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Abstract

This paper provides a consistent and asymptotically normal estimator for
the intercept of a semiparametrically estimated sample selection model. The
estimator uses a decreasingly small fraction of all observations as the sample
size goes to infinity, as in Heckman (1990). In the semiparametrics literature,
estimation of the intercept typically has been subsumed in the nonparametric
sample selection bias correction term. The estimation of the intercept, however,
is important from an economic perspective. For instance, it permits one to deter-
mine the “wage gap” between unionized and nonunionized workers, decompose
the wage differential between different socio-economic groups (e.g., male—female
and black—white), and evaluate the net benefits of a social program.
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1 Introduction

Semiparametric estimation of sample selection models has received considerable
attention in the last decade. The reason is that parameter estimators of the sample
selection model are inconsistent when incorrect distributional assumptions are made
about the errors (e.g., see Goldberger (1983) and Arabmazar and Schmidt (1981,
1982)).

This paper considers semiparametric estimation of the intercept parameter, fy, in
a sample selection model. In the semiparametrics literature to date, the intercept has
been absorbed in the nonparametric sample selection bias correction term. The only
exceptions are the estimators of Gallant and Nychka (1987) and Heckman (1990).
Gallant and Nychka’s (1987) estimator of 19 has been shown to be consistent, but
its asymptotic distribution is unknown. The asymptotic distribution of Heckman’s
(1990) estimator also is unknown. The estimator we consider here is a slight variant
of Heckman’s estimator. We show that it is consistent and asymptotically normal.

The economic interpretation of an estimated sample selection model makes es-
timation of the intercept important. It is required for the evaluation of the “wage
gap,” an issue that has received considerable attention in the literature (e.g., see
Oaxaca (1973), Lewis (1986), Smith and Welch (1986), Wellington (1993), and Baker
et al. (1993)), and for the evaluation of social programs. Estimation of the intercept
permits evaluation of the net benefit of a social program by permitting comparisons
of the actual outcome of participants with the expected outcome had they chosen not
to participate.

The estimator, i, that we consider uses a decreasingly small fraction of all
observations as the sample size, n, goes to infinity. This approach is advocated
by Heckman (1990). He suggests estimating o using only those observations for
which the probability of selection in the truncated or censored sample is close to one
and in the limit as n — oo is one. This approach works because the conditional mean
of the outcome equation errors is close to zero for observations whose probability of
selection is close to one. This is an example of Chamberlain’s (1986) “identification
at infinity.”

Heckman suggests using all observations for which the estimated index of the
participation equation, X/ B , exceeds a certain threshold y,,. We introduce a weight-
ing scheme for these observations, where observations exceeding this threshold are
weighted by a smooth monotone [0,1]-valued function, such as a distribution function.
The introduction of this function, s(-), allows us to establish the distribution theory
for the estimator. The smoothness we impose on this function, viz., differentiability
of order three, is used to show that the asymptotic distribution of the estimator fi,
is not affected by preliminary estimators such as 3

Our distribution theory for the estimator fi, assumes the existence of root-n
consistent semiparametric estimators of (6p, o), where 6 is the vector of parameters
of the outcome equation with the ezclusion of the intercept and (y is the vector of
parameters of the selection equation. Several such estimators are available in the
literature.



The estimator i, depends on the bandwidth parameter ~,. For consistency, v,
is required to go to infinity as n — oco. The choice of ~, is constrained by the
requirements that the variability and bias of [i, go to zero as n — oo. The first
imposes an upper bound on how fast ,, can increase; the second a lower bound. The
thinner the upper tail of the errors in the selection equation compared to the upper
tail of the index X7, the greater is the latitude in the choice of ,,. A formal method
for determining an optimal bandwidth parameter v, has yet to be developed.

The remainder of this paper is organized as follows: In Section 2, the sample
selection model is discussed. The discussion of several applications in this section
motivates our interest in estimating 7. In Section 3, our proposed estimator is
defined. Consistency and asymptotic normality of this estimator are established
in Section 4 under the assumption that the regressors and errors are independent.
In Section 5, analogous results are established with the latter assumption relaxed.
Section 6 concludes. Appendices A and B contain proofs of the results stated in
Sections 4 and 5 respectively.

2 The Sample Selection Model

An early discussion of the sample selection problem in the economics literature is
given in Roy (1951). In his prototypical model of self-selection, agents choose among
two professions, hunting and fishing, based on their comparative advantage.

The discussion of the econometric implications of sample selection started in the
early seventies with the papers by Gronau (1974), Heckman (1974), and Lewis (1974).
In their studies, the problem of sample selection bias is discussed in the context of the
decision by women to participate in the labor force or not. The distribution of the
wage offers sampled is truncated by the “self-selection” of women in the labor force,
where women choose to be “in the sample” of workers if the offered wage exceeds
their reservation wage.

The sample selection model has been used in a wide variety of other applications.
For example, it has been used by Lee and Trost (1978) in the context of the demand
for housing, by Willis and Rosen (1979) in the context of education, and by Lee
(1986) in the context of labor unions and wages. The self-selection model also is used
extensively in the evaluation of the benefits of social programs. For further references,
see Maddala (1983) and Amemiya (1984).

The sample selection model can be written as

Y;-* = o+ Z{Qo + U,
D; = 1(Xz{60 > 62'), and (21)
Y, =Y'D; for i=1, .. n,

where (Y;, D;, Z;, X;) are observed random variables. The first equation is the out-

come equation and the second equation is the participation equation. For conve-
nience, we let

W; = XiBo. (2.2)



To express the model given in (2.1) in terms of the Gronau-Heckman—Lewis
model, we note that in their model Y;* is the latent offered wage and D; is a dummy
variable indicating whether an individual is employed, i.e., whether Y;* —Y;" exceeds
zero, where Y;" denotes the individual’s latent reservation wage. The observed wage is
given by Y;. The variables influencing the decision to participate in the labor market
are given by X; and the determinants of the wage offer are given by Z;.

The standard approach to estimation of this model assumes that (U;,¢;) are bi-
variate normal with zero mean and unknown covariance matrix and are independent
of (Z;,X;). With this assumption, the parameters can be estimated by maximum
likelihood or the two—step estimator of Heckman (1976). This approach is known to
yield inconsistent estimators if the normality assumption fails, e.g., see Arabmazar
and Schmidt (1981, 1982) and Goldberger (1983).

Semiparametric estimation methods provide a way to overcome this deficiency.
These methods consider the estimation of the parameters of interest without restrict-
ing the distribution function of the error terms or restricting the functional form of
heteroskedasticity to lie in a finite-dimensional parametric family. Important progress
on semiparametric estimation of selection models has been made by Gallant and Ny-
chka (1987), Newey (1988), Robinson (1988), Powell (1989), Cosslett (1990), and
Ichimura and Lee (1990). Also see Andrews (1991).

The point of departure in these papers is the conditional mean index function
representation of the sample selection problem:

E(Ui|D; = 1,X:) = w(Xf),

where X; (3 is an index function and k(-) is an unknown (smooth) function. The
function k(-) is sometimes called the sample selection correction function. It equals
the inverse Mill’s ratio when (Uj;, ;) are bivariate normal. In the above model, con-
ditional heteroskedasticity of U; is allowed, although only through the single index
XZ’ Bo. The objective of the papers referred to above is to eliminate the contaminating
effect of E(U;|D; = 1,X;) in forming regression estimates of 6.

Cosslett (1990) approximates the conditional mean of U; using step functions
based on a nonparametric estimator of x(-). Robinson (1988), Powell (1989), and
Ichimura and Lee (1990) difference out the conditional mean. Newey (1988) and
Andrews (1991) approximate the conditional mean of U; by series expansion methods.

These papers present various criteria for identification of (6, 3p). In order to
obtain a consistent estimator of 3y, one needs information on X; when D; = 0. Even
if By is known, identification of 6y fails if /{(XZ' Bo) lies in the space spanned by Z;.

As pointed out by Heckman (1990), all of the above papers absorb the intercept,
fto, into the definition of the conditional mean E(U;|D; = 1,X;). None of these
papers produces a consistent estimator of ug. Gallant and Nychka, also using a series
expansion method, do obtain a consistent estimator of yig. The distribution theory for
their estimator, however, has not been developed. Gallant and Nychka assume that



the errors and regressors are independent. They also impose a continuity condition
on the distribution of the errors and regressors that is somewhat complicated and
potentially difficult to verify.

The estimation of the intercept, po, has economic importance. We show this
below using several examples. This is what prompted our interest in obtaining a
consistent and asymptotically normal estimator of the intercept.

