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ABSTRACT

This paper considers tests for seasonal and non-seasonal serial correlation in time series and in
the errors of regression models. The problem of testing for white noise against multiplicative sea-
sonal ARMA(1,1)-~ARMA(1,1) alternatives is investigated. This testing problem is non-standard
due to nuisance parameters that appear under the alternative but not under the null hypothesis.
The likelihood ratio (LR), sup Lagrange multiplier (LM), and exponential average LM and LR
tests are considered and are shown to be asymptotically admissible for multiplicative seasonal
ARMA(1,1)-~ARMA(1,1) alternatives. In addition, they are shown to be consistent against all
(weakly stationary strong mixing) non-white noise alternatives. Simulation results compare the
tests to several tests in the literature. The exponential average test, Exp—LR, is found to be
the best test overall. It performs substantially better than the Box—Pierce, Durbin-Watson, and

Wallis tests.

KEYWORDS
Autoregressive moving average model, consistent test, Lagrange multiplier test, likelihood ratio
test, multiplicative seasonal ARMA model, nonstandard testing problem, seasonality, test of white

noise.



1. INTRODUCTION

There are numerous tests available in the literature for testing for nonseasonal serial correlation
and some available for testing for purely seasonal serial correlation. There are no tests available,
however, for testing for both seasonal and non-seasonal serial correlation — a scenario that is
likely to be common in practice. The present paper addresses this deficiency in the literature. It
develops tests that are désigned for a flexible class of time series models that includes pure seasonal,
pure non-seasonal, and, most importantly, partially seasonal-partially non-seasonal models.

Specifically, this paper considers tests of serial correlation that are designed for multiplica-
tive seasonal doubly autoregressive moving average (ARMA) models of order (1,1) under the
alternative hypothesis. It is natural to consider tests of this sort, because multiplicative sea-
sonal ARMA(1,1)-ARMA(1,1) models provide parsimonious representations of a broad class of
seasonal and non-seasonal stationary time series. The multiplicative seasonal model includes as
special cases the purely non-seasonal AR(1) and MA(1) models for which the Durbin and Watson
(1950) test is designed, the purely non-seasonal ARMA(1,1) model for which the tests of Andrews
and Ploberger (1996) are designed, and the purely seasonal AR(1) and MA(1) models for which
Wallis’ (1972) seasonality test is designed. It does not encompass the less parsimonious purely
non-seasonal AR(p) model for which the Box and Pierce (1970) test is designed.

Testing for serial correlation in a multiplicative seasonal ARMA(1,1)-~ARMA(1,1) model is a
non-standard testing problem, because the model reduces to a white noise model whenever the
AR and MA seasonal coefficients are equal and the AR and MA non-seasonal coefficients are
equal. In consequence, the testing problem is one in which a nuisance parameter is present only
under the alternative hypothesis. Davies (1977, 1987), Andrews and Ploberger (1994, 1995), and
Hansen (1996) have considered problems of this sort. The standard likelihood ratio (LR) statistic
does not possess its usual chi-square asymptotic distribution or its usual asymptotic optimality
properties (of the sort established by Wald (1943)) in such cases. Nevertheless, Andrews and
Ploberger (1996) show that the standard LR test and an asymptotically equivalent “sup” Lagrange

multiplier (LM) test do possess an asymptotic admissibility property. In addition, Andrews and



Ploberger (1994) derive a class of tests, denoted average exponential tests, that possess certain
asymptotic optimality properties for testing problems of the sort discussed above.

This paper proceeds in an analogous manner to that of Andrews and Ploberger (1996), which
considers tests of serial correlation in a purely non-seasonal ARMA(1,1) model. This allows us
to utilize proofs in the latter paper, which streamlines the exposition of the present paper. In
particular, this paper proceeds as follows. The results of Andrews and Ploberger (1994, 1995)
are general results that impose “high-level” assumptions. In this paper, we show in Section 2
that these results apply to the problem of testing for serial correlation in multiplicative seasonal
ARMA(1,1)-ARMA(1,1) models. We provide explicit expressions for the average exponential,
sup LM, and LR test statistics for the problem at hand. We then show that the corresponding
tests have the attractive feature of being consistent against all forms of serial correlation. In con-
sequence, the average exponential tests possess asymptotic optimality properties for a parametric
class of alternatives and the robustness property of consistency against all (weakly stationary
strong mixing) alternatives.

In Section 3, we derive the LR and LM tests, denoted LR; and LM;, for the multiplicative
seasonal AR(1)-AR(1) model. These tests are of standard type and have an asymptotic chi-
square null distribution. They are not, however, consistent against all forms of serial correlation.
In Section 4, we show that the tests introduced in Sections 2 and 3 apply to testing for serial
correlation in the errors of (non-dynamic) regression models.

Lastly, in Section 5, we compare by simulation the tests introduced in Sections 2 and 3 with
several tests in the literature. The exponential average test, Exp—LR., is found to be the best
test overall. It beats the LR test (for the ARMA(1,1)-ARMA(1,1) model) by a narrow margin,
the sup LM, LR;, and LM, tests by a wider margin, and the Box—Pierce, Durbin—Watson, and
Wallis tests by a very substantial margin.

All limits below are taken as 7' — oo unless specified otherwise.



2. TESTS OF SERIAL CORRELATION FOR
MULTIPLICATIVE SEASONAL ARMA(1,1)-ARMA(1,1) PROCESSES

2.1. Definition of the Model and Test Statistics

The model we consider here is the multiplicative ARMA(1,1)~ARMA(1,1) model:
(1= (ms + B)L*)1 = (7 + Br)L)Y: = (1 — 7, L°)(1 = mpL)e; for t=s+1,54+2,..., (2.1)

where {Y; : t = 1, ..., T} are observed random variables (rv’s), {¢; : t = 1, 2, ... } are unobserved
innovations, s (> 1) is the integer-valued seasonal period — usually 4 or 12, L is the lag operator
(i.e., LY; = Y;_1), m, and 7, are the non-seasonal and seasonal moving average parameters,
respectively, and 7, + 3, and 7s+ ;s are the non-seasonal and seasonal autoregressive parameters
respectively. We let
T = (Mn, 7s) and B = (B, Bs) - (2.2)
The parameter space for 7 is Il and for 8 is B. Throughout the paper, we assume Il and B are
such that the absolute values of the autoregressive coefficients 7, + 3, and 7 + 3; are bounded
below one, II is closed, and B contains a neighborhood of the zero vector. The former condition
rules out unit root and explosive behavior of {¥; : t =1, 2, ... }.
We are interested in testing the null hypothesis of white noise against the alternative of serial

correlation of {Y; : t =1, 2, ... }. These hypotheses are given by
Ho : =0 and H; : §#0. (2.3)

Note that when B = 0, the model (2.1) reduces to Y; = & and the parameter 7 is no longer
present. In consequence, the above testing problem is non-standard. Also note that when 3, = 0,
the model (2.1) reduces to a purely seasonal ARMA(1,1) model: (1—(ms+8s)L*)Y; = (1—-m,L%)ey
and the parameter 7, is no longer present. Similarly, when 35 = 0, the model (2.1) reduces to a
purely non-seasonal ARMA(1,1) model: (1 — (7 + 8,)L)Y; = (1 — my L)e; and the parameter
is no longer present.

