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0. Abstract

This paper studies the use of the Jeffreys’ prior in Bayesian analysis of the simultaneous
equations model (SEM). Exact representations are obtained for the posterior density of the
structural coefficient § in canonical SEM’s with two endogenous variables. For the general case
with m endogenous variables and an unknown covariance matrix, the Laplace approximation
is used to derive an analytic formula for the same posterior density. Both the exact and the
approximate formulas we derive are found to exhibit Cauchy-like tails analogous to comparable
results in the classical literature on LIML estimation. Moreover, in the special case of a two-
equation, just-identified SEM in canonical form, the posterior density of 3 is shown to have
the same infinite series representation as the density of the finite sample distribution of the
corresponding LIML estimator.

This paper also examines the occurrence of a nonintegrable asymptotic cusp in the posterior
distribution of the reduced form parameter 11, first documented in Kleibergen and van Dijk
(1994). This phenomenon is explained in terms of the jacobian of the mapping from the
structural model to the reduced form. This interpretation assists in understanding the success

of the Jeffreys’ prior in resolving this problem.



1. Introduction

In Bayesian analyses used for scientific reporting, it is often necessary to specify a noninfor-
mative prior or a prior which expresses the notion of “knowing little.” While there is a general
consensus that no prior distribution can be completely uninformative and that no unique mathe-
matical formulation exists for the idea of “knowing little” a priori, empirical investigators faced
with a situation of vague initial knowledge often use either the diffuse (uniform) prior or the
Jeffreys’ prior. In the standard linear regression model with exogenous regressors and Gaussian
disturbances, there is less controversy over the choice of a noninformative prior. Here, the Jeffreys’
prior ¢s uniform on the coefficients of the model. Moreover, it is well-known that a diffuse-prior
Bayesian analysis in this case leads to the same inferences from the data as those obtained from
classical maximum likelihood procedures, albeit with different interpretations.

In the transition from the linear regression model to a simultaneous equations setting, the is-
sues surrounding the use of these priors become more complicated. For a s{multaneous equations
model (SEM) the uniform prior and the prior derived from Jeffreys’ rule do not coincide. More-
over, in this case, Bayesian analysis using the diffuse prior does not provide the same inference as
the classical maximum likelihood procedure. Pioneering work by Zellner (1971) and Dreze (1976)
showed that under a diffuse prior, the marginal posterior of 3, the vector of coefficients of the
endogenous regressors in single-equation analysis of the SEM, belong to the class of poly—t distri-
butions. This posterior distribution has moments which exist up to (but not including) the order
of overidentification. On the other hand, the analyses of Mariano and Sawa (1972), Mariano and
McDonald (1979), and Phillips (1983a, 1984, 1985) made clear that the finite sample distribution
of the LIML estimator of § has Cauchy-like tails. Finally, in a stimulating paper, Kleibergen
and van Dijk (1994) (hereafter KVD) reported how various pathologies in the marginal posterior
distributions can arise from the naive use of the uniform prior. Taking the Tintner meat market
model as an example, KVD point out that under the uniform prior, the posterior density of 3 (in
their case, the coefficient of the price of meat in the demand equation) is nonintegrable in the case
of just identification. They also showed that a diffuse prior is highly informative about certain
reduced form parameters in the SEM as it leads to a nonintegrable joint posterior distribution
with an asymptotic cusp.

As an alternative to the diffuse prior in situations of vague initial knowledge, KVD propose

the use of the Jeffreys’ prior, which they showed to effectively resolve the second problem (i.e., it



does not give rise to asymptotic discontinuities in the posterior distribution of the reduced form
parameters). While KVD has shown that the use of the Jeffreys’ prior can help one avoid some
of the problems of a diffuse-prior analysis of the SEM, properties of posterior distributions under
the Jeffreys’ prior are still not well understood for this model. The purpose of the present paper
is to contribute further both to an understanding of the consequences of the use of this prior
in Bayesian limited information analysis of the SEM and to its implementation in this context.
Our main focus is in the derivation of exact and (asymptotically) approximate representations for
the posterior density of 3. Exact calculations are given for some special cases which have been
extensively studied in the classical literature on the exact finite-sample distributions of the LIML
estimators. Our results indicate that the use of a Jeffreys’ prior brings Bayesian inference closer
to classical inference in the sense that this prior choice leads to posterior distributions which also
exhibit Cauchy-like tail behavior. In fact, for the important subcase of a just-identified model in
canonical form (which we explain below), we find the posterior density derived under the Jeffreys”
prior to have the same functional form as the density of the exact finite s;anmple distribution of
the corresponding LIML estimator given in Mariano and McDonald (1979).

We also derive an asymptotic formula for the marginal posterior density of 3 in the general
case where the Jeffreys’ prior is applied to a mode]l with an arbitrary number of endogenous
regressors and with arbitrary degree of overidentification. This asymptotic approximation can
serve as an easy-to-implement alternative to Monte Carlo integration for empirical investigators
wishing to conduct a Jeffreys’-prior Bayesian analysis of the simultaneous equations model.

A final objective of this paper is to provide an alternative explanation for the existence of
the aforementioned nonintegrable asymptote in the posterior distribution of certain reduced-
form parameters. KVD explained that this pathology is caused by the need to integrate out
unidentified nuisance parameters during the process of marginalization. We show that in the case
of just identification, the occurrence of the asymptote arises from the jacobian of the mapping
from the structural model to the reduced form. Seen from this perspective, the Jeffreys’ prior
with its invariance properties provides a natural solution to this problem.

The organization of this paper is as follows. Section 2 sets up the model to be examined.
Section 3 provides a discussion of the Jeffreys’ prior in the context of the simultaneous equations
model. Section 4 presents, for a two-equation system, some exact calculations of the posterior
density of § conditioned on the elements of the error covariance matrix of the reduced form.

Section 5 gives an asymptotic approximation to the marginal posterior density of § in the general



case where the number of endogenous variables in the model and the degree of overidentification
are both arbitrary. Section 6 puts forth an alternative explanation for the occurrence of noninte-
grable asymptote in the posterior distribution of certain reduced-form parameters. We make some
concluding remarks in Section 7 and leave all proofs and technical material for the appendices.
Before proceeding, we briefly introduce some notation. In what follows, we use tr(-) to denote
the trace of a matrix, |A| to denote the determinant of a square matrix A, and r(II) to signify the
rank of the matrix II. The inequality “>0" denotes positive definite when applied to matrices;
vec(-) stacks the rows of a matrix into a column vector; P, is the orthogonal projection onto the

range space of X; and Q; = I — P;.

2. The Model

Throughout this paper, we shall be concerned with the following limited information formu-

lation of the m-equation simultaneous equations model:
n =Y+ 2Z1y+u, (1)

Yo=21111+ 2,1 + Vs, (2)

where y1 (T x 1) and Y5 (T x n) contain observations of the m = n + 1 endogenous variables of
the model; Z1(T X ki) is an observation matrix of exogenous variables included in the structural
equation (1); Zy (T X k2) is an observation matrix of exogenous variables excluded from equation
(1); and u and V4 are, respectively, a ' x 1 vector and a T X n matrix of random disturbances
to the system. Moreover, let u; and UIQt (1 x n) denote, respectively, the tth element of u and the

tth row of V5, and we make the following distributional assumption:

V2t
t=1

T
[”t} ~iidN(0,) , (3)

where ¥ is a symmetric m x m error covariance matrix which we assume to be positive definite.