Consider the Roy model. In this model, estimation of the intercept, pig, allows one
to compute the gain from moving a worker with certain attributes from one profession
into another. Let Y7}, and Y}, denote the latent offered wages for hunting and fishing
respectively. Let Dpg; be a dummy variable indicating whether an individual is a
hunter, i.e., whether Y}, — Y}, exceeds zero. The observed wages are given by Y
and Yp;. The model is

Y = i+ Zgifu + Ui,

Yii = pr+ Zpbr + Ups,

Dyi = 1(Y}, = Y7, > 0) = 1(X160 > &), (2.4)
YHz' = Y;]iDHia and

Yr; = Yp;(1— Dpy) fori=1,...,n,

where Zp; = [Z; : Zy;] denotes variables that affect wage offers in the fishing pro-

fession, Zy; = [Z; : Zp;] denotes variables that affect wage offers in the hunting
profession, and Z; denotes variables that affect wage offers in both professions. De-

fine X; = [Z; : Zy; @ Zp;]. Model (2.1) for hunters consists of the equations for Y},
Dy, and Y. Model (2.1) for fishermen consists of the equations for Y, 1 — Dy,
and YF@

The sample selection model permits the estimation of various interesting quanti-
ties related to wage differentials between the hunting and fishing professions. The fo-
cus of most empirical literature is the difference in expected wage between hunting and
fishing for a randomly selected worker with attributes (X; = x, Zg; = 2y, Zpi = 2r):

pa — pr + 20 — Zp0F. (2.5)

Another interesting quantity is the difference in expected wage between hunting and
fishing for an individual with attributes (X; = x, Zy; = 2y, Zp; = zr), who self-
selects into one specific sector, say hunting:

E(Y:IJDHZ = l’x’ZHVZF) - E(Y;'z‘DH’L = 1,.’17, ZH;'ZF)

2.
= pg — pr + 2500 — 2p0r + E(Upi — Upi|Dge = 1, 7). (2:6)

When equations (2.5) and (2.6) are averaged over all individuals in the hunting pro-
fession, one obtains

pu — g + Zy0y — 750  and

~ 2.7
,UH—,UF—FZ}{@H—Z%@F—FE(UHZ‘—UFi|DHi:1), ( )



respectively, where Zy = E(Zyi|Dp; = 1) and Zp = E(Zp;|Dy; = 1) are the
endowments of the skills in each sector available to the “average” worker in the
hunting profession. The estimation of the intercepts (up, () is necessary to estimate
the quantities in (2.5)—(2.7).

In a similar fashion, Heckman (1990) discusses the parameters of economic interest
in sample selection models in the context of the effect of unionism on wages. The
difference in expected wage between the unionized and non-unionized sectors for
individuals who self-select into the unionized sector is called the “wage gap” by Lewis
(1986). Estimation of these quantities throws light on the effects of self-selection.
If self-selection is based on comparative advantage, as in Roy’s example, then the
benefits of moving a randomly selected worker are less than the benefits of moving a
worker under self-selection.

The sample selection model also is useful in the evaluation of social programs.
Estimation of the intercept allows one to evaluate the net benefit of a social program,
by allowing one to compare the actual outcome of participants with the expected
outcome had they chosen not to participate. If individuals who have a compara-
tive advantage with the program self-select into the program, then these individuals
benefit more from it than would a randomly selected individual with the same char-
acteristics. In consequence, the program produces greater benefit under self-selection
than under random assignment.

Consistent estimation of pg also is of great importance in the extensive literature
analyzing wage differences between different socio-economic groups (e.g., male-female
and black—white). Following Oaxaca (1973), many studies have attempted to decom-
pose the “wage gap” between these groups (e.g., Smith and Welch (1986), Wellington
(1993), and Baker et al. (1993)).! The decomposition attempts to illuminate what
part of the gap can be explained by differences in wage-related characteristics and
what part can be explained by differences in the wage structure. Consider the male—
female wage gap. The model is given by

Yis = 1+ Zibk + Ui,
Dy, = 1(Xllﬁ]€ > 5]“‘), and (28)
Yki = = Dkzylg*z for 7= 1, ., n,
where k£ = male, female and Y}’ and Y}; denote the log of latent and observed wages
respectively. Following Oaxaca (1973), the wage gap, Y, — Y7 (= E(Yini|Dimi =
1) — E(Yy;|Dy; = 1)), can be decomposed as
Yoo ¥y = (tm—tty) + Zf (Om—05) + (Zmn—Z1)0m + E(Umi| Dmi=1) — E(Uy:|Dyi=1)
= (,um—,uf) + Zm(em—ef) + (Zm—Zf)Hf + E(Umi’Dmizl) — E(Uﬁ‘Dﬁ:D,
(2.9)

where Z,, and Z + are the endowments of the skills available to the “average” male and
female worker respectively. The first two parts on the right-hand side of equation (2.9)

'In these studies “wage gap” is defined as the difference in average log earnings between these
socio-economic groups.



measure the wage gap explained by the differences in male-female wage structures for
the same observed job-related characteristics. The third part on the right-hand side
measures the wage gap due to male-female differences in wage-related characteristics
and the remainder is due to the self-selection correction. Equation (2.9) shows two
ways in which one can measure the wage gap: using the male wage structure or using
the female wage structure.? In either case, the estimation of (i, fuf) is required to
estimate the extent to which the wage gap is explained by differences in male-female
wage structures for the same observed job-related characteristics.

3 The Estimator
The estimator we consider is

(Y — Z0)Dis(XIB — )
" Y Dys(X!B — )

where s(-) is a non-decreasing [0,1]-valued function that has three derivatives bounded
over R and for which s(x) =0 for <0 and s(z) =1 for > b for some 0 < b < co.
The preliminary estimators (6, 3) are root-n consistent estimators of (6, 3). The
parameter -y, is called the bandwidth or smoothing parameter. This bandwidth
parameter is chosen such that v, — oo as n — oo.

The estimator suggested by Heckman (1990) is

; (3.1)

(Y~ ZO)Di(XIB > )
" Sy Dil(X[B > )

Comparing the two formulae (3.1) and (3.2), it is clear that the estimator fi,
differs from Heckman’s (1990) fi,, only in that it replaces the indicator function 1(-)
with a smooth function s(-). The introduction of this function allows us to provide
the estimator with a distribution theory. The smoothness we impose on this function,
viz., differentiability of order three, is used to show that the preliminary estimators
(5, B) do not affect the asymptotic results.

Heckman’s estimator i, is essentially a sample average of the random variables
U; 4 po over a fraction of all observations, since Y; — Zz’é —p U; + 1o as n — oo for
all 7 > 1. The effective sample size is equal to the number of observations used for
the estimation of . Since we introduce a weighting scheme for these observations,
viz., the smooth function s(-), our estimator fi, is a weighted sample average of the

random variables U; + jig, where observations with X/ greater than ~,, and with X B
close to the threshold ~,, are weighted less than those further away.

. (3.2)

2Oaxaca (1973) suggested the adoption of either the male wage structure or the female wage
structure as the nondiscriminatory wage structure (with the actual nondiscriminatory structure being
bracketed by them). Alternative weighting schemes are suggested by Cotton (1988), Neumark (1988),
and Oaxaca and Ransom (1994).



4 Consistency and Asymptotic Normality

The consistency and asymptotic normality of fi,, are established in Sections 4.1
and 4.2 respectively below. Section 4.3 addresses the estimation of the asymptotic
covariance matrix of (fiy, 0, 3).

4.1 Consistency

We now state the Assumptions 1-7 that are used to establish consistency of fi,.
Each assumption is discussed below.

ASSUMPTION 1: (Z;, X;, U;, &;) are iid rv’s with E||Z;||P < oo, E||X;||P < oo, and
E|U;* < oo for some p >3 and \ > 2.

ASSUMPTION 2: (a) EU; = 0.
(b) (Ui, &) is independent of (Z;, X;).

AssumpTION 3: s(-) : R — [0,1] is a nondecreasing three times differentiable
function with s(x) = 0 Vo < 0, s(x) = 1 Vz > b for some 0 < b < oo, and
SUper |5 ()] < oo.

ASSUMPTION 4: P(W; > w)*/P(W; > w+b) = O(1) as w — oo for some & €
[0, 1/3] for b as in Assumption 3.

ASSUMPTION 5: \/n(0—6) = Op(1) and Va(B—p) = Op(1).
ASSUMPTION 6: 7y, — 00.

VnEDis(Wi — vn)

ASSUMPTION T: (ED;s2(W; — 7)) /2

— OQ.

The first assumption imposes quite mild moment conditions on (Z;, X;,U;, ;). It
rules out unconditional heteroskedasticity and time series applications.

Assumption 2(a) is not restrictive since a non-zero mean can be absorbed in the
definition of . The assumption that (Z;, X;) and (U;, ;) are independent, Assump-
tion 2(b), can be restrictive. Some semiparametric estimation techniques for the
sample selection model have considered the less restrictive case in which the errors
are allowed to depend on X; through the index W; = X/f. In Section 5, we relax
Assumption 2 to incorporate this less restrictive case.

