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Abstract

This paper overviews some recent developments in panel data asymptotics, con-
centrating on the nonstationary panel case and gives a new result for models with in-
dividual effects. Underlying recent theory are asymptotics for multi-indexed processes
in which both indexes may pass to infinity. We review some of the new limit theory
that has been developed, show how it can be applied and give a new interpretation
of individual effects in nonstationary panel data. Fundamental to the interpretation
of much of the asymptotics is the concept of a panel regression coefficient which mea-
sures the long run average relation across a section of the panel. This concept is
analogous to the statistical interpretation of the coefficient in a classical regression
relation. A variety of nonstationary panel data models are discussed and the paper
reviews the asymptotic properties of estimators in these various models. Some recent
developments in panel unit root tests and stationary dynamic panel regression models
are also reviewed.

1 Introduction

Since the early 1960’s, economists have found panel data to be useful in studying a wide
range of economic issues that involve individual economic agents over time. A variety of
important and useful panel data sets have been constructed and are now widely available
in electronic form. Some of these panel data sets, like the Penn-World tables, cover
different individuals, industries, and countries over long time periods and have been useful
in assessing and comparing growth characteristics, like real per capita GDP growth. One
of the distinguishing features of these data sets is that they sometimes have an appreciable
time series dimension (7") as well as a large cross section dimension (n). In some cases,
the orders of magnitude of the cross section and time series dimensions are similar.

*We thank Essie Maasoumi, an anonymous referee, and Seung C. Ahn for helpful comments. Parts
of this paper were presented at the 8" Panel Data Conference, Goteborg, Sweden, June 1998. Phillips
thanks the NSF for research support under Grant Nos. SBR 94-22922 & SBR97-30295 and Moon thanks
the Cowles Foundation for financial support. The paper was typed by the authors in SW2.5.



These large n, large T panels have different characteristics and implications for theo-
retical and empirical analysis from the large n, small T' panel data sets which have been
the traditional object of study in panel data analysis.! For example, large n, large T
panel regression models call for the use of large n, T asymptotics rather than just large n
asymptotics. When T is large, there is an obvious need also to consider serial correlation
patterns in the panel more generally, including both short memory and persistent compo-
nents. In some panel data sets like the Penn-World Table, the time series components have
strongly evident nonstationarity, a feature which received virtually no attention in tradi-
tional panel regression analysis. In order to properly analyze large n and large T panel
data with such characteristics, it will generally be inadequate to appeal to conventional
methods of analysis which are based on large n, small T' data configurations.

Since the beginning of the 1990’s, there has been a burgeoning of theoretical and
applied research on the use of large n and large T panels allowing for nonstationarity in
the data over time. Without attempting a general purpose review, this paper overviews
some of the theoretical developments that have taken place in this type of panel data
analysis, concentrating on recent advances in the econometric theory of panel regression.
Our main focus of attention will be on some new asymptotics that have been developed in
our own recent work but the paper also attempts to put this work in the broader context
of the rapidly emerging literature on nonstationary panel data.

The organization of the paper is as follows. Section 2 discusses some concepts of multi-
index asymptotics that were introduced in Phillips and Moon (1999). Depending on the
asymptotic behavior of the two sample size indexes, n and T, a taxonomy of potential
limit theories is provided and the relationships among them are briefly discussed. Section
3 gives a new interpretation of individual effects in nonstationary panel data and suggests
a natural data generating process for nonstationary panel data with individual effects.
Section 4 defines the concept of a long-run average relation in an analogous way to that
of a regression coefficient in a classical linear regression, as in Phillips and Moon (1999).
Section 5 reviews various linear regression models with nonstationary panel data and limit
theories of various estimators of the long-run average parameter. This section extends the
panel spurious regression framework studied in Phillips and Moon (1999) by allowing for
individual effects and gives some new asymptotic results for the expanded model. Section
6 briefly reviews conventional dynamic panel regression models, some recent developments
on panel unit root tests and the estimation of the localizing parameter in near integrated
panels. Section 7 cites some recent and ongoing empirical work with nonstationary panels.
Section 8 concludes and mathematical derivations are given in the Appendix.

2 Multi-Index Asymptotics

In regressions with large n, large T panels most of the interesting test statistics and
estimators inevitably depend on both n and T In consequence, a limit theory for such tests
and estimators generally needs to allow both indexes to pass to infinity. Conventional limit
theorems, by contrast, rely on the passage to infinity of a single index and are therefore
not directly applicable in a panel context where there are twin indexes of sample size.
This section reviews some concepts of multi-index asymptotics that were introduced in
Phillips and Moon (1999) that are useful in the development of panel limit theory.

! Chamberlain(1984), Hsiao(1986), Matyas and Sevestre(1992), and Baltagi(1995) review much of the
past research on conventional large n but small T panel data.



A typical multi-indexed process of the type that occurs in much panel data analysis
has the following linear form

Xur = 1= 3 Vi,
" =1

where Y; 7 are independent random vectors across ¢ and usually a typical ¥; 7 component
is a standardized sum of time series component of panel data. An example of a typical
double indexed process is the following simple panel regression model with individual
effects,

Yit = Q; + Bri g+ uiy.

In this model, attention is often given to the following pooled OLS estimator (sometimes
called the within estimator):

P PO P (Uz’,t —F> uz‘,s) (%t —F > ﬂfz‘,s)
p— 2 -
T T
Z?:l D1 (xi,t - % D1 xi,s)

(2.1)

In developing a large sample theory for B, the primary objects of interest involve the limits
of quantities of the form

1 n
Xpr =— E Yir,
n, T n - A

where, for the numerator of (2.1), we have

1T 1T 1 T :
D el (mi,t — T D eml xi7s) <ui7t — T D eml u,»7t) stationary case

Yir =
1 1 1 1 1 T .
T D i1 <xi7t — T D eml xi7s) <ui¢ — T2 1ui7t) nonstationary case

’

and, for the denominator of (2.1), we have

IS Az — =T 4y ’ stationary case
T t=1 it T s=1 Vit ’ ry ca

Yir = 1 T 1 T 2 .
T D i1 (wi,t — T2 i1 x@t) nonstationary case

i

In general, limits for double indexed processes like X, 7 depend on the treatment of the
two indexes, n and T, which tend to infinity together. Several approaches are possible,
depending on the passage to infinity of the two indexes. These are reviewed below.

