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Abstract

This paper studies regressions for partially identified equations in simultane-
ous equations models (SEMs) where all the variables are I(1) and cointegrating
relations are present. Asymptotic properties of OLS and 2SLS estimators un-
der partial identification are derived. The results show that the identifiability
condition is important for consistency of estimates in nonstationary SEMs as
it is for stationary SEMs. Also, OLS and 2SLS estimators are shown to have
different rates of convergence and divergence under partial identification, though
they have the same rates of convergence and divergence for the two polar cases
of full identification and total lack of identifiability. Even in the case of full iden-
tification, however, the OLS and 2SLS estimators have different distributions in
the limit. Fully modified OLS regression and leads-and-lags regression methods
are also studied. The results show that these two estimators have nuisance pa-
rameters in the limit under general assumptions on the regression errors and are
not suitable for structural inference. The paper proposes 2SLS versions of these
two nonstationary regression estimators that have mixture normal distributions
in the limit under general assumptions on the regression errors, that are more
efficient than the unmodified estimators, and that are suited to statistical in-
ference using asymptotic chi-squared distributions. Some simulation results are
also reported.
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1 Introduction

Through the 1950’s to the 1970’s, simultaneous equations models (SEMs) were one
of the major research themes in econometrics. Important results in the area are
summarized in Hausman (1983), Hsiao (1983) and Phillips (1983). However, research
on the SEM has attracted relatively less attention these days partly due to a perceived
failure in large macroeconomic models and partly due to criticisms of simultaneous
equations modelling, following work by Lucas (1976) and Sims (1980).

Nonetheless, the SEM still seems to be in widespread emprical use for forecasting
and policy analyses especially in such non-academic institutions as private banks and
government economics departments [see Adams and Klein (1991) for discussions of
various structural models in present use]. Some would ascribe this phenomenon to
slow dissemination of knowledge. But nearly two decades have passed since the Lucas
and Sims critiques, and so this does not seem to be an appropriate explanation. The
phenomenon may also be explained because it is hard to find methods that work
obviously better than the SEM for policy analysis and forecasting. As an alternative
to the SEM, vector autoregressions (VARs) were introduced by Sims for econometric
policy analyses and forecasting. Though this approach has proved useful for many
research problems, VARs are reduced forms that are not directly linked to economic
theory and estimation becomes difficult when there are a large number of variables.
Computations of general equilibrium models are often used for policy analyses [cf.,
Shoven and Whalley (1984), Kydland and Prescott (1995)], but the viability of these
methods depends on how such issues as robustness and model selection are dealt
with, so that researchers can employ these methods with confidence. In the light of
these and many other considerations, it seems likely that the SEM will continue to
be used in practical econometric work.

The question of how to use the SEM for nonstationary time series has not at-
tracted much attention from researchers. This is unfortunate because it is now well
accepted that many economic time series have stochastic trends and can be rep-
resented in terms of I(1) or near-I(1) processes. In particular, the identification of
coefficient parameters in the nonstationary SEM, which is one of the most basic prac-
tical problems in constructing SEMs, has been little studied. An important exception
is Hsiao (1995), who gives identification conditions and derives the asymptotic distri-
butions of the ordinary least squares (OLS) and three stage least squares estimators
for the nonstationary, dynamic SEM. But the effects of identification failure (i.e.
failure of the rank condition) on estimation were not studied there or elsewhere.

The first purpose of this paper is to study the effects of identification failure on the
OLS and two stage least squares (2SLS) estimators in nonstationary SEMs. These
effects on the instrumental variables estimator in stationary SEMs were analyzed in
Choi and Phillips (1992). Identification failure in nonstationary SEM is especially in-
teresting, because it is well known that OLS is consistent when the regressors are I(1)
and the regression errors are I(0), so that it may seem that traditional identification
conditions are not as important for regressions with I(1) regressors. But the results
in Section 2 of this paper show that the identification condition is important for
consistency of both OLS and 2SLS estimators in nonstationary SEMs. Hsiao (1995)



shows that the OLS estimator is not consistent for the nonstationary, dynamic SEM
even when the identification condition holds. His results are obtained for nonstation-
ary SEMs with lagged dependent and exogenous variables for which standard /T
asymptotics apply [cf., Park and Phillips (1989) and Sims, Stock and Watson (1990)]
and then serial correlation between the regressors and regression errors results in in-
consistent OLS estimation. The model we use here does not involve lagged variables,
and instead the short-run dynamics in our model are nonparametrically incorporated
into the regression errors, as in many articles in the area of nonstationary time series
le.g., Phillips and Hansen (1990), Stock and Watson (1993)].

The second purpose of this paper is to study the Phillips - Hansen (1990) fully
modified OLS estimator and the leads-and-lags estimator [cf. Phillips and Loretan
(1991), Saikkonen (1991) and Stock and Watson (1993)] applied to a fully identified
single equation in a nonstationary SEM. The results from this study will show that
these two estimators do not have mixture normal distributions and associated Wald
tests do not have chi-square distributions in the limit. To remedy these problems,
this paper proposes 2SLS versions of the two regression estimators. These estimators
have mixture normal distributions in the limit under general assumptions on the
regression errors and are more efficient than the two OLS estimators. Moreover,
Wald tests using the 2SLS versions of the estimators do have chi-square distributions
in the limit.

The plan of this paper is as follows. Section 2 introduces the model and assump-
tion, and derives the asymptotic distributions of the OLS and 2SLS estimators for
partially identified cointegrated simultaneous equations. Section 3 derives the as-
ymptotic distributions of the Phillips - Hansen fully modified OLS estimator and the
leads-and-lags estimator applied to a fully identified single equation in the nonsta-
tionary SEM. Moreover, 2SLS versions of the two regression estimators are proposed
and their asymptotic distributions are derived in this section. Small-scale simulation
results are also reported. Section 4 contains a summary of the paper and some further
remarks.

A few words on our notation: all limits are taken as T — oo unless otherwise
specified; weak convergence and convergence in probability are denoted = and 2,
respectively; the ¢-th row of the matrix A is denoted A;; fuq(-) denotes the spectral
density matrix of the time series {a;}; Px = X(X'X) !X’ and Qx = I — Px ; and
r(A) is the rank of the matrix A.

2 Asymptotic Theory of Regressions for Partially
Identified, Cointegrated Simultaneous Equations

2.1 Framework and Assumptions

Suppose that a true structural relation is represented by the regression equation

1 =Yaf+ Z1y +u, (2.1)



where y1 (T'x 1) and Y2 (T x n) denote n + 1 endogenous variables and, Z; (T x k1)
is a matrix of k; exogenous variables, and u is a disturbance vector. The meaning
of exogenous variables here is different from that in the standard SEM, and will be
explained shortly.

The reduced form of equation (2.1) is written in partitioned form as

II
[y1,Ya] = [Z1, Z5] lﬂl H1] + [v1, V2] (2.2)
2 2
or
Y = ZI1+V,

where Zy (T X k2) is a matrix of exogenous variables excluded from equation (2.1).
We assume

Assumption 1 ko > n.
Assumption 2 7y = [1,t,...,t?, Z.,]" and p is known.

Assumption 3 w, = [AZL,, AZ,,,v11, Vg, (= [why, why, wse, why]') is a linear process
such that
7125w, = B(r)
and
T S wa 5 Y, TS waviy B2

where A is the usual backward difference operator and B(r) is a vector Brownian
motion with a positive definite covariance matriz Q). The following partitions of B(r),
> and Q will be used repeatedly throughout the paper.

k1i—1-p ko 1 n
B(r) = [Bi(r)" Ba(r)" Bs(r) Ba(r)]'
> = [ZijLJ:LmAa dij = E(witw;‘ )

Q=[Q; ;10> Q= B[Bi(r)Bj(r)'] = Ty +A5 + A]
where Nij = 357 o E(wiwjqry). Also, we let Ty =37, +Aij.

ij=1,. i

Several aspects of these assumptions merit comment. First, Assumption 1 implies
that the order condition for the identification of equation (2.1) is satisfied.

Second, Assumption 2 allows y1; and Y5; to have nonstochastic trend components,
as is usually assumed in the cointegration literature. In practice, it will suffice to
assume either p=0or p=1.

Third, Assumption 3 implies that yi¢, Yo, Zu, Zo¢ = I(1) and that the vector
process [y, Yo;, Zo;)' s cointegrated in the sense of Engle and Granger (1987) with
the cointegrating vector [1,,~']'. In practice, the observed variables Z,; and Za
may also contain time polynomials. In such a case, we may rewrite equation (2.1) as

y1 =YoB8+ Ayy + Ziyy +u



where the t-th row of the matrix A is [1,¢,...tP]. Then, when the order p is greater
than or equal to the highest order of the time polynomials in Z,; and Za, the OLS
and 2SLS estimates of 3 and vy, are invariant to the presence of time polynomials
in Z, and Zo;. Therefore, assuming that Z,; and Zo; are pure stochastic processes
is not restrictive at all as long as our interest lies in estimating the coefficients of Y3
and Z,.

