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0. ABSTRACT

The current practice for determining the number of cointegrating vectors, or the
cointegrating rank, in a vector autoregression (VAR) requires the investigator to per-
form a sequence of cointegration tests. However, as was shown in Johansen (1992),
this type of sequential procedure does not lead to consistent estimation of the coin-
tegrating rank. Moreover, these methods take as given the correct specification of
the lag order of the VAR, though in actual applications the true lag length is rarely
known, Simulation studies by Toda and Phillips (1994) and Chao (1993), on the other
hand, have shown that test performance of these procedures can be adversely affected
by lag misspecification.

This paper addresses these issues by extending the analysis of Phillips and Ploberger
(1996) on the Posterior Information Criterion (PIC) to a partially nonstationary vec-
tor autoregressive process with reduced rank structure. This extension allows lag
length and cointegrating rank to be jointly selected by the criterion, and it leads to
the consistent estimation of both. In addition, we also evaluate the finite sample
performance of PIC relative to existing model selection procedures, BIC and AIC,
through a Monte Carlo study. Results here show PIC to perform at least as well and
sometimes better than the other two methods in all the cases examined.



1. INTRODUCTION

Since the pathbreaking work of Engle and Granger (1987), research in cointegra-
tion has become a rapidly expanding industry. Much of the effort has been directed
at procedures which will enable the empirical investigator to determine the number
of cointegrating vectors, or the cointegrating rank, in a general vector autoregressive
process. Toward this end, several tests of cointegration have been developed; a nonex-
haustive list includes the likelihood ratio tests of Johansen (1988, 1991) and Reinsel
and Ahn (1992) and the Stock and Watson (1988) tests for common trends. Most
of these procedures are designed to test the null hypothesis that the cointegrating
rank is less than or equal to some preassigned value 7 against the alternative that
the cointegrated rank is greater than r. Hence, estimating the number of cointegrat-
ing relations requires performing a sequence of such tests for different values of 7.
One such sequential procedure has recently been proposed by Johansen (1992) who
recommends testing from the subhypothesis 7 = 0 onwards.

The sequential procedure, however, does not yield a consistent estimator of the
cointegrating rank. As was shown in the Johansen paper (see Theorem 2 of Johansen,
1992), the probability of underestimating the rank under the Johansen procedure goes
to zero asymptotically, but the probability of overestimation remains positive in the
limit and is constrained by the size of the test. Secondly, this type of procedure
assumes that the correct lag length of the vector autoregressive (VAR) process is
known. In actual empirical situations, this is almost never the case. Moreover,
simulation studies by Toda and Phillips (1994) and Chao (1993) have shown that test
performance of these procedures can be adversely affected by lag misspecification.

The present paper offers a fresh perspective on the problem of cointegrating rank
determination. We seek to address the issues raised above by reconsidering this prob-
lem from the viewpoint of model selection. The Posterior Information Criterion (PIC)
put forth recently by Phillips and Ploberger (1994, 1996) is especially useful in this
endeavor. Here, we extend the Phillips—Ploberger analysis to a VAR process with
reduced rank cointegration structure. This extension enables us to jointly select the
lag length and the cointegrating rank in a vector error—correction model. Our crite-
rion has the additional advantage that it carries an implicit penalty function which
symmetrizes the costs of under- and over-parameterization. As a result, consistent
estimation of both the cointegrating rank and the VAR lag length are achieved by
this approach.

A second objective of this paper is to conduct a Monte Carlo study comparing
our criterion to the alternative model selection procedures BIC and AIC. Our results
show PIC to perform at least as well and sometimes better than both BIC and AIC in
all the cases studied. A likely explanation for the good sampling performance of the
PIC procedure is that its penalty function takes into account not only the number
of estimated parameters in the model but also the nonstationarity of the regressors
associated with some of these parameters.



The paper proceeds as follows. In Section 2, we discuss the model, the data
generating process and the associated assumptions. Section 3 is divided into two
subsections. In Subsection 3(a), we describe our model selection procedure PIC and
show that estimators of cointegrating rank and lag length which emerge from our
procedure are weakly consistent. Section 4 reports a Monte Carlo investigation com-
paring PIC with alternative model selection procedures. Some concluding thoughts
are offered in Section 5, and all proofs and technical material are provided in the
appendices.

2. MODEL AND ASSUMPTIONS
Consider the m—dimensional vector autoregressive process of (p + 1) order:
Vi =J(L)Y-1+e, (1)

where J(L) = Y2t J;L*~1. We initialize the process denoted by (1) at ¢t = —p, ..., 0.
Since the values {Yp, Y_1, ..., Y_p} do not affect our subsequent asymptotic analysis,
we allow them to be any random vector including constants. Alternatively, equation
(1) can be written in the vector error-correction model (VECM) representation as

AYt::J‘(-L)A}/t—l'*'met—l4'€t 3 (2)
where J, = J(1) — Iy and J*(L) = Y-0_, J; L1 with J; = — Y021 J, with (i =
1, ..., p). Moreover, we assume the following conditions:

(i) det[l, — J(L)L] = O implies that either L =1 or |L| > 1.

i) J, =T,A., where ', and A, are mxr matrices of full column rank 7, 0 < 7 < m.
T
(If r = 0, we take ['g = Ag = 0, and if 7 = m, we take ', = J, and A, = I,.)

(i) I, .(J*(1) — Im)AL,r is nonsingular for 0 < 7 < m, where '; , and A, , are
m X (m —r) matrices of full column rank m —r such that I, I, = 0= A4/ A,.
(If r = 0, we take Flo=A10= In,.)

(iv) {e}T =1iid N(0,)

These conditions allow for nonstationary in the sense that the characteristic poly-
nomial of the VAR model described by (1) may have roots on the unit circle. Con-
dition (i), however, explicitly excludes explosive processes from our consideration.
These conditions also allow for cointegration so that certain linear combinations of
Y; may result in I(0) processes. Condition (ii) specifies the rank of the cointegration
space (or the cointegrating rank) to be 7. The m x r matrix A, in condition (ii) is
known as the cointegrating matrix and its columns form a basis for the cointegra-
tion space. Note that without further restrictions, I, and A, in condition (ii) are
unidentified. To achieve identification, we follow Ahn and Reinsel (1990) in selecting
a normalized parameterization in which A. = [I,, A.]. Condition (iii) ensures the
application of the Granger representation theorem so that AY; is stationary and has
a Wold representation.



Taken together, condition (i)-(iii) imply that if 7 < m, then {¥;} is an integrated
process of order one, or an I(1) process, with m — 7 common unit root compo-
nents. Moreover, if 7 > 0, then the number of common unit root components in
the multivariate system (1) is less than m, the number of constituent univariate I(1)
processes in Y;, as a result of cointegration. Thus, for 0 < 7 < m, we can isolate the
I(0) and I(1) components of Y; by defining the matrix A, = [A] ,, A-] and writing
AY: = (4] ,Y), (A Y)]. Note that here AY; is I(0) and has a moving average
representation which we shall give in Appendix A.2 of this paper. A'L,TYt, on the
other hand, is I(1) and represents the m — 7 common unit root components.

Finally, the normality condition (iv) allows us to write down the conditional
likelihood function for the model given in (2) as

T
" _Im -z 1 —
Lr(Tr, Ary J3, oy, @) = (20) 7 F10] 7 F exp{—5 Y 107 ec), (3)
t=1

where g, = AY; — J*(L)AY;-1 — T+ AY;—1 as can be seen from expression (2). The
likelihood function (3) fully specifies, up to the unknown parameters

(Tr, Ar, JT, -y Jp, Q), a VECM with cointegrating rank 7 and order of lagged dif-
ferences p, which we shall denote with the symbol My ,. Let 6p, =

(vec(A,)', vec(T';)', vec(J}), ..., vec(J3)', w')’, where w is the m(m+1)/2x 1 vector of
nonredundant elements of Q2. We often find it convenient to partition fp» = (6}, ., w' ),
and we assume that 6,, belongs to the parameter space ©,, = Or, x (—)zr x © Jp X

) Jp X Ou =8, X ©,, where O, is a subset of R@mr—r24miptim(m+1)) gch
that [y, Ay, J7, ..., J, satisfy conditions (i)-(iii), and note that the dimension of ©y,
depends on the value of p and .

Our task in this paper is to select a VECM with particular p and r, say (p, 7), from
amongst a class of these models (Mp, : 7 =0,...,m; p=0,...,P). For this purpose, we
shall assume that there exist 7% = (0 < 7° < m) and p° = (0 < p°® < ) corresponding
to a unique “true” and “minimal” model Mo .o with conditional likelihood function
L1(By0, 0) which depends on the parameter vector 6,0 .0 € ©po 0. In addition, as
is common in parametric frameworks, we assume that the data generating process is
an element of the set of structures defined by the model Mo 0. Thus, let 920,70 =
(vec(T'%), vec(-f—lgo)’ , vec(J30)', vec(J20)', w®)" be the true value of the parameter
00 0. Then the data generating process is of the form (2) where the condition (i)-
(iv) are satisfied with p = p° and 7 = 70 and where the parameters of the model take
on the true value 920, ,0-

A word on notation. In what follows, welet Y = [V, ..., Y7|', Y_1 = [Yo, ..., Yr—1]
and W(p) = [Wi(p),..., Wr(p)]' with Wy (p) = [AY,_,,..., AY/ ). We shall often
wish to partition W(p) = [W(p), W(p*)], where the submatrices W(p) and W(p*)
contain, respectively, the first mp columns and the last m(p — p) columns of the
T x mp matrix W(p). In addition, F(r) will be used to denote the m x (m —r)
matrix for which F(r)' = [0,Im—,] and M; = It — X(X'X) 71X’ is the projection
onto the orthogonal complement of the range space of X.



3. ORDER SELECTION IN A PARTIALLY NONSTATIONARY VAR

3(a) Posterior Information Criterion and Consistent Order Estimation
Our object is to jointly estimate the cointegrating rank r and the order of lagged
differences of the VECM (2) using the Posterior Information Criterion (PIC) devel-
oped in Phillips and Ploberger (1994, 1996). More specifically, we propose to select

(p,7) as follows:
(B, 7) = argmin PIC(p,) , ()

where

PIC(p,r) = exp {3l (Ju(p,7) ~ PV M Yer (oo, ) - )1} (5)

exp {307 T (0" )W () My, wop W (1) T* (1)}

[0 e WY WEIV2 /107 @ W) W(p)?]

1B, r)(Q7 © Y\ Mgy Y- ) Hp,r) 72 /07 @ V!, My Yo V2]
Here J,(p,7) = (I(p,7), T(p, r)i(p, 7)) where ['(p, ) and i(p, T) are the Gaussian
maximum likelihood estimators of the reduced rank parameters I' and A when the
cointegrating rank is assumed to be 7 and the order of lagged differences is assumed to
be p. These estimators are obtained from a Newton-Raphson procedure (A.4) which
we describe in Appendix A.1. We let J.(p) = AY' My ) Y-1(Y.; Mw ) Y-1)"! and
Jo(p') = AY' My, wopW (@ )W (p*) My_, we)W(p*))~! denote, respectively,
the least square estimator of J, in a VECM of lag order p and the least square esti-
mator of the last m(p — p) columns of J* (or the coefficients of the last p — p lagged
differences) in a VECM of lag order . In addition, O = AY’ My_,, we)AY/T is the
maximum likelihood estimator of 2 in the case where the model (2) has the highest
possible order in our setup, i.e., 7 = m and p = p; and the (2mr — 72) x m? matrix
H(p, ) is defined as
_[®pryeF@)

(I ® (I, A(p, 7))

While the criterion (5) appears complicated, it has a simple intuitive interpreta-
tion as a combination of likelihood ratio statistics, which test the fit of reduced rank
model (2), and penalty terms, which reflect the complexity of the model. To see this,
note first that we have written expression (5) as the product of four terms. The trace
expression in the exponent of the first term, i.e.