(a) Sequential Limits A sequential approach is to fix one index, say n, and allow the
other, say T, to pass to infinity, giving an intermediate limit. Then, by letting n pass to
infinity subsequently, a sequential limit theory is obtained. We write sequential limits of
this type as (T',n — 00)geq- In practice, when a double indexed process is of the typical
form, 7.e.,

1 n
X = 1 2; YirT,
1=

and the limit of Y; 7 is ¥; as T" — oo, we derive the sequential limit of X,, 7 as follows.
By passing T — oo for fixed n , an intermediate limit X,, = ﬁ > i1 Y; is found. Then,
by letting n — oo and by applying an appropriate limit theory to the standardized sum



X, = ﬁ > i1 Y;, the final sequential limit X is obtained. Usually, when k,, = n, a law of
large numbers can be applied, and when k,, = y/n, a central limit theorem can be applied.
In many applications, sequential limits are easy to derive and helpful in extracting quick
asymptotics. However, sometimes sequential limits can give misleading asymptotic results,
and at the end of this section a simple example is provided that illustrates the type of
problem that can arise with sequential limits.

(b) Diagonal Path Limits A second approach is to allow the two indexes, n and T,
to pass to infinity along a specific diagonal path in the two dimensional array. This path
can be determined by a monotonically increasing functional relation of the type T'= T'(n)
which applies as the index n — oo. This approach also simplifies the asymptotic theory
by replacing X, r with the single indexed process X, (). Quah (1994) and Levin and
Lin (1993) used this approach in finding the limits of panel unit root test statistics. One
drawback of diagonal path limit theory is that the assumed expansion path (T'(n),n — o)
may not provide an appropriate approximation for a given (7', n) situation. Moreover, the
limit theory that is obtained by this approach can depend on the specific functional relation
T = T(n) that is used in the asymptotic development. Again, we refer to the example at
the end of this section for an illustration of what can happen.

(c) Joint Limits A joint limit theory allows both indexes, n and T, to pass to infinity
simultaneously without placing specific diagonal path restrictions on the divergence, al-
though it may still be necessary to exercise some control over the relative rate of expansion
of the two indexes in order to get definitive results. Diagonal path limit theory turns out
to be a special case of joint limit theory. In general, a joint limit will give a more robust
result than either a sequential limit or diagonal path limit, but will also be substantially
more difficult to derive and will usually apply only under stronger conditions, such as
existence of higher moments, that will allow for uniformity in the convergence arguments.
More importantly, it is not generally true that a sequential limit is equal to a joint limit.
In the case of real number sequences, there are many such examples in real analysis (e.g.,
Apostol, 1974, p. 200). Here we give a simple example for a double sequence of random
variables to illustrate what can happen.

Example Define the array of random variables

g _N@O) ifizt>1
SETAN(0,1) ifi <t

i

where Z;; is independent across 7 and over t. Let Y;7 = %ZL Ziy and X, 7 =
ﬁ > . Yir. Then, it is easy to verify that X,, 7 converges in distribution sequentially
as (T',n — 00)seq to N(0,1). Now let n = T". Then, X,, (= X7+ ) has different limit
distributions as the values of r change. In particular, as T' — oo

N(0,1) ifr <3
Xpep = ¢ N(0,3) if r=3
does not converge if r > %

So, sequential limits and diagonal path limits can give quite different results in this case.
There is no general joint limit theory here for X,, 7 because X, v diverges if n increases

4



too fast (i.e., n/v/T — c0). Indeed, a different normalization from /7 is required in this
part of the array to obtain a well defined limit.

A fundamental question to ask is which are the cases where sequential limits will be
equivalent to joint limits. Some intuition can be gleaned from known results for a double
indexed real number sequence. In that case, if first stage convergence in the sequential
limit holds uniformly in the other index, then the sequential limit will be a joint limit.
That is, if X, 7 converges to X,, uniformly in n as T" — oo, then the sequential limit of
Xy, is the same as the joint limit of X, 7.

Phillips and Moon (1999) gave a generalization of this uniform convergence condition
for random variable sequences that is applicable to multi-indexed asymptotics. That paper
discussed the two cases of convergence in probability and convergence in distribution. The
conditions given in the paper are relatively easy to verify and hold under what are fairly
conventional regularity conditions. This approach to an asymptotic theory enables us to
establish the joint limit of a double indexed sequence rather easily: we first derive the
sequential limit and then verify the sufficient conditions that ensure the joint limit theory
applies. The multi-index asymptotic theory in Phillips and Moon (1999) is applied to joint
limits in which T,n — oo, and % — 00, i.e, to situations where the time series sample is
large relative to the cross section sample. However, the general approach given there is
also applicable to situations in which % — 0, although different limit results will generally
obtain in that case.

3 Individual Effects in Nonstationary Panel Data

Modeling, interpreting and dealing with individual effects is a crucial element in much
panel data analysis and the same is true of the nonstationary case. In a simple dynamic
panel regression model such as

Zig = o + Bzig_1 + uiyg, (3.2)

where the «; are time invariant individual effects, if |3| < 1, the time series components
of z;; are stationary. In this case, depending on the underlying econometric application,
conventional panel analysis offers different interpretations to the «;, which sometimes
appear as incidental parameters and sometimes as random components. When § = 1, the
time series components of z;; are nonstationary and this section offers an interpretation
of the individual effects in terms of individual specific deterministic trends.

