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0. ABSTRACT

This paper analyzes the behavior of posterior distributions under the Jeffreys
prior in a simultaneous equations model. The case under study is that of a general
limited information setup with n + 1 endogenous variables. The Jeffreys prior is
shown to give rise to a marginal posterior density which has Cauchy-like tails similar
to that exhibited by the exact finite sample distribution of the corresponding LIML
estimator. A stronger correspondence is established in the special case of a just-
identified orthonormal canonical model, where the posterior density under the Jeffreys
prior is shown to have the same functional form as the density of the finite sample
distribution of the LIML estimator. The work here generalizes that of Chao and
Phillips (1997), which gives analogous results for the special case of two endogenous
variables.

JEL Classification: C11

Keywords: Cauchy tails, exact finite sample distributions, Jeffreys prior, just identi-
fication, limited information, posterior density, simultaneous equations model.



1. INTRODUCTION

For practical applications of Bayesian statistical methods, one would often like
to have a reference prior - i.e., a roughly noninformative prior distribution against
whose results inference that is based on more subjective priors can be compared.
Since its introduction by Harold Jeffreys (1946), the Jeffreys prior has been one of
the most intensively studied reference priors in Bayesian statistics and econometrics.
In particular, much research has been done on the relationship between Bayesian
posterior distributions under the Jeffreys prior and frequentist sampling distributions
and confidence intervals. One prominent line of research, which goes back to the
classic papers of Welch and Peers (1963) and Peers (1965) and which also includes
such recent contributions by Tibshirani (1989) and Nicolaou (1993), has produced an
impressive body of results showing, for general likelihood functions, the large sample
correspondence between frequentist confidence intervals and posterior intervals based
on the Jeffreys prior and its variants.

Similarities between frequentist results and Bayesian results derived under the
Jeffreys prior have also been documented for specific parametric models. For the
classical linear regression model with Gaussian disturbances, the Jeffreys prior is
known to give the same finite sample inference as the maximum likelihood proce-
dure (cf. Zellner (1971) and Berger (1985)). On the other hand, a Jeffreys-prior
Bayesian analysis of the linear regression model with unobserved independent vari-
ables was first conducted by Zellner (1970), where it was shown that the mode of the
conditional posterior density of the regression coefficient given a ratio of the scale pa-
rameters corresponds exactly to the maximum likelihood estimator of the coefficient
parameter. With respect to linear time series models, Phillips (1991) derives both
exact and asymptotically approximate expressions for the posterior distributions of
the autoregressive parameter and finds that on the issue of whether macroeconomic
time series have stochastic trends, Bayesian inference based on the Jeffreys prior is
in much closer agreement with classical inference than inference based on the uni-
form prior. Finally, for single-equation analysis of the simultaneous equations model
(SEM), Chao and Phillips (1997) show for the special case of a just-identified, or-
thonormal canonical model with one endogenous regressor that, under the Jeffreys
prior, the posterior density of the coefficient of the endogenous regressor has the same
Cauchy-tailed, infinite series representation as the exact sampling distribution of the
LIML estimator given by Mariano and McDonald (1979). Moreover, even when this
model is overidentified of order one, Chao and Phillips (1997) show that, analogous
to the finite sample distribution of the LIML estimator, the posterior density of the
structural coefficient under the Jeffreys prior has no moment of positive integer order.

Because of its prominence as a reference prior, as evident from the literature cited
above, a good understanding of how the use of the Jeffreys prior affects statistical



inference in situations of interest to econometricians seems important. Our main
purpose in this paper is to contribute to this understanding within the context of the
simultaneous equations model. Our work builds on that of Chao and Phillips (1997)
and, in fact, generalizes results obtained in that paper to the case with n endogenous
regressors. In particular, analogous to the one endogenous regressor case, we show
that a Jeffreys-prior, single-equation analysis of a just-identified, orthonormal canon-
ical model with n endogenous regressors leads to a posterior density for the structural
coefficient vector 3 which has the same infinite series representation in terms of zonal
polynomials as the finite sample density of the LIML estimator, derived by Phillips
(1980). In addition, even if we allow for an arbitrary degree of overidentification and
an arbitrary, non-canonical reduced-form error covariance structure, the posterior
density of # under the Jeffreys prior still exhibits the same tail behavior as the small
sample distribution of LIML.

The organization of the paper is as follows. Section 2 discusses the various model
and prior specifications to be studied in the paper. Section 3 presents exact posterior
results for the orthonormal, canonical model (to be defined below). Section 4 gives a
theorem which characterizes the tail behavior of the Jeffreys-prior posterior density
of B in the general case and provides some numerical evaluation of the accuracy
of the Laplace approximation derived in Chao and Phillips (1997). We offer some
concluding remarks in Section 5 and leave all proofs and technical material for the
appendices.

Before proceeding, we briefly introduce some notations. In what follows, we use
tr(-) to denote the trace of a matrix, |A| to denote the absolute value of the deter-
minant of A, and r(II) to signify the rank of the matrix II. The inequality ¢ > 0”
denotes positive definite when applied to matrices; vec(-) stacks the rows of a matrix
into a column vector; the symbol “ =7 denotes equivalence in distribution and the
symbol “ ~” denotes asymptotic equivalence in the sense that A ~ B if A/B — 1 as
T — oo. In addition, Px is the orthogonal projection onto the range space of X with
Px, x,) similarly defined as the orthogonal projection onto the span of the columns
of X; and X,. Finally, we define Qx = I — Px and, similarly, Qx, x,) = I — Px,,x,)-

2. MODEL AND PRIOR SPECIFICATIONS

2.1 The Simultaneous Equations Model

In this paper, we shall conduct single-equation analysis of the following m-equation
simultaneous equations model (SEM):

n =Yaf+ Ziy +u, (1)

Yy = Z111 4 ZsI1y + Vs, (2)

where y; (T x 1) and Y2(T x n) contain the m = n + 1 endogenous variables of the
model; Z;(T x kp) is an observation matrix of exogenous variables included in the
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structural equation (1); Z(T X k») is an observation matrix of exogenous variables
excluded from equation (1); and w and V; are, respectively, a T x 1 vector and a
T x n matrix of random disturbances to the system. The usual rank condition for
identification, i.e. r(Ily) = n < ko, is assumed here. As we shall consider both
just-identified and overidentified models, we use L = ks — n to denote the degree of
overidentification. In addition, let u, and v5,(1 X n) be, respectively, the t-th element
of u and the t-th row of V5, and the following distributional assumption is made:

(“t>; ~iid.N(0,%), (3)

Vot

where Y. is a symmetric m X m matrix such that > > 0. The covariance matrix 3, in
turn, is partitioned conformably with (u, v},)" as

_ ([ ou oy
Z—(021 222>' @)
Although technically only the first equation is a structural equation, we shall, for
simplicity, refer to the representation given by equations (1) and (2) under error
condition (3) as the structural model representation of the SEM to distinguish it
from the alternative representations of this model to be discussed below.
It is well known that the SEM described by equations (1) and (2) above can
alternatively be written in the reduced form representation:

Y1 = 2171 + Zama + vy, (5)

Yy = Z111y + Zollp + Vs, (6)
where v1 = (v11, ..., V1, ..., v17)" and where, under (3),

T

(U”> ~11d.N(0,Q). (7)

Y2t/ =1

Analogous to (4) above, the covariance matrix €2 can be partitioned conformably with

(Ulh ’Uét)/ as
/
Q:(“’“ “’21)>o. (8)

Wa1 Q22

A third representation of the SEM, which will prove to be extremely useful in
our subsequent Bayesian analysis, is what we shall refer to as the restricted reduced
form representation. This representation is suggested by the identifying restrictions,
which link the parameters of the structural model with that of the reduced form, and
it takes the form:

y1 = Z1(IL B + ) + Zo11s 8 + vy, 9)



Yo = Z111 + 26115 4 Vs (10)

This representation highlights the fact that the SEM can be viewed as a multivariate
(linear) regression model with nonlinear restrictions on some of its coefficients.

