted that the largest two-step contributed a “price” change
proportional to the sum of all the other two-steps, and independent of
their number, N. That is, the largest two-step is of the order of N° ; the
value of y does not affect the exponent, only a prefactor of proportionality.
The largest two-step is also of the order of (sum) °. The same exponent
also holds for the contribution the largest squared price changes make to
the sum of the squares. The same extreme degree of mesofractal concen-
tration occurs in the M 1963 model, which on this account is no more real-
istic than the mesofractal cartoon.

The intermittence exponent D(1) for H=1/2, that is, y=2/3. In that case,
consider a sum of N squared daily price changes, and denote by M(N) the
number of days that contributes the overwhelming bulk of that sum. The
theory of multifractals tells us that M(N) ~ N??, where the exponent D(1),
a function of the address point P, is a new form of fractal dimension. This
D(1) originates in the fact that viewed in terms of the clock time tf, the
trading time is what mathematicians call a continuous singular function.
It increases in every interval of clock time. However, most intervals con-
tribute almost nothing . To the contrary, an arbitrarily high proportion of
its variation occurs on a “support” that is a set of fractal dimension D(1).

As expected, because of asymptotic negligibility and near-equality of
the addends, D(1) =1 in the unifractal special case, in which M(N) ~N. At
the other end D(1) =0 in the mesofractal limit x =1/2, in which M(N) ~N°,
and also for x=0. The properly multifractal cases yield 0 <D(1) <1. As
one moves away from the unifractal locus marked on the phase diagram
on Figure 8, the line y =2/3 intersects the wavy curves at values of x that
yield D(1)=0.9,0.8,0.7,0.6,0504 and 0.3. As x and therefore D(1)
decrease, the degree of intermittence seen on Figure 6 will increase.
Therefore, a good definition of the degree of intermittence must include
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FIGURE HI1-8. Iso-lines (lines of constant value) for the exponent of multifractal
concentration, C(1). It attains a maximum D(1)=1 along the unifractal locus
and the interval 0 < x=vy < 1/2; and decrease to 0 as y is fixed and x increases
or decreases.
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FIGURE H1-9. Two alternative versions of Figure 6, as explained in the text.
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the quantity 1- D(1). Section XH will show that one must also include
other quantities.

The intermittence exponent D(1) for H other than 1/2. The interpretation
of Figure 8 becomes a little different. The reason is subtle and can only be
sketched here. It concerns the question of the best way to measure the
deviations from the mean. The “normal” measure is once again the vari-
ance and its justification combines reasons of convenience and of principle.
The old and universally valid reason of convenience is that variance is
manageable with a slide-rule; before the computer, no alternative was
present but the computer made this reason less compelling. An additional
objective reason is often present in physics: a sum of squares is often an
intrinsic quantity (for example, as energy) following basic laws of physics
(for example, conservation). Another properly physical objective reason is
restricted to the case of independent Gaussian variables: in that case, the
first and second moments provide a “sufficient statistic.”

Of these three reasons, only the last extends to the multifractal car-
toons and it only holds for H=1/2. When H#1/2, the combination of
multifractals and FBM puts forward -a different intrinsic expression: the
sum of absolute price increments raised to the power 1/H #2. Roughly
speaking, it corresponds to the sum of increments of trading time over
equal increments of clock time.

As to the expression M(N) ~ NP, its validity extends to H=1/2, but
only if, instead of being squared, the price increments are raised to the
power 1/H. We can now interpret the wavy lines beyond their inter-
sections by the line y =2/3. They are the loci where D(1) takes the values
09,08, 0.7, 0.6, 0.5, 04, and 0.3. '

G. A New, Multifractal Form of Concentration Based on D(1) .

Let us now compare the data with the predictions of the mesofractal
and the coin-tossing models that concern concentration.

No one denies that price variation is, in fact, concentrated, in contra-
diction with coin-tossing model of constant volatility. The usual argument '
is that the observed concentration simply reflects a variable volatility. The
mesofractal prediction of the M 1963 model is that due to the extreme
long-tailedness of the distribution, the largest of N daily price changes is
of the order of magnitude of their sum. At first, this prediction is invari-
ably perceived as completely shocking. After some thought, it is accepted
as being on the right track but incomplete. It might be close to the mark
on the short or middle run but is not reasonable on the long-run.
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Providing totally new flexibility to the notion of concentration,
multifractality allows a smooth transition between the preceding extremes,
namely, the concent:a'aon ~ ( size )~ characteristic of unifractality, and the
behavior ~ ( size )° characteristic of mesofractality.

When clock time is divided into very short increments At, the corre-
sponding increments A6 = (AHY® vary enormously in size. In particular,
the distribution of the exponents U(f) is highly scattered. Both the casual
glance and the lessons drawn from the well-known M 1963 model draw
our attention to values that stand out as sharp spikes. They can indeed be
extremely important, yet the multifractal case exhibits a “softer” form of
concentration. Indeed, even the sharpest spike is asymptotically negligible
compared to the whole. The fractal dimension D(1) concerns smaller
values of U(#) within a range one can call “median.” Taken separately,
each is asymptotically negligible. But their number is NPD: it is suffi-
ciently large to insure that their total contribution is no longer
asymptotically negligible, in fact is nearly equal to the whole increment of
8. Multifractal concentration consists in the fact that D(1) <1.