Q7 (Ju(p,7) = Ju(p)Y s My Y-1(Ja(p,7) — Ju(p))) (™

H(p,) (6)

is, in fact, the likelihood ratio statistics for testing the null hypothesis that the coin-
tegrating rank equals r against the general alternative that the rank is m (cf. Reinsel
and Ahn (1992)). Likewise, the trace expression in the exponent of the second term,
i.e.,

Q7T (YW (') My, wenW (#°) T (7)) (8)

4



can be easily seen to be the likelihood ratio statistic for testing the null hypothesis
that the VECM (2) has p lags against the alternative that it has p > p lags. More-
over, the third and the fourth terms are terms which, ceteris paribus, penalize models
for having higher lag order and/or greater cointegrating rank. We shall discuss these
penalty terms in more detail in Remarks 3.2 (i)-(ii) below but note for the time being
that, unlike AIC, BIC and other information criteria, whose penalty function depends
on a simple parameter count, the penalty terms of PIC compare the determinant of
the Fisher information matrix of the larger model with that of the smaller model.
In this sense, it is closely related to the Fisher Information Criterion (FIC), which
was independently developed and analyzed for the univariate case by Wei (1992).
Both Wei (1992) and Phillips and Ploberger (1994) have argued that this penalty
function, which uses the redundant information introduced by a spurious regressor to
penalize excess parameterization, has the particular desirable feature that, in mak-
ing model comparisons, it takes into consideration not only the number of regressors
included in the alternative models but also the magnitude of the regressors and the
sample information accumulated in the data about the models’ parameters. Hence,
one would expect the criterion (5) to perform well when applied to partially nonsta-
tionary VAR’s, as such models involve I(1) and I(0) components of vastly different
magnitudes.

In the next subsection, we give results showing that the PIC criterion (5) can be
derived using a combination of Bayesian and classical ideas. Our main justification for
proposing PIC is based not on Bayesian foundational arguments but on the criterion’s
good sampling properties, both in small and large samples, and the fact that it delivers
jointly consistent estimates of cointegrating rank and VAR lag order. The Monte
Carlo simulation results are presented in Section 4. Below is a formal statement of
the weak consistency property of PIC in joint order selection of p and .

3.1 THEOREM Suppose the true data generating process belongs to the set of
structures defined by the model Mo .o of the form (2) and satisfies assumptions (i)-
(iv), with lag order 0 < p® <P and cointegrating rank 0 < 0 < m. Suppose (p,7) is
selected in accordance with the criterion (4). Then,

P °
(A> — ( 0) in probability as T — oo0. O

3.2 REMARKS

(i) To provide some intuition on the weak consistency of PIC, take the special
case where, under the null hypothesis, p = p and 7 < 7 = m. First, notice that in
this case expression (5) reduces to

PIC(p,7) = 9)
\B(5,m)( Q7 @Y My Y-1)HE, )20 @ Y. My Y-1|7V/?

xexp {3tr [ (Ju(P.7) — Fe () Y1 M) V-1 (o (B 7) = L (@) ]} -

5



Taking the logarithm of (9) and multiplying by 2, we have

2In PIC(p, 1) (10)
= [0 (B r) — L@ Mw Yo (@) - ()]
+ | HF, )7 @ Y My Y-1) BB, 7)) /107 @ Yy My Yoal] -

Now, observe that the first term is simply the likelihood ratio statistic for testing the
null hypothesis that the cointegrating rank equals 7 against the general alternative
that the rank is m (cf., Reinsel and Ahn (1992)). To analyze the second term, we need
to determine the orders of magnitude of the elements of the matrices that appear in
the determinants in this term. Rotating the regressor space to isolate components of
Y| My, (5 Y-1 of different orders of magnitude (see Phillips, 1988, for details of how
to do this), we find that under the null hypothesis,

IQ—I ® Y—,IMW(ﬁ)Y—ll = Op(szer) (11)

[H@, ) @Y My Y-1)H(p,r)| = O, (TB™ =22y | (12)

Since 2m? —rm — (3mr — 2r?) = 2m? —4dmr +2r2 = 2(m —-r)? > 0 for all 7 <
m, the second term of (10) will be negative for large T" whenever r < m. Hence,
the criterion penalizes the alternative when the null hypothesis is correct. Recall
that for Johansen type sequential procedures, as mentioned in the Introduction, the
probability of overestimation never vanishes, not even in infinite samples. The PIC
procedure corrects for upward bias by imposing a penalty on overparameterization.
Moreover, the penalty does not contribute to a Type II error in the limit because,
being a logarithmic function, it changes more slowly than the likelihood ratio statistic
with an increase in the sample size.

A similar analysis can be carried out for the case where under the null hypothesis
r =7 and p < p. Here, two times the logarithmic transformation of the criterion (5)
reduces to:

2mPIC(p,7) = 1T ("YW (R") Mw e,y W (#")J (")) (13)
+1n[|07 @ W(p) W(p)l/IQ ® W(p) W(p)|
+ln[|Q_l ® Y_’IMW(p)Y_ll/IQ_l ® YilMW(I—,)Y_ll] .
Note that (13) is expressed as the sum of a likelihood ratio statistic, a penalty func-
tion, and a third term which we will show to be insignificant asymptotically. The LR
statistic tests the null hypothesis that the true lag length is p against the alternative

that the lag order is greater than p. The remaining terms can be analyzed by noting
that under the null hypothesis,

71 @ W(p) W(p)| = Op(T™7) . (14)

Q71 @ W (p) W (p)] = O(T™?) (15)



and
1071 @Y My Youl /|10 @ Y.y My Yo (16)
= 07 (T Y ;M Y1l /|0 @ (T™HY! My Y-1| 2 1.

Hence, the last term converges in probability to zero. The second term, on the other
hand, converges in probability to —oo, thus, eliminating the possibility of committing
a Type I error in the limit.

In the general case where r # 7 and p # p, both lag and rank overspecification
will be penalized. This modification of the traditional likelihood ratio test is what
drives the consistency result in Theorem 3.1.

(ii) We can also find an approximation for our criterion which facilitates a direct
comparison of its penalty function with that of BIC. First rewrite criterion (5) in the
equivalent form

PIC(p,r) = exp{3trl7}(AY = Yo1d(p, 7)) Mw(n (&Y = Yo dulp,r) )} (17)
exp {36071 (AY - Y1 J.(P)) Mws) (AY — Yo J(9))]}
[0 e WE)WE)? /107 @ W(EY W ()2
[ (p, ) © Y\ My Y-1)H (p, ) V2 /107! @ Y.y My Yo |2

Now, multiply the logarithmic transformation of (17) by 2/T and ignoring those
terms that do not involve p and r, we see that minimizing (17) with respect to p and
r is identical to minimizing

m|Q ' @W(E)Wp)| + 2 |H(p, r)( Q' @Y\ My e Y1 H(p,r)'| + {710y,
(18)

1
T

where (O, = [(AY =Y_1Ju(p, 7)) Mw () (AY =Y_1J.(p,7)")]/T. To rewrite tr[Q-10,,]
in a form closer to BIC, we make use of the first-order Taylor expansion:

0 |Qp r| ~ In|Qf + tr[Q (O, — Q)]
so that minimizing (18) is seen to be asymptotically equivalent to minimizing
I | - |+ In |7 @W (p) W (p)|+ 7 In | H (p, 7)(Q ' @Y. My Y-1) H(p, 7)'| . (19)

Finally, in light of (12) and (14) of the last Remark, an approximation to (19) that
takes into account the orders of magnitude of the data matrices as T — oo (without
characterizing their partially random limit) is:

In|Qyp,| + & InT™P 4 L 1n Prm=r)tm) (20)
= ||+ (m%p+2r(m—r) + mr)FInT .

We can compare (20) to the BIC criterion
BIC(p,7) = n |y .| + (m*p +1(m — ) + mr)%InT (21)

7



given in Phillips (1993) for VECM’s. We see that BIC penalizes all parameters in the
same way, while PIC attaches twice as great a penalty to the 7(m — r) parameters
of the cointegrating matrix than it does the parameters associated with stationary
regressors. Hence, the PIC criterion takes into account not only the number of param-
eters but also the potential rates of convergence of the estimators of these parameters.
As Wei (1992) pointed out, the inclusion of excess nonstationary regressors should be
more heavily penalized as it leads to a greater increase in prediction error than over-
parameterization with respect to stationary regressors when the inclusion of these
regressors is incorrect.

3(b) A Partially Bayesian Interpretation of PIC ‘

The formula for the criterion (5) can be derived using a combination of Bayesian
and frequentist ideas. Let Lr(6p) be the likelihood function of the model My . as
described in Section 2, and note that Lr(fp, ) has the form given by expression (3).
Let 0, be as defined in Section 2 and let 7, -(6,,) be a (possibly improper) prior
density on @, ,. Then, PIC is based on the mixture density

M (M, |Q,Y) = /e (8,,) L6, ,, )dd,, (22)

=P

In the special case where {2 is known and the prior density 7(8,, ) is proper, expression
(22) is, in fact, proportional to the posterior probability of M, and ratios of this
integral can be used to test hypotheses within the traditional Bayesian framework
of posterior odds. In practice, of course, 2 is never known and the conventional
Bayesian approach is to define a joint prior over §,, and {2 and to integrate with
respect to both. Thus, expression (22) highlights two ways in which our approach
departs from Bayesian inference based on posterior odds. First, our treatment of the
nuisance parameter {2 is classical in the sense that we estimate it using a consistent
estimator (to be discussed more fully below) and conduct inference conditioned on
this estimate. Second, in the actual derivation of our criterion, we adopt an improper
uniform prior for 8, ., and, in consequence, the mixture (22) defines a o-finite measure
rather than a proper probability measure, as in Phillips and Ploberger (1996). We do
not see these deviations from the Bayesian posterior odds paradigm as invalidating
our approach, which has its own asymptotic justification. Moreover, we have found
that the sampling performance of our criterion is better when we condition on a
consistent estimate of Q (c.f. the results and discussion in Phillips, 1995, regarding
this treatment of the scale parameter in the univariate case). Further, in many
practical applications, it is difficult to justify the imposition of any particular proper
prior density on 8, ., especially in situations where prior knowledge of cointegrating
rank and lag length is very limited.

To find an explicit form for (22), note that the nonlinear reduced rank restriction
J. = ' A, resulting from cointegration precludes exact computation of the integral
(22) in the cases where 0 < 7 < m. We therefore develop an asymptotic approxima-

tion for the integral (22) using the Laplace’s method.



3.3 THEOREM 1
Let m(8,,,) be a diffuse prior density such that n(8,,) = (2m) " 2(mPpt2mr—r?) g

0, €9y, and suppose that the covariance matriz €2 is known. Then,

HT (MP)TIQ’ Y)

= — 1 in probability as T — oo
HT(MP{"IQ’ Y) ’

where IIT(Mp . |2,Y) is as given in expression (22) and where

fir(M,0,Y) = (2m) FloI T W) W(p)|? (23)

|H(p, ) (7 ® Y/ My Y1) H(p,r) |2
exp {—%tr[Q"I(AY ~ Y1 du(0,7)) My ) (AY — Y_1Jo(p, r)’)]}

with H(p,7) and J.(p,7) = ([(p,7), [(p, r)i(p,r)’) as defined in Section 8(a) above.
D .

Since €2 is usually unknown, we advocate plugging the consistent estimator Q=
AY'My_, wp) O Y/T into expression (23) and selecting the order of lagged differ-
ences p and the cointegrating rank » by minimizing the ratio

M (M|, Y)

Tl ) (24)
7 (Mp-|Q,Y)

This, of course, simply results in the procedure as described by expressions (4) and
(5) in Subsection 3(a) earlier. The result below shows that our plug-in procedure is
asymptotically equivalent to conditioning on a known €2.