Fourth, the limit conditions in Assumption 3 are required for the development of
asymptotic results in later sections. A variety of primitive conditions for Assumption
3 to hold are possible, are well known, and are discussed in Phillips and Solo (1992).

Fifth, Assumption 3 assumes that {V;} is a linear process of unknown form. This
feature contrasts with the traditional SEM [cf., Hausman (1983), Hsiao (1983), and
Phillips (1983)] where the disturbance terms for the reduced form model typically
have no dynamic structure or follow some simple autoregressive form.

Last, assuming that the long-run variance matrix {2 is positive definite, as in
Assumption 3, implies that the vector [Z},, Z5,|" is not cointegrated. As in Park
(1990) and Saikkonen (1993), we call Z,; and Zs; exogenous variables in such a case.
Therefore, the exogenous variables here can be interpreted as common trends that
introduce nonstationarity into the SEM. In practice, this assumption can be checked
by using various classical tests, like those in Johansen (1988), or model determination
tests, like those in Phillips (1996). This assumption also implies that the variables
Z and Zoy do not have any structural equilibrium relations in the long-run. Also,
note that we allow Z,; and Zs; to be serially and contemporaneously correlated with
the reduced form regression errors, unlike the standard SEM.

The identifying relations connecting the parameters of equations (2.1) and (2.2)
are

m — I3 =y (2.3)
T — Hgﬁ =0. (2.4)

Because equation (2.1) signifies the true structural relation, these conditions are as-
sumed to hold true. Tests for relation (2.4) have been called overidentification tests
[see Anderson and Kunitomo (1992) for a unifying framework of many existing overi-
dentification tests]. When IIs has full column rank [i.e., r(II3) = n], the coefficient
vector [3 is fully identified because once the coefficient matrices w9 and Ily (or their
consistent estimates) are known the coefficient vector 3 is estimable as we can see
from equation (2.4). When Il = 0, equation (2.4) indicates that the coefficient
vector (3 is totally unidentified. However, if II; = 0 in addition (the case of {y2:}
being stationary), v = m; from equation (2.3) so that the coefficient vector v is fully
identified in this case.

In this paper, we are interested in the general case where II; and Ily are of
arbitrary ranks. Specifically, assume

ASSllmptiOl’l 4 T’(Hl) = klg S kl, T’(Hg) = N7 S n.

Because some coefficients are identified and some are not under this assumption,
Assumption 4 is known as the partial identification condition [cf., Phillips (1989)].



Following Phillips (1989) and Choi and Phillips (1992), define the rotation matrix

S =[S, S € On),

where O(n) denotes the orthogonal group of n X n matrices and S spans the null
space of II» and Ils; = II»S7 has full column rank n;. Note that the matrix S that
satisfies these conditions is not unique. Furthermore, let

B = 51/57 By = 52/5

and
I =111 51, g = 11152, o1 = 1125y, Ilpe = 1252 = 0.

The purpose of this coordinate rotation is to isolate the estimable part of 3. Under
this rotation, the identifying relations (2.3) and (2.4) become

T — H1151 - H1252 =7, (2-5)
mo — 2187 = 0. (2.6)

Equation (2.6) shows that the coefficient vector (3, is identified because Il has full
column rank. But, the coefficient vectors 3, and 7 are not identified, as is readily
deduced from equation (2.5).

The estimable part of the coefficient vector v can be isolated by rotating the
coordinates in equation (2.5) in the same way as for equation (2.4). That is, define
an orthogonal matrix

ki1 k1o
R =[R:, Rs] € O(k1),

where R{II; = 0, RII; has full column rank and k11 4+ k12 = k1. Note that the matrix
R is not unique. Multiplying R’ to equation (2.5) gives

R/T{l = (27)
Rym — RylTi1 31 — Rolli2f8y = 74, (2.8)

where v, = R{vy and 75 = Rj7y. Here ~; is identified, but v, is not. Equations (2.6),
(2.7), and (2.8) constitute new identifying relations under the rotations undertaken
so far.

These rotations provide a new structural equation

=Y+ Z1y +u (2.9)
= Y388’ + Z1RR'y +u
= Yo By + Y228 + Zui + Z1272 T,

where 1/21 = 1/251, Y22 = YQSQ, Z11 = Z1R1 and Z12 = ZlRQ. In equation (2.9),
the coefficients (3;,7;) are identified, but (3,,75) are not. Additionally, note that
Z11t, Z12e = I(1), due to Assumption 3, and, further, Yay,, Yaor = I(1), as we see from
equations (2.10) and (2.11) below. The original coefficients are recovered from the
equations

B = 5181 + 528y, v = R1y; + Ravs.



We can study the effects of partial identification on the asymptotic properties of
various estimators and tests by using these equations relating the different coordinate
systems.
The reduced form model (2.2) can similarly be written in the new coordinate
system as
Y1 = 211 + Zama + vy,

and

Yo1 = Z11liq + Zolloy + Vo, (2.10)
Yoo = Z11l1o + Voo, (2.11)

where Vo1 = V457 and Vay = 1455.

2.2 OLS Estimation

This subsection studies the asymptotic properties of OLS estimates for the structural
regression equation (2.9). OLS estimates are known to be inconsistent in standard
SEMs, but are consistent in regressions involving I(1) variables even when the regres-
sors and error terms are contemporaneously and serially correlated. Here we study
the effects of partial identification on these estimates.

The OLS estimates of 31, (5, 7, and v, in equation (2.9) are written as

By = (Y4 EYn) 'Yy Ey,
By = (Y3uFYp2) Y3, Fy,

’3/1 = R{’% ’3/2 = Ré%
v = (Z2) Ziy — (Z120) 7 Z1[Yar, Yaa lgll :
2
where
E = Qz — Q,Y22(Y55Q:, Ya2) " V55Qz,
and

F= Q21 - Q21Y21 (Y2/1QZ1Y21)_1Y2/1Q21-

Using the above formulae and the weak convergence results in Phillips (1988), the
following limit theory for the OLS estimates is obtained.

Theorem 1 Define
K[C, D, A1, A2, As] = [ [te@)D(r) dr + )\1] - [ [SC@r)R(r) dr + AQ]

x [JSRERGYdr] ™ [f5 ROYDEYdr + )

K[C,dD, A1, \p, N3] = [ [ScdD + Al} - [ [ Ry dr + AQ]

x [JSR@REYdr] " [f3RAD + ).,

7



K[AC, D, M, Mo, As] = [[§dCD + M| = | [ dCR + o]
1 ! -1 1 I
x [ JER(A)R(r) dr] [ JER(r)D(r) dr + Ag] :
where R(r) = [1,7,...,77, B1(r)"]'. Then, under Assumptions 1, 2, and 3,
(i)
A , —1 / 0
T(B,— B1) = {y K[Bs, B2,0,0,0Tl1} " [Ty, { K[ By, dBu, T2, 0, (1) |
— K|[Bz,dBy,Ta0,0, ()] (53504 52) 'S5 ua } 151
-5 {244 — 344 92(85 344 51) 7Sy 244} 5161
+ ngl {K|:327 dB37 F237 07 (F?3>:|
— K|[Bz,dBy,Tae,0, ()] (53504 52) 15 s }
+ S {243 — 3044 52(95 3744 S2) 7S5 243}}
= 61, say.
(ii)
BQ = (SQI 244 52)71[5'2/[{[(1347 327 F427 [07 F41}7 O]
— {K[dBy, B3, T'42,[0,T'41], 0|1 + >"44 S1}

x {1l K[By, By, 0,0, 0]y } 5 KBy, B2, 0,0, 0] 13, + Sg >3]
= 62, say.

(iii) When time polynomials are present in Zyg,
T'2(3; —m) = —R{3$,
where Ri; is the first column of R{ and § is the first element of the random vector
S5 RERGYdr] ™ {[[ERE)ABA(rY + ()] S8y — [ ROYBs(r) + (12,)]
+ [LR(r)By(r) drTlg by + [ JER(r)dBy(r) + (;L)] 52132} .
(iv) When time polynomials are not present in Zy¢,
T( — ) = R[5 Bir)Bi(r)dr] [ Bi(r)dBa(r) +Tua) 16,
— [/ Bi(r)dBs(r) + T1s| + [ Bi(r)Ba(r) drTlaby
+ [[5Bi(r)dBa(r)' +T1a Soba

(v) 49 = Rymi — Ry By — R§H121;2-



Several remarks are in order for the results reported in Theorem 1. First, Theo-
rem 1 shows that the OLS estimates for the identified coefficient vectors 3; and v,
are consistent, but that those for the unidentified coefficient vectors (B, and ~, are
inconsistent and tend to random variables in the limit, unlike the stationary case
where they converge to constants. Because § = S13; + S283, and 4 = R1%, + Ra¥s,
these imply that the OLS estimates for the coefficient vectors 3 and y are inconsistent
when identification failure occurs. Thus, even in regressions involving I(1) variables,
OLS estimates are inconsistent under identification failure.

