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A Strategic Market Game
with Active Bankruptcy

J. Geanakoplos, I. Karatzas, M. Shubik, and W. Sudderth*

Abstract

We construct stationary Markov equilibria for an economy with fiat money,
one non-durable commodity, countably-many time periods, and a continuum of
agents. The total production of commodity remains constant, but individual
agents’ endowments fluctuate in a random fashion, from period to period. In
order to hedge against these random fluctuations, agents find it useful to hold
fiat money which they can borrow or deposit at appropriate rates of interest;
such activity may take place either at a central bank (which fixes interest rates
judiciously) or through a money-market (in which interest rates are determined
endogenously).

We carry out an equilibrium analysis, based on a careful study of Dynamic
Programming equations and on properties of the Invariant Measures for asso-
ciated optimally-controlled Markov chains. This analysis yields the stationary
distribution of wealth across agents, as well as the stationary price (for the com-
modity) and interest rates (for the borrowing and lending of fiat money).

A distinctive feature of our analysis is the incorporation of bankruptcy, both
as a real possibility in an individual agent’s optimization problem, as well as
a determinant of interest rates through appropriate balance equations. These
allow a central bank (respectively, a money-market) to announce (respectively, to
determine endogenously) interest rates in a way that conserves the total money-
supply and controls inflation.

General results are provided for the existence of such stationary equilibria,
and several explicitly solvable examples are treated in detail.

March 1998
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1 Introduction

As in two previous papers [KSS1] (1994), and [KSS2] (1996), we study an infinite-
horizon strategic market game with a continuum of agents. The game models a
simple economy with one nondurable good which is produced in the same quantity
in every period. The endowments of individual agents are random, and fluctuate
from period to period. Agents must decide in each period how much of their current
wealth to spend on consumption. In [KSS1] the only choice was between spending,
and hoarding cash for the future. In [KSS2] agents were able to borrow or lend money
before spending, but borrowers were not allowed to borrow more than they could pay
back from their earnings in the next period. Since bankruptcy is a prominent feature
of real economies, we introduce here a more general model where bankruptcy can and
does occur.

The main focus of this paper is on a model with a central bank which makes loans
and accepts deposits. The bank sets two interest rates, one for borrowers and one
for depositors. Some unfortunate borrowers may not receive sufficient income to pay
back their debts. To avoid inflation, the bank must set the interest rate for borrowers
sufficiently high, so that it will get back enough money from high-income borrowers
to offset the bad debts of the bankrupt, and also be able to pay back depositors at a
(possibly) different rate of interest. We assume that the bank does not seek to make
a profit, but only to control inflation in the economy.

The rules of the game must, of course, specify the terms of bankruptcy. Almost
every conceivable rule seems to have occurred historically, but we have chosen for our
model what appears to be the simplest rule that can be analyzed mathematically.
Namely, the bankrupt receive a non-monetary “punishment” in units of utility, but
are then forgiven their debts and allowed to continue to play.

An interesting alternative to the model with a central bank is one with a money
market. In this model, agents offer fiat money for lending, or bid IOU notes for
loans, and thereby determine interest rates endogenously. Such a model is studied in
[KSS2]. Here, for the sake of clarity and brevity, we shall concentrate on the model
with a central bank and limit ourselves to a few remarks on the model with a money
market.

The game with a central bank, as we define it in Section 3, is a full-process
model with completely specified dynamics. Indeed, the game can be simulated for a
finite number of players as was done for the model of [KSS1] by Miller and Shubik
(1994). It would be very interesting to obtain theorems about the limiting behavior
of the model when it begins out of equilibrium, and we do obtain some information
(Lemma 7.5) about the extent to which the bank is able to influence prices by its
control of interest rates. However, we concentrate on the existence and structure of a
“stationary Markov equilibrium” (Theorems 5.1, 7.1, 7.2, and Examples 6.1-6.3) in
which the price of the good and the distribution of wealth among the agents remain
constant.



1.1 Heuristic Comments

This paper concentrates on the proof of existence of a stationary equilibrium wealth
distribution of agents together with a stationary policy, as though each agent were
facing an independent one-person dynamic programming problem. Even with a highly
abstracted one-commodity model, the mathematical analysis is relatively complex
and lengthy. We confine most of our discursive remarks on modeling in this paper to
a bare minimum; in a relatively nontechnical companion paper the motivation for and
justification of modeling choices is given in detail, together with several illustrative
examples.

There are some relatively mundane aspects of economic life which can easily be
ignored in an equilibrium theory concerned with the existence of prices but not with
the mechanisms which bring them into being. These are: (1) the presence of fiat
money and the nature of the conservation laws governing its supply in the markets
and in the banking system; (2) the existence of the float or a transactions need for
money; (3) the need for default, bankruptcy and reorganization rules, if lending is
permitted; and (4) the nature of interest rates as parameters or control variables or
as endogenous variables.! A process model requires that these aspects be explained.

There are many complex ways in which price is formed in an economy. The two
simplest, in the sense that each of them requires only a single move made by all agents
simultaneously, are the “quantity strategy” mechanism suggested by Cournot, and the
double-auction market. In the Cournot model, price is formed by dividing the amount
of money offered for goods by the amount of goods available. In the double-auction
market each agent specifies a personal price at which he will buy or sell, together
with a quantity to be bought or sold. The market mechanism, or central clearing
house, calculates the bid and offer histograms and announces the market price at the
point at which the histograms cross.

The existence of money depends on economic dynamics. Basic general equilib-
rium analysis can study the price system without postulating its existence. Here,
by requiring that all of a single commodity be sold for money, we implicitly create
a transactions need for money. A glance at any actual modern economy indicates
that trade of goods for money is a reasonably good approximation. Furthermore, the
activity of money offered for goods creates price. The presence of a money market,
in which money can be borrowed or lent, and the presence of a central bank which
may control a key interest rate, are also facts of a modern economy. We incorporate
these features at a high level of abstraction or simplicity. As soon as borrowing is
considered in a stochastic strategic model of the economy with incomplete markets
the possibility arises that, under certain circumstances, a borrower will be unable to
repay his loan. The full definition of the game requires the rules to specify how the

! A fifth key phenomenon is the velocity of money which is given by the volume of transactions
per unit of money per period of time. We delay our study of velocity and avoid the new difficulties it
poses by considering discrete time models where velocity is constrained to be between 0 and 1. The
relationship between the discrete and continuous time models is of importance. But we suspect that
the transactions need for money cannot be adequately modeled by continuous time models alone,
without imposing some discrete time aspects of economic life on the continuous time structure.



inability to repay is resolved. In real economic life this possibility is taken care of by
laws concerning default, insolvency and bankruptcy. Rather than lose ourselves in
the institutional details and intricacies of such laws we model these rules as simply
as possible. Even with all these simplifications, however, the proof of existence of
an equilibrium with a stationary wealth distribution and specified death and rebirth-
processes for defaulting firms, is complex.

Although we have demonstrated the existence of a stationary equilibrium for an
economy with a total supply of goods that remains constant from period to period,
we have not yet shown how to extend these results to a cyclical or stochastic overall
supply of goods per period. In ongoing work we propose to examine the critical role
of a central bank in controlling the money supply and the limitations in its ability
to control inflation as a function of the control variables it can utilize and of the
frequency of its interventions.

We have limited our investigation to the trading of only one commodity. It ap-
pears that the existence results may be extended to many commodities; but unique-
ness is certainly lost. Even with one commodity uniqueness does not always hold;
furthermore, if the system is started away from the equilibrium distribution, we have
been unable to establish general conditions for convergence to equilibrium. Thus,
even though our models will accommodate the study of dynamics, there is little
reason to believe that individuals with heterogeneous expectations will manifest a
dynamics which converges to an equilibrium with consistent expectations.

2 Preview

In the next section, we provide a careful definition of the model under study, and
also of the notion of “stationary Markov equilibrium.” The key to our construction
of such an equilibrium is a detailed study in Section 4 of the one-person, dynamic
programming problem faced by a single player when the many-person model is in
equilibrium. We are then able to show in Section 5 that equilibrium occurs for given
price, interest rates, and wealth distribution, if two conditions hold: (i) the wealth
distribution corresponds to the aggregate of the invariant measures for the Markov
chains associated with the wealth processes of individual agents, and (ii) the bank
balances its books by earning from borrowers exactly what it owes its depositors.
After a collection of illustrative examples in Section 6, a general existence theorem
is proved in Section 7 for the case of homogeneous agents. Section 8§ offers a brief
discussion of the model with a money-market (instead of a central bank).

3 The Model

Time in the economy is discrete and runs n = 1,2, .... Uncertainty is captured by a
probability space (€2, F, P) on which all the random variables of our model will be
defined. There is a continuum of agents o € I = [0, 1], distributed according to a
non-atomic probability measure ¢ defined on the Borel subsets B(I) of I.



On each day, or time period, n = 1,2,..., each agent a € I receives a random
endowment Y, (w) = Y, (a,w) in units of a single perishable commodity. The endow-
ments Y%, Yy, ... for a given agent o are assumed to be nonnegative, integrable, and
independent with common distribution A%. We also assume that, for every n, the
variables Y, (a,w) are jointly measurable in o and w so that the total endowment or
production

Qul) 2 / Y (a, w)p(da) > 0 (3.1)

is a well-defined finite random variable.

There is a loan market and a commodity market in each time period n. For the
loan market the bank sets two interest rates, namely, 71, (w) = 1+ p;,,(w) to be paid
by borrowers and 72, (w) = 1 + py,,(w) to be paid to depositors. In the commodity
market, agents bid money for the consumption commodity, thereby determining its
price py,(w) endogenously as will be explained below.

The interest rates are assumed to satisfy

1 < rop(w) < rip(w) and rop(w) < (3.2)

R

for all n € N, w € Q, where 3 € (0,1) is a fixed discount factor.

Each agent o € I has a wtility function u® : R — R, which is assumed to be
increasing and concave with «*(0) = 0. For z < 0, u®(z) is negative, and measures
the “disutility” for agent a of going bankrupt by an amount z; for = > 0, u®(x) is
positive, and measures the “utility” derived from the consumption of x units of the
commodity.

At the beginning of day t = n, the price of the commodity is p,,_1(w) (from the day
before) and the total amount of money held in the bank is M,,_;(w). An agent a € I
enters the period with wealth S ;(w). If S ;(w) < 0, then agent a has an unpaid
debt from the previous period, is assessed a punishment of u(SS_;(w)/pr—1(w)), is
then forgiven the debt, and plays the game from the wealth position 0. If S, (w) > 0,
then agent « has fiat money on hand and plays from position S_;(w). In both cases,
an agent «, possibly after being punished and forgiven, will play from the wealth
position (S ;(w))t = max{S¢_,(w),0}.

