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AN ASYMPTOTIC EXPANSION IN THE GARCH(1,1) MODEL

By OLIVER LINTON

Yale University

SUMMARY

We develop order T—! asymptotic expansions for the quasi-maximum likelihood
estimator (QMLE) and a two step approximate QMLE in the GARCH(1,1) model.
We calculate the approximate mean and skewness and hence the Edgeworth-B dis-
tribution function. We suggest several methods of bias reduction based on these

approximations.

1 Introduction

The first order asymptotic properties of estimators and test statistics in ARCH models
are now well established. The Gaussian quasi-maximum likelihood estimator QMLE
is asymptotically normal under quite general conditions, see for example Weiss (1986),
Lumsdaine (1991), Lee and Hansen (1994), and Bollerslev and Wooldridge (1992). In-
deed, Lumsdaine (1991) shows that this is true even when there is a unit (or even
mildly explosive) root in the variance process.! The finite sample properties are less
well known, although some simulation evidence has been presented: in an early pa-
per Engle et al. (1985) found ”direct evidence of a substantial negative bias in the
coeflicient” (estimate of the parameter on the lagged squared residual) in an ARCH

model. They also found that sample standard deviations could be up to 30% below
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the limiting value for samples of size 50. Bollerslev and Wooldridge (1992) look at
both estimates and tests and conclude that biases were relatively minor. In a recent
Monte Carlo study, Lumsdaine (1995) found substantial evidence of skewness in esti-
mates and test statistics, attributing some of this to the truncation of the parameter
space imposed during estimation.

We investigate the small sample properties of the QMLE and a widely used two
step estimator in the GARCH(1,1) and IGARCH(1,1) models, by developing asymp-
totic expansions and calculating the approximate bias and skewness from the trun-
cated expansions. We then compute the Edgeworth approximate distribution derived
from these approximate moments. This methodology has a long history of successful
application in both econometrics and statistics. Bartlett (1953) gave the order 7!
bias and skewness of the MLE of a single parameter in i.i.d sampling, where T is sam-
ple size. Haldane and Smith (1956) gave the first four cumulants in the same setting.
Shenton and Bowman in a series of papers (1963,1969,1977) developed these approx-
imations further including higher orders of approximation (out even to order 7% in
some cases) to multivariate problems. Many of these results are discussed in McCul-
lagh (1987). There has also been considerable work in the econometrics literature
starting with Nagar (1959) who developed order T~! second moment approximations
for k-class estimators in a simultaneous system. Anderson (1974,1977) and Anderson
and Sawa (1973,1979) give the expansions for estimators in simultaneous equation
systems. Phillips (1977a) does the same for first order autoregression. Sargan (1974,
1976) and Phillips (1977b) establish the theoretical validity of the approximations for
smooth functions of sample moments. Rothenberg (1984ab,1988) covers estimation
and testing based on GLS procedures. Taniguchi (1991) develops expansions for many
time series procedures. See Rothenberg (1986) for a review.

We apply these methods to our nonlinear time series setting. Many terms are



involved in the expansions, in general. Nevertheless, several patterns emerge. Firstly,
the order 7! mean and skewness are nonlinear functions of the parameters. Secondly,
the magnitude of the bias appears small except in the extreme case when the variance
process approaches a deterministic difference equation. Thirdly, in some directions of
approach to the unit root, the bias decreases, even when standardized by asymptotic
standard deviation. This latter fact contrasts with the finding in linear autoregres-
sion, see for example Phillips (1977a), where the bias increases, and without limit on
standardization by the asymptotic standard deviation, as the unit root is approached.
This is entirely consistent with the known fact that for GARCH processes a unit root
has no effect on the rate of convergence of parameter estimates as documented in
Lumsdaine (1991). Our focus here is on estimation of the parameters of the variance
process, although in passing we comment on the location estimator.

Some applications of our expansions include how to correct the estimator for bias,
how to size-adjust test statistics, see Rothenberg (1988), and how to correct the
certainty equivalent predictive likelihood function as in Cooley and Parke (1990).
Finally, we confess that our expansions are purely formal.

In section 2 we introduce the model and procedures under investigation. The main
theorem is stated in section 3, and in section 4 we investigate the approximations. In

section 5 we give some extensions. We give our derivations in the appendix.

2 The model and estimators

The observed data {y; }/_; are generated by the GARCH(1,1) process:

= B+v"



vy =01 + 001 + O5(y1 — B)?, t=1,2,...,T,

where ¢; are i.i.d., symmetric about zero, with variance one, fourth cumulant x4, and
ko3 = E {(¢2 — 1)3} . We require &, to have finite J'th moments, for some large J> 6.

We also assume that the true parameter values satisfy: 6; > 0 and
E {111(92 + 936?)} < 00,

in which case v, is strongly stationary and ergodic, see Nelson (1990). We assume
that the initial observations are drawn from the stationary distribution.
We work throughout with estimators computed from the following conditional (on

initial conditions) Gaussian Quasi-Likelihood:

where hy = Inv, and 0 = (61,02, 603)". With regard to the family of processes induced

by 6, we consider two alternative start-up rules documented further in the appendix:

(WS) Weakly Stationary Case. When 6y + 05 < 1, the process v,() is weakly sta-
tionary with unconditional variance v = 6;/(1 — 02 — 63). In this case, the
process v,(#) and its derivatives defined below are assumed to start from their

unconditional mean.