Second, the OLS estimate for the identified coefficient vector 3, is T-consistent, as
is usual in cointegrating regressions. But when time polynomials like those specified in
Assumption 1 are present in the regressor Zj, the OLS estimate 4, is v/T-consistent
as show in part (iii) of Theorem 1. The reason for this reduction in the convergence
rate is that the OLS estimate for the intercept term in the regression equation (2.1)
converges most slowly (at the rate of /T). If the intercept term is omitted (that is, if
Zve = [t,...,tP, Z.,]") in the regression equation (2.1), though this is quite uncommon,
the usual rate T-asymptotics will apply for the estimate 4;. When time polynomials
are not present in the regressor Zy;, part (iv) shows that the OLS estimate 9, is
T-consistent.

Third, the OLS estimates 32 and 4, carry no information regarding the true
coefficient vectors in the limit, which is of course a manifestation of identification
failure.

Now we consider some special cases of Theorem 1. First, the totally unidentified
case Il = 0. In the following corollaries, 3 and 4 denote the OLS estimates of the
coefficient vectors 3 and -y, respectively.

Corollary 1 Suppose that (B is totally unidentified. Then, under Assumptions 1, 2,
and 3,

(1) 85 X Tag = b, say.
(ii) When time polynomials are present in Zyq,

TY2(4, —v1) = —Ri111,

where p is the first element of the random vector

[fs ROVRGYdr] ™ {= [ ROYaBs () + (2,)] + [ RO)dBa(r) + (12,)] B}

(iii) When time polynomials are not present in Zi,
A 1|l ! -1 1 1 ! T
T(31=v1) = —R{ [[§ Bur)Bi(r)dr| " { =1 Bi(r)dBs(r) + T1s] + [ [§ Bi(r)dBa(r)' + T1a] b}

(iv) 49 2 Rhymy — RLIL;b.

This corollary shows that the OLS estimate B is inconsistent for 3 in the totally
unidentified case. The OLS estimate 4, is also inconsistent, due to the effect of j.
Both estimates converge to constants, as in the stationary case. Nonetheless, parts



(ii) and (iii) show that the estimate 4, is consistent. Furthermore, as in Theorem 1,
the rate of convergence of 4; depends on the presence of time polynomials.

Next, consider the case where Ils has full rank, i.e., the case where the coefficient
vector [ is fully identified.

Corollary 2 Suppose 3 is fully identified. Then, under Assumptions 1, 2, and 3,
(1)
pa / -1 / 0
T(B—B) = {LK[By, B2,0,0,0/Tl2} " [Ty { K| Bo,dBu, T2, 0, (12, ) | } 8= L4 B
+ 10 { K[ By, dBy, T2s,0, (1)) } + s
= b, say.
(ii) When time polynomials are present in Ziz,
p  ki—p-1 )
Cr(y =) = —diag[0, 1, ..., 1JTb + diag[1,0,..0,T,... 1] | [§ R(r) R(r) dr|
x {= [§ Ru(r)Ba(r)'drligh — | [§ R(r)dBa(r) + (,°,)] 8
+ [y Rr)dBs(r) + (2,)]}
where Cp = diag(TV2,T,...,T).
(iii) When time polynomials are not present in Zig,
y —1 y
T(3—7) = —Tb+ [[§ Bi(r)Bi(r)dr| ~ {= [§ Bi(r)Ba(r) drilsb
— [J§ Bu(r)dBa(r) + T B+ [ Bi(r)dBs(r) + T1g] } .

This corollary shows that the OLS estimates [3 and 4 are consistent when the
coefficient vector (3 is fully identified. The rate of convergence for the estimate ¥
depends on whether or not Z; contains time polynomials, as parts (ii) and (iii) show.
Furthermore, the asymptotic distributions derived in Corollary 2 are nonstandard and
depend on many nuisance parameters, which makes it difficult to use these results
for statistical inference.

However, when ) 43 =0, > 44y =0,I'13 =0, I'ta = 0, I's3 = 0 and I'yy = 0, i.e.,
when Vo = 0 with probability 1 and Z,;, and Zy; are totally exogenous, Corollary
2 implies that the limiting distribution of B is mixture normal. To show this, let
dBs(r) — dBy(r)' 3 = dBs(r). Then,

T(3 - B) = {I,K[Bs, By,0,0,0]Tly} ' I, K [Bs,dBs, 0,0, 0. (2.12)
But

Ty K [Ba, dBs,0,0,0]| » = [¢ F(r)dB5(r)‘F = N (0, [§T(I0()dr),  (2.13)

10



! 1 ! 1 ! -1
where T(r) = I {Bg(r) — 3 Byr)RGYdr [J3 ROrR(rY ] R(r)} and the sym-

bol “-| 2" signifies the conditional distribution given the o-algebra F = {I'(s) : 0 <
s < 1}. Furthermore,

[ T(r)D(r) dr = oK [Bs, B, 0,0, 0]Tl,. (2.14)
Therefore, it follows from (2.12), (2.13) and (2.14) that
T(3-p) = [ NO.OpQL. (2.15)
CeR™

where ( = [fol I’(T)F(r)’dr} 1.

Under the same assumption as for (2.15), the OLS estimate 4 has the mixture
normal distribution regardless of the presence of time polynomials in Z;;. We illus-
trate this result for the case where there are no time polynomials in Zj;. Part (iii) of
Corollary 2 gives

T3 —7) = —(Ih + A)b+ [ [§ Ba(r) B (r) dr] LBy (r)dBs(r),

where A = [fol By (r)B (r)’dr} ' [t B1(7)Ba(r)'dr1l,. Since both the first and second
terms in the above equation are mixture normal variables, 4 also has a mixture normal
distribution.

Mixture normality results in nonstationary regressions are routinely used to de-
velop a basis for statistical inference on cointegrating vectors [cf., Park and Phillips
(1989), Phillips and Hansen (1990), inter alial. But it is worth noting that the mix-
ture normality results for OLS estimation hold under the very special assumptions
that ) 43 =0 and > 4 = 0 in addition to the assumption that Z,; and Zy; are totally

exogenous. These extra requirements limit the usefulness of OLS in cointegrated
SEMs.

2.3 2SLS Estimation

For stationary SEMs, it is common to use estimators like 2SLS in place of OLS.
This subsection therefore considers 2SLS estimation for the regression equation (2.9).
If estimator consistency is the sole concern, Corollary 2 shows that using OLS will
suffice, as long as the coefficients are identified. As will now be shown, 2SLS estimates
have some desirable properties that are not shared by OLS at least in the fully
identified case, but also some undesirable characteristics in partially identified cases.

The 2SLS estimates for the coefficient vectors in the structural equation (2.1) are
defined as:

B, = (glGY21)_15/§/1Gyla
By = (YouHY39)"'Y3,Huyn,
Y1 = R}, 7, = Ry,

5 = (Z1721) 1 Zyy1 — (Z121) 1 7, [Yau, Yoo [%] ’
2
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where

G = L — LYp(Y3LY2) Yoo L,
H = L— LY51 (Y5 LY21) 'YL,
L=P,—P,.

The following theorem reports the asymptotic distributions of these estimators.
Theorem 2 Define
JIAB] = A-BS,(S{BA'BS,) SiB
MIA,B.C] = A—AB7'CS, (S4C'BTCS,)  Sy0",
WIA,B,C] = AB™'C — Ally [Ty, BTy |15, C,

and
N[A, B] = A — Ally (11, Bl ) 115, B.

Then, under Assumptions 1, 2, and 3,

(1)
_ -1
T(By— 61) = [T {K[Bz, B2,0,0,0], K[ By, dBu, T2, 0, (), )| } 11
X [_HI21M {K[dB47 327 F427 [07 F41}70]7 K[327 327 07 07 0}7
/
K|[By,dBy,Tas,0, (), )|} $15:
+1IT5, M {K[dBs, Ba,T'32,[0,T31], 0], K[B2, Bs,0,0,0],
!/
K|:327dB47P24707 (I‘?4>:| }:l
= by, say.
(ii)

T 13y = [SoW{K|[dBy, B2, '42,[0,T'41],0], K[Bs, B2,0,0,0],
K[dBy, Ba,T42,[0,T41],0/'}S2] "
X SQIN {K[dB4,BQ,P42, [0,F41],0},K[BQ,BQ,O,O,O]}H2151
= by, say.

(iii) When time polynomials are present in Zy,
T3, —v) = —Rin,

where R{, is the first column of the matriz R{ and n is the first element of the vector
! 1 - ! ! 0 7
[ /0 R(r)R(r) dr} [ /O R(r)dB,(r) + (F)} Syb.

12



(iv) When time polynomials are not present in Zs,

/ -1 1
1= = By [[A ROVRGYdr| [ RorYdBydr + (1°,) } ba.
(V) T71’72 = —Réngz_)Q.

Several aspects of this theorem merit our attention. First, as in the case of the OLS
estimation, the 2SLS estimate of (3; is T-consistent. But unlike the corresponding
OLS estimate, the 2SLS estimate of 7, is inconsistent. It even diverges in probability
when the time polynomials specified in Assumption 1 are present.