Agent « also begins day n with information F ; C F, a o-algebra of subsets
of Q that measures past prices py and interest rates rig, rox, kK = 0,1,....n — 1, as
well as wealths, endowments, and actions S§, S¢, V)&, b, k =1,...,n — 1. (It may,
or may not, measure the corresponding quantities for other agents.) Based on this
information, agent « bids an amount

b (w) € [0, (S5 1 (w)) ™ + &7 (3-3)

of fiat money for the commodity on day n. The constant £¢ > 0 is an upper bound
on allowable loans. It is assumed that the mapping (o, w) — 0% (w) is B(I) & Fy,—1-
measurable, where

For 2\ Froa



is the smallest o-algebra containing F ; for all « € I. Consequently, the total bid

Baw) 2 / b (w)p(da) > 0 (3.4)

is a well-defined random variable. As indicated, we assume that B, (w) is strictly
positive.

After today’s price p,(w) has been formed, each agent « receives his bid’s worth
@ 2 b (w) /pp(w) of the commodity, consumes it in the same period (the “perish-
able” nature of the commodity), and thereby receives u®(x%(w)) in utility. The total

utility agent « receives during the period is thus

a(y & Ju(@n(w), if §¢ (w) >0
6500 2 { Ll (S s0) a), Ss 20 )

X

The total payoff for agent o during the entire duration of the game is the discounted
sum

> B (w).
n=1

3.1 Strategies

A strategy m for an agent « specifies the bids 0f as random variables such that,
for every n € N, b% satisfies (3.3) and is F ;-measurable (thus F,_j-measurable).
A collection IT = {m,, a € I} of strategies for all the agents is admissible if, for
every n € N, (o,w) — b%(w) is B(I) x F,_1-measurable. We will always assume
that the collection of strategies played by the agents is admissible. Consequently,
the macro-variable By, (w), representing the total bid in period n, is well-defined and
Fn_1-measurable.

3.2 Dynamics

In order to explain the dynamics of the model, we concentrate again on period t = n.
After the bids for this period have been made and the price p,,(w) has been formed, the
agents’ endowments Y,¢(w) are revealed and each agent « receives his endowment’s
worth p,(w)Y,*(w) in fiat money according to the day’s price. Now there are three
possible situations for agent o on day n:

(1) Agent « is a depositor: this means that a’s bid b%(w) is strictly less than his
wealth (S ;(w))™ = S ;(w) and he deposits (or lends) the difference

n—1

ln(w) £ S5y (w) — by (w). (3.5)

n—1

(We set £¢(w) equal to 0 if b%(w) > (S¢ ;(w))T.) At the end of the day, a gets
back his deposit with interest, as well as his endowment’s worth in fiat money,

and thus moves to the new wealth level

S%(w) £ rop (W) (w) + pp(w) Y, (w) > 0. (3.6.1)



(il) Agent « is a borrower: this means that a’s bid b%(w) exceeds his wealth
(S¢_;(w))™, so he must borrow the difference

n—1
dpy(w) 2 05 (w) — (S7_1 (w)) ™ (3.7)
(We set d%(w) equal to 0 if b%(w) < (S ;(w))*.) At the end of the day, «
owes the bank 71, (w)d%(w), and a’s new wealth position is
Sit(w) & pa(w)Yy (W) — rin(w)dy (w), (3.6.i)

a quantity which may be negative. Agent « is required to pay back as much of
his debt, ri,(w)d%(w), as possible from his endowment p,(w)Y,*(w). Thus the
amont « pays back is

ap (w) £ min{ri, (w)dy (w), p(w)Y,; (w)} (3-8)

n

and o’s cash holdings at the end of the period are
(S ()™ = pp(w) Y (w) — ag(w).
(iii) Agent « neither borrows nor lends: in this case a bids his wealth b%(w) =
(S | (w))* and ends the day with exactly his endowment’s worth in fiat money
S (w) = pp(w)Y, X (w) > 0. (3.6.1ii)

Using the notation of (3.5)—(3.8) we can write a single formula for a’s wealth position
at the end of the period

S (w) = pr(w) Yy (w) + rop (w)ly (W) — r1p(w)dy (w) (3.9)
and another formula for a’s cash holdings
(Si(w)) " = pa(W)Y;7 (W) + ron(w) Ly (w) — ag(w). (3.10)

The wealth position S%(w) may be negative, but cash on hand, (S¥(w))" is, of course,
nonnegative.

3.3 The Conservation of Money

Let M, (w) be the total quantity of fiat money held by the bank at the end of period
t =n, and let

Ny (w) 2 / (52(w)) " p(da) (3.11)

be the total amount of fiat money held by the agents. Thus the total wealth in fiat
money in the economy is

Wi(w) & My, (w) + M, (w).
Consider the simple rule
Bn(w)
w) = ,
pn(w) On(w)
which forms the commodity price as the ratio of the total bid to total production. It
turns out that this rule is necessary and sufficient for the conservation of money.

(3.12)



Lemma 3.1 The quantity W, (w) is the same for all n and w if and only if (3.12)
holds.

Proof Use (3.5)—(3.10), (3.11), and (3.12) to see that
MW@#%mwz/wmwﬁmnmwmwmwmmwm>
=/K3ﬂ)ﬁ—w(ﬂw® /mmwwmw@mmww

Ny (1) — po(w /w ﬁmWWm—mwa
:Mnl() M’(

Reason in the opposite direction to see that (3.12) is a necessary, as well as
sufficient, condition. |

For the rest of this paper, we assume that (3.12) holds and, therefore, money is
conserved.

3.4 Equilibrium with Exogenous Interest Rates

Interest rates are announced by the bank and can be viewed as exogenous in our
model. (An interesting question for future research is how and to what extent the
bank can control prices by its choice of interest rates. Lemma 7.5 below can be viewed
as a first step in this direction.) In equilibrium agents must be optimizing given a
rational forecast of interest rates and prices.

Let {710, 72n, Pn}o2 1 be a given system of interest rates and prices. The total
expected utility to an agent o from a strategy 7 when S§ = s, is given by

I*(n®)(s) B B (w)

The optimal reward is
Ve(s) = sup I(7*)(s).
"
Definition 3.1 An equilibrium is a system of interest rates and prices {71y, ron, Pn } oo
and an admissible collection of strategies {7, o € I'} such that
(1) the prices py, satisfy (3.12),
(ii) I*(m*)(S§) = VY(SF), Vo € 1.

Observe that we put no restrictions on interest rates in this definition. Implicitly
we are assuming that the bank arbitrarily sets the interest rates and has enough cash
to accommodate all demands for loans and to meet all depositor requirements in each
period.

In this paper, we will not study the existence and structure of an equilibrium as
general as that of Definition 3.1. We shall concentrate instead on the special case of
a stationary equilibrium, which will be defined momentarily.



3.5 The Distribution of Wealth

An admissible collection of strategies {n®, a € I'} together with an initial distribution
for {S§, & € I} determines the random measures

va(Aw) 2 [ 1a(S3(w))plda), A€ BR), (3.13)
that describe the distribution of wealth across agents for n =0, 1, ....

3.6 Stationary Equilibrium

In order to obtain a stationary equilibrium, we must have a stationary economy.
Thus, we will assume from now on that total production @, (w) of (3.1) is equal to a
constant Q:

Q= / Y, (a, w)p(da) > 0, for every w € Q, n € N. (3.14)

A simple technique of Feldman and Gilles (1985) allows us to construct jointly mea-
surable functions

(a,w) — Y (w) = Yy (a,w) : I x Q — [0,00), n €N (3.15)
which have the desired properties.

Remark 3.1 If, in particular, all the distributions A* = A (Vo € I) are the same,
Feldman and Gilles (1985) show that the sequence of measurable functions (3.15) can
be constructed in such a way that

a) for every given a € I, the random variables ), -), ... are independen
f g I, th d bles Y{*(-), Y5 d dent
with common distribution A,

(b) for every given w € €2, the measurable functions Y;*(w), Y5 (w), ... are indepen-
dent with common distribution A, and

(c) (3.14) holds.
Thus, in this case, @ = [yA(dy) > 0. [ |

Definition 3.2 A stationary Markov equilibrium is an equilibrium {ri,, rop, pn}5° 1,
{m%, a € I} such that, in addition to conditions (i) and (ii) of Definition 3.1, the
following are satisfied:

(iii) the interest rates 71, (w), ron(w) and prices py(w) have constant values ry, ra,
and p,

(iv) the wealth distributions v, (-,w) are equal to a constant measure p,

(v) the quantities M, (w) and M, (w), corresponding to money held by the bank
and the agents, have constant values M and M, respectively; and



(vi) each agent « follows a stationary Markov strategy 7, which means that the
bids b5 specified by 7 can be written in the form

by (w) = (S5 (w)™).

Here ¢* : [0, 00) — [0, 00) is a measurable function such that 0 < ¢*(s) < s+k“
for every s > 0.

The conditions (v) in Definition 3.2 are redundant as is made clear by the following
lemma.

Lemma 3.2 In any equilibrium, conditions (i) and (iv) imply (v), and conditions
(iv) and (v) imply (i).

Proof If (iv) holds, then

M, (w) = /Sg(w)Jrgo(da) = /Sﬂ/n(ds,w) = /s+u(ds)
is the same for all n and w. Thus both assertions follow from Lemma 3.1. [ |

If our model is in stationary Markov equilibrium, then an individual agent faces
a sequential optimization problem with fixed price and interest rates. After a detailed
study of this one-person game in the next section, we will return to the many-person
model.

4 The One-Person Game

Suppose that the model of the previous section is in stationary Markov equilibrium
and focus on the optimization problem facing a single agent. (We omit the superscript
« in this section.) As we will now explain, this problem is a discounted dynamic
programming problem in the sense of Blackwell (1965).

The interest rates r; = 1+ py, 72 = 1+ py, and the discount factor 3 are assumed
to satisfy (3.2) as before:

1<ry<ryandry <1/p. (4.1)

The state space S represents the possible wealth positions for the agent. Because
the nonnegative number k is an upper bound on loans, the agent never owes more

than r1k. Thus we can take & = [—r1k,00). The price p € (0,00) remains fixed
throughout. The agent’s utility function u : R — R is, as before, concave, increasing
with u(0) = 0.