It is worth emphasizing that the marginal posterior density of 3 will be the same
regardless of whether we define the joint likelihood function in terms of the struc-
tural model representation under error condition (3) and marginalize with respect
to ~,IIy,Il5, and ¥ or define the joint likelihood function in terms of the restricted
reduced form representation under error condition (7) and marginalize with respect
to v,111,1l,, and . This can be seen by simply noting that the transformation
(B, 7, vec(Ily) ,vec(lly), o) — (8,7, vec(I;), vec(Ily),w* ) (where o* and w*
here denote (m(m + 1)/2) x 1 vectors comprising, respectively, the nonredundant
elements of ¥ and () is one-to-one and differentiable and has a jacobian of one.
Writing the model in terms of the restricted reduced form representation is especially
convenient if we wish instead to derive the posterior distribution of § conditional
on the elements of the reduced-form error covariance matrix {2. In particular, as we
shall explain in the next section of the paper, we will be interested in obtaining the
posterior density of § for an SEM in canonical form, i.e. an SEM as described above,
but with the additional specification that

Cfwnn why Y (10
Q_<u}21 922>_<0 In>' (11)

To complete the specification of our model, we make the following assumptions
on the sample second moment matrix of Z;

T'2'Z = My > 0,5T (12)

and

Mp — M >0asT — oo. (13)

Conditions (12) and (13) are standard in classical analysis of the SEM. Condition
(13) is not needed for much of the small sample analysis given in this paper but is
needed to obtain the Laplace approximation result of Chao and Phillips (1997), which
we shall discuss in Section 4 below. Also, in some cases, we will impose the stronger
condition

T '7'7 =

T2 T2 %] [ I, O
TZ7 TZ4Z, |~ | 0 I

] T, (14)

and we will refer to an SEM which satisfies conditions (11) and (14) as an orthonormal,
canonical model or the standardized model. The name “standardized model” comes
from the fact that. although the orthonormal canonical model can be viewed as an
interesting special case of the more general simultaneous equations model whose error
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covariance matrix and exogenous variables satisfy the less restrictive conditions given
by (8),(12), and 13, these models typically arise as the result of applying certain
standardizing transformations to an SEM in general form. (See Phillips (1983a) for
details and also see Chao and Phillips (1997) for related discussion.) We shall have
more to say about the usefulness of orthonormal canonical models in finite-sample
Bayesian analysis of the SEM in the next section.

2.2 The Jeffreys Prior for SEM

As our main purpose in this paper is the study of properties of posterior dis-
tributions which arise in a Jeffreys-prior posterior analysis of the SEM, a brief dis-
cussion of the Jeffreys prior in the present context seems appropriate. Let L(6|X)
be the likelihood function of a parametric statistical model which is fully specified
except for an unknown finite-dimensional parameter vector 8 € © and set Iy =
—FE{(8%/0000")In(L(0|X))}. Then, the Jeffreys prior density is given by p;(f) o
| Ig9|*/2. Since the Jeffreys prior has already been analyzed by many authors both for
general likelihood functions and for many specific models (see, for example, Jeffreys
(1946, 1961), Zellner (1971), Kass (1989), Phillips (1991), Kleibergen and van Dijk
(1994b), and Poirier (1994, 1996)), we will not delve deeply into its general properties
here. Instead, we focus on our attention on Jeffreys prior densities which are derived
from the different representations of the SEM. In this setting, research on the Jef-
freys prior has its beginning in the work of Kleibergen and van Dijk (1992), which
first derived the functional form of the Jeffreys prior density for the structural model
representation under error condition (3). Subsequently, Chao and Phillips (1997) de-
rived the functional forms both for the restricted reduced form representation under
error condition 7 and for the orthonormal canonical model. To facilitate exposition,
we shall restate, without derivation, these results here.

(a.) Jeffreys Prior Density for the Structural Model Representation:

(B, 7,111,115, X) o |011|%(k2_n)|2|_%(k+n+2)|H§Z§Q2122H2|%- (15)

(b.) Jeffreys Prior Density for the Restricted Reduced Form Representation:

‘Q\*%(k+n+2)‘HéZéQZlZQHQ]%. (16)

(c.) Jeffreys Prior Density for the Orthonormal Canonical Model:



P37, 0, T |Q = 1) o 1+ /3|32 I, )2 (17)

Note that an important and well-known property of the Jeffreys prior density
in general (and, thus, also of the special cases of the Jeffreys prior density given by
expressions (15)-(17) above) is that it is invariant to any differentiable 1:1 transforma-
tion of the parameter space in the sense that if ¢ = f(f) is one such transformation,
then |Ipg|/2d0 = |I,4|*/?d¢. Hence, the use of the Jeffreys prior gives consistent
posterior inference across alternative parameterizations of a model, as long as there
exists a differentiable 1:1 mapping between the alternative parameterizations.

Another important quality of the Jeffreys prior, which is particular to the present
context, is that its density reflects the dependence of the identification of the struc-
tural parameter vectors (3 and 7 in equation (1) on the rank condition r(Ily) = n < k.
This point is made forcefully by Poirier (1996) who argues that a sensible prior for
a single-equation analysis of the SEM should reflect the dependence of valid statis-
tical inference on this rank condition and, in fact, should not favor regions of the
parameter space in which the model would be unidentified. He notes that because
the Jeffreys prior is derived from the information matrix, its density captures this
dependence through the factor |IT,Z}Q, Zo115|2, which is simply the square root of
the determinant of the (unnormalized) concentration parameter matrix. When the
rank condition fails, this factor equals zero. Hence, the Jeffreys prior places no weight
in the region of the parameter space where r(Ilz) < n and relatively low weight in the
local neighborhoods of this region where the model is nearly unidentified. As observed
in Chao and Phillips (1997), this feature of the Jeffreys prior helps to explain why, in
contrast to the frequently-used diffuse prior which leads to a nonintegrable posterior
distribution for 3 in the just-identified case, posterior distributions of 3 derived under
the Jeffreys prior are always integrable, regardless of whether the model is just- or
over-identified.

3. POSTERIOR ANALYSIS OF THE ORTHONORMAL CANONICAL
MODEL

We seek in this section to derive an exact expression for the marginal posterior
density of 8 under the Jeffreys prior for the orthonormal canonical model satisfying
conditions (11) and (14). Although the orthonormal canonical model is admittedly
a highly stylized model, there are at least two reasons why it is worthy of analysis.
First, since much of the classical literature on the finite sample distributions of single-
equation estimators has focused on the orthonormal canonical model?, analysis of this

2See, for example, Mariano (1982), Phillips (1983a, 1983b, 1984,1985, 1989), Hillier (1990), and
Choi and Phillips (1992).



model allows us to compare Bayesian results under the Jeffreys prior with results from
this literature. Secondly, as discussed in Mariano (1982) and Phillips (1983a) and
briefly in the previous section, the orthonormal canonical model typically arises as a
reduction from an SEM in general form (i.e., an SEM whose exogenous regressors and
reduced form error covariance matrix are not restricted to satisfy conditions (11) and
(14)) through the application of certain standardizing transformations. These trans-
formations preserve the key features of the model, allow for notational simplication
and mathematical tractability, and reduce the parametrization to an essential set.
Hence, as we will argue more concretely in Remark 3.2 (vi.) below, lessons learned
from an analysis of the orthonormal canonical model is unlikely to be informative
only about this model but, rather, will be applicable to more general model settings
as well.?