Second, the 2SLS estimates for the unidentified coefficient vectors all diverge in
probability at the rate of T, unlike the corresponding OLS estimates. An intuitive
explanation for this behavior is that the 2SLS estimates of the unidentified structural
coefficients of Yay (viz. (35 ) rely on instruments, Zs, that are totally irrelevant (cf.
equation (2.11)), due to the lack of identifiability of 3,. These instruments project the
data Ya9 into linear maps of the equation errors. In particular, (P, — P,, )Y =(P, —
P, )Va and then Yoo (P, — P, )Yas = Vio(P. — Py, )Vaz = Op(1), due to the fact Z,
is I(1). In consequence, there is less leverage in the instrumented regressors than
there is in the original I(1) regressors Yas themselves. It is this reduction in regressor
excitation that leads to the divergence of the 2SLS estimates of the unidentified
structural coefficients [3,. Naturally, the 2SLS estimates of the coefficients of the
exogenous regressors are contaminated by these poor characteristics of the structural
estimates. The effect is not only the divergence (at rate T') of the 2SLS estimates of
the unidentified coefficients, v,, of the exogenous variables, but also the inconsistency
of the 2SLS estimates of the identified coefficients, v;, of the exogenous variables,
noted in the previous paragraph.

Third, the above features of the coefficient estimates in the transformed model
imply that the 2SLS estimates of 3 and -y diverge in probability when identification
failure occurs. Therefore, under identification failure, the 2SLS estimates may exhibit
more erratic small-sample behavior than the corresponding OLS estimates because
the OLS estimates under identification failure converge weakly to well-defined random
variables as shown in Theorem 1.

The following corollary to Theorem 2 deals with the totally unidentified case. In
Corollaries 3 and 4 that follow, the 2SLS estimates for 3 and v are denoted as 3 and
7, respectively.

Corollary 3 Suppose that 3 is totally unidentified, and let W[A, B,C] = AB~C.
Then, under Assumptions 1, 2, and 3,

(i)
/B = [W{K[dB47327F427[071—‘41]70}7[([32732707070]7
K[dBy, By, T2, [0,T1], 0}~ [W {K[dBy, B2, T2, [0, T'41], 0],
K[Bs, B2,0,0,0], KBy, dB3, 53,0, () }]

= b, say.

13



(ii) When time polynomials are present in Ziz,
T2y, —m) = Rjjw

where w is the first element of the random vector

o RE)RY A {15 R@)aBY ) + (2] - [JROWB;0) + (2,)] B}

(iii) When time polynomials are not present in Zig,

Ty —m) = R [J3 Bur)Bur)ar] ™
x { |6 B1(r)dBy(r) +T1z| — | [§ Bi(r)dBy(r) +Tua| b} .

(iV) Yo = R2,7T1 — RéHll_)

This corollary shows that the 2SLS estimate (3 is inconsistent and contains no
information regarding the coefficient vector (3 in the totally unidentified case. But,
unlike the partially identified case studied in Theorem 2, the 2SLS estimate 7, is
consistent. Furthermore, the rate of consistency of 4, depends on the presence of the
time polynomials in Z;. Additionally, this corollary shows that 7, is inconsistent but
does not diverge, in contrast to Theorem 2. Note that in this fully unidentified case
g1 = 0, and hence by = 0 in part (i) and 7 = 0 in part (iii) of Theorem 2, so that
the limits given in these parts of the theorem are degenerate. In this way, the results
of Theorem 2 calibrate with the specialized results of the corollary, which show the
appropriate limits, after renormalization, for the case where 3 is totally unidentified

The next corollary considers the case of full identifiability. The results are im-
portant for empirical practice, because statistical inference on the coefficient vectors
under full identifiability will naturally depend on these results.

Corollary 4 Suppose that B is fully identified. Then, under Assumptions 1, 2, and
3,
(i)
T(5 ) = {I,K[By, By,0,0, 0]}~
x [=11y { K| By, dBu, 24,0, (), )| } B+ T, { K| B, dBs,T23,0, (12, )] }]
= b, say
(ii) When time polynomials are present in Zi,

p k1—p—1
. —— -1
Cr(y — ) = —diagl0,1, ..., 1]I;b + diag[1,0, ..., 0,1, ..., 1] [ gR(r)R(r)'dr}

X {_ f(l) Rl(T)BQ(T)/dTHQB — [f(l) R(T)dB4(r)’ + (F?4>] 3
+ [f(l) R(r)dBs(r) + (F?S)} }
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where C = diag(Tl/Q,T, o, T) and b; denotes the i-th element of the random vector
b.

(iii) When time polynomials are not present in Zyy,

T(7—7) = b+ [ [4 Byi(r)Bu(r)dr] {~ [ By(r)Bar) drTLsh

B [f(l)Bl(r)deL(’f’), _‘_1—‘14} 6+ [fé By (r)dBs(r) +F13H.

This corollary shows that the 2SLS estimates 3 and 4 are consistent when the
coefficient vector 3 is fully identified. Comparing these results with those in Corollary
2, we find that the asymptotic distributions of the 2SLS estimates are nonstandard
but depend on a lesser number of nuisance parameters than the OLS estimates (i.e.,
S 44 and 3,5 do not enter the formulae for the asymptotic distributions of 3 and 7).

When F13 = 0, F14 = 0, F23 = 0 and F24 = 0, i.e., when Z*t and th are
totally exogenous, Corollary 4 shows that the 2SLS estimate (3 has the same mixture
normal distribution as the OLS estimate (3 which is given in (2.15). But note that
the conditions 343 = 0 and Y,, = 0 are not required for the 2SLS estimate (3
to have a mixture normal distribution. Furthermore, it is straightforward to show
that 4 has a mixture normal distribution in the limit irrespective of the presence of
time polynomials in Z3;. The mixture normality results obtained under the special
assumptions imposed can profitably be used for statistical inference, as we will explore
in Section 3.

3 Efficient Estimation for a Fully Identified, Cointegrated
Structural Equation

Corollaries 2 and 4 in Section 2 showed that the OLS and 2SLS estimators have
non-normal distributions in the limit and depend on nuisance parameters in a com-
plicated manner even when the parameter vectors are fully identified. Under such
circumstances, it is well known that Wald tests do not have chi-square distributions in
the limit. This feature makes it quite difficult to perform tests on coefficient vectors
by using OLS and 2SLS.

For the reduced form equations (2.2), various methods have been suggested in the
literature for efficient estimation and standard chi-square asymptotics for Wald tests
le.g., Phillips and Hansen (1990), Phillips and Loretan (1991), Park (1992), Saikkonen
(1991), Stock and Watson (1993)]. This section examines some of these methods when
they are applied to a fully identified structural equation in the cointegrated SEM and
adapts the methods so that efficient estimation of structural coefficient vectors and
standard asymptotics for Wald tests become feasible. Among the various methods, we
will examine Phillips and Hansen'’s fully modified (FM) regression and the leads-and-
lags (LL) regression introduced in Phillips and Loretan (1991), Saikkonen (1991) and
Stock and Watson (1993). These methods are known to provide efficient estimation
for reduced form cointegrating coefficients. In studying these methods, we will assume
for simplicity that there are no time polynomials in the exogenous variable Zy;.
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Park (1990) and Saikkonen (1993) also considered estimating cointegrated SEMs.
Park suggests transforming the variables in the model by running Park’s (1992)
canonical cointegrating regressions on the reduced form equations and then using
these transformed variables to estimate structural form parameters. Saikkonen pro-
poses indirect least squares methods which employ the efficient estimates of the re-
duced form parameters. These methods are similar in that estimating the reduced
form equations are required, though their motivations are different. Unlike these
methods, the methods we propose here do not require estimating reduced form equa-
tions. Estimation and hypothesis testing for the coefficient vectors will be based solely
on structural form equations. This can result in improved finite sample precision in
estimation, because the sampling error from the reduced form equation estimation
is not imported into structural form estimation. However, full system estimation,
which is covered in the aforementioned articles, will not be considered in this paper.

3.1 Phillips and Hansen’s Fully Modified (FM) Regression

This subsection derives the asymptotic distribution of the Phillips—Hansen FM-OLS
estimator applied to the structural equation (2.1) that is fully identified, and proposes
the fully modified 2SLS (FM-2SLS) estimator. To set up the procedure, let o =

(B,7") and X = [Y5,7;]. Additionally, denote the long-run variance-covariance
matrix of p; = (u}, AX]) by ¥ = [g; g;ﬂ As in Section 2.1, we decompose ¥

as U = © + T + Y/ where O is the probability limit of 7' S°2 | p;p/ and T =

>ohe1 E(popisy), andlet = =0 +7 = [51} 11+k1 . Furthermore, let Q) be a consistent

=2
estimator of @) which uses the OLS residuals i; = y1; — BlYgt —4'Zy; and AX;. Then,
the FM-OLS estimator is defined as

arv—ors = (X' X) "N X'yf — T=ak) (3.1)

where yi_ = yl—AX\i’z_Ql\i//m, k= [1, —\iflg\ifz_zly and AX = [Xl—Xo, ...,XT—XT_ﬂ/.
The asymptotic distribution of &rps_ors is reported in the following theorem.