In each period the agent begins at some state s € S. If s < 0, the agent is punished
by the amount u(s/p) and then allowed to play from state s™ = 0. If s > 0, the agent
chooses any action or bid b € [0,s + k|, purchases b/p units of the commodity, and



receives u(b/p) in utility. In the terminology of dynamic programming, the action set
is B(s™), where
B(s) =[0,s+k], s >0,

and the daily reward of an agent at state s who takes action b € B(s) is

~ Ju(b/p), s>0
r(s,0) = {u(s/p) +u(b/p), s< 0} ’

The remaining ingredient is the law of motion q that specifies the conditional distri-
bution g(+|s, b) of the next state s; by the rule

_[=ri(b=st)+pY, sT<b
LT \rg(st —b)+pY, sT>b[°

Here Y is a nonnegative, integrable random variable with distribution A. For ease of
notation, we introduce the concave function

rie, <0
o) 2 {70 TS0k =gl (42)

Then the law of motion becomes s; = g(s* —b) 4 pY.

A player begins on the first day at some state sy and selects a plan m = (71,72, ...)
where 7, makes a measurable choice of the action b, € B(s,—1) as a function of
(80,01, 81, --esbn—1,5n—1). A plan 7 together with the law of motion determine the
distribution of the stochastic process sg, b1, S1, ba, ... of states and actions. The return
from 7 is the function

I(m)(s) £ Ly > B"7(Sn,bns1), 5 €S, (4.3)
n=0

The optimal return or value function is

V(s) & sup I(m)(s), s€S. (4.4)

A plan 7 is called optimal, if I(m) =V.

If the utility function u(-) is bounded, then so is 7 and our player’s optimization
problem is a discounted dynamic programming problem as in Blackwell (1965). In
the general case, because u(-) is concave and increasing, we have

u(—rik) < u(s) <u(st) <o/ (0)sT (4.5)

for all s € S. This domination by a linear function is sufficient, as it was in [KSS1]
and [KSS2], for many of Blackwell’s results to hold in our setting as well. Thus V
satisfies the Bellman equation

V(s) = sup {r(s,b) +BEV(g(st —b) +pY)}

beB(s)
{ sup {u(b/p) + BEV (g(s —b) +pY)}; s> 0}
= Jo<b<stk i (4.6)
u(s/p) +V(0); 5<0

10



Equivalently, V' =TV where T is the operator

(T)(s) = b;u(pﬂ{r(sa b) + BEY(g(s™ —b) +pY)}, (4.7)

defined for measurable functions ¢ : S — R that are bounded from below.

A plan 7 is stationary if it has the form b, = c(s}_;), for all n > 1. where
¢ :[0,00) — [0,00) is a measurable function, such that c(s) € B(s) for all s > 0. We
call ¢ the consumption function for the stationary plan .

The following characterization of optimal stationary plans, given by Blackwell
(1965), extends easily to our situation, so we omit the proof.

Theorem 4.1 For a stationary plan m with consumption function c, the following
conditions are equivalent:

(a) I(m)=V.
(b) V(s) =r(s,c(st))+ BEV(g(s™ —c(st)) +pY), s€S.
(¢) T(I(m)) = I(m).

Under our assumptions, there does exist a stationary optimal plan, but it need
not be unique. However, if the utility function w is smooth and strictly concave,
there is a unique optimal plan and the next theorem has some information about its
structure.

For the rest of this section, we make the following assumption:

Assumption 4.1 The utility function uw is concave and increasing on S, strictly
concave on [0,00), differentiable at all s # 0, and we have u(0) = 0.

Theorem 4.2 Under Assumption 4.1, the following hold:

(a) The value function V is concave, increasing.

(b) There is a unique optimal stationary plan T corresponding to a continuous con-
sumption function c : [0,00) — (0,00) such that c¢(s) € B(s) for all s € [0, 00).
Furthermore, the functions c(s) and s — c¢(s) are nondecreasing.

(c) For s € S\ {0}, the derivative V'(s) exists and

Vi(s) = {;Z%c(s)/p); s > o} _

u'(s/p); s <0

(d) Fors >0, c(s) >0. If Br1 < 1, then ¢(0) > 0.

(e) lims_,00 c(s) = 00.

11



Part (b) of the theorem asserts, inter alia, that under optimal play, an agent
both consumes more and deposits more money, as his wealth increases. Part (c) is
a version of the “envelope equation.” Part (d) says that an agent with a positive
amount of cash always spends a positive amount. However, because we have put
no upper bound on the interest rate r1, it could happen that ¢(s) < s for all s, or,
equivalently, no borrowing occurs. Part (d) further asserts that if 5r; < 1, then there
will be an active loan market.

The proof of Theorem 4.2 is a bit lengthy and is presented in the following sub-
section. Impatient readers may prefer to skip or skim it.

4.1 The Proof of Theorem 4.2

The n-day value function V,, represents the best a player can do in n days of play. It
can be calculated by the induction algorithm:

oy [uls R, 520
Vit = @06 = (o D, 22 o)

Vog1(s) = (TV,)(s), s€S, n> 1. (4.8)

Furthermore, it is not difficult to show, with the aid of (4.5), that
lim V,(s) =V(s), s€S. (4.9)

n—00

The idea of the proof of Theorem 4.2 is to derive properties of the V;, by a recursive
argument based on (4.8), and then to deduce the desired properties of V.
For the recursive argument, we consider functions w : & — R satisfying:

Condition 4.1 w is concave, increasing on S, differentiable on S\ {0}, with v’ (0) <
]ljug_(()), and w(s) = u(s/p) +w(0) for s <O0.

Proposition 4.1 If w satisfies Condition 4.1, then so does Tw.
The proof will be given in several lemmata, but we first state an easy corollary.
Corollary 4.1 Forn > 1, V,, satisfies Condition 4.1.

Proof Observe from (4.8) that V satisfies the condition, and then apply the propo-
sition and (4.8) again. [

For the proof of Proposition 4.1, fix a concave, increasing w(-), and set

(b) = 1(s,b) £ u(b/p) + BEw(g(s — b) +pY’) (4.10)

for s >0,0<b<s+k.

12



Lemma 4.1

(a) For each s >0, v is strictly concave on [0, s + k| and attains its mazimum at
a unique point c(s) = ¢y (s).

(b) ¥(s,b) is a concave function of (s,b) on the two-dimensional set s >0, 0 < b <
s+ k.

Proof Elementary, using that g of (4.2) and w are concave, and w is strictly concave
on [0, 00); recall Assumption 4.1. [ |

Now define v(s) = vy, (s) £ (Tw)(s) for s € S. By Lemma 4.1(a), we can write
_ Julew(s)/p) + BBw(g(s — cu(s)) +pY), 520
’Uw(S) - {U(S/p) +Uw(0), 5 < O} . (411)

It may be helpful to think of v,, as the optimal return when an agent plays the game
for one day and receives a terminal reward of w.

Lemma 4.2 The function s — c,(s) has the following properties:

(a) Both cy(s) and s — cy(s) are nondecreasing functions of s.
(

b

)

) cw(+) is continuous.
(c) Fors >0, cy(s) > 0.

(d) If Br1 <1, then ¢, (0) > 0.
Proof For (a), let

() £ BEw(g() +pY).

Now () is concave, and thus the problem of maximizing
¥s(b) = u(b/p) + (s —b)

is a standard allocation problem for which (a) is well-known (see, for example, The-
orem 1.6.2 of Ross (1983)).

Property (b) follows from (a).

For (c), let s > 0. Use Condition 4.1, the definition of v, in (4.10), and our
standing assumption that Brs < 1, to see that

(5)4(0) =

>

'JF(O) — BroBuw’ (rgs + pY)
'(0) — Braw!,(0) > 0.

For (d), notice that, for s = 0, the same calculation works with r2 replaced by r;.
This is because of the definition of g in (4.2). [ |

Lu
p
Lu
p

The proof that v, is concave will take three steps. The first is to show it is
concave except possibly at 0.

13



Lemma 4.3 The function v, = Tw is concave on [—r1k,0] and also on [0, 00).

Proof The concavity of v,, on [—rik,0] is clear from (4.11) and the concavity of .
For s > 0, vy(s) = sup{¢(s,b) : 0 < b < s+k} is the supremum of a concave function
(cf. Lemma 4.1(b)) over a convex set. It is well-known that such an operation yields
a concave function. [ |

The second step in the proof that v, is concave is to establish a version of the
“envelope equation.”

Lemma 4.4 For s # 0, vy, is differentiable at s and
U/ (S) — ]ljul(cw(s)/p)a s>0
w %u’(s/p), s<O0f"

Proof. For s < 0, the assertion is obvious from (4.11). Let us then fix s > 0 and,
for simplicity, write v for v,, and ¢ for c,.
Note first that, for € > 0, we have

o(s + &) — v(s) > u (%) Cu (?)

since an agent with wealth s+ ¢ can spend ¢(s) +¢ and then be in the same position
as an agent with s who spends the optimal amount c(s). Hence, v/, (s) > %u’(c(s)/p).
On the other hand, for £ > 0 such that ¢ < ¢(s) and s —e > 0,

o(s) —v(s —¢) < u (%) . <%>

since an agent with wealth s — e can spend ¢(s) —e and then be in the same position
as an optimizing agent starting at s. Hence, v’ (s) < %u’(c(s)/p).
Finally, v’ (s) > ¢/, (s) because, by Lemma 4.3, v is concave on [0, 00). [

Lemma 4.5 The function vy, is concave on S, and (vy), (0) < %u'_,_(O)

Proof By Lemma 4.3, it suffices for concavity to show that (vy)!, (0) < (vy)"(0).
But, by Lemma 4.4 and (4.11),

(va)'1(0) = lim ' (cu(s)/p)

Il
D=
I
£~
o
g
=
~
)

< 2 (0) < Sul(0) = () (0) W

Proposition 4.1 follows from (4.11) and Lemmata 4.4 and 4.5. We are finally
prepared to complete the proof of Theorem 4.2.
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Proof of Theorem 4.2 By Corollary 4.1, the n-day value functions V,, are concave,
increasing, and, by (4.9), they converge pointwise to V. Hence, V is also concave,
increasing. By Lemma 4.1(a) with w = V and (4.6), there is, for each s > 0, a unique
c(s) € [0, s + k] such that

V(s) = u(c(s)/p) + BEV (g(s — c(s)) + pY).

Set formally, c¢(s) = ¢(0) for —r1k < s < 0, and it follows from Theorem 4.1 that ¢
corresponds to the unique optimal stationary plan.

Next let ¢, = ¢y, n > 1, where ¢y, is the notation introduced in Lemma 4.1(a).
It can be shown using the techniques of Schil (1975), or by a direct argument, that
cn(s) — c(s) as n — oo for each s € S. Thus, the functions c(s) and s — ¢(s)
are nondecreasing because the same is true of ¢,(s) and s — ¢,(s) for each n. The
continuity of ¢(s) follows directly.