Assumption 3 is an assumption of smoothness of the function s(-). An example
of a function satisfying this condition is given by:

1 —exp(—4%) for xze€(0,b)
s(z) = 0 for <0 (4.1)
1 for x >b.



The boundedness of the first three derivatives of s(-) is not essential in all parts of
the proof. To indicate where it is needed, the following weaker alternative, Assump-
tion 3, is used wherever possible. In particular, Assumption 3’ is used when (6y, 5)
is assumed to be known.

AssumpTION 3': s(+) : R — [0,1] is a distribution function of a rv with support
contained in [0,b] for some 0 < b < oo.

Note that Assumption 3’ allows for s(z) = 1(x > 0), which generates Heckman’s
estimator fi,.

Assumption 4 requires that W; has unbounded support from above. It rules out
distributions of W; that are too thin upper tailed. For example, suppose the upper
tail of W; decays as 1 — F(z) ~ exp(—exp(Az)).® Then, for ¢ > 0, Assumption 4
is satisfied as long as A < In(1 + £)/b, where b and £ are defined in Assumptions 3
and 4 respectively. The upper tail of W; is too thin when ) exceeds this cutoff point.
In this case, Assumption 4 is never satisfied for £ = 0. If W; has a Weibull upper
tail 1 — F(z) ~ exp(—Az®) for some ¢ > 0 and A > 0, then Assumption 4 is satisfied
with £ = 0 if ¢ < 1. If ¢ > 1, the assumption holds for all £ > 0. (A special case is
W; ~ N(0,0%), in which case ¢ = 2.) If the upper tail of the distribution of W; is
declining geometrically, i.e., W; has a Pareto upper tail 1 — F(z) ~ 2= for A > 0,
then Assumption 4 is satisfied for any £ > 0.

Assumption 5 requires that the preliminary estimators are root-n consistent. The
estimators suggested by Newey (1988), Robinson (1988), Powell (1989), Ichimura and
Lee (1990), and Andrews (1991) satisfy this assumption. The estimator suggested by
Cosslett (1990) has not been shown to satisfy this for his estimator. To date, only a
consistency result is available for his estimator. For the first-step estimation of 3y in
the participation equation, these papers typically rely on Ichimura’s (1985) or Klein
and Spady’s (1993) estimator for the binary choice model.

The bandwidth parameter, v, is required to go to infinity as the number of ob-
servations, n, goes to infinity, by Assumption 6. This guarantees that the estimation
of pp is based on only those values of X; for which P(D; = 1|X;) is close to one and
in the limit is equal to one.

A bound on the speed with which -, is allowed to go to infinity is given by
Assumption 7. This assumption imposes the restriction that the variability of fiy,
is asymptotically zero. The reciprocal of the ¢hs of this assumption is equal to the
standard error of

7 2im1 (Yi = Zi00) Dis(X{fo — )
0 ED;s(X[fo — n)

= fno(1 +0p(1))/0, (4.2)
where [i,o is identical to fi,, with (5, B) replaced by the true values (g, 3p). The
equality holds by Lemma A-2 in the Appendix. Stronger, but simpler, alternative
assumptions to Assumption 7 are given by the following Assumptions 7" and 7**.

3Here and below, “a(x) ~ b(z)” is defined to mean that the ratios a(x)/b(z) and b(z)/a(z) are
0O(1) as ¢ — oo.



ASSUMPTION 7*: nP(W; > vy, + b) — oo.
ASSUMPTION 7**: nl/(IHOP(W; > 4,,) — oo for € as in Assumption 4.

Assumptions 7* and 7** place restrictions on the speed at which ~, can go to
infinity relative to the upper tail probabilities of W;. They ensure that the sample size
on which the estimation of py is based is sufficiently large. For example, if W; has a
Weibull upper tail 1—F(z) ~ exp(—Ax¢) for some ¢ > 0 and A > 0, then Assumptions
7" and 7** are satisfied when 7, < (% logn!=™)1/¢ and ~, < (% log n(1-72)/(1+&)) /e,
respectively, for arbitrary 0 < 71 <1 and 0 < < 1.

The following Lemma shows that Assumptions 7* and 7** imply Assumption 7.

LEMMA 1: (a) Under Assumptions 1, 2(b), 3', and 6, Assumption 7* implies Assump-
tion 7.
(b) Under Assumptions 4 and 6, Assumption 7** implies Assumption 7*.Our consis-

tency result is given by Theorem 1.
THEOREM 1: Under Assumptions 1-7, [i, —— .

The proofs of Lemma 1, Theorem 1, and other results stated in this section are given
in Appendix A.
4.2 Asymptotic Normality

Under Assumptions 1-7, the following two assumptions are necessary and suffi-
cient for fi, to be asymptotically normal.

(B, — EB,)?_ | (B, — EB,)? B
Var(B,,) l Var(By,) WD = 0, where

ASSUMPTION 8: Ve > 0, JLH&OE (
Bn == UZDZS(VVZ - ’)/n).
ASSUMPTION 9: /nEU; Dis(W; — )/ (ED;s*(W; — )% — 0.

Assumption 8 is the usual Lindeberg condition. Assumption 9 ensures that the
bias of [i,, goes to zero asymptotically. Sufficient conditions for Assumptions 8 and 9
are Assumptions 7* (given above) and 9* respectively.

ASSUMPTION 9*: /nE|Us|1(g; > vpn) - P(W; > 7,)189/2 = 0 for € € [0, 1/3] as in
Assumption 4.

Both Assumptions 7* and 9* are related to the choice of 7,,. The former implies
an upper bound as described above; the latter implies a lower bound. A sufficient
condition for the latter assumption is that ¢;is a bounded random variable, since
then 1(g; > 7,,) — 0 a.s. by Assumption 6. Alternatively, if ¢ = 0 and U; is bounded,
a sufficient condition is that n'/2P(g; > ~,)P(W; > 7,)/2 — 0. In Assumption



9*, the relative upper tail thicknesses of ¢; and W; are crucial. If ¢; and W; both
have similar Weibull upper tails 1 — F'(z) ~ exp(—Az®) for some ¢ > 0 and A > 0
and U; is bounded, then Assumption 9* is satisfied if nl/ (3*5)P(VVZ~ > v,) — 0 or
Yo > (+ logn1F7)/B=8)1/e for some 73 > 0.

LEMMA 2: (a) Under Assumptions 1, 2, 3, 4, and 6, Assumption 7* implies Assump-
tion 8.
(b) Under Assumptions 1,2, 3, 4, and 6, Assumption 9* implies Assumption 9.

Asymptotic normality of fi, is established in the following theorem. Let o? =
Var(Ui).

THEOREM 2: Under Assumptions 1-7,

(@) VRED;s(W; — ) <A _ EUDis(Wi — )
o (EDs2 (W, — )2\ 7 H0 ™ "EDis(Wy — )

tion 8 holds and

> 4, N(0,1) uff Assump-

(b) a(\l/«jﬁDElgl(f/gVi %37;2/2 (fin, — po) 4, N(0,1) iff Assumptions 8 and 9 hold.

The mutual compatibility of Assumptions 7-9, or their sufficient counterparts
7*and 9%, is crucial for asymptotic normality. The thinner the upper tail of ¢; relative
to that of W;, the greater the latitude in the choice of v, as can be inferred from the
discussion of Assumptions 7* and 9* given above.

To test hypotheses and construct confidence intervals for functions of (u, 6o, Bo),
we need a joint asymptotic normality result for (£, 5, B) For example, this result
is needed to calculate a confidence region for }7; For this joint normality result, we
need to impose the following additional assumption.

~

ASSUMPTION 5*: ﬁ(%ﬁ) = ﬁZ?:l Qi + op(1) for some iid mean zero rv’s

{Q; : i > 1} with Q = EQ;Q’, positive definite, E||Q;||* < oo for some A > 2, and
E|U;Q;|[P < oo for some p > 3.

Assumption 5* is stronger than Assumption 5. Assumption 5* implies that the
estimators («9 5) satisfy an asymptotlc hnear expansion. This holds typically by the
asymptotic normality proofs for 9 and ﬁ For example, in Klein and Spady’s (1993)
estimator of (g,

-1
oP] [0P] 1
i=Ed 551 |53 | 5= * TiTin Wi, 4.
9 Haﬁ] ) [P(l—P)]} T (43)
B=0o

where P is the probability of selection, 7; is a likelihood trimming function, w; is a
weight function, and r, is equal to (D;—P;(50)) /[(E(D;| X 5o = 2 80)+06in) Pi(o) (1—
P;(3))], where &;, is a probability trimming function.*

“For details, see Klein and Spady (1993).
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The assumption that E||U;Q;||” < oo for some p > 3 is used in establishing
the block diagonality of the asymptotic covariance matrix between i, and (5, B)
Intuitively, this block diagonality makes sense, since [i,, is estimated using a decreas-
ingly small fraction of all observations and estimators of (6, 3y) that leave out these
observations are asymptotically equivalent to (5, B)

The following asymptotic joint normality result holds.