We often find it convenient to partition ¥ conformably with (ug vy, ) as follows:

o1 Oy
= . 4
(U 21 222> @
Under the normality assumption (3), the likelthood function for the model described by equations

(1) and (2) can be written as



L(B,7, 113, T, BIY, 2) = (2m) ™8]/ exp{~ (5™ (s, Vo) (u, V)], (5)

where ¥ = (yl,Yg) and Z = (Zl,Zg).
The structural model described by equations (1) and (2) can alternatively be written in its

reduced form:

Y1 = 2171 + Zowy + vy (6)
Yy = Zi 1) + ZoTly + Vs | (M

where v; = (v11, ..., V14, -.., vlT)' is a T x 1 reduced-form random disturbance vector. In addition,
the distributional assumption (3) and the triangular structure of the system described by (1) and
(2) imply that

T
H ~ AN (0,9), (8)
Vot =1
where
w11 w’21
Q= >0. 9
<w21 Q22> ©)

Postmultiplying equation (7) by 3 and subtracting it from equation (6) yields the identifying

restrictions which connect the structural and reduced form parameters:

m—ILiB=7, (10)
T —8=0, (11)
> =BQB, (12)
where
1 0
B_<_ﬂLJ. (13)

Observe that in the absence of restrictions on the covariance structure, equation (1) is fully
identified if and only if r(Il) = n < ko, which is assumed.
The identifying restrictions above suggest another useful representation of this simultaneous

equations system, which we write as



y1=Z1(IL1 8+ 7) + Zo1l8 + vy (14)

Yo = 2111 + ZoIly + Vs (15)

This form of the model highlights the fact that the SEM can be viewed as a multivariate (linear)
regression model with nonlinear restrictions on some of the coefficients. Under condition (8), the

likelihood function which corresponds to this alternative representation has the form:

* —im —_ l —
L*(6,v, 101, T, QY, Z) = (2m) T 2107 P exp{ 5 tr(Q7 (0, V2) (01, )]}, (16)

where v; and V; are given by equations (14) and (15). The likelihood functions (5) and (16) are,
of course, equivalent as a simple algebraic manipulation shows.

Let 0* and w* be m(m+1)/2 x 1 vectors comprising, respectively, the nonredundant elements
of ¥ and Q. The transformation (8,7, vec(Il})’, vec(Ily) ,o*) — (8,7 ,vec(Il}) , vec(Ily) ,w*')’
is one-to-one and differentiable and has a jacobian of one. Hence, the marginal posterior density of
the structural parameter § will be the same regardless of whether we use the likelihood function
(5) and marginalize with respect to 7,II;,II, and & or use the likelihood function (16) and
marginalize with respect to v, 1I;,Il, and Q.2 Writing the likelihood function as (16), however,
is especially convenient if we wish instead to derive the posterior distribution of § conditioned
on the elements of the reduced-form error covariance matrix Q. In particular, as we shall explain
in Section 4 of this paper, we will be interested in obtaining the posterior density of 3 for a
simultaneous equations model in canonical form, i.e. a SEM as described above, but with the

additional specification that

w11 w’21 10 )
Q= = ) 17
<w21 922> (0 I (17)
To complete our specification, we make the following assumptions on the sample second mo-

ment matrix of Z:

T2 Z=Mp>0 VT (18)

and

Mr - M>0 as T — o0 (19)

2We thank an anonymous referee for emphasizing this point in his report.



Conditions (18) and (19) are standard in classical analysis of the simultaneous equations model.

Condition (19), in particular, is needed for our use of the Laplace approximation in Section 5.

Also, in some cases, we shall impose the stronger condition
77,2, T'Z,2, [Ikl 0

77 = , 12 ] VT, (20)
T-1Zy2, T 1Zy7, 0 Iy,
and we shall refer to a SEM which satisfies (20) as an orthonormal SEM. Phillips (1983a) gives

details of the standardizing transformation which lead to (17) and (20).

3. Jeffreys’ Prior for the Simultaneous Equations Model

Our main interest is in the study of posterior densities which arise from the use of the Jeffreys’
prior. We start by giving a description of this prior. Expositions of the Jeffreys’ prior and its
properties can be found in the writings of many previous authors (see, for example, Jeffreys (1961),
Zellner (1971), Phillips (1991), Kleibergen and van Dijk (1994), and Poirier (1994)), and we will
confine our discussion here to what is relevant for our subsequent analysis.

Let L(A|X) be the likelihood function of a statistical model fully specified except for an 'un-
known finite-dimensional parameter vector § € ©. If we set Igg = —E{(6%/806')In(L(]X))},
then the Jeffreys’ prior density is given by ps(6) o |Ise|'/?. An explicit formula for this density
for the model described by equations (1) and (2) under error condition (3) was derived by KVD?.
We restate their result here for later reference and give the simplification for the case of just

identification.

3.1 LEMMA: The model described by equation (1) and (2) under error condition (3) implies
a Jeffreys’ prior of the form:

ps(8,7, 101, Ty, £) o oy |20 [~ 2+m42|1T, 70 0 4. 21T, |2, (21)

where k = ki + ko. When the model is just identified (i.e., IIy ts a n X n square matriz and

r(Ily) = n = ky), the Jeffreys’ prior is simply:

pJ(/B771H17H2aE) & |2!—1/2(k+k2+2)ln2i' (22)

3 Actually, the expression for the density of the Jeffreys’ prior (expression (50)) given in Kleibergen and van Dijk
(1994) contains some typographical errors. The correct expression was given in an earlier version of their paper,

Kleibergen and van Dijk (1992).



3.2 REMARKS

(i) An important feature of the Jeffreys’ prior (and, in fact, the primary motivation for its
development by Harold Jeffreys) is that it is invariant to any differentiable 1:1 transformation of
the parameter space in the sense that if ¢ = f(0) is one such transformation, then |Ip9|"/2df =
14| /2do, see e.g. Zellner (1971, p. 48).

By making use of this equivalence, we can readily deduce from (21) the form of the Jeffreys’
prior density for the alternative parameterization of the SEM given by equations (14) and (15) un-
der error condition (8). Let 6 = (8,7, vec(Il1)’, vec(Ilz)",0*') and ¢ = (8,7, vec(ITy)", vec(Il) , w*')

where o* and w* are as described in Section 2. Since the transformation ¢ = f(0) is one-to-one

and differentiable, we have

Tool/* = 1Tao"?1J|
= Jon 2D DT, 20Q 7, 20T 2|
= |wi — 2wy, B+ B QB2 k2| B QB2 2T 2 Q 4 74T, |2 )
= |wii — Zwy B + B Qaa 8|2k~ 5+t |1, 70 Q 5. 71 TTo| M2, ('23)

where J = (00(¢)'/0¢) is the Jacobian matrix of the transformation ¢ = f(#), and where the
last equality follows from the fact that |B| = 1 and |J| = 1 due to the triangular structure of the
SEM considered here.

(ii) It is also of interest to derive the Jeffreys’ prior density for an orthonormal simultaneous
equations model in canonical form, i.e., a SEM which satisfies the additional conditions (17)
and (20). To deduce the Jeffrevs’ prior density for this model, we first deduce the form of the
Jeffreys’ prior for the slightly more general case where we condition on an arbitrary reduced-form
error covariance matrix 2. It is most convenient here to work with the representation given
by equations (14) and (15) with error condition (8). To proceed, partition ¢ = (qS'l, ¢'2)', where
d, = (8,7 ,vec(Ily) ,vec(Ilz)") and ¢ = w*, and note that in this case, the information matrix is
block diagonal with respect to this partition, viz., Iy = diag [Is,6,, Ip,6,]- Simple computations
find the marginal Jeffreys’ prior for Q to be p;(Q) x| Q ]_%("”). The conditional Jeffreys’ prior

density given Q must then be of the form

pr(8,7, I, Ia|Q) o | Iy, M2
& | win — 2wm B+ B Qoo |52 QT Z5Q 7, Z1 Lo |



o | win — 2wy B+ B Q9o |25 (T, 25,Q 7, Z4 Ty | /2 (24)

It follows immediately that for an orthonormal SEM in canonical form, the density of the Jeffreys’

prior is given by

ps(B,7 ML, IL|Q = L) o |1+ G 83k~ TT,1T,) /2. (25)

4. Exact Posterior Analysis

We present here some exact formulas for the density of the posterior distribution of 3 condi-
tioned on the elements of the reduced-form error covariance matrix 2. While Bayesian inference
s typically based on the marginal, and not the conditional, posterior distribution, our purpose for
deriving this conditional density is twofold. First, as explained in Remark 4.4 (iv) below, knowl-
edge of this conditional posterior density provides useful information about the tail behavior of
the (unconditional) marginal posterior distribution of 3. Secondly, in the case where Q is known,
as in the case when the SEM is in canonical form, the conditional posterior density of 3 given
(2 is also its marginal posterior density. Since simultaneous equations models in canonical form
have been the subject of intense study in the classical literature on the finite-sample distributions
of single-equation estimators?, our analysis here allows us to compare Bayesian results based on
the Jeffreys’ prior with results from sampling theory. We summarize our results in the theorems

and corollary given below.