By Lemma 4.4, we can write

Vit1(s) = Viy1(0) = / %u’(cn(x)/p)dx, s>0, neN.
0

Let n — o0, to obtain
V(s)—V(0) = / %u'(c(m)/p)dx, 5> 0.
Jo

Differentiate to get part (c) of the theorem for s > 0. For s < 0, use (4.6).

Let s | 0in (c) to get Vi (0) = %uﬁr(c(O)/p) < %uﬂr (0). Thus the value function V'
satisfies Condition 4.1. By the Bellman equation (4.6), V = TV = vy in the notation
of (4.11) with ¢ = ¢y. Thus, part (d) of the theorem follows from Lemma 4.2. For
the proof of part (e), see that of Theorem 4.3 in [KSS1]. [ |

4.2 The Wealth Process of an Agent

Suppose now that an agent begins with wealth Sy = sg and follows the stationary
plan 7 of Theorem 4.2. The process {Sy }nen of the agent’s successive wealth-levels
then satisfies the rule

S =9(Sy 1 = (S 1)) +pYa, n 2 1, (4.12)

n

where the endowment variables Y7,Y5, ... are IID with distribution A. Hence, {S,}
is a Markov chain with state-space S. An understanding of this Markov chain is
essential to an understanding of the many-person game of Section 3. In particular, it
is important to know when the chain has an invariant distribution with finite mean.

Theorem 4.3 Under Assumption 4.1 the Markov chain {Sy,} has an invariant dis-
tribution with finite mean, if either of the following conditions hold:

(a) inf{u/(s):s €S} >0,
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(b) inf{u/(s) : s €S} =0, 1o =1, and [y* (dy) < oco.

Sketch of Proof. (a) If infu’ > 0, one can show as in Corollary 3.6 of [KSS2| that
the function g(s™ — ¢(s™)), s € S, is bounded, and then complete the proof as in
Proposition 3.7 of [KSS2]. For (b), one applies results of Tweedie (1988) as in the
proof of Proposition 3.8 of [KSS2]. [ |

Remark 4.1 For a given vector § = (r1,r2,p) of interest rates as in (4.1) and price
p € (0,00), we denote by cg(-) = c(50), pp(-) = p(+;0) the optimal consumption
function of Theorem 4.2 and the invariant measure of Theorem 4.3, respectively. If
the bound on loans k is a function of 6 such that

k(0) = k(ry,r2,p) = p k(r1,72,1),
then, as in (4.4) and (4.6) of [KSS1], we have the scaling properties

co(s) =c(s;ri,ra,p) =p ¢ (]%;7"1,7“2, 1) (4.13)

to(ds) = p(ds;ri,ra,p) = p (%;Tl,’f’g, 1) : (4.14)

5 Conditions for Stationary Markov Equilibrium

We shall discuss in this section how to construct a stationary Markov Equilibrium
(Definition 3.2) for our strategic market game, using the basic building blocks of
Section 4. This construction will rest on two basic assumptions (cf. Assumptions 5.1
and 5.2 below):

(i) Each agent uses a stationary plan which is optimal for his (one-person) game,
and for which the associated Markov chain of wealth-levels (4.12) has an invariant
distribution with finite mean.

(ii) The bank “balances its books,” that is, selects 71, and 72 in such a way that
it pays back (in the form of interest to depositors, and of loans to borrowers) what
it receives (in the form of repayments, with interest, from borrowers).

The construction is significantly simpler, at least analytically if not conceptually,
when all the agents are “homogeneous,” that is, they all have the same utility function
u® = u, income distribution A* = A, and upper bound on loans k% = k, Va € I. We
shall deal with this case throughout, but refer the reader to [KSS1] and [KSS2] for
aggregation techniques that can handle countably many types of homogeneous agents
(and can be used in our present context as well).

Let us fix a price p € (0, 00) for the commodity, and two interest rates 7, = 14 p,
(from borrowers) and r2 = 1 + py (to depositors) as in (4.1).

Assumption 5.1 The one-person game of Section 4 has a unique optimal plan w
corresponding to a continuous consumption function c : [0,00) — [0,00), and the
associated Markov chain of wealth-levels in (4.12) has an invariant distribution p on

B(S) with
/su(ds) < 00. (5.1)

16



Assumption 5.2 Under this invariant distribution p of wealth-levels, the bank bal-
ances its books, in the sense that the total amount paid back by borrowers equals the
sum of the total amount they borrowed, plus the amount of interest that the bank pays
to the lenders:

[ [tws Ariatsutasxa) = [ dshtas) +p, [t as. 62)
Here we have denoted by
d(s) 2 (c(s) = ), £(s) & (s — c(s))*

the amounts of money borrowed and deposited, respectively, under optimal play in
the one-person game, by an agent with wealth-level s > 0.

Theorems 4.2 and 4.3 provide sufficient conditions for Assumption 5.1 to hold.
We shall derive in Section 7 similar, though somewhat less satisfactory, sufficient
conditions for Assumption 5.2. In Section 6 we shall present several examples that
can be solved explicitly. If the initial wealth distribution, v, is equal to p and if every
agent uses the plan 7, then equation (5.2) just says that the quantities My, Mj, ... of
money held by the bank in successive periods are equal to a constant as in Definition
3.2(v). Thus Assumption 5.2 is a necessary condition for the existence of a stationary
Markov equilibrium.

Lemma 5.1 Under the Assumptions 5.1 and 5.2, we have
p=3 [ clshutas). (53)
Proof. In the notation of (4.12) and (5.2), we have
S1=9(Sy —c(Sy)) +pY1 = pY1 +120(Sy ) —r1d(Sy),
so that
E(ST) = E[(pY1 +r20(S)) 1145 )=0)]
+ E[(pY1 — Tld(SJ))1{0<r1d(50+)§py1}]
=D E(Yl) - E[le : 1{r1d(S;r)>pY1}}
= pQ + mEL(SF) — E[pY1 Arid(Sy)],

where Sy, Y7 are independent random variables with distributions g, A, respectively.
From (5.2), the last expectation above is

E[pY1 Ard(Sy)] = Eld(Sy) + p2l(Sy )],
so that
E(ST) = pQ +E[¢(Sy) — d(Sy)]
= pQ — Ec(S7) + E(Sy).
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But, from Assumption 5.1, S7 has the same distribution as Sy (namely 1), so that in
particular
Ec(Sy)
0
Theorem 5.1 Suppose that for fized interest rates r1, r2 as in (4.1), we can find a
price p € (0,00) such that the consumption function ¢ = ¢y and probability measure
1w = py (notation of Remark 4.1 with 0 = (r1,7m2,p)) satisfy the Assumptions 5.1
and 5.2. Let m be the corresponding optimal stationary plan; then the family 11 =
{m%}acr, ma = 7 (Ya € I) results in a stationary Markov equilibrium (p, piy), when
9 - (7’1,7’2,]))~

E(Sy) =E(S), and thus p = [ |

Remark 5.1 From the scaling properties (4.13), (4.14) and from (5.2), it is clear
that if the procedure of Theorem 5.1 leads to Stationary Markov equilibrium for
some p € (0,00), then it does so for every p € (0,00). For a given, constant level Wy
of total wealth in the economy, we can then determine the “right” price p4 € (0, 00)
via

Wo— My = [(S5(w))*(de) = [ s vo(ds,)
ds

= /S+M(d8;7“1,7"2,p#) =/8+u <—;7"1ﬂ“271>7
D3t

pu = (Wo — MO)//s+u(ds;7’1,r2, 1). (5.4)

namely as

Recall (3.12) and the discussion following it, as well as (4.14).

Proof of Theorem 5.1. From Remark 3.1, the Markov Chain
Sy (w) = g((Sp_1(w)" = ca((Sp—1 (w)) ) +pYy(w), n €N

of (4.12) has the same dynamics for each fixed a € I, as for each fixed w € Q. In
particular, jo = piy is a stationary distribution for the chain {S$(+)}nen for each given
a € I, as well as for the chain {S,,(w) }nen for each given w € Q.

Assume that the initial price is pg = p € (0,00), and that the initial wealth-
distribution vq of (3.13) with n =0, is vg = pt = py. Then from (3.12) and (5.3),

pmw=5Z@m%wwﬂwmozéﬁdﬁmuﬁzp

On the other hand, since p is invariant for the chain, we have v; = p as well. By
induction, p, = p and v, = p (Vn € N).

Condition (i) of Definition 3.1 is true by assumption and we have verified (iii) and
(iv) of Definition 3.2, whereas (vi) holds by our choice of 7* = 7. Condition (ii) of
Definition 3.1 follows from the optimality of 7 in the one-person game and the fact
that a change of strategy by a single player cannot alter the price. Condition (v) of
Definition 3.2 follows from Lemma 3.2. |
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6 Examples

We consider in this section three examples, for which the one-person game of Section
4 and the stationary Markov equilibrium of Theorem 5.1 can be computed explicitly.

Example 6.1 Suppose that all agents have the same utility function

u(w) = {f v 1} (6.1)
the same upper-bound on loans k = 6, and the same income distribution
PY =0=1-6, P[Y =2] =6 for some 0 < 6 < 1/2 (6.2)
so that @ = E(Y) = 26 < 1. Suppose also that the bank sets interest rates

T =%, 'y = 1. (63)

SO

We claim then that, for sufficiently small values of the discount parameter, namely
B € (0,6), and with price

p=1, (6.4)
the optimal policy in the one-person game of Section 4 is given as
_fs+06; 0<s<1-6] .

that the invariant measure p of the corresponding (optimally controlled) Markov
chain (4.12) is

p{—1}) = (1= 86)(1 —n), p{0}) = (L =861 =)y, pu({k}) =@ —n)n®,  (6.6)

k € N with n=6/(1—0); and that the pair (p, p) of (6.4) and (6.6) then corresponds
to a stationary Markov equilibrium as in Theorem 5.1.
With ¢ given by (6.5), the amounts borrowed and deposited are given by

5; 0<s<1-6
dis)=<1—s; 1-6<s<1,and E(s):{
05 s>1

: <s<
0; 0_5_1}7 (6.7)

s—1; s>1

respectively, in the notation of (5.3), whereas the Markov chain of (4.12) takes the
form

—14+Y:1; OSS;{Sl_(S
Snt1 = —%(1—5;)+Yn+1; 1—5§S7T§1
Sr—1+Y,1; Str>1

After a finite number of steps, this chain takes only values in {—1,0,1,2,...} with
transition probabilities

P-1,-1= 1-9, P-11= 6; Pnn+1 = 0, Pnn—-1 = 1-0¢ (n € NO)
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The probability measure p of (6.6) is the unique invariant measure of a Markov Chain
with these transition probabilities.