3.4 COROLLARY
Suppose that the conditions of Theorem 3.3 hold except that Q is now unknoun
and let Q) = AY’M(Y_],W(I))) AY/T. Then,

I (Mp7 |2 Y) /HT(MIT”F’Q’ Y) — 1 in probability as T — oo

HT(MP,TKL Y) ﬁT(Mp,rlﬁa Y)

where [I7(M, |2, Y) is as defined in expression (22) and where

(N1

Hr(Mp Q,Y) = @) B0 FQeWE) W)
|Bp,r)( Q' @Y. My@Y-1)H(p,r)| "2
exp{—%tr[f)“l(AY Yo1Ju(p, 7)) M) (DY — Yoo Ju(p,r ))]}

(25)

1

again with H (p,7) and J.u(p,7) as defined in Subsection 3(a).



3.5 REMARKS

(i) In the special case where there is sharp prior information about the nuisance
parameter Q (i.e., Q is known a priori), the procedure is similar to a posterior odds
comparison of a family of models indexed by p and r, with the important qualification
that it uses an improper prior on @, ,. v

(ii) It has been known since the discussion in Bartlett (1957) that the use of an
improper diffuse prior in Bayesian tests of models of different dimensions leads to an
arbitrary scale effect in that the height of an improper prior density can be made to
be as large or small as one desires. If we follow this interpretation of our criterion,
the implied diffuse prior has height 7(0y,) = (2#)'%(’"2”2’""’2), which corresponds
to the normalization constant in a multivariate normal distribution of dimension
m?p + 2mr —r2. This height was chosen primarily out of convenience so no rescaling
was needed during the course of the Laplace approximation. It is therefore indeed
subject to the criticism of arbitrariness if one follows a Bayesian interpretation of the
criterion. However, other interpretations, such as prequential odds are possible and
these are discussed at length in Phillips (1996), so that it is not necessary to rely on
the Bayesian approach in justifying a criterion like (24) , especially when we condition
on an initial set of observed data. Further, the choice of constant prior here is, in our
view, no more arbitrary than many proper prior densities used in Bayesian empirical
work applying the posterior odds ratio since those priors are also frequently chosen
out of computational convenience and not because they properly model subjective
prior information.

(iii) In addition, we emphasize that however arbitrary the scale effect of an im-
proper diffuse prior may be, its effect is asymptotically of a lower stochastic order
than both the “likelihood ratio” and the penalty function components of the criterion.
To see this, suppose we set m(0p,) = ¢pr (for 0 < p <P and 0 < r < 7), where the
cp,r’s are positive real constants, then following the same arguments as that employed
in the proofs of Theorem 3.3 and Corollary 3.4, we can obtain the alternative criterion

PIC*(p,7) = K(p,T) X (26)
exp {3l HAY ~ Yordu(p,r)) Mgy (AY - Yor Ju(p,r))]}

exp {~ 1l (AY - Vo1 J.()) M (LY — Y-17.(8))]}

[0 eWEWEI? /107 @WEY W) x

18,7 (@ @ Y.\ My Y1) Hp, ) [V? /107 @V My Y2

where K(p,r) = (qy;/q,y,)(%r)%[m2(5”’)+("‘_’)2]. Note that PIC*(p,r) differs from
PIC(p,r), as given by expression (17), by only the factor K(p,r). Now, arguing as in
Remark 3.2 (ii), we see that minimizing (26) with respect to p and r is (asymptoti-
cally) the same as minimizing

~ 1 ~
[0y, | + 7 I [0 @ W (p) W(p)| (27)

1. - . ~
+71H|H(P, Q' @Y. My Y-1)H(p,7)

10



2In K(p,7)
Sy

Note that the first term of (27) is Op(1). The second and third terms, which are the
primary penalty terms of this criterion, are each Op(InT/T') while the term involving
the factor K(p,r) is only Op(%). Hence, while the height of the prior density will
certainly have an impact in small samples, as the sample size becomes large its effect
will diminish relative to that of the first three terms of our criterion. Note further
that our choice of prior density height, i.e., m(6p;) = cpr = (QW)_%(’"QPH’""_"?), is
tantamount to setting K(p,r) = 1 in expression (27) and, thus, effectively ignoring
the last term.

4. MONTE CARLO RESULTS

This section reports the results of a simulation study comparing the finite sample
performance of PIC with the alternative model selection procedures BIC and AIC in
VAR models with some unit roots. Eight experiments were conducted; in each case
the data generating process is assumed to be a trivariate VAR with Gaussian distur-
bances, and the sample size is T = 150. The precise descriptions of these experiments
are as follows:

Experiment 1
Model Description: VAR(1), r =1
Error-Correction Form: AY; =T A Yi-1 + &

—.01 64 168 1.36
rAy=|{ 0 [1 ~15 o], Q=| 168 466 517
23 1.36 517 14.34

Experiment 2
Model Description: VAR(1), r =1
Error-Correction Form: AY; =" A Y1 + &

-5 325 —.24 —.074

rA, =1, o0 1 80|, Q=| —24 57 .048
1

—.04 —074 .048 4.842

Experiment 3
Model Description: VAR(1), r =2
Error-Correction Form: AY; = ALY 1 + &

0 .1 1.30 .99 .641
Fydp=| 0 —.05 [(1) (1) '%5], Q=| .99 .81 .009

-2 3 641 .009 5.85

11



Experiment 4
Model Description: VAR(1), r =2
Error-Correction Form: AY; =T2A45Y;-1 + &

0 1 1 0 -5 9.61 —-.62 .155
I'eAy= |0 -5 [Ol 0 ], Q=| —-.62 200 .018

d .2 .155  .018 2.563

Experiment 5
Model Description: VAR(2), r =1
Error-Correction Form: AY; = JfAY:—1 + 1 41Yio1 + &

[0 99 0 0
N4, = | .01 [1 25 .8], J=1] 0 9025 0 |,
0 O 0 .99
[ 2.25 255 1.95
Q = | 255 325 281
1.95 2.81 2.78

Experiment 6
Model Description: VAR(2), r =1
Error—Correction Form: AY; = JfAY;_1 +T14 Y1 + &

0 02 0 0 4.00 3.60 4.40
A =|5 [1 -5 .4], Ji=|-5 25 -2 |, Q=360 340 4.20
0 0 0 .03 440 420 5.24

Experiment 7
Model Description: VAR(2), r =2
Error-Correction Form: AY; = J{AY; 1 + T2 ALY 1 + &

[ _
/ 005 0 Lo 6 , 855 0 0
4, = 0 0 0105,J1—0.990,
0 -1 : 0 0 .85
[ 17.64 10.08 10.92
0 = 10.08 6.40 7.20

L10.92 720 8.24

12



rxperiment 8
Model Description: VAR(2), r = 2

Error-Correction Form: AY; = JfAY; 1 +2A45Y: 1 + &

[ —25 0
10 0
A, = 1.2 0 [0 L s
0 5 ‘

Q = 10.08  18.00

The experiments are chosen to allow for data generating processes with different
lag and rank order, ranging from VECM’s with p = 0 and » = 1 as represented
by experiments 1 and 2 to VECM’s with p = 1 and r = 2 as represented by the
experiments 7 and 8. Moreover, experiments 1, 3, 5, and 7 were designed so that the
“stationary” roots of the characteristic polynomial of the VAR model lie in the range
.95-.99, which are considerably closer to the unit circle than the “stationary” roots of
the characteristic polynomial of the model represented by experiments 2, 4, 6, and 8;
which, in turn, are in the .02-.5 range. Note that the maximum lag and rank order
considered in these experiments are = 6 and 7 = m = 3. In addition, choices of p

[ 576 10.08 —8.16
—~15.18
| -8.16 —15.18 13.90

*
7‘]1:

25
-1.2
0

0 0
d 0
-5 .25

and r from BIC and AIC were obtained from minimizing the criteria:
BIC(p,r) = In |€Up, )| + {m?p + mr + r(m—7r)} In(T)/T
AIC(p,r) = In[p,7)| + {m’p + mr + r(m —1)}2/T,

where Q(p, r) is the residual covariance matrix from a fitted reduced rank regression.

TABLE 1: Results of Experiment 1 (r=1, p=0)

3

PIC

rp0123456

0 31. 00000 0

1 9811 1. 0 0 0 0 0

2 |157 00 0 00 0

3 0 0000 0 0

BIC AIC

Tp0123456 Tp0123456
0 7 0 0 0 0 0 0 0 0 0 0000 0
1 |963 0 0 0 0 0 O 1 |4179 71 4 1 0 0 O©
2 1312 00000 0 2 14562 91 5 0 0 0 0
3 18 000 00 0 3 |1068 18 1 0 0 0 0

Notes: Number of replications = 10,000; sample size T = 150
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TABLE 2: Results of Experiment 2 (r =1, p=0)

PIC

Pl o 123456

r

0 0 0 0 0 0 0 O

1 9966 0 0 0 0 0 O

2 34 0 0 0 0 0 O

3 0 0 0 00 0 0

BIC AIC
Pl o 12345 6 Pl o1 23 45 6
0 0 0 0 0 0 0 0O 0 0 0O 0 0 0 0 0O
1 |9862 0 0 0 0 0 O 1 |6166 90 9 1 0 0 0
2 130 0 0 0 0 0 O 2 13162 61 1 1 0 0 O
3 8 0 0 0 0 0 O 3 499 10 0 0 0 0 O
Notes: Number of replications = 10,000; sample size T = 150
TABLE 3: Results of Experiment 3 (r =2, p=0)
PIC

. Pl o 123845 6

0 0 0 0 0 0 0 O

1 588 0 0 0 0 O O

2 9400 0 0 0 0 O O

3 12 0 0 0 0 0 O

BIC AIC

Pl o 12345 6 rp0123456
0 0 0 0 0 0 0 O 0 0 0 0 0 0 0 0O
1 250 0 0 0 0 O O 1 8 0 0 0 0 0 O
2 9129 0 0 0 0 0 O 2 7082 139 12 5 0 1 O
3 621 0 0 0 0 0 O 3 2684 64 5 0 0 0 0

Notes: Number of replications = 10,000; sample size T' = 150
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TABLE 4: Results of Experiment 4 (r =2, p=0)

PIC

2 3 4 5 6
0 00 0 0 O

1

0
0

0 00 0 0O

9900 0 0 0 0 0 O

0 0 06 0 6 O

100

2

AIC

BIC

© looc oo
n loo oo
b B e i en IR B e )
™ oo —~ o
N oo wo

©

©

R = E=-
RCE-N

=)

o lcogE
I~ —

Q

O~ ™™

© loocoo
n oo oo
<+ looc oo
m |loocoo
N |loocoo
—~ looc oo
N~

)

o ooz a
QL »

Q,

O~ ™™

Notes: Number of replications = 10,000; sample size T = 150

TABLE 5: Results of Experiment 5 (r=1,p=1)

PIC

2 3 4 5 6
2 0 0 00

1
742
0 9248 0 0 0 0 O

0

0 0 0 0 0
0 0 0 0O

1

© oo oo
n oo oo
- SO —~ ™M
S
< » o~ 50
©
© L
N e 5
> ©
<
S
© N
o loocoo
Q,
S~ N ™
© lcocooco
n oo oo
<+ [oocoo
™ oo oo
O jloocoo
& ~
e}
He)
N A
o o g
M~ —
o locococo
Q,
O~ N m

Notes: Number of replications = 10,000; sample size T' = 150
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2 3 4 5 6

PIC
1

0

0 0 0 0 O

0
0 9963 0 0 0 0 0

0 0 0 0O
0 6 0 0 O

37

0

TABLE 6: Results of Experiment 6 (r=1,p=1)
p

1

AIC
3

BIC

4 5 6

10 0 0 O
5

116
61

0 5921
0 3311

2 3 4 5 6
0 0 00O
0 988 0 0 0 0 O

0

1
0

1
2

0 0 0 0 O
0 0 0 0 0

138
4

1
2

Notes: Number of replications = 10,000; sample size T = 150

TABLE 7: Results of Experiment 7 (r=2,p=1)