THEOREM 3: Under Assumptions 1-4, 5*, 6, and 7,

\/EEDZS(VVZ — fyn) (A _ )
o (ED;s2 (Wi — 7)) /2 Fn = Ho

—1/2 (9060
\/ﬁQ (/3—,30)

4, N(0,I) iff Assumptions 8 and 9 hold.

4.3 Asymptotic Normality with Unknown Covariance Matrix

To compute standard errors and test statistics one needs an estimator of the
asymptotic covariance matrix of (fin,6,3). More specifically, one needs consistent
estimators of 02, the asymptotic covariance matrix of (6, 3), and the normalizing
factors ED;s(W; — ) and ED;s*(W; — ).

Define N N

n S : :
>oie1 Dis(Xi6 — )

To establish consistency of 52 for 02, we impose a stronger moment condition on
the errors U; than that given in Assumption 1.

ASSUMPTION 10: EU} < oo.
Consistency of 52 is established in the following theorem.
THEOREM 4: Under Assumptions 1-7 and 10, 52 £, 02

For a consistent estimator of (2, we use the results given in the literature for the
particular choice of preliminary estimators (6, 3). Assumption 11 simply formalizes
the existence of such an estimator.

AssumpTION 11: Q 25 Q.

The normalizing factors ED;s(W; —,) and ED;s*(W; —~,) can be estimated by
their sample analogues < > | D;s(W; —,,) and 2 37 | D;s?(W; — 7,,) respectively.
To show that the ratio of ED;s?(W; —7,) to its sample analogue converges in prob-
ability to 1 as n — 0o, we need to impose Assumption 7* rather than Assumption
7.

The joint asymptotic normality of (fiy, 5, B) with estimated covariance matrix is
given in the following theorem.

11



THEOREM 5: Under Assumptions 1-4, 5*, 6, 7%, 10, and 11,
ﬁ Z?:l D’LS(X’:/B - rYn)
On (% > DiSQ(Xz(B - ”Vn))

O—1/2 /9A\—90
VISR (5

1/2 (ﬁn - NO) d
— N(0, I) iff Assumptions 8 and 9

hold.

5 Dependence Between Errors and Regressors

In the previous section, we established consistency and asymptotic normality of
fin, under the assumption of independence of (U;,¢;) and (Z;, X;). This assumption
can be restrictive. Some semiparametric estimators of (6, 3p) allow for conditional
heteroskedasticity of the errors (U;,e;), although only in a restricted form. (They
require that the distribution of the errors depends on X; only through the single index
X/ (p.) Here we extend the results of the previous section to incorporate conditional
heteroskedasticity.

5.1 Consistency

First we state revisions of Assumptions 1 and 2 that are used to establish consis-
tency. Let W be the support of W; (= X/f).

AsSUMPTION 1*: (Z;, X;,U;, ;) are iid rv's with E||Z;|P < oo, E|| X;||P < oo,
E|max(|Ui|,1) - Xi||P < oo, and sup E(|U|*|W; = w) < oo for some p > 3 and
wew

A > 2.

ASSUMPTION 2*: (a) E(U;|W;) =0 a.s.
(b) sup P(e; > v[W; =w) — 0 as v — oo.
weWw

Compared to Assumption 1, Assumption 1* imposes stronger moment conditions
on U; and X; and places a restriction on the joint distribution of (U;, W;). Assumption
2* restricts the dependence of U; and W; by requiring the conditional mean of U; to
be zero almost surely. In addition, a restriction is made on the joint distribution of
(62‘, VVZ)

An analogue of Lemma 1 is given by
LEMMA 1*: (a) Under Assumptions 1*, 2*(b) , 3/, and 6, Assumption 7* implies
Assumption 7.
(b) Under Assumptions 4 and 6, Assumption 7** implies Assumption T*.

The consistency result is given by

THEOREM 1*: Under Assumptions 1*, 2*, and 3-7, fin 2 Lo-

12



The proofs of Lemma 1*, Theorem 1*, and other results of this section are given in
Appendix B.

5.2 Asymptotic Normality

To obtain asymptotic normality of i, with dependence between the errors and
regressors we need to add a new assumption and revise the sufficient condition As-
sumption 9* for Assumption 9.

ASSUMPTION 12: ingv E(U2|W; = w) > 0.
we

ASSUMPTION 9%: /n sup E(|Ui| 1(e; > v)|[Wi = w)P(W; > 7,)178/2 — 0 for
weW
€ €[0,1/3] as in Assumption 4.

Assumption 12 ensures that Var(U; D;s(W; — 7y,)) is positive.
An analogue of Lemma 2 is now given by

LEMMA 2*: (a) Under Assumptions 1*, 2*, 3/, 4, 6, and 12, Assumption 7* implies
Assumption 8.

(b) Under Assumptions 1*, 2*, 3', 4, 6, and 12, Assumption 9** implies Assumption
9.

The asymptotic normality result is given by

THEOREM 2*: Under Assumptions 1*, 2*, 3-7, and 12,

\/ﬁEDiS(VVi_fYn) (A EUZ‘DZ'S(VVi_rYn)> d . .
n — Mo — N(0,1 A t
(a) Var(U; Dis(Wi—n)) /2 Ho EDss(Wy—n) — N(0,1) iff Assumption
8 holds and

(b) \/EEDZS(VVZ - ’Vn)
Var(U; Dis(Wi — )

7 (fin, — 10) <, N(0,1) iff Assumptions 8 and 9 hold.

The asymptotic joint normality result is given by

THEOREM 3*: Under Assumptions 1*, 2*, 3—4, 5*, 67, and 12,

VRED;s(Wi — ) .
1/2 (H’n - ILLO) d
Var(U; Dis(Wi — )Y/ — N(0,1I) iff Assumptions 8 and 9 hold.
_ 0—6
\/ﬁQ 1/ (ﬁfg?))

Note that the normalization terms differ from those of Theorems 2 and 3. If we
impose the rather strong assumption that the variance of U; conditional on W; equals
02 a.s., we get normalization terms that are identical to those obtained in the absence
of dependence between (Uj, ¢;) and (X;, Z;).

13



5.3 Asymptotic Normality with Unknown Covariance Matrix

To compute standard errors and test statistics under the assumed dependence of
the errors and regressors, one needs a consistent estimator of Var(U;D;s(W; — v,)).

Define N N

n — = - .
i1 Dis?(Xi6 — )

V,, is a consistent estimator of Var(U; D;s(W; — v,,))/E(D;s*(W; — v,)). To establish
consistency of this estimator, we again impose stronger moment conditions on the
errors Uj.

AssuMPTION 10*: sup E(|Ui|” |W; = w) < oo for some v >4 and E HUsz'Hp <00
weW

for p as in Assumption 1*.
Consistency of V,, is established in the following theorem.

THEOREM 4*: Under Assumptions 1*, 2*, 3-6, 7*, 10*, and 12,
Vi E(Dis*(W; — 7))/ Var (Ui Dis(Wi — 7)) == 1.

The joint asymptotic normality of (fiy, 5, B) with estimated covariance matrix is
given by

THEOREM 5*: Under Assumptions 1*, 2*, 3-4, 5*, 6, 7*, 10*, and 11-12,
7 Yty Dis(X]5 — )

V' (% Sy Dist (XI5 =)
VI VA (5T0)

172 (fn — p10) d . .
— N(0,1I) iff Assumptions 8 and

9 hold.

6 Conclusions

In this paper we provide a consistent asymptotically normal estimator for the
intercept of a semiparametrically estimated sample selection model. This parameter
is of importance in determining a variety of economically interesting quantities as
discussed in the second section. The estimation of this intercept has up to now
been absorbed in the nonparametric sample selectivity bias correction term, with the
exception of the estimator given by Gallant and Nychka. Their estimator is consistent,
but its asymptotic distribution is unknown. Therefore, this paper provides a useful
contribution to the literature on semiparametric sample selection models. We also
present a consistent estimator of the asymptotic covariance matrix for (fi, 0 , B)

In a simulation study, Schafgans (1995) compares our estimator to the estimator
of the intercept when standard parametric estimation techniques are applied. In
particular, the two-step estimator of Heckman (1976) is considered. Using a root

14



mean squared error criterion, our estimator performs better for a range of bandwidth
parameter choices for a variety of distributions of the errors and regressors. For error
distributions that are close to normal, however, the two-step parametric estimator
performs better.
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APPENDIX OF PROOFS (A)

For notational simplicity, we let s,,; and S,,; abbreviate s(W; —~,,) and s(X/ B—
), respectively, in the proofs below.
The proofs below use the following lemmas:

LS Do (Wi
LEMMA A-1: Under Assumptions 1 and 7, = ZE:l%if(ﬁW(Klvn;n) L1,

LEMMA A-2: Under Assumptions 2(b), 3', and 6, % — 1, % —
1, and EDis*(Wi—n)

Es*(W;—vn) — L

LEMMA A-3: Under Assumptions 1, 2(b), 3', and 6, %ﬁ% — 1. If As-
Var(U; Dis(Wi—7n))

d2ED;s2(W;—n) — L

sumption 4 also holds,

L50D;s? (Wi—vn)

*.q
ED;s%2(W;—n) .