4.1 THEOREM: Suppose the likelihood function is given by a special case of expression
(16), where the number of endogenous variables is two, i.e., m = 2, and where the model is just
identified so that ky = 1 and IIy # 0. Then, the conditional Jeffreys’ prior density given the

elements of the reduced form error covariance matriz ) is of the form

ps(8,7, 111, I[Q) o |TIy| (26)

Moreover, under the prior density (26), the conditional posterior density of B given Q is of the

form

4See, for example, Mariano and McDonald (1979), Phillips (1983a, 1983b, 1984, 1985, 1989), and Choi and
Phillips (1992).



1 & (1/2)wiiao1(B)
2 Y -

where wy12 = w1 — wd fwa, ¢o(B) = B2 — 24215+ €L and ¢,(0) = (ﬁ - m)zy’l(Pz — Pz

w22 w2’ w22
2
+2(8-22) (22 - 218) 4 (P — Pa)ys + (22 — 226) 1h(Pz — Pg,)ys, and where (a); is
Pochhammer’s symbol, i.e.,
()i = (a)(a+1) - (a+i—1), for i>0
= 1 for i=0.

4.2 THEOREM: Suppose the likelihood function is given by a special case of expression (16);
where
(1) the number of endogenous variables is two, i.e., m = 2; and
(ii) the model is overidentified of order one, so that ko =2 and the 2 X 1 parameter vector
O # 0;
Then, the conditional Jeffreys’ prior density given Q is of the form

ps(B, 7, T, T2 |Q) o] win — 2oy B + wao B2 2|T1,Z5Q 7, ZoTIs| /2. (28)

Let D be a 2 x 2 matriz defined by
Z4Qz,Zy = DD/,
and let

p / 111
L=Y Qz2:2,Qz2,)"'D = (ln l12> . say.
21 622

Then, under the prior density (28), the conditional posterior density of § given Q is

oo 3+1

p(B10,Y,Z) o o(B) 1+ 3> C(, Do (B) U+ Do (8)0 1 gs(3), (29)

7=01=0
where ¢o(B) is as defined in Theorem 4.1 and where

b(0) = (8-22) 1% +2(8 - 2) (2 - 216) luin

+ (“’—u - mﬂ)ngl ,

w22 w22
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a(0) = (8-2)' 1% +2m en) (8 — 26) 1yl

wyr ) \wa2  wa2
wil w2
+ (wzz w22ﬂ> 122 ?

. %43\ [ 1\ _un/2G+1 .
C(j,1) = <2j n 2) (ﬁ)wll(.J2+l)< (]21 )) G2 +1-1),20),

with
2+ _ _ (2G+1)!
21 2G+ 1=
and
([ [27! 1425 ] for r=2,4,6
1:[0 (2—}—2]) s=0
. for r=0
or r=|
G(r,s) = kl_=[0 (5527) 5=2,4,6,...

for r=246,...
5=2,4,6,...

=0 =0 k=0

5-1 $-1 S
TI (1 +2i) ‘H(HQJ)}/[ T (2+ 2Kk)

4.3 COROLLARY:

(a) Let the likelthood be the same as in Theorem 4.1 but with the additional assumptions that
the exogenous regressors are orthonormal as in condition (20) and that the model ts in canonical
form, i.e. Q is a 2 X 2 identity matriz. Then, under the Jeffreys’ prior, ps(B,7,111,1I2) o |2,
the marginal posterior density of B is of the form

1 o] 9 1+ﬂ,3 21
p(BlY,Z) x ;r-exp{ B (1+ 3?) /2}§ 1//2) 1+ﬁ2)1)+1’

(30)

where i = yy(Pz — Pz,)y2 = #y:Z2Zbys and B = (y3(Pz — Pz,)y2) 'ya(Pz — Pz)y1 =
(y2Z22Z4y2) Y222 2y

(b) Suppose the same likelihood function as in Theorem 4.2 but with the additional assumptions
that the exogenous regressors are orthonormal and that the model is in canonical form. Then,
under the Jeffreys’ prior, py(8,7,1I1,IIa) o |1+ B%|Y/2|I,T02| /2, the marginal posterior density
of B is of the form



11

oo j+1

p(BIY, Z) o ¢*(8)"1 +3_3 " D5, 0)¢5(8) " g5(8) 0D e3(8)Y, (31)

7=01=0

where

6B = 1+p%
(f);(ﬂ) = y/1PZ21y1ﬂ2 + 29/1P221y2ﬂ + y/2P221y2 )

58) = YiP2uy1B® + 2\ Pz, y28 + ¥4 Pzynye

_ 25 +3\/ 1\ —rn (206 +1 .
D(j,l) = (m) <ﬁ)w11(.]2+1)< (21 ))G(2(3+1—l),21),

and where Zz1 and Zay are the orthonormal columns of the T x 2 matriz Zy so that Pz, =

T"1Z21Zél and Pgz,, = T‘lZggZég. All other symbols are as defined in Theorem 4.2.

4.4 REMARKS:

(i) Note that the conditional posterior densities given in Theorems 4.1 and 4.2 have Cauchy-
like tails of order O(|3|72%) as |B] — oo. It follows that these densities are proper (i.e., integrable)
but have no finite integer moment of positive order. Note also that the densities (27) and (29)
have similar tail behavior in spite of the fact that the former arises from a just-identified model
while the latter arises from a model that is overidentified of order one.

(ii) For simultaneous equations models in canonical form, the marginal posterior densities
(30) and (31) follow as special cases of the conditional posterior densities (27) and (29). Hence,
they are also characterized by Cauchy-like tails and the nonexistence of positive integer moments.
The tail behavior shown here is markedly different from that of the marginal posterior density
of B when a diffuse prior is applied to the canonical model. The latter posterior density is
nonintegrable in the just-identified case but has moments which exist up to but not including the
order of overidentification for models with positive order of overidentification®. Interestingly, the
same nonexistence of positive integer moments is also observed in finite-sample distribution of the
classical LIML estimator of 3. There, too, the Cauchy-like tail behavior persists for overidentified
models.

(iii) For the just-identified canonical model considered in part (a) of Corollary 4.3, the corre-

spondence between the Jeffreys’-prior Bayesian results and the classical LIML results goes beyond

5In an earlier version of our paper, we derived for a canonical model the exact expression for the marginal
posterior density of 8 under the diffuse prior. This result is omitted here because of its similarity with the more
general derivations of Dréze (1976) and Kleibergen and van Dijk (1994) but can be obtained from the authors upon

request.
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just tail behavior. The posterior density (30) has, in fact, precisely the same functional form as
the exact expression for the density of the finite sample distribution of the LIML estimator given
in Mariano and McDonald (1979). (See equation (3) of that paper.) Of course, the interpre-
tations given in the two cases are different. Expression (30) denotes the density function of a
random parameter J conditional on the data, while Mariano and McDonald (1979)’s result gives
the probability density of the LIML estimator 3 conditional on a certain parameter value. This
correspondence is the analogue for the simultaneous equations model (given Q) of the equivalence
between the probability density of the maximum likelihood estimator and the Bayesian posterior
density of the coefficient vector in the linear regression model given the equation error variance.