Under the following assumption, we derive the standard LR, sup LM, and the average expo-

nential tests.



AssuMPTION 1: {g : t = 1,2,..} is a sequence of iid N(0, o2) rv’s for some 6% > 0 and

Y1, ..., Ys are non-random.

Model (2.1) and Assumption 1 are used to generate the test statistics of interest, but we consider
the asymptotic properties of these tests below under a much more general specification of the
distribution of the time series {Y; : ¢ > 1}. The assumption on Yj, ..., Y; is made for simplicity.
With some added complexity, we could assume {Y : t =1,2,...} is part of a doubly infinite
sequence of stationary rv’s that satisfy (2.1) forall t = ..., 0, 1, ....

The standard LR statistic equals minus two times the logarithm of the likelihood ratio. Be-
cause the parameter 7 only appears in the denominator of the ratio, the unrestricted maximum
of the likelihood function with respect to this parameter can be calculated after the ratio has
been computed for a given 7. That is, let LR7(7) denote the standard LR statistic for testing
Hg versus H; when 7 is known under the alternative to equal w. Then, the LR test statistic for

unknown 7 is

LR = SIelIPI LRr(w), where (2.4)
LRz() = T log(5*/3%(r)) ,
T"=T-s,
7’ = 5,0 Y
8%(r) = 2511 (Ve Bulm)Dau(ma) = Bu(m) Dau(ms) + Bu(m)Bu(m) D(r))
8(m) = (Balm), Bo(m)’
= argmin =X, (Yi = BaDie(mn) = B Dat(ms) + B Dau(m))”
Di(mn) = EiZfmiYioicn
Da(ms) = S5V Y

Day(r) = SG I b= Y i ama

and [-] denotes the “integer part of.” (By definition, D3y(7) =0 for t = s +1.)

The calculation of the LR statistic requires the calculation of 5(71') for each 7 € II. The latter



are nonlinear optimization problems. More specifically, they are linear regression problems with
three regressors and with the nonlinear restriction that the third regression coefficient equals the
product of the first two. One can obtain starting values, say 31 (), by computing the unrestricted
linear regression (i.e., regress Y; on Dj¢(7y), Day(7,), and Dsy(7)) and taking Ba(r) to be the
two-vector of least squares coefficients on (Dy4(7y), D2i(7s))'. Given these starting values, one
can compute B(w) using a standard local optimization routine, such as a Newton-Raphson algo-
rithm.

Note that the calculation of LR is simple if one has already computed the maximum likelihood
(ML) estimator for the multiplicative seasonal ARMA(1,1)~ARMA(1,1) model. In this case,
LR equals —2 times the logarithm of the ratio of the likelihood function evaluated at (§’, 7)
= (0, ..., 0) divided by its value at the ML estimates of (8, r). Equivalently, LR = LRr(7),
where 7 is the ML estimate of 7.

Next, we introduce a test statistic that is asymptotically equivalent to the LR statistic (see
Andrews and Ploberger (1994, Proof of Theorem A-1)), but that does not require the solution of
any nonlinear optimization problems. Obviously, this test statistic has computational advantages

over the LR statistic. This statistic is the sup LM statistic:

suprerp LM7(T), (2.5)
where for the present testing problem
! -1

Ly YEiZiriy; 1 .._7"_11;1_2_

« “t=s+1 t~;=0"n t—1—-1 '1—_-;‘,?; l_rnsws
LMr(7) = vT+ e " (2.6)

71]"=»ET=8+1K21.=0 71-;ift—is—s T‘_%?Z};? 1—_172‘

1
N %Etj;s'i'lytzf;gﬂ-;ift—i—l /5
Lt AR 0> s (RN

The term Dy4(m,) = EiZ27%Y;—;—1, which appears in the definition of LM7(r) and LRr(r), can
be computed recursively via the recursion Di3(m,) = Y; and Dyi(m,) = Yieq + 7 Dig—1(mn) for
t = 3..., T. The same is true for Dyy(ms). In consequence, LM7(7) can be computed using a

single do loop. The sup LM and LR statistics can be computed by grid search over = € II to avoid



errors in maximizing the functions LMy(7) and LRr(r), which can be multimodal (especially at
or near the null hypothesis, since 7 is unidentified under the null).

By verifying the conditions of Theorem 1 of Andrews and Ploberger (1995), we find that the
LR and sup LM tests satisfy the following asymptotic admissibility property. Let Power (¢, 8, 7)
denote the power of the test w7 when the true parameters are § and 7.

Let

1 ﬂ,a—l
1—1\'"2 1—1rn§’7r,7

I(r) = (2.7)

ﬂ,s—l 1
1—1\'3’#3 1—7\'2

Let U(-) denote the uniform distribution on the unit circle (in R?).

ProrosITION 1: Let {&r : T > 1} be a sequence of asymptotically level o LR or sup LM tests.
Under Assumption 1, given any sequence of asymptotically level o tests {or : T > 1} and any
probability measure J(-) on Il whose support is I, there ezists a constant r, j < 0o such that for

allr > r, y we have

lim / / Power(¢r, rZ~Y2(m)h/VT, 7)dU(k)dJ(7)

T=oc0

< TliTn:o//Power(fT, rI~Y2(x)h VT, w)dU(h)dJI(T) .
COMMENTS: 1. The result of Proposition 1 concerns the asymptotic local power of the LR and
sup LM tests since it considers parameter values § that are proportional to 1/ VT. Proposition
1 shows that the LR and sup LM tests beat any given test in terms of weighted average power
against alternatives that are local to, but sufficiently distant from, the null. The weighting is over
ellipses of 3 values and is with respect to an arbitrary probability measure J(-) on II.

2. Note that the stationarity conditions, |, + 8| < 1 and |7, + 8| < 1, are satisfied for
T sufficiently large in Proposition 1, provided II only includes 7, and 7 values less than one in

absolute value, since 8 = rZ~V/2(7)h/\/T.