3.1 THEOREM: Consider the orthonormal canonical model as described by expres-
sions (9) and (10) under conditions (7), (11), and (14). Suppose further that the
rank condition for identification is satisfied so that Rank (Ily) = n < ky. Then, the
marginal posterior density of 3 under the Jeffreys prior (17) has the form:

p(BY,Z) o |1+ 6 20

1 1 1
1F1(§(k’2 +1); §k2; 531 (Y'ZyZ3Y|T)B:1(B{B1) ), (18)

where Y = (y1,Ys), where the (n + 1) x n matriz By is given by

B, - (f) (19)

and where 1Fy(+) is a matriz argument confluent hypergeometric function. Moreover,
if the model is just-identified, i.e., Rank(Ily) = n = ko, then expression (18) reduces
to

p(BY,Z) o |1+ 38730

1 1
1F1(§(n + 1)

'3 gﬁQ(In + BQSLsﬂl)(In + 587

(I + Bas1.5)1h), (20)

where R
Basrs = (Z§Y2)7lzéyl

3See Basmann (1963, 1974) for other arguments justifying the use of the orthonormal canonical
model in finite sample analysis.




and R

Iy = Z)Ys/T
are the 25LS estimator of [ and the OLS estimator of Iy, respectively, for the
orthonormal canonical model in the case of just identification.

3.2 Remark:

(i.) The matrix argument confluent hypergeometric function given in expression
(18) above has the following infinite series representation in terms of zonal polyno-
mials

1 1 1
=0 J ']'

(cf. Constantine, 1963). In (21), J indicates a partition of the integer j into not more
than n parts, where a partition J of weight r is defined as a set of r positive integers
{j1, ..., jr} such that >0 | j; = j. The coefficients (3 (ks + 1)), and (3k2), denote
the hypergeometric coefficients given by, for example,

n

(%kQ)J _ 1‘[(21;2 _ %(@ — 1)), for J = {1, s ju}, (22)
where
(a); = (a)a+1) - (a+j—1)=T(a+7)/T(a), for
= 1 for i=0. (23)

In addition, the factor C;(3B1(Y'ZZ5Y /T)By(B{B;)*) in (21) is a zonal polynomial
and can be represented as a symmetric homogeneous polynomial of degree j of the
latent roots of the matrix $B{(Y’'Z,Z}Y/T)By(B;{B1) ' or, equivalently, those of the
matrix

2TZ’YB1(B’B1) \BIY'Zy = 2TZ’Y ( ? ) (I+88)" (8 1)Y'Z,

(ii.) To analyze the tail behavior of the posterior density (18), we adopt an
approach introduced by Phillips (1994) to examine the tail shape of the sampling
distribution of the maximum likelihood estimator of cointegrating coefficients in an
error-correction model. To proceed, we write 3 = bf3,, where b is a positive scalar
and 3, # 0 is a fixed vector giving, respectively, the scale and the direction of the
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vector 3. The idea is to reduce the dimension of the problem by focusing the analysis
on uni-dimensional “slices” of the multi-dimensional posterior distribution. This can
be accomplished by looking at the limiting behavior of the density (18) along an
arbitrary ray 8 = bf, as b — oo. This limiting behavior is characterized by the
corollary below.

3.3 Corollary: Consider the marginal posterior density of 3 given by expression
(18) of Theorem 3.1. Let 3 approaches the limits of its domain of definition along the
ray B = bB3, for some fixed vector B, # 0 and some scalar b which tends to infinity.
Then,

. 1 1
11+ 628480 2" L Fy (ko + 1); =ko; S(b))

= C|1+b2@gﬁo|%<”“>(1J2ro(1)), aib—>oo, (24)

where
S() = (080, ) (Y Z:Z,Y | T) (8o, L) (I + b Bo30) ", (25)
C = 1F1(%(k:2+1);%k2;D). (26)

Here,

N2 Zoy T 91 Z2Z5Y2 Ry /T
D = ) (27)

where Ry is a n X (n — 1) matriz such that ByRs =0 and RyRy = I,,_1.

Note from (24) that along the ray 8 = b3, as b — oo, the tail behavior of the posterior
density of 8 under the Jeffreys prior is determined by the factor |1 + b23}8,| =2
which is proportional to the density of a multivariate Cauchy distribution. It follows
that the marginal posterior of 3 under the Jeffreys prior is integrable but has no
finite absolute moment of positive integer order. This result extends that of Chao
and Phillips (1997) which shows for the case of only one included endogenous variable
that the Jeffreys-prior posterior density of 3 has (univariate) Cauchy-like tails of order
O(|B]72) as | 3] — oo.* Moreover, as in the univariate case, the result here reveals a
correspondence between classical MLE results and Bayesian results under the Jeffreys
prior in the sense that the finite sample distribution of the LIML estimator has also
been shown by Phillips (1980, 1984, 1985) to exhibit Cauchy-like tail behavior. (See
Phillips (1985), in particular, for a discussion of the nonexistence of positive integer
moments for the small sample distribution of the LIML estimator.)

4See Section 4 of Chao and Phillips (1997).
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The characterization of tail behavior given in Corollary 3.3 can also be contrasted
with Bayesian results obtained under the diffuse prior. Dreze (1976) and Kleibergen
and van Dijk (1997) have shown that a diffuse-prior analysis of the same SEM leads
to a posterior density for  which is nonintegrable in the case of just identification but
has moments which exist up to (but not including) the degree of overidentification
for an overidentified model. Hence, with respect to tail behavior, it appears that the
tradeoff between using the Jeffreys prior versus a diffuse prior lies in the fact that
the diffuse-prior posterior distribution will have thinner tails for an overidentified
model but the Jeffreys-prior posterior distribution will always be proper ( in the
sense of being integrable) and is, thus, less susceptible to near identification failure.
See Remark 4.4 (iii.) of Chao and Phillips (1997) for more discussion of this point.

(iii) As in the case with only one included endogenous variable analyzed in Chao
and Phillips (1997), a stronger correspondence between Jeffreys-prior posterior results
and classical LIML/2SLS results can be established in the case of just identification.
Comparing expression (20) to expression (14) of Phillips (1980), which gives the
density of the finite sample distribution of the LIML/2SLS estimator for the just-
identified case, we see that up to a constant of proportionality the two expressions
have the same functional form. Of course, the interpretations of the densities given
in the two cases are different. Expression (20) here denotes the density function of
the random parameter vector § conditional on the data, while the result of Phillips
(1980) gives the probability density of the LIML/2SLS estimator conditional on a
particular value of the parameter vector.

(iv) A drawback of the exact formula (18), with its matrix argument hypergeo-
metric function having the infinite series representation given by (21), is that, in this
form, the posterior density of 5 does not easily lend itself for numerical calculations,
especially in the case where the number of endogenous variables n is greater than
two. One difficulty arises because no general formula is known for the zonal poly-
nomials in expression (21) in the case where n > 2, so numerical calculations of the
coefficients in the zonal polynomials themselves are also needed.” A further problem
stems from the slow convergence of the series involved, particularly if the latest roots
of the matrix argument of the hypergeometric function are large. Thus, one often has
the work deeply into the higher terms of the series in order to achieve convergence.®

Fortunately, these problems only makes numerical computation more difficult but

®More precisely, general formulas for the zonal polynomials are known only for the case n = 2 or
when the partition of j has only one part, J = (j). However, even for n > 2, knowing the formula
for the case where the partition of j has only one part is not particularly useful since the zonal
polynomials in expression (21) has, in general, more than one part.