To motivate, we start with the simple dynamic model (3.2) with 3 = 1. Recursive
substitution leads to

Zit = Q;+2Zip 1+ Uy

¢
= ot + E Uis + 230
s=1

= it + zgt, say, (3.3)

where z?t = z?tfl + u;¢ so that z?t is a pure unit root process. The reformulation in

(3.3) reveals that nonstationary panel data with individual effects are composed of two
components: (i) stochastic trends represented by zgt whose time series components are



pure unit root processes; and (ii) individually different (sometimes randomly different,
depending on the assumptions concerning «;) deterministic trends o;t, which are the real-
izations of the individual effects. This suggests that a natural interpretation of individual
effects in nonstationary time series is as individually specific deterministic trends. Such
formulations seem particularly useful in modelling aggregate macroeconomic time series
like GDP per capita across countries which may have some individually specific growth
characteristics while at the same time all having stochastic trends or autoregressive roots
near unity.

Extending model (3.3) to the vector case is straightforward. Simply let Z;; be an
m—vector panel series and A; o and A;1 be m—vector coefficients. Then, a natural data
generating process for such panels with individual effects and allowance for nonstationarity
would be the components model?

Zit = A@o -+ A¢71t + th, (3.4)
Z'Ot = th_l + Ui,t-

Models of this type may be useful in modelling several aggregate or financial series simul-
taneously over time and across countries. In such cases, we may also wish to allow for

the elements of A; 1 to be restricted in some way, perhaps by a functional dependence on
another parameter, while still allowing for variation across i.

4 Long-Run Average Relationships

If (Y, X) is bivariate normally distributed as N (0, %) with

_ Eyy Eyw
= { Syr Sra ]

then the regression coefficient of Y on X is defined as the ratio 3 = £,,3,}. Similarly, in
the classical linear regression model

Y, = 6Xt + Uy, (45)

where EX; = EU; = 0, and X; and U, are uncorrelated, the regression coefficient 3
satisfies the moment condition between Y; and X; given by

8= (EY:X}) (EX.X]) " = £,.5,.). (4.6)

It turns out that this type of classical regression coefficient can be extended to regression
models with nonstationary time series variables. Suppose the dependent variable Y; and
independent variable X; are unit root nonstationary and satisfy

Yo\ _ (Y ) ( U
Xt Xt—l Ua:,t

?Usually, the individual intercept terms Ao can be absorbed into the intial condition of Zﬂo. Even if
the A, can be identified by specifying a DGP for Zgo, usually the A;o are not consistently estimable
using time series components. See Phillips and Lee(1996) for some further discussion of this issue.
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y,tr Yt
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with stationary errors Uy = ( ),. Let the long-run variance matrix of U; be given

by

ﬂ‘“

k=—o0

and partitioned as

Within this framework, it is possible to define a classical long run regression coefficient
between Y and X for the long run covariance matrix €2 that is analogous to the coefficient
B in (4.6) . In particular, we can define

! / -1
%%) [lij{nE (X—\/% %)] = lrcov (Yy, X, ) [lrvar (X)) 7! = Q. Q1
(4.7)
and in this case (8 is interpreted as a coefficient that defines a long-run relation between
two nonstationary variables Y; and X;.

When 2 has deficient rank, it now a standard result in the nonstationary time series
literature (e.g., Engle and Granger, 1987 and Phillips, 1986) that (3 is a cointegrating
coefficient in the sense that the particular linear combination Y; — X, is stationary. A
more interesting and remarkable feature of J is that it measures a statistical long-run
correlation between two nonstationary variables X; and Y; even in the absence of time
series cointegration. To see this point more clearly, suppose that two nonstationary time
series variables Y; and Xy have the following relation,

ﬂzlij{nE(

Y;f = Ft+I/[/t7
Xt = Ft

VVt _ I/thl + Uw,t
F; Fi 4 Ure )’

and where Uy, 5 is independent of Uy ; for all £ and s and has non-zero long-run variance. In
this example, F; may correspond to a nonstationary common factor variable of Y; and X,
and W, to a nonstationary idiosyncratic factor variable. Since W; is nonstationary over
time, it is apparent that there is no cointegrating relation between Y; and X;. However,
since the two nonstationary variables Y; and X; share a common contributory nonstation-
ary source in Fy, we may still expect to find evidence of long run correlation between X
and Y;, and this is what is measured by the regression coefficient 3 in (4.7) .

Phillips and Moon (1999) extended this concept further to that of a long-run average
relation. As we will discuss in the next section, this concept turns out to be useful in
interpreting panel regressions with nonstationary data of the form

with

}/;,t - Bn,TXi,t + [?i,ﬁ (48)

or
Yit =& + B, rXit + Ui,



where time series components of (Y;’ t?Xz(,t), are nonstationary®. To explain this notion,
suppose panel observations of Y;; and X;; are available. In many applications it will be
realistic to allow for some heterogeneity across individuals ¢ in the population. This cross
section heterogeneity can be characterized by heterogeneous long-run variance matrices 2;.
The €2; can be taken to be randomly drawn from a population whose mean is ) = FE€;.
In this context, it is a natural extension of the usual classical concept of a regression
coefficient to define the long-run average regression coefficient 3 as

ﬁ =F (Qyzfm) E (Qmimi)ilz QZ/EQ;;? (49)

s [y 12":E<YitX£t> ; 12":E<X”X§t> - o0 ot
= im — e 1im — = —= = T ;:zu
nT n = VT T n,T N VT T Y

which is simply the regression coefficient corresponding to the average long-run covariance
matrix .4

or

5 Linear Regression with Nonstationary Panel Data

Depending on the time series structure of the panel data, panel regressions of Y;; on
X, can be categorized into four cases: (i) panel spurious regression, where there is no
time series cointegration; (ii) heterogeneous panel cointegration, where each individual
has its own specific cointegrating relation; (iii) homogeneous panel cointegration, where
individuals have the same cointegrating relation; and (iv) near-homogeneous panel cointe-
gration, where individuals have slightly different cointegrating relations determined by the
value of a localizi/ng parameter. Assuming that the time series components of the panel
Ziy = (Y;’ t,XZ(7t) is integrated, Phillips and Moon (1999) investigated these four models
and developed panel asymptotics for regression coefficients and tests using both sequen-
tial and joint limit arguments. This section briefly reviews the main findings that relate
to these nonstationary panel regression models. The final part of the section extends the
asymptotics to the case where the DGP for panel vector integrated contains individual

/
effects, that is panel data Z;; = (Y’ Xz’t) that are generated by (3.4).

it

(a) Panel Spurious Regression In the nonstationary time series literature, when the
long-run covariance matrix €2 of the differences of a nonstationary vector Z;; = (Y X0
has full rank, an OLS regression of ¥; and X} is said to be spurious (Granger and Newbold,
1974 and Phillips, 1986) and there is no cointegrating relation between them. Now consider
the panel regression of two such component random vectors, Y; ; and X ¢, for which there

3For expositional convenience, this paper considers the case of (4.8) , where there is no individual effect
in fitted regressions. For the more general case with the individual effect in the regression, refer to Phillips
and Moon (1999).