PIC

2 3 4 5 6

1
0
724
0 9273

0 0 0 0 O

2 0 0 0 O

0

0 0 0 O
0 0 0 0 O

1

0

2

AIC

BIC

© oo o~
n o o N o
oo o —~
» oo o
N
<
N oo J
~ o
© o
o |loooo
Y
O~ N
© oo oo
w oo oo
+ oo oo
» oo oo
N joo oo
<t
—~ o™ L]
o0
o oo oo
&
O~ N ™

10,000; sample size T' = 150

Notes: Number of replications
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TABLE 8: Results of Experiment 8 (r=2,p=1)

PIC

P01 2345 6

0 |0 0 020000

1 [0 0 00000

2 |0 987 1 0 0 0 0

3 |0 12 00000

BIC AIC

SPo1r 23456 Ploo1 2 3 456
0 [0 0 00000 0 [0 0 0 0 000
1 |0 0 0000 0 1 |0 0 0 0 00 0
2 |0 964 0 0 0 0 0 2 |0 7935 145 14 2 1 0
3 |0 36 0000 0 3 |0 185 45 3 0 0 0

Notes: Number of replications = 10,000; sample size T' = 150

Results from the eight experiments based on 10,000 replications are presented in
Tables 1-8. Table 9 reports the average bias and standard deviations of rank and lag
estimation (where averages are taken over the 8 experiments) as computed from the
empirical distributions generated by our experiments. In all eight experiments, PIC
outperforms both BIC and AIC in rank selection although BIC produces a correct lag
choice with slightly greater frequency than PIC. Overall, the probability of a correct
model choice (i.e., correct choice of both the lag length and the cointegrating rank)
by PIC exceeds that of BIC by about .04 on average and that of AIC by about .39
on average. Moreover, PIC also exhibits the least variation in rank selection with an
average standard deviation of .144 over the eight experiments as opposed to .238 for
BIC and .514 for AIC. Clearly, AIC is the worst performer in terms of both rank and
lag selection. Note that relative to PIC and BIC, AIC shows a much greater tendency
to overestimate both the cointegrating rank and the order of lagged differences. With
respect to lag order estimation, our Monte Carlo evidence is entirely in accord with
the asymptotic analyses of Shibata (1976) and Tsay (1984), which show AIC to be
inconsistent in the sense that the probability of overestimation under this criterion
does not approach zero as sample size approaches infinity. That our experiments
also find AIC to overestimate the cointegrating rank with great regularity leads us
to conjecture that it is similarly inconsistent for cointegrating rank estimation.

TABLE 9:Avg. Bias and Std. Deviation of Rank and Lag Selection

Avg. Bias Avg. Std. Dev. Avg. Bias Avg. Std. Dev.

Method of 7 * of 7 * of p * of p *
PIC .030 144 .0001 .006
BIC .065 .238 0 0
AIC 342 .514 .024 .169

* Average is taken over the eight experiments

17



A surprising result from these experiments is that while a priori we would expect
BIC to perform well relative to PIC in cases where the “stationary” roots are closer
to the unit circle; given that, ceteris paribus, the latter tends to favor specifications
with fewer cointegration relationships; the opposite seems to hold true in our exper-
iments. The two experiments where PIC has most dramatically outperformed BIC
are experiments 5 and 7, where the “stationary” roots are in the 0.95-.99 range and
where BIC, counter-intuitively, has shown a heightened tendency to overselect the
cointegrating rank. It turns out that in these cases reduced rank regression given the
correct cointegrating rank often does not result in a good fit; in fact, overparameter-
izing the number of cointegrating relationships often results in a better fit. Moreover,
while the penalty function of PIC is strong enough to overcome the inclination to
overfit in these cases, that of BIC is not, thus, resulting in more wrongful choices by
BIC in the direction of overselection.

These results speak favorably of our criterion. We attribute the good perfor-
mance of PIC to a penalty function that takes into account not only the number of
parameters but also the nonstationarity of the regressors associated with some of the
parameters.

5. CONCLUSION

This paper takes a model selection approach to the problem of determining the
cointegrating rank. More specifically, we extend the analysis of Phillips and Ploberger
(1996) to a vector autoregressive process with reduced rank structure. There are three
principal advantages to this approach. First, it provides a coherent framework under
which the VECM lag order p and the cointegrating rank r can be jointed selected.
Secondly, it leads to consistent estimation of p and r. Finally, the penalty function
implicit in our criterion takes into account not only the number of parameters but
also the nonstationarity of the regressors associated with some of the parameters.
This latter attribute, we believe, explains why our criterion performed well relative
to BIC and AIC in the simulation experiments presented in Section 4.

The methods here can be further generalized. The time series model we inves-
tigated in this paper has neither a deterministic nor a moving-average component.
However, these components may be important in some econometric models. Hence, a
natural extension of the methods will allow decisions also to be made with respect to
the trend degree and the order of the moving average component. Models for scalar
time series with these features were studied in Phillips and Ploberger (1994). We
hope to report at a later time some progress on the extension of the methods of this
paper to multiple time series models with similar features.
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APPENDIX A

For notational simplicity, we shall, throughout this and the subsequent appen-
dices, suppress the indices p and r and write I', 4, F, and W instead of I',, A,, F(r),
and W (p),wherever we are not using the same symbols to denote parameter or data
matrices of different dimensions.

A.1. Maximum Likelihood Estimation

In this section we will describe our procedure for obtaining maximum likelihood
estimators for the model described by equation (2), assuming that € is known. The
maximization is carried out in stages. First, note that we can maximize the likelihood
(as given by expression (3)) with respect to J, = (Jf, ..., J;) and obtained the
concentrated log-likelihood:

T .
oI, AlQ, data) = —ZTlogl) - %Z [ luy —up( Q@ WY) (A1)
t=1

T T
XY (QTOWW)) Y QT @ W u

where

W, = (AY.,, .., AY )
u = AY;—TIYye 1 —-TA Yy
= AY:— (In® Yjp_y)vec I — (Im ® Yoy _1)(Im ® A)vec T
= AY;—(In®Y],_1)vec T — (I, ® Yy, | ) (L @ I;p_r)vec A’ .
Now, following Ahn and Reinsel (1990) we estimate the parameter vector 8 =

[(vec A'), (vecT)’) by the Newton-Raphson method. To proceed, we first compute
the score function of (A.1) as

ot (I"'® F) ~1

— = - Q Y | M U’ A.

98 ((Im ®(L-,A’)) (7 @ Y=g Mywvecl) (A2)
where U’ = [uy, ..., ur| is an m x T matrix and where Y_;, W, F, and My are as

defined in Section 2.
¢From equation (A.2), we compute the second derivatives of the log-likelihood as:

8%¢
555 (A.3)
= - [((I,(nrq;q(glf,’,)@')) Q'Y MwY_1) (T®F), In® (I, A"))
" [( 0 (Q-IU'MWy_lmz,)K(,,,_,),)}
K,‘(m_,.)(F'Yil MWUQ-1®I,) 0
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where K(m,_,) denotes a (m —r) x (m — r)r commutation

matrix. Now note that (2 'U'MwY_1F ® I) K(m_r), = 0p(T%/?) and is, thus,
of lower stochastic order than the other terms in equation (A.3). Hence, following
the suggestion of Ahn and Reinsel (1990), we omit it in arriving at the approximate
Newton-Raphson relations:

Bivry =By + (HEO'® YLIMWY_I)H’);(;(H(Q‘I Y My)vec U'); , (Ad)

where

= ((Li;%f)fi’)) '

A.2 Review of the Relevant Background Asymptotics

Here, we review some properties of the VECM (2) given in Section 2 as well
as give some asymptotic results derived under the assumption that the model (2)
is correctly specified with respect to p and r. The discussion here is useful in the
development of our own asymptotic analysis. The treatment here follows that of
Toda and Phillips (1991) and Ahn and Reinsel (1990). To begin, we define the m x 1
vector Zy = (Zy,, Z,) = (Y/ AL, Y] A). Write v = (&}, AZ),, Zb,, W})' and define the
long-run covarience matrix ¥ such that

T="4+A+A, (A.5)
where
= = EB(ww),

A = ZE(U{U;-FJ')'
j=1

We often find it convenient to partition ¥, ¥* and A conformably with v; so, for
example, we can write

Y1 Yo X3 X
391 Yoy Yoz Yo
Y31 Y3z Xsz Xazq |
331 X3z X3z Xy

(A.6)

where the indices “17, “2”, “3”, and “4” correspond to &;, AZy;, Zat, and Wy, respec-
tively. Note in particular that £;; = Q since E(ese¢4,) = 0 for all 7 > 1. Note further
that making use of equation (2), we can write (Zy,;, W;,,) as the first order system

Zoty1 ®11 P12 Zy Al
= + , AT
(Wt+1) ( Dy Do ) (W2t ep-1Q I ©t (A7)
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where ep_1 is a (p — 1) x 1 vector such that e,_; = (1,0, ...,0)’ and where

oy = AT+,
O = (AU}, ., AT)

r
‘I)z] = (0), and
Jr, LT J:
@ — 19 p_l P .
* (Im(p—l) 0 )

Since Zy: and W; are I(0) processes, the eigenvalues of the matrix

®1; D12
b =
( by Dy )

must be outside the unit circle, and we can write (A.7) in the moving average repre-

sentation
Zu) _ ©11(L) ©12(L) Al |
(Wt) B (@21(L) ©2(L) ep1® I Et-1 (A.8)
= O(L)¥e
- Z@j‘DEt_]_j
i=0
where

A/
U= .
(ep—] ® Im)

We shall next discuss a few lemmas which are used in the proofs of Theorems 3.1
and 3.3 and Corollary 3.4. Before proceeding, however, let us first intorduce some
more notations. First, define A' = [A,, A] and partition A’ further as

oo An 4] _[4, 1
o A, A A, A |7
where A, ,, A,,, and A, are, respectively, r x (m —r), (m —r) x (m — r), and

(m —r) x r. Also define P to be the inverse of A so that PA = AP = I, and
partition P conformably to A’ as

Py Py
P= .
[ Py Py ]

In addition, let Z; = Y_1A;, = [Zlo’ ey Z]T_]]I and Z, = Y_1A = [Zgo, ...,Z2T_1]'
and let Wy(s) (s € [0,1]) be a d-dimensional standard Brownian motion.

LEMMA 1. Let data be generated by a process of the form (2) under assumptions
(i)-(iv) given in Section 2, then the following convergence results hold as T — oo.
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(a) - 72;: er = Bo(s) = QV/2W(s)

[Ts]
(b) 7z Z AZy = A\ [Im + (T, I}, .., J3_1)O(1)¢] Bo(s) = Bi(s)
(©) % [g [Zzt} N [(@11(1)A' + ©12(1)(ep-1 ®Im))Bo(8)} _ [32(8)}
VT S (W, (©21(1) A’ + ©22(1)(ep—1 ® Im)) Bo(s) Bs(s)
PROOF. See Lemma 1 of Toda and Phillips (1991)
LEMMA 2.
Under the same assumptions as Lemma 1, the following convergence results hold
as T — oo:
( ) T_2Z/ MwZ, = fO B](S B]( ) ds
( ) T‘2F/YI MwY 1V = Py fO Bl Bl(s) dSPél
@T 1U'szl = {Jo Bi(s )dBo(s)'Y
(d) T—lUleY 1F = {P21 fO Bl dBo(S) }
(e) ZzzZ/T — X33,
(f) ZsW/T B 53,
(8) W/W/T“‘* i
(h) vec(U' My Z2/V'T) = N(O (Q® T33,4)), where £33 4 = £33 — £3,53, ' 543
() FY'  ,MwY_1A/T%? 50,
PROOF. All results follow directly from Lemma 1, the continuous mapping theorem,
and arguments analogous to thgfe used in Lemma 2.1 of Phillips and Park (1989).