Tt should be noted that direct numerical evaluation of the Jeffreys-prior posterior density is
actually much easier than the numerical evaluation of the exact densities of the IV and LIML
estimators. This is because the exact representation of the Jeffreys-prior posterior density as seen
from expression (21) involves only a single series of zonal polynomials whereas the exact densities
of the IV and LIML estimators involve a double and a triple infinite series of zonal polynomials,
respectively.
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not impossible. General algorithms for the numerical evaluation of the zonal poly-
nomial coefficients are available (see James (1968), McLaren (1976), and Muirhead
(1982)), and a computer program for implementing the algorithm of James (1968) has
been developed and made available by Nagel (1981). In addition, a viable alterna-
tive, if one chooses to avoid working with the infinite series representation altogether,
is to base posterior calculations on an asymptotic approximation obtained via the
Laplace’s method. See Chao and Phillips (1997) for a particular Laplace approxi-
mation of the Jeffreys prior posterior density of 3, which can be easily implemented
with just a few lines of code on a personal computer.

A few words of caution must be added with respect to the application of the
Laplace’s method to this problem. In the context of classical finite sample analy-
sis, Sargan (1977) and Phillips (1980) have applied the Laplace approximation to
the confluent hypergeometric function to obtain a more workable expression for the
density function (in their case, the density function for the sampling distribution of
the IV estimator). Although it may appear that the same strategy can be used to
simplify the posterior density (18), it turns out that for the Bayesian case considered
here, this approach does not lead to an asymptotically-valid approximation of the | F}
function for all parameter values g € R™. Since the essential character of the problem
is unchanged regardless of whether we choose to consider the special case where n = 1
or the more general case where n is left arbitrary; for clarity of exposition, we shall
focus only on the case with one included endogenous variable, i.e., the n = 1 case. In
this case, the 1 F7 function in expression (21) reduces to

— (1) (Tr(8))

(L (3) = 3 O (28)

where

L (Y1 20251 gy | 201 Z2220Ys , | YaZoZoys 2
] = 1 . 29
o0) =y (LT g 2AD Ty BT [, ()
The approximation of Sargan (1977) and Phillips (1980) is based on taking the first
few terms of an asymptotic expansion of the confluent hypergeometric function. Spe-
cialized to the case n = 1, this asymptotic expansion can be described as follows: for
x>0 and a,b > 0, then as * — o

1. P(b) z,.—(b—a) - (b_a)](l_a)] —j
1Fi(a;b;x) ~ @e x jz; il xz

_ L) . -0 2L (b—a)j(1— )i -
(c) jz; 41 + Op(z™?) |, (30)

(See Lebedev (1972), Sawa (1972), and Constantine and Mairhead (1976) for details).
Applying (30) to our problem, we see that for f € R such that Ur(3) > 0 and
Ur(B) — oo as T'— oo, we have the expansion
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1F1(%(k2 +1); %ké; Ur(8))

(T7(8)) 7 + Op(¥r(B) 7)

The approximate formula (31) can seemly be used to simplify the posterior density
(18) except that it is not true in our case that W7 () — oo as T' — oo for all § € R.
To see this, consider 3* = —1/3° where 3" is the true value of 3; then with some
straightforward algebra, we can show under conditions (7), (11), and (14) that

‘IJT(ﬁ*) =

= XQ(kQ) VT, (32)

where y?(ky) denotes a chi-square random variable with k, degrees of freedom. It
follows that

Wi () 4 5x2(k) = 0y(1) s T — o (33)

so Ur(8") does not diverge as T' — oo, and expression (31) does not lead to an
asymptotically-valid approximation for the 1 F} function for g = 3*.
The problem is in some sense more severe for the case of just identification. Under
just identification expression (31) reduces to
1 I'(3)

1F1(1§ 5 ‘IJT(ﬁ)) ~

> N0 exp{ U7 (8)}(Tr(B))?, (34)

since (—3 (ks — 1)); = (0); = 0 for integer j > 1. To study this case in more details,

we focus on the quadratic equation
AVA: ITWAYA: AYA:
31122y1ﬁ2_|_ y122y2ﬁ+92223/2
T T T

the left-hand side of which appears in the numerator of ¥-(3). Note that in the case
of just identification, this quadratic equation has the real solution

Br =

—0, (35)

Y1222y

J1727292 36
Y\ Z2Z (36)
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so that ¥7(5*) = 0. 7 Hence, under just identification, not only is the approximation
(34) asymptotically invalid for 8 = *; but, for every finite sample of size T, its use
results in a degeneracy in the sense that the value of the function given by the right-
hand side of (34) dips to zero as 8 — (3. ® The cause of the latter phenomenon is, of
course, due to the fact that the sequence {37} is one which converges in probability
to * as T — oc.

It should be noted that the Laplace approximation given in Section 5 of Chao and
Phillips (1997) does not suffer from the singularity problem described above and is,
thus, the recommended procedure if one chooses to use asymptotic approximation.
This is because there the Laplace’s method is applied by directly expanding the joint
posterior distribution (as opposed to being applied to the confluent hypergeometric
function as the case discussed above). We shall in the next section of this paper give
some simulation results which suggest that the approximation proposed by Chao and
Phillips (1997) actually performs reasonably well.

(v) Figures 1-4 depict graphs comparing the exact posterior density of 5 under
the Jeffreys prior with that under the uniform (or diffuse) prior for the case n = 1.
The data generating processes used to generate the graphs are orthonormal, canonical
models with 8 = .6, 2; L =0, 9; T = 50; p? = TTI,II; = 40, and k; = 0 (i.e., there
are no included exogenous variable in the structural equation 1). Since the posterior
density is essentially a conditional density given the data, it should be noted that the
exact outlook of a posterior density will vary depending on the particular data sample
that is drawn. However, from a large number of simulations, qualitative regularities
of the posterior distribution under the Jeffreys and the uniform prior specifications
do emerge, and we have tried to present graphs which illustrate these regularities.

Among the regular features which appear in Figures 1-4 are that both the Jeffreys-
prior posterior density and the uniform-prior posterior density are unimodal and both
are asymmetric about their mode. Indeed, both tend to be rightwardly skewed relative
to their mode. Another interesting feature is that in the case of overidentification,
the mode of the posterior density of 5 based on the Jeffreys prior appear to be
more centrally located relative to the true value of 3, than the mode of the posterior
density based on the uniform prior; that is, in a sampling theoretic sense, the use of
the posterior mode under the Jeffreys prior appears to give a less biased estimator of
3 than the posterior mode under the uniform prior.® This can be observed in Figures

Tt can be shown that for a finite sample size T' and with overidentification, the quadratic equation
(35) does not have a real solution except on a set with measure zero.

81t should be pointed out that, in practice, 35 is usually located far enough in the tails that this
degeneracy is not visually noticable when the approximation (34) is graphed. A programming error,
on the other hand, was the culprit in producing the graphs presented at the December, 1997 EC?
conference in Amsterdam, which showed the degeneracy to be located prominently in the body of
the distribution. Fortunately for us, the computer error grossly exaggerated the visual effect of the
degeneracy; for, otherwise, it may have gone undetected.

9This observation was actually made after observing close to 100 simulations. We believe this
point deserves further investigation and quantification, which will be pursued in future research.
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3 and 4 where the mode of the Jeffreys-prior posterior distribution is clearly closer to
the true value of 5 (.6 and 2, respectively, in Figure 3 and Figure 4) than that of the
uniform-prior posterior distribution. On the other hand, Figures 1 and 2 show that
the posterior mode under the Jeffreys-prior is not significantly better located than
the uniform-prior posterior mode in the case of just identification.

(vi) It should be noted that the assumption of orthonormalized exogenous regres-
sors is not at all critical to our ability to obtain an exact expression for the marginal
posterior density of 4 under the Jeffreys prior. On the other hand, our method of
derivation does depend on the assumption of a known reduced-form covariance matrix
2, of which the canonical covariance structure {2 = I,, is obviously a special case. In
the case where neither the sample moment matrix Z’Z/T nor the reduced form error
covariance matrix {2 is assumed to be an identity matrix, we can nevertheless obtain
an exact formula for the conditional posterior density of § given 2, which analogous
to expression (18) above has the form

p(BIQ,Y, Z)
w1 — 2wy B+ ﬁIQQQM%(nH)
1 1. 1

1F1(§(k’2 + 1), 5]432, EBQQ_IY,(PZ - PZl)YQ_lBl(BQQ_lBl)_l), (37)
where Y, By, and 1 F(-) are as defined in Theorem 3.1 above. The posterior density
(18), derived under the assumption of an orthonormal canonical model, can, in fact,
be viewed as a special case of this more general conditional posterior density.