Next, we discuss the average exponential tests that are introduced in Andrews and Ploberger
(1994). These tests are asymptotically optimal in the sense that they minimize weighted average

power for specific weight functions. The weight functions for the parameter 3 are mean zero



bivariate normal densities with covariance matrices proportional to a scalar ¢ > 0. For small ¢,
most weight is placed on alternatives that are close to the null. For large ¢, weight is distributed
more uniformly across  values. The weight function J for the parameter 7 is chosen by the
investigator. For the simulation results of this paper, we take it to be uniform on II.

For each ¢ € (0, o), the average exponential LM test statistic is given by
Exp~-LM.r = (1+ c)"l/Z/exp (% 1L+CLMT(7")) dJ(r), (2.8)

where LM7(r) is as defined above and J(-) is a probability measure on II, such as the uniform
measure. The average exponential LR test statistic, Exp—LR.r, is defined analogously with
LMy (r) replaced by LRy().

The limiting average exponential LM test statistics (after suitable normalization, see Andrews

and Ploberger (1994)) as ¢ — 0 and ¢ — oo are given by
Exp-LMor = /LMT(F)dJ(ﬂ') and (2.9)
Exp~-LMyr = ln/exp (ALMrp(x))dJ (7).
The statistics Exp—LRor and Exp—LR..1 are defined analogously.
Under Assumption 1, Theorem 2 of Andrews and Ploberger (1994) can be applied to yield the
following asymptotic local power optimality property for the Exp—LM.r and Exp~LR.r tests.

Let £.7 denote a test based on the test statistic Exp~-LM.r or Exp~LR.r. Let ¢(f8, w) denote

the density at the point 8 (€ R?) of a mean zero covariance matrix w bivariate normal rv.

ProrosITION 2: Under Assumption 1, for any 0 < ¢ < oo and any sequence of asymptotically
level a tests {¢1 : T > 1}, the sequence of asymptotically level o average exponential LM or LR

tests {€.7 = T > 1} satisfies
TliTnolo // 1(|mn+Bn /VT| < 1, |75 + Bs/VT| < 1)Power(¢or, 8/VT, 7)p(B, I~ (7))dBdJ (7)
< Jim / / V(| mot B JVT| < 1, |75 + BsJVT| < 1)Power(Ecr, B/VT,1)$(B, T~ (x))dBdJ () .

COMMENT: The indicator function, 1(|m, +8n/VT| < 1, |75+ 85/VT| < 1), restricts the integrals

in Proposition 2 to stationary parameter values, which are the ones for which the theory of



Andrews and Ploberger (1994) is applicable. In fact, these restrictions are superfluous because
the Lebesgue measure of the set of parameter points that correspond to non-stationary processes
converges to zero as T — oo. In consequence, the result of the Proposition is true whether or not

the indicator functions are included.

2.2. Asymptotic Null Distribution of the Test Statistics
We establish the asyinptotic null distribution of the test statistics introduced above using the

following martingale difference assumption.

AssuMPTION 2: The tv's {Y; : t = 1,2, ...} satisfy E(Y}|Fi—1) = 0 a.s. Vt > s+1, E(Y2|Fi_1)
= 0% as. Vi > s+1, and sup;y, E|Y;|*+? < oo for some 6 > 0, where F; denotes the o-field

generated by Y7, ..., Y.

The asymptotic null distributions of the test statistics are established by showing that the
sequences of stochastic processes {LM7(-) : T > 1} and {LR7(-) : T > 1} indexed by = € II
converge weakly to a stochastic process G(-) and then applying the continuous mapping theorem.
Let = denote weak convergence of a sequence of stochastic processes. (We define weak convergence
using the uniform metric on the appropriate space of functions on II, as in Pollard (1990).) Let
%, denote convergence in distribution of a sequence of rv’s. Let {Z; : i > 1} be a sequence of

iid N(0,1) rv’s. Define

' -1
. s—1 .
N wt Z; —71 —Inrﬁ; DIl VA
1=0"n&1+1 1—- —n2s 1=0"n “1+1
G(r) = o T (2.10)
- 1‘,3— l .
E?zQW;Zis-i-s T—n2en2 -2 E?;OW_:Zis+s

THEOREM 1: Under Assumption 2,

(a) LMz () = G(),

(b) sup,en LMr(m) —5 sup,en G(),

(¢) Exp-LM.r % (1+ €)™ [ exp (155:G()) dJ () for all 0< ¢ < oo,
(@) Exp-LMor - [ G(x)dJ(r),

(e) Exp—LMeor <, In [ exp (3G(r)) dJ(7), and



(f) parts (a)-(e) hold with LM replaced by LR.

CoMMENT: The martingale difference condition in Assumption 2 is not essential for the results of
Theorem 1 to hold. What is essential is that (i) EY; = 0 V¢ > s+1, (ii) EY? = 02 > 0Vt > s+1,
(iii) EY;Y, = 0Vu >t > s+1, (iv) EX;Y,Y,Y,, =0Vw > v > u >t > s+1 unless t = u and
v=w, and (v) (ZEL, o ViZiTimiYemior, 5L, L Ysle W elniy, ) satisfies a CLT for
each 7 € II. Assumption 2 implies conditions (i)~(v). An alternative to Assumption 2, which
avoids the martingale difference assumption, is to assume conditions (i)-(iv) hold and {Y; : t > 1}
is strong mixing (defined below) with strong mixing numbers that satisfy E?‘;oa(j)("‘z)/" < 00

and sup;»; E|Y;|" < oo for some k > 4. The CLT of condition (v) holds under these conditions

by Corollary 1 of Herrndorf (1984).

Asymptotic critical values for the test statistics in Theorem 1 can be simulated quite easily
by truncating the series £ 7% Z;y) and E2m. Z;sys at large values i = TR and i = TR x s
respectively. The sample size co rows of Table 1 provide such values for the Exp-LR, LR, and
Exp-LMj statistics for the seasonal periods s = 4 and s = 12 for the case where Il = Il o5 X I o5,
Ios = {-.80, —.75, ..., .75, .80}, and J(-) is the uniform distribution on II. (The simulation
results of Section 5 lead us to concentrate on these particular statistics.) The critical values are
based on TR = 50 and 40,000 repetitions. We note that, although the asymptotic critical values
are very similar for s = 4 and s = 12, the asymptotic distributions of the test statistics do depend
on s. See equation (A.8) of the Appendix.

The accuracy of the asymptotic critical values is assessed in Table 2 by simulating the true
sizes of the asymptotic Exp~L R, LR, and Exp-LMj tests for seasonal periods s = 4 and s = 12
and for nominal significance level of .05. The null model considered is the iid normal model with
intercept and sample sizes 25, 50, 100, 250, and 500. In this case, the test statistics are defined
using deviations from the mean, Vi=Yv - YT, rather than the time series itself. See Section
4 below for an analysis of such statistics. Forty thousand simulation repetitions are used. The

simulation standard errors are approximately .001. The true sizes are pretty good for sample sizes
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greater than or equal to 100 and not too bad for the smaller sample sizes.