(UR) Unit Root Case. When 6, + 03 = 1, the process v;(6) is not weakly stationary,
i.e. the unconditional variance would not exist. In this case, the process v;(6)

and its derivatives are assumed to start from some arbitrary value.



Let 3 and 6 be the maximizers of L(0, ) subject to the inequality restrictions
05,03 > 0 and 6; > 0 (in fact, we work with solutions of the quasi-score equations,
dL(3,0) /8¢ = 0, where ¢ = (3,0')). We also examine a convenient alternative
to 0: a maximizer § of L’(G,B), where 3 is any T'/? consistent estimate of 3, for
example 5 =TT 4, This method is widely used in practice. Note that under

our symmetry assumption, the asymptotic distribution of g is independent of the

choice of preliminary estimator 5.2

3 The main result

Our method is to expand the score equations in a power series in the likelihood
derivatives about the true parameter value, and then to invert this expansion to
yield an expansion for the standardized estimator. The moments of the truncated
expansion are then found. Barndorff-Nielsen and Cox (1989) and Rothenberg (1986)
review these techniques and the standard results. We first develop some notation.

For /3 and for i, j, k € {1,2, 3}, the likelihood derivatives are:

L= %Zle(é?? — 1)hy,
Lg=50(ef = Dheg+ X evp
Lij =5 3im1(5f = Dhagj — 5 Ty 6 hehg,

Lop = % 2?21(5,52 - 1)ht;ﬁ,3 - % Z?:l 51:2h152;ﬁ -2 Zthl 5tUt_1/2ht;,3 - Z?:l Ut_1

Lip =5 5im(ef = Dhap — 5 S ethuihus — Sy 5tU;1/2ht;i

Lij =3 Yi—1(e7 = Dhyjie — 3 oy €{husishus + heaehuy + hagrhe — huibugihe}

Lsgs = 5 21—1(e7 — Dhapps — 5 31—y i{3hyshuss — bz}

1/2
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- 5tUt_1/2{ht;,Bﬁ - 3h%;,3} +3%, Ut_lht;ﬁ7
Lijs = 5 i1 (67 = Dhaigs — 5 Zimn el ussshes + huighg + hugshe — huiheihes}
— 57 ety {hyi; — huiheg}
Ligs = 5 24=1(57 — Dhaps — 5 i1 ¢ huihugp + 2heghes: — highe}y

+ 3T ey {2 phe — hugi} + S0 v hg,

where hy; = O0h;/00;, for example. The logarithmic derivatives are related to the
level derivatives of v, by hy; = v 1“t;i and hy;; = vy 1Utﬂ'j — vy 21&;#&;]', where, for
example, v,; = 0v;/06;. Recursive expressions for the variance derivatives are given
in the appendix. The scores are martingales relative to the natural filtration, while
the Hessian and higher derivatives do not have this useful property.

Under the above conditions, the following moments converge® to finite limits as

T — oo:

iy =T E(Ly) = —piy/2

Ty =T E(LiL;) = (ka + 2)p5/4

Tigr = T E(Lije) = —{Bijk + Hing + Mgk — Hige}/2

Tigh =T ' E(Lii L) = —{pii; — (Ka +2)(pajn — pijw) }/4

Tk = TTVE(LiLL1) = {Raspti i + (ka + 2 (5, + 1, + 155.) } /8

o5 =T ' E(Lps) = — (T + pp,5/2)

T35 =T 'E(L}) =T + (ks + 2) g 3/4

Tips = T E(Lipg) = T — {ptip5 + 20pi5 — Hpi6}/2

Tigs =T E(Ligls) = — {47 + 15, 5+ 20855 — (ke + 2)(tiss — Hi0)H/4,



where j1;; = T~ L, E(hyihy;), which forms a nonsingular 3 by 3 matrix, while
Hij ke = T-1 Zg:l E(ht;ijht;k) and Hij ke = T-1 Zg:l E(ht;iht;jht;k)~ Here, T="T"1 Zg:l E(U;l),
v=T'YL E(v),and 7, =TS, E(v; k), while

g = (e Z Z E {(53 - 1)hs;kht;iht;j} NS T Z Z E {551);1/2]1“,»]1“5} .
5<t

5<t
When the errors are symmetric, any moment involving an odd number of 3 subscripts
is zero, so that 73, 7;;3, 733 = 0. When x4 = 0, the first two Bartlett identities hold;

in particular,
T+ Ty =0 5 Tk + Tije + Tikg + Tk + Tije = 0,

although more generally they do not.
Both TY/2(6 — 0) and T*/2(6 — 6) are asymptotically normal with mean zero and

the same covariance matrix, Q = (w;;)?._;, whose i, j'th element is

i,j=17
3
wij = > T*Tmm™ = (kg +2)u™, (3.1)
km=1
where raising pairs of indices signifies matrix inversion, i.e. Q7 = (w%)? j—1- Similarly,

T'2(3 — ) and TY2(§ — () are asymptotically normal. Let ®,(-) be the c.d.f of an
N(0, x) random variable for any positive scalar y, and let ¢ be any 3 by 1 vector. In

the appendix we establish the following:

THEOREM: Our results below hold in both the weakly stationary case (1) and
the unit root case (2). Firstly, B is symmetrically distributed about (3 to order T 1.
Secondly, the asymptotic bias and skewness of 0 are v /T and v3/T, and of 0 are

vi/T and ~v3 /T, with



M=M+Ao—(Ao+A) 5 T=A—A3—X5 ;
=AM+ A= (Ao+A) 5 13 =13,

where*

Ao =T"' £5 B{(el — )M "hahyM~hg,}

M=IMITIY B {Plhetht;ﬁﬁ + pahghi s + pshysihys + P4U{1het}

Ao = T MU S5 E{(5 = Dhochoghis} /2 + B {es0, 2 hoihg

N = dMITL L E{ pihohegs + psheh? s + pihopihas + pivy "hey + pihg: |

No=—2M TSy E {es0l*hoihig )

Ao = (kg +2)T 1L, E{tr(M~'D,)¢M~thy,} /2

A3 =3(ky + 22T E{/MD;M~tcd M~ hy,}

M = kosT 'L E{(CM hy)?}

A5 = 6(s +2)T 1 £ E{(¢M hy) M hy (5 — 1)}
with g, = (hes hia, ht;ss)fa D, = (Uflvt;ij)?,jzp M = (Mz’,j)?,j:p andhgg, = (83217 ag;a 8%3)',
lat?) 4 7/3767551/2} P8 = —Tas {(“4—;22 - T,B,BT[;,Bl} /2,
pa=Tas {2 + Tﬁ,ﬁn?/al} , and py = =0, py =V/2, py = =T, p; =7, p5 = —2.

- —2 —1
while p; = —T35 T5.5/2, p2 = T34 {

Therefore, we have the formal Edgeworth-B approximation: for any x € R,

. 671 + Y3(z? — 1) _
Pr{T"%¢(6 - 0) <z} = Pug, {x - +o(T12). (3.2)

Likewise for T'/2¢ (0 — 0) with v and ~; replacing v1 and s in (3.2).

Unfortunately, we cannot in general obtain simple expressions for v; and s, as
one can in the AR(1) model®, and therefore present our results in the above form
which is suggestive of how one might compute them. We use numerical integration to

compute the bias, see section 4 below. The formulae simplify in some special cases:



When §3 is known and not estimated: the bias terms A;, Ajg, A], and A}, are all zero.

When 65 = 0 is known and only (3,6, and 05 are estimated: both Ay and A3 are zero

because then all second derivatives vy;; are zero.
Under Gaussianity: pi, ps, p3 = Tﬂ_ﬁl/Q’ and py = Tﬁ_ﬁl

When v, = v is constant and only v and /3 are estimated (the QMLE of v here is the
sample variance 9 = T~ ST (y; — %)?). In this case, hg; = v™! and M = v 2,
so that Mg, Mg, AT, Ajg, A2, A3, A5 = 0 — only A\; and A\, are no zero. In fact,

3k93.5 Thus the bias and skewness of © are —v7T~*

A =pyg=—vand \y =0
and v*ko3T~! respectively, which agrees with the known moments of the sample

variance.

Our results cast doubt on the relevance of some of the calculations carried out
in Engle et al. (1985, p91): specifically, the bias is generally affected by how [ is
estimated, witness the difference between \; and A\j. However, the skewness, although
generally nonzero, is unaffected by whether or how location is estimated. This accords
with the well-known result, see Pfanzagl (1980, p32) and Akahira and Takeuchi (1981),
that first order efficiency implies second order efficiency, i.e. the skewness of all first
order efficient estimators is the same. Note, however, that neither of our estimators

is necessarily efficient yet still this result appears to hold.



A Special Case: Local Power of a Wald Test

We now consider an important special case where 0, = 0 and 63 = /T2 for
some fixed 05, and the parameters 3,6, 05 are estimated by maximizing £. In this
case, we can approximate the precision process by Taylor expansion and calculate

explicitly the required moments for the Edgeworth approximation. We have

1 1 [ -
=g e — B+ 0T,

while v;,; =1 and v3 = (y,—1 — 3)*. Therefore,

1L 0, =2 1-2B(c]) 1
M=| % 01 + — 01 o =My+—-M;
1/2 _9F (et 1/2 ’
Lopehy ) TP\ R 9Bl - B(D)) T
and thus
_ _ 1 _ _
M ‘=M, - mMolMlMol

to order T—/2, where

el B G
O B -1 a4

We have written M in two parts: one that occurs under homoskedasticity and a
correction factor due to 03 # 0.

As for the bias and skewness, note that: Ay, A\3 = 0 because we are not estimating
0y, while Mg, A5y = 0, \y = (M T SSL | E(psv; thy,) and
=M IT ! Zthl E {pjv{ Thy, + p;—;hgt} because vy.3 = 0, finally, we can replace
M~! by My*, hy; by (1,2 (v;_1)' /61, and hg; by (1,6,)/6;. We have
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E{(e% — 1)h92hlgg} = ( 0 {E(e]) — 1} /6, ) |

{E() =1} /6, {E(<Y) — E()}

while
E{(} = Dhohf } = O(T27), t=3,....T.