LEMMA 3. Let § = [(vec A, (vec )] be the Gaussian mazimum likelihood
estimator generated by the iterative relation (A.4), then

VT (vecl’ — vecI®) = N(o, (2® 334))

TA- A = ([0 ro-1rvg" ( /0 1 Bl(s)dBo(s)’),

(/01 Bl(s)Bl(s)’ds) P{ll

PROOF. See Theorem 2 of Ahn and Reinsel (1990).

LEMMA 4. Let J, = AY' My Y_1(Y' ;MwY_1)"! be the least squares estimator
for the model described by equation (2), then

(J.~J9PD=[R,S],
where

= diag(TIm-r,VTI,),

D
R = {/ Bi(s)dBo(s }(/ By (s Bl()d5>—1,
S

= N(0, Qe =53)) -
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PROOF. See Theorem 1 of Ahn and Reinsel (1990).

LEMMA 5. Consider the model (2) under Assumptions (i)-(iv); the likelihood
ratio statistic for testing the null hypothesis that the cointegrating rank = r has the
asymptotic distribution given by

{07 (a(p,7) = u(9) Y My Yor (Ju(p,7) — Ju(0))')
{</ Wonmr ()W on-r (2) ) (/ Win—r(5) AW (5) ds) ( / Winr(8)dWin_ 43))},

where J,(p,7) = (D(p, ), I'(p, r)z (p,7)') with I'(p,r) and A (p,r) being given by the
iterative relations in equation (A.4) and J,(p) = AY' My oy Y_1(Y. My Y_1)7?
PROOF. See Theorem 1 of Reinsel and Ahn (1992).

APPENDIX B

PROOF OF THEOREM 3.1
To show that (p,7) 2 (p°,7°), we need to show that for all p# p® and/or r #£ 0

P(Tlr(Myo 0|02, Y) /ﬁT(M,,,,@, Y)>1)—>1asT —oo.
This will certainly be true if for all p # p® and r # r°,

(M 0|, Y)

= = — 00 in probability as T — oo . (B.1)
O (Mp -, Y)

We shall check this divergence only for cases where either p # pg or r # %, as the
analysis for cases where p # pp and r # 10 follow analogously.
Now consider the case where r > r? and p = p°. From expression (5), we have

(Mo 0|0, Y)
(Mg, |Q,Y)

AP, ) ® Y. My ooy Yo1)H (D", p°)1/2

x |f~1(P0, T)(Q—l ® Y—’]MW(pO)Y—l)fI(pO) 7")|1/2
x exp { 3l (AY — Y_1J. (1%, 7)) Moy (AY — Y17, (7, )}
x exp{ =31l (AY = Y_10. (5, 1%)) Mo (AY = You L (0%, 7))}
where .
(P, r9) = (T(°,ro) ? F(r%)) }
(Im ® [Ly0, A (0, 10)])
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o[ R © F(Y)
H(PO,T)_ (Im®[1,,,;1(l)0,7")’])

Here, F(r°) is a m x (m — r°) matrix such that F(r°)' = [0, I,,_,0] and F(r) is
similarly defined. It follows that we can rewrite the expression above as:

ﬁT(Mpo,,o IQ, Y)
(M ,|Q,Y)
(D@00 Q1 (p°,r0)BF (r°)'Y Ly My (0, Y-1F(r0))
(@10, r0)®(L0,A(R°,r0) 1Y My (0, Y-1F ()

. ) . -1/2
(@E° O QT IRF(r0)'Y . My 0, Y-111,0,A (P°,r0)'T)

(Q1811,0,A(P°,rO) 1Y My ,0)Y-1l1,0,4 (#0,70))')

. P . 1/2
(F(p T) Q7 ]F(p TIRF(r) Yile( O)Y—IF(T)) (F(p T), ]®F(T) YllMW(pO)Y—I[IﬁA(p )] ) /
(@100 @I A (PO rYIY ! My (0 Y-1 F(r)) (1811, A (P0r)1Y ! My 0, Y-1 I, A (20,7)'))
X exp {Etr[ﬂ’ (AY = Y_1Ju(1%, 7)) My oy (AY = Y_ 1 T (5, 7' )}}

X exp {—%tr[ﬁ“l(AY — Y14, (0°, TO)')'MW(pO)(AY - Y—lj.(PO,TO)/)]}

B0, PO Q70 (°, 7°) ® F(r°)' Y. My V-1 F(r°)| (B.2)
x (9 ® [Iro AP ) 1YL Mgy Vsl Lo, A (9%, 70)T)
= (107060, r°) (R, 7Y D%, 7)) (O, Ty )
®[I,0, A (2%, )Y My 0y Y- 1 F(r°)
X (F(TO)/Y—IJMW(pO)Y—lF(TO))—l F(TO)Y—I-lMW(pO)Y—l[ITUPZ(poaro)lll)
x (|0, rY QTG0 r) ® F(rY Y. My Y1 F(r)|
x|(@7 L, AW, ) 1YL Moy Yl A G0 ) T)
— ([0 06, @GP, Ty QTGP ) T, )07
O, A(P°, 7)Y My (uoy Y-1 F(r) (F(r)' Y, My (o) Y-1 F(r))
x F(r)'Y. MyoyYarll A@,r)1)]).?
x exp {$tr{007 (Ju(r°,7) = T, (0 Y.y My Y-1(Ja (2, 7) = T (p°)) 1}
x exp {312l (J. (7, 7°) = Ju(PO) YLy Moy Yor (a7, 1%) = L ()1}

-1/2
)

Ju@%r) = (B°r), B @°, PVAEC, 7))
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Ju(p°,r0) = (L(p°,r°), D%, ) A(x°, 7))
Ju(p%) = AY' My (,0) Y1 (Y My oy Y1) 71

By Lemma 2,
T"2(F(r0)’Y11MW(P0)Y_1F(ro)) =0,(1),

(Lo, A (%, )T~ (Y. s MypgoyY-1) L0, A (8%, 7°)] = Op(1) , and

(Lo, A (8%, rO)1T~3/2(Y" | My (o) Y- 1 F(r°)) (T‘2(F(r0)’Y_'1MW(po)Y~1F(r°)))
XT3 (F(r°) Y. My oy Y=1)[I,0, A (1%,7°)] = op(1) .

We now write the complex expression (B.2) in the symbolic form

()7 20)5 2 exp{(1/2)(-)a} exp{=(1/2)(")s} , (B.3)

where (-); and (-)2 represent the numbered bracketed factors that appear in (B.2)
and (-), and (-)» denote the tr[-] expressions that appear in the final two exponential
terms, respectively, of (B.2).

Some simple scaling manipulations confirm that

2
( )1 — Op(TZ(m—rO)r0+mr0) — OP(TSmro_Z'rO ) ' (B,4)

To evaluate the order of ( )2, we need to transform the regressor space to isolate
components of different orders of magnitude. For instance, since r > % we know
that the term R R
(Zr, A (po’ T)’]YilMW(pO) Yo4[Ir, A (pO, T)I]I

has a first diagonal 7% x 70 sub-block of Op(T) and a second diagonal sub-block
of Op(T?), corresponding to the limiting cointegrating submatrix of [I,, A (p°, )]
of order 7% x m and its complement, respectively. (Any rotation of the coordinate
system that is used to achieve this will not affect the orders of magnitude of the final

determinantal form). Proceeding in this way with each element of (-)2 and using the
methods outlined in Phillips (1988) we obtain

( )2 — Op(T{2(m—r)r+['r°—2(r—-r°)]m}) — Op(T4m'r—2r2——'rom) ) (B.5)
Combining (B.4) and (B.5) we have
O (e = Op(T4mr—4mr°——21‘2+2r°2) ‘
We observe that the exponent in this order of magnitude is
dm(r —19) = 2r — 1) (r +19) = 2(r — r%){2m — (r +7°)} > 0

for all r > r9.
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Thus the “penalty” term in (B.2) is
{7022 = Op(T 7 Em= 400 (B.6)

which diverges to oo in probability for all r» > r0.
Finally, we consider the expressions in the exponents of the exponential factors
of (B.2) and (B.3). We start with (-),. Note that by Lemma 5,

()o = el (A (2%, 1) — L (PO)YL 1 My oy Yor (u (6%, ) — L (7%))] = Op(1)
Next consider (-),. We have

o = [0l r) = L OOV Mo Y a(J. %) = L)Y
= [0, 7) - G PD(D LAY Moy Y-14'D)DP (460, 7) = J. (1))

where D = diag(TI,,_,0, VTI0).
Note that by the arguments of Theorem 1 of Ahn and Reinsel (1990)

DAY My oy Y1 A'D™ = 0,(1) . (B.7)
Add and subtract J? from (J,(p% 1) — J.(p°))PD and get
(L. (%) = L) PD = (J.(p°,7) = J)PD + (J? — J.(#°)) PD
Again, by the arguments of Theorem 1 of Ahn and Reinsel (1990), we see that
(J2 = J.6")PD = 0,(1) . (B8)
Next, partition ['(%,7)=[ I, , Tw Jand A@%r)=[A., A. ]inacon-
mxr® mx(r-r9) mxr® mx(r— r°)
formable way corresponding to the true number of columns (r°) and supplementary
columns r — 7%, The columns in these partitions are ordered according to the size of

the correspondmg eigenvalues in the associated reduced rank regression in the usual
way. We decompose (J,(p°%,7) — J?)PD as follows:

(Ju(@° ) = J)PD = (I A, + I, A, —T°A%)PD
(T, —=T9)A, +I°(A, — A% +I..AL,]PD
(T, —T°)AY + I°(A, — A% + AL, + op(T™})|PD .

Now, A% PD = [0, T'/2I,0], so that

(I, =AY PD = 0p(1) .
Also, since T(A, — A®) = O,(1) we have

(A, — A% PD = 0,(1) .
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Finally, 4,, = Op(1), just as in the spurious regression analysis of Phillips (1986),
and [',, = O,(T!) (being the coefficient of A,,Y;_,, which is an I(1) regressor with
random coefficients in the limit). Thus I',,A,,PD = O,(1), and we have

(L., r) - JOPD = 0,(1) . (B.9)

Combining (B.7)-(B.9) we find that (-)o = Op(1). Thus, both (-)g and (-), are Op(1).
The penalty term (B.6) therefore dominates when r > r° and we deduce that

[ (Myo 100, Y)

= = — 00 in probability as T — oo,
HT(MPO,T IQ, Y)

as required.
Now, if 7 < 70 we again write

(J.(7%, ) = J.(?°)) PD = (J,(p° ) = JO)PD + (JO - J.(4°)) PD .

We have (J?—J, (p°))PD = O,(1) just as in (B.8). We partition [ = [I?, T9, ]

mXr mx(r0-r)

and A® = [ A? A?, ] conformably and then

* 1
mXr mx(r0-r)

(Ju(p,r) = J3)PD = [[A' —194Y —19°,4%,]PD
= [(0-THA + YA~ A% -19,4%]PD
(T —T9AY + %A - A% + op(T~1)}PD - T9, A%, PD

= O0p(1)+0p(T) .

il

It follows that
el (5, 7) = P2V My oy Yor (o (6% 7) = Ju (7)) = O(T?) . (B.10)
Thus, once again

(M 10|Q, Y)
ﬁT(MpO,rlﬁa Y)

— 00 in probability as T — oo .