Moreover, define Wy, Woy, and Qgg to be the corresponding components of Q=

Y'QzY/(T — k), and one can show, for the more general case where conditions (11)
and (14) are not assumed, that the asymptotic formula

p(BlY, Z)
|11 — 205,08 + ﬁ/Qmﬂ\*%(nH)

1 1 1_,~ ~ ~
1F1(§(k2 + 1), 5]432, EBQQ_IY,(PZ — PZl)YQ_lBl(BQQ_lBl)_l) (38)

actually leads to a good approximation for the Jeffreys-prior posterior density of
B even at moderate sample size!’ Similarities in structure between expression (38)

0Proof that expression (38) is indeed an asymptotically-valid approximation for the marginal
posterior density of 3 under the Jeffreys prior is available from the authors upon request. We have
not presented formal arguments justifying (38) in this paper because given that it is in the form of
an infinite series in zonal polynomials, we do not recommend it as the approximation formula to
be used for actual numerical computation. Rather, for numerical implementation, we recommend
the approximation that was derived in Section 5 of Chao and Phillips (1997) which is in a more
user-friendly form. In terms of performance, however, our simulations have shown both formulas to
give good approximation for the posterior density of 3, with neither being significantly better than
the other. Results of the simulation for the approximation of Chao and Phillips (1997) are reported
in Section 4.
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and the exact formula (18) suggests that studying the orthonormal canonical model
may be quite informative about properties of the Jeffreys-prior posterior distribution
of # even in the more likely cases where the assumptions of a canonical covariance
structure and of the orthonormality of exogenous regressors are violated.

Thus, while we do not expect the density function described by (18) to give a
mathematically correct representation of the posterior density of 5 in the noncanon-
ical case, we do anticipate the main qualitative features of (18) (such as the nonex-
istence of moments of positive integer order, the unimodality, and the asymmetry
with respect to the posterior mode) to carry over to the noncanonical case as well.
In particular, with respect to the nonexistence of moments of positive integer order,
we will show formally in the next section that this property of the Jeffreys-prior pos-
terior distribution does indeed extend to the more general case with nonorthonormal
exogenous regressors and arbitrary reduced form error covariance matrix €.

4. POSTERIOR ANALYSIS IN THE GENERAL CASE

4.1 Tail Behavior of the Posterior Distribution in the General Case

In the more general case where the reduced form error covariance matrix €2 is an
arbitrary positive definite matrix, the exact posterior density of 3 under the Jeffreys
prior cannot be readily obtained. We can, however, say something formally about
the tail behavior of this posterior distribution. The main result is summarized in the
following theorem.

4.2 THEOREM Consider the model described by equations (9) and (10) under error
condition (7) (or, alternatively, the model described by equations (1) and (2) under
error conditions (3). Suppose that the model is identified so that Rank (IIy) =n < k.
Then, the marginal posterior density under the Jeffreys prior (16) (or, alternatively,
the Jeffreys prior (16)) is integrable but has no finite absolute moments of positive
integer order.

Since the nonexistence of absolute moments of positive integer order also characterizes
the Jeffreys-prior posterior density of 3 derived in Section 3 for the orthonormal
canonical model, we see that the assumption of a more general covariance structure
does not alter the tail behavior of this posterior distribution. Moreover, Theorem 4.2
tells us that, even in the overidentified noncanonical case, the posterior density of 3
under the Jeffreys prior exhibits the same Cauchy-like tail shape as the finite sample
distribution of the classical LIML estimator. (See Phillips (1985) for a discussion of
the nonexistence of positive integer moments for the finite sample distribution of the
LIML estimator.)
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4.3 Discussion of the Asymptotic Approximation and Some Numerical
Evaluations.

While the exact density cannot be readily extracted in the general case, asymptotically-
valid analytical expressions for the Jeffreys-prior posterior density of 5 can be ob-
tained for this case via Laplace’s method for approximating multiple integrals. In
Chao and Phillips (1997), the Laplace’s method was applied by expanding the joint
posterior density as a second order Taylor series, which then allows integration of the
nuisance parameters as approximately normally distributed elements. (See Section 5
of Chao and Phillips (1997) for details. ). The resulting approximation has the form

p(BY.Z) ~ KIS+ (8= Pows) YsQzYa(B — Bors)| #

(1 — YaB) Qz, (31 — YaB) |
(3/1 - YQﬂ)'QZ(yl - Y2ﬂ)

where S = y’lQ(y%Z)yl and ﬁOLS = (Y,Qz,Y2) 1Y, Q49 and where

[H(3,Y, Z)|'?, (39)

~ 1 /
K = (2ﬂ_){(k1m+k2n)/2+m(m+1)/4} eXp{_ETmHY'Q(PZ . le)y2|1/2

’ 1 ’ _ T
Y,Q2Y/T| 2" [y,Quvy 1 /T| 2, (40)

(y1 — Yaf3) Qz, (11 — YaP)
(y1 — Y2B3) Qz(y1 — Ya3))?

(
[(( — Y28) Qz(y1 — YQ/BQSLS))Q +

(1 — Y2ﬁ25LS) (Pz — Pz,)(y1 — YzEQSLS) X
(11 — Y2P8) QzYa(Yy (P7 — P2)Ya) 'Y, Qz (5 — Y2B) |, (41)

H(B,Y, Z) =

and Bysp.5 = (Y (Pz — Pg,)Y2)"'Y5 (Py — Pgy)n.

Here, we evaluate the accuracy of the Laplace approximation given in expression
(39) through a small Monte Carlo experiment. The data generating processes we use
are two-equation orthonormal canonical models of the form

y1 = ZollB 4 vy, (42)
Yo = Zollh +wy, (43)

where

(”“) =iid. N(0, ). (44)

Vot
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and where vy, and vy, denote the t-th element of vy; and vy, respectively. We set
T =50 and p? = TU,I, = 40 and vary 3 and L.

To assess the accuracy of the approximation, we calculate the average maximum
absolute error (AMAE) define as

N
AMAE=+ 3" sup |F(3) — F(9). (45)
=1

where F'(3) denotes the cumulative distribution function of the exact posterior dis-
tribution of § under the Jeffreys prior, F (B) denotes the cumulative distribution
function calculated from the Laplace approximation (39), and N denotes the number
of simulation runs.

Table 1: Average Maximum Absolute Error of the Laplace Approximation.

N = 20,000
L=0 L=3 L=9
B=0 02326 .03810 .08059
fg=.6 02234 .03465 06872
f=2 .02491 .03069 04548

Table 1 reports the AMAE for 8 = 0, .6, 2 and L = 0, 3, 9 based on 20,000
simulation runs. Note that for the nine experiments conducted, the AMAE ranges
from a low of .02234 for § = .6 and L = 0 to a high of .08059 for § =0 and L = 9.
Observe also that AMAE increases as the degree of overidentification L increases.
This is to be expected since the dimension of parameter space increases and the
number of nuisance parameters to be integrated out increases as L increases.

We believe that the numbers reported in Table 1 show that the Laplace approx-
imation works very well, especially given the moderate sample size used in these
experiments. In addition, note that these experiments are not completely fair to the
Laplace approximation since the Laplace approximation in expression (39) is derived
under the assumption that 2 (or, alternatively, ¥) is an unknown nuisance parameter
matrix and, thus, must be integrated out. On the other hand, the data generating
processes used in these experiments are orthonormal canonical models, and the ex-
act posterior density with which the Laplace approximation is compared is derived
conditional on the knowledge that €2 = I5. Hence, there is a difference in the level of
initial knowledge assumed in the two distributions being compared. We would expect
the Laplace approximation to do even better if it is compared to the exact marginal
posterior density of 3 derived for the case where {2 is unknown; but, unfortunately,
the latter have not been derived.