Consider now the return function Q(s) = I(m)(s), So = s corresponding to the
stationary strategy m of (6.5) in the one-person game; this function satisfies Q(s) =
u(e(s))+6-EQ(g(s—c(s))+Y), s > 0 and Q(s) = u(s)+Q(0), s <0, or equivalently

s+ Q(0); 5<0
) (84+8)+B-EQ(-1+Y); 0<s<1-¢
Qls) = 1+3-BQ (55 +VY); 1-6<s<1 (6.8)
1+6-EQ(s—1+Y); s>1

In order to check the optimality of this strategy for the one-person game, it suffices
to show (by Theorem 4.1) that @ satisfies the Bellman equation @ = T'Q (in the
notation of (4.7)). This verification is carried-out in Appendix A, where it is checked
that the function

EQ(s—b+Y); 0<b<s } (6.9)

of (4.10) attains its maximum over [0, s + ] at the point b* = ¢(s) of (6.5), for every
s> 0.
Let us check now the balance equation (5.2); it takes the form

/ / | {y " d(?) } plds)A(dy) = / (st u(ds) (6.10)

which is satisfied trivially, since both sides are equal to 6(u({—1}) + x({0})), from
(6.2)—(6.7). Thus the Assumptions 5.1 and 5.2 are both satisfied, and the pair (p, ut)
of (6.4) and (6.6) corresponds to a stationary Markov equilibrium.

Example 6.2 Suppose that all agents have the same utility function

u(z) = {”“’? TS 1} (6.11)

1+n(z—-1); z>1

for some 0 < 1 < 1, the same upper-bound on loans k£ = 1, and the same income
distribution

PY =0l =1—46, P[Y =5] =6 for some 3 <& < 3. (6.12)
Suppose also that the bank fixes the interest rates

, T2 =1 (6.13)

SO

T =

We claim that, for sufficiently small values of the discount parameter, namely, 3 €
(0,1/3), for suitable values of n € (0,1), and with price

p=1, (6.14)
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the optimal policy in the one-person game of Section 4 is given as

1; 0<s<?2

o(s) = {S TR } (6.15)

the invariant measure of the corresponding Markov chain in (4.12) has p;, = p({k})
given by

K176 = (1 =6, pg = 6(1—8)%, juy = 6(1 ), ps—176 = 6(1 — 8)?%,
ps = 64 (1 —0), pg = 6% (6.16)

and that the pair (p, 1) of (6.14) and (6.16) correspond to a stationary Markov equi-
librium for the strategic market game.

For the consumption strategy of (6.15), the amounts borrowed and deposited by
an agent with wealth s > 0 are given as

0; 0<s<1
dis)=(1—s)T and f(s)={s—1; 1<s<?2
1; §>2

respectively, and the Markov Chain of (4.12) becomes

(S —1)+Y; 0<8F <1
Spi1=SF—1+Y, 1; 1<SH<2

After a finite number of steps, the chain {S,, } takes values in the set {—%, 0,1,5 — %, 5, 6}
with transition probabilities given by the matrix

1-6 0 0 6 00
1-6 0 0 ¢ 00
0 1-6 0 06 0
0 0 1-6 0 0 61" (6.17)
0 0 1-6 0 0 ¢
0 0 1-6 0 0 ¢

it is not hard to check that the measure p of (6.16) is the unique invariant measure
for a Markov chain with the transition probability matrix of (6.17).

We shall verify in Appendix B the optimality of the strategy (6.15) in the one-
person game. On the other hand, the balance equation (5.2) takes again the form
(6.10) and is again satisfied trivially, since both sides are now equal to p_; 76+ Mo =
(1 —6)2. Therefore, Assumptions 5.1 and 5.2 are both satisfied and the pair (p, i) of
(6.4) and (6.14) is a stationary Markov equilibrium, from Theorem 5.1.

Example 6.3 Suppose that all agents have the same utility function
2z; <0
u(x) = {x; s> 0} ) (6.18)
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the same upper bound on loans k£ = 1, and the same income distribution

PY =0]=P)Y =2] = % (6.19)
Suppose also that the bank sets interest rates
ry =19 =2. (6.20)

We claim then that, with 0 < § < 1/3 and p = 1, the optimal consumption policy
is
c(s)=s+1, >0 (6.21)
(borrow up to the limit, and consume everything). The corresponding Markov Chain
of (4.12) becomes trivial,

Spy1 = 2(5’1—; - C(Sj{)) + Yo
= —2+Yn+1, nZO

and has invariant measure g = pt_5 = 1/2; in equilibrium, thus, everybody borrows
k =1, and half the agents pay back 2, so the bank balances its books (equation (5.2)
is satisfied).
On the other hand, with 1/3 < § < 1/2 and p = 1, we claim that the optimal
consumption policy is
c(s) =s, s >0, (6.22)

i.e., neither to borrow nor to lend and to consume everything at hand. The Markov
Chain of (4.12) is again trivial,

Sn—l—l = Yn+1; n >0

and has invariant measure fy, = p15 = 1/2; again the books balance (equation (5.2) is
satisfied) because there are neither borrowers nor lenders.
We verify these claims in Appendix C.

7 Two Existence Theorems

From Theorem 5.1, we know that a stationary Markov equilibrium exists if (i) each
agent’s optimally controlled Markov chain has a stationary distribution with finite
mean, and (ii) the bank balances its books. Condition (i) follows from natural as-
sumptions about the model, as in Theorems 4.2 and 4.3. However, condition (ii) is
more delicate, and so it is of interest to have existence results that do not rely on
this assumption. We provide two such results in Theorems 7.1 and 7.2 below.

Theorem 7.1 Suppose that the following hold:

(i) Assumption 4.1.
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(il) Agents have a common utility function u, upper bound k on loans, and income
distribution .

(iii) A({0}) =1—6, A([a,00)) =8 for some 0 < § <1,0<a < oo, and [y*N(dy) <

Q.

Then, with interest rates ro = 1 and r1 = 1/, the pair (p, py) corresponds to a
stationary Markov equilibrium, for any p € [k/abd,00) and with 6 = (r1,72,p).

Proof Theorem 4.3 guarantees that, under conditions (i) and (iii), the optimally
controlled Markov Chain of (4.12) has an invariant distribution p = gy with finite
mean, where 0 = (1/6,1,p), Vp > k/ad. Thus, Assumption 5.1 is satisfied, and in
order to prove the result it suffices (by Theorem 5.1) to check the balance equation
(5.2), now in the form

[ ] g wasn) = [ atutas). (5.2)
[a,00] xS

(As py = 0, the bank pays no interest to depositors, and balancing its books means
that the bank gets back from the borrowers exactly what they receive in loans.) Now,
for any s € S and p > k/ad, we have

> 2d(s7), ¥y > a

%l??‘
Sl

py>Ea=

and thus the left-hand side of (5.2) equals

L] g = Mo [ o

[a,00] xS
= / d(sT)u(ds), by assumption. O
JS

The conclusion of Theorem 7.1 holds for Examples 6.1 and 6.2 even though hy-
pothesis (i) does not. Observe also that, under the conditions of Theorem 7.1, we
have

(7.1)

’EI??‘

Q= [y = a(a.0) = as =

Theorem 7.2 Suppose the following hold:

(1), (ii) as in Theorem 7.1.

(iii) A([0,y*]) =1, for some y* € (0,00).

(iv) a* £ inf{u/(z) : x € R} > 0.
Then there exist interest rates 11 € [1,y*/Q], r2 = 1, a price p € (k/Q,00) and a
probability measure p on B(S), such that (p, ) corresponds to a stationary Markov
equilibrium.
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Note that Example 6.2 satisfies the conclusion of this result.

It seems likely that all of the assumptions of Theorem 7.2 can be weakened. In
particular, it should be possible to replace (ii) by the assumption there are finitely
many types of utility functions and income distributions. A more challenging gener-
alization would be to eliminate (iv) and perhaps replace (iii) by the assumption that
A has finite second moment.

The rest of this section is devoted to the proof of Theorem 7.2, which will rely
on Kakutani’s fixed point theorem. Before applying Kakutani’s theorem, we will
deal with three technical problems: (1) bounding the Markov Chain corresponding
to an optimal plan and thereby bounding the stationary distribution, (2) bounding
the price, and (3) finding interest rates to balance the books.

7.1 Bounding the Markov Chain

Let 6 = (r1,72,p) be a vector of parameters for the one-person game of Section 4.
The discount factors will be held constant, but the upper bound on loans will be a
function of p, namely

k(p) = pky, for some 0 < k1 < Q (7.2)

where kq is the bound when the price p is equal to 1. (The inequality k1 < @ says
that the bank imposes a loan limit strictly less than an agent’s expected income. In
order to guarantee that the books balance, it is intuitively clear that the loan limit
cannot exceed expected income, as was the case in (7.1).)

To show its dependence on 6, we now write cy(s) for the optimal consumption
function of Theorem 4.2 as in Remark 4.1, and use Vy(s) to denote the value function.
Likewise, the function g(x) of (4.2) is written gg(x) to indicate its dependence on the
interest rates r1 and ra. We also write Sp for the state-space [—r1k(p), 00).

Let {S,} be the Markov chain of successive wealth levels of an agent who uses
¢p in the one-person game with parameter §. We can rewrite (4.12) to show the
dependence on 6 as

S, = 99(5;;1 — 09(5;;1)) +pYy,, n>1, (7.3)

where Y1, Y5, ... are IID with distribution A\. The Y,, are uniformly bounded by condi-
tion (iii) of Theorem 7.1, so that bounding the chain is tantamount to bounding the
function s™ —cy(s1). (The bounding of the price p is treated in the next subsection.)
It will also be important to obtain a uniform bound over an appropriate collection of
f-values.

Fix p* € (0,00), 1} € [1,00), r5 € [1,1//3), and introduce the parameter-space

O = {(ri,ra,p): 1<y <ry <7}, o <73, 0<p<p}. (7.4)
Lemma 7.1 sup{|st —cy(st)|: 0 € O, s € Sy} < o0.

Proof. Since 0 < cy(s) < s+ k(p) = s+ pk1 < s+ p*k1, we need only consider those
values of s and 6 for which st — ¢g(s™) > 0 and, in particular, s > 0. Furthermore,
we have

s —cp(s) =pls/p — c(s/p;r1,r2,1)]
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from (4.13), so that the supremum of s — cg(s) over O is the same as that over the
compact set K = {0 € © : p = p*}.