"When the nonstationary panel data are generated by vector integrated process with individual effects

Ziy = Aio+ Aiit+ Zzo,t,
Z?,t = Z’?,tfl + Ui,

the average long-run relation between the elements of Z; ¢, say Yi: and X; ¢, can be formulated by the
regression coefficient of the long-run average covariance matrix of th.



is no cointegrating relation among the elements of Z;; for any i (i.e., the conditional
long-run covariance matrix of AZ;,, €);, is positive definite almost surely for all 7). The
regression has the form

Yip = BXiy + Uiy (5.10)

or
Yie = a; + BXi,t + Uzt (5.11)

In this case, Phillips and Moon (1999) showed that under quite weak regularity conditions
the pooled least squares estimator 3 is v/n—consistent for the long-run average relation
parameter G and has a limiting normal distribution. In other work, Moon and Phillips
(1998a) showed that in (5.11) a limiting cross section regression with time averaged data is
also \/n-consistent for 3 and again has a limiting normal distribution. In some related work
on nonstationary panel cointegration tests, Pedroni(1995) and Kao and McCoskey(1998)
looked at model (5.11) under more restrictive conditions than Phillips and Moon (1999).
In this section, for convenience, we consider the simple model (5.10) .

The idea behind the consistent estimation of the long run average coefficient in a
spurious panel is simple and intuitive and can be explained as follows. In a time series
spurious regression of Y; on X; the limit of the OLS estimator Bsp is a nondegenerate
random variate that is a functional of Brownian motions as in (Phillips (1986))

T T -1 . . 71
A 1 1
t=1 t=1 : ’

where (B;,Bg’v) is a vector Brownian motion with covariance matrix €2 and integrals

here and elsewhere in the paper are taken over the interval [0, 1]. In this case Bsp is not
consistent for 3. However, by a simple calculation

< BB> Qe < BB> Qe
5= E< [ ByB;> [E ( [ BmB;ﬂ 0,0,

The idea in Phillips and Moon (1999) is that independent cross section data in the panel
adds information and this leads to a stronger overall signal than that of the pure time
series case. More specifically, in the panel case, we have the estimator

_ 3t Y,
T= Z (ﬁ Z Ethz‘,t) {g Z (ﬁ ZX%th’,t>] ;
=1 t=1 i=1 t=1

which pools information across individuals i. If we fix n and let T'— oo first and then let
n — 00, we have
/ By, By,

E(/ ByB;> [E (/ BmB’w>] =0yt =Basn —oco.  (5.12)

9

so that

Bn,T = = / By, B’ as T — oo for fixed n




Similarly, the OLS estimator with time averaged data, which is called a limit cross section
estimator,
1 n T 1 T
- = - Ny

1 (%i ©) s

has the following sequential limit as (7, 00)seq
N 1 n " " , 1 n " .
6n,T = E z; Byi. Bwi E z; BfBi , B

. . . . —1
» [E/ Byi/B;Z} [E/ Bmi/ B;i] =0yt =B asn —oo. (5.13)

So both BmT and Bn,T are consistent for (3.

as T — oo for fixed n

(b) Heterogeneous Panel Cointegration Regression When the long run covariance
matrices §2; have deficient rank, there will exist time series cointegrating relations among
the elements of Z; ;. These relations will, in general, be heterogeneous and the model will
then be a heterogenous panel cointegrating regression of the form

= ﬁiXi,t + E@t, (514)

where (3, = Qyzngm z, are randomly differing individual cointegration coefficients and the
E; ; are stationary. Phillips and Moon (1999) showed that in model (5.14) the pooled least
squares estimator B is y/n—consistent for 3 and has a normal limit distribution.

Pesaran and Smith(1995) studied limiting cross section regressions with time averaged
data and established consistency with restrictive assumptions on model (5.14). An im-
portant difference between these studies is that Pesaran and Smith(1995) use an average
of the cointegration coefficients, given by Bpg = E (3;) , which is generally different from
the long run average regression coefficient 3 because®

E (o) # E Qi) [E Qi) -

In order to define 3pg, there needs to exist cointegrating time series relations, whereas (3
is defined irrespective of the existence of individual cointegrating relations and relies only
on the long run average variance matrix of the panel. In this aspect, the use of the long
run average regression coefficient 3 seems to be a more robust concept than the average
coefficient Bpg in empirical works.

(c) Homogeneous Panel Cointegration Regression The third model assumes that
the same cointegrating relation between Y;; and X;; applies for all ¢, viz.

¢ = BXit + Eiy, (5.15)

°Of course, there are some cases where two long-run average relations are equivalent. For example
Quzia; = Qaqe for all .

10



where 3 = Q,, Q7 is a homogeneous cointegrating coefficient. This common cointegrating
relation may be suggested by an underlying economic theory.

Among recent contributions to the nonstationary panel data literature, Phillips and
Moon (1999), Pedroni(1996), and Kao and Chiang(1998) have all investigated limit theo-
ries for various estimators of 3 in model (5.15) . Each of these studies has found that the
pooled OLS estimator of (3 is y/n- consistent or \/nT - consistent depending on whether
or not there exists serial correlation in the time series component of (E;;, AX; ;). This
happens because serial correlation in the time series component of (E; ¢, AX; ;) generates
a second order bias arising from a one-sided long-run covariance between E;; and AX,
(see Phillips and Durlauf, 1986, Park and Phillips, 1988, and Phillips and Moon, 1998),
but in the panel case this bias is serious enough to alter the rate of convergence of the
estimator. To address the bias problem in the time series case, some specialized estima-
tion procedures have been suggested. Among these the fully modified (FM) method has
attracted the most interest and is the most used in empirical research.