Figures 5-12 (in the back of the paper) depict graphs which visually compare the
exact posterior density of 3 under the Jeffreys prior with the Laplace approximation
given by expression (39). The data generating processes used to generate the graphs

19



are of the same form as that used for the simulation above with  taking on the values
.6 and 2 and L taking on the values 0 and 9. Again, we note that a posterior density
is a conditional density given the data so that its exact outlook will vary depending
on the particular data sample that is drawn. Hence, we provide two graphs for
each data generating process used, one illustrating the case where the approximation
is very good (Figures 5, 7, 9 and 11) and another illustrating the case where the
approximation is not so good (Figures 6, 8, 10 and 12). Focusing on the cases where
the approximation does not perform so well, we see that in most cases the bulk of
the approximation error is actually incurred in the region around the posterior mode
(see Figures 6, 8 and 12) although, in a minority of cases, the approximation may
also be shifted relative to the exact distribution as in Figure 10.

5. CONCLUSION

This paper extends the work of Chao and Phillips (1997) to the general case with
n included endogenous regressors. Analogous to the one endogenous regressor case
in that paper, we find that the marginal posterior density of 4 under the Jeffreys
prior is integrable but exhibits the same nonexistence of moments which characterize
exact finite sample distribution of the classical LIML estimator. In addition, again
analogous to the one endogenous regressor case, we show that in the special case of
a just-identified, orthonormal canonical model, the posterior density of 4 under the
Jeffreys prior has the same infinite series representation as the exact finite sample
density of LIML derived in Phillips (1980) for that case.

The methods employed in this paper come from classical multivariate analysis and
the classical literature on the finite sample distribution of single-equation estimators.
These methods are likely to have applications in Bayesian analysis well beyond the
strict confines of this paper. In particular, they are likely to be useful in analyz-
ing the effects on posterior inference of applying other types of information-matrix-
based priors to the simultaneous equations model. Indeed, exploring other types of
information-matrix-based priors seems an interesting avenue for future research. Re-
search by Kleibergen and van Dijk (1992, 1997), Poirier (1996), and Chao and Phillips
(1997) suggests that the primary reason why posterior distributions based on the Jef-
freys prior do not suffer from the same pathologies that afflict diffuse-prior posterior
distributions is due to the fact that the Jeffreys prior is derived from the information
matrix.!! However, a drawback of the Jeffreys prior in the context of the SEM is
that it leads to a posterior density for § which has no finite moments of positive
integer order even when the model is overidentified. It would be nice to find a prior

11See Kleibergen and van Dijk (1997) for a discussion of the various pathologies
which afflict the diffuse-prior Bayesian analysis of the simultaneous equations model.
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which not only preserves the advantages of the Jeffreys prior but also gives rise to
posterior tails that are thin enough to allow for the existence of moments at least up
to the degree of overidentification. In this regard, the alternative information-matrix-
based priors proposed by Bernardo (1979), Tibshirani (1989), Berger and Bernardo
(1992a, 1992b), and Kleibergen and van Dijk (1997) emerge as interesting possibili-
ties, although further research on these priors in the context of the SEM is obviously
needed.

APPENDIX

Proof of Theorem 3.1:

We first show expression (18). To proceed, we combine the Jeffreys prior density
(17) with the likelihood function implied by equations (9) and (10) under conditions
(7), (11), and (14) to obtain the joint posterior density

/2l E(ko—n / 1 1 /
p(ﬂa%HhHﬂYu Z) X |1 +55|2(k2 )|TH2H2|2 exXp (‘5“[(”17‘/2) (U1,V2)]> . (46)

To compute the marginal posterior density of 3, we need to integrate (46 with
respect to 7, II;, and Il,. To proceed, note that the posterior density (46) can be
factorized as follows:

p(B,7, 1, 1LY, Z)

« %o (—gulh-6-7) b
XTIy, @ L,| % exp (—%tr (I — L (11— ﬁl)D } (B)
| TTI, I, |% exp (—%u [T(B{Bl)(m ~IL)(IL, — ﬁQ)D } (©)
x |1+ B[ * exp (%u [T(B{Bl)ﬁ;ﬁgD
X exp (—% [yl’Qz1y1]>

X exp <_%tr[}/2/Q21Y2]> , (47)
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where

v = T Ziy — ZIL4),

I, = T7'Z\Y,,

I, = T 'ZYBi(BB) ..
Note that (A), (B), and (C) are, respectively, proportional to the conditional posterior
density of v given (3,11, 1l,), the conditional posterior density of II; given (53,11s),
and the conditional posterior density of Il, given (3. Moreover, note that we can
easily integrate 47 with respect to v and II; since (A) is proportional to the p.d.f. of
a multivariate normal distribution while (B) is proportional to that of a matric-variate
normal distribution.

To integrate (C') with respect to Iy, we proceed as in the derivation of the density

function of the noncentral Wishart distribution (cf. Muirhead, 1982). Write M =
T211,. It follows that dIly = |72 I, |™dM so that

/R [T, > exp (—%u [T(BiBl)(Hg —TI,)' (T, — ﬁg)D (d11,)
- /ngn |M'M|? exp (—%tr [(BiBl)(M — M)'(M — ]Tf)}) T2 I, |~ (M) (48)

where M = TzII, and where (dIly) and (dM) denote the exterior products of the
kan elements of dIl; and dM as described in Muirhead (1982). To evaluate the right-
hand side of (48), we further write M = H;L, where H; is a ko X n matrix such
that H{H, = I,, and where L is upper triangular. Moreover, by Theorem 2.1.14 of
Muirhead (1982), the measure (dM) decomposes as follows:

(dM) = 27" det(M'M)*2 "= D/2(q(M'M))(H,dH,), (49)

where (d(M’'M)) is the measure on the positive definite matrix M’'M and (H;dH;)
is the measure on the matrix of orthogonal columns of H;. Note that

MM=LHHL=LL=A (say). (50)
Making use of (49) and (50), we can rewrite the right-hand side of (48) as
/ / T3 1, |27 | A| 2=/ exp (tr [(B{Bl)]\Af’HlLD
A>0 JH1€V, 1,

exp (—%tr [(B{BQA]) exp (—%tr [(B{BI)JTI'MD (HidH,)(dA),  (51)

where V,, 1, is the Stiefel manifold of ks X n matrices with orthonormal columns. The
inner integral in (51) can, in turn, be evaluated as follows:
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where O(ky — n) denotes the orthogonal group of (ky —n) x

/ exp (tr [(B{Bl)]\Af’HlLD (H\dH,)
HyeV, ko

Tty—n[5 (k2 — n)]
ko —n) r(k2—n)?/2

/ / exp (tr [(B;Bl)JTI'HlLD (K'dK)(Hy\dH,)
H1 €V ko JEO(]CQ n

s[5 (k2 — n)]
2(l€27n)7r(k27n)2/2

exp (tr [(B{Bl)]\Af’HlLD (HdH)
HeO((ka)
2n7.(.k2n/2

=T / exp (tr [(B;Bl)M'HlL]) (dH)
Fn(§k2) O(k2)

2nﬂ.k2n/2
2nﬂ.k2n/2

1 1 —~ ~
1 1 / AT D!
0F1 5]432, Z(BIBI)M M(BlBl)A N

(dH) = (H'dH).

Vol[O(k3)]

e ! (B,B;)M'M
ex ——tr [ })
/A>O L (5ks) p( 2 .