LEMMA A-4: Under Assumptions 1, 2(b), 3/, 6, and 7*,
Proor or LEMMA A-1: The rv %E?(Dism — ED;$y;)/ED;sy; has mean zero and
variance ( ) )
Var(D;Sy; ED;s?. 1
ioni) 1904 L A1l
n(ED;spi)?  n(ED;spi)?> n -0 (A1)

using Assumption 7. O

PROOF OF LEMMA A-2: We have
(1= Ds)spi = 1y < Wi < €4)sni < 1(vn < &) (A.2)
using the fact that s,; > 0 only if W; — v, > 0 by Assumption 3. Thus,

‘EDisni E(1—D;)sp; < E1(yn < €i)sni
Esp;

Esy; - Esy;

- 1‘ = =Py <g)—0 (A.3)

4

using Assumptions 2(b) and 6. The proof is identical with s,; replaced by s2, or s2,.

O

PROOF OF LEMMA A-3: When s,; in (A.3) is replaced by U?s2, the rhs becomes
EU21(vyy, < &;) — 0 using Assumption 1.
Next, we have

VaI‘(UZ'DiSm) . EUEDZS?Q,LZ (EUZDZS,—LZ)Q

02ED;s?,  02ED;s:,  o2ED;s?, ’

02ED;s2, - 2Es2, (I+o(1))=1+0(1), and (A.4)
EU;D;sni)? E|U;|sn:)? E|U;|)2P(W; > ~,)?
(BUiDisns)? _ (E\Uilsni)? ) |y o BIGDZPOWE 2 90)* ) gy oy

02ED;s:, — o0%Es2, o?P(W; > v, +b)
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where the second and third equations use the results of the first part of this lemma,
Lemma A-2, and Assumption 2(b) and the third equation also uses Assumptions 1,
4,and 6. O

PROOF OF LEMMA A—4: The rv 1S7%(D;s2, — ED;s2,)/ED;s2; has zero mean and

variance ( ) ) .
Var(D;sZ. ED;s>. 1
T — () A5
n(ED;s2,)?  n(ED;s?)?2 n - (A-)

using Assumptions 3', 6, and 7* and Lemma A—2 since,

ED;s?, I 1 (A6)
n(ED;s2,)2 = nED;s?,  nEs2,(1+o0(1)) '
1
< =o0(1). O
= nP(W; > 7, +b)(1 + o(1)) o(1)
PrOOF OF LEMMA 1: Assumption 7* implies 7, because
\/EEDZ'SM
(EDjs;;)!/?

> (RED;s:)Y? = (1+0(1)) (nEsyi) 2 > (14+0(1)) (R P(W; > 7y +b)) Y2,
(A.7)

where both inequalities use Assumption 3’ and the equality uses Lemma A-2.
Assumption 7** implies 7* under Assumptions 4 and 6, because

(WP(Wi > 5 +)) 70+ (A38)
= (0O P(W, > 30)) " (PWi > 70) €/ P(W; > 7 +8)) 0+
= (/0P > 5,)) 7 0,(1). D

PrOOF OF LEMMA 2: To establish part (a), suppose Assumption 7* holds. We have:
Vo > 0,

E|B,, — EB,|*™ < 4P E|B,|*T? = 41T E|U; D;sps|* T2 (A.9)
< 41+5E|Ui|2+25E831;r26 < 41+6E|Ui|2+26E824

nyy

where the first inequality holds by Minkowski’s inequality, the second inequality uses
Assumption 2(b), and the last inequality uses Assumption 3’. Now, using Lemmas
A-2 and A-3, for 0 < § <1, the ¢hs of Assumption 8 equals

lim p—Pn = EBn)”
n—oo " 02Fs2,(14 o(1))
< lim E|By — EBn|2+26
= nioo 2+ 26g8n(Es2,)1T0
< I 41+6E’UZ"2+26
— nsdo 02+2656(np(m/i > Y + b))é

1((Bn, — EB,)* > no*Es2e(1 +o(1)))

(A.10)

— 0,

where the second inequality uses (A.9) and the convergence to zero holds by Assump-
tions 1 and 7*.
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Next, we establish part (b). By Assumption 2, EU;s,; = 0. Hence, the absolute
value of the ¢(hs of Assumption 9 equals

[VREU;(1 = D;)sni/(EDyspy) /|
< (1+o())WRE|U[L(W; < &) LW > 3)/(Esp)Y?
< (14+o(W)WRE|Ui|1(e: > yn) - P(Wi > 7a)/P(Wi > 3 +b)'/? (A.11)
= (1+0())VRE[Ui|1(ei>7n) - P(Wi>7) " 2(P(W;>,) 18/ P(Wi > 7 +b)) 2
— 0

where the first inequality uses Lemma A-2, the second inequality uses Assumptions
2(b) and 3, and the convergence to zero uses Assumptions 4, 6, and 9*. O

Theorems 1, 2, and 3 follow from Theorems A—1 and A-2, A-1 and A-3, and A-1
and A—4, respectively, below.

\/ﬁEDzS(VVz - rYn)
(D (W, )1

THEOREM A-1: Under Assumptions 1, 2(b), and 3-7, (fl, —
,anO) s 0.
THEOREM A-2: Under Assumptions 1, 2, 3', 6, and 7, [ino 2, 1o-

THEOREM A-3: Under Assumptions 1,2, 3, 4, 6, and 7, the results of parts (a) and
(b) of Theorem 2 hold with fi,, replaced by fing.

THEOREM A—4: Under Assumptions 1, 2, 3/, 4, 5*, 6, and 7, the result of Theorem 3
holds with fi,, replaced by Ling.

ProoF oF THEOREM A-1: The /¢hs in the Theorem can be written as

A A A-AB _B-BAB
C<§_§>_C 5 53 B B3 where
(EDS )1/27 i V0)HidSni I R K i rene )

B =Y"Dispi , and B = S7D;5;.

To show that the hs -2 0, it suffices to show (i) B/B - 1, (ii) C(A—A)/B - 0,
(ili) A/B = O,(1), and (iv) C(B—B)/B - 0. Since C' — oo by Assumption 7,
condition (i) follows from (iv). Using Lemma A-1, we find that the following two
conditions (established below) are sufficient for (ii):

%Z?(Ui + 10) Di(8ni — $ni) /(EDjsg) ' +- 0 and (A.13)
o= 90)'%2’;2@% J(ED;s2)Y? 25 0. (A.14)
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By Lemmas A-1 and A-2, the following are sufficient for (iii) and (iv) respectively:
1

1
Vn
We establish (A.15) first. We have

S0 Dy (5rs — sni) /(BEs2) 2 25 0. (A.16)

1
S20U; D;sp;

LS(U;Disni — EUiDispi) | E|Ui|sns
1 .
Esn;

ED;s,; Esp;

IN

(A.17)

The first term on the rhs is Op(1), because it has mean zero and variance
0?ED;s2,/(n(ED;syi)*) = o(1) using Lemmas A-2 and A-3 and Assumption 7. The
second term on the rhs equals E|U;| using Assumption 2(b). Using Assumption 1,
therefore, (A.15) holds.

Next, we establish (A.16). For notational simplicity, suppose B and [y are scalars.
The argument carries over to the vector case. Let Gy, denote the (hs of (A.16). A
three-term Taylor expansion of s(XiB — v,) about [y gives

Gul < | SXDis (X = 3) V(B o) (Bs)

+ ‘%E?X?Dis”(xiﬂo — ) V(B —Bo)?/ (nEsp) 2

+ G SEXEDS (X8, = ) V(B o) (2 sk (A18)
n
1
< Op(l)ﬁ X |L(XB0 > )/ (EsZ)Y? +
FOR(1) T SEXPI(Xiffo > 1)/ (nE3) 2 + Op(1) -SHIXf (n2 B2,

where s'(-) denotes the first derivative of s(-), etc., (3, is on the line segment joining
8 and [y, and the second inequality uses Assumptions 3 and 5 and the inequal-
ities [9(2)] < 1z > 0)supg, cp |$'(2-)l, [s"(x)] < 1(x > 0)sup,,cpls"(x.)], and
P, 8(2)] < co.

For any identically distributed rv’s {H; : @ > 1}, with 0 < E|H;| < oo,
)%Z?H, J/E|H;| = Op(1) by Markov’s inequality. Thus, the first term on the rhs
of (A.18) is

(B[P PW: > 30)1/9
P(W; > 7, + b)1/2

p

1) (Esp)1/? B

=o,(1),  (A.19)

where 1/p+1/qg =1, p is as in Assumption 1, and the equality holds by Assumptions
4 and 6 since 2/q > 1+¢.
The second term on the rhs of (A.18) is
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EX}(Wi > )
(nEsy;)'/?