(iv) From the conditional posterior density (29), we can deduce that the marginal posterior
density of 3 under the Jeffreys’ prior has no finite integer moment of positive order for the model
considered in Theorem 4.2. To see this, note first that, as discussed in Section 2, the marginal
posterior density of 3 derived from using the likelithood function (5) and marginalizing with
respect to v, I, Il, and ¥ is the same as that derived from using the likelihood function (16)

and marginalizing with respect to v, II;, Ilz, and Q. Proceeding in the latter manner, we have

JBrp@r.zas = [165 | [Py, z)ae s
R R :@ i
= 18| [ P@I0.Y,2)P(@1Y, 2)d0 ds
R :@ .
- / 8 / P(BIQ, Y, Z)P(QIY, Z)d| dB
S ]
~ / P(Q)Y, Z) L/ G5P(BI0, Y, Z)dB] d
- G

where © is the space of all 2 x 2 positive definite matrices and where interchanging the order of
integration is justified by the Tonelli theorem. Thus, the nonexistence of integer moments for the
condition;?posterior distribution of 3 given 2 implies that the same moments would not exist
for the marginal posterior distribution of 3 either. Note further that the model considered in
Theorem 4.2 is assumed to be overidentified of order one. Hence, this example also shows that

the nonexistence of posterior moments of positive integer order under the Jeffreys’ prior is not



13

particular to just-identified models.®

(v) Observe that the models considered in Corollary 4.3 are assumed not only to have or-
thonormal exogenous regressors but to also be in canonical form, While these models can be
viewed as interesting special cases of the more general simultaneous equations model discussed
in Section 2, they typically occur as the result of applying certain standardizing transformations
to a SEM in general form. (See Phillips, 1983a, for details.) In the case where transformations
are needed to bring about an orthonormal canonical structure, the parameters of the transformed
model are functions of the parameters of the model before transformation. These transformations
are useful because they reduce the parameter space to an essential set and identify the critical

parameter functions which affect the behavior of the statistical model.

5. Posterior Density of § in the General Case

The exact results of the last section were derived for special cases of the simultaneous equations
model presented in Section 2. In this section, we study the general case where the number of
endogenous variables and the order of overidentification are left arbitrary. For this case, the exact
expression for the marginal posterior density of § under the Jeffreys’ prior cannot be so readily
obtained. Hence, we follow Phillips (1983b), Tierney and Kadane (1986), and Kass, Tierney, and
Kadane (1990) in using the Laplace’s method to deduce an (asymptotically) approximate formula
for the marginal posterior density of 3. (Appendix A has a formal statement of the version of the

Laplace approximation that we employ here.) We summarize our results in the theorems below:

5.1 THEOREM: Let the likelihood function be given by expression (5) and suppose that the
rank condition for identification is satisfied so that r(Ily) = n < ky. Suppose also that conditions

(18) and (19) are satisfied. Then, under the Jeffreys’ prior (21):

p(BIY,Z) ~ K|S+ (8~ Pors)YsQzY2(8 - Bors)| 72"V
122590 Qa0 = 18) ™ gy 7y (32)

(y1 — Y28) Qz(y1 — Y28)

5Tn the most recent version of their paper, Kleibergen and van Dijk (1996) make the claim that the posterior

density of 3 has moments which exist up to and including the degree of overidentification. The main reason for
the discrepancy between our results and that reported in their paper is the difference in the priors used in the two
analyses. While our prior is the conventional Jeffreys’ prior , their prior arises from the application of Jeffreys’
rule to each of the conditional / marginal likelihood obtained in factoring the joint likelihood into a sequence of

conditional and marginal likelihoods.



where S = yllQ(yzyz)yl and BOLS = (Y2'Q21Y2)‘1Y2'Q21y1 and where

—_ 1 /
K = (271_){(k1m+k2n)/2+m(m+l)/4} exp{*‘z‘TmHYz(PZ _ PZI)YQP/Q

’ 1 / _T
Y, QzY2/TI" 2 [9,Q vy, 201 /T1 7 2, (33)

HBY.7) - -W=Ya0) Qs - Yi0)
- —Y28) Qz(y1 — Y28))?

(1

{( - Y20) Qz(y1 — }EEQSLS))Q +

(y1 — YaPasts) (Pz — Pz,)(y1 — YaPasrs) X

(y1 — Y28) QzYa(Yy (Pz — Pz,)Y2) 'Y, Qz (11 — 3’2,5)} , (34)

and where “

~” denotes asymptotic equivalence in the sense that A~ B if A/B — 1 as T — oo.
The approzimate posterior density (32) has Cauchy-like tails, i.e., it is integrable but has no finite

moment of positive integer order.

5.2 REMARKS:
(i) It is clear from the proof of Theorem 5.1 (see Appendix B) that the tail behavior of the

approximate posterior density (32) is determined by the factor

1S+ (8- Bors) YaQz,Y2(8 — Bors)| "1™V,

which is, in fact, proportional to the pdf of a multivariate Cauchy distribution. Note further that
the conditions of Theorem 5.1 require only that the model satisfies the rank condition for iden-
tification; and, hence, the Cauchy-tail property of (32) holds regardless of whether the model is
just- or over-identified and, in the case of overidentification, regardless of the order of overidenti-
fication. Moreover, the analysis of the previous section indicates that the nonexistence of positive
integer moments for the overidentified case here is not an artifact of the Laplace approximation
but a characteristic of the marginal posterior density of 3 under the Jeffreys’ prior. Similar tail
behavior is also observed in the exact finite sample distribution of the LIML estimator of 5 in the
general case where the number of endogenous variables and the order of overidentification are left
arbitrary. (See Phillips 1984, 1985.)

(ii) While the Laplace approximation is generally not invariant to reparameterization, it should
be noted that in the present case, it does not matter whether we apply the Laplace’s method to
the parameterization given by equations (1) and (2) with likelihood function (5) or the parame-

terization given by equations (14) and (15) with likelihood function (16). To see this, note that
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by arguments similar to that outlined in the proof of Theorem 5.1, we can show that under the
latter parameterization, application of the Laplace method results in the (approximate) posterior

density

pBIY,Z) ~ K*© — 2058+ B Q0085 |Op|~ F
7 22Q2, ZoThor |2, (35)

where K* = (2r){(Frmthen)/2+mm+1)/4} oy, T /91 and where or and

~ o &

O = A21
W1 Qoo

are the MLE’s of the parameter matrices IIz and Q. Making use of the well-known invariance of

maximum likelihood estimators to smooth one-to-one transformations of the parameter space, we

can further show that

Q7] = |(B)'SrB7Y
= [Zp]
= [%QzYa/Tl[1Q v, 2y, /T
|1 = ¥28) @z, (1 — Y2)] / [0 - ¥28) Qz (31 — ¥26)] (36)
G1 — 20918+ B Q| = 511
= |5+ (8- Bors) Y2QzY2(8 - Bors)l, (37)
and
HyrZyQz, ZoTlar| = |Ya(Pz — Pg,)Ya||S + (8 — Bors) YaQz Ya(8 — Bors)|
|H(B,Y,Z)|, (38)

where B is as defined in expression (13) and S, Bors, and H (8,Y,Z) are as defined in the body
of Theorem 5.1. From expressions (36)-(38), it is easily seen that (35) is, in fact, equivalent to
the approximate posterior density (32) given in Theorem 5.1.

(iii) An advantage of the formula given in expression (32) is that it can be implemented quickly
and easily on a PC with only a few lines of computer code. Hence, it serves as a useful alternative
to the more time-demanding Monte Carlo integration for empirical investigators who wish to

conduct a Bayesian analysis of the simultaneous equations model using the Jeffreys’ prior.
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6. The Kleibergen/van Dijk Problem Revisited

KVD showed that the posterior density of II = (II{, II;)’ under a diffuse prior has a nonin-
tegrable asymptote along the path where II; = 0. They argued that this pathology is caused
by the fact that to obtain the marginal posterior of II, one must integrate with respect to the
conditional posterior density of 8 which is improper under a diffuse prior along the subspace
where 3 is unidentified, or equivalently, where II; = 0. KVD further showed that the use of the
Jeffreys’ prior successfully removes this undesirable asymptote. Here, we show that in the case
of just identification an alternative explanation for this phenomenon can be given in terms of
the jacobian of the mapping from the structural model to the reduced form. Our interpretation
illuminates the role which the Jeffreys’ prior plays in resolving this problem.