Therefore, to the required order of magnitude

)\0 = C,MalE {(6% — 1)h92h/92} Malhgl

I S (G 0 (B~ 1} /6, | [ B(eh) —1
N AR R e E) 0

Also, E(vy'hgy) = (1,0,)'/6? and py = —0y, so that \; = —60,¢/My'E(v; thy,) =
—(01,0). Therefore,
0 ifc=(1,0)
"=

—1 ife=(0,1)

Our results for 65 agree exactly with those presented in Engle et al. (1985) even
though their estimation method and setting were slightly different. Specifically, they

worked with the special case that §; = 1,03 = 0, and § known. Their estimation

11



method was to use the score function and the conditional mean of the Hessian —
(’71 Zthl ht?iht;j)f,j — to take one step starting from the true values 6; = 1,03 = 0.
Our results for él, however, indicate a difference between the maximum likelihood
estimator (MLE) and the Engle et al. (1985) approximation: the bias of the MLE
is zero to this order, while for their procedure there is a positive bias of magnitude
01/T.

Now for the skewness. We have

3
3 E(t) =L 1
E{(clMalhez)g} = 491 ) c (1) o1
{E(ef) — 1} o % €20,
3
00 ) B -
= _— C 3
{B(eh) — 1} (&2 —1)/6,
and so
9%’{23 E{{EE 41)), 6;} if c= (17 O)I
A=
2
—— s if c=(0,1)
{Beh-1} ’
Also, E {(¢My'hyp)?(e? — 1)}
_ e B 5 0 {E(e]) — 1} 6 BE) 5,
eh)— ? — -
b\ 2 & ) {BE -1 (B -BED )\ 3+ #
e BE) 2B )+ E(e) +1 {B*(eh) + E(el) — E(e9) — 1} /6, .

ey {E2(c4) + E(e) — B(%) — 1} /6, {E(e)) — 3E(e}) + 1} /6%

12



while
E{(¢My'hg)* (e} — 1)} = O(T¢727%), ¢=3,.. T

Multiplying by ¢ Mg thy; = ¢(61,0)’, we find that

6y + 2 HE2EEGEEE if e = (1,0)
1
As

0 if ¢ =(0,1).
Finally, ~3 is the difference between A\, and A5. In the Gaussian case, y3 = 90:13 when
¢ = (1,0), while y3 = 8 when ¢ = (0, 1)".
As an application consider the following non-robust Wald test for the presence
of ARCH. Suppose that the errors are Gaussian and that 3 and 6 = (51,53)’ are

estimated by the maximum likelihood method. Our test is to
reject, if TY?0; > 2,
where ®;(—z,) = a. By the above arguments

7 — —05)% — 1205(z — 05) — 14
Pr {120, <z} = &, {x_gg_su ) 6T1?2(a: 5) }+O(T—1/2>,

so that under the null hypothesis that 63 = 0,

~ 8z — 14
Pr {T1/293 < x} =d; {x — ]éTil/?} —I—O(Tfl/Q).

For the usual 5% level with zg g5 = 1.645 the second order rejection frequency is pre-
dicted to be 6.4% for T'= 100, i.e. over-rejection is expected. This agrees somewhat

with Lumsdaine (1995, Table 2).
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4 Magnitude of the second order effect in the GARCH(1,1) case

We now investigate the magnitude of the asymptotic bias in the general setting of
the GARCH(1,1) model. We calculate the asymptotic bias by numerical integration.
In fact, we use simulation techniques to avoid the high dimensional integration. This
technique is now widely established in other areas of econometrics, see Hajivassiliou
and Ruud (1994) for discussion and references. By using sufficiently many random
draws one can achieve any given degree of accuracy; we use over a million random
variables in our computations and achieve third significant figure accuracy.

We work only with a normal error distribution and with the situation where the
location parameter is known and not estimated in which case the bias is — (Ag+A2) /T
for both ¢'f and 0. For computational purposes it is convenient to rewrite the \’s in
terms of matrix notation, i.e. Ay = M 1@yvec(M 1) and \g = M 1G@gvec(M 1),
where @, = T ST | E{hg;vec'(D;)} and ®g = T! 3 ; E{(%2 — 1)hy, ® hyhy,} .
We generate n samples of size R using the recursions gi\sf<en in the appendix, and esti-
mate Mby M =n"' 1L RS2 hjhg, @by ©2 = n "R, 0L hjyved (DY),
and @y by @g =n 'Y RIS, 8 E{(¢2 — 1)h}, ® hi,h},} , where hj, is the
i'th realization at time t. Then we estimate Ay by c’mfl@gvec(mfl) and \g by
C’M_I@()vec(m_l). We take n = 10,000 and R = 100.

As Lumsdaine (1995) shows, QAQ and 0A3 are invariant to changes in 6;, while él
varies proportionately with 62. Therefore, we restrict attention to §; = 0.1 and vary
the other parameters. A stationary start-up was used, see the appendix. In Figure
1 below, we give the raw biases, 71 /T, for each parameter estimate computed at a
total of 171 equally spaced points inside the unit simplex (assuming a sample size of

T = 100).8
*** PIQURE 1 ***

14



The bias of 51 is positive and tends to increase with 65 but decrease with 63, although
a dramatic U-shaped pattern is evident for 3 = 0 (which corresponds to an essentially

deterministic variance process).
A% FIGURE 2 ***

The bias of 6, is generally negative, and displays considerable nonlinearity with re-
spect to both 6, and 03 throughout, although, especially, a dramatic U-shape is evident

for 03 = 0, as above.
K FIGURE 3 ***

The bias of 3 trends upward from right to left, taking negative values for 6, =~ 0 and
A3 =~ 1 and positive values for the reverse position.