E|Xi[*)*PP(W; > 7)'/? Esp;
(n(Esni)?/Esp) /2 Esy,
—1/2
N(E8p;)> P(W; > )t H1/3
< Ol (T) POV, > ) )

where the equality holds by Lemma A—2 and Assumptions 4, 6, and 7.
The third term on the rhs of (A.18) is

0,(1) < 0,1 (4.20)

Op(1)

E|X[? n(Esm-)2)  (Bsw)? (A.21)

sz~ Ot ( 03 ) (E2)7
o\ 1 473 \ 3/2

The first equality uses Assumption 1 and the last equality uses Lemma A-2 and
Assumptions 4, 6, and 7 and requires that £ < 1/3 in Assumption 4. This completes
the proof of (A.16).

The proof of (A.13) is the same as that of (A.16) except that the factor |U; + o
appears in various sums and expectations. In particular, using Assumption 2(b), each
expression in (A.19)—(A.20) is multiplied by E|U; + po|.

We now establish (A.14). By Assumption 5 and a two-term Taylor expansion
about fJ, the absolute value of the ¢hs of (A.14) is bounded by

2 St Zi 30

O s
< 0<1>1(2E”2—Z)”/ + opuﬁz’f”ziﬂ-le«|-|§€§§§i)—175>|-|\/ﬁ<3—50>|
0,(1) %E?”Ziuxﬂsé(éiﬂé;g;’ii V(B o)l )
< Op(l)%E?II(ZéILg)VI/;Q> Tn) +Op(1)%2’f||zi(|7|l.j|;§%|il)§% > )
+0p(1)%%§5,

where (3, lies on the line segment joining B and [y and the inequalities hold for the
same reasons as in (A.18). The rhs of (A.22) is the same as the rhs of (A.18) except
that | X;|, X2, and | X;|3 are replaced by || Zi||, || Z:||-|Xi|, and || Z;]|- X? respectively. In
consequence, the rhs of (A.22) is 0,(1) by the same proof as for (A.18), provided the
following moment conditions hold: E||Z]|[P < oo for p > 3, F||Z;||*/? - | X:|>/? < oo,
and E|Z;]|X? < oco. The latter hold by Assumption 1 and the proof of (A.14) is
complete. O
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Proor orF THEOREM A—2: We have

Ly Dysy o _EDisni

Fino — Ho = (A.23)

The second multiplicand on the rhs is 1+0,(1) by Lemma A-1. The first multiplicand
on the rhs has mean EU;D;syi/E D;syn;, whose absolute value by Assumption 2 is

|EUZ(1—D1)87M| < E|UZ|1(’Yn < 62')87—”‘
ED;s,; - ESnl(l—FO(l))

= E|U;|1(yn < &)(1+0(1)) = 0o(1), (A.24)

where the inequality uses (A.2) and Lemma A-2, the first equality uses Assumption
2, and the second equality uses Assumptions 1 and 6. The first multiplicand on the
rhs of (A.23) has variance equal to

Var(U;D;sy;)  02ED;s%,(1+ o(1))

= A2

using Lemma A-2 and Assumption 7. O
PrOOF OF THEOREM A-3: For part (a), we write

A 21U D;sni

Fino — Ho = EIJ"TSS-’ and so, (A.26)

1ioni
\/ﬁEDism- ~ EUZDZSM
o(ED;s2,)\/? Hm0 = 110 = %E’fDiSm' (A-27)

_ EDZ-smVarl/Q(UiDism) 1 nUiDiSni - EUZDZSM

 0(ED;s2,)V2i50D;s,, SV Varl/2(U; D;sp:)
The second multiplicand of the rhs is asymptotically N(0,1) by the CLT for “infin-
itesimal” independent non-identically distributed rv’s (and its converse) iff the Lin-
deberg condition (Assumption 8) holds, see Chow and Teicher (1978, Cor. 12.2.2, p.
434). (We note that the summands of the triangular array are infinitesimal, because
SUpPy <<y, P(ﬁ(UZ-DZ-sm — EUiDZ-sm-)/Varl/Q(UiDism) > ¢) < 1/(ne?) — 0 using
Markov’s inequality.) The first multiplicand on the rhs of (A.27) equals 1+ 0,(1) by
Lemmas A-1 and A-3.
For part (a), it remains to show that

\/ﬁEDism' (EUZ'DZ'Sm‘ EUzDzsm> . (1)
= 0p(1).

(A.28)

o(ED;s2) 2 \ 150 D;s,;  ED;syi

The ¢hs of (A.28) equals

 o(ED;s2,)1/2 LS9 Disni
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EU;D;spi [ 1 D;spi — ED;sy;

—_— | =X7 1 1 A2
0ED;sp; (\/ﬁ 1 (ED’LS%”)l/Q ) ( +0P( )) ( 9)
EUZ'DZ‘Sm .

—mop(l) = 0p(1),

where the first equality uses Lemma A-1, the second equality holds because the

second multiplicand has mean zero and variance < 1 Vn > 1, and the third equality

holds by (A.24). This completes the proof of part (a).

Part (b) follows from part (a), because the ¢hs of part (b) differs from that of

part (a) by a non-stochastic quantity that goes to zero as n — oo if and only if
Assumption 9 holds. O

PROOF OF THEOREM A—4: The converse holds by the converse result of Theorem
A-3(b).

Hence, we suppose Assumptions 8 and 9 hold. We use the Cramer—Wold device
and the proof of Theorem A-3. Let ¢ = (¢1, ¢5)’ be an arbitrary unit vector. We
need to show that

ED;sy; ~ - 60
%01(%0 — o) 4+ v/nch Q712 (3 B ﬁ?)) -4, N(0,1). (A.30)

By the proof of Theorem A-3 and Assumptions 5* and 9, the ¢hs above equals

n UiD;spi — EU;D;sp;
1+0,(1 e L BQTRQu | [+ op(1). A.31
(1+0p(1) 3] ( o i Y AT Vi ap(1). (A
The summands are easily seen to be infinitesimal and we show below that the sum
of their variances equals 14-0(1), so the same CLT as used in the proof of Theorem
A-3 applies here provided the Lindeberg condition holds.

We now compute the variance of the summands of (A.31):

Varcl/;]('%gifm) (A.32)
= 1+ 2Cov VarllﬂzUZDt;m)’ CIQQI/QQi) :
and
'Cov ( aUiDiswi__ o1 QZ) _ |1 EUDisnuch 12Q)
Var'/?(U; Disn;) Var'/2(U; Dysni)
< (E|Uicég_ﬁgigi);fgw'sm'qwq<1+o<1>> (A.33)

IN

_ _ P(W; > 4,,)%/
1 E f xe) 1/2 ip 1/p

1/2
) (I+0(1)) = o(1),
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where the first inequality uses Lemmas A—2 and A-3, p is as in Assumption 5*,
1/p+1/q = 1, and the last equality holds by Assumptions 4, 5%, and 6 since 2/q > 14£.
It remains to verify the Lindeberg condition. Let

Ap = c1(U;D;sp; — EU;D;sp) [VarV (Ui Dysyi) and Q = Q7 V2Q; . (A.34)
Assumption 8 implies the Lindeberg condition holds for {4,, : n > 1}:

lim FA21(A%2 >ne) =0 Ve > 0. (A.35)

n—oo

We need to show that the Lindeberg condition holds for {4,+@Q : n > 1}:
lim B(A, +Q)*1((An + Q) > ne) =0 Ve > 0. (A.36)
The left-hand side of (A.36) is less than or equal to
lim B(247 +2Q%)1(247 +2Q* > ne). (A.37)
We consider the two summands of (A.37) separately:

lim EQ*1(24;, +2Q° > ne) < lim (E|QIN)*AP(24;, + 2Q° > ne)V A2

n—oo

< (BIQIM? lim (

) o\ M(A—2)
i (2 280Y (A3

ne

where the equality holds because EA2 = 1 and E|Q|* < co by Assumption 5*. Next,
we have

lim BATL(AL + Q% > ne/2)
< lim EAZ1(Q? > M,) + lim EAZL(AL +Q > ne/2, Q° < M,)
< lim EADI(AL > n,Q° > My) + lim BAZL(A] <n,Q* > M,)
+ lim EA21(A% > ne/2 — M,,) (A.39)
lim EA21(A2 >n) + Jim nP(Q* > M,) + Jim EA%21(A2 > ne/2 — M,,)
lim nB|Q /My + lim EAZL(A;, > ne/2 — My) =0,