To proceed, let us briefly review the problem as presented in KVD. Consider the model
described by equations (1) and (2) of Section 2. For ease of exposition, we shall discuss only the
two-equation case, but the same conclusion can be drawn for the general m-equation case using a
similar analysis. From expression (5), the likelihood function for the two-equation model can be

written as:

L(B,v, Iy, I, ZJY, Z) IE]_T/Z exp {——%tr[E"l(u, v2)'(u, Uz)]} .
Combining this likelihood with the diffuse prior
p(B,7, Iy, My, ) o< |T|742
we get, after marginalization, a posterior for IT = (II}, II,)’ of the form:
(I, alY, 2) o (g2 ~ Z10) (32 — Z10) + (I - 11 2/ Z(11 — T)| 2T+
X [ 25Qy, 4, 2,) 22Ty "2 (THI=F1—0)
X IHIQZQQ(yz,Zl)Z2H2‘%(T+d_kl—5)
= |(y2 — Z10)'(y2 — Z10) + (I — 11) Z' Z(T1 — II)| Y/ AT+d-9)

x G(Ily, y1, y2, Z), say, (39)
where II = (Z2’Z)~1Z'yy. Equation (39) is a restatement of equation (18) in KVD. Note that the
posterior density (39) is nonintegrable as a result of the presence of the asymptote at IIy = 0. In
the just-identified case, equation (39) reduces to

p(Iy, I2lY, 2) o |(y2 — Z10) (y2 — Z10) + (I — T0) 2 Z (11 — T0)| /20 +e=4)| 1y =2
= prs(l, IL|Y, Z)|T, | (say), (40)
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where II2 is a scalar parameter here. We see that (40) is simply the marginal posterior of I =
(IT}, II3)', derived from a diffuse-prior analysis of the reduced form model given by expressions
(6)-(8), multiplied by the extra term |II|~!. The factor |IIo|~!, which causes the nonintegrability,
is the jacobian of the transformation (3,v')’ — (w7, 72)’, as is apparent from equations (10) and
(11).

An alternative interpretation of this problem can be obtained by noting that the assumption

of a diffuse prior on (8, v/, I;, IIz)" automatically implies a prior on (], T2, Iy, TI2)’ of the form:

P(Wl, T2, Hla H?) X p(ﬂ/)’a Hla H?)Ia(ﬂv 7/71_[,17H2)//6(7r177r2aH’17H2)11

= ||t . (41)

In this sense, the nonintegrability can be viewed as a pathology brought about by the implicit
specification of a peculiar prior on the reduced form, which gives infinite density at the point
IT; = 0. Hence, a seemingly uninformative diffuse prior on the structural model turns out to be
highly informative about the reduced form. Moreover, specifying a diffuse prior on the structural
model in this case is not in accord with the principle of “data-translated likelihood” as put forth
by Box and Tiao (1973). Recognizing that a uniform prior under one parameterization may not be
uniform under a reasonable reparameterization of the model, Box and Tiao (1973) argued that a
uniform prior should be used for that parameterization in which the likelihood is “data translated”
— l.e., a likelihood that is in location form in terms of sufficient statistics. Their justification is
that for a “data translated” likelihood, different samples will change only the location, but not
the shape, of the likelihood. For such a likelihood, being noninformative a priori means assigning
equal prior density at all the possible locations, resulting in the specification of a uniform prior.
In the case of the simultaneous equation model, it is the likelihood of the reduced form model,
not the structural model, that is “data translated.” Hence, according to this theory a uniform
prior should be specified on the reduced form. The implied prior on the structural model then

becomes:

p(ﬂa’)’a Iy, H?) = p(ﬂ-h w2, I, HQ)]a(ﬂJl) T2, Hll’ H2)//6(ﬂ77/7 Hllv Hz)ll
o |y - (42)

Comparing expression (42) with (22), we see that in the just-identified case, (42) is simply the

marginal prior on (8,+,1I;,II2)’ which results from application of the Jeffreys’ rule.
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7. Conclusion

This paper studies the use of the Jeffreys’ prior in Bayesian analysis of the simultaneous
equations model. Exact representations of the posterior density of the structural coefficient 8
were obtained for two-equation versions of the canonical SEM and were found to exhibit Cauchy-
like tails, much like the density of the finite sample distribution of the classical LIML estimator.
Indeed, for the special subcase of a two-equation, just-identified SEM in canonical form, we found
an exact correspondence between Bayesian results based on the Jeffreys’ prior and classical LIML
results as obtained by Mariano and McDonald (1979). In the general case with m endogenous
variables, an arbitrary order of overidentification, and an unknown covariance matrix, we derived
a Laplace approximation for the posterior density of §. This approximate posterior density also
has Cauchy-like tails, even in the case of overidentification. Again, this mirrors exact results for
the classical LIML estimator.

This paper also revisits a problem, studied by Kleibergen and van Dijk (1994), which shows
that the application of a diffuse prior in the simultaneous equations model results in the presence
of a nonintegrable asymptote in the posterior distribution of the reduced form coefficient I along
the subspace IIs = 0. In the case of just identification, we interpret this pathology as arising from
the jacobian of the mapping from the structural model to the reduced form. This perspective
helps in understanding the role of the Jeffreys’ prior in resolving this problem.

Our paper does not attempt to settle the larger question of which prior best embodies notions
of objectivity and noninformativeness, nor does it wish to advocate the automatic use of the
Jeffreys’ prior. Our view is that, in simultaneous equations models, application of the Jeffreys’
rule provides empirical investigators with an interesting reference prior in situations of vague
initial knowledge and helps to avoid some of the pitfalls of a mechanical use of uniform priors in
this context. Proceeding from this standpoint, we have sought to gain a better understanding
of some of the consequences of a Jeffreys-prior analysis of the SEM. It is hoped that such an

understanding will help to promote the prudent use of this prior in empirical research.

Appendix A

This appendix gives two results which are used in Appendix B.

Lemma Al: Let {gr(61,62)} be a sequence of real functions on © = ©; x O3, where O and
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O2 are open subset of RP' and RF?>. Consider the multivariate integral

1(6,,T) = /@2 exp{TgT(Gl,0;)}h(91,92)d02. (43)

Suppose in addition that the following conditions hold:
(a) gr(61,02) and h(81,62) are twice continuously differentiable with respect to 65 on the
parameter set ©q;
(b) for each 61 € ©1, {gr(61,-)} have local mazima {f27p(61)} so that
Ogr (01,821 (61))/80, = 0 and gy (61, 027(81))/ 80206, is negative definite;
(c) for any € > 0 and for each 01 € Oy, define B€(§2T(01)) to be the open ball of radius €

centered at Oy (6y), and we have

limsup su ~ ~
S O‘; 921) {or(61,62) — g7(61, 87 (61)) : 02 € © — B.(Bar(61))} < 0. (44)
Then,
1(0,,T) ~ (2n/T)"exp{Tgrb1,0r(61)) } (61, Bor (61))
1/2
{det[ —0%gr(61,027(61)) /392392]} (45)
where “~7” denotes asymptotic equivalence in the sense that A~ B if A/B —1 as T — oo.

Proof: The result follows from minor modification of the proof of Theorem 6 of Kass, Tierney,
and Kadane (1990). See also the more general arguments presented in Phillips and Ploberger
(1996).

Lemma A2: Let A be a T x T real symmetric positive semidefinite matriz such that r(A) =
T —1 for some integer | satisfying 0 <1 <T. Then, for any T x 1 vector = not in the null space
of 4,

A < (46)
where A\jy1 and A are respectively the smallest and largest positive eigenvalues of A.

Proof: The proof follows as in the derivation of the Rayleigh quotient.

Appendix B

© Proof of Lemma 3.1
See Section § of Kleibergen and van Dijk (1992) for an outline of the derivation. The just

identified case follows immediately from expression (21).
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Proof of Theorem 4.1

The prior density (26) follows almost immediately from expression (24) of Remark 3.2 (ii)
since in this case kg =n =1 and II; is a scalar parameter so that ps(5,v,II;,II5|Q) o |IIy|.