Figures 1-3 make evident that the bias can decrease as the unit root region is
approached. Note also that the magnitude of the bias is relatively small in each case
except when 63 = 0.

We now try and get some idea of the average effect of each parameter on the
biases of 9Aj, j = 1,2,3. One way of displaying the multivariate function b(6s,03) =
71(02,03)/T is to report the one-dimensional slices by(02) = [ b(6s,03)dQ3(03) and
b3(03) = [b(02,05)dQs(62), where Qs and Q)3 are probability measures, see Linton
and Nielsen (1995). When b is either additive or multiplicative, i.e. b(fs,03) =
g2(02) + g3(63) or b(02,05) = g2(02)g3(03) for some functions go and gs, then by and
by give the component functions up to a constant. More generally, they measure an
average individual effect. We use empirical weighting and report by and b3 below in

Figure 4.

*** PIQURE 4 ***

15



These pictures confirm the general impression given by Figures 1-3; for example, the
U-shaped relationship between the bias of 52 and 6,.

Finally, we look at the unit root case. We take start-up vg = 1 and, as before,
0, = 0.1. In Figure 5 we give v;(6,05)/T for a grid of points on the unit simplex,
{(0.95,0.05), (0.90,0.10), ...}, plotted against 6s.

**¥* FIGURE H ***

The relationship is far from linear. Note that the biases are uniformly small in this
case.

We suspect that when the affects of estimating 3 are factored in a more compli-
cated picture might emerge, but that the main qualitative conclusions stated above

remain.

5 Extensions
1. Nonlinear Functions of 0

In many cases, nonlinear functions of the parameters are also of interest. For
example, the cumulated impulse response (CIR) function, CIR = 1/(1 — 6y — 03),
and the half life of a unit shock (HLS), HLS = In2/1In(6, + 03), which measure
the long run response of the conditional variance to a unit shock and the length of
time until the impulse response of a unit shock is half its initial value, respectively.
The MSE optimal predictor of v;14, which is, in the weakly stationary case, vf , =
v+ (03 + 03)* 1 (vyy1 — v), see Baillie and Bollerslev (1992), and tests of hypotheses
about @ based on the Wald, LM, or LR principles are also of interest here.

16



Let g be a scalar valued three times continuously differentiable function of 8, and

2 3 N . .
let g = (8%9;7 8%9;, 8%9;)’ and G = (%a%j)i,jzl‘ Then, T/? {9(0) — g(ﬁ)} is asymptoti-

cally normal with mean 0 and variance g'Q2g. Furthermore, the asymptotic mean and

skewness of g(A) — g(#) are approximately

T~y (g0) + tr(GQ)/2} ; T H{rs(g'd) + 38 QG g},

respectively. For the CIR function,

0 000
1 9

e= g e | L | ST | 0!

1 01 1

Although there is no apparent unit root effect for HA, there is one for C/'I?%, for the
obvious reason that CIR = oo when 03 4+ 63 = 1. Clearly, if 6, + 03 is close to 1, the
moments of CIR could be very large. The asymptotic standard deviation of g(@A) —g(0)
is {g'Qg}/?T—1 = O([1 — 0y — 03]72T1) as O, + 05 — 1, since §2 is finite for the
unit root case, while the asymptotic bias and skewness are O([1 — 03 — 03] 3T!) and

O([1 — 63 — 63]7"T1) respectively.

2. Bias Reduction

One practical application of our theorem is to bias reduction.” Andrews (1993)
defines an exact median bias correction for least squares estimators in an autoregres-
sive model. His procedure is based on inverting the relationship between the bias
(computed by simulation) and the single parameter being estimated. This method is
not well suited to the multiple parameter situation.!® An alternative bias reduction

method based on the asymptotic approximations of section 3 is now given. These
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approximate methods, at least the additive versions, are somewhat standard — see
Cox and Hinkley (1974, p310) for a discussion — but have not been applied in this
context before. A major advantage of our method is that it can be implemented
without detailed knowledge of the bias function 7;(¢), all that is required is that
one can estimate it consistently. This method also does not require knowledge of
the error distribution.!! Concentrating on mean bias correction,'? let 7; = 71(5) be
the estimated bias, where the function 7, (+) is given in the theorem. Then, 7; con-
sistently estimates ;. With this quantity we define the additive and multiplicative

bias-corrected estimates!3:
(1) ¢ =6 — T3,
(2) 0™ =0/(1+7,/c0T)
(3) 0" = ¢ exp(—A, /0T).

Then, /69, /0™ and /6" are unbiased to order T—!. Bias-corrected estimates of
() are obtained by replacing 8 by () and 7, by T {7, (g'0)+ (R4 +2)tr(GM 1) /2}
in (1), (2) and (3). One advantage of the multiplicative corrections ™" and 6% is

that they ensure positivity for the corrected estimate.

6 Concluding Remarks

The asymptotic bias of the QMLE seems to vary with the parameters in a nonlinear
fashion, which would suggest that the linear response surface approach used by Engle
et al. (1985) is flawed and certainly cannot work well over the entire parameter

space. Rather surprisingly, the bias does not necessarily increase when the unit
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root is approached. Some caution is due when interpreting these results literally,
but they are at least suggestive of some major differences in behavior compared with
linear autoregression. In this sense, our results confirm the implications of Lumsdaine
(1991), although our arguments have nothing to do with the ”pile-up” phenomenon
investigated in Lumsdaine (1995).