H. Differences associated, for fixed y therefore H, with the value of min U(#),
therefore the value of x being to the left or the right of unifractality.

The next simplest characteristics of a multifractal cartoon are
min U(t) and max U(t). They are very important, because the former
measures the degree of “peakedness” of the peaks of A6, the latter, the
duration and degree of flatness of the low lying parts of A6.

The mathematical situation is as follows. To be concrete, take H=1/2
and move x away from the unifractal value x=4/9, either leftbound
towards x =0, or rightbound towards x=1/2—¢. The value of min U(f)
begins as 1 and tends to 0 in both cases. To the contrary, the behavior of
max U(t) is very sensitive to the direction of motion. To the left, it
increases without bound. To the contrary, one finds that to the right
min U(t) only increases up to the limit log 3/ log 2 ~ 1.5849.

Concretely, this asymetry creates a sharp and highly visible difference.
For given D(1), the probability of U(t) being very small will be far greater
for x to the left than to the right of the unifractal locus, that is, above or
below the starred line on Figure 7. This prediction is clearly vindicated by
Figure 7. .

To stress the novelty of those predictions, they came after I drew
Figure N1.4 of Mandelbrot (1999). That figure consisted, in effect, in
moving always to the left of the unifractality and never to the right.
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The above asymetry between left and right can be expressed in terms
of a theory that warrants a mention here, but only a very brief one: the
variation of 0 is “less lacunar” to the right of x =4/9 than to the left.

XI. Concluding Remarks and Transition to the Next Paper

A. How do Simulations of the Multifractal Model Stand up Against Actual
Records of Changes in Financial Prices?

To respond to the question raised in this subtitle, let us return to
Figure 2, our key composite of several historical series of price changes
with a few outputs of artificial models.

As already observed, the goal of modeling the real markets is certainly
not fulfilled by the top three lines, which represent the Fickian,
mesofractal and unifractal models. Considering the more important five
lower lines at least one record is real and at least one is a computer-
generated sample of the M 1972/97 model, the latest multifractal model
and (once again) a proper random variant of cartoon multifractality.

I hope the forgeries will be perceived as surprisingly effective. In fact,
only two are real graphs of market activity. Line 5 refers to the changes in
price of IBM stock and Line 6 shows price fluctuations for the dollar-
deutsche mark exchange rate. Lines 4, 7 and 8 strongly resemble their two
real-world predecessors. But they are completely artificial.

B. Conceptual Issues. Spontaneous Resonances of the Financial Markets

The good fit of the multifractal model raises an endless string of hard
questions. For example, price variation results in part from economic fun-
damentals. But it also results in part from structure of the financial
instituions and the financial agents' responses to the fundamentals and
other agents' actions. Which of these two causes is at the root of the very
partial flavor of “order in chaos” that characterizes multifractality?

Multifractals are found throughout physics, but to assume that the
regularities observed in price variations reflect regularities in the economic
fundamentals would be extremely far-fetched and require hard evidence
to be believed.

The alternative obvious thought seems far more likely, namely, that
institutions and the complex interactions in financial markets end up by
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creating some kind of order. Physics is skilled at studying the “sponta-
neous resonance of physical systems.” The behavior represented by the
multifractal model may well be closest to “spontaneous resonances of the
financial markets.”

If this last perspective proves fruitful, multifractality may provide a
new handle on a perennial and very important practical issue. A better
understanding might help improve society as well as some individual
bank accounts.

Additional consequences of multifractality from the viewpoint of poli-
tical economy are better considered elsewhere.

C. Transition to the Grid-Free Model Described in the Next Paper.

To recall and elaborate on history, the unifractal and mesofractal car-
toons were constructed after the fact. While they turn out to be of
intrinsic interest, they were designed to act as standbys/surrogates for two
grid-free models, respectively, the M 1965 model based on fractional
Brownian Motion and the M 1963 model based on Lévy stable processes.

As to the multifractal time, the cartoons that correspond to the lower
left quarter of Figure 5 and a grid-free model arose in my mind near-
simultanteously; the original papers issued in 1972 and 1974 are reprinted
in Mandelbrot (1999).

Next, consider the Brownian motion (Wiener or fractional) in
multifractal time. That process was conceived in the early 1979s, as
described on p. 42 of Mandelbrot (1997). I introduced the multifractal car-
toons much after the fact, as standbys/surrogates. That multifractal
process was first investigated in Chapter E6, and other early chapters, of
Mandelbrot (1997). In the next paper, this investigation, with many new
facts, is described in free-standing fashion with no reference to the car-
toons.

D. Relation between Grid-free Functions and their Cartoon Surrogates Explana-
tion of Figure 9.

To a large extent, both parts of Figure 9 replicate Figure 6 except for
the labels.

Figure 9 top relabels the loci of Figure 6 by the corresponding basic
grid-free functions, when they exist, and indicates when they do not.
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Figure 9 bottom refers to the recent books of mine, in which back-
ground material or all those grid-free models can be found. To explain
the notation by an example, “M 1997E” stands for “Mandelbrot (1997),
namely volume E in the author's Selecta series of books.”
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