Although the asymptotic critical values of Table 1 are convenient to use, we note that finite
sample critical values for the normal innovations case can be generated by simulation easily. The
sample size 25, 50, 100, 250, and 500 rows of Table 1 provide such critical values for the Exp—L R,
LR, and Exp—LMj tests for s = 4 and s = 12, for the case where the model contains an intercept
and the test statistics are defined using deviations from the mean. Forty thousand repetitions are

used to generate the finite sample critical values of Table 1.

2.3. Consistency Properties

In this section we show that the LR, sup LM, and average exponential LR and LM tests are
consistent against all deviations from the null hypothesis of white noise within a broad class of
weakly stationary strong mixing sequences of rv’s. This consistency property illustrates the robust
power properties of the tests. It is not shared by other common tests such as the Durbin—~Watson
and Box-Pierce tests for non-seasonal serial correlation and the Wallis (1972) test for seasonal
serial correlation. It is shared, however, by the LR, sup LM, and average exponential LR and LM
tests for non-seasonal serial correlation, see Potscher (1990) and Andrews and Ploberger (1996).

We first state several definitions. The sequence of rv’s {Y; : t > s+ 1} is said to be weakly
stationary if EY;Y;_; does not depend on ¢ for all t~¢ > s+1 and ¢ > 0. The sequence {Y; : t > s+1}
is said to be strong mizing if

a(m) = sup sup |P(ANB) — P(A)P(B)| — 0 as m — oo ,

t>s+1 AeFt  BEFX,,

where 7! _ and FYm are the o-fields generated by ..., Y1, Y; and Yi4m, Yiyms1, ... respectively.
A sequence of rv’s {Wr : T > 1} is said to converge in probability to infinity (denoted Wr —— 00)
if PWr>M)—1VM < oco.

For the consistency results, we assume:

AssuMPTION 3: {Y; : t > s+ 1} is a mean zero weakly stationary strong mizing sequence of

random variables with EY? = ¢ > 0 Vt > s+1 whose strong mizing numbers {a(j) : j > 1}
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satisfy E;‘;la(j)m“‘*‘s) < oo and for which sup,y,4q E|Y:|*+% < oo for some § > 0.

Let y; = EY;Y;_; for i > 1. Define

‘ , 2
: 1 ﬂ,a—l .
LZ0mnYi+ =7 1ok Y 0T Yit1 4
Hy(n) = ’ e /oy and (2.11)
. 3= 1 .
E20TYis+s T o B2 0T Yis+s

Hy(7) = log(o% Jo*(r)), where
o¥(x) = ggg E(Yy = BuDii(mn) = Bs D3y(7s) + BnBs D3y(m))?

* _ s 1 . * _ 00 i L * _ Y00 1§00 ] . .
D]t(ﬂ'n) - Ei:oﬂ-n}/t—-t—lv th(ﬂ's) - Ei:owsy't—ls—n andDSt(”) - E,':oW;Ej:oW%Yt—zs—s—]—l .

THEOREM 2: Suppose {Y; : t > s+1} satisfies Assumption 3. Also, in parts (b) and (c) below,
suppose v; # 0 for some ¢ > 1. Then,

(a) supyer |LMr(r)/T — Hy(r)] == 0 and sup e |LR7(x)/T ~ Ha(r)| 2= 0,

(b) sup,en LMr(7) -2, 00 and LR > oo provided 11, is an infinite set, where I, = {7, :
(Tn, ©s) € I for some 7},

(¢) Exp—LM.r 2, % and Exp—LR.r 2, 00 V0 < ¢ < oo provided the support of Jn(+) is an
infinite set, where J,(-) denotes the marginal distribution for w, € I, that corresponds to the

joint distribution J(-) for (m,, 7)€ 1L

COMMENT: Theorem 2(b) and (c) show that the sup LM, LR, and average exponential LM and

LR tests are consistent against processes that have some autocovariance not equal to zero.

3. TESTS OF SERIAL CORRELATION FOR

MULTIPLICATIVE SEASONAL AR(1)-AR(1) PROCESSES

Here we consider the likelihood ratio (LR;) and Lagrange multiplier (LM;) tests of serial
correlation in a multiplicative seasonal AR(1)-AR(1) model. This model is a special case of
model (2.1) with 7 = (m,, 7;)’ = 0. The null hypothesis is Ho : § = 0 and the alternative
hypothesis is H; : 8 # 0. This is a standard testing problem, because there is no nuisance

parameter that appears only under the alternative hypothesis. In consequence, the LR; and
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LM, tests have asymptotic chi-square distributions with two degrees of freedom (x3) under the
null hypothesis and possess the standard asymptotic optimality properties of the sort established
by Wald (1943). In fact, the LM test for the multiplicative seasonal MA(1)~-MA(1) model is
the same as the LM; test. In consequence, the LR; and LM, tests also possess Wald (1943)-
type asymptotic optimality properties for testing against local alternatives of the multiplicative
seasonal MA(1)-MA(1) variety.
By definition,
LRy = LRp(0) and LMyt = LMr(0), (3.1)

where LR7(w) and LM7(n) are as defined in (2.4) and (2.6) respectively. Note that in the
definition of LR7(7), when 7 = 0, we have the simplification that Dy3;(0) = Y;_1, D:(0) = Y;_s,
and D3;(0) = Yi—s—1. One still has to compute E(W) iteratively even when = = 0. Similarly, in
the definition of LM7(7), when # = 0, Ef;gﬂlYt_;_l and Eg(ztas_l)/s]ﬂi}’t_is_s simplify to Y;_,
and Y;.;, respectively, and the weight matrix simplifies to I5.

By Theorem 1, LRy and LM;7 converge in distribution to a X% rv not only under Assumption
1, but under the broader Assumption 2. (This follows because G(0) = Z2 4+ Z2 ~ x2 by (2.10).)

Table 1 provides finite sample critical values for LRy and LM; for several sample sizes, for
s = 4 and s = 12, for the case of an iid model with intercept and normal errors. In this case,
LR, and LM, are defined as in (3.1) with ?t = Y; — Y7 in place of Y;. Forty thousand simulation
repetitions are used for these results.

Table 2 assesses the accuracy of the x2 asymptotic distribution of LRy and LM, by reporting
the true sizes of these tests for the same cases as described in Section 2 above. For sample sizes of
100 or greater, the true sizes are quite good. For the smaller sample sizes, they are not too bad.