We derived explicitly the second order approximation to the distribution of a cer-
tain Wald test for the presence of ARCH effects under a sequence of local alternatives
to homoskedasticity. The test should over-reject in small samples, by about 30% for
sample size 100.

Finally, our calculations extend to linear regression model with exogenous regres-
sors with only minor changes to the formulae by incorporating the moments of the
regressors. The estimate of the regression parameters are symmetrically distributed
as before. If a lagged dependent variable is included, however, we can expect the
estimate of its parameter to be mean and median biased as it is without ARCH

affects.

7 Appendix

The variance derivatives satisfy the following recursions:

¢ i—1
Vg1 = 1+ Oovi1; = Oyvp0 + 220 05
_ _pt t-1
Vo = V1 + Oovy_1,9 = Oqv0.0 + Do 0501
—) +( _ﬁ2_9t + t_198 —ﬁ2
3= ~1; - = U5vo; s=0 V2 \Yt—1-s
V;3 2Ut—1:3 Y1 ) Vo3 + 2 (yt 1 )
_ _pt t—1
22 = 4Ut-1; t—1;22 = Yoo 5=0 03Vt 1- 52
Voo = 20 159 + 020190 = Oq00,00 + 237" 0

_ _ Nt t—1 ps
Vg2 = Vi—1;1 + Oovi_1;12 = O500,12 + 2 050 1—s1

19



Vpo3 = Uy 13 + 020 1.03 = Obvo.z + S8 0500 1 4
v = Oati- s — 200(3ic1 — ) = 8513 — 205 T 031, — )
Vs = Oavi-1,6 + 203 = 050085 + 203 57,7 03

Viga = Vi 1,8 + Oavy 1,52 = O5vo.p0 + STh 0501 1 58

Vg3 = 020 1,83 — 2(ys1 — B) = O5v0,83 — 2 S0 (g1 s — B)

while the remaining second derivatives are all zero. For our purposes, the third
derivatives are not required. In the ARCH process, 0, = 0, all second derivatives are
zero. As far as the theoretical calculations are concerned, how the model is started up
is irrelevant. In our computations we take all start-ups (observations dated 0) to be
fixed numbers, either derived from the stationary start-up where relevant, in which

case

vo = 01/(1 — 6y — 65)
vo = 1/(1 — 63)

Vo;2, V0;3 = Uo/(l - ‘92)
Vo2 = 20g/ (1 — 02)?
vo12 = 1/(1 — 65)?
vo.23 = vo/ (1 — 62)?
vo,p = 203/ (1 — 62),

with all other start-ups zero, or some arbitrary quantity.

ProoF OoF THEOREM. We first derive the asymptotic properties of 5(6), the
pure GARCH procedure where (3 is known and not estimated. We then examine the

QMLE QA(B), incorporating the effects of estimating /3. Finally, we consider 9~(B)
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We use throughout the summation convention that repeated indices in an expres-

sion are to be summed over, e.g. 797 =Y, 79Il

1. Properties of GA(ﬁ) Ignoring the inequality restrictions'®, the standardized esti-
mators, derived from choosing 6 to solve £;(0,3) = 0, i = 1,2, 3, have the following
stochastic expansions (see McCullagh (1987, p209)):

T1/2 {@(ﬂ) — (92} ~ —Tiij L2 {TikalekZl — TikalenijZkZm/2} , (AL1)

where Z; = T7Y2L; and Z, = T V2 {L;y — E(L;x)} are evaluated at the true
parameters and are jointly asymptotically normal. The truncation error in (Al.1) is

OP(T_I).

la. Asymptotic bias of g(ﬁ) Taking expectations of the right hand side of (Al.1),

and using (3.1) and symmetry of 7% we get

E [Tl/%' {5(5) — QH ~ T~ V2 9rR ) + Tk + 2) /4, (A1.2)

by a cancellation of 7%!7,, 7™ We substitute for the 7’s in terms of the u’s, using,
for example, that u™ ™y = pH pP g g for any 4, by symmetry of p*!. Let ag =
TRt pss 5y ay = cipt T P g g, ag = copt i gy and ag = ¢t P g gy Then

.. - Ka + 2 Kka+ 2
17 _kl . i7 __kl 4 4
T i = (ks +2) (a1 —ag) —ag ;T TR 1=

(2(11 +as — ag).

We get a cancellation of the terms involving a;, so that the asymptotic bias of ¢ 6 is

approximately —7 ! {”47” (ag + az) + ao} . We now switch to matrix notation, so that

ag =T 'S E{(e> — 1) M~ hyh) M~'hy,},ay = T™! erzl E {tr(M~'Hyy, )M~ 'hy,}

s<t
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and a3 = T7'Y L, E{tr(M 'hyh),)¢Mthy,}, where Hyp, = (hyy5)? Then,

i,j=1"
since Hygy = Dy — hyhy,,
T
as+a3 =T E{tx(M™'D;)¢M 'hg.} .
t=1

Therefore, the bias of ¢8(3) is —(Ao + X2)/T.