< LA e (—%tr [(BiBl)A]>

11 —
< s (gt (BLB)ATRT(B50)A) (@A),

1 1 —~
ol <§k2;1(BiBl)M/M(BiBl)A>

(;11(3' Bl)M'M(B;Bl)A)

]z:: 7 3k2)a(3") ’
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(52)

(ko — n) matrices and

The second and the fourth equality above follow in a standard way, e.g. see Lemma
9.5.3 and Theorem 7.4.1 of Muirhead (1982) respectively. Now, using (52) in (51),
we obtain

(53)

Finally, the integral (53) can be evaluated by noting that the matrix argument hy-
pergeometric function o F3(-) can be given an infinite series representation in terms of
zonal polynomials as follows:

(54)



where the series is absolutely convergent (e.g.. Constantine, 1963). In view of (54),
we can integrate the integrand of (53) term-by-term using Theorem 7.2.7 of Muirhead
(1982) to obtain

1 —
Ky exp (—5‘51“ [(BiBQM'M}) | B, B, |~z k2t

1 1 1 —

where
L(ko+1), _kan/2 1 1

Note further that

(B{By)M'M = T(B;B;)IiI,
By(Y'Z,ZyY |T)By (B, By) ™! (56)

and that

| By B1| = L, + Bf]. (57)
From expressions (47), (55), (56), and (57), we deduce that

1 o
p(BIY.Z) o 1+ 8B exp (5tr [T(BaBngHQD
1 / 1 / 1 / AT
exp —§y1QZ1y1 exp —étr[YQQzlY'g] exp —Etr {(BlBl)MM}

1 1 1 —~
|B,By|" 2%V | Fy <§(k;2 +1); ke 5(BgBl)M’M)
x [L+p3p 20

1 1 1
3 (5(1432 + 1); §k‘2; iBi(Y’ZQZéY/T)Bl(B{Bl)1> : (58)

as required by expression (18).
To show (20), we note that for the just-identified case, ks = n. Moreover, in this
case

B(Y'ZyZ5Y /T) By(By Br) ™"
= (Y3Za + By Z2) (1 T)(Z3Y2 + Zyy ') (I + BF) 7, (59)
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but (59) has the same eigenvalues as

(L/T)(Z5Ys + Zyy B) (I + BB')H(Ys Zo + By1 Zo)
= T(ZyYs)T)(I, + (ZYa) "' Zhyn ) (1, + BB)
(In + By Z2(Y3 Z2) ™) (Y3 Zo/T)

= TﬁQ(In + BQSLSﬁI)(In + 86" (I, + 6E;SLS)ﬁ/27 (60)

where we have made use of the fact that under just identification Z}Y5 is nonsingular
almost surely. It follows, then, in this case

1

2

1
11 (5(/62 +1),

1
ko iBi(Y,ZQZéY/T)Bl(BiBl)_1>

= 18 (0 Vs T+ Bosas¥) T+ 99) (U + BT ) (61

which establishes expression (20).0
Proof of Corollary 3.3:
We start with the marginal posterior density of § as given by (18). We want to

show that along each ray of the form 3 = bj,, for some fixed vector 3, # 0 and some
scalar b which tends to infinity, we have

|14 6280372V x
1B (%(k’g +1); %]@; %(bﬁm L) (Y' 2 Z,Y | T) (b8, 1)’
(b0, L) (bBo, 1)) )
= CIL+BBy8 2D (1 +o(1)), (62)
as b — oo, where

1 1 1
= M| =(k 1), =kos:=D | .
C 11(2(2+),2272 )

Here,
Vi U Ry

_RIQQ/JQI Rl2¢22R2

25



where

Yy = 91Z2Z591/Ta
Yy = _Y2/ZQZ§3/1/T=

1/122 - Y2/Z2Z§Y2/T=

and where we define R = (rq, Ry) = (ﬂo(ﬂgﬁo)’%,ﬁ07L(ﬂ67L607L)’%) € O(n) so that
567“1 =1 and ﬂBRQ =0.
To show (62), it suffices to show that

lim | F) (1(1{2 + 1);%@;%5(5)) e (63)

b—oo 2

To show (63), define the n x n diagonal matrix

20
B
=i 1)

S1(b) = GR'(bBy, 1) (Y Z,Z,Y/T)(bBy, I.) RG
(GR'(b8y, L) (b8, I,) RG) .

and write

Now, note that

1 1.1 1 11
1y <§(k’z +1); 5ke; 55(5)> =10 (5(7432 +1); 5k §Sl(b)> Vb

since S(b) and S;(b) have the same set of eigenvalues. Hence, we can alternatively
show that

b—o0

To proceed, note that with some straightforward algebra, we obtain

iy — ?//217"1/5 — 71y /b + 7“/1?/’227"1/52 _@/1/21R2 + g Ro /b
S1 (b) = X
—Ritbg; + Riyhogry /b Rytye Ry

1+1/62 0 \ '
0 In—l

— Dasb— 0.
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Next, observe that since the eigenvalues of S;(b) are continuous functions of the
variates of Sj(b) and since the hypergeometric function 1F(-) is continuous with
respect to the eigenvalues of its matrix argument, it follows by continuity that

. 1 1 1 1 1 1
bli}r{.lo 1F1 (§(k2+1),§k2,581(b)> = 1F1 <§(k2+1),§k2,§D>

- C, (64)

which establishes the desired result (62). O
Proof of Theorem 3.4:

We prove this theorem in two steps

Step 1: We want to show that the conditional posterior density of § given {2 has
no finite absolute moments of positive integer order from which it follows by the
Tonelli Theorem that the marginal posterior density of 3 also has no finite absolute
moments of positive integer order. As this step follows from arguments very similar
to those given in the proofs of Theorem 3.1 and Corollary 3.3 above, we will only
briefly outline the argument.

To begin, we note that proceeding as in the proof of Theorem 3.1, we can show
that

p(BI,Y, Z)
X |wir — 2bwh B+ 5,9225|_%(n+1)

1 1 1 -
\F (5(/@+1);5@;5819—11/'(132—PZI>YQ—1Bl (B2 By) ) (65)

Next, by following arguments similar to those in the proof of Corollary 3.3, we can
show that along each ray of the form 3 = bj3,, for some fixed vector 3, # 0 and some
scalar b which tends to infinity, the limiting behavior of the conditional posterior
density (65) is of the form:

lwi1 — 2bwh, By + 625692250|_%(n+1) X

1 1,1
1F1 <§(k’2 + 1)7 §k2; E(bﬂm In)Q_IY,(PZ - PZ1)YQ_1(bﬁO= In),

(680, 1) (68, 1)) )
= Colwir — 2bwhy By + b B8y 2 V(1 + 0(1)), (66)
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as b — oo, where

and where

/ -1 1 O—1 -1 -1
P11 —py Ry Wit.2 —wa 9 Rowyy 5

DO - 5
—Rype;  Rypon Ry u)1_11.2}2292_21‘*121 RIQQQ_21 Ry

with 1, @51, and @, defined as follows

011 = wite(yr — Yo wa) (Py — Pg)(y1 — YoQpp war),
o1 = Wits(iwh Qg — YoQ5 1wi12) (P — Pzy) (1 — YoQ5 war),

P2 = w1_12.2(311“)/2192_21 - }/'292_21.1“}11.2)/(]32 - PZ1)(3/1W,2192_21 - YQQQ_QIJWH.Q)'

As before, we define R = (11, Ry) = (ﬁo(ﬁgﬂo)’%,ﬁ07L(667Lﬁ07L)’%) € O(n) so that
567“1 =1 and ﬂBRQ = 0.

Note that the tail behavior of the right-hand side of (66) is determined by the
factor

lwi1 — 20wy, By + b2ﬁ692250|_%(n+1)7

which is proportional to the probability density function of a multivariate Cauchy
distribution. From this, we deduce that the conditional posterior density of 5 given
Q2 has no finite absolute moments of positive integer order. As noted before, it then
follows by the Tonelli Theorem that the marginal posterior density of § also has no
finite absolute moments of positive integer order.