The consistency of results of Section 2.3 do not carry over to the LR; and LM, tests. Thus,
one would not expect the LR; and LM, tests to have as good all-around power properties as the

tests discussed in Section 2.
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4. TESTS OF SERIAL CORRELATION FOR REGRESSION ERRORS

In this section, we show that the tests introduced above can be used to test whether regression
errors are serially correlated. This includes the important case of a siﬂg]e time series with an inter-
cept. The tests are constructed using residuals rather than the errors themselves. Provided that
the regressors are exogenous (defined below), the resultant LR, sup LM, and average exponential
LM and LR test statistics have the same asymptotic distribution as when the actual errors are
used to construct the statistics. In consequence, the asymptotic critical values given in Table 1
are applicable.

The model we consider is given by
Wi =g(Xe, o) +Y; for t=1,..,T, (4.1)

where {Y; : t < T} are unobserved errors, {X; : t < T} are observed regressor p-vectors,
{W; : t < T} are observed dependent variables, Ag is an unknown parameter, and g(-,-) is a
known function. We consider two cases concerning the properties of the regression function. In
the first case, the regression function may be non-linear, but must be non-trending. In the second
case, the regression function is linear, but may be deterministically trending. In either case, we

assume we have a consistent estimator A of Ao that is used to define the residuals
Vi=W,-g(Xy, A) for t=1,..,T. (4.2)

Under the null hypothesis of no serial correlation we impose one or other of the following two

assumptions depending upon the nature of the regression function.

ASSUMPTION 4: (i) Assumption 2 holds with F; equal to the o-field generated by (X1, Xa, ...)
and (Y1, ..., Y1),

(i) g(X:, A) is twice differentiable in A a.s., supy>y EllZ9(X:, M)l? < oo, and
SUP¢>1 SUP (A= Noll<e E“b%/\—,g(Xt, M3 < 0o for some e > 0, and

(iii) TV4(X — Xo) == 0.
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ASSUMPTION 5: (i) Assumption 2 holds with F; equal to the o-field generated by (X1, Xo, ...)
and (Y1, ..., ),

(i) g(X¢, A) = X{AVt > 1, and

(iii) For some sequence {At : T > 1} of non-stochastic p x p diagonal matrices, AT(X — o)

= 0,(1), sup,<7 E||AT' X¢||> = 0, and [AT];; — 00 Vj < p.

Part (i) of Assumptions 4 and 5 requires exogeneity of {X; : ¢t > 1} in the strong sense
that the conditional mean of Y; is zero given past values of Y; and past and future values of X;.
This assumption rules out dynamic regression models that include lagged values of the dependent
variable.

The least squares estimator of A typically satisfies the consistency and rate of convergence
results required in part (iii) of Assumptions 4 and 5.

i X, = (1, t, t2), then Ar = Diag(TV?, T%?2, T%?) in Assumption 5(jii) and
SUPy<T E||AZ! X¢||* — 0 as required.

The following result justifies the use of the LR, sup LM, and average exponential LM and LR

tests when constructed using residuals.

THEOREM 3: Under Assumption 4 or 5, the results of Theorem 1 still hold when LMr(7) and
LR7() are constructed using the residuals {Y, : t < T} defined in (4.2) rather than the tv’s

{Y\; :t<T}.

COMMENT: Table 1 provides asymptotic critical values for several of the tests discussed above for

any of the models covered by Assumptions 4 and 5.

5. MONTE CARLO POWER COMPARISONS

5.1. Introduction

In this section, we compare the finite sample power of the tests introduced above with several

tests in the literature.
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The model we consider is the location model with serially correlated errors:
Wi=A+Y; for t=1,..,T, (5.1)

where the sample size T is equal to 100. The model for the errors {Y; : ¢ < T} is the multiplicative
seasonal ARMA(1,1)-~ARMA(1,1) model of (2.1) with s = 4. For convenience, we adopt a more

conventional notation for (2.1):
(1= p, L)1 = poL)Ys = (1 + s L*)(1 + ¢nL)e; for t=s+1,s5+2, ..., (5.2)

where p; = 75 + By pn = Tn + Bny @5 = —Ts, ¢n = —Ty, and &¢ ~ iid N(0, 0?). All of the
tests considered are invariant with respect to A and o2, so (A, 2) is set arbitrarily to equal (0,1).
Approximately stationary samples from (5.2) of size 100 are simulated by taking the last 100
observations from simulated samples of size 400 with the five initial values set to zero.

Our interest lies in the all-around power properties of the tests, so we consider a variety of
parameter combinations that encompasses seasonal/non-seasonal (S/NS) models, see Table 3,
pure seasonal (PS) models, see Table 4, and pure non-seasonal (PN) models, see Table 5. The
S/NS models we consider have p, = ps and @, = ¢,. Thus, the seasonal and non-seasonal serial
correlation is equally balanced in these models. The PS models, by definition, have p, = ¢, = 0.
The PN models, by definition, have p, = ¢s = 0.

The (p;, ¢;) parameter values that we consider are points above and below the diagonal line
with slope —1 in the (p;, ¢;) parameter space for j = n or j = s. The diagonal lines with slope -1
in (pn, #») and (ps, ¢5) spaces constitute the null hypothesis. The parameter values are chosen
so that the Exp-L R, test has power in the range (.7, .85). Tables 3, 4, and 5 list the particular
parameter combinations that are considered.

The parameter combinations in each of the three tables are broken up into four blocks. The
first and second blocks consist of parameter combinations that lie above the diagonal with slope
—1. The first block consists of positive p values of increasing magnitude. The second block
consists of non-positive p values of increasing absolute magnitude. The third and fourth blocks
consist of parameter combinations that lie below the diagonal with slope ~1. The third block has

non-negative p values, while the fourth block has negative p values.
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The tests introduced above that we consider are LR, Exp-LR, for ¢ = 0, 1, oo, Sup-LM,

Exp-LM, for ¢ =0, 1, 00, LR;, and LM,;. We take

Il = Mos x Mos, where Ios5 = {—.80, —.75, ..., .75, .80} , (5.3)

and we take the weight function J(¢) to be uniform on II. This yields

LR = sup LRr(m), (5.4)
mn €11 05,7 €l 05
1
Exp—LRo = @Eﬂ’nen.oszﬂ’sen.osl’RT(ﬂ')’
_ 1
Exp—LR, = 2 UZT@E‘MEH.%E‘ffsEH.osexp(LRT(W)/4) ’

Exp— LR

1
In <ﬁé§2‘n’nén.05 Eﬂsen.oseXp(LRT(W)/2)> ’

and likewise for Sup~LM and Exp-L M, with LMy(r) in place of LRy(7). In (5.4), LRr(7) and

LMy (r) are as defined in (2.4) and (2.6) with Y; replaced by ¥, where
Y, =W, -Wr and Wr=43L,W,. (5.5)

The statistics LR; and LM, are defined as in (3.1) with Y; replaced by ?t

It is very much quicker to calculate the LM statistics than the LR statistics, because the
former are defined in closed form whereas the latter require iterative computation of E(w) for
each 7 € II. We compute all the tests that depend on 7 by grid search, because LRr(7) and
LMr(r) are often multi-modal functions of 7 when the true model is in the null hypothesis (in
which case 7 is unidentified) or near the null hypothesis.