Theorem 3 Suppose that equation (2.1) is fully identified. Then, under Assumptions
1, 2, and 3,

T(dFJWfOLS - Oé) = |:fé DQ(T)DQ (r)’dr} - {f(l) Dy (7“>dD1.2(7“)d7“ + |:Z43 70244 ﬁ:|
+ [FRY K+ KT+ K(Y - YO )K 05 @y, }

where D(r) = Di(ry] 1 s a vector Brownian motion with the covariance matrix
Da(r)| n+k1

O = JQJ', the matriz ® is partitioned conformal to the matriz ¥, Dy o(r) = D1(r) —
D2 (T)/(pQ_QI(pI127

0 0 1 —p 111 ki ke 1 n
J=|II; I 0 O :[f]nwg amdK= [0 0 0 I]|n
I 0 0 0 2 ! 0 0 0 0|k
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This theorem shows that the weak limit of the FM—OLS estimator contains a
second order bias which appears in the form of nuisance parameters. Therefore,
inadvertently applying the FM—OLS to the structural form equation will cause non-
standard asymptotics for Wald tests. Furthermore, this also brings an efficiency loss,
as will be shown later. But once the nuisance parameters are eliminated, the weak
limit is mixture normal because D; o(r) is statistically independent of Ds(r). Thus,
we may further modify the FM—OLS estimator, so that the nuisance parameters are
eliminated. But as will be shown below, it is simpler to use the 2SLS estimator to
overcome this difficulty. Last, note that the covariance matrix ® is nonsingular due
to the assumption of full identifiability.

The fully modified 2SLS estimator for the structural form equation is defined by
replacing X in (3.1) with P,X. That is,

apv_asLs = (X' P, X) Y (X' Pyl — T=k),

where yi, 5 and & are defined in the same way as for (3.1).
The following theorem reports the asymptotic distribution of &ras_2s1.5-

Theorem 4 Under the same assumptions as for Theorem 3,

-1
T(émn-asis — @) = | [§ Da(r)Da(r)dr| ~ {[§ Da(r)dDys(r)dr },
where Da(r) and Di2(r) are as defined in Theorem 3.

This theorem establishes that the weak limit of app_ogrs IS mixture normal,
because Ds(r) and Dj o(r) are statistically independent. This also implies that the
QpnM—2sLs 18 median unbiased in the limit.

Consider the null hypothesis

Hy : Da = d, (3.2)

where D has full row rank. The Wald test for this hypothesis is defined as
. -1
W (apm—_2s1s) = (Dépm—asis — d)’ |:®1.2(X/PZX)71:| (Dépyt-2sLs — d),

where <i>1.2 is the consistent estimate of the long-run variance 1o = ®1 —@12(52_21@21
which uses the 2SLS regression residuals. Note that the long-run variance can be es-
timated by using conventional spectral density estimation methods [e.g., Andrews
(1991)]. Using the mixture normality result of Theorem 4, we obtain in a straight-
forward way:

Corollary 5 Under the same assumptions as for Theorem 3,

W (Apm-asLs) = Xi(r)-
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3.2 Leads-and-Lags (LL) Regression

This subsection considers asymptotic properties of the LL regression for the struc-
tural equation (2.1). Letting V; = [V{,, V4| and AZ, = [AZ];, AZL,]', we make the
following assumption for the LL regression.

Assumption 5 Vi can be represented as

V=232 o CiAZij + e,
j:
(k=0,£1,42,...), e is a stationary process with the spectral density matriz fee(\

fvv(/\) - vaz()‘)fAzAz(/\)_lfsz(/\) and E(etetl) = Ze; E(etflet,) = Ze_

where 3322 ||Cyl] < oo (|| || denotes the usual Buclidean norm), E(AZe/ ;) =0

More explicit conditions for these assumptions to hold can be found in Saikkonen
(1991). Furthermore, we assume

Assumption 6 k3/T — 0 and \/T2|j|>k [1C;]| — 0.
Now, write
up = Vig — B'Vor = 352 o PiAZyj + e — Blea, (3.3)

where ej; and ey; are conformal partitions of e;. Inserting (3.3) into equation (2.1)
yields the LL regression equation

Yo =o' Xy + 5 piAZy g + g, (3.4)

where 1; = ey — B'ey + Z|j|>k p;AZtﬂ-. We denote the OLS estimates of a,

P—ks - Pi. from this regression equation as &11,—0LS, P—g; ---, Pr- Note that this regres-

sion equation is different from those in Phillips and Loretan (1991), Saikkonen (1991)

and Stock and Watson (1993) where the leads and lags are differences of regressors.
The asymptotic distribution of 411,_ors is given in the following theorem.

Theorem 5 Suppose that equation (2.1) is fully identified. Then, under Assumptions
Al1-A6

-1
T(an1—oLs — @) = [ In DQ(T)DQ(T)'dr}

{ S DatrydDe(ryr [T =3~ |

where Dy(r) is as defined in Theorem 3, D.(r) is a vector Brownian motion with the
covariance matriz ®17 — ®1aPoy Oy, 351 and Y5e (32¢9, and Y6 o9) are partitions
of 3¢ (3% ) conformal to ey and ex.
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This theorem shows that the weak limit of &1, o1.s depends on nuisance parame-
ters and that aq1,_orps is second-order biased. Conventional Wald tests on coefficient
vectors therefore do not have chi-square distributions in the limit. But because Da(r)
and D.(r) are statistically independent, the distribution is mixture normal once the
nuisance parameters are eliminated. We may pursue further corrections of &ap1,_oLs
such that its weak limit is free of nuisance parameters, but, again, using 2SLS esti-
mation is more straightforward.

Let My = [X{,AZ_,....,AZ, ;| and Ny = [Z};,AZ]_,,...,AZ]{ ;]". Then, the
2SLS estimate of the parameter vector ¢ = [a’,p’,,...,p/]" from equation (3.4) is
given by

. -1 -1
diasis = |(Timda MiNY) (SIS NeNy) (S, Ney)

X (I M) (It M) (S5 N
The asymptotic distribution of &y _ogrg is:
Theorem 6 Under the same assumptions as for Theorem 5,
T(apL-9sLs — @) = [fé D2(7')D2(7")/d7’} B f(l) Dy (r)dDe(r)dr-.
where Da(r) and Dc(r) are as defined in Theorem 5.

This theorem shows that the weak limit of &q1,_9gr,g is mixture normal. Note
that D.(r) = Dj2(r) because these Gaussian processes have the same mean and
covariance structure. Therefore, the weak limits of &py_osrs and &p1,_9s1.s are the
same.

Furthermore, the Wald test for the null hypothesis (3.2) is defined by

W(dar—2s1s) = (Darr—2srs — d)f

1 -1
n+k1 }
where A, denote a ¢ X ¢ block matrix in the north-west corner of matrix A and @)1.2 is

the long-run variance estimate of ®; 5 using the 2SLS regression residuals. Theorem
6 implies:

A —1
. {q> St M) (S5 NvE) ™ (S M)

X (Day,—2sLs —d),

Corollary 6 Under the same assumptions as for Theorem 5,

W (ar—2s18) = X?(R)-
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3.3 Comparison of FM-OLS and FM-2SLS

This subsection compares the efficiency of OLS and 2SLS for a fully identified struc-
tural equation. We will discuss only FM—-OLS and FM—2SLS here, because it is easy
to deduce that &p,1,_9s1,5 is more efficient than &;,1,_ors once the efficiency comparison
of FM-OLS and FM—-2SLS is made.

Because the FM—OLS and FM—-2SLS estimators have non-normal distributions
in the limit, the efficiency comparison cannot be made in the conventional way of
comparing their covariance matrices. However, we may evaluate the efficiency of
estimators having non-normal distributions in the limit by the criterion of probability
concentration used in Phillips (1991) and Saikkonen (1991). More specifically, when
a and a are T-consistent estimates of the n x 1 parameter vector a, a is more efficient
than a if

li%n P{T(a—a)eC} < li%nP{T(d —a)eC} (3.5)

for any convex set C' € R™, symmetric about the origin.
Using criterion (3.5), we can make the efficiency comparison of apy-_ors and

durni—sis as follows. First of all, let L = [ [ Do(r) Da(r)dr] ' {J3 Do(r)dDy o(r)dr},
which is the weak limit of arr_osrs. Then, denoting the weak limit of apy_oLs as
N, we have N = L + M where M is obvious from Theorem 3. Furthermore, define
the o-algebra F = o{Ds(s) : 0 < s < 1}. Then,

—1
L =N (0, [fé Dz(?‘)D2(7“)'d7"} (P11 — CI>12<I>2_21<I>21)>
and

E(LM'|F) =0 as.