IN

IN

where the last inequality holds by the Lindeberg condition for {A, : n > 1} and
Markov’s inequality, A > 2 is as in Assumption 5*, and the equality holds by taking
M,, = ne/4 using Assumption 5* and the Lindeberg condition for {4, : n > 1}.
This completes the proof of the Lindeberg condition for {A4,+Q : n>1}. O

Theorem 4 follows from Theorems A-5 and A-6 below. Define

2
~2 E?UZ D;sp;

= . A4
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THEOREM A-5: Under Assumptions 1, 2(b), 3', 4, 6, 7, and 10, 52, 2,02

THEOREM A—6: Under Assumptions 1, 2(b), 3-7, and 10, 52 — 52, 250.

e
Proor OF THEOREM A-5: By Lemma A-1,

1ywnyr2
230U% D; S
~9 1Vi Yidni
=2 — — (140,(1)). A.41
O-TZO EDsz ( Op( )) ( )

Let V0 = 1S7U2D; 8/ ED;sy;. We have

EU2D;sni  EUZsni(1+0(1))  02Esyi(1+0(1))
ED;spi ED;sy; B ED;sp;

EVyo = =o%(1+0(1)) (A.42)

using Lemmas A—2 and A-3 and Assumption 2(b). We also have

2D;s, 42 4D, s2,
Var(Vig) = Var(U7 D;sp;) < EU}s,;  EU;ED;s;;(140(1))

n(EDispi)? ~ n(EDisni)? n(ED;sp;)? =o(1), (A.43)

where the second to last equality holds by Lemma A-2 and Assumption 2(b) and the
last equality holds by Assumptions 7 and 10. O

ProOOF OF THEOREM A—6: The ¢hs in this theorem can be written as:

A_A\_A-A B B-B A B
5 B/ B B B B p ¢
A=SPU2D;spni, A=SNY; — fin — Z10)*D;5y;, (A.44)

B =3"D;sp;, and B = X7D;5p;.

To show that the ¢hs < 0, it suffices to show that: (i) B/B - 1, and (ii) (A—
A)/B -0, and (iii) A/B = Op(1). By the proof of Theorem A-1, (i) holds. (It is
implied by condition (iv) of that proof.) By Theorem A-5, A/B £ o2, so (iii) is
satisfied.

Using Lemmas A-1, A-2, and A-3, Assumptions 3, 5, and 7, and Theorem 1, we
find that the following six conditions are sufficient for (ii):

L SnU2D;(50i — Sni)

—Epe 0 (A.45)
E%gﬁz%m’ (A.46)
(6 — eo)éifzmigm _ 0,0, i
i%%%@:%m’ (A.48)
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(0 — 00) J=E1 Z;Ui D5

(EDis2 )12 — 0, and (A.49)
(6 — 0)/ 2512, Z! Di%ni (6 — 6y)
VL 2,0 (A.50)
(EDiqum')l/Q

The proof of (A.45) is the same as that of (A.13) except that the factor U? appears in
various sums and expectations instead of |U; 4 j|. By Assumption 2(b), this requires
EU? < 0o, which holds by Assumption 1.

By the proof of Theorem A-1, (A.46), (A.47), and (A.48) hold. In particular,
equation (A.46) is implied by condition (i) of that proof together with Lemmas A-1
and A-2. Equation (A.47) follows from (A.14) and Assumption 7. Equation (A.48)
follows from (A.13), (A.15) and Assumption 7.

The proof of (A.49) is the same as that of (A.14) except that the factor |Uj
appears in various sums and expectations. In analogy with the proof of (A.13), using
Assumption 2(b), this requires E|U;| < oo, which holds by Assumption 1.

We now establish (A.50). By Assumption 5 and a one-term Taylor expansion
about fJ, the absolute value of the ¢hs of (A.50) is bounded by:

S0 Zi|?5ni

n3/2
%) (Esp;)/?
Op(W) 3571 Zil*sni | Op(D) 5 SRIZilPIIXis' (XiBs — v)v/H(B—Bo) (A51)
(nBsp;)!/? (n?Esp) /2 '
1ymn 2 1ym 2
w2t 1 Zi|F1 (Wi > ) w2t 1271 X
Op(1) (nESQ')l/Q +0p(1) (nQESQ')l/Q )

By the same proof as for (A.22), the rhs of (A.51) is 0,(1) provided E|Z;||* < oo for
A > 3 and E||Z;|?|X;| < oo. The latter hold by Assumption 1. O

PROOF OF THEOREM 5: By the proof of Theorem A-1, 259 D;8,; /250 D;s, - 1.
(It is condition (i) of that proof.) If we show, analogously, that

1 1
—¥nDsE, /—xrDst, 21, (A.52)
n n

then the ¢hs of the theorem equals

ED;Sni ~
#{w(l +0p(1)) (Fin — pt0)

SR+ op(l))(g:%;)

using Lemmas A—1 and A—4, Assumption 11, and Theorem 4. Theorem 5 follows

from (A.53) and Theorem 3. It remains to establish (A.52). Using Lemma A-4, we

find that the following condition is sufficient:
=1 Di(55; — sp;)

N P
CEAE — 0. (A.54)

(A.53)
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The proof is analogous to that of (A.16) with sp; replaced by s2, and s2, replaced by
st.. In addition to the assumptions required for (A.16), the proof uses (A.6) of the
proof of Lemma A—4. O

APPENDIX OF PROOFS (B)

This Appendix contains the adjustments required when we relax the assump-
tion of independence of (U;,¢;) and (X;, Z;).

Lemmas A-1, A-2, and A—4 used in the previous Appendix also apply in this
case, except that we replace Assumptions 1 and 2(b) with Assumptions 1* and 2*(b)
respectively. We call the revised lemmas Lemmas A-1*, A—2* and A—4*. Lemma
A-3 is replaced by Lemma A—-3* given below. The proofs make use of two additional
lemmas, both of which are required to show consistency of the estimator 17n.

2D $2(Wi—
LEMMA A-3*: Under Assumptions 1*, 2*(b), 3/, 6, and 12, %m
VaI‘(UiDiS(Wi—’Yn))
EU,?DiSZ(Wif’Yn)

— 1. If

— 1.

Assumption 4 also holds,

LEMMA B-1: Under Assumptions 1*, 2*(b), 3', 6, 10*, and 12, %
LN 2D 2(W
LEMMA B-2: Under Assumptions 1*, 2*(b), 3/, 6, 7%, 10*, and 12, - ZE:L}E%E;(SWEVY;”)%)

2,1

The need for Assumption 2*(b) can be seen, for instance, by considering the proof
of Lemma A-2*.

PrOOF OF LEMMA A-2*: We change equation (A.3) to
ED;sp; E(1—D;)sn; _ E1(vn < €;)sni
s | - B2 ¢ PO S50 < sup Py < efWo=w), (B
Sni

Esp; o Esy; weW
which converges to zero using Assumptions 2*(b) and 6. O

The need for Assumption 12 becomes clear when we consider the proof of Lemma
A-3*.

PrOOF OF LEMMA A-3*: We have
EUZD;s2, 1 = EU}(1-D;)s2, < EUA (v, < )82,

EU2s2, | EU%s2, — EU?s2,

7 ne ? ?

sup E(U1(yn < &)|W; = w)
weW

inf E(UZ|W; = w) (B.2)
we

(sup E(|U;|* [W; = w))* (sup P(y, < Wi = w))H/1
weWw weW

IN

— 0,

inf E(UW; =w)
weWw
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where ) is defined in Assumption 1* and ¢ satisfies 2/A\+1/q = 1. The first inequality
uses Assumption 3’ and the convergence to zero holds by Assumptions 1*, 2*(b), 6,
and 12.

Next, we have

Var(UiDisni) 1 (EUDisni)*?
HJZQDZS?,” N ED?DZS?,” ’
EU; iSni 2 E i| oni 2
(EUD;Sn;) < (E Ui sni) (1+o(1)) (B.3)

BUZD;s%; — inf E(UF|W; =w)EDs?,

sup E (|U] [W; = w)? P(W; > )2
weWw

= inf BU2W: = w)- P(W; > 7 +b) (1+o0(1)) = o(1),

where the second equation uses the first part of this Lemma, Lemma A-2* and
Assumptions 1*, 4, 6, and 12. O

Proor oF LEMMA B-1: The proof is analogous to the first part of Lemma A-3*.
The proof additionally requires Assumption 10*. O

PrROOF OF LEMMA B-2: The proof is analogous to that of Lemma A-4*. A similar
argument to that of (B.3) can be used to show that EU}D;st. /n(EU?D;s2,)* = o(1).
The proof uses Lemma B-1. O

PrROOF OF LEMMA 1*: The proof follows Lemma 1 exactly. O

Proor oF LEMMA 2*: To establish part (a), note that the first equation of (A.9) in
this case is bounded by

44 sup B (|U2W; = w) Bszf? <4 sup B (U2 |W; = w) EsZ;. (B.A)
wew weWw

Using Lemma A—-3*, for 0 < 6 < 1, the ¢hs of Assumption 8 is then bounded by

. (B, — EB,)?
1 F
n00 (EUZ-Qs%i(l—Fo(l))
] E’Bn _ EBH‘QJrQ&
lim 2.2 \14+6 6,8
n—oo (EUZsz )1 H0en

4148 sup B (|U[2+2|W; = w)
wew

1((B, — EB,)* > nEUfs,‘iis(Ho(l))))

IA

(B.5)

nlgglo : 2 _ 1+6 ¢ §
inf F (UZIW; = w) 7" e (nP(W; > v, +0))°(1 4 0(1))

IN

— 0,

where the second inequality uses (B.4) and the convergence to zero holds by Assump-
tions 1*, 7*, and 12.