1b. Skewness of0((3). We first recentre the standardized estimator. Let Ey{T"2[0;(3)—
0;]} be the expectation of the truncated standardized estimator given by the right
hand side of (Al.1), and let

P, = T2 {6:(8) — 0,} — B [T"2{0:(8) — 0:)}| = A + T '/*B;,

where A; = —79Z; and B; = C; + D, with C; = 797"{Z,, 2, — E(Z;+2,)} and
I[Di = —Tikalenlen{ZkZm — E(ZkZm)}/2 Thus

E(PH Piz]pis) ~ E(AMAW Aw) + T_I/Q{E(Ail AZQ Bw) + E(BHAQ AZS) + E(AHBW Ai3)}u

where

E(Au A’iQ Ais ) = _Tiljl TiZjQ TiSjg E(Zjl Zj2 st )
E(Azl Aig Cig ) = rhiipil pisisrhsls [Zj1 ij {Zj3k3 le - E(Z jsks Zl3 ) }]

J

E(AilAiz ]D)Zs) - _%TiljlTi2j27—i3j37—k3137—m3n3Tj313n3E [Zjlzjé {Zk3zm3 - E(Zk3zm3)}] .

Now,

B(Z5,25,Z;,) = T ko3itj, o s /8,
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by direct calculation. Next, using the joint asymptotic normality of Z,,, and Z,,

B2 2, { Zjsks 215 —

E [Zjl Zj2 {Zk3 st

Zisks Z13) Y = Tiu s Tisksgo T i jsks Tinds + 0(1)
- E(Zk3zm3)}] = Tj1,k3Tjo,ms3 + Tj1,m3 Tja, ks + 0(1)'

Therefore, substituting p's for 7’'s, and switching to matrix notation,

E(Cil Ciy Cig Ail Aiz Ais )

while

E(ciy CinCiy Aiy Ay, D)

and

E(Cil CiyCig Ail Aiz Cis )

—1/2 e 01 ,02,02 88,03, .
T /’@3021022023# R R RN L

T=32 5T | ko3 E{(¢M~hy,)3}

9 e daie
—(H4 + 2) Ciy Ciy Ci3'u217 3M237]3 M227n3 %

{Mj313,n3 + Hijsng.ls + Higng,js — lU’j3J3,n3}

—(ka + 2)2T*1 Zthl E{3¢M thyM e M thy, — (C'Mflhgt)‘g} ,

20~ p i1,k3 13,93 |, 92,82, . . 3,93 ,,41,k3 , d2,02 . .
(&4 + 2) Ci1 CiyCig {:u 1% W Hjsks,ja 2 1% M ,uj3,k3732+
3,73 11,01, . R & W/ - W S 31 . I
R e R N e [l el e T

e o 3,73 ;92,52 ;,41,k3 | €€ 3,J3 ,,42,k3 ;91,51 ;€€
204, Ciy Cig { P P2 P2 IR S0 g s B R TS

19 ,kg (2] 7I€3

2(ks + 22T L E{dMthy M ted M thy — (M thy,)3} —
2(ks +2)T7' X E{(¢M™Thyg ) > M thy,(e2 — 1)} .
s<t

Again we get a cancellation of terms involving (¢/M'hg,)?, and the skewness of ¢/6()

is approximately T {\; — A3 — A5} .
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2. Properties of 0(j3). We have

T2 {@(5) i 92‘} _ Y2 {@w) . 492'} ~ T1/2 {TijT’BﬁZjﬁZg _ TijTﬁﬁTﬁﬁTjﬁﬁzgﬂ},
(A1.3)

because i, Tj18, Tjgn = 0.

2a. Asymptotic bias of 0(3). We take expectations of the right hand side of (A1.3),
and substitute for the 7’s, finding

TP is 5 = T WAT + 15 5+ 205 — (Ka + 2) (s — 1ipe) /2,
—TITPB TP 5575 /2 = T35 T8 a1 {27 — (1,88 + 2088 — 1i,8,8) H/2.

We now collect terms, finding the coefficients on

_ 1 1 i

) Tas 12+ Ta3 58} P4
. —1

s Tap /2

M5 Tas

s Tag {2 + 154 7581/2; ps

. -1 4+2 -1 .
Hip.B Tpg H; _TﬁﬁTﬁ,ﬁ/z}7 P2

. -2 .
Hips:  —TasT8,8/2; 1

along with their common factor of 77247, Combining with the pure GARCH bias,
we get the required result for the bias of ¢/6(/3).

~

2b. Skewness of (). We have to calculate terms like E(A; Ay, E;,), where
By, = T/27597%° {2,525 — B(Zj525)} — T 0979 rPr00{ 23 — B(2)} /2.
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By asymptotic normality

[ { sﬁzﬁ (stﬁzﬁ)}] = TpATisBg T Tj,8T.4s8 T 0(1)
E [Zjlzj2 {Zg - E(ZE)H = 27—j1,ﬁ7-j2,ﬁ + O(I)a

but, because E(Z;Z3) = 0, the right hand sides are both zero. Therefore, the skewness
of () is the same as that of () to order T~ 1.