The FM method was originally suggested by Phillips and Hansen(1990) to eliminate
endogeneity in the regressors (arising from correlation between X;; and E;; in model
(5.15)) and serial correlation in the errors (i.e., serial correlation in (E;;, AX;,)), both of
which generate the second order bias (see Phillips and Hansen, 1990, and Phillips, 1995,
for a full exposition). In the nonstationary time series literature, it is well known that
the FM method yields an optimal estimator for the cointegrating coefficient in Gaussian
cointegration regression models (Phillips, 1991). To show how to apply the FM approach
in a panel regression model, we consider the simple model (5.15) , where the error process
(Eiﬂg, AXz’,t) is iid across ¢. Let €2 and A denote the long-run covariance matrix and one-
sided long-run covariance matrix of (E; ¢, AXj; ;) , respectively, and partition these matrices
as follows:

Qee  Qeox . > . Aee Aex _ -

€ = <Qw Qo > =2 Ty A= ( Age Aus > =20
j=—o0 =0

r. - & EitEiryj FEi1Xity

J XipBitry XigXitrs )

To construct a panel FM estimator, we need to obtain consistent time series estimators
Q) and A of Q and A. In our case, consistent estimates may be constructed using averages
(over i = 1,..,n) of the usual consistent (as T' — o0o) nonparametric kernel estimates of the
corresponding long-run quantities for each i. More specifically, let I (J) = % > F,tFZ’ b4
where the summation is over 1 <t, ¢t +j < T, and define the averaged kernel estimators

n T—1

O = 130, = Y w(f)0),
i=1 j=—T+1

A no T-1 N
i=1 Jj=0

where w(z) is a lag kernel (for detailed conditions on suitable kernels, see Phillips and
Moon, 1998). Then, define the modified dependent variables

T

Y:g = Y;,t - QerEIAXi,t (516)
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and serial dependence eliminator
AL = Ay — Qe Ay (5.17)

Equation (5.16) gives the panel endogeneity correction and equation (5.17) gives the panel
serial correlation correction. Using these corrections, a pooled FM (PFM) estimator can
be defined as follows:

. n T A n T -1
Bprm = (Z Z Y;Jnglt - nTAL) (Z ZXZtX’:; :

i=1t=1 i=1t=1

Then, as shown in Phillips and Moon (1999), 3 pra 18 /nT - consistent for 5 and has a
normal limit distribution.

(d) Near-Homogenous Panel Cointegration: This model has the form

Yit = 08;Xir + Eit, (5.18)
where 9
_ i
The model allows each individual to possess a slightly different cointegrating relation in
a localizing sense. As shown in Phillips and Moon (1999), the PFM estimator for 3 is
v/nT-consistent and a normal limit distribution with an asymptotic bias that depends on
the average noncentrality, E (6;), in (5.19).

(5.19)

5.1 An Extension to Models with Individual Effects

This section provides some new results that show how to extend the above ideas to
models with individual effects in the DGP. Suppose that the m—vector of nonstationary
panel data Z; ; is generated by an integrated process with individual specific deterministic
trends as in

Jiy = Ai,O + Ath + th, (5.20)
Z'Ot = Z'(?tfl + Ui7t7

(2

where the conditional long-run covariance matrix of th is positive definite almost surely.
As we discussed above, the trends A; o + A; 1t reflect individual specific effects in the
panel data Z; ;. This section shows how to estimate the long-run average relation between

two elements of Z;; = (Y;’ t,XZ(7t>, in the presence of individual specific trends. Only the
case of panel spurious regression is covered here, the panel cointegrating case being very
similar®

Consistent estimation of the long-run average relation 3 is quite straightforward. First,
we estimate the trend coefficients” A;i o and A; 1, then detrend Z; ; by taking the residuals

®In the nonstationary time series literature, models like (5.20) have been widely studied. For example,
Phillips(1989) investigated spurious regressions and Johansen(1991) studied cointegration regressions in
this context.

" As mentioned earlier, it is impossible to consistently estimate the intercept coefficient A;o. But this
fact does not affect consistent estimation of 3.
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from this regression. Next, the detrended data is pooled and used in least squares regres-
sion to estimate (3. Following recent work in the time series literature (Phillips and Lee,
1996; Canjels and Watson, 1997), we consider two different detrending procedures based
on OLS and GLS regression. The OLS detrended data denoted as Z’t is constructed as

> T ’ T Nt
Zig = Zig = Y1 ZisYs (25—1 gsgs) gt
-1
= ZZOﬂf ZS 1 sgs (Zt 1 gsgs) Gt (t = 17 7T ;Z. = ]-7 7”) )

where g; = (l,t)', so that Zz-,t is the time series OLS residual of Z;; on the linear trend
gt = (1,t)". When the component time series Z. ;¢ is a pure unit root process, time series
differencing forms the basis of the GLS transformatlon, as it is not necessary to use any of
the short memory serial correlation properties in the formation of an efficient detrending
procedure (Phillips and Lee, 1996). Thus, we have

AZiy = Ain +AZ), for2<t<T.

(5.21)

and then the GLS estimator of A; ; is
_ - 1
A= 1 ;Azi,t =71 (Zir — Zi1) -

as in Schmidt and Phillips (1992). The intercept coefficient A, ¢ is estimated by taking an
average of Z;; — Ajqt, i.e.,

Aig =

zlt

< = (Zir - Zi,1)> .

The GLS detrended process, ZM, is then defined as®

’ﬂ |

’ﬂ |

Zix = Zig— g1 (Zir — Zin) — TZS 1( —ﬁ(zi,T—Zm)), 1<t<T

’

= th - ﬁ <Z2T - i,l) - T Zs:l < is Til <ZZQ,T - Zzo,l)) .