The tests from the literature that we consider are the Box-Pierce (1970) test with four lags
(BP4), two-sided Wallis (1972) test for seasonal serial correlation with s = 4 (WAL4), the two-
sided Durbin~Watson (1950) test for non-seasonal serial correlation (DW), and the LR test for
non-seasonal serial correlation in an ARMA(1,1) model (NS-LR), which is analyzed in Hannan
(1982), Potscher (1990), and Andrews and Ploberger (1996). The BP4 test has some asymptotic
optimality properties for AR(4) models. The WAL4, DW, and NS-LR tests do likewise for purely

seasonal AR(1) and MA(1) models with one lag at s = 4, purely non-seasonal AR(1) and MA(1)
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models, and purely non-seasonal ARMA(1,1) models respectively. All of the latter models are
contained in the multiplicative ARMA(1,1)~ARMA(1,1) location model.

By definition,

BP4 = Tsir?, where r;=3L V¥, ;/5L, V2, (5.6)
WAL4 = STV, — Yiog)?/2L, %7, and

DW = SL,(Y; - Yien)? /2,72

The BP4 test rejects when BP4 is sufficiently large. The two-sided WAL4 and DW tests reject
when |WAL4 — 2| and |DW — 2| are sufficiently large respectively.

The NS-LR test statistic is defined by

NS—LR= sup LRYS(x,), where LRY5(m,)= Tlog(c} /5% (), (5.7)

m€llys

- ~ - PN 2 o o 2
5% = #ST. V2, 8% (mn) = 5 — 4 (SLAZZniTicina) /5L, (S53miTinin) , and
lys = {—.80, —.79, ..., .79, .80} .

The NS-LR test rejects when NS-LR is sufficiently large.

For comparative purposes, Table 2 provides the finite sample sizes of the 5% asymptotic
BP4, WAL4, DW, and NS-LR tests for the iid location model with normal errors using 40,000
simulation repetitions. The BP4 test tends to under-reject. The WAL4 test, especially, and also
the NS-LR test tend to over-reject.

All of the power results given below are for size-corrected 5% tests. That is, finite sample
critical values, obtained via simulation with 40,000 repetitions, are employed. Five thousand rep-

etitions are used for each of the power results.

5.2. Monte Carlo Results

In conducting the Monte Carlo experiment, we are interested in (i) the sensitivity of the power
of the Exp-LR, tests to c, (ii) the best choice of ¢ for the Exp—L R, tests, (iii) analogous results
to (i) and (ii) for the Exp—LM, tests, (iv) the comparison of Sup~-LM and LR to the best Exp-

LM, and Exp-LR, tests, (v) comparison of the best LR test with the best LM test, and (vi)
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comparison of the best of the tests considered above with LR;, LM;, BP4, WAL4, DW, and
NS-LR. We consider each of these in turn.

We start the power results by discussing the sensitivity of the power of Exp—-LR. to ¢. For
brevity, we only discuss the results and do not give them explicitly in Tables 3, 4, and 5. The
parameters combinations considered are those given in the latter three tables. For the S/NS
model, the power differences between ¢ = 0, 1, oo are less than or equal to .02 in 10/17 cases.
The differences are .13, .10, .06, .06, .04, .04, .03 in the other seven cases. In all of the seven cases
with larger differences, ¢ = oo is best. In the PS model, the power differences between ¢ = 0, 1, 0o
are less than or equal to .01 in 12/19 cases. The differences are .21, .10, .10, .04, .04, .03, .02 in
the other 7 cases. In the five cases where the differences are largest, ¢ = oo is best. In the PN
model, the power differences between ¢ = 0, 1, oo are less than or equal to .02 in 14/19 cases.
The differences are .21, .12, .11, .05, .04 in the other five cases. In all of these five cases, ¢ = oo
is best. In sum, the pattern across all three models is very similar. In most cases, there is little
difference between ¢ = 0, 1, 0o, and in those cases where there are larger differences ¢ = oo is
always best. Thus, ¢ :.oo is best overall. The power of Exp—L R, for all of the cases considered
is given in Tables 3, 4, and 5.

Next, we discuss the sensitivity of Exp—LM, to c. Again, for brevity, the actual power results
are not reported in Tables 3, 4, and 5. For the S/NS model, the power differences between
¢= 0,1, 0o are .03 or less in 11/17 cases. They are .06, .05, .05, .05, .04, .04 in the other six
cases. ¢ = 0 1is best in 11/17 cases. On average, ¢ = 0 is .01 better than ¢ = 0o and ¢ = 0 is equal
to ¢ = 1. For the PS model, the differences between ¢ = 0, 1, 0o are .02 or less in 14/19 cases and
.03 or less in all cases. ¢ = 0 is best in 14/19 cases. On average, ¢ = 0 is .01 better than ¢ = oo
and ¢ = 0 is equal to ¢ = 1. For the PN model, the differences between ¢ = 0, 1, 0o are .02 or less
in 15/19 cases and .03 or less in all 19 cases. ¢ = 0 is best in 16/19 cases. On average, ¢ = 0 is
.01 better than ¢ = oo and ¢ = 0 is equal to ¢ = 1. In sum, the results are again quite similar for
all three models. The power differences between Exp—LM, for ¢ = 0, 1, oo are quite small. The

best choice is ¢ = 0 by a small margin. Results for Exp—LMj are given in Tables 3, 4, and 5.
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We now compare Exp-L M, with Sup—LM. In the S/NS model, Exp-LM, is better in 13/17
cases. It is better by an average of .04. In the PS model, Exp—LMj is better than Sup—LM in
16/19 cases. It is better by an average of .06. In the PN model, Exp—L M, is better than Sup-LM
in 17/19 cases. It is better by an average of .07. In sum, Exp-LM, is noticeably better than
Sup-LM across all three models.

We now discuss the power results that are reported in Tables 3, 4, and 5. The tables each
provide the power of the Exp—L R, test, which is the test with the best overall power amongst all
the tests. For ease of comparison, the tables provide the difference in power between Exp—LR,
and seven other tests. Positive entries for the seven other tests denote higher power for Exp—LR;
negative entries denote lower power for Exp—LR.,. The last column in each table provides the
average power for Exp-LR, and the average power differences for the seven other tests, where
the average is over all parameter combinations in the given table.