Because L and M are Gaussian processes, the latter equality implies that L and M
are conditionally independent. Thus, using Lemma 1 in Basawa and Scott (1983)
gives

P{N € C|F} < P{L eC|F}
for any convex set C' € R*™*1 symmetric about the origin. We deduce from this that
li%nP{T(@FA,[,OLS — Oé) S C} = P{N € C} = E(P{N S le})
< E(P{LeC|F})=P{LeC}
= 1i%n P{T(&pm-2s18 — o) € C},

which implies that &py_sg1s is asymptotically more efficient than &pyi—oLs according
to criterion (3.5).

3.4 Simulations

This subsection investigates the finite sample performance of the regression estimators
we have so far studied by using simulation. Data were generated as:

yiu = BYo + 721 +wg, B=1, vy =1, uy = vyy — Vay,
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Yor = 111 Z14 +HIQZQ7§ 4+ Vo, II1 =1, lla =1 or [1, 1]/,
wy = 0Awi_1 + €, Wt = [AZH,AZQ“UH,V’%}I, wg = 0,

where A is a lower diagonal matrix whose non-zero elements are all 1’s.The random
vector e; is iid normal, the diagonal elements of its covariance matrix are all 1’s, and
off-diagonal elements are all 0.3.

For simulation, we let 6 = 0.1, 0.3, and 0.5; and 7' = 100 and 200. Note that the
structural coefficients 3 and v are just-identified when IIs = 1, and over-identified
when Iy = [1,1]. Using these simulated data, squared biases and mean squared
errors of OLS, 2SLS, FM-OLS, FM-2SLS, LL-OLS, LL-2SLS and Saikkonen’s (1991)
indirect least squares (OLS) estimators were calculated out of 5,000 iterations, the
results of which are reported in Table 1. Part (1) of Table 1 contains the results
for the just-identified case (k; = 1), and part (2) those for the over-identified case
(ke = 2).

The long-run variances for the FM—OLS and FM—-2SLS estimators were estimated
by using Andrews’ (1991) methods with a VAR(1) approximation for the prefilter.
Furthermore, we used four leads and four lags for the leads-and-lags estimators. For
the OLS estimator, we estimated the reduced form model by using multivariate FM-
OLS and then calculated the OLS estimator as given in Section 3 of Saikkonen.
The long-run variances for the multivariate FM—OLS were also estimated by using
Andrews’ (1991) methods with a VAR(1) approximation for the prefilter.

A few key findings from Table 1 can be summarized as follows.

(i) The LL-2SLS estimator has lower bias than the LL-OLS estimator in all cases,
which is what we would predict from the asymptotic results in Section 3.2. But
FM-2SLS is shown to be more biased in finite samples than FM—-OLS when
there is high serial dependence in the series {w;}. Comparing OLS and 2SLS,
we find that 2SLS is less biased than OLS as the asymptotic results in Section 2
presage. But, in most cases, 25LS is more biased than at least one of FM—-2SLS,
LL-2SLS and OLS.

(ii) LL-2SLS has lower mean squared errors than LL-OLS in all cases, which con-
firms the efficiency comparison in Section 3.3. But FM—-OLS has lower mean
squared error than FM—-2SLS when 6 = 0.3 and ¢ = 0.5.

(iii) OLS shows higher mean squared errors than 2SLS except when 7" = 100 and
6 =0.5.

(iv) Comparing the efficiency of LL-2SLS, FM-2SLS and ILS in the sense of mean
squared errors, we find that LL-2SLS is most efficient except when § = 0.1 and
the coefficients are over-identified. Furthermore, FM—-2SLS is more efficient
than ILS when ko = 1, § = 0.1 and 6 = 0.5. But, for the remaining cases,
ILS is seen to be more efficient. But ILS has very high mean squared errors
compared to LL-2SLS and FM-2SLS when the series {w;} is highly serially
correlated. Surprisingly, 2SLS is more efficient and sometimes less biased than
these modified estimators when there is low serial dependence in the data. But
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when the data are highly serially correlated, LL-2SLS outperforms 2SLS in
terms of both biases and mean squared errors.

4 Summary and Further Remarks

We have derived the asymptotic distributions of the OLS and 2SLS estimators for
a partially identified SEM involving I(1) variables. The two polar cases of total
unidentifiability and full identification are also given. The results show that the rank
condition for identification is as important in the nonstationary SEM as it is in the
stationary SEM. But the OLS estimator is also consistent in the nonstationary SEM
as long as the rank condition is satisfied.

We have also studied fully modified regression and the leads-and-lags regression
applied to a fully identified single equation in the nonstationary SEM. The results
show that these two estimators do not have mixture normal distributions. As alterna-
tives, we proposed 2SLS versions of the two regression estimators, which have mixture
normal distributions in the limit. Wald tests using the 2SLS versions of these estima-
tors have chi-square distributions in the limit. Some simulations generally confirm
the relevance of these asymptotic results in finite samples.

This paper assumes the existence of structural cointegrating relations in the SEM.
In practice, these relations need to be tested. Devising cointegration tests for the SEM
is, therefore, in order. Furthermore, testing the rank condition of identification and
overidentifying restrictions in the cointegrated SEM has received little attention and
a systematic study of these issues awaits further work.

Appendix: Proofs
Lemma A Suppose Assumptions 1, 2, and 3 hold. Then, for i,j =1 or 2,
(i) T 2Z4EZ, = K[Bs, B,0,0,0],
(ii) T7'V/EZy = K[dBit2, B2, T(i12)2, [0, T(i421], 0]
— Y (542)4 52(S3 Y44 S2) 'K [dBa, By, T2, 0,1}, 0],
(i) T'V/EV; = S 2)(42) — (21 52(92 X S2)7153 24(j+2)>
(iv) TﬁlViIFVj - Z(i+2)(j+2)7
(v) T7'V/FZy = K[dBi 2, B2, T (;12)2, [0, T (21, 0]
- {K[de‘H, Ba, L (i12)2, [0, Tip2)1]; 0121 + 30 0)4 51}
x {Ily, KBy, By,0,0,0|Tg; } " Ty, K[Ba, B, 0,0, 0],

Theorem 1.
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Proof (i) Using equation (2.11), write Z4EZy = Z4Q., Z2 — Z5Q, Voo (Vas Q2 Va2 ) ™t
X V35Q., Zo. Then, letting Dy = diag[TV/? T'1/2 . TPtY/2 T . T], we obtain

T 27Q. 7y = T 2747y — Z4ZWT DD} 21 20 DFY) 1T DA 74 7,
= K[BQ,BQ,O’O’OL (Al)

T12,Q.,Vas = T 1 Z4Vao — T 12,2, D71 (D' Z Z1 DY) " DA 2 Vg
= K[Bg,dB4,F24,O, (F‘L)} S, (A.2)

and

T W3Qu Voo = T VyVar = T V321 D (D' 2121 Dyt) ' D Z1 Vay
:> SQI 244 SQ (AB)

by using the weak convergence results in Phillips (1988). The stated result follows
from (A.1), (A.2) and (A.3).

(i) Write V/EZy = V/Q., Zo — V] Q2, Voo (VagQ2, Va2 ) "1 Viy Q.. Zo. Using the same
methods as for (A.2) and (A.3), respectively, we obtain

T71%1Q21 Zy = K{dBH-?’ By, F(i+2)27 [07 F(i+2)1]a OL (A.4)

T_IVi/Qzl Voo = Z(i+2)4 Ss. (A.5)

The required result is obtained by using (A.2), (A.4) and (A.5).
(iii) Write V/EV; = V/Q:,V; = V/Qz, Vaz(V32Qz, Va2) ™1 V5pQz, Vi As for (A.3),

TV Qa0 Vs = Yoy (j42) - (A.6)
Then (A.3), (A.5) and (A.6) yields the stated result.
(iv) We have V/FV; = V!Q,, Vi — V! Q,, Yo1 (Y41 Qz, Yo1) ~1Y4; Q., V;. Furthermore,
we deduce from (A.1), (A.4) and (A.5)

T W/Q..Yn = T 'V/Q.,(Zollyy + Var)
= K[dBii2,B2,T(12)2, [0, L(iy2)1), 021 + X i40)a 51 (A7)
and
T72Y3,Q5 Yo1 = (ZoTloy + Vo1)' Q1 (Zolay + V1) = 1Ty K [Ba, B2,0,0,0]Tla;. (A.8)
Therefore, the stated result follows from (A.6), (A.7) and (A.8).
(v) Write V/FZy = V!Q,, Zo — V!Q.,Y21(Y9,Q.,Y21) 1Y}, Q., Z>. But, due to
(A.1) and (A.4),
T 2Y3,Qs, Zo = T 2(ZoTla1 + Va1)'Qs, Zo = Ty, K[Ba, Bs,0,0,0]. (A.9)

Using (A.4), (A.7), (A.8) and (A.9) provides the desired result.
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Proof of Theorem 1 (i) Using equation (2.9); and the relations v = V; — V53 and
S15{ + 5255 = I gives
31 = (Y2,1EY21)_1YQ/1E91
= 01+ (Y5, EYa21)"'Y3, EY22 35 + (Yo, EY21) ™' Y5, EZ1y
+ (Y51 EY21) "' Y3 E(Vi — Va)

= By + (Y31 EY21) " 'Y51 EV2S2556 + (Y1 EYa1) ™Yo, E(Vi — Vaf3)
= Py + (Y51 BYa1) Y3 EVa(825; — 1) + (Y3, EYa21) Y3 EVA
=y — (V) EY2)) 'Y EVar By + (Y3 EYar) V3, EVA. (A.10)
Thus,

T(B1 — B1) = —(T *Y3 EYa1) T Y3, EVin By + (T Y EYa1) 'T Y3, EVA.