To establish part (b) we need to use Assumption 2*(a) to establish that EU;s,; =
0. In (A.11) we need to replace E|U;|1(e; > v5) by sup,epw £ (|Us|1(gi > 70)|Wi = w) .
O
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Theorems 1*, 2*, and 3* follow from Theorems A-1 and A-2, A—1 and A-3, and
A-1 and A—4 respectively, given in the previous Appendix, with Assumptions 1* and
2* replacing Assumptions 1 and 2, and Theorems 2* and 3* replacing Theorems 2

and 3 respectively. We call the revised theorems Theorems A-1*, A-2* A-3*, and
A—4*,

PrOOF OF THEOREM A—1*: The proof of Theorem A—1 needs to be revised at two
points. In particular, they concern the establishment of the conditions given in (A.13)
and (A.15).

First we consider (A.15). The first term on the rhs of (A.17) is Op(1), because it
has mean zero and variance o(1):

sup B(UZ|W; = w) EDis2,(1 + o(1))

Var(U,'DZ-Sm-) weWw

n(EDlsm)Q

E(U2D;s2))

ni

n(EDZSnZ)Q

< < —0 (B.6)

n(EDlsm)Q

using Lemmas A—2* and A-3* and Assumptions 1* and 7. The second term on the
rhs of (A.17) is bounded by sup,cyy E(|U;| |W; = w), which is O,(1) by Assumption
1*.
Next, we establish (A.13). By (A.16) and Lemma A-2* it is sufficient to show
1 ~

%E?UiDi(sm — sni) /(ED;s2;)Y* 25 0. (B.7)
The proof is analogous to that of (A.16), where | X;|, X?, | X;| are replaced by |U; X;|,
|U:| X2, |U;||X;[3. In consequence, the proof requires the following moment conditions
to hold E|U; X;|P < oo, where p is as in Assumption 1%, E]UZ-P/2 1X,|* < oo, and
E|U;| |X;]* < oo, which hold by Assumption 1*.

PrOOF OF THEOREM A—2*: The first multiplicand on the rhs of (A.23) has mean

EU;D;syn;/ED;sy;, whose absolute value by Assumption 2*(a) is

’EUZ(l—Dz)SnZ’ < E‘Ulyl(’)/n < 5i)5ni
ED;sy; - ESnZ(l—FO(l))

< sup E(|Ui103 < ) [Ws = w)(1+o(1)) = o(1)

(B.8)
using Lemma A-2* and Assumptions 1*, 2*(b), and 6. The first multiplicand on the
rhs of (A.23) has variance equal to o(1) by (B.6). O

Proor orF THEOREM A-3*: Equation (A.27) in this case reduces to

VNED;sp; ~  EUDjspi\ _  ED;sp; LEnUiDiSni_EUiDisni
Var (U D) \"™ 10 T IS0 Disni ) ~ IS4 Diss V' Var A (UiDysw)
(B.9)

For part (a), it remains to show

VNED;sy;
Var1/2 (UzDzsnz)

EU;D;sy; EU;Disy;

1
23X Dispi ED;sp;

= 0,(1). (B.10)
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Using Lemma A—3*, the following inequality holds:

Var(UiDjspi) 2 inf E(UZ|W; = w)Es2,(1+ o(1)). (B.11)
we

By analogy with (A.29), the ¢hs of (B.10) can then be shown to equal 0,(1) using
(B.11), Lemmas A-1* and A—2*, and Assumption 12. O

PrOOF OF THEOREM A-4*: Equation (A.30) is given by

V/NED;Sp; N 1 —1/2 0—00\ a
c1(fino — + /NncsH ) ~ N(0,1). B.12
Var (U, Dysn) 1(fino — po) + v/nch IS (0,1) (B.12)

The only difference from the proof of Theorem A—4 is in showing that

Covvarcll/g(‘g‘g; 5 0’29_1/2622-) = o(1). Using (B.11), we can show that this holds

if we add Assumption 12. O

Theorem 4* follows from Theorems B—1 and B-2 below. Define
Voo = SPUPD;s2, /57 Dis2,. (B.13)

THEOREM B-1: Under Assumptions 1*, 2*(b), 3', 4, 6, 7, 10*, and 12,
VioB(Dis2;) /Var(UiDisyi) 2 1.

THEOREM B-2: Under Assumptions 1*, 2*(b), 3-6, 7*, 10*, and 12, Vi, — Vo =2 0.
PROOF OF THEOREM B-1: By Lemma A—2*, it is sufficient to show

LN U Dy Var (U Dyspi) = 1. (B.14)
Using Lemma A-3*, the /hs of equation (B.14) has mean 1 + 0,(1), and variance

Var(U? D;s2,)
nVar (UZ'DZ‘Sm)Q

E(Uleisiz')
nE (U2Dis2,)” (1+ o(1))

< = o(1), (B.15)

where the inequality holds by Lemma A-3* and the equality holds by the proof of
Lemma B-2. O

PrOOF OF THEOREM B—2: The proof is analogous to that of Theorem A—6 with sy,
and 5, replaced by s2. and 52, respectively. Condition (i) of the proof holds by the
proof of Theorem A—1*. By Theorem B-1, condition (iii) is satisfied. It remains to
show ) SO

721 UZDisy; — % 1 U Disy;

EDiS%i

The six conditions, sufficient for (B.16), are identical to (A.45)—(A.50) with S, Sps,
and s2; replaced by s2,, 82, and s,, respectively (call them (A.45*)—(A.50*)). The
proofs are similar to those given in the previous appendix.

= 0,(1). (B.16)
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Due to replacing s,; by s2;, and s2; by st., we need to impose Assumption 7*

rather than Assumption 7, which was used in Theorem A.6. The adaptations to
the proofs required follow the example given. Let L, denote the (hs of (A.46%). A
three-term Taylor expansion of s2(X;3 — ,,) about 3y gives:

1 .
|Ly| < ‘5Z?XiDi25niS;u'\/ﬁ(ﬂ_60)/(E8;1m')1/2

+|5n SXEDI2As0)" + 2 V(B o) (nEsy)

+ G DAOS (X3 —30)s" (X" =) + 25(X;8 =) (X5 R
x Vn(B—Bo)*/ (n?Esy) 7|

< 0p(1) - S Xl 1(Xifhy > )/ (Es) /2

O SEXTA(Xifiy > ) (nEsh) 2 + Op(1) S Xf/(n? Bs) V2

where (3, is on the line segment joining B and By, and the second inequality uses
Assumptions 3 and 5 and the inequalities |s'(x)| < 1(x > 0) sup,_ cg |5’ (24|, |s"(x)] <
L(z > 0) sup,, e |s" (2+)], and sup,cp [s"(z)| < oco.

The first term on the rhs of (B.17) is

B X 1(W; > ) < 0,(1) (B|1X|P)Y/PP(W; > 7,,)4
(Est)1/2 - P P(W; >y, +b)1/2

Op(1) = 0p(1), (B.18)

where 1/p+1/q = 1, pis as in Assumption 1*, and the equality holds by Assumptions
4 and 6 since 2/q > 14¢€.
The second term on the rhs of (B.17) is

EXZA(W; > ) (B X PW; > 1) B2,
(nEst,;)1/? (n(Es};)?/Esy) V2 Esp,

< 0p(1) n(Es2)*\ 7 P(Wi > 3113

Op(1)

< Op(1)

= op(1),

where the equality holds by Assumptions 4, 6 and 7* (see (A.6) in proof of Lemma
A-4). The third term can be shown to be o,(1) by analogy. This completes the proof
of (A.46%).

Additional changes in the proofs of (A.45)—(A.50) occur in the cases where U; or
U? appear. These changes are similar to those alluded to in the proof of Theorem
A-1*. Of
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PrOOF OF THEOREM 5*: Using Lemma A—1* and Theorem 4*, the ¢hs of the theorem

equals

VNED;sy; N
1+ o0,(1 " —
Varl/Q(UiDism)( Ap( ))(IM IMO)

VR Y21+ 0 (1) (557)
Theorem 5* follows from (B.19) and Theorem 3*. O

(B.19)
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