This time (when r < rg) the exponential term dominates the asymptotic behavior of

our correction.
Now, if instead we have the case where r = 70 but p > p°, then partition W (p) =
[W(p°), W(*) ] and we can write the PIC as

Txmp® Txm(p—p°)
(Mo 0lQ,Y)
HT(Mp,rolﬂ, Y)

ID(p°, ) Q10,0 (B.11)
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®T 2(F(r)'Y! ) My Y-1F ()| /2

X|@ @lLo, Al Y TN (Y iMooy Y1)l 0, A, 7))
(@, @, YOG ) TR, 0

®[Lyo0, 4 (p°, 7Y 1T-3/2(Y1IMW@O)Y_va“))<T—2<F<r°)'Y:1MW@o)Y_1F<r°>>>*1
XT=3/2(F(1°)'Y! s My oy Y-1)[ Lo, A (2% °)1)17/2|E(p, 7)Y 2 T, 7€)

ST 2F(r) Yy My Y-1 F(rO) [0 @ (Lo, A(p, )

XTI (YL Mo Y1) o, A, )

—( B (p, ) ([ (p, 7Y D (p, 7)) (e, )

&lLo, A (p,rO) T2 (Y My V-1 (1) (T2 (F(OY Y.y My Y1 F())
X TSB! MY, A ()T

x exp { 3107 (1. (p %) = L (@)Y 1 M) Y1 (o (P, 7%) = o (9))'
x exp { ~3trl0 (. (7°,7°) = L (p) Y.y M) Y1 (. (P r) J
x exp {~Brl€ 1 (1) W (0 Moo, vy W ()" ()1}

<ot e Ty wet)| e e T W] T,

J
@)1}

where A
J‘ (*) = (W(*)’M(W(pO)’y_l)W(*))—]W(*),M(W@O),y_l)AY .
Note that by Lemma 2
T-Y W (") W (%)) = Op(1) and T~} (W (p) W(p)) = Op(1) -
Since 4m?(p — p®) > 0 for p > p°, we have
-1/2

— o0

(B.12)

!1/2 P

Ti e 0t T I WEYWE)| [ e T (W W ()

as T — oo. Moreover, note that
tr QL (%) W (%) Miw oy, vy W (¥) " (¥)] (B.13)
= tr [Q’IT””'(*)’T‘I(W(*)M(w(p"),y_x)W(*))T”"’j‘(*)] :
By Lemma 2
"YW (x) Mw(po),y_) W (*)) (B.14) -
= T Y W) MweoyW () = (1/T)T (W (%) My (p0)Y-1)
(T (v MyoyY-1) | TV My oy W (+)

W (%) My oy W () + 0p(1)

O (1)

H
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Also,
J* (%) = (W) My o),y W () W (%) Moy B

where F = [ey, ..., er]'.
Hence,

TY2J* (%) (B.15)
= (T_l(W(*),M(W(po),}’_1)W(*)))—1T_I/Z(W(*)IM(W(pO),Y_l)E)
= (T W) MyworyW(*))) " T2(W () My, E) + 0p(1)
= 0p(1)

by standard regression theory for stationary processes.
(From (B.14), (B.15), and the continuous mapping theorem we conclude that

tr [Q7N T2 () T (W) Mwigoy,y g WONTY2 ()] = 01) . (B.16)
Furthermore, we note that
Q7 (L (p, %) ~ L)Y 1 Mw ) Yor (4 (p, %) = L (p))] = Op(1) . (B.17)

Putting together (B.12), (B.16), and (B.17) and noting that all the other terms in

(B.11) are Oy(1) as argued earlier, we have the required result that (for p > p°)
(Mo 0, Y)
HT(MP’,olﬂ, Y)

— 00 in probability as T — oo

by application of the continuous mapping theorem.

Similarly, for the case p < p° we can partition W(p®) = [W(p), W (*x) | and
Txmp Txm(p®-p)

write PIC as
ﬁT(Mpo,T()KA), Y) _

! B ) (B.18)
HT(Mp,'rolQ’ Y)

N A q4m -1/2
]r(p", rO) QTP 0) @ T~2(F(r°)'Y! My o) Y-1 F(r°)) ]

X ’ (Q—l ® [I'roa Z (PO» TO)I]T—l(Y—ilMW(pO)Y—l)[Iro, Z (pO) TO),]’)
= (@GOG, QG 0) T BP0y

®lL0, A (2, r°)IT~/2(Y! y My (y0y Y-1 F(r°)) (T_z(F(TO)'Y_'1MW(p°)Y—1F(T°)))
~1/2

x T2 ()Y Moy Y-1lL,0, A (5°, 7)Y

1/2

x [T(p, 7@ ' T'(p, %) ® T_2(F(T0)'Yi1MW(p)Y—lF(TO))‘
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x| (07 @ (Lo, Ao, 1) 1TV My Y1) Ero, A p )Y

— (@71 (p, ) (D (p, 7Y D(p, 7 ))" D(p, 7)Y ® [0, A (p, 0]
XT~ Y, My V-1 F(r°) (T'z(F(ro)’Yile(p)Y_lF(ro))) !

x T2 (F(r°)'Y! s My gy Y-1)[I0, A(p, 7))’ v
{%u{(ri(i (2:7%) = L (P)Y 1 My Y1 (Fu(p, ) = ()]}

x exp { ~3trl71 (8% 7°) = T (PO Y. My V-1 (Ju (°,7) = Ju(2))']}
{Berl0 2" (oY W (58) M )W ()% (o)}

j'(**) = (W(**)'M(W(p)’y_])W(**))"IW(**)'M(W(p),y_l)AY ;

From standard regression theory with stationary regressors we know that
T (+5) W (%) My, vy W (3) J* (%) = Op(T) . (B.19)
Moreover, write
[ (u(p, %) = L(@) Y1 My Y1 (Ju (P, 7°) = Ju ()]
= tr{Q}(Ju(p,°) = Ju(0)) PD(D ' AY. | Myy(5) Y-14' D) DP(J, (p,7°) — Ju(P))'] -

Add and subtract J? from (J,(p,r°) — J,(p)) PD and we get

(Ju(p,7%) = J(p))PD = (Ju(p,7°) = J2)PD + (J ~ Ju(p))PD .
Note that following arguments similar to that given for Lemma 4, we have

(J? = Ju(p))PD (B.20)
= —(Ju(p)=T)PD
= —[T(J.(p) - J) P, TV?(J.(p) - JO) Py]

= — [T ()T (W (%%) My () Z1) (T-Z(z;zl))"1 +(TU'2y) (:/’*2(2521))‘1 :

J‘ (**)IT_1/2(W(**)’Mw(p)Z2) (T—l(ZéMW(p)ZQ))—l

LT (U My ) Z) (T‘I(Z§Mw(p)22))—]] + op(1)
= —[0,(1),0,(T*7?)]

where 21 = Y—]A_L,TO and Z2 = Y..]Aro.

In addition, since I'(p, %) — '° = 0,(1)

(Ju(p,°) = ¥)PD = {TIl'(p, %) — I F(p,°VA(p, )’ -~ T°A%|P,, (B.21)

xTY?[[(p,r°) — I, B(p, 7°)A(p,r°) — T°A%| Py}
= {Op(T),05(T"?)} .
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Furthermore, the arguments of Lemma 4 gives
DAY \My () Y.1A'D™ = 0,(1) . (B.22)
Combining (B.20), (B.21), and (B.22) we conclude that
ol (2 70) = L (p) Y M Yor(a (1) — Ju(p))] = O,(T2) . (B.23)
Since
67 (L (6%, 1) = L (P°) YL My ooy Yo (e (8%, 7°) = Ju(2%))'] = O(1)

by Lemma 5 and since the asymptotic behavior of (B.18) is dominated by the expo-
nential terms, we deduce on the basis of (B.19) and (B.23) that for p < p°

ﬁT(Mpoyro |ﬁ, Y)
(M, 0|0, Y)

PROOF OF THEOREM 3.3
To begin, we note that conditional on a known error covariance matrix § the
likelihood function can be rewritten as

— 00 in probability as T — oo . O

Lr(C, &, 7°10,Y) = (2m) "™ /2Q~ "
X exp {—%tr[ﬂ_](AY =Y, J, -WJIY)(AY - Y_,J, - WJ”)]} '

where J, = (I,T'A’) and J* = (J}, .., J;). Combining this likelihood function
with the uniform prior 7 = (2#)‘%(’"2””’"’”’2), we obtain via Bayes Theorem the
following posterior process:
(T, 4, J*|Q,Y) = (2r)" 3(Tmim?pimr—r®) ) ~T/2 (B.24)
X exp {—%tr[ﬂ_l(AY Yo J - WJIY)(AY — Y. J — WJ")]} .
To obtain (22) now requires marginalizing IIy with respect to I, A, and J*. The
parameter matrix J* can be integrated out in the usual manner, i.e. by completing
the square and making use of the fact that the density of a matric normal distribution
integrates to one. Marginalizing with respect to J* in this way, we obtain
(T, AR, Y) = (2r)" 2@m2mr—r)|q)-T/2|-1 o Wiyy|-1/2 (B.25)
x exp { ~3tr [Q-I(AY —Y_1(T, TAYY Mw(AY - Y_4(T, TAY)|} .

To integrate with respect to I and A, we use the Laplace approximation as follows:
Define the open neighborhood

N, 87) = {8 : la = a2 /81 + v = +°IP/8r < 1},

where 3 = [a/,v], a = vec A, and v = vecT" and where 8% = [a?, 4°')’ is the true
parameter vector. We let || || denote the usual Euclidean norm — i.e., ||a|| = (a'a)!/?
for vector a and ||A|| = (tr(A’A))Y/2 for matrix A.
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Next, split the integral of (B.25) as follows:

(27r)—%(Tm+2mr—r2)IQI-T/2|Q—1 ®W/W|—l/2/
Rr(m-r)mer

x exp { ~3tr[Q7N(AY — Y1,(8)) Mw(AY — Y. ., B}

— (2#)"%(T’"+2m"'2)|Q|"T/2|Q‘1®W’W|_l/2 / +/
N(B%67) JN(BO6r)c

X exp {—%tr[ﬂ'l(AY - Y_1J.(8)") Mw(AY — Y—IJ*(ﬂ),)]} g
= I + I5 (say).

Define Gr = {BT € N(B° é7)}, where B = (@, A7) is the Gaussian maximum
likelihood estimator given by the Newton-Raphson relationship (A.4).
We first consider I5,. conditional on Gr. Let

tr(B) = —3(Tm-mPp)In27r—Th|Q -1 mQ leW'W| (B.26)
x — 2tr{Q Y AY - Y_14.(8)) Mw (AY — Y_1J,(8)')]

we take a second order Taylor expansion of ¢7(8) around Br

er(B) = tr(Br) + $(8 - Br)'e(8°)(8 - Br) , (B.26a)
where 8* € (8, BT) From (A.3) we see that
B = - [( ({';Q:’F‘®f:"YLIIMwY_1F) (FI‘Q_1®_FIY-’-1MWY—I(Ir,fi'_‘)ll) )
(P, A")Y! \ MwY_1F) (Q168(n, A*)Y", MY 1 (I A™)')
+ ((Q"U"MWY_(:F®I,)K(,,._,_)T K'("‘")(F'Yiléqu‘ﬂ"®Ir))] _

Write
(8- Br)er(8)B-Br) (B.27)
= —(B~Br)Vr(6 - br) + (8- Br){(er(8") — £1(6°))
+(r(8%) + V)8 - Br) ,

where E/T =HQ'®Y' ,MwY_1)H and H = ((I'(;?:%/)) We want to show that
for 8, Br € N(8°,67)
(8= Br)(€r(8") - €r(8°)(8 — br) 5 0 (B.28)
and A )
(8 = Br)' (er(8°) + Vi)(6 — Br) 5 0 (B.29)

First, notice that for D* = diag(TI,(m—r), 71;Im,)
|6 — Br)' (e(8") — €-(69)(8 ~ Br)| )
= |(8—Br)D*D*(¢1(8") - £2(8°) D"~ D*(8 - Br)|
1(8 = Br)' D*|[|D*~*(e7(8") — €7(8°)D* ||| D*(8 - Br)|| -

IA
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>From (A.3) and with a bit of algebraic manipulation, we can write
D"~} (er(6") ~ er(8°))D" "
_ ((T*-T°)Q-1r*Q@T-X(F'Y! ,MwY_1F)) ((F‘—FO)’Q‘1®T“3/2(F’YL]MWY—1)(Ir,/§")’)
- (@1 -TO)@ (I, A*'YT ~3/2(F'Y! | MwY-1F)) (2-1g(0,(A*~ AT~} (F'Y!  Mw Y-1 F)(I,, A*")')
(T’ Q=}(I* —IO)QT-2(F'Y' My Y_1 F)) (I“"n'l@T'a/?F’Yi,MwY—:F(O,(E‘—/i")')')
(@1 TO®(0,(A*~ A0))T-3/2(Y! , Mw Y1 F)) (a-1@(I,, A% \T-1(Y", MwY_1 F)(0,(A*~ A%))')

+ 0 Kr(m-r)(T—3/2(Fly_llMW)(U‘_UO)Q—1®IT)
(Q-1(U*~UOY T-3/2( My Y-1 F)® L) K (s —ryr 0

= L+ M+ N (say).