Now let s > 0 and s > ¢y(s). By Theorem 4.2 we have ¢p(s) > 0, and by = cp(s)
maximizes the function

Py(b) = u(b/p) + BEVy(ra(s —b) +pY), 0<b <s.
Thus ¢, (cs(s)) = 0 and %u’(ce(s)/p) = [roEVy(ra(s — co(s)) + pY'). Hence
a, =infu’ < u/(cg(s)/p)
= pPralBVy(ra(s — co(s)) +pY)

< pOraV(ra(s — co(s)))
= Brau/(co(ra(s — ca(s)))/p)-

With 4 : (a, v/, (0)) — (0,00) denoting the inverse of the function «' on (0, c0), we

get then
eoras —eo(s)) < (225 ) <07 (5],

since ay, < aw/Prs < aw/Pra < co. Define

w0 2w sz 05e < i (55}

Then n(f) < oo for each § € K because cy(s) — 0o as s — oo (Theorem 4.2(e)).
Also, as in [KSS2, Proposition 3.4], cg(s) is continuous in 6 for fixed s. This fact,
together with the continuity and monotonicity of ¢y(+), can be used to check that n
is upper-semicontinuous. Therefore, § € K and s > cy(s),

s —cp(s) <ra(s —cop(s)) <supn(d) <oo. N
K

For © as in (7.4), define
n* 2 sup{|st —cp(sT)|: 0 € O, s € Sy}, (7.5)
the quantity that was just shown to be finite.

Lemma 7.2 Let {S,} be the Markov chain (7.3) corresponding to optimal play in
the one-person game with parameter 8 € ©. Then, whatever the distribution of Sy,
the distributions of S, n > 1, are supported by the interval [0,rin* + p*y*].

Proof Immediate from (7.2), (7.3), and (7.5). O
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7.2 Bounding the Price

Assume that the total amount of fiat money in our many-person model is the positive
quantity W. (Recall from Lemma 3.1 that W is preserved from period to period.)
Let « be the distribution of fiat money among agents. Notice that -y differs from the
distribution of wealth positions p, in that those agents with negative wealth-positions
hold no fiat money. Thus pu(A) =vy(AN0,00)) for A € B(R).

Suppose that in a certain period the parameters of the model are given by the
vector 0 = (r1,72,p) and that all agents bid according to cg. The newly formed price
will be

p=p0,7) =% /[O ]09(8)7(618) =3 /RCe(S+)#(dS)- (7.6)
Let © be as in (7.4) with
% A W * A Yx
= and 7 = =. 7.7

(Recall that 0 < k1 < @ and y* is an upper bound on the income variable Y.) Define
M to be the collection of all probability measures v on B([0,7n* + p*y*]) with

/ sy(ds) < W.
(0,00)

We need a technical lemma.
Lemma 7.3

(a) Suppose 0, — 0 as n — oo, where 0,01,60, ... lie in ©. Then cy,(s) — cp(s)
uniformly on compact sets.

(b) The function p(0,v) of (7.6) is continuous and everywhere positive on © x M.
Furthermore, p has a continuous, everywhere positive extension to the compact
set © x M, where © = {(r1,re,p) : 1 <ry <ry <7}, 1o <ri, 0<p<p*}.

Proof (a) Similar to Proposition 3.4 of [KSS2].

(b) The continuity of p on © x M follows from (a), since every v € M is supported
by the compact set K 2 [0,7n*+p*y*]. Also, f is strictly positive on © x M because,
by Theorem 4.2(d), cg(s) > 0 for all s > 0. To extend to @ x M, let § = (r1,72,0) € O,
and first set

co(s) = c(s;r1,72,0) £ 5.

Then, for p € M, let

ﬂawéék e <

Obviously our extension is positive. To check its continuity, fix § = (r1,72,0) € ©,
v € M, and suppose (0y,7,,) — (0,7) where (6,,7,) € © x M for all n. It suffices
to show that

50 ) =% [ o) = 5 [ s(as)
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Suppose 0, = (rgn),rén),pn). By (7.4) and (7.5), we have

o, (5) — 8| = pule(s/p;r™ 7§ 1) = s/pal
< pun*t — 0,

and the result follows. O

Define

Lemma 7.4 For every (6,v) € © x M, we have

. . w
0 <p.<p(0,7) <p* = o

Proof The first inequality is by Lemma 7.3(b), and the second by (7.8). For the
third, use (7.2), (7.6), and (7.7) to get

Qp(6.7) /’c9<s>w<ds> < /’<s+pk1>7<ds>

SWHphk=p'Q. N

7.3 Interest Rates That Balance the Books

Let the sets © and M be as in the previous section so that, in particular, p* and r]
satisfy (7.7). Suppose that v € M is the distribution of money among agents at some
stage of play. Assume also that all agents believe a certain § = (r1,72,p) € © to be
the vector of parameter-values. If they further believe the game to be in equilibrium,
then they will play according to cg. Our object in this section is to see that in such
a situation the bank can find new interest rates (71, 72) that will balance the books.
To do so, we need expressions for the total amounts of fiat money borrowed and paid
back.

An agent with money s > 0 will borrow the amount dy(s) = (cg(s) — )™, so the
total amount borrowed is

D=D(0.7) 2 [ dufo(ds). (7.9)
If the bank sets the interest rate 7 for borrowers, then the amount paid back by an

agent, who begins the period with fiat money s and receives income py, is py A1 dy(s),
where p is the newly formed price as in (7.6). The total amount paid back is

R(71) = R(i1,0,7) 2 / {5y A Frdo(s)}y(ds)A(dy) (7.10)

where A is the distribution of the generic income variable Y.
Let
J=J(0,7) 2 {r € [1,r}] : R(r,6,7) = D(6,7)}. (7.11)
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Lemma 7.5 For all § € © and v € M, the set J(0,7) is a closed, nonempty subin-
terval of [1,75]. In particular, there exists r € [1,75] such that R(r,0,v) = D(0,7).

Proof The function r — R(r) = R(r,0,) of (7.10) is obviously nondecreasing in
r, and it is continuous by the dominated convergence theorem; thus J is clearly a
closed subinterval of [1,r}]. It only remains to be shown that J is nonempty and, for
this, it suffices to show that

R(1) < D < R(r}).

The first inequality is trivial, because py A 1dy(s) > dg(s). To prove the second
inequality, let ¢, = cg(0). By Theorem 4.2(b),
cg(s) > cp(0) = ¢, and dp(s) < dp(0) = ¢y, s> 0.
Thus, by (7.6), we have Qp > c,.
Fix s > 0, d =dp(s), and y € [0,y*]. Write d = ac, where 0 < a < 1. Then

*

Cx Y

py Arid > ay A aac* > %‘ay = %d.
Hence,
R(r}) > %‘/:/’{dxswmds)xdy)
= % -EFY =D. 0O

Remark 7.1 By Lemma 7.5, we see that the bank can choose 71 in a given period
so that borrowers, as a group, pay back precisely the amount that they borrowed.
The bank can then set 7o = 1, which means that depositors, as a group, get back
exactly what they deposited. Thus, the bank is able to balance its books. It would
be interesting to have conditions that make it possible for the bank to pay a positive
interest rate, 7o > 1, to depositors and still balance its books. It seems unlikely that
this is always possible without price inflation, or growth in the economy.

7.4 The Proof of Theorem 7.1

Let
O ={(r1,72,p) : 1 <7 <7, o =1, p. <p<p'}

where p*, r} and p, are given by (7.7) and (7.8) respectively. Let M be the set of
probability measures v on B([0,7in* + p*y*]) with [ sy(ds) < W, as in the previous
two sections. Define a set-valued mapping ¢ on the compact set (E) x M as follows: for
0,7) = ((r1,7r2,p),7) € O xM, ¥((r1,r2,p),7) is the set of all (0,7) = ((71,72,D),7)
such that 71 € J(6,7), 72 = 1, p = p(0,7), and 7 is the distribution of [go(Sg —
co(Sy)) +pY]". Here Sy and Y are independent. By Lemmas 7.2, 7.4, and 7.5,
¥ (6,y) is a compact, convex subset of O x M. Furthermore, it is straightforward to
verify that

{((6,7), 6,7)): (8,3) € ¥(6,7)}
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is a closed subset of (© x M) x (© x M). Hence, 9 is upper semicontinuous (cf.
Theorem 10.2.4 of Istratescu (1981)), and thus, by Kakutani’s fixed point theorem
(Corollary 10.3.10 in Istritescu (1981)), there exists (8,7) = ((r1,72,p),7) € © x M
such that (6,7) € ¥(0,7).

This fixed point ((r1,72,p),7) = (0,7) determines a stationary Markov equilib-
rium in which the bank sets the interest rates to be r; and ry = 1, the price is p,
and the distribution of wealth-levels p is related to v, the distribution of fiat money,
by the rule that p is the distribution of go(Sg — cp(Sd)) + pY’; here S§ and Y are
independent. Clearly, we have 1 =7y <r; <rf =y,/Q, and

% = ﬂpﬂ =k <@, from (7.2). O

8 The Game with a Money-Market

We shall discuss in this section the strategic market game when there is no outside
bank, but instead agents can borrow or deposit money through a money-market, at
interest rates 71 and ro, respectively, with 1 > ro. In contrast to the situation of an
outside bank, which fixes and announces interest rates for borrowing and deposits,
here r; and r9 are going to be determined endogenously.

In order to see how this can be done, imagine that agent o € I enters the day
t = n with wealth-position S%_; (w) from the previous day — that is, with fiat money

(S, (w))*. His information F¢ ; (at the beginning of day ¢ = n — 1) measures, in

addition to the quantities mentioned in Section 3, past interest rates 71 and 7o,
k = 0,...,n — 1 for borrowing and depositing, respectively. The agent can decide
either to deposit money

U (w) € [0, (S5, ()] (8.1)

into the money-market, or to offer a bid of
Jn(w) € [0, k7] (8.2)
in I.O.U. notes for money, or to do neither, but not both:
I (w) - £3(w) = 0. (8.3)
The total amount deposited is
Lu(w) 2 [ e2(w)pldo); (3.4)
the total amount in 1.O.U. notes is
Tu(w) & [ gz wypldo) (85)
and the money-market is declared active on day t = n, if

Jn(w) - L(w) > 0 (3.6)
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(inactive, if Jp(w) - Ly (w) = 0).
After agents have thus made their bids in the money-market, a new interest rate
for borrowing money is formed, namely

. {g_g;;g ifJn(w)-Ln(w)>0}‘

rp(w) =
10 (10) 1; otherwise

Agent a € I receives his 1.O.U. notes’ worth j(w)/r1 »(w) in fiat money, and bids
the amount

Jn(W)  _ palyny. .
b ) 2 ;71<w>>++{w<w> il () L"<w)>0} s.7)
0; otherwise

in the commodity market; thus, the total amount of money, bid for commodity, is

. In(W) _ ray): if J,(w) - L, (w) >0
By(w) = /Ibg(w)@(da) = Waa(w) + {6@(“’) H other(wi)se .