To compute the conditional posterior density given by (27), first combine the likelihood func-

tion (16) with the prior density (26) to form the joint posterior density:

1 /
p(8,7,Ih, L[Q,Y, Z) o [Mp|exp{—5tr[Q7 (v1, V2) (v1, Va)l}, (47)

where from equations (14) and (15), we have v; = y; — Zy(I[; 8 +7) — Z2I103 and Vo = gy —
Z1I1; — Z,II,. Note that [ is a scalar in the present case and, hence, the parameters v and II; can
be integrated out in the usual manner, i.e. by completing the square for these parameters in the
exponent of (47) and making use of the fact that the density of a multivariate normal distribution
integrates to one. (See, for example, Kleibergen and van Dijk (1994) for details). Performing

these steps leads to the conditional posterior density of 3 and II5 given Q, ,viz.,

§(6, Tl Y, 2) o« [Tal exp{~3 ol BTG ~ 261z + ), (48)
where
vo(B) = wily (B2 — 2828+ 1) 2)Qz, 25, (49)
¥1(8) = iy (B 22) viQz Zo + (2 — 228) 1hQ2. 22 , (50)
o = Wiy <y'1Qzly1 - 2%91@2&2 + @;1/2@2&2) . (51)

To integrate (48) with respect to Ilp, let u = —(o(B)II3 — 2¢1(B)Iz + ¥2) and then du =
(—=o(B) Mz + 11 (B))dIlz. Note that e“du = (—tho(8)y + 11(8)) e M2 dII,. Hence, the density in

(48) can be written as

—edu )] i (8)
Yo(B)  o(B)

W) gy — €0 1(B) umy)
|H2| e dlls ¢o(ﬁ) ¢o(ﬁ) e dlly, TI; <0 (53)

|| e“T2)gTT, = M2 dIT,, 11y >0 (52)

Thus,
JZ 1T e M2)dITy
—0o0 u "lw U B) poo _u(IL P1(B) 0 I
= g T, it g SR e du+ B o exdr, - Y8 (0 Mgy,

= #@exp{—%wz}+@%ﬂexp{ 92} exp{3(1(8)) %o(8) ™'}
1(B)/¥0(B)/? o~ 1/2w? g
fo ’ (54)

ORE
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where w = (IIz — ¢o(ﬂ)—1¢1(5))¢0(ﬁ)1/2'

Now expand exp{%—(i/n (8))%¢0(8)~1} and exp{—%wQ} as power series and (54) can be rewritten
I J
woem exp{—g¥2} + ;%?T)zexp{—%’p? [Z ( ) < ¥(8)) ¥o(8)” ) ]

$1(8)/vo(B)? X, /1 0N
x UO g(ﬂ <—5> w dw} (55)

Integrating (55) with respect to w and regrouping the summation signs, we obtain

(e}

roni-bol { s S5 [(3) () ()

(3757 a8+ +2n(e) 2]}, (50)

Note that integration term by term above is justified by the absolute convergence of the series

involved, which allows us to reverse the order of summation and integration. Changing the

summation index from j to & = j + [, we can then rewrite (56) as

9 ol — 1 1 = 1 /1\F %-+2 —(k+2)
xp(—4va} | +zk,( ) Wa(8)**wold)

k=l

k k!
g ((k - 11)1!( 1 2z }
1

oo k
_ pexpl zwz}[ 52 (5) e e

4k (k1)
((2k+1)!)}’ (57)

which simplifies to
o0 k+1 2(k+1)
2€Xp{ 2¢2}{ 1 +Z(1/2) (wl(ﬂ)) :I

Y(B) = (1/2)k41(vo(8))5+2) (58)
Changing the summation index from & to i = k+ 1, we can rewrite (58)
1 o~ _(1/2)(yu(B8)*
2exp{—5¢2} LZ; (1/2)i(7/’01(ﬁ))i+1:I
o~ (1/2)wriy(61(8))'
= emaowliv) E) D) ] | )
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where the last equality follows from the fact that

@B _ -1 (61(8))°
(o8N~ “12 (go(B) T

and where ¢1(8), ¢o(8), and (1/2); are as defined in the body of the theorem. Finally, multiplying
(59) by (1/2m)wits exp{iys}, we have

(1/2)Zw1_112(¢1(ﬂ))i
PAILY, Z) o ; 2608

Proof of Theorem 4.2

The prior density (28) follows immediately from expression (24) since in this case ky —n = 1.
To obtain the conditional posterior density (29), note that by well-known arguments, alluded to
above in the proof of Theorem 4.1, we can derive the conditional posterior density of (3, II2) given

Q as

(B, |0 Y, Z) o wi1 — 2wyy B + woo B V2|, DD Ty |2

]. 7 7 7 !
exp {—5 [§o(ﬂ)H2DD H2 — 2(51 (ﬂ) D H2 -+ 52} } (61)
where
8(8) = wily B -2 p 4 L), (62)
22 w92
§1(8) = wilyD’ [(z;czzl 22" 25Qzu (8 - 22
’ w
202,27 23Qz (22 - fﬁlﬂ)] (63)
w2 w2
f = wiy [yllelyl - 2—y1Qzly2 + —yzQzly:z] - (64)
w22 W29

Next, consider integrating (61) with respect to II. To do so, write

_[6208)]  fwna(hi(B - 22) + (B - ;ﬁ%ﬂ))}
61(6)—[‘522([3)} Lulz( 2(B — 22) + loa (21 — 223)) (65)

where ;; is the (4, 7)th element of the 2 x 2 matrix L = Y'Qz, Z2(25Qz,Z2)"'D. Let I, = D'TI,

and note that the integral of (61) with respect to IIy can be equivalently written as

2 1/2
/ / wéé w%{z )1/2|H2 +H22‘1/21Dl !

exp {—5 [50(@(1121 +Tlg) — 2(611 (A) o1 + 612(5)Thaz) + 52} } dlldTl,  (66)
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where IIp; and IIp, are, respectively, the first and the second elements of the 2 x 1 vector Ils.

Changing the integral (66) to polar coordinates, we have
2
A O
o Jo
exp { =3 [80(8)(r = 80(8) ™ (511(9) 005+ 6u(B) 612(6) sin )] } x
1 /
exp { 5 [59(8)7(511(8) cos 6 + 81a(8) sin 6)? — ] } \D'|~1drd. (67)
First, consider the integral

| rsnipt e {—% [50(8)(r = &0(8)™(612(8) cos 6 + 612(8) sin 6)?] } dr,  (68)

and make the substitution u = r — (§(8) 71611(8) cos 8 + o(B) ~1612(83) sin 6), which leads to

* 2 1/2 1 2
[ gy o008 2 exp { ~580(8)u?

+263(8,9) /oo ubo(3) UQGXD{—%%(B }
+(&(5,00° [ jw) 5o(0)!/*exp { —5 60(B)u } du, (69)

where 83(8,0) = (8o(8)"1611(8) cos @ + 60(B)~1612(8) sinf). Note that the first integral in (69)
can be integrated by parts while the second integral can be integrated by making the substitution

w = —6p(B)u?/2. Hence, we can rewrite (69) as

2%3‘((5)“9/‘)“ exp {~550()(82(8,0) } + [(a(8,6))* + 80(8) ] x

[ /0 ~ 80(8)2 exp { -%50(@13} du + / P (@ exp { —%60(B)u2} du} . (70)

_63(ﬂ70)

[ 5ol exp {~2sulpe } tu= 1[5

and expanding exp {—%5O(ﬂ)u2} as a power series and (70) has the form

‘203((55—"3)2 exp {“%W) (63@,0))2} + \/§ [(62(8,6))* + 6ol

@07 o] [ e [0 e

—83(5,6) i=0

Note that the power series inside the integral above is absolutely convergent, and integrating term

Now,

by term in (71), we obtain

St} s

+ [(85(8,0))%60(8)"/2 + 50(8) 2] Z[( 1) l,w (83(8,0 )>2i+1/<2i+1)] (72)

=0
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In view of (72), we can rewrite (67) as

K [ soor 0,000+ 5 [ [\/§ a(8,0)% + 50(8) ")
+ ([83(8,0)* 80(8)/2 + 60(8) /2 [ 6o(ﬁ (838, 9))21+1/(21+1)}

1
exp {580(8)(52(8,0))7 ] (73)
where K = w%élel{élDl |~ exp {—%52}. Expanding exp {%60(@(53 (3, 0))2} as a power series and
recalling that §3(8, 6) = 6o(3)~!(611(8) cos 8 + §12(3) sin ), we can further write (73) as

K [/27( 80(B)™*2(611(B) cos 6 + 515(8) sin §)d8
/ ZZAW (80(B))~CFHI+5/2)(6,1(B) cos 6 + 612(8) sin §) 2 +27+34p

=0 j=0

+ /2Tr i i A3 (80(8)) "D (611 () cos 6 + 61(8) sin )2+ dp
0 ;=0j=0
+ /OQW S B3 (60(8))" 02 (613(8) cos 0 + 612(8) sin 6"+ Vg
j=0
+ /027r i B; (50(ﬁ>)—(j+1)(5ll(ﬂ) cos 6 + §12(83) sin 6)% dQJ , (74)
j=0