Note that by repeated use of the triangle inequality

ID*=(er (") ~ ex(8%)D* || < |ILI| + | M| + |V
so that

I8 = Br) D*|I|D*~ (¢ (8") — €x(B°)) D> |[ID*(8 - Br)||  (B.30)

< (8 = Br) D RULY + 1M + I NIDID™ (8 — Br)ll -
Partition
Ly le)
L =
(Lm Loy
_ _{ (@-royQUIreT A(FYL MwY . F)  ((D-TOYQ QT /2(F'Y! MywY_1)(Ir,A"')")
- (@YD -TO)Q(L, A*' )T ~3/2(Y. MwY_1F)) (271@(0,(A* - A°)) T~} (FY. MwY_1)(}-,A*")')
Note that
LI = (i D)2
= (tr(LyyLar) + tr(Lyy La1) + tr(LypLia) + tr(LhyLan)) /2 .

Write [ = I'® + (I'"* — I'%) and apply the Cauchy-Schwarz inequality repeatedly to
tr(Ly; L) giving
tr(Ly; L) = {tr[(f“ —TOYQ~}(I* — %)) + tr[(C* — IO)(r* — IOY'Q~Iro(r* — royQ1
+ tr[(T* — DO)(I* — IoyYQ~ (™ — Moo
+ tr[(0* = TO) (I - FO)'Q—IFOF"’Q-I]}tr (T‘z(F’Yj]MWY_lF))z
{trn—%r((r* — T (r* = 19))?

IA

+ [er((r* = TOY(0* = T0)2a(r¥272(r" - 1) - 19y'0-2r)]
+ [er((r* — TOY(r" — 1)t r0(r* — T0)/(1 -~ 1)r¥0%)]

+ [tr((r* ~To)(r* - P°))2tr(9-11‘°1‘°'9—1)2]” 2} tr (T—Z(FYLlel/_lF))2

IA

{0 P10 = O] + 210 - O roQ-) + 0 - 92 ron- |2}
x |72 Py MY )|
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By similar arguments, we obtain

_ - 2
tr(LiyLa) < TY2(A° = &%) |T-2(F'Y! MY, F)|
x [l 2T = T°)2 + 2)/T* - r)1r0) + @ 'r°)1?]

tr(LipL1z) < |I0* = 20" [uTW(A* - )22y M Y B
+2|A* = A || (T2 (FY. \ My Y-1F)) T (FY. My Yoo ) (I, A% |
+r-sa v My, 2

Waln) < 107 [j27 G - 2 I ) |+ 21724 - )
“T‘ (F'Y' M Y1 F)( Ir, ” 1/Ts/2 “T (F'Y'  \MwY- 1F)“
k=, P sner ]

Now, we can write

18 = BrY D*IILIID* (8 = br)

< (IT(a = &)l + ITY2(v = 47)?) { [l 2T = TO)14 + 2/|r* — TOP||ro'-2|
+T* =D PEOQ Y P T -2 (F'Y! s My Y1 F) || + |ITV2 (A0~ A°) 2| T~ (F'Y! \ My Y-, F) 2
x [I9 7 [0 = T2 + 2{* = T2} T0) + 27 r)2] + Ir* - T2
x (I3 = B)|T-2(F' Y., Mw Y- F)]| + 21| & - A°|
+ [Ty M) @ B ||+ et PTG - o)
« [ITY2(A" = ) |72 Y M Yor )| + (/T TV2 (A" — A°))
T Y MY AV TPV M Y|
o 271y1/2
+ (UT) |1, AT (FY M Yoo )| ] }
= S (say).

Now, take 837 = T-(1-® and 8y = T-(1/2-2) where 0 < a < 1/6, and note that
for 8, Br € N(6°,67)

llo* = a® = || A* = A% < /r(m = D)oz = y/r(m —r)T=0=2)

lv* =4° = |IT* = I°) < Vmréyr = /mrT~(/272)
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IT(a—ar)| < 24y/r(m-r)T®

ITY2(y = 47)|| < 2¢/mrT® .

Thus, for 0 < a < 1/6

S <4(2mr — )T~ /2-90,(1)) B 0as T — oo (B.31)

By a similar argument, we see that

16 = Br)' D*IIM[I|D* (8 ~ Br)l| — 0 in probability as T — oo . (B.32)

Now, observe that

IVl

= (trN'N)/? (B.33)

= (2@ \(U* ~ VYT (M Yo F)T ('Y, M) (U* - U002 @ 1,))1/ 2

= (2@ (U ~ VYT 32 (Myw Yo, F)TS2(F'Y My )(U* - UO)Q‘l))l/ ?

Let D = diag(TIm—r, VTI,) and write

IA

tr (U = U T (Mw Y F)T*3(F'Y! M (U” — v ) (B.34)
tr (Q—J(P* ~TO A" —PAYT-3/2(y!  \ Mw Y_,F)T3/*(F'Y’  Mw)

x (I* =9 A - P“A"’)Q-l)

tr (Q—l(r* -0 A" —°A%)(T~Y2PDDY)AY! \Mw Y A'D'T~Y(DP' FF'PD)D"}
X AY!, MY, A'D™ (T/2DP)(0* — 1, 1" A" — 04 ) ?)

tr(T"2DP'FF PD)tr(D™1AY! \MwY_1 A'D~1)%tr(Q1)2

x tr (0" = °,[* A~ [°A%)(T~/2PD)(T 2D P)(I* - 9,14 ~T°A°Y') .

The last inequality is obtained by repeated application of the Cauchy-Schwarz in-
equality.
By arguments similar to that given in Lemma 5, we have

(T* -1 A" —-T°A%)PD = [TPO(A' — A% Py + T(T* — T0)(A" — A% Py,

Tl/Z(Fnu _ I-\O) + T1/2I-\0(A# _ AO)IP22
+ TI/Z(F‘ — FO)(A* — /io)lpzz} .

Hence, we can write

tr ((1“* —T0 ™ A* — A%\ T-12PD)(T-?DP')(I* ~T°, " A" — POA"')')B.:;s)
tr [TPO(A‘ — A%) Py Py (A* — AT 4 2TTO(A* — A%) Py Phy(A* — A°)(I* — IO
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+T(0* —T°)(A* = A°) Py Py (A* — A°)(C* = T9)' + (D* —TO)(T* —T%)
+2(I" = T%) Ppy(A* — A°)I° 4 2(1" —T) Ppy(A* — A°)(T* - I°)

+TTO(A* — A%) Py Phy(A* — A°)IY + 2I°(A* — A%) Py Py (A* — A%)(I* — IO
+ (I-w _ I'\U)(At _ AO)’P22P212(A_~ _ AO)(F:: _ PO)I]

1P [2(A" — 2o + 2|72 - 2| [ BalPire - £
-9’

2 _ -
=10 A" - 2| Pal

I

+ | - o) el e - oo

+2|0* - T°[[[|Ppell|| A* = A°||IT°

— 2" NPl — 0]

=2 el el
o[

~ 2 |1Pal?

where we again made extensive use of the Cauchy-Schwarz inequality. Putting (B.33),
(B.34), and (B.35) together and recalling that for 8, S € N(G°,67)

la—ar| = A=Azl <2y/r(m—r)T" 0,

Iy =32l = I = P | < 2T 02-2)

I14* = A < 24fr(m — r)T=0-),

IT* = 9| < 2¢/mrT~(1/2-2)
we see that

(8 = Br) D*||INIID* (8 - Br)ll (B.36)
1T (a = ar)||® + 1T (v = 47) 211N ||

< 4T*(2mr — r2)T~(1/2-9)0,(1)

= T-(/2-3)0 (1) B 0as T — cofor 0 < < 1/6.

¥

>From (B.31), (B.32), and (B.36) we conclude that
(8 = Br) (€x(8") — ex(6)(B - br) B 0. (B.37)

To show (B.29), we write

(8 — Br)' (€4(8°) + Vr)(B - Br) = (B — Br)' D*D* " (€2(8°) + V¢)D* "' D*(8 — Br) .

Note that

D-——](en(ﬁo)_*_VT)D*—l
( (T-royqQ- 1r®T 2(F'Y!,MwY-1F)) ((f—l“’)’ﬂ"®T‘3/”(F'Y’_;MWY—1)(Iri')’) )

( 1 F-T0)@ (1, A )T-3/2(F'Y!  MwY-1F )) (““‘®(0,(§—K°)')T-l(F'YL,MwY-x)(Ir,ﬁl)’)
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—~

( ((F”'Q“(F—F°)®T'2(F'YL1MWY_1F)) ((FO’n—l®T—3/2(F'y;1Mwy_lF)(o,(ﬁ—Z")')')
( )

(Q'1F°®(0y(%—A°)')T‘3/2(YileY-lf')) ((n—1®(1,,z°'):r—1(y:ley_,F)(o,(A—

_ 0 K (m-r)(T™¥2(F'Y! My U°Q~1)®L)
(T“3/2(Q‘1U°'MwY.1F)®Ir)K(m_,),. 0

= Ly + M)+ N; (say),
So that
(8-br)' D* D"~ (p(8°)+Vr)D* " D*(6—Br) = (6—Br)' D*(L1+M:1+N1)D* (8—Pr) -
Further note that for 8,37 € N (8°,6r)
5 T(a - ar)
D*(3 - = N = 0p(T*%) .
Thus,
(8 - Br)'D"L,D*(8 - pr) (B.38)
= (a—ar)T (1%(0 - IYQ ' T @ T2 (F'Y! \MwY-1F)) (a — 4r)T"~°
+(7 _ %T)1T1/2——a (Q—lf\ ® Tl/2+2a(/i _ A")'T‘z(F’YLlMWY_lF)) (a _ aT)Tl—a
+(a —a7)T'"® ((1"“ -ToYQ 1@ T2
(FIY_I_IMWy_lF)(A _ AO)T1/2+2Q) (’Y _ ;?T)Tl/2-a
+(a —ar) TV " (T2°(f‘ -royQler3?
(FYL \MwY_1)(I, fiol)l) (v —Ar)T 2
+(y = Ar) T2 (7 @ T2+ (A — A%'T?
(FIY.I_lMWY—lF)(A _ AO)T1/2+C') (v - ;?T)Tlﬂ—a
+(y — A7) TV (9—1 ®Tl/2+2a(A — A0yT-3/2
(F'YL My Y-1)(Ir, A%)) (y = Ar)T/270
— 0 in probability as T' —

since for 0 < a < 1/6, we have from Lemma 2 in Appendix A.2 that T1/2+2°‘(j -
ADY = 0,(1), T?*(I' = T0) = 0p(1), T2 F'Y! \MwY_,1 F) = Op(1) and
T32(F'Y!, MwY-1(I,, A”)) = 0p(1).
By a similar argument, we see that
(8 - Br)'D*MD*(8 - Br) = 0. (B.39)
Moreover,