5 Yy >\ > > o\ .
Now, let Z; ; = (Y;’ t,X£7t> and Z; ¢ = (Y;-’t, X;,::) , where the partitions are conformable.

Using this detrended data, the following two estimators of 3 can be constructed:

n T L n T ~ o~ -
— <Z Z Y;-,tXZﬂt> (Z Z thXz't>
i=1 t=1 i=1t=1

and

i=1 t=1 i=1 t=1

n T n T -1
(e ()
The following result, whose proof is in the Appendix gives a sequential limit theory for
these estimators.

8This particular detrending procedure has been used in much recent work on nonstationary time series
— see Bhargava(1986), Stock(1991), and Schmidt and Phillips(1992).
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Theorem 1 In sequential limits as (T,n — 00),,,

(a) st Bs —p B.

(b) \/5(35—5) :N(0,225 (1 @ In,) O, (Q;;®Imy))
VB, —3) = N (0,144 (Q7} @ Ip,,)) O (U @ I, ) -

Theorem 1 shows that the pooled least squares estimators using the detrended data
are /n- consistent for the long-run average parameter [ and they both have normal
asymptotic distributions. From the expressions for the variance matrices given in the
appendix and writing

Qo = Cwic.'/tﬂ Qyy; = Cin:lI/i

we deduce that

1440, — 2250,
144 225 x 11
(ﬁO B 12600 ) E (lewl ® ( Yiyi BQQ‘%% yﬂriﬁl + BQazlxzﬁl))

144 225 x 11 )
(% B W) E (i = Qiai) @ (Qyiz, = B%,2;) Komyom. )

= 0.0036E [(Cy; ® (Cy, — BC,)) (T2 + Kom) (Cy @ (Cy — BCy))'] > 0.

It follows that OLS detrending leads to an asymptotically more efficient estimator of the
long run average coefficient 3 in pooled regression than GLS detrending. This result, which
may seem unexpected, is explained as follows. GLS detrending produces a more efficient
estimator of the trend coefficient than OLS detrending in time series regression. However,
the residuals after time series GLS detrending have more cross section variation than they
do after OLS detrending and this produces great variation in the limit distribution of the
pooled regression estimator of the long run average coefficient.

Theorem 1 can also be shown to hold when we take joint limits of the indexes provided
7 — 0. We do not give a proof for the joint limit here, but refer readers who are interested
in joint limit arguments to Phillips and Moon (1999).

5.2 Issues of Pooling and Cross Section Regression with Nonstationary Panel
Data

In panel regression models, when the parameter of interest is the average effect between
two variables and both n and T are large, different ways of aggregating panel data can
lead to different results. For instance, in a random coeflicient dynamic stationary panel
regression model, the pooled estimator is inconsistent for the average of the random coeffi-
cient, while a limiting cross section regression gives a consistent estimate (e.g., see Pesaran
and Smith, 1995). However, in nonstationary panel regression models, both the pooled
least squares estimator and the limiting cross section estimator are sometimes consistent
for the long-run average relation parameter. An example is the spurious panel regression
model in (5.10), and the results given in (5.12) and (5.13) confirm this.
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6 Dynamic Panel Regression

6.1 Conventional Methods

One of important regression models in panel data analysis is a dynamic panel regression
model with individual effects, and the simplest form is

Ziy = o + Bzig_1 + uiyg, (6.22)

where «a; denote individual effects. In conventional dynamic panel analysis it is usually
assumed that the size of time series component 7' is fixed while the cross-sectional dimen-
sion n goes to infinity. In this case, it is well known that widely used estimators such as
the within estimator and the first difference estimator are inconsistent and generate as-
ymptotic biases (e.g., Nickell (1981) calculated the asymptotic bias of the within estimator
for § and showed that it vanishes to zero as T' — o0.) This problem is quite similar to
the classical incidental parameter problem found by Neyman and Scott (1948) ( Recently
Lancaster (1998) surveys various incidental parameter problems that arise in econometric
models.).

A simple way to overcome the incidental parameter problem is to treat the individual
effect parameters «; as random variable whose distribution belongs to a finite dimen-
sional parameter family. Depending on different specification of the joint distribution of
a; and z; ¢ (initial observations), we may have different likelihood functions (e.g., Ander-
son and Hsiao, 1981, Anderson and Hsiao, 1982, Bhargava and Sargan, 1983). In this
case, according to the studies mentioned above, the maximum likelihood estimators are
usually consistent, although there are some exceptions (e.g., see Hsiao, 1986 Chapter 4 for
exceptional cases.).

A drawback of the MLE approach is that it often requires quite strong assumptions on
distributions of the individual effect a; and the initial condition z; ¢. Also the computation
of the MLE is usually not simple. An alternative method to overcome these problems of
the MLE is to use an simple instrumental variable (IV). For example, Anderson and Hsiao
(1981) used zi1—2 as an IV in the first difference regression. The IV estimation method
is usually easy to implement, even though IV estimators in the early literature are not
efficient in general. During the 80’s, as a generalization of the IV estimation method,
the Generalized Method of Moments (GMM) estimation method was developed (Hansen,
1982). The GMM estimation utilizes the information on the population moment conditions
implied by economic theories or underlying data generating processes. Since than, recent
dynamic panel studies have applied the GMM approach in estimating the dynamic panel
regression model. From the assumptions imposed on the data generating process of the
dynamic panel data, relevant population moment conditions are found. Based on these
conditions, one constructs an efficient GMM estimator that is consistent and asymptotic
normal under quite weak conditions. In this case, various GMM estimators are possible,
depending on the different moment conditions. (e.g., Ahn and Schmidt, 1995, Ahn and
Schmidt, 1997, Arellano and Bond, 1991, Arellano and Bover, 1995, Chamberlain, 1992,
and Hahn, 1997, Blundell and Bond, 1998).