= W1 (w) (8.8)

from (8.7), where

Wiw) 2 /I (S2(w))* ¢(da), k € No (8.9)

is the total amount of money across agents on day t = k.
Next, the various agents’ commodity endowments Y,&(w), a € I for that day
t = n are revealed (same assumptions and notation as in the beginning of Section 3),
a new commodity price () ()
A Bp(w W,—1(w
Pn(w) ) 0 (8.10)
is formed, and agent a € I receives his bid’s worth 2% (w) £ b%(w) /py(w) in units of
commodity. He consumes this amount, and derives utility as in (3.7) and (3.8). The
borrowers pay back their debts, with interest r1 ,(w), to the extent that they can;
the rest is forgiven, but “punishment in the form of negative-utility” is incurred if
they enter the next day with S%(w) < 0, as in (3.7). A new interest rate for deposits
is formed

9 n (W) £

{#(w) S (W) A pr(w)Y¥(w) bo(da);  if Jn(w) - Lp(w) >0
0; otherwise

} (8.11)
and agent a € I moves to the new wealth-position

Si(w) & (ron(w)(w) = 5 (W) 111, (w)-La(w)>0} + Pr(W) Y5 (w)
= g((S7 1 ()" = 0 (w); rin(w), ran(w)) + pa(w)Yy (w),  (8.12)

in the notation of (4.2).
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Remark 8.1 Indeed, suppose that the money-market is active on day ¢t = n. If agent
a € I is a depositor ((2(w) > 0, j%(w) = 0), he bids 0 < b¥(w) = (S¥_;(w))" —

n—1
0% (w) < (8¢ {(w))T in the commodity market, and ends up with

Si(w) = rop(w) - [(S31 (W) = b5 (w)] + pa(w) Yy (w)

after he has received lids endowment’s worth, and his deposit back with interest. If
agent « is a borrower (j¥(w) > 0, £&(w) = 0), he bids in the commodity market
the amount (S2_;(w))t < b%(w) = (S 1 (w))T + [1/r1n(w)]7¥(w), and his new
wealth-position is

Si(w) = =i () + pr(w) Y3 (w) = ryp(w) - (51 (w)) " = by (w)] + pr(w) Yy (w).

If « is neither borrower nor depositor (or if the money-market is inactive) on day
t = n, he bids b%(w) = (S¢_;(w))™ for commodity and ends up with the new wealth-

n—1

position ST (w) = p,(w)Y,*(w).

Remark 8.2 These rules preserve the total amount of fiat money in the economy,
and guarantee that the price of the commodity remains constant from period to
period. Indeed, if the money-market is inactive, we have

pn /Ya Qpn( ) = anl(w)

in the notation of (8.10), from (3.1) and (8.9); on the other hand, if the money-market
is active,

Walw) = [ (S20)7¢(da) = [ (ras(w)E5w) + pu(w)V ()1 530010y 9(d)
[ oY) = 32 o015 00)
= ran(w)La(w) + /1 D)V ()1 i3 )<ty v () 2(d0)
- /I T (W) L{0< g (w)<pa (w) Vi (w)} P (dY)
= [ ) Ap )V @) )Y ()= @) 5301 v ()

— po(w /Ya = Qpn(w) = Wy_1(w), again.

In either case
Wop =Wo =W, pn:poé%, vn € N. (8.13)

Definition 8.1 A strategy 7 for agent a € I specifies w — (5(w), w — j&(w) as
F& -measurable random variables that satisfy (8.1) and (8.2) for every n € N.
A strategy 7% is called stationary, if it is of the form
Janw) = JUSE 1) T Pao1(w), rip—1(w), r2p-1(w))
tr(w) = ((Sy 1 (w) " pa—1(w), rip-1(W), Ton-1(w)), (8.14)
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Vn € N; here j¢, ¢* are measurable mappings of [0, 00) x © into R with 0 < j%(s;6) <
E* 0 < 0%(s;0) < s and j*(s;0) - (%(s;0) =0, ¥(s,0) € [0,00) x O, and

@é{(ﬁarzap)rlér2§m<oo, T2<%,p>0}. (8.15)

(Such a strategy requires, of course, the specification of an initial vector of interest
rates and price 6y = (r1.0,72.0,p0) € O, in order for 5, ¢5 to be well-defined.)

A collection of strategies Il = {7® : o € I} is admissible for the money-market
game if, for every n € N, the functions (o, w) — 3 (w), (a,w) +— j¥(w) are
Gn—i-measurable, in the notation of (3.15).

Definition 8.2 We say that an admissible collection of stationary strategies II =
{7® : a € I} results in stationary Markov equilibrium (ri,79,p, ) for the money-
market game, with @ = (r1,79,p) € © and u a probability measure on B(S), S £
[—kri,00), if the following hold:

Starting with initial vector (71,0,72,0,p0) = 6 and v¢ = p in the notation of (3.16),
we have

(i) (r1ps72.0,Pn) =0, vy, = p (Vn € N) when agents play according to the strategies
7 a €1, and

(ii) as in Definition 3.1. [

In an effort to seek sufficient conditions for such a stationary Markov equilibrium,
let us assume from now on that all agents have the same utility function ©® = u, the
same upper bound on loans k® = k, and the same income distribution A* = \. By
analogy with Assumptions 5.1 and 5.2, consider now the following:

Assumption 8.1 Suppose that there exists a triple § = (r1,79,p) € O, for which the
one-person game of Section 4

(1) has a unique optimal stationary plan 7, corresponding to a continuous consump-
tion function ¢ = ¢y : [0,00) — [0,00), and j(s;0) = r1(co(s) — s)T = rid(s),
0(s;0) = £(s) = (s — cy(s)) as in (8.15), (5.3), and

(ii) the associated Markov Chain of wealth-levels in (4.10) has an invariant measure

= pg on B(S) with [ su(ds) < oo.
Assumption 8.2 The quantities of Assumption 8.1 satisfy the balance equations
/‘ d(sM)p(ds) = /?(ﬁ)ﬂ(ds) >0 (8.16)
( “total amount borrowed .z's positive, and e;quals total amount deposited”) and
ra [ (s tas) = [ [lrad(st) Apylutasiay (17)

( “total amount paid back to depositors equals total amount paid back by borrowers”),
mn equilibrium.
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The reader should not fail to notice that we have now two balance equations
(8.17) and (8.18), instead of the single balance equation (5.2) for the outside bank.
This reflects the fact that the bank need balance its books only once, whereas a
money-market has to clear twice:

(i) before the agents’ endowments are announced — by the formation of the
“ex ante” interest rate (8.7), which guarantees that the deposits Ly, (w)
exactly match the payments to borrowers Jy,(w)/r1 n(w),

(ii) and after — by the formation of the “ex post” interest rate (8.12), which
matches exactly the amount [;[j%(w) A pn(w)Y,¥(w)]¢(da) paid back to
borrowers, with the amount rg ,(w)L,(w) that has to be paid to deposi-
tors.

In light of these remarks, it is no wonder that stationary Markov equilibrium
with a money-market is much more delicate, and difficult to construct, than with an
outside bank. We shall see this also in the Examples that follow.

Here are now the analogues of Lemma 5.1 and Theorem 5.1; their proofs are left
as an exercise for the diligent reader.

Lemma 8.1 Under Assumptions 8.1 and 8.2,
p=3 [ el udn) = [ 5 ulas). (8.18)

Theorem 8.1 Under Assumptions 8.1 and 8.2, the family 11 = {7 : a € I} with
7@ =71 (Vo € I) results in Stationary Markov Equilibrium (11,72, pp, pt) for a money-
market.

We have not been able to obtain results comparable to Theorems 7.1 and 7.2,
providing reasonably general sufficient conditions for Assumption 8.2 to hold. We
shall leave this subject to further research, but revisit in our new context the Examples
of Section 6.

Example 6.1 (continued) Recall the setup of (6.1)—(6.4), the consumption strategy
c of (6.5), and the invariant measure p of (6.6). The balance equation (5.2), for
an outside-bank stationary Markov equilibrium, was satisfied for all values of the
Bernoulli parameter 0 < § < 1/2; however, the balance equations (8.17), (8.18) are
satisfied if and only if 6 = 1/4.

Thus, for this value 6 = 1/4, the vector 8 = (r1,72,p) = (4,1,1) and the measure
p({=1}) = 1/2, u({0}) = 1/6, p({k}) = 2/3**1 k € N of (6.6), form a stationary
Markov equilibrium with money-market.

Example 6.2 (continued) Recall the set up of (6.11)-(6.14), the consumption
function of (6.15), and the probability measure of (6.16). The balance equation for
an outside bank (5.2) holds for all values of the Bernoulli parameter ¢ € (1/3,1/2) =
(.33,.5) and all values of the discount and slope parameters 3, n as in (B.9). The
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balance equations for a money-market (8.17), (8.18) will be satisfied, if and only if
the total amount borrowed in equilibrium

[ s Intas) = g+ = (1= 0

equals the total amount deposited in equilibrium
[ et = s g5+ s 115 = 5

in other words, if and only if 6 = 3%5 = .382.
With this value of § in (6.12) and (6.16), the vector 8 = (1,72, p) = (2.62,1,1) and
the measure p of (6.14) form a stationary Markov equilibrium with money-market.

Example 6.3 (continued) In the setting of (6.18)—(6.21) and with 8 = (ry,r2,p) =

(2,2,1), p({0}) = p({2}) = 1/2, the pair (6, ) leads to stationary Markov equilib-
rium if 1/3 < B < 1/2; no such equilibrium exists for § = (2,2,1) and 0 < 8 < 1/3.
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A Appendix

We shall verify in this section the optimality of the strategy (6.5) for the one-person
game of Example 6.1. Let us start by computing the return function from this
strategy @ = I(m) of (6.8). We consider several cases.