(8 — Br)'D*N1D*(8 — Br) (B.40)
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= (y-4p)TO/2-2) (T"(3/2‘2°‘)(Q‘lUOIMWY_lF) ® Ir) Km-ry(a — a7)T1~®
+(a = a7) T K gm_r) (T~ /22U (FYL MwUPQY) @ 1) (y = 3r)T/27)
2o,
since Lemma 2 and the condition 0 < a < 1/6 together imply that
T-G12=2)(F'Y! My UQ™Y) = 0,(1) .
(B.38)~(B.40) establish that
(8 — Br)' (e4(6°) + Vr)(B - Br) B 0. (B.41)
Combining (B.26), (B.27), (B.37), and (B.41), we have that ‘
er(8) = er(Br) = 3((B - Br) H(Q™ @Y., MwY-1)H'(6 - Br) + e ()],
where e7(8) © 0 uniformly for 8 € N(3°, 67). Using this expansion, we can write
Iy = (27) 242 =) explor(Br)} (B.42)
X /N oy P {-3B=BryHQ @Y/ \ MwY-1)H'(8 — Br) +er(8)] } dB
= (2m) 2P e {er(Br) } exp{—05(1)}
<o e {38~ B HQ @Y M Y-0) /(8 - r))} a8

= [ e {-HE - Ay HQ © Y M Y0 H (5 - r)]}dB .
N(ﬁov&r)c
To show that the last integral vanishes, we define the hypersphere
S(8,br) = {B=(a,7) : lla= I/} + |1y —°I2/8% < 1}
where by = T° with s > 1.
Observe that

/ exp {-31(8— Br) B ® Y.\ MwY-1)H'(8 - Br)l} a8 (B.43)

N(B0,61)¢
J exp {~3[(8 - BrY H@ 1 @Y/ \MwY-1)H'(8 - fr)] } dB

S(B%,br)NN(BO,67)°

1 _ANEFO-1 ! T _ A
+/S(ﬂ°,b7')°nN(ﬁ°,6T)° exP{ (6= BV HQ @ Y2, MwY-1) H (5 ﬁT)]} db

sup  (exp{=3{(8 ~ Br) H(' ® Y., Mw Y1) H'(8 — Br)]})
BeN(80,61)°
X (Clb:(TZmr—r2) _ C25;§~m—r)612r¥)
[ exp{=3(B- bV HQ @Y. MwYa) H (5~ Br)l} df
S(B0,br)e

= 51 (say),

IA
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where Clb(z""' ™) and C26'(m ')6 T denote the generalized volume of the hyper-
sphere S(ﬁ0 br) and the ellipsoid N (ﬁo , 1), respectively.
Let D* = diag(T' I (m—y), VTI,,,) and note the following

(l) For all g€ N(ﬁo 57)°, (8= Br)D*|* = | T(a — a7)|2 + I T**(y — 47) |1
> T?(2mr — 12 + 0p(1 )) where a > 0

(i) D*'H(Q ' @ Y! ;MwY_,)H'D*?
(' 1PQT~*(F'Y! MwY_1F)) (I“Q“@T—W(F'y;l MwY-1(I j’y)
(Q—lr“@(lr,f)T—s/z(Yiley_lF)) (Q*‘@(IT,XI)T‘l(YLI MwY_x)(Ir,i')')
= 0p(1)
(i) and (ii) imply that
(B—Br)HQ ' @Y, MwY_1)H' (8~ Br)
(8- Br)D*D* T HQ ' @Y, MywY_1)HD* "' D*(8 - Br)

—p-)OO

and hence,
S1=o0p(1) . (B.44)

Putting (B.26), (B.42), and (B.44) together, we get the approximation

-1/2

Iy = (20 TRl TR @WW] VA @ Y My Yo
] }+0p

x exp { —36r[Q71(AY ~ Y1/, (Br)") Mw(AY - Y_1J.(Br)

Now, take

I = 3 (Tm=mip=2mrtr?) oy (07(6)}d8
N(B9,67)°

where
exp{r(f)} = (2n) TRl T2 @ WW| T/
x exp { —itr[Q 1 (AY — Y_ ([, TA")Y Mw(AY — Y_1(I',TA")")]
2
= (2n) 2 @m=m0)|Q-T20- @ W'W|~ 2 exp { - Ltr[Q ' AY My \AY
2 wy_.y)
x exp {~ Q7 (D, TA') — J,) Y M Yoo (T, TA) — Ju)']}

and where J, = AY' MwY_1(Y' ;MwY_1)"!. To show Ig 2,0 as T - o0, we again
introduce the hypersphere S(3°, br) as previously defined. Observe that

= (2m)"3(Tmt2mr=—r)|~T/2|-1 @ W'W|~1/2 exp {—ltr[ﬂ‘IAY’M(Wy_l)AY]}(BAS)

x /N . exp {~4trf (0, T &) = J)Y! M Y_1(T,TA) - 7)1} dB

C
St

= (2m) 2TM+2mr—r) O -T/210-1 @ W'W|~1/2 exp {—%tr[ﬂ'lAY’M(W,y_I)AY]}
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X =@ (0, TA) = JNY, My Y_((T,TA) = J.)V d
(/Iv(ﬁ(’&T)cﬂS(ﬁo,bT)exp{ 2 ) = T Mw s (0. DH) - 7)1} d

+ [ oy, @@ {3 N(OLA) = 2OV My Y- (T, DA) - )’]}dﬁ)

(2m) 3OO @ WV exp { ~ixi0 T AY My, AY ]}

IN

x (ﬁeNsig&T)c (exp {—%tr[a-l((r,m’) J)Y! My Y_1((T, F]l’)—f.)’]})

X(Clbg?mr—r) C r(sr(m r))
X @ ((r,TA Y\ MwY_((T,TA) - J,)]} d
[ o 0 {107 (O DA LY MY (0, 7A) - 1)) ﬁ)
= Sy (say).
Next, observe that

tr[Q (T, TA") = J)Y!, MwY_,((T',TA") = J, )
[vec((T, TA") — J)I (Y, MwY_y ® Q Y)vec((T,TA") - J!)
> 0

by the positive definiteness of (Y, MwY_; ® Q~1). Moreover

(0, A) = L)Yy Mw Y- (T, TA) = J.Y
= ((T,TA')—J,)PDD™'AY! \MwY_1AD™'DP((T,TA") - J,))

and
((0,TA") - J,)PD = ((T,TA") — (T°, T°A%))PD + ((I°,1°A”) — J,)PD .
By the arguments of Lemma 5
((0,TA) — (I, T°A%))PD = [TT°(A— A% Py + T(T" — T°)(A — A% Py, TY2(D — 1)
+T'2T% A — A% Py + TV/3(D = T°)(A — A°)' Pyy] .
Since for 8 € N(8°,67)°, |IT~I°|| > \/mrT~20-®) and || A= A°|| > \/r(m — )T~ (1-@),
we see that
((T,TA") — (I°, 1% A%)) PD diverges.
Also by Lemmas 2 and 4, we know
((r°,T°A”) — J,)PD = Op(1) and DAY/ \MwY_1A'D 1 = 0,(1) .
Hence, by the continuous mapping theorem, we deduce that

tr[Q~ (T, TA) = J)Y  ; MwY_1((C,TA) = J,)] & oo (B.46)
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and therefore
I5CT < S2 = Op(l) .

Thus far, we have shown that for e > 0

P (|07 (Mp, |, Y) ~ Br(Mp,|Q V)| < €|GT) — 1 85 T — 00 .

Finally, note that by the consistency of 37 and the definition of &1
]P(,BT € N(ﬁoa(sT)) —1 )

or equivalently,
P(G%) — 0.

Hence,
P |07 (My, |0, Y) = Tir(Mp,|Q, Y)| < ¢
= [1=P(G)P (|Ir(Mp,IQ,Y) — (M|, Y)| < €lGT)
+B(GO)P (|Ir(Mp,-|Q,Y) — Dr(My, |2, Y)| < €|GY)

— lasT —oo. O

PROOF OF COROLLARY 3.4
Since by Theorem 3.3

Or(Mpr|Q,Y) [Or(M;7Q,Y)
HT(MP,TIQv Y) ﬁT(Mp,rlgy Y)

it is sufficient that we show here that
I (M;;Q,Y) / r(M;;Q,Y)
Or(Mp-|Q,Y) / r(Mp.|Q,Y)
To proceed, write
1 (Mp7|Q, Y) /ﬁT(M,—,,;@, Y)
HT(Mp,lﬂ,Y) HT(Mp,,lﬂ,Y)
= 10 @WE)WE): /I @W(p)W(p)? x
0 @ WE'WE) " /107 @ W) W(E)|F
-~ _ f -~ 1
[H(p,r)(2} ® V.1 Mugny Y-1) H(p, 7|7 /
|B(p, )@ @ Y.y My Y1) H(p,r)|7 x
97 @Y. My Ya| ™ /107 @ Y. My Ya| 2

exp {Jie @71 = 070 vr) — L)Y M Yoa o)~ 200}

P
—lasT — o0,

BlasT > 0.

exp {-;—tr [(Q_l _ ﬁ—1)(j*(p*)W(pt)lM(y_Lw(p))W(pt)j}(pa)/] }
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Note first

0 @ W)W ()7 /|0 @ W(p)W(p)|: (B.47)
|Q|_%mp/|ﬁ|_%m” BlasT — o0
by the consistency of ) and the Slutsky Theorem. Similarly, we deduce that as

T — o0

o oW EWE) T /07 e W' WE) T S (B.48)

and
07 @Y. My Y1| 7% /107 @ Y My Yoa| 2 B (B.49)

Next, we write

H(p, ) @Y.\ MymY-1) H(p, 7|

= [Bp,n)'Q ' T(p,r) ® F(r)Y. 1 My Y-1 F(r)|
Q71 ® (I, A(p, 7)Y 1Mw<p)Y (I, Ap,r)')) —
(@7 F(p,7) ® (I, Alp, 7)) Y. 1 My Y1 F(r)) (B(p, 7/ p,m) ©
F(r)'Y. ; My Y-1 F(r) " (D(p, r)'Q @F(r)'y 1My Yo1(Ir, Alp, 7))

= [F(p, "' T(p,r) ® F(r)'Y 1 My Y-1 F(r)|
1071 ® (I, Alp, 7))L 1 Mugy Y=1 (I, Ap,7) )| (1 + 0p(1)

X
)

Since |H(p, r)(1 @ Y_Ile(p)Y_l)ﬁ(p,r)l can be written similarly, we see that

B (p, )@ ® Y. My Y-1) H(p,)'|7 /
| Hp,r)( @ @ Y., My Y1) Hp,r) |}
= |(p,ryQ ' T(p, )@F(r)Y \ My Y1 F(r)]
IT(p, 127 0, 7) @ F(r)' Y. Mgy Yo F ()|~ 3
071 ® (I, A(p, ))Y. lewY (I, Alp, 7YY |(1+ op(1)) /
97 ® (I, Alp, 7)) Y. 1 MupyYo1(Ir, Alp, 7)Y |(1 + op(1))
= 0@,y ' T(p,n)IE™ /1B, r) Q' T(p, )2
1737 /10737 (14 op(1))

[

It follows from the consistency of Q) and the Slutsky Theorem that as T' — oo

B, ) @Y.\ My Y-1) H(p 7|2 / (B.50)
H(p,n) (@' @Y1 Mug)Y. 1)H< )'|% 1
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Finally, note that under the null hypothesis that the cointegrating rank and the ECM
lag order equal r and p respectively, we have by Lemma 5 that

(Ja(p7) — Ju(p))Y. 1 My Yo1(Ju(p,7) — Ju(p))' = Op(1)

and
J* (P*)W(P*),M(y_l,w(p))W(P*)J* (p*)l = Op(l)

It then follows from the consistency of Q and the continuous mapping theorem that
as T — o0

exp {%tr (@7 =) 7) = HP)Y 1 Mgy Yo (Falp,T) - f*@”']} =1
(B.51)
and

! - Q-1 J*(p* * *\ TH(, ¥
eXp{?r (@7 = Q)T W (") My, won W (07) T (0 )’]} %1 (B52)
Putting (847)7 (B'48)) (B49)7 (B50), (le), and (852) together, we dedu(;e the

result . N N
I (Mpr|Q,Y) / Hr(Mp72,Y)
HT(MW |Q, Y) HT(Mp,r|Qa Y)

via the continuous mapping theorem.

P lasT >0
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