Step 2: We need to show that the marginal posterior density of 4 under the
Jeffreys prior is integrable.

To do this, note first that given the triangular structure of the SEM described in
Section 2 and given the invariance of the Jeffreys prior to 1:1 parameter transforma-
tion, we will obtain the same marginal posterior density of (3 regardless of whether
we proceed from the parameterization given by expression (9) and (10) under error
condition (7) or the parameterization given by expressions (1) and (2) under error
condition (3). Here, we find it convenient to proceed from the latter parameterization.
Moreover, we make the additional transformation (011, 091, Yos) — (0711, 071 0%, Xo2.1)
with jacobian term |o1|™ and write the joint posterior density under the Jeffreys prior
in the form

28



(ﬁa%Hth,Uu,Uilalma Y901|Y, Z)

o oy | ETHRER Dy, [T 700 5, o102
1
exp (=3 [oiatu+ (S5, Q.Y
+ tr (222 1((7111(721 (u ,U)_lul%),(ulu)((’il(’él - (U,U)_IUIVQ))D . (67)

Next, observe that the conditional posterior density of 7', given all the other
parameters is proportional to the p.d.f. of a multivariate normal. Hence, we can
integrate with respect to o,;'0); to obtain

p(ﬁaVaHIaHQaalla ZQQl‘Y Z)

1 n
|O-11|72(T+I€1+2)|2 | 2 (T+k+ +1)|HI ZQQZ1Z2H2|2

I 1—in - _ / - /
|u'u| 72" exp (—5 [0 u'u+ tr(EQQI_lVQQUVQ)D : (68)

Moreover, note that the conditional posterior density of o7 given (3, v, 11, II5, 390 1)
and that of 3y 1 given (3,~, 11, IIy) are both that of an inverted Wishart distribution,
so we integrate with respect to o7 and Y91, in turn, to obtain

p(ﬁﬁuﬂhﬂm |Y, Z)
[/ 2T |V5Q, Vo |2 THRIT, ZQ 5, Zoll, |2
= || 2RI Z0Q 7, 2102
|(Ya = Zo112) Qu, z,) (Yo — ZoIlz) + (T1; — ML) Z,Qu 7 (11 — 1I,)| =3 +9)(69)

where II; = (Z/QuZ1) 1 Z,Qu(Y2 — Zo11,). From (69), it is apparent that the condi-
tional posterior density of II; given (/3,~,1ly) is that of a matric-variate ¢ distribution
which can be integrated to obtain, after some algebra,

p(3,7, 0y, Y, Z)

/w75 T | Q 4 w3 TR Q sy gty ] T2 T HR)
¥ - 22H2>’Qz1 (Vo = ZuT1a)| 7349 I, 25Q2, ZuTLo|

= |(y — YaB) Qu(n — Yal) + (v = 7)' Z, Zu(y — F) |72+
(1 — YaB)' Qz, (yr — Ya3)|2THhetn)

[(y1 — Y28) Qvo—zot1a,20) (Y1 — Yo 3)| 2T k)

(¥ = Zo112) Q, (Y = Zoll)| 2" 11 2,0, ZoTho| 2, (70)
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where § = (Z1 7)™ Z} (y1 — Y23). Once again, we recognize from expression (70) that
the conditional posterior density of v given (3,1l5) is a multivariate ¢t distribution
which we can integrate to obtain

P(3. 02, V. Z) o |(yn = YaB) Qza(y — Vo) 2>

(51 = Va3, Vs = ZT05) Qz, (31 — YaB, Yz — Zoy) "2 442)
T, Z,Q 7, ZoTl 2
— | = Y28)Qu, (3 — Ya3)[ 2T
[(Ya — Zo115) Qs —vap,20) (Yo — ZQH2)|—%(T—H¢2)
T0,2,Q7, Zo1L, . (1)

The posterior density of § and II; cannot be readily integrated with respect to Il
to obtain in closed form the marginal posterior density of 3. Instead, we bound
(71) with an expression for which II, can be integrated out in closed form and use
dominated convergence. To proceed, note that for Rank(Ily) = n < ks,

(1 — YaB) Qz, (y1 — YaB)| 2TV — ZT12) Qyy—vaz) (Va — ZoTly)| 72T HF)
T15,25Q 2, ZQHQ‘%

(11 — YaB)' Qz, (31 — YaB)| 2T+

(Vs = ZoTL) Qg —yap.z20) (Yo — Zolly) |72 (TRt

|(}/2 - ZQHQ),Qzl (YQ - ZQHQ) - (YQ - ZQHQ),(P(yl—Ygﬁ,Zl) - le)(YQ - Z2H2)|_%
T15,25Q 2, ZQHQ‘%

< (g1 — YaB) Qu (31 — YapB)| 7274
(Y — Zo115) Qyy —va8,2) (Yo — Zolly)| "2k
(|11, Z5Q 7, Z11, | /|H§Z§Q(yl,Y2,Zl)Z2H2|]1/2
< |y — YaB) Qu (31 — YapB)| 72T+
(Vs — ZoIL) Qg —vy,20) (Yo — Zo1L)| 2T Hh2~)
1
n n 2
|:H )‘kg—n+i H /’Lz] ) (72)
=1 =1
where Ag, _ni1, ..., Ak, are the n largest eigenvalues of the matrix Z,Q) 7, Z are puq, ..., f4,,

are the n smallest eigenvalues of Z;,Q)y, v.,z,)%2. Note that the first inequality above
arises because (Y2 — ZoIL) (P, vs,2) — Pl ves,zn)) (Yo — Z21lp) is at least positive
semidefinite. The second inequality, on the other hand, makes use of Theorem 15 of
Chapter 11, Section 13 of Magnus and Neudecker (1988). Observe that
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1152,Q 7, Zo10s| /[T, Z5Q 4, v, 20) Zo 11|
= (U0512) 310, Z5Q2, ZaTo (512) ™3| /(T 1) #1125 Qu, 35,700 ZeTTa (1T5112) 2

IN

[ /1

by Theorem 15 of Magnus and Neudecker (1988). Note further that the upper bound
we achieve in (72) can be integrated in closed form with respect to IIs since the sole
factor containing Il in this expression is proportional to the p.d.f. of a matric-variate
t distribution. Performing this integration, we obtain an expression proportional to

where

where

(g1 — YaB) Qz, (31 — Ya)| 274
_lp_ _1,
Y3Q 1 —va6.21,70) Yo 2T V| Z5Q r vi5,70) Za| 2

1
n n 2
[ /T
i=1 =1

_ o {\(yl — Y2B) Q1,2 (1 Yzﬂ)\] !
(1 — Ya3)/ Qz, (11 — Ya03)]
|3/1Q(Y2,Zl,z2)y1 + (5 - B)/YQIQ(ZLZQ)YQ(@’ - B)|_%(n+1)
< CilyQuve, 21,2091 + (B — 3)/5/2/@(21,22)3/2(5 - 3)|7§(n+1),

1p_
Cl = ‘yiQ(Yz,ZLZz)yl‘iZ(T 2

H Ay nti H Hy
i=1 =

i=1

|HQ(21,Z2)Y2|_%(T_1) | Z5Q 2, Zo| 2",

B = (YQIQ(ZLZZ)}/Q)71}/72/Q(Z17Z2)y1’

(73)

and where the inequality follows from the positive definiteness of Y'(Qz, —Q(z,,2,))Y =
Y'(Pz — Pyz,)Y. Finally, observe that the right-most expression of (73) is proportional
to the p.d.f. of a multivariate Cauchy distribution and is, thus, integrable with re-
spect to §. From this, we deduce the integrability of the marginal posterior density

of 4 under the Jeffreys prior. [
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