First, we compare Exp—L R, with the best LM test Exp—L Mp. In the S/NS model, Exp-LR
is better than or equal to Exp—L M, in 13/17 cases by an average of .06. In the PS model, Exp-
LR, is best in only 10/19 cases, but it is better on average by .05. Similarly, in the PN model,
Exp-LR is best in only 9/19 cases, but it is better on average by .05. Overall, Exp—LR, is
clearly better than Exp—-LMy. Exp-LR., beats Exp—L My by a substantial margin in a number
of cases, but is never worse than Exp—-L M, by very much.

Next, we compare Exp—L R, with LR. In the S/NS model, Exp-L R is better than or equal
to LR in 13/17 cases and it is better on average by .01. In the PS model, Exp-LR., is better
than LR in 16/19 cases and it is better on average by .03. In the PN model, Exp-LR is better
in 16/19 cases and it is better on average by .03. Overall, Exp-LR is better than LR by a small,
but not insignificant, amount.

We now compare Exp—-LR., and LR;. In the S/NS model, Exp—LR, is better than LR,
in 11/17 cases and it is better on average by .07. In the PS model, Exp—LR, is better in only
10/19 cases, but it is better on average by .05. In the PN model, Exp-LR, is better than LR,

in 11/19 cases and it is better on average by .06. For each model, Exp—L R, is vastly superior to



20

LR; for some parameter combinations and somewhat worse for AR(1)-AR(1) and MA(1)-MA(1)
parameter combinations (for which LR; has asymptotic optimality properties). This leaves Exp-
LR, clearly superior to LR; in an all-around sense.

Tables 3, 4, and 5 do not provide results for L M;, because they are quite close to those of
LR, with LR, being slightly superior. In the S/NS model, LR; is better than or equal to LM;
in 15/17 cases and it is better by an average of .02. In the PS model, LR, is best in all cases and
it is better by an average of .01. In the PN model, LR, is better than or equal to LM; in 14/19
cases and it is equal to L M; on average.

The comparison of Exp-LR., and BP4 is clear-cut. In the S/NS and PS models, Exp—-LR,
is better in all cases by averages of .12 and .15 respectively. In the PN model, Exp—LR, is better
than or equal to BP4 in 13/19 cases and it is better on average by .07. Overall, then, Exp—LR
is substantially better than BP4.

Next, we compare Exp-LR., and WAL4. In the S/NS and PN models, Exp—LR, is better in
all cases but one and is better on average by the substantial margins of .31 and .64 respectively.
In the PS model, Exp—L R, is better in 11/19 cases and it is better on average by .01. Overall,
then, Exp-L R, is very much better than WAL4.

Not surprisingly, the comparison of Exp—LR,, and DW is quite similar to that of Exp-LR,
and WAL4 with the results of the PS and PN models reversed. In the S/NS and PS models,
Exp-LR, is better than DW in all cases and it is better on average by the substantial margins
of .26 and .70 respectively. In the PN model, DW is better than Exp-LR, in 13/19 cases and it
is better on average by .03. Overall, Exp—LR,, is substantially better than DW.

Lastly, we compare Exp—LR,, and NS-LR. This comparison is similar to that of Exp—LR.,
and DW except NS-LR fares better in the S/NS and PN models. In the S/NS and PS models,
Exp-LR is better than NS-LR in all cases and it is better on average by the large margins of
.18 and .63 respectively. In the PN model, on the other hand, NS-LR is better than Exp—LR,
in every case by an average of .07. The NS-LR test has asymptotic optimality properties for this

model, so these results are not surprising. Overall, Exp—L R, is clearly superior to NS-LR.
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In conclusion, the Monte Carlo results for a broad range of multiplicative seasonal ARMA(1,1)-
ARMA(1,1) processes show that Exp—LR, is the best overall test. It is marginally better than
LR, noticeably better than Exp—LR, for ¢ = 0, 1, Exp—L M, for ¢ = 0, 1, oo, Sup-LM, LR;, and
L My, and substantially better than BP4, WAL4, DW, and NS-LR. The most common tests used
in practice are the DW, BP4, and WAL4 tests. Thus, substantial improvements in power are

available using the tests introduced in this paper over the most common tests used in practice.
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APPENDIX OF PROOFS

PROOF OF PROPOSITION 1: It suffices to verify Assumptions 1-7 of Andrews and
Ploberger (1995), denoted Assumptions AP1-AP7. Theorem 1 of Andrews and Ploberger (1995)
then gives the results of Proposition 1.

Under Assumption 1, the likelihood function is given by

fT(o, 77') = (2'”0'2)_7"/2 exp (_ flffz:ﬁr:s-{-l (Yt - ﬂnDlt(Wn) - ﬂsDZt(ﬂ's) + ﬂnﬂsD3t(7r))2) . (Al)

Assumptions AP1(a)~(e) and AP3-AP7 hold by analogous arguments to those given in the proof of
Proposition 1 of Andrews and Ploberger (1996) with —B7' D%r(8, v)B;" of Assumption AP1(d)

given by

[-B7'D*r(0,7)B;'],, = A7EL,41(D1e— B:Dse)?, (A.2)
[-B7'D*¢r(0,7)B7"],, = #rEL,41[(Dat — BnDs)( D1t — Bs D)
+ (Y; — 8Dyt — BsDa¢ + BnfBs D3t) D3]
[-Br'D*r(0,7)B;'],; = 7#A7EL,11(Ye — BuDre — BsDa¢ + BBs Dat)(Dit — Bs Day)
[-B7'D%r(0,7)B'],, = A7Egs1(Das— B.Dar)?
[-B7'D*7(0,7)B;'),s = ArZT, 1(Yi — BuD1s — BsDat + BnfBs Dat)(Dae — BnDss)
']

[-B7'D*1(8,7)Br ] 5 = 77 41(Ye — BuDre — Bs D¢ + BB D) — 55z |

where Dyy, Dy, and Dg; abbreviate Dyy(7,,), Doy(7s), and Dsy(7) respectively.