Case I 0<s<1-—6. In this case we have
Qs) = s+ 0+ B(1—-6)Q(-1) + S6Q(1)

= s+06+B(1-9)[Q0) — 1] + B6Q(1), Q'(s) = 1.
In particular, with s = 0, we obtain

[1-5(1-96)]Q(0) =6—pB(1—20)+B6Q(1). (A1)
Case IT 1 -6 <s < 1. Here,

Qs) = 1+ 6(1-6)Q (Tl) 8Q (*5+ +2)
=1+p8(1-¢)[Q(0)+ = ]+[36Q(81+2)

and in particular

Q'(s) =2 +8Q (551 +2), 1-6<s <1,
Q(1) = 1+ 5(1-6)Q(0) + B6Q(2). (A.2)

Case IIT s>1. Here Q(s) =1+ [8(1 —6)Q(s — 1) + B6(s + 1).

If we consider this last equation on the integers as a difference equation, we obtain

its solution in the form
Q(k) = 25 — A6*, kN (A.3)

o IAPs (1=
where § £ 14% € (0,1) is the smaller root of the quadratic equation

f(x) £ Béa* — x4+ B(1 —6) = 0.
Plugging the expressions for (1) and Q(2) of (A.3) into (A.1) and (A.2), we obtain

_ 1 _ (@+pa-p)
QU =7=5-"4 A= 5 ma-09 "

Similarly, it can be checked that Q(k — §) = 1/(1 — 8) — C6*, k € N, where

A—1465 B(1—68) 2-561-6)
0 0 1-8+85(1-06)

cL

The values Q(k) = 125 — A6" (k € No) and Q(k —6) = 1/(1 — 8) — C6* (k € N)
determine the function @ on the set {0,1 —6,1,2 —§,3 —¢,3,...}, and then also on
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R, by linear interpolation between these points and through Q(s) = s+ Q(0), s < 0.
The slopes of the line-segments in this interpolation are given by
k+1-6)—Q(k k)—Q(k—6) 0
q;éQ( + ) Q():ek’q’;éQ() Q( ):—(C—A),kEN(A4)
1-96 1) 1)
and go = 1. It can be checked that the resulting function @ is concave, namely, that
we have

1>q =B +8e >af >0 >05 >q5 >qi >+ . (A.5)

To complete the proof, it suffices, by Theorem 4.1, to verify that ,(-) of (6.9)
attains its maximum over [0,s + 6] at the point c¢(s) of (6.5), Vs > 0. Again, we
distinguish several cases.

Case I 0<s<1-—46. Here ¢(s) = s+ 6, and we need to show ¢,((s + 6)—) > 0.
Now for s < b < s+ 6 <1, we have

Uy(b) = b+ B(1 - 8) [Q0) + 552 + B5Q (52 +2)

so that
P)=1-0[552+Q (52 +2)], s<b<s+6

and
Vi((s+6)—)=1-8[52+¢] >0 from (A.5).

Case I 1— 6 < s < 1. Here ¢(s) = 1, so we need to verify ¢,(1—) > 0 > oL (1+).
From (6.9), we have

’lvbs(b):ﬁ(]-_é)[Q(O)+%]+55Q(%b+2)+{b;SSbSl }

1, 1<b6<s+6

so indeed ¢/(1-) > 1 - B[ +¢f] > 0> -8 (l—g‘s +4q,) > ¥,(14), again from
(A.5).

Case IIT s> 1. Again c(s) = 1, and we need to check ¢, (1—) > 0 > ¢’ (1+). Now

(b)) = B(1 — 6)Q(s — b) + B6Q(s — b+ 2) + {b; 0<b< 1}

1, 1<b<s

and

Yi(1-) = 1= p[(1 =)@ (s = 1) + 6Q' (s +1)]
Yi(1+) = =AI(1 = 8)Q" (s = 1) +6Q" (s +1)] <05

thus, the desired inequality amounts to showing
1
5 2 520 (s — 1) + BQL(s + 1). (A.6)

But then Q' (s —1) < 1 and Q' (s + 1) < g3, so that (A.6) is implied by } >
3158 + Bq3 which holds, thanks to (A.5).
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B Appendix

We devote this section to the proof of the optimality of the stationary strategy
associated with the consumption function ¢ in (6.15), for the one-person game of
Example 6.2. By analogy with (6.8), the return function ) = I() for this strategy
satisfies

5+ Q(0); <0
Q(s) = (1-6)-Q(EF)+65-Q (5 +5); 0<s<1
VTV +B1=6)-Qs—1)+B5-Q(s+4); 1<s<2
L+n(s=2)+B(1-6) Q1)+ p5-Q(6); s>2

In particular, we have

Q(s) = 1+ (1= 8) [25* + Q(0)] + B8 [1 +n (35 +3) + B(1 = 6)Q(1) + B6Q(6)]
==0 (1—55 +1n) s+ constant, 0 < s < 1 (B.2)

(B.1)

as well as

Q'(s) =1+ p(1-¢)[B(52+n) (s—1)+ constant]
+ B8[1 +n(s +2) + B6Q(6) + B(1 — §)Q(1)]

= B[B(1—-8) (52 +n) +nd] s+ constant, 1 < s < 2. (B.3)

In particular, we obtain from (B.1)—(B.3)

1; s <0
1-6
= ; 0<s<l1
! s) = 5( F) +77)7 B B4
Q) BIBL—6) (3 +n)+nd]; 1<s<2 (B-4)
5 s> 2
We shall assume henceforth that the inequalities
1> 6 (552 +n) > 71— 6) (552 +n) +86n > (B.5)

hold, so that the function @ is concave.
In order to verify the optimality of the stationary plan 7, we have to show that
the concave function

EQ(s—b+Y); 0<b<s }, (B.6)

¢S(b)=U(b)+ﬁ'{EQ(sTb+y); s<b<s+1

as in (6.9), attains its maximum over [0, s + 1] at b* = ¢(s) of (6.13). We shall carry
out this verification in several steps.

Case I 0 <s < 1. Here ¢(s) =1, so we need to check

Py(1=) > 0 > ¢ (1+). (B.7)
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For the first inequality, let 0 < s < b < 1 and observe from (B.6) that

(b)) = b+8(1-0)-Q (55) +58-Q (352 +5)
= b+ B(1—8) [552 +Q(0)] + B8 [1 + 1 (252 + 3) + constant|

since 52 +5 > 3(s — b) + 5 > 2. Thus
Pi(b) =1— B (2 +n), and ¢} (1-) > 0 from (B.5).
For the second inequality, take 0 < s <1 < b < s+ 1, so that
Yy(b) =1+n0b—1)+B(1—6) [52 + Q(0)] + 86 [1 +n (552 + 3) + constant|

and

Vi) =n—-B (15 +n).
From (B.5) again, it follows that ¢/(......[4+) < 0, and the double inequality (B.7)
follows.

Case IT 1 < s < 2. Here again ¢(s) = 1, and we have to verify (B.7) once more.
Withs —1<b<1<s<2 wehave 0 <s—b<1, and thus from (B.2) and (B.1):

V(b)) = b+ B(1 = 6)Q(s —b) + B36Q(s — b+ 5)
=b+B(1-26)[B (52 +n) (s — b) + constant]
+ B6[1+n(s—b+3) + (1 —6)Q(1) + BoQ(6).

In particular, ¥/} (b) = 1 — 86— *(1—6) (152 + ) > 0 from (B. 5), and ¢/,(1—) > 0.
On the other hand, with 1 < b < s < 2, we have again 0 < s —b < 1 and

Y(0) = 1+nb—1)+p(1-06)Q(s —b) + B6Q(s — b+ 5),
P(b) = n— [Bon+ B*(1-6) (52 +n)] <0,

thus ¢/, (1+) <0, from (B.5).
Case III s> 2. Now c¢(s) = s — 1, and we need to show

Ue((s =1)=) = 0 = ¥((s — 1)+). (B.8)

Withl<b<s—1,b>s—2wehavel <s—b<2, and thus

Ys(0) = 1+nb—1)+p(1—-6)Q(s —b) + B6Q(s — b+ 5),
P(b) = n— B —06)[B*(1—6) (52 +n) + Bon] — Bén.

Thus ¢/ ((s — 1)—) > 0, provided

n > Bén—+ B(1—8) [B*(1—8) (552 +n) + Ben] .
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On the other hand, with 1 <s—1<b < s (so that 0 < s —b < 1), we have
Ps(0) = 140 —1) + 6(1 = 6)Q(s — ) + B6Q(s — b +5),
Vi(b) = n =B —=8) [B (> +m)] —Bon <0

so that ¥ ((s — 1)+) <0, from (B.5). Thus, under the assumptions (B.5), (B.9), the
condition (B.8) is satisfied.
The inequalities of (B.5) and (B.9) are-satisfied if

0<B<1/3, (1.14) B2 <n< %52

under our standing assumption 1/3 < < 1/2 of (6.12).

C Appendix

We shall establish here the claims made in Example 6.3. First, let us consider the
case 0 < 8 < 1/3, p =1 and denote by @ the return function associated with the
consumption policy of (6.21):

Q(s) = {“(C(S)) +BEQ(2(s —c(s))+Y); s> O}

u(s) +Q(0); s<0
_ {s+1+§[@<—2>+cz<o>}; szo}
25+ Q(0); s<0f"

Clearly, we have Q(0) = 1 + 2[Q(—2) + Q(0)] and Q(—2) = —4 + Q(0), whence

s+q; s>0
Qs) = {35+q; s < O}'
Now let us observe that the function
W, (b) = u(b) + BEQ(2(s — b) +Y)
{b+@[(2(s—b) L)+ (25— +2+q); 0<b<s }

Sla(s=0)+q) +(2(s =) +2+q); s<b<s+1

(
b(1 —203) + constant; 0<b<s >0
b(1 — 353) + constant; s<b<s+1

attains its maximum over [0,s + 1] at ¢(s) = s + 1, as postulated by (6.21). From
Theorem 4.3, @ satisfies the Bellman equation

O(s) — { max [u(b) + BEQ(2(s —b) +Y); s> O}

0<b<s+1

u(s) +Q(0); 5 <0

and the consumption policy of (6.21) is optimal.

(C.1)
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On the other hand, with 1/3 < 8 < 1/2 and p = 1, and with Q denoting the
return function associated with the consumption policy of (6.22), we have

as is easy to check. For s > 0, the function b — 9,(b) = u(b) + BEQ(2(s — b) +Y)
again takes the form

Dy (b) = b(1 — 33) 4+ constant; s<b<s+1
SV 10(1 — 208) + constant; 0<b<s ’

but now attains its maximum over [0, s + 1] at b* = s, as postulated by (6.22) (since
1-30 <0< 1-20). Consequently, @ satisfies the Bellman equation (C.1), and the
consumption policy of (6.22) is optimal.
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