On the other hand, the availability of large n and large T" panel data sets initiates new
studies of the dynamic panel data analysis for large n and large T panel data. In this
case, the modeling of time series components in the panel data are important in analyzing
asymptotic theories. In particular, depending on the value 3, the time series in the panel
are stationary or nonstationary and totally different limit theories are applied.
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Assuming |3| < 1 and normality in the disturbances, Alvarez and Arellano (1998) and
Hahn (1998) studied the asymptotic properties of various estimators for 4 in the dynamic
panel regression model when both n and T are comparable. According to Alvarez and
Arellano (1998), when T'/n tends to a nonzero constant, the within, GMM, and LIML
(Limited Information Maximum Likelihood) estimators have negative asymptotic biases
of order T, n, and (2n —T), respectively. Parts of these results are also obtained in
Hahn (1998) independently. Hahn (1998) first showed that when 7'/n tends to a nonzero
constant, both the MLE and IV estimators have asymptotic bias. In the case of the MLE
he developed a device to fix the asymptotic bias and, using a convolution theorem, he also
showed that the bias corrected MLE is asymptotically efficient.

6.2 Nonstationary Dynamic Panel and Panel Unit Root Tests

When £ in (6.22) equals to one, the time series components in the panel are nonstationary,
and in this case it requires to apply different approximation theories from the stationary
case. An important model for nonstationary panel data where there has been active recent
interest is the following dynamic system

Aziy = ;i + (B —1)zip 1+ Uiy, (6.23)
or
Zig = o+t + zgt, (6.24)
zgt = ﬁzgt_l + i ¢,

where 8 = 1, and so the time series components of the panel z;; have unit roots for
all individuals z. This type of model has been widely investigated especially in studies
concerned with panel unit root testing.

Quah(1994) first suggested a simple panel unit root test statistic and indicated its
usefulness in applications such as tests of growth convergence theories in macroeconomics.
Using a simple panel unit root regression model

2it = Bzig—1 + Uiy,

where 3 = 1, he suggested a simple panel unit root test using the pooled OLS estimator.
Assuming that the u;; are iid across ¢ and over ¢ and the order of magnitude of the
cross section and time series dimension is the same, i.e., n = T, Quah showed that the
panel unit root test statistic has a normal limit distribution. Levin and Lin(1993) extended
Quah(1994)’s panel unit root test using an augmented version of the panel unit root model
(6.23) . In deriving large n and large T' asymptotics, they allowed for a more general
relationship between n and T, T' = T'(n), and considered heterogenous error processes.
Using a dynamic panel regression model of type (6.23), Im et al.(1997) developed panel
unit root tests based on an average of individual LM tests assuming Gaussian errors.
Considering a more general alternative hypothesis, Choi(1997) and Maddala and Wu(1997)
independently suggested panel unit root test statistics based on various combinations of
the p-values of unit root tests applied to each individual. Following an approach in the
time series literature suggested by Kwiatowski et al.(1992), Hadri(1998) proposed a panel
version of a residual based LM test for a null of trend stationary against the alternative
of a unit root for panel data.
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On the other hand, using model (6.24), where 8 = exp (%) , Moon and Phillips (1998b)
focused on estimating the localizing parameter ¢ in (3. The local parameter ¢ character-
izes the local behaviour of the unit root process. Information about this parameter is
useful in the context of several different econometric procedures. A few examples are the
analysis of the power properties of unit root tests (Phillips, 1987) and cointegration tests
(Phillips, 1989, Johansen, 1991), the construction of confidence intervals for the long-run
autoregressive coefficient (Stock, 1991), the development of efficient detrending methods
(Phillips and Lee, 1996, Canjels and Watson, 1997), and the construction of point opti-
mal invariant tests for a unit root (Elliot et al., 1996) and cointegrating rank (Xiao and
Phillips, 1999). However, the local to unity parameter ¢ in = exp (:%) cannot be con-
sistently estimated using time series data (although the reader is referred to Phillips et
al., 1998, for an alternate block local to unity model in which the consistent estimation
of ¢ is possible). The paper by Moon and Phillips (1998b) developed procedures for the
estimation of the local parameter using panel data. They showed that when ¢ < 0, it is
possible to estimate ¢ consistently with panel data and derived asymptotic properties of
the estimators. As an application, they showed how to extract the deterministic trend
efficiently using consistent estimates of c.

The panel unit root tests we have reviewed above are also closely related to residual
based panel cointegration tests for a null of no cointegration. To test for time series
cointegration, Phillips and Ouliaris (1990) proposed various test statistics for cointegration
between two nonstationary time series, y; and x;, say, by applying unit root tests to the
residual of the regression y; on x;. Recently, Pedroni (1995), McKoskey and Kao (1998),
Kao (1999) applied this idea to test for cointegration in nonstationary panel data and
investigated some properties of cointegration statistics in pooled time series panels for the
null of no cointegration.

7 Empirical Applications

The econometric methods reviewed above, especially panel unit root tests, panel cointe-
gration tests and the estimation of long-run average relations, have formed the basis of
some recent empirical econometric studies with large n, large T" panels. For example, using
panel unit root tests, Bernard and Jones (1996) tested growth convergence theories, and
MacDonald (1996), Oh (1996), Pedroni (1997), Wu (1996), and Wu (1997) tested various
forms of purchasing power parity relations using both panel unit root tests and residual
based panel cointegration tests. Coakley et al.(1996) developed an economic model where
panels of savings and investments are cointegrated and tested the theory using residual
based panel cointegration tests. On the same topic and allowing for savings and invest-
ment rates to be nonstationary but not requiring that there exist time series cointegration
at the individual level, Moon and Phillips (1998a) argued that what Feldstein and Horioka
(1980) and many subsequent authors have estimated in cross section regression of time
averaged savings and investment rates is a long-run average relation between savings and
investment rates. The existence of a long run average relation in such a context is justified
by the arguments outlined in Section 4. In rerunning regressions of the Feldstein—Horioka
type and using asymptotically valid econometric tests, Moon and Phillips (1998a) found
evidence that continues to support the original conclusions of the Feldstein—Horioka study.
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8 Concluding Remarks

This paper provides an outline of recent developments in the econometric theory of non-
stationary panel data. The field offers some interesting new asymptotic theory for multi-
indexed processes and introduces the new concept of a cross section average long run
relation that relies both on the time series notion of the long run and the cross section
notion of a statistical regression coefficient. These techniques and conceptual apparatus
provide a basis for performing and interpreting econometric analyses of panel regressions
with nonstationary data and with large n and T sample dimensions. Panel data facil-
itates the study of individual economic behaviour over time. When the individuals are
nation states and the data are macroeconomic aggregates or financial asset prices whose
time series behaviour is typically nonstationary, the scope for the empirical use of these
methods seems to be substantial. And, in the future, the scope for these methods may
be even more important as interest in inter-country comparisons of economic performance
heightens and more extensive panel data sets become available.