3. The properties of 6. In this case, the truncated stochastic expansion is
Tl/Qc'(9~— 0) ~ —cZT”Z + T 1/2 {c FaFhl Z kZl e T FklEmn . ank m/2}

with approximation error of order T—!. Here, tildes denote dependency on B . In the
order T~/2 terms we can replace B by 3 with error that is of order T—!. However, we
must further expand the leading term in a second order Taylor series in 5 — B. We

obtain

TV (6 —0) — T2 {é(ﬂ) - 9} ~ T Ve ZsW — TV 2erm5sW2 /2, (Al.4)

where Z;3 = T~Y2L;5 and W = TY2(3— 8) = T-Y/2 5L e, are both O,(1). The
other terms: Tfl/QciTijTjkngklZ;W, TflciTijTjkﬁTlelm[ng”ZnWQ,
T leim T ZW? /2 and T~ ;797,578 Z15W? are op(T~?) because T3, Tjrs =

0, by symmetry. Furthermore, E(Z,V) = 0.
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3a. Asymptotic bias of . Firstly, we have that E(W?) = 7 and E(Z;3WV) =
—pi—3sT Y B {ht;jht;gesvi/z} . We take expectations of the right hand side of
(A1.4), and substitute for the 7's, finding

~TIZ3W = =207 [y + 5T T Ty B {heghugesvi/?}|
—T9T8sW? /2 = ph7T0 (275 — {88 + 20858 — tp,58} /2] -

We have to add both these terms to the bias of ¢0(f3), in order to get the bias of /6.

3b. Skewness of 6. We have to calculate terms like T V2E(A;, Ay, Gy, ), T V2 E(A;, Ay, HL, ),
and T~12E(A;, A, K, ),where G; = X ., 797057 ZV/2 (note that E(ZW) = 0),
H; = =3, 77{Z;sW—E(Z;sW)}, and K; = — 3, 797;33{ W? — E(W?)} /2. We have

E(A;,A,G,) = rhiirieizgisisg, etk B(Z, Z, 21 W)
E(All AZQHis) = —rhI iyl E[Zjl ij {stﬁw - E(ZJ&BW) }]
E(All AZQ KZS) = —rhI iyl TjsﬁﬁE[Zjl Zj2 {W2 - E(Wz) }]/2

Now,
E(Zjl Zj2Zlaw) - 0(1)
B2, 25, {Z;W — E(Z;,sV)}] = o(1)
E[2; 2, {W?* = EOV?*)}] = o(1),

by joint asymptotic normality, and that JV is uncorrelated with Z;, for j = 1,2, 3.
Therefore, the skewness of 6 is the same as that of 6(3).
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4. The properties of B In this case,
Tl/Q(E —f) = —TﬁﬁZg + T 1/2 {TﬁﬁTklngZl - TﬁﬁTﬂﬁTle/gngng} ,

because Tyg, Tgri, Tsps = 0. Therefore, both the mean and skewness of TV Q(ﬁ )

are zero to order T !, since also Tak, = 0. n
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1. In this case, the variance process is strongly stationary (Nelson (1990)), but
the unconditional variance is infinite.

2. Under Gaussianity, the information matrix is block diagonal between 6 and [,
and 0 procedure is fully efficient. When ¢, is not Gaussian, 0 and 0 are both consistent
but not fully efficient.

3. See Lemmas 1-5 of Lumsdaine (1991).

4. The double summation terms, Ag, A1g, Ajy, and A5, arise from the fact that the
centred Hessian is not a martingale. That these quantities are finite should follow
from the asymptotic independence of the relevant stochastic processes.

5. In the stationary AR(1) model, v, = py;_1 + &¢, where |p| < 1, the asymptotic
bias of the least squares estimate of p is —2pT ! (relative to the asymptotic standard
deviation it is —27 1p//1 — p?), see Phillips (1977a).

6. Or rather, are not present.

7. Also, note that v; = v; here.

8. The biases standardized by the asymptotic standard deviations w,/* = /2

gives essentially the same pattern.
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9. Although not directly relevant to the usual optimality criteria in regular para-
metric problems, since biased estimates can have smaller MSE than unbiased ones,
there are some advantages of reduced bias. Impartiality itself may be desirable, for
example in the context of testing for unit roots, see Andrews (1993). In situations
with large numbers of nuisance parameters — for example, when estimating the error
variance in fixed effect panel data regression models with large n but small T' — it
may be necessary to correct the MLE for bias otherwise it can be inconsistent. In
nonparametric and semiparametric estimation problems, bias reduction can improve
convergence rates, see Hardle and Linton (1994) and Robinson (1988).

10. Computationally, the Andrews’ method is also very demanding here because
of the iterative procedure used to estimate the parameters.

11. When the error distribution is Gaussian, they possess some large sample
optimality: for example, Ghosh, Sinha and Wieand (1980) prove that bias-reduced
MLE’s are second order MSE optimal amongst all second order unbiased estimators.
If one insists on having an unbiased estimator then the adjusted MLE is best.

12. The median bias of ¢/ is approximately (67, — y3)/67.

13. Firth (1993) recommends bias correction by modifying the score function and
even the likelihood itself directly.

14. The inequality restrictions can be ignored because the event that they are
violated is of exponentially small order of magnitude for the Edgeworth measure that

serves as an O(T~Y 2) approximation to the distribution of the unrestricted estimate.
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FIGURES 1-3. Bias of 51,52, and 53 against 0y and 65, with: 6; = 0.1, T' = 100,

weakly stationary design, Gaussian errors, location not estimated.

F1GURE 4. Univariate effects on biases of 91, 9A2, and 53 of Ay and #3. Same design

as before.

F1GURE 5. Unit root design. Bias of 51, é\g, and 0 against 0y and 03, with: vg =1

and rest as before.
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