But parts (i), (ii) and (iii) of Lemma A yields

T71Y'211EYP21 = TﬁQ(ZQHm +‘/§1)/E(Z2H21+‘/21) = HélK[Bg, B, 0,0, O}Hgl, (A.ll)

Ty EVay = T (Zollgy + Var) EVaS:

= Tl { K |Bz,dB1,T21,0, (°,)]
- K[Bm dBy,T'24,0, (r?zlﬂ (S3 344 S2)7"5; 244} S1
+ 5 {244 — 14 52(S3 04 S1) 1S5 244} S1 (A.12)

and
T 'YHEVi = T HZoIly + Var)'EV4

= Tl {K |B2,dB3,33,0, (\°))]

- K[BQ, dBy,T'24,0, (1“?4>} (S3301452) 1S5 243}
+ S{{ 43 — 240 5253 Taa S2) 155 Yz} (A.13)

Therefore, the result follows from (A.11), (A.12) and (A.13).
(ii) We obtain Y9, F'Yay = Vi, F'Vas and Yo, F'y; = Vi, F'y; by using equation (2.11).
Thus,
By = (V3o FVas) V3 F ZoTlon By + (Vao FVas) ' Vay FVA. (A.14)

for which the relation $1.5] + 5255 = I is used as for (A.10). Now applying parts (iv)
and (v) of Lemma A to (A.14) provides the desired result in a straightforward way.
(iii) Because Rim =7y,

_ RUZZ) 2y, — RUZZ0) 2 Yar, Vi [ . ]
2

= + RI(Z.21) 21 Zamy + R{(Z120) ' Z1Vi — R{(Z120) ' 21 Ya1 By
— R{(Z12:) ' Z1Ya1 (81 — B1) — R{(Z121) ' Z1 Y23y
= v, +a1 +ay —az —aq — as, say. (A.15)
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But using R{II; = 0 and 7y = II9;3; gives

a1 — a3 = —R{(Z1Z1) ' Z1Va1 By, (A.16)
ay = {R{(Z2121)7" 2 ZoTlor + R{(Z1 Z1) " Z{ Va1 }(B1 — B1), (A.17)
as = RI(Z,2,) ™' 7! Vaa Bs. (A.18)

Plugging (A.16), (A.17), (A.18) into (A.15) and standardizing by Dy for asymptotic
analysis, we obtain

T35, —y1) = —TY2R{ D7 (D' 212, D7) { D7 20 Vin 3y — DI 21 Vi+
+ D T2 2Ty + ZLVor)T(B, — B) + D' Z{Vas By}
= —TY2R{ D kr = —R} k1 — Ripdiag(T ™, ..., T7P)kor
— T7Y2R{4kar, (A.19)
1 p ki—p-1 1 p ki—p-1
where R{ = [R{;,R{y, Rj3 | k11 and K/, = [k{p,ksp, k4p | 1. Now applying the
weak convergence results in Phillips (1988) yields the stated result.
(iv) Replacing Dy by T and deleting T%/2 in (A.19) and applying the weak con-
vergence results in Phillips (1988) provides the desired result.

(v) Expressing 9, by employing the same methods as for (A.15) and using the
weak convergence results in Phillips (1988) gives

¥y = Rym — Ryl By — Ry(Z120) ™' 21 Vaa By + R(Z1 20) ' 21
— [R§TLyy + R§(Z1 Z1) " Z1 200y + RS(Z120) " Z1Vin) (By — By)
— [RiILio + RY(Z1 Z0) 1 21 Vo) By
= Rym — Ryl 13, — RiTl19bs (A.20)

as required.

Proof of Corollary 1 (i) Delete Sy and put IIz; = 0 in part (ii) of Theorem 1.
Then, the required result follows.

(ii) This follows from part (iii) of Theorem 1 once Sy and the terms associated
with 3, are deleted.

(iii) This follows from part (iv) of Theorem 1 as in part (iii).

(iv) Replacing IIy5 with II; and deleting the term involving 3, in (A.21) gives the
wanted result.

Proof of Corollary 2 (i) Delete terms involving Ss, erase S1 and replace I12; and
B, with IIs and 3, respectively, in part (i) of Theorem 1. Then, the result follows.
(i) Write
5 (s —1 —1) 1
Dr(¥ —v) = =DrILT™ T (B - B) + (DT AVAR L™ )
x{=D7'Z, Zoly(B — B) — D7 Z\ Vo + D7 Ziiy. (A.21)
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Let T(3—0) = by. Then DpILT-YT(3—3) = diag[T—V2, TV/2, . TY2tp=1 1 1] by.
Therefore, X §
BrDrILT'T(3 - B) = diag[T /2,1, ..., 1|Tibr,

where By = diag[l, 7 V2,.., 7~ 1/2tp=1) 1 1]. But ByDy = Cp and by = b,
which implies

Crlly (B — ) = diag[0, 1, ..., 1]T1;b. (A.22)

Furthermore,
Br — diag[1,0,...,0,1,...,1]. (A.23)

Now we obtain the required result from (A.21), (A.22), and (A.23) by applying the
weak convergence results in Phillips (1988).

(iii) Replacing Dy with 7" in (A.21) and applying the weak convergence results
in Phillips (1988) gives the required result.

Lemma B Suppose that Assumptions 1, 2, and 3 hold. Then, for i,j =1 or 2,

(i) T223GZ = J {K[Bz, B5,0,0,0], K | By, dBu, T2,0, (9, )]},
(ii) T-V/GZy = M {K[dBHQ, Ba,T(i12)2, [0, T i1, 0], K[B2, B2,0,0,0],
K|Bs,dBs, 1,0, ()]},
(iii) V]GV; = Op(1),
(iv) V{HV; = W{K[dBi12, B2, i12)2, 0, Ts2201], 0], K [Ba, Bs,0,0,0],
K[dBjy2, B2, T (122, [0, Tj521], 0]},
(v) T-'V/HZ5 = N{K[dBi+2, Bs,T;12)2, [0, (i 12, 0], K[Bz, B2,0,0,0]},

Theorem 1; and J|[-,-], M[-,-,-], W[-,-,-] and N[-,-] are defined in Theorem 2.

Proof (i) Since L = Q,, Z2(Z5Q., Z2) "1 Z5Q.,,

ZéLZQ = ZéQzl Zoa, (A.24)
and
VILV; = V/Q, Z2(25Q, Z2) ' 25Q:, V. (A.26)

Now, writing Z4GZy = ZLLZy — Z5LVas(VayLVas) V4oL Z5 and using (A.1) and
(A.2) gives the stated result.

(i) We may write V/GZy = V/LZy — V! LVas(ViyLVas)~\ViyLZ. Rewriting this
by using (A.25) and (A.26) and applying (A.1), (A.2), and (A.4) gives the wanted
the result.

(iii) Using (A.1) and (A.4), we find V/LV; = Op(1). But V/GV; = V/LV; —
V! LVa2(V3o LVag) ~1V3, LV;, from which the result follows.
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" (1\;) Beca(lise V;’LVJ' = O0p(1) and V;LZs = O,(T), we may write by using (A.24),
25), and (A.26

VZHVJ' = V;,QmZQ(ZéQaZQ)_lZéQmVj - [VZQQZQHQI + Op(l)}
X [ /21Z§Q21Z2H21 + Op(T)]_l[ /21Z§QZ1VJ' + Op(l)]-

Now applying (A.1) and (A.4) gives the desired result.
(v) As in part (iv), write

ViHZy = V{Qz 2 = [V Q2 ZoTlyy + Op(1)] [y Z2Q:, Zolla1 + Op(T)] ™
x [y Z5Qz, Z2 + Op(T))
and use (A.1) and (A.4). Then, the desired result follows.