9 Appendix

Proof of Theorem 1 Before we start the analysis, we assume that the initial condition
Zi satisfies Z;g = Op (1) as T — oo. Let Dy = diag (1,T7") and g(r) = (1,r)". If
t = [Tr], then, as T'— oo, Drg; — ¢(r) uniformly in r € [0, 1]. We also assume that as

T — 0o
0

2ty Q2 (1) o= M, (1)

\/T 7 1 . 1 b

where the W; (r) are standard vector Brownian motions. Phillips and Moon (1999) give
sufficient conditions for this functional central limit theorem. Then, by the continuous
mapping theorem, it follows that as T — oo
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S My () — M (1) — / (M; (s) — sM; (1)) ds = By(r), (9.26)

where the o, (1) holds by the initial condition assumption. Denoting W; (r) = W;(r) —
JWir)g(r)dr ([ g(r)g(r)) ™" g(r) and W; (r) = Wi(r) =rWi(1) = [ (Wi (s) = sW; (1)) ds,
we can write 5 3

M; (r) = QWi (r) and M (r) = QYW (r) .
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The limit distribution M; () of the standardized OLS detrended process is a randomly
scaled detrended Brownian motion and the limit distribution M; () of the standard-
ized GLS detrended process is a randomly scaled demeaned Brownian bridge. We par-

. _ N - N ' _
tition conformably M; (r) and M; (r) into M; (r) = (Myi (r)", M, (r)') and M; (r) =

(Myi (T), ’ ]\;[mi (T),)/ .
By (9.25), (9.26) , and the continuous mapping theorem, the pooled estimators 3 and
B constructed from detrended data have the following limit distributions, as T — oo for

any fixed n,
n n -1
N OWEEASWEE 027
i=1 i=1

and .
BS:<ZfM M)(Z[Mxl ) . (9.28)
=1 =1
Write h(s,r) = g(s)' ([ g(r)g(r)'dr)" " g(r). Let W(r) be a standard m-vector Brown-

ian motion and W"( ) an m—vector Brownian Bridge. Let F be the sigma field generated
by €2;, which is iid across i, and let E# denote a conditional expection. Then, using the
fact that E (W (r)W'(s)) = (r As) I, and E (W°(r)W°(s)) = ((r A s) —rs) I, we have

E(/JVMV[{) = [Ef </M )M/ ( dr—//M er()dsdrﬂ
_ (/0 rdr—/o /O (r/\s)h(s,r)dsdr)E(Qi)=1—15Q,

and, by writing M?(r) = M;(r) — rM;(1), we have

B (/ MZM;> - F [Ef (/ ME(r) M (r)dr — / M(s)ds / Mf’(r)ds)]
_ </01 (r—12) dr—,/ohl‘/ohl((r/\s) —rs)drds) E(Q) = 1—12Q

Thus, if we apply the Kolmogorov strong law to the numerators and the denominators of
the matrix quotients in (9.27) and (9.28), we have as n — oo

%ZIMZ/’LMZ{Z a's 115Qy907 %Z M MI % 1_15Q:ELB (929)
i=1 i1
and
P | CN o o as 1
=1 i=1

Thus, it is straightforward to see that in sequential limits as (n,T — o)

By By 5 6.
To find the limit distributions of BS and f3,, we center the estimators at 8 and rescale
them by +/n. By letting T — oo for fixed n, we have

Jn (BS - 5) > L zn: (f My, M, — 3 [ My, NI ) ( N J M, B >_1 (9.31)

i=1

seq
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and
n n -1
i (Bu=) > 3o ) () s
i=1 i=1
It is not difficult to see that
D~ - Lo~ 1
E (_/ N, Ml - 8 Mme’i) = =B (Y — a0 Qi) = 0,

and

1
ZEE(Q%“ Qo Qp Uzya,) = 0.

After some lengthy calculations, we derive the variance matrices

E (f My, M, — 3 [ M,,M,))

E <vec (f 8,8, — 3. Nt 582, ) vec ( f 08, 81, — 3 f A, M;)')

11
- 12600E (Qxlml ® ( YilYi BQ%% yiwiﬁl + Bszmzﬁl))
11
+12600E (s = Q2,) ® Uiz, — B,2,) Kimym,)
e (vee (R, — Bus,) (vee (i, — B%u,0,)))
= O ooy (9.33)

and

B (vec (f My, MJ, = B [ My, M) vee (| My, M, — 8 [ Ny, 37)')

1
- %E (Qxxl ® ( YiYi 5Qw1yz yiaziﬁ, + /691»11,1/8,))
+%E ((szyl o Qxlxl/@,) ® ( YiZi /Bﬂxzxz) mymz)
+mE (vec( yizi — Bz;) (vee (Qyz; — Bp,z,)) )
= O sy (9.34)

>From the multivariate Lindeberg—Levy theorem, we then obtain as n — oo

=57 (0, 0L, — 8 [ M, 0, ) = N(0,6,) (9.35)

i=1

and .
= D (f My M, = B [ My, M) = N(0,65). (9.36)

i=1

Combining (9.35) and (9.36) with the limits (9.29) an
desired limit distributions for \/n(3, — ) and /n(8, —

( . ) as n — oo, we have the
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