. 11/1 1 L VT (1 i+3
A= 057 (2) <2z'+1)’a“dB g <5> '

Noting that the first integral in (74) integrates to zero and applying the binomial theorem to

where

the last four integrals, we have that (74) is equivalent to

2w 90 X 2i+25+3
T

=0 j=0 1=0

2t +27+3 P4 9713)—
( 7 l] )611(ﬁ)(2z+2]+3) 1612(6)1

(cos §)+2+3) =1 (5ip 9)1} o

or 00 o0 o 20-4+2j+1 % 4+ 9741 o
S ADBIHCICIR LIS ( B )611(@(2”2””-1612(@’
=0 j=0 =0

(cos 0)(Z+27+)~(5in 9)‘] df

o OO 2(5+1)
+ / 3" B (60(8) "0+ Z ( )5 (8)25+D=15,15(8)! (cos 6)20+ D~ (sin §)! 48
0

oo

"'/%ZB;((SO —(+1) i( )611 B)%771819(3)! (cos )P~ (sin §)*d (75)
0 j=o0 1=0



25

Again, the absolute convergence of the series in (75) permits the order of summation and inte-
gration to be interchanged and, thus, term-by-term integration. Integrating each term of (75)

involves integrals of the form

m=0,1,2,..

2w
™ g sin™ 0 df.
/o cos rem for 01,2, ..

When either m or n is a positive odd number or when both are positive odd numbers, we have

2
cos™ @sin™ 0df =0 (76)
0
Otherwise, by the Wallis formula
2w
/0 cos™@sin™ 0df = G(m,n), (77)
where
2 for m=0,n=0
5 1425 f 2,4,6
or m=24,86,...
G(m,n) =< __ .
o 2k or n=24,6,...
I G{‘ﬁ)} 2 for
-1 3-1 s
[T (+2) 11+ Qj)} (27r)/ [1 (2+2k)| Jor mEaao.
| i=0 7=0 k=0 150

Making use of (76) and (77), we can integrate (75) with respect to # to obtain the conditional
posterior density of 3 given Q) in the following infinite series representation:

oo Jj+1

p(BINY,2) o 35" Croo(B)T0H ey (8)20F 0 615(5)*
j=01=0
oo J
+ 303" Dido(8)"9 511 (8)2 N 612(8), (78)
j=01=0

where

= B (Q(j; ”) G2l +1-1), %),

* * 2j .
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Collecting terms of the same power and noting the relations, ¢o(8) = wi1.200(8), ¢2(8) =

w11.2612(0)? and ¢3(B) = wi1.2620(B)?; we can rewrite (78) in the form given in the theorem.

Proof of Corollary 4.3
To show part (a), note that the assumptions of orthonormalization and canonical covariance

structure imply that expressions (49) and (50) can be simplified to

Yo(B) = (L+69T, (79)
V(B = [BZwi + Zoys) = {B 2L 1) Zyyo = [BB +1] Zuse, (80)

where B = (yoZ2Zqy2) " e Z2Zyy1. Moreover, it follows from (79) and (80), and the definitions
of ¢o(3) and ¢1(3) in Theorem 4.1 that in the present case,

$o(B) = (1+ 5%, (81)

and

7B _ w(B)”
58~ lf)

L2 Zo Zoyo F2(1 + BB)>
(1+3?%) (1+p2)

where fi? = (1/T)yyZ2Z4y2. Substituting (81) and (82) into (60) and noting that wj;'y = 1 in

(1+58)?* = (82)

this case, we have

« L S /2 55 (83)

p(BlY, Z) (1/2 1 +ﬂ2)z‘+1 :

=0

Finally, multiplying (83) by exp {—ﬁ2(1 + ﬁ)2/2}, we have the desired form

(72791 3\ 2
(/BlY Z) x —eXp{ 1+,@) /2}20 Eq/é)z)(i _:-Bg)ﬁ:ly (84)

To show part (b), note that again under the assumption of orthonormalization and canonical
covariance structure, we have ZéQ 72,4 = DD =TI, implying that D = VTI,. Moreover, under
the same assumptions, L = Y Qz, Z2(Z9Q 2, Z2)~ 1D = T~Y/2Y' Zy. It follows that l;; = #y;Zm,
lig = 71—7—4/1222, lo1 = %y,ngl, and g9 = —j—fy'QZgg. Upon substituting these expressions into the
definitions of ¢2(3) and ¢3(3) in Theorem 4.2 and noting that ¢o(3) = 1+ 32 in the present case,
we can deduce the posterior density (31) from the general expression in equation (29) of Theorem

4.2.
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Outline of the Proof of Theorem 5.17
To derive (32), we make use of Lemma A2. First, write the Jeffreys’ prior density (21) in the

form

ps(B, 7 M1, )« |2,21(%(25Qz, Zo|3TAm0m g3
1 (g 1 '
’Ulllz(kg n)lz' 2(k+m+1)|HQZQQzlz2H2ll/2
— CJ'011|%(k2—n)!E ——é—(k—f—m—f—l)

,25Qz Z1L[Y?  (say), (85)

which includes a constant of proportionality c; that was omitted in expression (21)%. Combining

the Jeffreys’ prior density (85) with the likelihood function (5) gives us the joint posterior density

p(B,7, I, 2, DY, Z) o clop|3tem|g|m3THhtmt T 72 0 ) 7,11, /2

exp{—5 (S (u, ) (1, 1) (36)

We further define 6; = 3, 65 = (v, vec(Il;), vec(Ily),o*')', and

g7(01,60) = 3 || = Zer{S o, V) (s, ), 1)

h(61,62) = |on1 l%(krn) IEI_%(H"LH) 115,25Q 2, ZoT15|*/?, (88)

where, as before, 0* denotes the vector of nonredundant elements of the m x m matrix .
Observe that g7 and h are both twice continuously differentiable with respect to 7, vec(Ily),
vec(Ilz),and o* on the parameter set Oy = 6, x O, x O, x O3, where ©, = RF Op, = Rhin,
©r, is the subset of RF2™ where r(II3) = n < ko, and Oy is the subset of R™™ consisting of all the
positive definite m x m matrices®. Moreover, since g7 is simply the log-likelihood function divided

by T', the maximum of gr given 3 is attained at the MLE of 4,11, IIy, and  given 3. From the

"To save space, we only give a sketch of the argument here. Detailed derivation is available from the authors

upon request.

8Since the constant of proportionality for an improper prior density is arbitrary, its inclusion or omission is
unimportant from a decision-theoretic viewpoint. We choose to include the constant here because writing the prior
density this way allows for a cancellation of factors later on and, thus, greatly simplifies the form of the final

posterior expression.
®Note that k is not differentiable on the set of parameter values of Il such that r(II2) < n. However, this set of

parameter values is not a part of our parameter set ©, since we have assumed in Section 2 that our model satisfies

the rank condition for identification.
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results of Anderson and Rubin (1949), we have the following formulas for the ML estimators of
v,1II;, Iz, and X given 3.
i1 = (2,207 Z1(n ~ o),

07 = (2,21)7 2, Y2 — (2,21) 71 2, 22(24Q 2, Z2) "  Z3Q2, (Y — (w1 — YaB)5y /511),

o7 = (Z25Q2,22) "1 Z4Q 2, (Ya — (y1 — YafB)5sy/511), and

P ~!
o~ 011 021
ET = ~ y
021 L2
where

G = (y1 — Y28) Qz, (v — Y28)/T,

5 W1—Y20) Qz, (11 — Y20)

a- (y1 - Yg,@),QZ(yl - Yzﬂ) YQQZ(yl - Y2ﬂ)/T,

Sy = Y,QzYa/T +
(1h — YaB) (Pz — Pz,)(y1 — Y218)
(y1 — Y28)' Qz(y1 — Y28)

Now it is well-known that under conditions (3), (18), and (19), (37, 11 7, Iy, £7) is the unique

Y5Qz(y1 — Y2B)(y1 — Y2B) Q2 Ya.