Assumption AP1(f) holds because

s—1
i Tn
1 —1l'n§ I—misns 0

s=1

#slel det(Z(0p, 7)) = 71%1{1 det % 1__1”_,{ 0 (A.3)
0 0 3

1 1 7I‘2(S_l) 1— (s 1)
= inf — - = > inf >0,
rell 204 \ (1= 72)(1—-72) (1—ninn2)? rel 204(1 — 7r2)(1 - 7r2)

since 7, is bounded below one.
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Assumption AP2 requires that

sup ||ﬁ(7r)|| 2,0 and sup|53(r)— 0?20 (A.4)
well w€ell

under the null hypothesis. To establish the former, we use Lemma Al of Andrews (1993). It
states that if (a) B(ﬂ) minimizes a random real function Q7(8, ) over § € B for each © € II,
(b) sup,en supgep 1QT(B, ) —Q(B, )| -, 0 for some real function Q on B x II, and (c) for every
neighborhood Bo of fo, infren(infge /B, Q(B, 7) — Q(Bo, 7)) > 0, then sup,cp ||B(W)—ﬂ0|| £ 0.
We apply this result with 8o = 0 and Q7(8, ) given by the function in (2.4) that defines B(ﬂ')
Condition (a) holds by definition of E(w) Condition (b) holds with Q(8, 7) = limr_o EQr(8,T)
by a uniform law of large numbers using an argument that is analogous to arguments given in the
proof of Proposition 1 of Andrews and Ploberger (1996).

It remains to establish condition (c). Under the null hypothesis, Q(3, ) can be written as

Q(ﬂ77r) = E(gt - ﬂnDl(ﬂ'n) - ﬂsD2(7r.s) + ﬂnﬂsDB(ﬂ'))2 (A5)
= 0%+ E(BnDi(mn) + Bs Da(,) = BufBs Da(m))? , where

Di(7y) = €41+ TR mherio1

1=1"n
oo 1
D2(7rs) = €t-s + Ei:lﬂ'sgt—is—s )

= YO YOO _i.j. . ,
D3(7r) - Ei:ozjzoﬂ‘sﬂ-;gi—ts—s—]—l ]

and {&; : t = ..., 0,1, ...} are iid N(0, 0?). Now, Q(B,7) equals o plus the variance of a linear
combination of D;(r,), Da(xs), and Ds(m). The summand &;—; of Dy(r,) is independent of all
the summands of Do(7,) and D3(w). Similarly, the summand ¢;_, of Dy(7,) is independent of
the summands of Ds(7). In consequence, for all = € II, Q(8,7) > Q(0,7) = o for all 8 # 0.
Furthermore, if we let Q(3,7, 7) denote the function Q(3, ) with the coefficient —3,8, on D3(r)
replaced by an arbitrary coefficient v € R, then Q(8,7,7) > Q(0, r) for all (4, v) # 0.

We use the latter result to show that Q(8, ) is bounded above Q(0, ) uniformly over {8 :

I8l] > €} x II. We have, for ¢ > 0,



25

inf inf Q(B,7) nf  Q(B,7,7) (A.6)

inf i
€Il B:||B||>e €Il (8 ):||(8'7)>

Q(B,v,7),

v

LS N
where the inequality holds because {(3’, —3.0s) : |18l > €} C {(8',7) : I(B's 7)|| > €} and the
equality holds because Q(3,~, ) is homogeneous of degree two in (&, v) (i.e., Q(cB, ¢y, 7) =
c2Q(B,v, ) for all constants ¢ > 0). The right-hand side (rhs) of (A.6) is the infimum of a
continuous function ovef a compact set. In consequence, the infimum is attained at some point
(B*, v*, ™) with (8%, v*) # 0. Using the result of the previous paragraph, this yields the rhs of

(A.6) greater than Q(0,7) = 02, as desired. O

PROOF OF PROPOSITION 2: Proposition 2 follows from Theorem 2 of Andrews and
Ploberger (1994) provided Assumptions 1-3 and 5 of the latter paper can be verified. These
assumptions are the same as Assumptions 1-3 and 5 in Andrews and Ploberger (1995) (except

for minor and insignificant differences), which have just been verified. O

PROOF OF THEOREM 1: The proof of part (a) is analogous to that of Theorem 1 of

Andrews and Ploberger (1996) with vr(7) and v(r) defined by

L5 YiDi(ry, o?LR T Z;
vp(r) = VT mat1 T ) and v»(r) = =otn i . (A.7)
71‘723;54-1}/;:1)%(”5) UzE{'iOW;ZiH.s

In the present case, we have

4500 ot ot 4 is4+s—1_1
0 Lo InTon o L0y Tos

Cov(v(m),v(ms)) = ‘ A o and (A.8)
042?20“-;3:’8_1 Wés 042:?;0”;371'53
!
. Dlt(ﬂ'ln) Dlu(7r2n)
Jim_ Cov(r(my), vr(r2)) = Jim STy, TL,,, EYY,
Die(m1s) Dau(m3s)
= Cov(v(m),v(m2)) , where
Ty = (Wlnaﬁls), and 7r2=(7r2n77r2s), .

Parts (b)—(e) follow from part (a) and the continuous mapping theorem.
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Part (f) follows from sup,cp |LRr(7) — LM7(7)| -2, 0 and parts (a)-(e). The former can
be established by (i) showing that sup,cp ||ﬁ(7r)|| £ 0 under Assumption 2 using the argument
of the proof of Proposition 1, (ii) taking a two term Taylor expansion of log 3%(0, ) about E(w),

where

'0\.2(ﬁ, 71') = %E’t[‘:_ﬂ.l(yvt - ﬂnDlt("rn) - ﬂsD2t(7rs) + ﬂnﬁsD3t(7r))2 ) (Ag)

(iii) noting that the first term of the Taylor expansion is zero because %32(5(70, 7) = 0 by the
first order condition for B(?I‘), (iv) taking element by element mean value expansions of %32(0, ™)
about B(?T) and substituting the resulting expression for B(?r) into the Taylor expansion of (ii),
and (v) showing that all the remainder terms are o,(1) uniformly over 7 € II using (i). For

brevity, the details are omitted. O

PROOF OF THEOREM 2: The proof of part (a) is analogous to the proof of part (a) of
Theorem 2 of Andrews and Ploberger (1996). Parts (b) and (c) hold for the LM statistics because
h(m,) = £X,m5vi+1 has only a finite number of zeros if 4; # 0 for some 7 > 1 and the weight
matrix of Hy(r) is positive definite for all 7 € II. The former follows because the function k()
for ,, complex and |7,,| < 1 is analytic and analytical functions are either identically zero or have
finite numbers of zeros, e.g., see Ahlfors (1966, p. 127).

Parts (b) and (c) hold for the LR statistics, because

Hy(r) > log(o}/ inf  E(Y: - BuDi(m)) (410
= log(0} /(0% — W(r.)/ EDj(r.)")
20,

where the last inequality is strict for all but a finite number of values m by the argument above. O

PROOF OF THEOREM 3: The proof is analogous to that of the proof of Theorem 3 of

Andrews and Ploberger (1996). O
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