Proof of Theorem 2 (i) As for (A.10), we have
Bl =P - (Y2/1GY21)_1Yz,1GV2151 + (Y2,1GY21)_1Y2/1GVI-
But due to parts (i), (ii) and (iii) of Lemma B

T72Y3 GYn = T7*(Zollay + Va1)'G(Zollgy + Var) = T 11y, Z5G ZoT1a1 + 0p(1)
= Iy J {K[BQ,BQ, 0,0,0},K[Bg,d34,r24,0, (FO )} } M1,  (A.27)

14

TY3,GVay = T Y ZoTloy + Va1) GVaSh = T Ty, Z5GVa St + 0,(1)
= élﬂf {K[dB;l, BQ, F42, [O, F41], 0} 5 K[BQ, BQ, O, O, O},

K|[Ba,dBa,Ta,0, (i°)] }' S, (A.28)
and
T Y5LGVi = T Y (ZoTlyy + Vo )'GVy = T Iy, Z4GV; + 0,(1)
= II5y M {K|[dBs3, B2,T'32,[0,T'31], 0], K[B2, Bs,0,0,0],
K [B2, dB1,T24,0, (,2,)] }' . (A.29)
The result follows from (A.27), (A.28), and (A.29).
(ii) We have as for (A.14) By = (Vao HVao) Vo H ZoXla1 31 + (Vo H Vo) 1 Viy HVA.
Thus, the stated result follows from parts (iv) and (v) of Lemma B.
(iii) Using (A.19), we have
T3y = m) = —R{T"*Dy (D' 22,01 {17 D 24 Vin 8y — T7' Dy 21V
+ D7 T™%(Z21 Zo10oy + Z3Vo1)T(By — By) + D%IZiVmT_le}
—R{T'?Dy! (D7 212, D) ' Dy Z1 Ve T By + 0p(1)
= —R{TY2 D' \r + 0y(1), say. (A.30)
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1 p ki—p-1 1 p  ki—p—1
Letting Ry = [R{y, Riy, Rig | ki1 and Xp = [Njg, Ayp, Ay | 1, we have
R{TY D"\ = R{y\ir + Ripdiag(T™, ..., T7P) Aoy + RighgrT~1/?

= R M7 + 0p(1). (A.31)

The stated result is obtained from (A.30) and (A.31).
(iv) Because

M= = —RI(Z120) " HZ Ve By — Z1Vi + (2120001 + Z3Var ) (By — B1) + Z1Va2 32}
= —R{(T72Z12,) ' T Z1 Voo T By + 0,(1), (A.32)

the required result follows in a straightforward way.
(v) We obtain by using (A.20

T, = —[RyThy + RY(Z121) ™" 23 Vaa) T~ By + 0p(1) = —R4TT1bs,
as required.

Proof of Corollary 3 (i) We have 3 = (YJLY>)"'YJLy;. But because Iy = 0
and LZ; = 0, 3 = (VJLV,)"'V4LVi. Now, using (A.26), (A.1) and (A.4) gives the
required result.

(i1) As for (A.32), we may write

Y1 — 1 = RUZ1Z0) T ZVi — RY(Z120) 7 Z{ Va3 (A.33)

But as in (A.19), TV2(3; — ;) = Riyy717 + 0,(1) where 717 is the first element of
the vector (D7 Zy DY) DA Zi Vi — (D Z) 2, DY)t D3 Z; Va3, which yields
the stated result.

(iii) This follows straightforwardly from (A.33).

(iv) Because

Vo = Rym + Ry(Z121) 7' Z1Vi — Ry B — Ry(Z4Z1) ™' Z1 Va3
= Rymi — R3IL B + 0p(1),
the required result follows.
Proof of Corollary 4 (i) Replace Y21, Vo1, G and (; with Y3, Vi, L, and f3,
respectively, in the proof of part (i) of Theorem 2, and apply the weak convergence
results in Phillips (1988) as in (A.27), (A.28), and (A.29). Then, the result follows.

Parts (ii), (iii) follow in exactly the same way as parts (ii) and (iii) of Corollary
2.

Proof of Theorem 3 Assume Zig = 0, Zsg = 0 and Voo = 0 for simplicity. This
brings no loss of generality for the asymptotic results we are to derive. Write

apap—ors —a = (X'X) N X'u — X'AX T3 V), — TEi) (A.34)
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and let

0

_ | W _ _ |1t 1 N bl 1
Pt = lAXt‘| —Jwt+ OA‘/QI‘/ —at+bt7 ag = [agt‘|n+k1 ) bt_ |})2t n—}—kf

where w; and J are defined in Assumption 3 and Theorem 3, respectively. Assumption
3 gives
Ty =TS a4 0, (1) = TB(r) = D(r),  (A35)

where E[D(r)D(r)] = JQJ = & = [i; iéﬂ' Using (A.35), we obtain

T2X'X =T 2L 87288 + 0,(1) = [} Da(r)Do(r) dr, (A.36)

T'X'v = T VS SPar +T X1, 572 (Vie — 5'Vay)

= [ Da(r)dDy (1) + JoTJ{ + lZ‘B 2l ] (A.37)

where S¥ = !, x;. Furthermore, ¥ = 27 f,,,(0) = 27 f44(0) = ®, because f3,;(0) = 0
and

27 foup (0 Z E(agl}) = [0, JE(wovh,,) — JE(wovh_..),0] = 0.

t=—00

Note that the latter equality holds due to the existence of the spectral density matrix
fuww(0) = Q/(27) assumed in Assumption 3. Therefore,

UL o, (A.38)
Now, write

X' AX‘I’221 o =T"" Zt 1S a2t‘11221 /12 + T~ Zt 1 S720y @521 V),
+77'y, S a2t\1122 lo + T7E S SP2bh, Wog W,
=dy+dy+ds +d4, say.

Then, Assumption 3, (A.35) and (A.38) yield

dy = [§ Da(r)dDa(r) @5 &'y + JoT Jy05 &)y, (A.39)
dy = T ' YL, S Awi K0y, 0, =
= JoT™ (wTST - Zt:l wtwt—l)K,‘P§21 A/ —N2) K ‘1’221 12, (A.40)
dy =T 'K Y wawy JyWoy Wiy 5 K Y2 J] P55 @1 (A.41)
and
dy =T 'K X wiAw KU Wiy B K(S -3 ) K'95, 0, (A.42)
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for which we used the relations ag; = JoAw; and by = Kw;. Note that K is defined
in Theorem 3. Moreover,

Eoi L Hoy — Bgp oyt @y = JoTJ] — JoDJyd0 B, (A.43)
where Ey = [Za1,E29]. Plugging (A.36)—(A.37) and (A.39)—(A.43) into (A.34) gives

the required result.

Proof of Theorem 4 Assume Z1g = 0, Zyg = 0 and V5y = 0 for simplicity as in the
proof of Theorem 3. Write
dpprosrs — = (X'P.X) "N (X' Pu — X'AX U U, — TEyi). (A.44)
Let Ba(r) = [By(r), Ba(r)] and Z, = [Z!,,,Z},)'. Then, using X; = Jo17, + [Vg}
where Jo; is the first (k1 + k2) columns of J5 in Theorem 3, we obtain
-1
T2X'PX = {JaT L 22 +0,(V} (T2 2L, 202

AT (1 Z1Z{Ja1 + 0p(1)}
= Jo1 [§ Ba(r)Ba(r)'drJy = [ Da(r)Da(r) dr, (A.45)

-1
X' P = {Jn T S0 22+ 0,(DH T2 L1 220) (T S Zowy T}
= Jo1 [ Ba(r)dB(r)'J{ + JoUJ{ = [§ Da(r)dDy(r)dr + JoTJ{, (A.46)

N N —1
T X' PAAX Y, VY = {JanT 2 ) Z:Z; + 0p(1)} (T_2 Y1 ZtZL{)
(s, thiJé)‘i’ﬁl [ 12
= Jo1 [ Ba(r)dBa(r)' J3; @og @y + JoTJj 055 @),
= [ Da(r)dDa(r) gt By + JoT Ty Dyt @, (A.47)

Plugging (A.43) and (A.45)—(A.47) into (A.44) gives the desired result.
Proof of Corollary 5 : This is an immediate consequence of Theorem 4.

Proof of Theorem 5 This theorem can be proved by using the same methods as in
Saikkonen (1991) which uses the methods of Berk (1974), Lewis and Reinsel (1985)
and Said and Dickey (1984). Therefore, only a brief outline will be given here. As in
Saikkonen (1991, p.21), we have under the given assumptions

T(&pr—oLs — @) = (T_2 Z?;kﬁl wtxg)[T_l Z?:?ﬁu zi(er — B'ear)] + op(1).

But

T ST wrlen — Blew) = 3 Da(r)dD(r) + | 2~ 2mn St a0
(A.48)
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Note that the spectral density of e;; — (3’es; at the zero frequency is 27 times
Dy — <I>12<I>2_21<I>21 from Assumption 4. Now the required result follows from (A.36)
and (A.48).

Proof of Theorem 6 As in the proof of Theorem 5, we have by using the same
methods as in Saikkonen (1991)

T(Qasrs — ) = [{T_Q Sk Xz + Op(l)} {T_2 S 27+ Op(l)}
-1
X {T—2 Z;‘:k’il Z: Xy + op(l)}] {T—2 Z%F;k’il X Z) + op(l)}
-1
AT 2L 22+ 0,1} T SE | Zulew — Bea) + 0p(1).
Therefore, following the same line of argument as in (A.45), (A.46), and (A.48) yields

the stated result.

Proof of Corollary 6 This follows from Theorem 6.
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