global maximizer of the function gr given 3, from which it follows immediately that conditions (b)
and (c) of Lemma A1 are satisfied in the present case. Hence, we deduce the following approximate
marginal posterior density of 3
p(BIY.2) ~ Keglgn] 2 |Sp| -2 Tk, 700, ZoTyr 12
| — 0%gr(61,021(61))/ 86200, ~1/2, (89)
where
1
K = (Qﬂ./T){(k1m+k2n)/2+m(m+l)/4} eXp{—iTm}. (90)
with some additional algebra, we have
~ ’ ’ m ’ _n.l
| = 8%97(61,027(61))/00:06| 7Y% = |2, 21/T\"%|2,Qz,22/T|"523™
IiTlé(kl+m+l)I§22‘llk2/2

= {(kimtken)/2+m(m+1)/4} c}l

lall|_k2/2|§Tl%(k+m+l)’ (91)
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To put (89) in a more revealing form, note that we can write

Tyr2,Qz, Zollor = biz{d- ZZ +b2 (G- ee’ /d]}
= G{l,—(G' e /d, —(d/b* )G f)(e, f)

~ N~

7

2 (92)

where b = (y1—Y28) Qz(y1-Y28), d = (11 —Ya8) (Pz—Pz,)(y1—Y28), e=Y,(Pz—Pgz,)(y1~Y20),
F=Y,QzY2f — [Y2Qz 11 — (b/d) e], and G = Y,(Pz — Pz,)Y2. It follows that
Mor22Qz, ZoTlor[V? = |GV = (G e /d, (—d/¥)G" f)(e, ) |2
IGIV2|I2 — (e, /) (GT" e /d, (—d/bP)G™* f)I/2, (93)

Explicit computation of the determinant on the right-hand side of expression (93) gives the result

57 20Qz, ZoTlor|Y? = |Y3(Pz — Pz,)Ya|Y3|(y1 — Y28) Qz, (y1 — YaB)| "2 x

(811 :}}zg))fgj@(il_—y?ﬁﬁ);z ((yl ~Y28) Qz(y1 — Y2325Ls)) :
(y1 = Y28) @z (y1 ~ ¥25)

(11 = Y2B)' Qz(y1 — ¥28))
x(y1 — YaB) QzYa(Ys (Pz — P2)Ys) ™'Y, Qz(y: — V2|

5(y1 — YabBasrs) (Pz — Pz,) (1 — YaBasts)

1/2
. (94)

where BQSLS = (YQI(PZ - PZI)YQ)‘IYQI(PZ — Pz )y1. In addition, we can write

$=(1/T)

b+d K +($)n
: : (95)

h+($) h Y2QzY2+ (%) hh
where b and d are as defined above and where }sz YQI Qz(y1 — Ya0). It follows that
b+d B+
h+() b Y2QzYa+ () hit
= |(b+d)/T||¥,QzY2/T|
1~ (@Y%) s (5) W) 1) /(b4 )
(0 +d)/T||Y2QzY2/T|

11~ (b, 1) (GQzY2) ™y (3) )/ + . (96)

£l = |(T)

i

Explicit calculation of the determinant on the right-hand side of (96) gives us, after simplification,

the result

2| = |¥2QzY2/T|ly1Qexv,2)¥1 /T

(1 = Y28)' Qz, (y1 — Y28) (97)
(y1 —Y2B)' Qz(y1 — YaB) |
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Making use of (91), (94), and (97), we can rewrite the (approximate) posterior density (89) in the

form stated in the theorem:

b, 2) ~ o -18) Qs -ves)| "
(12 = Y56) Q3 = 8) s
= %B Qi —%8) | F NI

= K|S+ (8—DBors) Y2Qz,Y2(8 — BOLS”—%(nH)

(1) = Y2B) Qz, (1 —YaB)| 2 12
(y1 — Y28)' Qz(y1 — Y28) [H(5,Y,2)] (98)

where K, S, Bors, and H(B,Y, Z) are as defined in the statement of the theorem.

To show that the posterior density (32) has Cauchy-like tails, we first obtain upper and lower
bounds for |H(B,Y, Z)|*/? and

L]

‘ (y1 — Y28)' Qz, (31 — ¥2)
(y1 — Y28)' Qz(y1 — Y20)

3

Note that

|H(8,Y, Z)|V? =
(1 — Y28)' Qz, (11 — Ya2B)
(31 — Y2B)' Qz(y1 — Y28))°
L = Y28) Qz,(y1 — Y2)
((y1 — Y28)' Qz(y1 — Yzﬁ))2
[(y1 — YaBases) (Pz — Pz,)(y1 — YQBQSLS)] I
(51— ¥20) Q2% (¥ (P2 — P2)¥s)'¥iQa(y1 —a8)]
(y1 — Y2B8) Qz(y1 — Y20)

[(y1 — YaBosts) (Pz — Pz,) (g1 — YQB?SLS)} l1/2

((91 —Y28) Qz(y1 — Y252SLS)>2

(1~ ¥28) QzY5(¥s (P7 — P2,)%2) Y2 Qz(31 — V28)]

1/2

- , ~ 1/2
> ‘/\min [(91 — YaPoses) (Pz — Pz)(y1 — YzﬁQSLs)” , (99)
where Ay is the smallest positive eigenvalue of the matrix Y5(Yy (Pz — Pz, )Y2)~1Y, and where

the last inequality follows from Lemma A2. Note also that

|H(B,Y,Z)|M?

(11 = Y2B) Qz, (41 — Y20) 5 v s
(r = Y2B) 07 (v — VaB) (1 — YaoPasLs) Qz(y1 — YaPasLs)

(y1 — Ya8) Qz, (y1 — YoB)
((y1 = Y28)' Qz(y1 — Y20))

3 [ = ¥28) Q2Ya(Y; (P7 — P2) Y)Y, Qz(11 — Yab)
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~ ’ ~ 1/2

[(2/1 ~Ya2B2s1s) (Pz — Pz,)(y1 — Y2ﬁ2$Ls)] }

1 N / ~

< ‘M —(y1 — Yafosis) Qz(y1 — YaBosLs)
min
\ R 1/2
+ <uméx> (1 — YaPosis) (Pz — Pz,)(y1 — Yabasis)| (100)
min

where Amax is the largest eigenvalue of the matrix Ya(Y,(Pz — Pz,)Y2)"'Y, and where pimi, is
the smallest positive eigenvalue of the matrix Q7. The first inequality above follows from the
Cauchy-Schwarz inequality while the second inequality follows again from Lemma A2. Finally,

note that

e}

(y1 — ¥28) Qz,(y1 — Y2)
(1 — Y2B8)'Qz(y1 — Y208)

where pimin is as defined previously and where .y is the largest eigenvalue of the matrix Q.

(,Umin > < (,U'max)T/Q, (101)

Making use of the inequalities (99), (100), and (101), we can bound the posterior density (32)

as follows
ot ' -~ 1o ! -~ —%(Tl-ﬁ-l)
Kmin [11Q(vs,2)¥1 + (B — Pors) Yo Qz, Ya(8 — ﬁow)'
=~ ~ 1ot ~ —l(n-i-l)
< E|nQuwzm + (8- Bors) Y2Q2,Ya(8 ~ Bors)|
T
(y1 = 28) Qz, (1 - YaB)| " ? 1/2
; H(B,Y,Z
1 (y1 —Y28)' Qz(y1 — Y20) (1, 2)
pyed ’ -~ 1ot ~ -—L(n—i-l)
< Kmax [11Q(v2,2)%1 + (B — Bors) Y2Qz,Y2(8 — ﬁOLS)' ? ; (102)
where
— ~ ~ ) ~ 1/2
Enin = K (tmin) ™/ Ain |01 = YaBasis)' (P7 - Pr) i - Vabases)]| ', (103)
Kmax = E(,Umax>T/2
1 ~ / ~
' ~(y1 — Y2B2s15) Qz(y1 — Y2PasLs)
N ~ 1/2
+ ( #mzfx> (W1 — Yaboss) (Pz — Pz)(y1 — YaoPests)| - (104)

and where BagLs is as defined in the body of Theorem 5.1. Note from (102) that the (approximate)
posterior density (32) can be bounded above and below by expressions that are proportional to

the density of a multivariate Cauchy distribution and, hence, the stated result follows.
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